
Politecnico di Torino

Department of Control and Computer

Engineering (DAUIN)

Master Degree in

Computer Engineering

Design and development of a Mixed Reality application

in the automotive �eld

Supervisors:

Prof. Maurizio Morisio

Author:

Giovanna Galeano

December 2017

Contents

1 Mixed Reality 1

1.1 Real Environment . 2

1.2 Augmented Reality . 2

1.2.1 Augmented Reality (AR) Categories 2

1.2.2 Key Components to Augmented Reality Devices 3

1.2.3 AR headsets categories . 4

1.3 Augmented Virtuality . 5

1.4 Virtual Reality . 5

1.4.1 Virtual Reality (VR) Categories . 5

1.4.2 Key Components in a Virtual Reality System 6

1.4.3 Key Components Inside of a Virtual Reality Headset 7

1.4.4 Performance parameters . 8

2 Context 11

2.1 Technological scouting . 12

2.1.1 Automotive �eld . 13

2.1.2 Other examples . 17

3 System design 23

3.1 Helmet-mounted display design features . 25

3.2 Devices Comparison . 28

3.2.0.1 Final considerations . 29

3.3 Architecture design . 32

4 Development environment 35

4.1 Game engine components . 36

4.2 Game engines for Mixed Reality . 37

4.2.1 Unreal Engine 4 . 37

4.2.2 CryEngine . 38

4.2.3 Unity . 39

4.2.4 Unity as �nal choice . 41

4.2.4.1 ARToolkit SDK . 42

4.2.4.2 Vuforia SDK . 43

4.2.4.3 Wikitude . 44

1

5 Prototype design and development 46

5.1 HoloLens hardware review . 46

5.2 Hololens inputs . 48

5.3 Hololens emulator . 49

5.4 Development basics . 50

5.5 First phase . 53

5.6 Second phase . 56

5.7 Third phase . 59

6 Conclusions and future work 64

6.1 Conclusions . 64

6.2 Future work . 66

Ringraziamenti 68

2

List of Figures

1.1 Reality-Virtuality Continuum . 1

1.2 Mixed Reality Venn Diagram . 2

1.3 Ikea Augmented Reality App . 3

1.4 Intel proposal for Augmented Virtuality 5

1.5 Example of immersive Virtual Reality . 6

2.1 BMW F1 HMD . 13

2.2 BMW glasses . 14

2.3 Toyota AR Windshield . 15

2.4 Jaguar Land Rover Virtual Windscreen . 15

2.5 iSCOUT HUD . 16

2.6 Navdy HUD . 17

2.7 DAQRI Smart Helmet . 17

2.8 F-35 HMD . 18

2.9 Ukranian HMD . 18

2.10 BMW Helmet . 19

2.11 RideOn Ski Goggles . 19

2.12 HTC Vive . 20

2.13 Oculus Rift . 20

2.14 Epson Moverio BT-2000 . 21

2.15 Microsoft Hololens . 21

2.16 Meta 2 . 22

2.17 ODG R7 . 22

3.1 AR System . 24

3.2 FOV- resolution relatioship . 26

3.3 High-level Architecture . 32

3.4 Headquarters internal architecture . 32

3.5 Garage internal architecture . 33

3.6 Car internal architecture . 33

3.7 ECU possible con�guration . 34

3.8 AR System Architecture . 34

4.1 Game Engines . 37

4.2 Augmented Reality SDKs for Unity . 42

5.1 Devices on the mixed reality spectrum . 46

3

5.2 The display . 47

5.3 The sensor bar . 47

5.4 The motherboard . 47

5.5 The Hololens gesture frame . 49

5.6 The Hololens Emulator . 50

5.7 Eye Tracking on an F1 car . 52

5.8 Test drive with Hololens . 53

5.9 A primitive object . 53

5.10 Car model implementation . 55

5.11 Simple UI . 55

5.12 Sport car 3D model . 56

5.13 Phase 2 interface . 57

5.14 Phase 2 Scene View . 57

5.15 Race track around the lake . 59

5.16 NavMesh baking . 60

5.17 Curve zones and waypoints . 61

5.18 Curve example . 61

5.19 Ghost car example . 62

5.20 Alternative interface . 63

4

Abstract

Advancements in computing have continued to enhance user e�ectiveness and ef-

�ciency in all aspects of home and work life. Mixed Reality technology is rapidly

becoming one of those major technological progressions.

Mixed reality is the result of blending the physical world with the digital world.

It is the next evolution in human, computer, and environment interaction and

unlocks possibilities that before now were restricted to our imaginations.

The term mixed reality was originally introduced in a 1994 paper by Paul Mil-

gram and Fumio Kishino, "A Taxonomy of Mixed Reality Visual Displays." Their

paper introduced the concept of the virtuality continuum and focused on how the

categorization of taxonomy applied to displays. Since then, the application of

mixed reality goes beyond displays but also includes environmental input, spatial

sound, and location.

The enterprise market for these technologies is growing rapidly. In particular,

the market value for Augmented Reality applications is expected to signi�cantly

surpass that of Virtual Reality. Experts are predicting that �VR and AR will be

a $150 billion market by 2020, with $120 billion of that dedicated to AR�. The

reason for this is because Virtual Reality, although �ashier, takes the user out of

the real world. Augmented Reality instead is more applicable to interaction with

the physical world around us. Developers and engineers have been progressively

releasing more business productivity and enterprise applications with the goal of

enhancing business value with this technologies. This thesis work is indeed an

example of this trend.

It is a proposal of a headset for sport drivers that exploits the potential of this

emerging technology. The main goal was the de�nition and development of an

advanced head-mounted device that could allow the driver to see on the display

of his helmet useful information.

This thesis is focused mainly on the �rst phases of the software/hardware

development. After an initial analysis of the main requirements of this particular

context and the state of art, a �rst possible architecture for the head-mounted

device has been proposed. The next step was the choice of the best platform to

be used for the development of this kind of application and the best engine that

could support the design and coding of it. The comparison made showed that

the best option was the Microsoft Hololens System, that is a holographic devices

with a see-through display that allows the user to see the physical environment

while wearing the headset. This technology should be adapted and incorporated

into a driver headset. As far as concerns the computer engine, the comparison

I

made among the main engines on the market showed that Unity3D was the best

option. The last part of the work done has been the development of a prototype

that could give an idea to the user of the �nal result.

II

Chapter 1

Mixed Reality

The word �mixed reality� comes from the research paper by Paul Milgram and

Fumio Kishino entitled �A Taxonomy of Mixed Reality Visual Displays� published

in 1994. In that paper, the term �mixed reality� appeared in reference to a

part of �the virtuality continuum� (later also called the Reality-Virtuality (RV)

continuum).

Figure 1.1: Reality-Virtuality Continuum

This spectrum basically shows a range of environments, from the real world

with no virtual elements to a totally virtual environment with none of our reality

visible. The space in between when real world elements start to mix with virtual

ones to some degree or another is �mixed reality� in their original de�nition.

�The most straightforward way to view a Mixed Reality environment, therefore, is

one in which real world and virtual world objects are presented together within a

single display, that is, anywhere between the extrema of the virtuality continuum.�,

�A Taxonomy of Mixed Reality Visual Displays�.

Since the publication of the above-mentioned document, the application of

mixed reality goes beyond displays but also includes environmental input, spatial

sound and location.

Now, the combination of computer processing, human input, and environmen-

1

tal input sets the opportunity to create true mixed reality experiences. Move-

ment through the physical world can translate to movement in the digital world.

Boundaries in the physical world can in�uence application experiences, such as

game play, in the digital world. Without environmental input, experiences cannot

blend between the physical and digital realities.

Figure 1.2: Mixed Reality Venn Diagram

1.1 Real Environment

The real environment (also called �natural environment�) refers to the natural

world we consume everyday. This natural environment encompasses all living

and non-living things occurring naturally on Earth. Consequently, most virtual

environments are modeled after real environments.

1.2 Augmented Reality

A live direct or indirect view of a physical, real-world environment whose elements

are "augmented" by computer-generated or extracted real-world sensory input

such as sound, video, graphics or GPS data is called Augmented Reality (AR).

With the help of advanced AR technology the information about the sur-

rounding real world of the user becomes digitally manipulable and interactive.

1.2.1 Augmented Reality (AR) Categories

• Marker-based augmented reality (also called Image Recognition)

A camera and some type of visual marker, such as a QR/2D code are used

2

to produce a result only when the marker is recognized by a reader.

Marker based applications use a camera on the device to distinguish a

marker from any other real world object. Distinct, but simple patterns

(such as a QR code) are used as the markers, because they can be easily

recognized and do not require a lot of processing power to read.

• Markerless augmented reality (also called location-based, position-based,

or GPS)

This type of AR application is one of the most widely used. It uses a GPS,

digital compass, velocity meter, or accelerometer to provide data based on

your location.

It is used for location-centric mobile applications (ie �nding nearby busi-

nesses or mapping directions).

• Superimposition based augmented reality

In this case the original view of an object is either partially or fully replaced

with a newly augmented view of that same object.

In superimposition based augmented reality, object recognition plays a vi-

tal role because the application cannot replace the original view with an

augmented one if it cannot determine what the object is.

Figure 1.3: Ikea Augmented Reality App

1.2.2 Key Components to Augmented Reality Devices

Key components to AR devices are:

• Sensors and Cameras

Sensors are usually on the outside of the augmented reality device, and

3

gather a user's real world interactions and communicate them to be pro-

cessed and interpreted. Cameras are also located on the outside of the

device, and visually scan to collect data about the surrounding area. The

devices take this information, which often determines where surrounding

physical objects are located, and then formulates a digital model to deter-

mine appropriate output.

• Projection

A projector can essentially turn any surface into an interactive environment.

The information taken in by the cameras used to examine the surrounding

world, is processed and then projected onto a surface in front of the user.

• Processing

Augmented reality devices are basically mini-supercomputers packed into

tiny wearable devices. These devices require signi�cant computer pro-

cessing power and utilize many of the same components that our smart-

phones do. These components include a CPU, a GPU, �ash memory, RAM,

Bluetooth/Wi� microchip, global positioning system (GPS) microchip, and

more. Advanced augmented reality devices utilize an IMU system to pro-

vide for truly immersive experience.

• Re�ection

Mirrors are used in augmented reality devices to assist with the way the eye

views the virtual image. Some augmented reality devices may have �an array

of many small curved mirrors� (as with the Magic Leap augmented reality

device) and others may have a simple double-sided mirror with one surface

re�ecting incoming light to a side-mounted camera and the other surface

re�ecting light from a side-mounted display to the user's eye. The re�ection

paths have the same objective, which is to assist with image alignment to

the user's eye.

1.2.3 AR headsets categories

There are two categories for AR headsets: some AR headsets are based on con-

ventional screens "video see-through" and some deviceses are based on semi-

transparent screens "optical see-through". A "video see-through" device displays

video from camera which �lms the real scene and which is outside the headsets.

"Optical see-through" systems combine computer-generated images with the view

of the real world through a semi transparent mirror.

