POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Algorithms Parallelization in
ASIC Design

Relatori:
Prof. Mariagrazia GRAZIANO

Prof. Marco VACCA
Prof. Maurizio ZAMBONI

Candidata:
Gina JIANG

October 2017

Acknowledgments

I would like to express my gratitude to my supervisor Prof. Mariagrazia Graziano
for giving me the passion for digital hardware design and how to optimize it.

Other thanks to Prof. Maurizio Zamboni for giving me some suggestions during
the writing of this thesis.

A special thanks to Marco Vacca, Giovanna Turvani and Giulia Santoro for giv-
ing me advices and clarifications of the algorithms implemented.
Without you this thesis work wouldn’t have been possible.

Summary

In the last decades we have seen the computational time of integrated circuits been
reduced more and more.

Especially an ASIC has major impact in this improvement. An ASIC (application-
specific integrated circuit) is an integrated circuit (IC) customized for a particular
use, rather than intended for general-purpose use. This thesis presents efficient im-
plementation of various algorithms by using the ASIC approach while exploiting
the parallelization and computing optimization whenever possible. The goal is to
compute using the ASAP (As Soon As Possible) approach and, therefore, also to
present a pareto efficiency.

Futhermore this thesis is used to be compared with emergent and modern gen-

cral purpose multi-core processors. In particular we will do some comparisons on
the Logic-In-Memory architecture and the systolic array architecture regarding the
clock cycles required and the number of resources used.
The Logic-In-Memory architecture is a general purpose processor where logic and
memory are embedded in a unique entity. These entities are interconnected together
to allows the exchanging of data among different units. The systolic array architec-
ture is made of arrays of processors which are connected to a small number of nearest
neighbours in a mesh-like topology. Processors perform a sequence of operations on
data that flows between them.

We have choosen and implemented, with ASIC approach, a set of algorithms
used for image processing, filter, image compression, and other use.

The main preferred characteristics are the parallelism, the required data storage,
the communication between distant and near cells, and data dependencies.

e Summed area Table: is an algorithm for quickly and efficiently generating
the sum of values in a rectangular subset of a grid. Here we can perform some
addition in parallel and wisely exploit some data dependencies between near
and distant cells.

e Discrete Cosine Transform: a finite sequence of data points in terms of a
sum of cosine functions oscillating at different frequencies. This computation
is divided in two parts: the first one perform all the N? cosine products in
parallel, the second one perform the N sums, each sum has as addends N
cosine products.

e Binomial Filter: is a smoothing filters used to enhance noisy images (at the

II

expense of blurring). It requires the comunication of all cells in the neighbor-
hood, and all cells can perform in parallel. Here we can exploit some partial
results to be used by other cells.

e Finite impulse Response: is a filter structure that can be used to implement
almost any sort of frequency response digitally. It has been chosen, because it
requires some memory to store the previous input, the multiplication can be
done in parallel, while the additions has to be in sequence.

e Transport equation problem: it describes physical phenomena where par-
ticles, energy, or other physical quantities are transferred inside a physical
system. Each cell has to perform vaious operations and communicate with
near cells.

e Magnetostatic field calculation 3DIt computes the magnetostatic field of
a single cells with the magnetostatic field contributions between this cell and
all the cells in a given 3D space. All cells compute its own contributions in
parallel, and then we perform the summation of all these contributions.

Some algorithms have been already implemented on the LIM architecture but
not in a "smart” way. The Summed Area Table and the Binomial Filter can be
reimplemented using my approach where some partial results can be stored and
exploited by other cells (instead of re-evaluating them).

Last but not least, we will do some analysis with the experimental Thessa tool

that, given a C code, generate a parallel code which can be used to program the
LIM.

We will give some advice on how to maximize the parallelism for this tool.