4

1.3 Augmented Virtuality

Augmented virtuality describes the environment in which real objects are in-

serted into computer-generated virtual environments. It is best described as the

inverse of augmented reality, where real world objects are layered over virtual en-

vironments. In the following �gure is possible to see the example showed by the

Intel company, they exploited the HTC Vive technology in combination with data

received from sensors and cameras to "import" the real hands into the virtual

environment.

Figure 1.4: Intel proposal for Augmented Virtuality

1.4 Virtual Reality

Virtual Reality (VR) is a computer technology that uses virtual reality headsets

or multi-projected environments to generate realistic images, sounds and other

sensations that simulate a user's physical presence in a virtual or imaginary en-

vironment.

A person using virtual reality equipment is able to "look around" the arti�cial

world, and with high quality VR move around in it and interact with virtual

features or items. The e�ect is commonly created by VR headsets consisting of

head-mounted goggles with a screen in front of the eyes, but can also be created

through specially designed spaces with multiple large screens.

1.4.1 Virtual Reality (VR) Categories

• Non Immersive Virtual Reality

Non-immersive simulations are the least immersive implementation of vir-

5

tual reality technology. In a non-immersive simulation, only a subset of the

user's senses are stimulated, allowing for peripheral awareness of the reality

outside the virtual reality simulation.

• Semi Immersive Virtual Reality

Semi-immersive simulations provide a more immersive experience, in which

the user is partly immersed in a virtual environment.

Semi-immersive simulations are powered by high performance graphical

computing systems coupled with large screen projector systems or multiple

television projection systems to stimulate the user's visuals in the proper

way.

• Fully Immersive Virtual Reality

Fully-immersive simulations provide the most immersive implementation of

virtual reality technology.

In a fully-immersive simulation all of a user's senses are stimulated.

Fully immersive simulations are able to provide a realistic user experiences,

this thanks to a wide �eld of view, high resolutions and update rates and

high levels of contrast into the display.

Figure 1.5: Example of immersive Virtual Reality

1.4.2 Key Components in a Virtual Reality System

The virtual environment must look real but also be felt real by the human brain

in order to be fully accepted.

Looking real can be achieved by wearing a head-mounted display (HMD) that

displays a recreated life size, 3D virtual environment without boundaries that are

usually seen on TV or a computer screen.

6

Feeling real can be achieved through handheld input devices such as motion

trackers that base interactivity on the user's movements.

Some of the key components behind this system are:

• PC/Console/Smartphone

Virtual reality content, which is the what users view inside of a virtual

reality headset, is equally important as the headset itself. In order to

power these interactive three-dimensional environments, signi�cant com-

puting power is required. PC, consoles, and smartphones act as the engine

to power the content being produced.

• Head-Mounted Display

A head-mounted display is a type of device that contains a display mounted

in front of a user's eyes. This display usually covers the user's full �eld of

view and displays virtual reality content. Some virtual reality head mounted

displays utilize smartphone displays, including the Google Cardboard or

Samsung Gear VR.

• Input Devices

Input devices are one of the two categories of components that provide

users with a sense of immersion. Some of the more common forms of vir-

tual reality input devices include joysticks, controller wands, data gloves,

trackpads.

1.4.3 Key Components Inside of a Virtual Reality Headset

Inside of each virtual reality head-mounted display (HMD) is a series of sen-

sors, individual eye displays, lenses, and display screen(s), among other various

components. Some of the key components inside of a virtual reality headset are:

• Sensors

The three most common sensors in a virtual reality headset are magne-

tometers, accelerometers and gyroscopes. These sensors work together by

measuring the user's motions and direction in space. Their ultimate goal is

to covers all the degrees of motion for an object in space.

• Lenses

Lenses lie between the eyes and pixels on the display screen(s). They focus

and reshape the picture for each eye by angling two 2D images to mimic

how each of our eyes take in views of the world (also called stereoscopic).

This creates an impression of depth and solidity, which we perceive to be

a three-dimensional image. Lenses on each virtual reality device are not

7

one-size-�ts all and have to be adjusted for initial use as all devices have

di�erent lens properties.

• Display Screens

Display screens show the images that user view through the lenses. They

are typically LCD and receive video feed from the computer or smartphone.

Depending on the headset, the video feed is either sent to one display or

two displays (one per eye). This happens via wireless connection, smart-

phone connection, or HDMI. The most common types of virtual reality

display technology is a Liquid Crystal Display (LCD) screen, similar to the

kinds used in smartphones and computer monitors. An alternative display

technology is an Organic Light-Emitting Diode (OLED) screen.

• Processing

Virtual reality systems demand a substantial amount of power, even in

comparison to notoriously power hungry gaming systems. The processing

power required by virtual reality systems can be broken down into several

categories:

Input Processor � Controls the devices used to input information to the

computer. They retrieve and distribute data to the rest of the system

with minimal lag time. Examples include keyboards, mouses, 3D position

trackers, and voice recognition systems.

Simulation Processor � Takes the user inputs along with any other tasks

that are programmed from the natural world and determines the actions

that will take place in the virtual world. This is a core component of the

VR system.

Rendering Processor � Creates the sensations that are output to the user.

These include visual, auditory, haptic and other sensory systems. Separate

rendering processes are used for each sensory system.

1.4.4 Performance parameters

• Field of View

Humans have an FOV of around 180 degrees, but most HMDs o�er far

less than this. Typically, a greater �eld of view results in a greater sense of

immersion and better situational awareness. Simply put, �eld of view refers

to how wide the picture is. Field of view is measured based on the degree

of display (e.g. 360 degrees).Consumer-level HMDs typically o�er a FOV

of about 30-40 degrees whereas professional HMDs o�er a �eld of view of

60 to 150 degrees.

8

• Interpupillary distance

Interpupillary distance (IPD) is the distance between the two eyes, mea-

sured at the pupils, and is important in designing head-mounted displays.

• Latency

Latency refers to the amount of time it takes for an image displayed in a

user's headset to catch up to their changing head position. Latency can

also the thought of as a delay, and is measured in milliseconds (ms). In

order for an experience to feel real, latency usually needs to be in the range

of 20 milliseconds (ms) or less. Low latency, or very little delay, is needed

to make the human brain accept the virtual environment as real. The lower

the latency, the better. The higher the latency, a noticeable and unnatural

lag may set in.

• On-board processing and operating system

Some HMD vendors o�er on-board operating systems such as Android, al-

lowing applications to run locally on the HMD, and eliminating the need

to be tethered to an external device to generate video. These are some-

times referred to as smart goggles. To make the HMD construction lighter

producers may move the processing system to connected smart necklace

form-factor that would also o�er the additional bene�t of larger battery

pack. Such solution would allow to design lite HMD with su�cient energy

supply for dual video inputs.

• Frame Rate

Frame rate refers to the frequency (rate) at which the display screen shows

consecutive images, which are also called frames. Television shows run at 30

frames per second (fps) and some game consoles run at 60 frames per second

(fps). In virtual reality, a minimum frame rate of approximately 60 frames

per second is needed to avoid content stuttering or cause of simulation

sickness.

• Tracking

Tracking handles the vital task of understanding a user's movements and

then acting upon them accordingly. Eye trackers, for example, measure the

point of gaze, allowing a computer to sense where the user is looking. This

information is useful in a variety of contexts such as user interface naviga-

tion : by sensing the user's gaze, a computer can change the information

displayed on a screen, bring added details to attention, etc.

• Resolution

HMDs usually mention either the total number of pixels or the number of

9

pixels per degree. Listing the total number of pixels (e.g., 1600x1200 pixels

per eye) is borrowed from how the speci�cations of computer monitors are

presented.

10

Chapter 2

Context

Few industries can match the automobile industry in terms of scale, reach and

international appeal. As one of the driving forces of the 20th century, the auto-

motive industry is also at the forefront of innovation in this century.

The face of the automobile industry is changing with new players and new

technologies from electric cars to automated vehicles are disrupting traditional

heavyweights of the industry. While the industry is not yet in a crisis it is however

at a critical point in its history with many manufacturers' pro�ts squeezed and

margins thinned.

The 2017 PriceWaterhouseCoopers Automotive Trends report stated that the

automotive companies that stand out and emerge from this crisis point success-

fully will be �the companies that harness their limited capital resources in creative

ways, to navigate a still-unfolding and unfamiliar landscape.�

Mixed reality can pay a part in this creative innovation, helping to redress the

balance and give manufacturers an opportunity to innovate across all aspects of

their processes.

Talking about the customer driving experience, it can be improved by the intro-

duction of additional information directly on the windshield or on a display next

to the driver or even projected on glasses or headsets worn by the driver. We

have distinguished several categories for the information that can improve the

driving experience.

• Safety

Thanks to sensors and cameras around the car information such as a poten-

tial danger on the road ahead or obstacles in the immediate surroundings

can be immediately seen by the driver. Information about the speed limit

or in particular weather conditions detections (fog, heavy rain or snow) the

road signs can be perceived as projected directly on the road. In addition,

information about the health of the driver, for example the heart-beat to

detect a possible status of sickness or anxiety, the eye-blinking to detect

sleepiness.

• Car information

Information about the car such as the oil temperature, water temperature,

speed, engine rpm and many others.

11

• General information

Information about the weather conditions, temperature and forecast; the

driving route with potentially additional information about nearby histor-

ical, architectural or natural points of interest, facts on sights, exhibitions,

shows and events nearby; latest news from the web and social network

updates, phone calls, text messages.

• Passengers entertainment

Passenger can zoom into objects along the road and obtain information

about them in real time; special glasses, cameras and an appropriate car

structure could be used to �see through� the vehicle creating a �y-like feel-

ing.

• Training

Track lanes lines projection, cones, braking trace and acceleration trace

could help novice driver at learning a new track (this information can be

automatically calculated or set by an expert driver); lap times and ghost

cars to compete with can also be used to practice.

2.1 Technological scouting

During the requirements analysis a research on the actual state of mixed reality

devices, in the more general meaning, has been performed with special focus on

the automotive �eld. It can be noticed that the main technology used for this

devices is the augmented reality and the �rst attempt to introduce a simple form

of augmented reality in this �eld was made in 2002 for a Formula 1 driver. In

addition, it can be seen that the main AR systems designed and developed are

three:

• Head or Helmet Mounted Devices

A head-mounted display (or helmet-mounted display, for some applica-

tions), both abbreviated HMD,as said before, is a display device, worn

on the head or as part of a helmet, that has a small display optic in front

of one (monocular HMD) or each eye (binocular HMD). A HMD has many

uses including in gaming, aviation, engineering, and medicine.

• Windshield-mounted Displays

A windshield-mounted display system, projects the information directly on

the car windshield through the usage of projectors and mirrors .

• Head-up Displays

A head-up display or heads-up display, also known as a HUD, is any trans-

12

parent display that presents data without requiring users to look away from

their usual viewpoints. The origin of the name stems from a pilot being

able to view information with the head positioned "up" and looking for-

ward, instead of angled down looking at lower instruments. A HUD also

has the advantage that the pilot's eyes do not need to refocus to view the

outside after looking at the optically nearer instruments.

• Smart Glasses

Smart glasses are wearable computer glasses that add information along-

side or to what the wearer sees. Alternatively smartglasses are sometimes

de�ned as wearable computer glasses that are able to change their optical

properties at runtime. The most famous example is Google Glasses.

In the following pages several examples of each type of system will be provided,

some of these are only conceptual proposals that still need to be tested and that

are not on the market yet, while some are already on the market place or at least

prototyped.

2.1.1 Automotive �eld

• BMW F1 HMD

Figure 2.1: BMW F1 HMD

This headmounted display was designed for Formula 1 racing driver Ralph

Schumacher. It uses a Kopin AMLCD and a free-form surface (FFS) prism

to project a virtual image into user's eye. It is mounted in the lower right

corner of the driver's �eld of view. It is the �rst helmet to be used by a

professional driver on a track. It wasn't used regularly by the driver but

13

the Formula 1 team never talked openly about this topic.

• BMW Mini Augmented reality glasses

Figure 2.2: BMW glasses

Beside the typical HUD functionalities provided by the glasses, they allow

an �x-ray view� through the car's pillars, doors and other visual obstruc-

tions. When parking, these glasses are also able to display live video from a

camera mounted to the underside of the passenger's wing mirror. Naviga-

tion arrows can be displayed on the road ahead in order to keep the driver

focused on driving. Available parking spaces near the destination and points

of interest along the route can also be pointed out by these glasses. If the

drivers wear these glasses outside of the car, they can make use of its �rst

and last mile navigation feature, which guides them to their vehicle or to

their �nal destination from their parking spot, respectively. This example

is a conceptual only at the moment, but re�ects the market trend toward

mixed reality.

• Toyota Augmented Reality Windshield

Toyota's patent works like a conventional HUD to display vehicle instru-

ments on the windshield. Where this solution di�ers is that an ECU (Elec-

tronic control unit) analyzes the steering angle and speed; a front-mounted

camera identi�es the lane markings, and an interior camera �nds the driver's

viewpoint. By combining this data, the system moves the information

around the windshield to be in the best location. For added safety, the

image's size corresponds to the vehicle's width, so drivers also know their

position in a lane. As speeds increase, the display moves up the screen and

gets smaller because a person is looking further into the distance.

• Jaguar Land Rover Virtual Windscreen Jaguar Virtual Windscreen

concept takes things to the next level to turn real-life driving into a video

14

Figure 2.3: Toyota AR Windshield

Figure 2.4: Jaguar Land Rover Virtual Windscreen

15

game-like experience with data like lap times, grid positions, virtual racing

line and brake guidance, "ghost" cars from previous laps and virtual cones

for simulated auto crossing. The concept system's features include virtual

racing lines that change color to indicate optimum braking positions on

treacherous curves, virtual cones placed along the road in real-time that

could help novice drivers training. Jaguar Land Rover has developed an in-

novative 3D instrument cluster, which uses the latest head and eye-tracking

technology to create a natural-looking, specs-free 3D image on the instru-

ment panel. Cameras positioned in the instrument binnacle or steering

column area track the position of the user's head and eyes. Software then

adjusts the image projection in order to create a 3D e�ect by feeding each

eye two slightly di�ering angles of a particular image. This creates the

perception of depth which allows the driver to judge distance. The Jaguar

Land Rover proposal is still conceptual only.

• iSCOUT

Figure 2.5: iSCOUT HUD

iSCOUT is a patent pending Head-Up Display (HUD) that projects all the

information required for driving such as car speed, fuel level, GPS naviga-

tion as a �oating virtual image in front of the vehicle. iSCOUT syncs the

driver smartphone and displays incoming calls, messages, reminders, social

media content and other noti�cations along with several other features such

as blind-spot view and an integrated dashcam. iScout started as a project

on Kickstarter, the famous website for crowdfounding.

• Navdy

Navdy's HUD comes with an inbuilt projector that displays all your infor-

mation which could be anything ranging from navigation details to calls and

social media messages on the driver's �eld of view thus giving him all the

necessary information without losing his focus from the road. The display

16

Figure 2.6: Navdy HUD

is mounted on the dash while the Navdy Dial, the main tool for interacting

with the phone and the Display, is fastened to one side of the steering wheel.

2.1.2 Other examples

• DAQRI Smart Helmet

Figure 2.7: DAQRI Smart Helmet

The helmet � which has a blue scratch-resistant visor � was speci�cally

created for workers in industrial settings, such as oil rigs, water treatment

plants and construction sites. Designed speci�cally for industrial augmented

reality applications. The thermography technology delivers novel 3D ther-

mal maps of equipment and infrastructure for industrial inspections.

• F-35's Helmet Mounted Display System

This helmet incorporates LCD displays to take input from the aircraft's vari-

ous sensors�radar, infra-red, and the electro-optical targeting system�and

overlay them on the pilot's �eld of view. The F-35 has six such cameras, all

forming the so-called Distributed Aperture System. The helmet visor can

project other things, including digitally zoomed-in night vision from the

17

Figure 2.8: F-35 HMD

�ghter's electro-optical targeting system, icons to depict threats and targets

in the air and on the ground, and the aircraft's own weapons. The F-35's

forward looking infra-red sensor can project sensor video in a "picture-in-

picture" against the ground and sky.

• Ukranian military headset

Figure 2.9: Ukranian HMD

The headset, known as the Circular Review System, integrates a tradition-

ally protective helmet with the Hololens. Through optical and thermal

cameras located on the vehicle it would provide a 360 degrees review with

high resolution in real-time. Other speci�cations: streaming video without

delay, highlight allies and enemies position, automatic target tracking. This

headset is still in the prototyping phase.

• BMW Motorrad and DigiLens helmet head-up display

The system presented by BMW employs a glass display over the right eye

that projects a variety of useful data (speed, temperature, fuel level, gear,

. . .). Cameras contained within the helmet can deliver a live feed from the

18

Figure 2.10: BMW Helmet

rear. The prototype BMW helmet is also equipped with an integrated mini-

computer and speakers, wirelessly controlled via a multicontroller �tted at

the left side of the handlebars. Power is provided by two batteries that are

contained at the lower rear part of the helmet and can last for �ve hours on

one charge. BMW foresees even more functions for its HUD, such as con-

nectivity with vehicle-to-vehicle communication systems that will transmit

road information in real time from one rider to the other. Such a system

could also connect to a future road-to-vehicle communication infrastructure.

• RideOn Ski Goggles

Figure 2.11: RideOn Ski Goggles

The goggles combine aviation-style inertial sensors, GPS, and a built-in

video camera with a see-through display. Together, these modules project

virtual graphics and features into the eye and onto their accurate, real-world

counterparts. The goggles are connected to RideOn's app on the smart-

phone. The app brings connectivity to friends, lets you download from

hundreds of resort maps worldwide, and allows customization of RideOn's

settings so that they �t personal ride styles.

• HTC Vive

The HTC Vive must be tethered to a PC with high performance. It uses

IR sensors mounted on walls to map the user location in the physical space,

19

Figure 2.12: HTC Vive

integrating this into the virtual space. (70 sensors with 37 sensors on the

headset). (da �nire)

• Oculus Rift

Figure 2.13: Oculus Rift

The consumer edition Rift uses a 2160 x 1200 resolution display, Pentile

OLED, working at 233 million pixels per second, with a 90Hz refresh rate.

Video is sent to the Oculus Rift via HDMI, with an optional DVI adapter

for laptops and newer graphics cards. It has sensors for the head tracking

like the accelerometer, gyroscope, magnometer. The �eld of view of this

device is about 110 degrees, it can be tethered with HDMI, USB 3.0 and

2.0. The total weight is 470 gr. It is available and costs $450. In order to

work it need to be connected to a PC.

• Epson Moverio BT-2000

Designed with an Android operating system, the new Moverio smart headset

allows enterprises and other organizations to create and share applications

that tailor the product to meet their precise needs. (da �nire)

20

Figure 2.14: Epson Moverio BT-2000

• Microsoft Hololens

Figure 2.15: Microsoft Hololens

Microsoft HoloLens, known under development as Project Baraboo, is a pair

of mixed reality smartglasses developed and manufactured by Microsoft.

The Microsoft Hololens utilize an accelerometer (to measure the speed in

which the head is moving), a gyroscope (to measure the tilt and orientation

of the head), and a magnetometer (to function as a compass and �gure out

which direction the head is pointing) to provide for truly immersive expe-

rience. In the Microsoft Hololens, the use of �mirrors� involves see-through

holographic lenses (Microsoft refers to them as waveguides) that use an

optical projection system to beam holograms into your eyes. A so-called

light engine, emits the light towards two separate lenses (one for each eye),

which consists of three layers of glass of three di�erent primary colors (blue,

green, red). The light hits those layers and then enters the eye at speci�c

angles, intensities and colors, producing a �nal holistic image on the eye's

retina. This device properties will be better discuss in the �nal comparison.

• Meta 2

The Meta 2 development kit enables you to create holographic apps, tools,

21

Figure 2.16: Meta 2

and experiences. The headset displays holograms and digital content, and

comes with a software development kit (SDK) built on top of Unity, the

most popular 3D engine in the world. It requires a desktop CPU Intel Core

i7. It will be better analyze in the �nal comparison.

• ODG R7

Figure 2.17: ODG R7

The glasses run a custom version of Android KitKat, dubbed ReticleOS.

It's easy to control, using either a trackpad on the glasses themselves, or

a paired handheld controller. ODG's glasses are still aimed primarily at

enterprise customers and developers.

22

Chapter 3

System design

The technological scouting on the automotive �eld, and not only on that, has been

useful for better understanding the potentialities of mixed reality technologies

through the analysis of them. In addition, it was oriented to the identi�cation of

a possible hardware component to be used in our project.

For this reason, in order to design a solution for our use case, a high level

conceptual architecture of the AR system to be implemented has been de�ned,

considering the two possible approaches: the HUD system and the HMD system.

In both cases the focus must be on how the data communication can take place

between the device itself and other entities (that can be the garage of the racing

car company on the track, sensors on the track or any other external source), how

the voice communication between the driver and the garage can be implemented

during the training/race considering the possible noises that surely are present

during a car competition, how to supply power to the device, if it has to be

autonomous there must be a battery and it must be considered the capacity of

that battery or if it is connected to the battery of the car itself, how the data is

processed, if there is need of high processing capacity inside the device or outside

of it, and of course the electro-optical part of the device. Then if we consider the

hud system wa take into account the support system for it, that means where

it has to be located, if it can be moved by the driver and other features. While

if we consider the HMD option it must be considered the helmet part, that has

to protect the driver but also must be a good platform for mounting the display

optics.

23

Figure 3.1: AR System

24

Since during a race the driver has already to wear an helmet is straight forward

that the simplest and convenient choice is the development of a helmet-mounted

display.

3.1 Helmet-mounted display design features

Helmet-mounted displays have been developed since 1960, since then technology

has improved signi�cantly. Their usage has become standard within the military

community for �ight application, as we have seen in the technological scouting

performed the F-35 hmd is the most expensive device and the one with the

highest number of functionalities. DEsignin a hmd system is not trivial, this

mainly because every system where humans are key component is complex due

to the human-machine interface that is really challenging.

In addition, it must be considered that the design of a HMD highly depends

on it application and it is strongly environment-driven. Anyway, there are some

common design features that are primarily driven by human perceptual and an-

thropometric limitations.