11T

TG TGy TG, My
S Z 14, TG, Td,, My

m
(i~ j—4" k—k') 2@ k)

TGy TGmy TGy, my
(m— TGy, TG, TG, my
TG.. TG, TG..

m
(i=i,j =" k—k*) & (@ g k)

Figure 1: A section of the Magnetostatic field calculation 3D, where each cell perform
the same operation and then we sum all the results

1\Y

Table of contents

Acknowledgments

Summary

1

2

3

Introduction

1.1 Advantages of an ASIC based design
1.1.1 Unitcost.
1.1.2 Performance
1.1.3 Power consumption L.

Integral Image Algorithm
2.1 Methodused
2.2 Hardware Implementation
2.3 Pipelined Implementation
2.4 Simulation and Test
2.5 CompariSon
2.5.1 Inclusive Scan algorithm
2.5.2 Balanced Trees Parallel Scan algorithm
2.5.3 Comparing the 3 algorithm implementations
2.5.4 Logic-In-Memory architecture
2.5.5 Comparison with the LIM architecture
2.6 Characteristics of the Integral Image Algorithm

Discrete cosine transform

3.1 Hardware Implementation
3.1.1 Not pipelined version,
3.1.2 Pipelined version

3.2 Simulation and Test,

3.3 Comparison
3.3.1 Systolic array architecture
3.3.2 Comparison with systolic array implementation

3.4 Characteristics of DCT

3.5 LLMDCT e e
3.5.1 Architecture of the LLM DCT
3.5.2 Simulation and test L.
3.5.3 Comparison

10
12
16
16
16
17
18
21
22

3.5.4 High Order LLM DCT
3.5.5 Characteristics of the LLM DCT 8-point

Binomial Filter

4.1

4.2

4.3

4.4

Hardware implementations
4.1.1 Hardware implementation type 1
4.1.2 Hardware implementation type 2
Simulations
4.2.1 Simulation type 1 oL
4.2.2 Simulationtype 2
Comparison

4.3.0.1 Logic-In-Memory implementation
Characteristics of the Binomial Filter

Digital Filter FIR

5.1
5.2
5.3
5.4

Digital filters properties L.
Hardware Implementation
Simulation
Characteristics of Filter FIR,

Transport equation problem

6.1
6.2
6.3
6.4

Hardware Implementation
Simulation
Comparison with LIM’s architecture
Characteristics of Transport Equation Problem

Magnetostatic field calculation 3D

7.1
7.2
7.3
7.4

7.5

Product TGand M
Logic Plane
Sum all
Simulation and Test
7.4.1 Testbench of thecell
7.4.2 Testbench of the Top entity
Characteristics of Magnetostatic field calculation 3D

Smith Waterman

8.1
8.2
8.3

The scoring model. The BLOSUM62 matrix
Smith-Waterman Local alignment method
Simulation and Test L.
8.3.1 Phase 1-sub_matr.and gap_load
8.3.2 Phase 2- s w.computation

VI

55
38
38
62
63
63
65
68
68
69

72
72
73
74
76

79
81
84
85
87

8.3.3 Phase 3- output_writing

9 Singular Value Decomposition
9.1 Example of a SVD computation
9.2 Difficulties for the SVD in ASIC

10 Synthesis Results
10.1 Integral Image

10.2 Discrete Cosine Transformation

10.2.1 DCT pipelined . .
10.2.2 DCT not pipelined
10.2.3 LLM DCT
10.3 Binomial Filter
10.3.1 Binomial Filter v1
10.3.2 Binomial Filter v2
104 FIR

10.5 Transport Equation Problem
10.6 Magnetostatic field calculation 3Do

11 Thessa tool

11.1 Analysis of Thessa on the Binomial filter algorithm

11.1.1 Output generated .
11.1.1.1 MIRcode

11.1.1.2 Program Dependence Graph (PDG)
11.1.1.3 Quotient Graph (Q) and topological sort
11.1.2 Code Generation hints
11.1.3 Comments and improvements