• Ocularity

Ocularity refers to whether the HMD provides monocular biocular and

binocular imagery. Monocular means that a single image source is viewed

by a single eye, biocular means that a single image source is viewed by both

eyes, binocular means that each eye views an independent image source.

Biocular or binocular ocularity guarantees the widest �eld of view but is

surely more complex. Viewing imagery with two eyes vs. one has been

shown to yield improvements in detection as well as providing a more com-

fortable viewing experience (Bo� and Lincoln, 1988; Mo�tt, 1997).

• Field of View

The fov concept has already been described before, brie�y resuming fov

describes how extensive the image apears to the user and is measured in

degrees. When the HMD application is a full immersive virtual reality gam-

ing for example a higher fov is raccomanded, to provide a more compelling

sense od immersion. If the goal is a safety-of-�ight-quali�ed HMD instead, a

lower FOV reduces the head-supported mass/weight, which improves safety

and reduces pilot fatigue. In this case FOV of 40 degrees horizontal by 30

degrees vertical can e enough.

• Resolution

25

Resolution refers to the apparent angular size of a displayed pixel or image

element and the ability for the user to view and correctly interpret an object

as imaged by that pixel (and others). Resolution contributes to overall

image quality, but there is also a direct relationship with performance. The

concept of resolution is directly connected to the FOV. Considering image

3.2, H = F tan theta , where F is the focal length of the collimating lens. If

H is the size of the image source, then theta is the FOV, or the apparent size

of the virtual image in space (which is desired to be large). If H is the pixel

size, then theta is the resolution or apparent size of the pixel in image space

(which is desired to be small). Thus, the focal length of the collimating

optics simultaneously governs the FOV and the resolution. For a display

with a single image source, the result is either wide FOV or high resolution,

but not both at the same time. Generally, a larger FOV is preferred in

order to provide a more immersive experience. But, also, high resolution

(small pixels) is desired: how high depends on the user's task.

Figure 3.2: FOV- resolution relatioship

• Optical design

In an HMD, the optics serve to: 1) collimate the image source (creating

a virtual image, which appears to be farther away than just a few inches

from the face), 2) magnify the image source (making the imagery appear

larger than the actual size of the image source), and 3) relay the image

source (creating the virtual image away from the image source, away from

the front of the face). There are several optical design approaches common

in HMDs in order to achieve one or more of these results. The optical design

must provide a su�ciently large exit pupil or viewing eye box. For instance,

a large exit pupil is important for a �ight HMD, so the user does not loose

the image if the HMD shifts on his head. A value of 12 to 15 mm has been

deemed an acceptable value for these applications.

• Optical distortion

26

One of the important issues in an optical design is the control of residual op-

tical aberrations such as focus, �eld curvature, and astigmatism. While this

can be done with careful attention to the optical design, adding perhaps an

additional lens or aspheric surface, distortion (de�ned as an o�-axis image

located at a di�erent height than that expressed by paraxial equation) is

more di�cult to control, usually taking on a pincushion form in an imaging

system.

• Luminance and contrast

A critical optical issue is providing a good see-through transmission and

at the same time an image with su�ciently high contrast against the high

luminance background. A higher transmission requires higher image source

luminance, which in-turn requires more power.

• Helmet-mounted sensors

There is a large number of sensors that can be incorporated into a HMD. An

example is an IMU sensor that provides information on the device's velocity,

orientation and gravitational forces. Thanks to this sensor the rotation of

the head can be tracked. Ambient light sensors enable the adjustment of

the brightness of the display accordingly.

• Visual vs. Auditory Mode for HMDs

The visual channel is the mode of choice for providing information at high

rates. However, for certain tasks and situations an auditory display may be

more e�ective. Auditory displays are best used for alerting, warnings, and

alarms situations in which the information occurs randomly and requires

immediate attention.

• Safety role

The primary role of an helmet always has been to provide protection. This

role has not changed and instead has been expanded with the introduction

of HMDs to where the helmet is expected to serve as a mounting plat-

form for the display without compromising the helmet's primary protective

capability. These increasing demands means we must consider impact at-

tenuation, head-supported weight, CM o�set, frangibility, �t and comfort,

retention and stability and their e�ects on head and neck biodynamics.

• Frangibility

Frangibility refers to the ability of an HMD component to break free from

the overall helmet-HMD system during a dynamic event. The purpose is to

27

�shed� mass from the HMD system, thereby reducing the risk of neck injury

during a dynamic event such as a helicopter mishap or ejection. Frangibility

often is desired and even required when the total head-supported weight and

CM creates the potential for unacceptable risk of neck injury.

• Helmet retention

Helmet retention refers to the ability of the helmet to stay in place on the

wearer's head during dynamic events such as helicopter mishaps, ground

vehicle accidents, or high speed ejections. This is critical because the helmet

cannot perform its protective function if it has departed the wearer's head

or it has rotated to a position that leaves the skull open to direct impact.

• Perceptual and Cognitive considerations

All HMD components should earn their way onto the head because they

reduce user workload and enable him to accomplish his mission. Information

should not simply be a re-mapping of available information, but should

be cognitively pre-digested to ease the transfer of information while not

overloading working memory.

• User adjustment

The selection and implementation of available adjustments must allow for

individual di�erences while carefully avoiding complexity and minimizing

the potential for misadjustment.

3.2 Devices Comparison

Once it is clear what features must be considered in the design of an helmet-

mounted display and which are now the technological systems on the market,

our attention was focused mainly on four headsets that could be adapted for our

scope: the DAQRI Smart Helmet, the F-35's Helmet Mounted Display System,

the Microsoft Hololens and the META 2.

The comparison made among these devices is focused on their optical features,

their sensors, the processing and power capacity, on the connectivity and the

operating system guested, the weight the availability on the market and least but

not less important the price. In addition, it has been considered also the support

to the main SDKs on the market.

28

3.2.0.1 Final considerations

The F-35 helmet could have been a good reference for the analysis on the bio-

dynamics point of view, its frangibility and retention are surely the best among

them. But it is too war�ght-oriented and is too expansive. The DAQRI smart

Helmet, in their developer version, DAQRI Smart Glasses, o�er a SDK for the

Unity platform, but they have not a good resolution, that is important in our use

case due to the fact that the driver needs to see objects on the long distance or

detailed information that must be clear enough.

The Meta 2 and Microsoft Hololens comparison is the most interesting, so we

will go deeper on this. One of the main di�erence is the fact that the Meta headset

needs to be tethered to work, while Hololens do not. Hololens is a standalone

computer running Windows 10 while Meta 2 allows you to move in a certain range

of distance from the PC to which is connected, that must run, at least, a 64-bit

Windows 8.1 OS. Of course a tethered approach gives more computing power to

the device.

Talking about weight the Hololens weighs 579 grams, while Meta headset

about 420 grams not considering the cables and head straps, in total would be

730 grams. On the development side, Meta 2 support Unity version 5 or higher.

Hololens requires Visual Studio and Unity.

Meta 2 is de�nitely better on the resolution e �eld of view side, while it can

not stand the competition on tracking and environment understand capabilities.

The biggest di�erence is that Meta 2 is not on the market yet, but it can

be pre-ordered at the price of $949.00, while Hololens are already on the market

at a price of $3000.00 and they are ready to the rapid increase of demand from

developers for their device.

A solution with Microsoft Hololens has as advantages the fact that Microsoft's

technology represent the state of art of our days. Drawbacks are the limited �eld

of view of the device, problems with a slightly annoying re�ection of violet light

into display and the necessity of moving the BMS and processing power outside

the headset.

A solution with the DAQRI Smart Helmet could be the best for an initial phase

of testing due to the fact that the system is already inserted into an helmet, but

also in this case the �eld ov view is quite limited.

The Meta 2 system has already the processing system and battery supply out-

side the device, has a good resolution and a display that should not cause problem

of light re�ection thanks to its higher location. Even though this advantages this

solution can't be considered due to the fact that the system is not already on the

market.

29

DAQRI Smart Helmet F-35 HMD

Optical True 4D, large �eld of
view, high brightness

LCD Displays

Sensors

Tracking camera paired
with a dedicated processor
for AR applications, RGB
camera, Stereo infrared
cameras, Infrared light
projector, Thermal
camera, Intel RealSense
LR200 Depth Sensor

Radar, Infra-red,
Electro-optical targeting

system, Six cameras
(Distributed Aperture

System)

Connectivity USB na

CPU and Memory Intel Core m76Y75 na

Power Supply Rechargeable battery n/a

Weight na 2,31 kg

OS n/a na

Development na na

Availability For corporations only Available

Price $5,000 to $15,000 $400,000

30

Hololens Meta 2

Optical

See-through holographic
lenses (waveguides), 2 HD
16:9 light engines,
Automatic pupillary
distance calibration, 35
degrees �eld of view

2550x1440 resolution (60
Hz refresh rate), 90
degrees �eld of view

Sensors

Ambient light sensor, An
inertial measurement unit
(includes accelerometer,
gyroscope, and a
magnetometer), A depth
camera, A 2MP photo /
HD video camera, 4
Microphones

Sensor array for hand
interactions and positional
tracking, 720p front-facing

camera

Connectivity Wi-Fi 802.11ac, Micro
USB 2.0, Bluetooth 4.1 LE

HDMI

CPU and Memory

Intel 32 bit architecture
with TPM 2.0 support,
Custom-built Microsoft
Holographic Processing
Unit (HPU 1.0), 64GB
Flash, 2GB RAM

Not standalone - Requires
a desktop CPU Intel Core

i7

Power Supply 2-3 hours of battery life HDMI cable for power

Weight 579g
730 g

OS Windows 10
Not standalone, Windows

8.1 64-bit or newer

Development Visual Studio 2015 and
Unity

Unity 3D version 5 or
higher

Availability Available Not Available yet

Price $3.000 $ 949.00

31

3.3 Architecture design

Considering the car race context a �rst architecture, at a very high-level has

been de�ned. The AR system incorporated into the driver helmet is located of

course inside the car and has to communicate with it, it has also to communicate

with the garage on the track to transmit information on the status of the car,

the status of driver, the lap records and many other information that could be

useful to de�ne a strategy for the competition or to improve the driver and car

performances.

In addition the system collects data that can be provided to the racing com-

pany headquarters where they can be analysed for statistics or other purposes.

Figure 3.3: High-level Architecture

Figure 3.4: Headquarters internal architecture

32

Figure 3.5: Garage internal architecture

Figure 3.6: Car internal architecture

33

Figure 3.7: ECU possible con�guration

The AR system incorporated into the helmet can be seen as composed by a

battery management system, the power can be supplied by batteries inside of it

but also by direct cables connected to the car, sensors, Wireless or Bluetooth

connectivity, an holographic processor and a display. The car has internal and

external sensors, a SOC processor, memory (RAM, SSD and DDR), Wi� connec-

tivity and a I/O interface. The car internal information can be retrieved through

a OBD (on-board diagnostic) interface.

Figure 3.8: AR System Architecture

34

Chapter 4

Development environment

A game engine is a software framework designed for the creation and development

of video games, but not only for them. Despite the speci�city of the name, game

engines are often used for other kinds of interactive applications with real-time

graphical needs such as marketing demos, architectural visualizations, training

simulations, and modelling environments.

The core functionality typically provided by a game engine includes a render-

ing engine ("renderer") for 2D or 3D graphics, a physics engine or collision detec-

tion (and collision response), sound, scripting, animation, arti�cial intelligence,

networking, streaming, memory management, threading, localization support,

scene graph, and may include video support for cinematics.

The process of game development is often economized, in large part, by

reusing/adapting the same game engine to create di�erent games, or to make

it easier to port games to multiple platforms.

In many cases game engines provide a suite of visual development tools in

addition to reusable software components. These tools are generally provided in

an integrated development environment to enable simpli�ed, rapid development of

games in a data-driven manner. Game engine developers attempt to "pre-invent

the wheel" by developing robust software suites which include many elements

a game developer may need to build a game. Most game engine suites provide

facilities that ease development, such as graphics, sound, physics and AI functions.

These game engines are sometimes called "middleware" because, as with the

business sense of the term, they provide a �exible and reusable software platform

which provides all the core functionality needed, right out of the box, to develop

a game application while reducing costs, complexities, and time-to-market � all

critical factors in the highly competitive video game industry.

Like other types of middleware, game engines usually provide platform ab-

straction, allowing the same game to be run on various platforms including game

consoles and personal computers with few, if any, changes made to the game

source code.

Often, game engines are designed with a component-based architecture that

allows speci�c systems in the engine to be replaced or extended with more spe-

cialized (and often more expensive) game middleware components such as Havok

for physics, Miles Sound System for sound, or Bink for video. Some game engines

35

such as RenderWare are even designed as a series of loosely connected game mid-

dleware components that can be selectively combined to create a custom engine,

instead of the more common approach of extending or customizing a �exible in-

tegrated product. However extensibility is achieved, it remains a high priority for

game engines due to the wide variety of uses for which they are applied.

4.1 Game engine components

Such a framework is composed of a multitude of very di�erent components.

• Main game program

The actual game logic has to be implemented by some algorithms. It is

distinct from any rendering, sound or input work.

• Rendering engine

The rendering engine generates 3D animated graphics by the chosen method

(rasterization, ray-tracing or any di�erent technique).

Instead of being programmed and compiled to be executed on the CPU or

GPU directly, most often rendering engines are built upon one or multiple

rendering application programming interfaces (APIs), such as Direct3D or

OpenGL which provide a software abstraction of the graphics processing

unit (GPU).

Low-level libraries such as DirectX, Simple DirectMedia Layer (SDL), and

OpenGL are also commonly used in games as they provide hardware-independent

access to other computer hardware such as input devices (mouse, keyboard,

and joystick), network cards, and sound cards. Before hardware-accelerated

3D graphics, software renderers had been used. Software rendering is still

used in some modelling tools or for still-rendered images when visual accu-

racy is valued over real-time performance (frames-per-second) or when the

computer hardware does not meet needs such as shader support.

With the advent of hardware accelerated physics processing, various physics

APIs such as PAL and the physics extensions of COLLADA became avail-

able to provide a software abstraction of the physics processing unit of

di�erent middleware providers and console platforms.

Game engines can be written in any programming language like C++, C

or Java, though each language is structurally di�erent and may provide

di�erent levels of access to speci�c functions.

36

• Audio engine

The audio engine is the component which consists of algorithms related

to sound. It can calculate things on the CPU, or on a dedicated ASIC.

Abstraction APIs, such as OpenAL, SDL audio, XAudio 2, Web Audio,

etc. are available.

• Physics engine

The physics engine is responsible for emulating the laws of physics realisti-

cally within the application.

4.2 Game engines for Mixed Reality

Figure 4.1: Game Engines

4.2.1 Unreal Engine 4

Unreal Engine is an engine released from Epic Games, �rst showcased in the 1998

�rst-person shooter game Unreal. Although primarily developed for �rst-person

shooters, it has been successfully used in a variety of other genres, including

stealth, MMORPGs, and other RPGs. With its code written in C++, the Unreal

Engine features a high degree of portability and is a tool used by many game

developers today.

Epic Games for the use of Unreal Engine 4 under the free license agreement

charges a 5% royalty based on gross revenue after the �rst $3,000 per product

per calendar quarter,

The main programming language that can be used are C++ and Blueprints,

a Visual Scripting system. Blueprints are authoring tools designed for non pro-

grammers so designers and other team members can help tweak and prototype.

37

UE4's Blueprint scripts resemble �owcharts where each box represents a function

or value, with connections between them representing program �ow.

Unreal allow the development of application for desktops, mobile devices,

game consoles and VR systems

Targets:

Desktop: Windows, OSX, Linux, SteamOS, HTML5

Mobile: iOS, Android

Console: Xbox One, PlayStation 4, Nintendo Switch

VR: SteamVR/HTC Vive, Oculus Rift, OSVR, Google VR/Daydream,

Samsung Gear VR

UE4 has some amazing graphical abilities including things like advanced dynamic

lighting capabilities and a new particle system which can handle up to a million

particles in a scene at one time.

UE4 gives full access to the C++ source code allowing editing and upgrading

anything in the system.

Epic provides multiple o�cial video tutorials, lots of free example projects and

content, an extensive wiki and regular streams showing how to use latest features.

It allows a texture/material artist or VFX artist to create amazing e�ects from

the ground up.

On the other side, compared to other engines, UE4 may seem to perform

various actions considerably slower. Actions like starting the engine, opening

the editor, opening a project, rebuilding shaders, updating references, calculating

lightmaps or saving projects, may take too long causing waste of development

time.

Unlike Unity, there is poor documentation, causing a steep learning curve,

especially for the beginners.

4.2.2 CryEngine

CryENGINE is an extremely powerful engine designed by the development com-

pany Crytek that was introduced in the �rst Far Cry game. The CryEngine

software development kit (SDK), originally called Sandbox Editor, is the current

version of the level editor used to create levels for CryEngine by Crytek. Tools

are also provided within the software to facilitate scripting, animation, and ob-

ject creation. The editing style is that of the sandbox concept, with the emphasis

on large terrains and a free style of mission programming. The editor can also

construct indoor settings.

CryEngine features, source code are completely free, with no royalities. De-

velopers looking for optional access to additional training and support resources

38

beyond the community can consider a CRYENGINE membership for $50 to $150

per month.

The supported programming languages are C++, C# and Lua.

It allows the development of application for desktops, mobile devices, game

consoles and VR systems.

Targets:

Desktop: Windows, Linux

Mobile: iOS, Android

Console: Xbox One, PS4

VR: Oculus Rift, HTC VIVE

Where Cry Engine really shines is with rendering scenes of nature: has real-

istic water e�ects that even simulate ocean physics, features allowing for realistic

weather e�ects and an advanced volumetric cloud system. CryEngine has some

C# templates and also a C# based system to write your function/ideas in to

your game

Flow graphs resemble �owcharts where each box represents a function or value,

with connections between them representing program �ow. This provides a better

at-a-glance indication of game logic than a simple list of events, and makes com-

plex behaviours easier to accomplish. Cry Engine has a big marketplace where all

users can buy and sell assets, 30% of all revenue generated from asset sales will go

to CRYENGINE, with the remaining 70% going directly to the Asset Vendor. It

has a good documentatioon, dozen of high-quality video tutorials and an active

community.

Except for basic FPS games, develop a complete project requires solid knowl-

edge of C++, Flash, ActionScript and Lua.

At the moment CryEngine doesn't support AR development but only VR

Development on a limited number of devices.

4.2.3 Unity

Unity is a cross-platform game engine developed by the American video game

development company Unity Technologies. It is primarily used to develop video

games and simulations for computers, consoles and mobile devices. First an-

nounced only for OS X, at Apple's Worldwide Developers Conference in 2005, it

has since been extended to target 27 platforms

Unity comes with four license options: Personal, Plus, Pro, Enterprise. Unity

Personal is a completely free edition, there is no need for royalities or credit card

but under certain limitations, the company must earn less than 100k dollars in

39

order to use this kind of license. With this edition the developer has access to all

the engine features and platforms, to the continuous updates and beta releases,

also to the core analytics, the cloud build and ads management. Unity Personal is

a great place for beginners and hobbyists to get started. Plus version costs $35 per

month, it enables the customization of the splash screen, the development on Pro

Editor Skin UI, real time analytics to optimize your game monetization with Ads.

It also enables the automatic capture of app errors in real-time across devices,

platforms, and builds. This licence is allowed for company with a revenue capacity

till $200k . Unity Pro has no limit on revenue, costs $125 per month, it enables

concurrent cloud builds and all the other features already in the Plus version.

Unity enterprise is customizable according to the magnitude of a company, is

the only licence that allow access to the source code in order to customize Unity

to the creation needs of the development team. Unity o�ers the support of its

engineers to train the developers.

The main programming language that can be used is C#, Boo, a �avour of

Python, was deprecated with the release of Unity 5 and UnityScript was depre-

cated this August.

The supported device platforms for this engine are both Windows and OSx.

Unity allow the deploy of an application on many targets, from mobile to console

systems or TV targets but also VR targets of course.

Targets:

Desktop: Windows, OSX, Linux

Mobile: Windows Phone, iOS, Android, BlackBerry 10, Tizen

Console: Xbox 360, Xbox One, Wii U, PlayStation 3, PlayStation 4,

PlayStation Vita, Nintendo Switch, Nintendo 3DS

Distributed targets : Unity Web Player, WebGL

VR targets : Oculus Rift, Gear VR, Google Daydream, Cardboard,

SteamVR/HTC Vive

TV targets : Android TV, Apple TV, Samsung Smart TV

Unity3D provides an exhaustive documentation where everything is given a full

description supplied by a number of examples as well as video and text tutorials

and live training sessions to understand the ins and outs of the engine.

In addition there's an ever-growing community that can o�er advice to help

resolve any situations that may arise. Along with the o�cial Unity resources,

there are many high quality (and often free) third party tutorials available.

Unity's modular system and usability allows for quickly developing a proto-

type of an idea. It has features like drag and drop editing, shaders, animation

and other systems already in place to allow diving right into developing a game.

40

For those developers who can't a�ord an artist, or aren't skilled enough to

create their own art, Unity features an Asset Store full of a wide variety of free

and paid assets that can be easily added to a game.

The way the editor is structured, by setting scripts on objects, and the use of

a high-level language, C#, makes it easy to learn.

The editor GUI is very powerful and intuitive. It allows pausing gameplay

and manipulating the scene at any time as well as progress gameplay frame by

frame.

Even-though the advantages pointed out, there are some drawbacks. Unity

has a weak memory management and without an enterprise license the source

code is not accessible.

Unity3D uses very unique approach for doing things. Most of the knowledge

acquired while using it, would be completely non transferable to other engines.

For what concerns mobile development, even a Blank Project, Needs 18MB

for the APK �le (on Android).

Unity has a limited 3D modelling capabilities, but it allows the developer to

import from other tools.

4.2.4 Unity as �nal choice

Nowadays Unity is the most popular and widely used game engine, especially for

Augmented Reality applications.

The reason may be that it provides an exhaustive documentation where every-

thing is given a full description supplied by a number of examples as well as video

and text tutorials and live training sessions to understand the ins and outs of the

engine. In addition there's an ever-growing community that can o�er advice to

help resolve any situations that may arise.