11.2 How touse
11.2.1 Install python 2.7 .

11.2.2 PIP (Python package manager) and setuptools

11.2.3 networkx
11.2.4 Graphviz
11.2.5 Running Tessa tool

Bibliography

VII

118
122
125

126
126
127
128
129
130
131
131
132
133
134
135

137
137
138
138
139
141
143
144
146
146
146
147
147
147

151

List of figures

21
22
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

2.17

3.1

3.2
3.3
3.4
3.5

3.6

A section of the Magnetostatic field calculation 3D, where each cell
perform the same operation and then we sum all the results
SAT of asinglecell,
Schematic of the SAT of a 1D array
SAT of a 1D array with some values
Subdivision in 2x2 matrices L.
SAT of a 2x2 matrix
Step 2-Initial state of a 4x4 matrix
Step 2-Sum vertically.
Step 2-Sum horizonatlly. L0000
Step 3-Sum vertically.
Step 3-Sum horizonatlly. Lo
Scheme of the SAT algorithm’s imlementation.
Integral Image-Results of the simulation
Integral Image-Checking with MATLAB
Scheme of the inclusive scan algorithm
Parallel Balnced Tree Algorithm for a 1D array
Graphics representation of the architecture 2.0: the yellow pyramid
represent the 3D pipeline of smart memories whereas the blue layer
represent the programmable logic layer.
Structure of the LIM. The green layer represent the logic and is com-
posed of 81 ALUs communicating each one with every brick of the
bottom layer (red); the blue layer represent the upper plane and is
composed of 9 bricks, one every 9 bricks of the bottom layer. Only
the pillars of the bottom layer can communicate with the upper layer;
only the pillar of the upper layer can exchange data with the outside.
Implementation of DCT algorithm (not pipelined). All multiplica-
tions are done in parallel
Implementation of DCT algorithm (pipelined)
Discrete cosine transform-Results of the simulation
DCT result in MATLAB
A generic figure of a systolic array; it is possible to notice the pres-
ence of parallel inputs and parallel outputs. Data are taken from the
memory, eleborated along the multiple paths of FUs and then stored
again in the memory. L oL
Implementation of DCT algorithm in a systolic array architecture

VIII

3.7 Processing element structure
3.8 Results of the DCT in a systolic array architecture
3.9 Check results in MATLAB for systolic array architecture
3.10 LLM DCT for an 8-point with 17 multiplications. For symbols, see
figure 3.11
3.11 Symbols used to describe the LLM DCT for an 8-point with 17 mul-
tiplications (fig.3.10)
3.12 LLM 8-point Discrete cosine transform-Results of the simulation . . .
3.13 LLM 8-point DCT result in MATLAB
3.14 DFG for a rotation block
3.15 Critical path for each output element
3.16 Order-16 LLM fast DCT algorithm
3.17 Fast algorithm for the forward order-32 integer transform with the
fast algorithms for the forward order-4, order-8, and order-16 integer
transforms embedded. oL
4.1 Binomial Filter for a genericcell
4.2 Weighted sum for three consecutive cells
4.3 First part of the binomial filter HW implementation
4.4 Weighted sum for 3x3 cells,
4.5 Weighted sum for all 3x3 cells
4.6 Binomial Filter, second implemetation
4.7 Binomial Filter-Results of the simulation type 1
4.8 Binomial Filter-Results of the simulation type 2
5.1 Cascading D FlipFlops.
5.2 FIR hardware implementation
5.3 FIR’s simulation
6.1 Grid for the Transport equation Problem
6.2 Transport Equation Problem for a singlecell
6.3 Propagarting the values to the boundary
6.4 Tepunit DFG
6.5 Transport Equation Problem’s simulation
7.1 The selected cell is supposed to sum all the magnetostatic field con-
tributions between it and all the other cells
7.2 Magnetostatic field of each cell in a given plane
7.3 The phases of asinglecell
7.4 Testbench of asinglecell L.
7.5 Testbench of the top entity - first plane
7.6 Testbench of the top entity - whole parallelepiped
8.1 Alignments with matching, substitution, insertion and deletion.
8.2 The BLOSUMG62 substitution matrix.
8.3 Phases of the testbench

IX

8.4

8.5
8.6
8.7

8.8

8.9

8.10

8.11

8.12
8.13
8.14
8.15

8.16

8.17

9.1
9.2
9.3
1.1
11.2
11.3
114
11.5
11.6

Main flow chart of systolic_array_tb.vhd testbench. In blue the test-

bench name, in red the processes name 105
Phase 1 of the testbench 106
Amino acid encoding 108

S-W systolic array initialized with the Substitutional matrix columns:
in each PE of the systolic array is stored the column that corresponds

to the associated Qry amino acid. 109
Loading into the 17-PE the Substitutional matrix column associated

to the amino acid A’ 110
Loading into the 19-PE the Substitutional matrix column associated

to the amino acid 'R’ 111
Loading into the 5, 6, 12, 22, 27-PEs the Substitutional matrix col-

umn associated to the amino acid 'D” 112
Loading into the 8-PEs the Substitutional matrix column associated

to the amino acid "V’. On the right side, we see that we start to load

the open gap penalty.o Lo 113
Loading into all PEs the open gap penalty which value is-10 113
Loading into all PEs the extension gap penalty which valueis-1 . . . 114
Section of the database file to be loaded in this testbench 115
scanning the list of aminoacid (aa_code_s) of the first protein while

computing the Maximum Alignment Score 116
Computing the Maximum Alignment Score (at the end out_maz_i_j_s

= 149) for the first protein 117
In the first row of out_id_subj_and_max_i_j.tzt file we can see that the

first protein has 149 as Maximum Alignment Score 117
Image made of k=10 unique row vectors 119
Image made of k=50 unique row vectors 120
Image made of 400 unique row vectors 121
Program Dependence Graph (PDG) of the Binomial Filter’s MIRcode 140
Quotient Graph Q of the Binomial Filter’s MIRcode 141
Topological sort of the Binomial Filter’s MIRcode 142
PDG divided in blocks of the Binomial Filter’s MIRcode 143
Listofallyour Cfiles. 148
OutEdgeDataView 149

Chapter 1
Introduction

The topic discussed in this work of thesis is based on an ASIC (Application-specific
integrated circuit) architecture to implement some algorithm regarding the image

processing and imange filtering.

1.1 Advantages of an ASIC based design

An application-specific integrated circuit (ASIC), is an integrated circuit (IC) cus-
tomized for a particular use, rather than intended for general-purpose use.
The advantages of an ASIC can be divided into four major areas: Unit cost, perfor-

mance, power consumption and flexibility.

1.1.1 Unit cost

One of the biggest advantages of an ASIC based product with respect to a general
purpose product is the lower unit cost once a certain volume has been reached. Un-
fortunately the volume required to offset the high NRE costs of an ASIC is very

high which means that many projects are never a candidate for ASICs.[1]

1.1.2 Performance

Another advantages for using an ASIC is the higher performance. It has been done a
comparison of various designs and it was found that an ASIC design was on average
3.2 times faster than an FPGA [2].

1 — Introduction

1.1.3 Power consumption

An ASIC architecture usually has lower power consumption than a comparable
FPGA. This is due to the reconfigurability of the FPGA: there is a lot of logic in an
FPGA which is used only for configuration. While the dynamic power consumption
of the reconfiguration logic is practically 0, all of the configuration logic contributes

to the leakage power.[1]

Chapter 2
Integral Image Algorithm

The integral image algorithm, also known as summed area table is a two-dimensional
table generated from an input image. Integral image is a very popular and important
algorithm in computer vision and computer graphics applications. Especially in
real-time computer vision, it is usually used to accelerate calculating the sum of a

rectangular area.