Along with the o�cial Unity resources, there are many third party tutorials

available. For our use case Unity is the best choice because it has the SDKs for

the main AR engines that are Wikitude and Vuforia, and not only for them. In

addition, as said before, since it is not the best tool for 3D graphic development

it o�ers the possibility of importing materials from third party sources and many

other graphic tools. As far as concerns the programming side, it is the best choice

due to the possibility of develops in a great object oriented language such as C#,

but also Javascript.

41

Figure 4.2: Augmented Reality SDKs for Unity

4.2.4.1 ARToolkit SDK

ARToolkit is sponsored by DAQRI. Thanks to DAQRI's OpenSource release of

ARToolkit, all of the features described below are available for free on a vari-

ety of platforms. The OS supported are iOs, Android, Windows Phone, Linux,

Windows, MacOS X. The only digital Eyewear supported is Epson Moverio.

ARToolkit provides support for three general categories of tracker:

• Natural Feature Tracking (NFT)

NFT supports freeform 2d images which may not have a clearly de�ned and

consistent outside edge.

• Traditional template square marker

These markers are generally a fairly simple icon with a mandatory solid

black border around the periphery. These are best thought of as "designed"

markers rather than images that you may already exist organically.

• 2D Barcode Markers

These markers are prede�ned (in the SDK itself) and are typically highly

optimized for rapid detection and solid tracking in variable lighting condi-

tions. Because they're so highly optimized, it's typically possible to have

more of them detected and tracked simultaneously, and they'll be rapidly

detected under circumstances that other types of tracker might not be de-

tected at all. These look more like �ducial markers or low-resolution QR

Codes than other types of marker, so they'll typically be obvious where you

might want something more discreet.

There are a number of features that are somewhat unique to ARToolkit. Mul-

tiple cameras are supported and not only in stereo con�guration. The presence

42

of overlapping areas, such as found in a stereo camera arrangement, provides

extremely robust pose estimation for the camera array. It must be highlighted

that ARToolkit is one of comparatively few SDKs that supports Windows Phone.

In addition, it has a very robust tracking for markers over a range of distances

Another interesting feature is the existence of a JavaScript-based version for inte-

gration into web frameworks. Thanks to the Open Source nature of the ARToolkit

SDK (it's released under LGPLv3), it has Unreal Engine support that has benen

developed with the contribute of one of its users.

A cncern about the use f ARToolkit is that there is no enterprise support, so

a company could not want to take risks using this product.

4.2.4.2 Vuforia SDK

It is perhaps the most well-known of the commercially available Augmented Real-

ity SDKs. Vuforia was originally developed by Qualcomm and optimized for their

chipsets. It supports many OS: iOS, Android, Windows, Windows Holographic.

The digital eye-wear supported are the Hololens, ODG(R7), Epson Moverio (BT-

200).

The target types identi�ed by this SDK are:

• Complex Objects

Objects scanned using an Android app that develops an internal model of

the object in question

• User-de�ned Images

They can be both locally stored and �cloud-based�

• Cylinders

User-de�ned wrap-around imagery

• Text

100,000 words or a custom vocabulary

• Boxes

Simple cubes and rectangular boxes with unique user-de�ned side images

Frame markers (QR-code like, limited number of unique ones, extremely

fast recognition in challenging lighting conditions)

Pricing Structure and Licensing Vuforia source code is not open, their licences

types are various. It is free if you use a watermarked version, it costs $499 per

application with no watermark but without cloud recognition that is the service

o�ered by Vuforia to manage online the Image Targets.

43

To have access to this service the subscription cost from $99 to $999 a month

depending on recognition volume.

4.2.4.3 Wikitude

Wikitude's cross-platform augmented reality SDK combines 3D Markerless Track-

ing technology (SLAM), Object Recognition and Tracking, Image Recognition

and Tracking, as well as Geo-location AR for apps. The supported OS are :

Android, IOs. The digital eyeware supported: Epson Moverio, Vuzix M100 and

ODG R-7.

The main features o�ered are:

• Object recognition

This technology allow real time and 360 degrees AR experiences around

real world objects.

• Instant Tracking It is the �rst feature using Wikitude's SLAM technol-

ogy (Simultaneous Localization and Mapping). It allows to easily map

environments and display AR content without the need of a target image

(markerless) for indoors and outdoors environments.

• Multiple Targets

This feature enables recognition of several images simultaneously. Once the

images are recognized, developers will be able to layer 3D models, buttons,

videos, images and more on each target.

• Extended Tracking

It allows developers to go beyond targets. Once the target image is recog-

nized, users can continue the AR experience by freely moving their devices

without the need of keeping the marker in the camera view.

• 3D Augmentations

The Wikitude SDK can load and render 3D models in the augmented reality

scene.

• Cloud Recognition

Wikitude's Cloud Recognition service allows developers to work with thou-

sands of target images hosted in the cloud.

Wikitude o�ers di�erent types of licences: SDK PRO and PRO 3D, Cloud

and Enterprise. The SDK Pro license o�ers only the Geo-location feature, the

2D Image Recognition and the 3D Engine for a $2490 fee a year. In the SDK

PRO 3D version the 3D Markerless Tracking technology and Object recognition

44

features are added for $500 more than the no-3D version. The other versions

include Cloud recognition and costs $4490 per year or more.

45

Chapter 5

Prototype design and development

The main goal of the developed prototype was to give the user an idea of the

�nal result. It is essentially a driving simulation in the case you are wearing the

HMD with the additional informations projected on the headset display.

The development was carried on in three phases. A �rst phase was a �rst

approach to the development environment, that is Unity 3D, with a simple simu-

lation of the driving scene. A second phase was the implementation of a simula-

tion using a library for Unity, Realistic Car, that helps the developer to simulate

the real mechanic of the car. A third and last phase was the improvement of the

graphic and the addition of other useful features.

Even though the �nal application will be an augmented reality application, it

is still useful realize a prototype for the Microsoft Hololens that will be the �nal

target.

The �gure shows how the devices exist on the mixed reality spectrum, the

focus is on the devices produced by Microsoft, among them of course the Hololens.

It can be seen that today there is no device that can run experiences across the

entire spectrum, however the Hololens can support a quite big range of it.

It is predicted that in the future holographic devices will become more immer-

sive and immersive device will become more holographic. Over time more and

more new devices will expand their range within the mixed reality spectrum.

Figure 5.1: Devices on the mixed reality spectrum

5.1 HoloLens hardware review

HoloLens has see-through holographic lenses, three lenses laid one over the other

allow the HoloLens to combine red, green, and blue images into color holograms.

There are 2 HD 16:9 light engines. Hololens provides automatic pupillary distance

calibration. Microsoft says that the holographic resolution of the device is 2.3M

46

total light points, while the holographic density is about 2.5k radiants (light

points per radian). The more radiants and light points there are, the brighter

and richer the holograms become.

Figure 5.2: The display

HoloLens has sensors for environment understanding and human understand-

ing. There is an IMU (Inertial Measurement Unit) , an IMU works by detecting

linear acceleration using one or more accelerometers and rotational rate using one

or more gyroscopes. There are four environment understanding cameras and a

depth camera. To record the surrounding environment there is also a 2MP photo

/ HD video camera. In order to capture the environment state there are four

microphones and an ambient light sensor.

Figure 5.3: The sensor bar

The Hololens are capable of tracking the user gaze, some gesture inputs and

they provide voice support. There are built-in speakers. It is possible to regulate

the volume and the brightness of the device.

The possible connections to the device are through Wi-Fi 802.11ac, Micro

USB 2.0 or Bluetooth 4.1 LE. It is predicted that the battery should last 2-3

hours if regularly used, up to 2 weeks of standby time.

Figure 5.4: The motherboard

47

The processing part is composed by an Intel 32 bit architecture with TPM 2.0

support and a custom-built Microsoft Holographic Processing Unit (HPU 1.0) to

which is dedicated 1 GB of RAM. There are 2 GB of RAM and a 64 GB �ash

memory.

HoloLens weighs 579g, it has been tested and found to conform to the basic

impact protection requirements of ANSI Z87.1, CSA Z94.3 and EN 166.

5.2 Hololens inputs

Gaze, gesture and voice (GGV) are the primary means of interaction on HoloLens.

Gaze is the �rst form of input and is a primary form of targeting within mixed

reality. Gaze tells where the user is looking in the world. Like in the real world,

when you intend to interact with an object you look at it, it is the same with

gaze.

Mixed reality headsets use the position and orientation of your user's head,

not their eyes, to determine their gaze vector, it is like a laser pointer that goes

straight ahead from directly between the user's eyes. As the user looks around

the room, the application can intersect this ray, both with its own holograms and

with the spatial mapping mesh to determine what virtual or real-world object

the user may be looking at.

On HoloLens, interactions should generally derive their targeting from the

user's gaze. Once an interaction has started, relative motions of the hand may

be used to control the gesture, as with the manipulation or navigation gesture.

A cursor (or other auditory/visual indication) can give the user con�dence in

what they're about to interact with. Typically the cursor is positioned in the

world where the gaze ray �rst interacts an object, which may be a hologram or a

real-world surface.

Interaction is built on gaze to target and gesture or voice to act upon whatever

element has been targeted.

HoloLens currently recognizes two core component gestures that are Air tap

and Bloom. These two core interactions are the lowest level of spatial input data

that a developer can access.

• Air tap

Air tap is a tapping gesture with the hand held upright, similar to a mouse

click or select. This is used in most HoloLens experiences for the equivalent

of a "click" on a UI element after targeting it with Gaze.

• Bloom

Bloom is the "home" gesture and is reserved for that alone. It is a special

48

system action that is used to go back to the Start Menu. It is equivalent to

pressing the Windows key on a keyboard or the Xbox button on an Xbox

controller. The user can use either hand.

Apps can recognize more than just individual taps. By combining tap, hold

and release with the movement of the hand, more complex composite gestures

can be performed.

For gestures on HoloLens, the hand must be within a �gesture frame�, in a

range that the gesture-sensing cameras can see appropriately. In the case of

continuous gestures in particular, there is some risk of users moving their hands

outside of the gesture frame while in mid-gesture (while moving some holographic

object, for example), and losing their intended outcome. As the hand nears the

edge of the gesture frame, it is provided a direction vector, which can be showed

to the users so they know how to move their hand to get it back where HoloLens

can see it.

Figure 5.5: The Hololens gesture frame

Also the voice can be used to complete an interaction. Voice is a powerful

and convenient way to control the system and apps. As a user targets any button

through gaze or pointing, they can say the word "Select" to activate that button.

"Select" is one of the low power keywords that is always listened for.

5.3 Hololens emulator

Microsoft o�ers an important tool for the developers who want to try the Hololens

experience even without the physical device, that is the HoloLens emulator.

It allows you to test holographic apps on your PC and comes with the HoloLens

development toolset.

The emulator uses a Hyper-V virtual machine. The human and environmental

inputs that would usually be read by the sensors on the HoloLens are instead

simulated using the keyboard, mouse, or Xbox controller. Apps don't need to be

49

Figure 5.6: The Hololens Emulator

modi�ed to run on the emulator and don't know that they aren't running on a

real HoloLens.