The aim of the ITA is to calculate the sum of values in a rectangular subset of a

grid. In particular, the final value of a point inside a grid can be written as:

Hay) =) i@y (2.1)

r'=1y'=1

As shown in the figure 2.1, the value of the dark blue rectangle can be calculated

as the sum of all the light blue rectangles.

Figure 2.1: SAT of a single cell

2 — Integral Image Algorithm

2.1 Method used

I decided to use the approach ASAP (as soon as possible), so in this implementation
we try to maximize the parallelism. To better explain, we first look to the Integral
Image of a 1D array. At each step ¢ we have the array partitioned in array of size
2t and each of them has its own integral image values.

In the next step i+1, we pair two consecutive array of size 2/, (thus having an array
of 2771) and do the Integral image.

Since we have already computed the partial integral image, for the new one, the
elements from 1 to 2! has the correct values, while for the elements from 2' to 2/+!
we need to sum the value stored in position 2. Figure 2.2 represents this method,

while figure 2.3 shows an example of an 8-array.

N NN AL NN NN

A\ NN

71
/
/
/
/

\-
§"~:§-.

Figure 2.2: Schematic of the SAT of a 1D array

When we want to handle the integral image of a 2D array, we can compute the

same method both vertically and horizontally.

13

15

9 |11
9 | 20

N\

1 12 13 | 28
NN

1\ 16‘9 20‘33‘43

1 16 | 25] 36|49 64

2 — Integral Image Algorithm

2.2 Hardware Implementation

The algorithm has been properly implemented for an ASIC architecture that priv-
ileges the throughput (i.e. computes as fast as possible). The pseudocode is the

following:

1. Divide the NxN matrix into small 2x2 matrices and compute the corresponding

summed area table (SAT). This step is shown in figures 2.4 and 2.5

Figure 2.4: Subdivision in 2x2 matrices

2. Group all the above matrices into 4 matrices and evaluate the corresponding
SATs. The computation will be faster because we have some partial SATs.
When we sum vertically, we just sum to all the lower half cells with the cor-
responding cell of the last row of the upper half matrix. This is done because
the last row of the upper half contains the partial SAT of the small matrices
computed in the previous step. Figure 2.7 shows that after this operation
the left half side of this 4x4 matrix has its SAT computed. Similarly we sum
horizontally: as shown in figure 2.8 we add to all cells of the right side the

6

2 — Integral Image Algorithm

b01=
a00+a01

bll=
a0l+all
a00+al0

b10=
a00+al0

Figure 2.5: SAT of a 2x2 matrix

corresponding cell of the last column of the left half matrix. Now all cells of
this 4x4 matrix has the SAT computed

b01= JORES
a00+a01 a02+a03

bll= b13=
b10= a0l+all b12= a03+al3
a00+al10 a00+al10 a02+al2 a02+al2

b21= b23=
a20+a21 a22+a23

b31= b33=
b30= a2l1+a31 b32= a23+a33
a20+a30 a20+a30 a22+a32 a22+a32

Figure 2.6: Step 2-Initial state of a 4x4 matrix

3. We repeat the prevoius step until we reach the matrix of dimension NxN

2 — Integral Image Algorithm

c20= c21= c22= c23=
b20+b10 b21+b11 b22+b12 b23+b13

c30= c31= c32= c33=
b30+b10 b31+b11 b32+b12 b33+b13

Figure 2.7: Step 2-Sum vertically.

do2= do3=
b02+b01 b03+b01

d12= d13=
b12+b01 b13+b01

d22= d23=
c22+c21 c23+c21

d32= d33=
c32+c31 c33+c31

Figure 2.8: Step 2-Sum horizonatlly.

2 — Integral Image Algorithm

Figure 2.10: Step 3-Sum horizonatlly.