Controlling the emulator is very similar to many common 3D video games.

The emulator can be controlled by directing the actions of a simulated user wear-

ing a HoloLens. The actions move that simulated user around and apps running

in the emulator respond like they would on a real device.

The W,A,S, and D keys on the keyboard, or the left stick on an Xbox controller

are used to walk forward, back, left, and right.

Clicking and dragging the mouse, using the arrow keys on the keyboard, or the

right stick on an Xbox controller can be used to look up, down, left, and right.

Right-clicking the mouse, pressing the Enter key on the keyboard, or using the

A button on an Xbox controller simulate the air tap gesture.

Pressing the Windows key or F2 key on the keyboard, or pressing the B button

on an Xbox controller can be used to make the bloom gesture.

Holding the Alt key, holding the right mouse button, and dragging the mouse up

/ down, or in an Xbox controller holding the right trigger and A button down and

moving the right stick up and down simulate the hand movement for scrolling.

5.4 Development basics

A developer creating a holographic application with Unity for Hololens need to

switch between Unity and Visual Studio to build the application package that is

deployed to the device.

Once the project is exported to Visual Studio is possible to change the scripts

directly on Visual Studio selecting the option that enables the inclusion of all the

C# code. In this way it is possible to use the same instance of Visual Studio

50

for writing scripts and building/deploying the project. However it is necessary

to re-export the project in case it is needed to add or remove assets, to change

any value in the Unity inspector tab, to add or remove objects in the scenes or

to change any Unity project setting.

When developing an application for a mixed reality headset, you must know

that the camera is the center of the holographic world.

The Unity Camera component automatically handles stereoscopic rendering

and follow the head movement and rotation when the project has "Virtual Reality

Supported" selected with "Windows Mixed Reality" as the device.

When running on an immersive headset, you are rendering everything the user

sees, and so you can keep the skybox feature. When running on a holographic

headset like HoloLens, the real world should appear behind everything the camera

renders.

In this case there is no need to see the real world behind the lenses, so we

can keep the skybox camera. The other Camera Features to be adjusted are its

positioning and the clip planes.

Since the Main Camera is tracking movement of the user's head, the starting

position of the user can be set by setting the starting position of the Main Camera

that can be set as (X: 0, Y: 0, Z: 0) for simplicity.

As far as concerns clip planes, near and far clipping planes are imaginary

planes located at two particular distances from the camera along the camera's

sight line. Only objects between a camera's two clipping planes are rendered in

that camera's view. Any parts of objects in the scene closer to the camera than

the near clipping plane, or farther from the camera than the far clipping plane,

are not rendered.

Microsoft developers recommand a clipping render distance at 85cm with fade-

out of content starting at 1m. Content should be designed to minimize the need

for interaction closer than 85cm from the user, but when content must be ren-

dered closer than 85cm a good rule of thumb for developers is to design scenarios

where users and/or holograms do not move in depth more than 25% of the time.

The key to holographic rendering is changing your app's view of its holograms

each frame as the user moves around, to match their predicted head motion.

Seated-scale experiences that respect changes to the user's head position and

head orientation can be built using a stationary frame of reference.

Some content must ignore head position updates, staying �xed at a chosen

heading and distance from the user at all times. The primary example is 360-

degree video: because the video is captured from a single �xed perspective, it

would ruin the illusion for the view position to move relative to the content, even

though the view orientation must change as the user looks around.

51

This project doesn't need the user to walk or move in the surrounding space,

so it is possible to build a seated-scale experience. In addition we can consider

that a driver's �eld of view during a race is quite limited, mostly due to the high

speed and the short reaction time needed. This can be seen in the many videos

on-line about eye tracking during a race, the analysis of the gaze of a professional

pilot shows how there is no rotation of the head but it is mostly the gaze that

moves fast from a point to another on the track.

Expert drivers have trained their brain to speed up eye movements between

focal points and understand new information more quickly, enabling them to take

in and process more information than non-pro drivers.

A video made by Sky Sport in 2016 shows the F1 driver Nico Hulkenberg

roaring out of a pit lane and checking his mirror in just a tenth of a second,

�approaching the shortest amount of time a human can look at something� while

processing the related information. Regular drivers typically need at least half a

second to do the same thing.

Figure 5.7: Eye Tracking on an F1 car

It has been also interesting observe some videos on-line of people who tried

to drive for some miles with the Hololens on. This tests are of course illegal,

however they provide a good starting point for the development of the interface.

52

Figure 5.8: Test drive with Hololens

5.5 First phase

The �rst thing done is the creation of a new 3D project. When creating a 3D

project on Unity any image imported is not assumed to be a 2D image, called

Sprite in Unity, the Scene view is set to 3D but can be switched to 2D at anytime,

the default game objects have real time directional light. The camera is set to

be perspective, that means that the images are rendered with perspective intact,

not uniformly.

In the �rst phase the camera is attached to a Game object, a sphere, that

moves constantly forward. The speed and the number of rotation per minute of

the engine are proportional to the space traveled by the object.

Figure 5.9: A primitive object

When the speed reached is 300 km/h the simulation ends. The landscape is

composed by a two lanes street surrounded by some trees, the same surrounding

is cloned and located immediately after the previous one as soon as the game

53

object exits the zone called Collider, this collision issues an action de�ned in the

scripted attached to the object.

private void OnTriggerExit(Collider other)

{

if (other.CompareTag("Player"))

{

component_transform.Translate(315, 0, 0);

sceneObjects_transform.Translate(0, 0, 100);

}

}

A Collider component de�ne the shape of an object for the purposes of phys-

ical collisions. A collider, which is invisible, need not be the exact same shape as

the object's mesh and in fact, a rough approximation is often more e�cient and

indistinguishable in gameplay, indeed the simplest and so called primitive collider

has been used, the Box Collider.

The scripting system can detect when collisions occur and initiate actions us-

ing the OnCollisionEnter function. However, it is also possible to use the physics

engine to detect when one collider enters the space of another without creating a

collision. A collider con�gured as a Trigger (using the Is Trigger property) does

not behave as a solid object and will simply allow other colliders to pass through.

When a collider enters its space, a trigger will call the OnTriggerEnter function

on the trigger object's scripts.

Event if it is not useful for the e�ective interface, the sphere object has been

then substituted by a car skeleton object, following one of the tutorial proposed

by the Unity manual. To the car object has been added a Physics 3D Rigidbody

component with a mass set to 1500kg in order to make the object much heavier.

After that a primitive object like a Cube is created as child of the car, with its

collider. Then the wheels objects and colliders are created as children of the car

object and positioned accordingly to it. To make the car drivable, a controller

for it must be created and attached to it.

Then the project can be built and exported to visual studio and tested on the

Hologram Emulator.

The information showed are the speed and the rotation per minute of the

motor. In order to not occlude the vision of the driver the best position for the

information is in the corner of the �eld of view.

The rpm value is on the top-right corner, while the speed on the top-left corner.

54

Figure 5.10: Car model implementation

Figure 5.11: Simple UI

55

5.6 Second phase

In the second phase a unity package retrieved in the asset store has been used.

The usage of this package requires that a controller script must be attached to

the car object. To improve the design and test the capabilities of the package an

external 3D model of a sport car has been imported into the project.

Figure 5.12: Sport car 3D model

In order to create a new vehicle within the project, �rst of all, the directions

of the axises must be checked: Y must be up, Z must be forward, X must be

right. Then the tool handles must be set in the object pivot point and not in

global rotation.

As soon as the controller script is added to the car object the RigidBody

Component is added. The mass is set as before to about 1500 kg. In addition the

library automatically creates wheel colliders with the proper radius, suspension,

friction, once that the wheel objects are set.

According to the shape of the car a collider for the main structure has been

created.

The important parameter to con�gure is then the Center of Mass (COM).

The positioning of it in�uences the behaviour of th car. In general it should be

set just below the front seats, that is because usually the engine and transmission

of a vehicle is at the front of the car, and they are the heaviest objects in it. This

case is the RWD layouts, this implies that the driven wheels are located at the

rear.

The surrounding environment is the same as in the phase one, with the street

and tree object translated forward as soon as the car exits the previous zone.

In order to make the interface just like the user is directly looking outside the

56

Figure 5.13: Phase 2 interface

Figure 5.14: Phase 2 Scene View

57

windshield in front of him, every mesh render of each part that composes the car

chassis has been disable. In few words the car in this way is "invisible".

In addition the interface has been improved. The color is lighter. The opacity

of the objects in the information sections are lowered, in order to not occlude

totally the real world behind of them.

58

5.7 Third phase

In the last phase, in order to make a realistic simulation of a track, from the

access store a package has been downloaded for free. The "Race track around

the lake" asset contains the models for each element in the scene, they are the

track model, a bridge, the terrain with the vegetation, water, road signs, rocks

and electric towers. In the �nal solution not every basic element has been used

in order to make the Hololens processing and rendering faster.

Figure 5.15: Race track around the lake

The car cantroller asset used in the previous phase was reused exploiting the

AI feature.

The AI feature is based on the Unity's NavMesh, therefore the navigation mesh

must be created and baked for the scene.

In Unity the NavMesh is a class that can be used to do spatial queries, like

path�nding and walkability tests, set the path�nding cost for speci�c area types,

and to tweak global behavior of path�nding and avoidance. The process of creat-

ing a NavMesh from the level geometry is called NavMesh Baking. The process

collects the Render Meshes and Terrains of all Game Objects which are marked

as Navigation Static, and then processes them to create a navigation mesh that

approximates the walkable surfaces of the level.

Unity supported mashes are triangulated or Quadrangulated polygon meshes.

Every surface must be converted into polygons. Unity allows the importing of

meshes from third-party 3D modeling softwares. Materials are used in conjunc-

tion with Mesh Renders, Particle Systems and other rendering components in

Unity, they play an essential part in de�ning how an object is displayed.

The properties that a Material's inspector displays are determined by the

59

Shader that the Material uses. A shader is a specialized kind of graphical program

that determines how texture and lighting information are combined to generate

the pixels of the rendered object onscreen.

Textures are bitmap images. A Material may contain references to textures,

so that the Material's shader can use the textures while calculating the surface

colour of an object. In addition to basic colour (albedo) of an obejct's surface,

textures can represent many other aspects of a material's surface such as its

re�ectivity or roughness.

Figure 5.16: NavMesh baking

Once that the NavMesh baking is done it appears as in the �gure 5.16.

An AI controller has been added to the car created in the previous phase.

The car will use the NavMesh Agent based on the waypoints set on the track.

The car will follow all the waypoints, there is no need to receive any input from

the user.

The Brake zones objects of the asset have been exploited to simulate the

detection of curves, when the car enters in the zone an arrow that indicates the

turning side is projected in front of the driver.

Another feature to be underlined is the capability of the information displayed

to be slowly relocated in the frame in order to be positioned further from the

driver's eyes according to the speed of the vehicle. If the speed is higher the

information are located further, if the speed decreases the information return to

the previous location.

60

Figure 5.17: Curve zones and waypoints

Figure 5.18: Curve example

61

A person driving at higher speed looks further into the distance, so the driving

information get smaller and put higher in the frame.

In the �nal interface has been added also the information about the driving

style. Indeed there are few possible driving styles according to the car manufac-

turing company, in this case the options are Corsa and Strada.

To the information about the rotation per minute of the engine are added also

the information about the gear number, that is the �gure located to the right of

it. Under them there is the driving style label. In the simulation, the driving

style simply changes at each lap, but there is not an e�ective di�erence in the

driving performance.

Another feature developed in the prototype is the presence of a "ghost car" to

compete with, it could be useful for training. The driver would race against this

"ghost car" that drives according to the best time and following the best path

calculated.

Figure 5.19: Ghost car example

In the last �gure 5.20, there is an alternative representation of the simulation

that shows not only the street but also the internal part of the car.

Indeed the real vision may be di�erent according to the driver physical ap-

pearance, his height for example, and the position of the seat while he is driving.

As it is showed in the experiment in �g 5.8, a person of medium height that is

driving has that �eld of view, that is mostly the street and partially the lower

part of the windshield. That is why the �nal setting for the position of the camera

in the AI car controller has been more like the example just quoted.

62

Figure 5.20: Alternative interface

63

Chapter 6

Conclusions and future work

6.1 Conclusions

In this last section it is possible to summarize and highlight the results obtained

in this thesis work.

The �rst phase was about the analysis of the state of art in the �eld of mixed

reality technologies, focusing on the automotive �eld.

Starting from that, the following possible use case has been analyzed: thanks to

this new technology a race car driver can see the information that are usually

showed on the display located on the steering wheel, or next to it, directly on the

display of his helmet.

A quick analysis of the most famous and common game engine used for mixed

reality applications development has been performed, this has led to the �nal

choice of Unity 3D. Unity provides a good documentation and many tutorials

that make the learning curve not too steep, its community is active and provides

useuful advices in case of problems in the development. In addition this game

engine would be the best choice because it has SDKs for the main AR engines on

the market. Last but not least, it is free under certain usage conditions.

In conclusion, a prototype application has been developed for the Microsoft

Hololens device using as development environment Visual Studio and Unity 3D.

In �rst instance has been analyzed the mixed reality context, underlining how

complex and how many possibilities of deployment for applications of this type

there are nowadays. It has been highlighted that there are di�erent performance

features to consider when selecting or developing a device for mixed reality ap-

plications and that they are slightly di�erent according to which is the �nal goal.

For example, if augmented reality is the �eld of your application you should pay

more attention to the sensors and cameras incorporated into your device, because

they can gather information from the real world and through the processing of

them create the perfect combination of the real elements with the digital ones.

In the case of Microsoft Hololens, for instance, speci�c cameras perform speci�c

duties, such as depth sensing. These cameras work in tandem with two "environ-

ment understanding cameras" on each side of the device. Other two important

factors for AR are the projection and re�ection, the latter one is implemented

64

through mirrors that assist the device in the images alignment to the user's eye.

In the VR case, the IMU sensors are more important than other sensors to detect

the position and movements of the user. The processing power required is higher,

because there is the need of processing audio, video, inputs from the user and

then they must be combined all together. The lenses and the display are impor-

tant too, everything must be con�gured in order to give the best experience to

the user and not cause sickness, that means a good frame rate, a low latency and

an adequate �eld of view.

After this analysis, a technological scouting has been performed, focusing

especially on some aspects:

• The processing power

• The optical part

• The weight

• The power supply system

• The compatible SDKs

• The availability on the market

• The price

Taking in consideration these aspects and considering the guidelines for HMD

design, Microsoft Hololens resulted as the best device for AR application deploy-

ment.

Microsoft Hololens indeed represents the state of art for AR technologies. It was

chosen also because it provides not only the integration with one of the most used

game engine all over the world, that is Unity, but also a Hololens Emulator that

exploits the virtualization power of Hyper-V to simulate the real device.

The application development has been divided in three phases.

The �rst phase was useful to become familiar with the development environment,

the programming language and the Hololens tools. It was very simple and with

a minimal interface.

The second phase took advantage of an asset available in the Asset Store of

Unity, it makes easier the development of applications that needs an advanced

implementation of the mechanics and physics of a car. During this phase the

focus on the interface increased, the information showed were the car speed, the

rpm of the engine and the gear number.

In the last phase the information elements were rendered with a lower opacity,

in order to not occlude completely the real world and new features have been

65

added such as the "ghost car" for the driver to compete with and the curve zones

signaled by an arrow projected directly on the road.

It can be considered that the fundamental goals of the thesis work have been

reached.

The technological scouting led to an adequate hardware solution and the ar-

chitectural proposal is simple and feasible.

Unity 3D has proved to be a good and easy-to-use development environment,

especially combined with Visual Studio that provides a good interface and a

simple way to change the scripts attached to the objects in the Unity editor.

The �nal application gives a general idea of the mixed reality technology's

potential in the real world and not only in the game market.

6.2 Future work

Surely it is possible to improve the application in its interface and functionalities.

It could be useful to create an icons system to be showed on the top of the

display. To each parameter monitored by the sensors on the car (such as the

brakes' pressure, the wheels' pressure, the fuel load, the engine oil and water

pressure or the temperature and pressure of the water for the cooling system)

may correspond an icon that can signal to the driver a problem related to it, for

example by blinking for a certain interval of time.

It could be useful also to have a system to enable and disable the information

visualization on the display.

An option could be using a voice command but it could not be recognized in case

of louder noises from the car.

Another option is to use the Hololens Clicker.

The HoloLens Clicker is the �rst peripheral device built speci�cally for HoloLens

and is included with the HoloLens Development Edition.

The HoloLens Clicker allows a user to click and scroll with minimal hand motion

as a replacement for the air-tap gesture. It could be incorporated into the steering

wheel and easily used by the driver.

At last, a testing phase should be performed in order to evaluate whether the

system has complied with all the requirements.

66

Bibliography

[1] Unity User Manual https://docs.unity3d.com/Manual/

[2] Introduction to mixed reality technology http://inbound.business.

wayne.edu/blog/an-introduction-to-mixed-reality-technology

[3] Windows Mixed Reality - Learn to build mixed reality experiences for

HoloLens and immersive headsets https://developer.microsoft.com/

en-us/windows/mixed-reality

[4] Web resource for the �eld of reality technologies http://www.

realitytechnologies.com

[5] Eye-Tracking of F1 driver https://www.youtube.com/watch?v=

zjkUUMZnTnU&index=12&list=WL

[6] What is Mixed Reality https://devdiner.com/augmented-reality/

what-is-windows-mixed-reality

[7] Driving in Virtual Reality, B. Blissing, Linkoping Studies in Science and

Technology, 2016

[8] How augmented reality can help safety, S. Sybenga, Study Tour Pixel 2010

- University of Twente, 2010

[9] A taxonomy of mixed reality visual displays, IEICE Transactions on Infor-

mation Systems, Vol E77-D, No.12 December 1994

[10] Guidelines for HMD design, James E. Melzer, Frederick T. Brozoski, Tomasz

R. Letowski, Thomas H. Harding, Clarence E. Rash, 2009

[11] Augmented SDKs for Unity, link https://www.linkedin.com/pulse/

dozens-more-augmented-reality-sdks-than-you-think-here-offermann

[12] 2017 Automotive Industry Trends, link http://www.strategyand.pwc.

com/reports/2017-automotive-industry-trends

67

https://docs.unity3d.com/Manual/
http://inbound.business.wayne.edu/blog/an-introduction-to-mixed-reality-technology
http://inbound.business.wayne.edu/blog/an-introduction-to-mixed-reality-technology
https://developer.microsoft.com/en-us/windows/mixed-reality
https://developer.microsoft.com/en-us/windows/mixed-reality
http://www.realitytechnologies.com
http://www.realitytechnologies.com
https://www.youtube.com/watch?v=zjkUUMZnTnU&index=12&list=WL
https://www.youtube.com/watch?v=zjkUUMZnTnU&index=12&list=WL
https://devdiner.com/augmented-reality/what-is-windows-mixed-reality
https://devdiner.com/augmented-reality/what-is-windows-mixed-reality
https://www.linkedin.com/pulse/dozens-more-augmented-reality-sdks-than-you-think-here-offermann
https://www.linkedin.com/pulse/dozens-more-augmented-reality-sdks-than-you-think-here-offermann
http://www.strategyand.pwc.com/reports/2017-automotive-industry-trends
http://www.strategyand.pwc.com/reports/2017-automotive-industry-trends

Ringraziamenti

Vorrei cogliere questa occasione per esprimere un sincero ringraziamento al rela-

tore di questa tesi, il Prof. Morisio, che mi ha sempre dimostrato comprensione

e disponibilità.

Ringrazio le compagne di questo viaggio, Roberta e Lucia, con le quali le ore

di studio sono sicuramente passate più velocemente, ma non meno istericamente.

Ringrazio le amiche lontane, quelle di sempre, sulle quali so di poter contare

oggi così com'era ieri e come sarà sicuramente domani.

Grazie Alessandra, Giulia, Maria Teresa e Rossella.

Ringrazio Sabrina, la mia amica più cara, al mio �anco sin dai banchi di

scuola, che forse neanche noi dieci anni fa ci saremmo immaginate qui, lontane

km da casa, e più amiche di prima.

Ringrazio Fabio, compagno di vita, supporto costante e, ahilui, valvola di

sfogo per le mie ansie.

Un in�nito grazie va alla mia famiglia che anche a distanza sa sempre essere

vicina e di supporto, spero di deludervi raramente.

Grazie a mio fratello, che è sempre stato per me modello e punto di riferimento.

Grazie a mia madre e mio padre, perché ciò che sono oggi e i miei risultati li devo

soprattutto a loro.

68

	1 Mixed Reality
	1.1 Real Environment
	1.2 Augmented Reality
	1.2.1 Augmented Reality (AR) Categories
	1.2.2 Key Components to Augmented Reality Devices
	1.2.3 AR headsets categories

	1.3 Augmented Virtuality
	1.4 Virtual Reality
	1.4.1 Virtual Reality (VR) Categories
	1.4.2 Key Components in a Virtual Reality System
	1.4.3 Key Components Inside of a Virtual Reality Headset
	1.4.4 Performance parameters

	2 Context
	2.1 Technological scouting
	2.1.1 Automotive field
	2.1.2 Other examples

	3 System design
	3.1 Helmet-mounted display design features
	3.2 Devices Comparison
	3.2.0.1 Final considerations

	3.3 Architecture design

	4 Development environment
	4.1 Game engine components
	4.2 Game engines for Mixed Reality
	4.2.1 Unreal Engine 4
	4.2.2 CryEngine
	4.2.3 Unity
	4.2.4 Unity as final choice
	4.2.4.1 ARToolkit SDK
	4.2.4.2 Vuforia SDK
	4.2.4.3 Wikitude

	5 Prototype design and development
	5.1 HoloLens hardware review
	5.2 Hololens inputs
	5.3 Hololens emulator
	5.4 Development basics
	5.5 First phase
	5.6 Second phase
	5.7 Third phase

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	Ringraziamenti

		Politecnico di Torino
	2017-12-04T13:46:19+0000
	Politecnico di Torino
	Maurizio Morisio
	Tesi 217400