2 — Integral Image Algorithm

2.3 Pipelined Implementation

As explained before, in every step we divide the original matrix into small matrices
of the size 2x2" (i represent the number of the actual step), and compute the SAT
of each matrix independently from one another. The computed SATs will be used
in the next step to evaluate the SATs of matrices with size 2071x2*. We repeat
this process until we reach the SAT of the original matrix. Figure 2.11 represent the
scheme of this implementation for a 8x8 matrix. The simbol € means that it will
evaluate the SAT of a matrix 2+1x2°+! by using the SATs of 4 matrices 2'x2'. By
looking to the picture, we can clearly imagine to put some pipeline registers. This
is possible because in each step ¢ we need only the values calculated in the previous

step @ — 1, we don’t need the other values found in the other steps.

10

2 — Integral Image Algorithm

Figure 2.11: Scheme of the SAT algorithm’s imlementation.

11

2 — Integral Image Algorithm

2.4 Simulation and Test

I did some tests of this implementation with different size and dimension. In the

fig.2.12 we can see the results of a matrix 4x4.

Jtb_sat/dock
4 [tb_satfreset
[tb_sat/data_out
[tb_sat/data_sum_out
[tb_sat/sat_0fin_a
[tb_sat/sat_0fout_a
8-’ [tb_sat/a/a
- (0) {0011} {0055} {0022} {0011}
- () {0022} {0033} {0044} {0055}
S)] [00AA} {0055} {0044} {0022}
- (3)
- [tb_sat/sat_O/aout
[tb_sat/sat_0/apipe
[tb_sat/sat_output/a

B’ 0
- ()
5@
B 4(3) 0110023102DB0374

Cursor 1 124477 ps

Figure 2.12: Integral Image-Results of the simulation

The input matrix is the one highlighted in yellow, while the output matrix is
highlighted in light blue. We start from these values

O0x11 0x55 0x22 Oxll 17 85 34 17
0222 0233 Oxz44 O0xz55| |34 51 68 85
0zAA 0x55 0z44 0z22| |170 85 68 34
0x33 0x44 020 Ozxll 51 68 0 17

we partition the original matrix in matrices 2x2

0233 0x44

(OxAA 0255

[(0211 0255
0222 0233

0222 011\ |
0x44 0x55

0z0 Oxl11

0x44 OxZ?)

12

(

[(17
34

85 34
ol 68

170 85

51

68

) (¢

2 — Integral Image Algorithm

and we perform the summed area table for each matrix 2x2
[17 17 + 85 34 17+ 34 |
34417 51 +17+85+ 34 68 +34 85+ 17+ 34 +68

170 85 + 170 63 34 + 68
| \51+170 68 + 170 + 85 + 51 0+68 17468+ 34]

[(17 102 34 51
51 187 102 204
170 255 68 102

| \221 374 68 119/ |

If we translate it in hexdecimal we get

[(0z11 0x66 0222 0233 \ |
0233 0zBB 0266 0zCC
0zAA OxzFF 0x44 0x66

| \02DD 0x176 0244 0277) |

If we look the signal aout on the fig 2.12, we can see the partial summed area table.

aout =

020011006600220033003300B B006600C'C00AA00F F0044006600D D017600440077

we know that each row has 4 elements of 16 bits

1*trow = 0x0011006600220033 O0z11 0266 0x22 0x33
2™y ow = 02003300 B BO06600C'C | 0233 0xBB 0266 0xCC
3rdrow = 0200AA00F F00440066 | | 0zAA 0zFF 0z44 0166
4thyow = 0200D D017600440077 OxDD 0x176 0Ox44 0z77

13

2 — Integral Image Algorithm

which is the same we obtained above.

Now we have to evaluate the summed area table of the matrix 4x4 by using the
partial sum we have just found. As described before (section 2.2), when we sum
vertically, we sum to all the lower half cells with the corresponding cell of the last

row of the upper half matrix. Similarly we sum horizontally

17 102 34 51
51 187 102 204
170 255 68 102
221 374 68 119

\
sum vertically
4
17 102 34 51
51 187 102 204

170 +51 255+ 187 68 + 102 102 + 204
221+ 51 374+ 187 68 +102 119+ 204

4

sum horizontally

¢
17102 344102 51+ 102

51 187 102+ 187 204 + 187
221 442 170 + 442 306 + 442
272 561 170+ 561 323 + 561

Finally we get

17 102 136 153 Ox11 0266 0288 0299
51 187 289 391 | 0233 0zBB 0x121 0z187
221 442 612 748| |0zDD 0z1BA 02264 022EC
272 561 731 884 0x110 02231 022DB 0x374

Which is the same result given in the simulation (fig 2.12, signal sat_output/a) and
also by MATLAB as shown below

14

2 — Integral Image Algorithm

Command Window

> A
A:

17 85 34 17
34 51 68 85
170 85 68 34
gl 68 0 17

>> integrallImage (A)
ans =

0 0 0 0
17 102 136 153
Bl 187 289 391

.l 442 612 748
272 561 131 884

o O o o o

Figure 2.13: Integral Image-Checking with MATLAB

15

2 — Integral Image Algorithm

2.5 Comparison

There are two typical existed image integral algorithms on GPUs. The first is the
Inclusive Scan algorithm. The second is the Balanced Trees Parallel Scan algo-
rithm. Compared with the Inclusive Scan algorithm, the proposed scheme reduces
logarithmically the global computation time without any pipeline (with pipeline,
the improvement will be even greater). Compared with the Balanced Trees Parallel
Scan algorithm, the proposed algorithm only needs about half of the global com-
putation time. The theoretical implementation shows that the proposed algorithm

gets the best performance compared with the two above integral algorithms.

2.5.1 Inclusive Scan algorithm

We perform the inclusive scan for each row and evaluate the partial sum. Finally
we perform the inclusive scan for each column. Figure 2.14 shows an example of

this implementation for a matrix 3x3. [6]

Partial SAT Final SAT
one inclusive scan one inclusive scan for
nput Image for each row each column
1 1 0 1 21 2 1 2 2
1 2 1 1 3 4 2 5 6
> v 7 87
C 1 2 0 1 3 2 6 9

Figure 2.14: Scheme of the inclusive scan algorithm

2.5.2 Balanced Trees Parallel Scan algorithm

For simplicity, i will explain the algorithm for a 1D-array. The goal is to evaluate
the SAT of a single row which is also known as the prefix sum, also called cumulative
sum, inclusive scan. [4]

A prefix sum can be calculated in parallel by the following steps.

16

2 — Integral Image Algorithm

1. Build a balanced binary tree on the input data and sweep it to and from the

root.

2. Traverse down from leaves to root building partial sums at internal nodes in
the tree.

3. Traverse back up the tree building the scan from the partial sums.

Figure 2.15 shows the scheme for an array of dimension 16. For a matrix, we

implement this algorithm for each row and then for each column.

| | | | | | |
+)\ +)\ +)\ +)\

Se—

S~~~
LN T

Figure 2.15: Parallel Balnced Tree Algorithm for a 1D array

2.5.3 Comparing the 3 algorithm implementations

Now that we know the implementation of these algorithm we can compare the area,

i.e. the number of adders required, and the time between them. In the table 2.5.3

17

2 — Integral Image Algorithm

the unit time ¢ is the time required to get the result of a single sum.

Inclusive scan Balanced tree This work | This work pipelined
Area 2N(N —1) | 2N(2N —logsN —2) | N-N-loga N N-N
Time 2(N —1)-t 2(2logaN — 1)t (logaN')2t 2t

2.5.4 Logic-In-Memory architecture

The Logic-In-Memory is a new architecture where logic and memory are embedded

as unique entity instead of two separated ones (fig. 2.16). [§]

The memory is made of small entities called bricks populating two different

layers: the bricks of each layer can communicate each other like in a matrix structure

and only specifc bricks, called pillars, are allowed to exchange data with the upper
layer(fig. 2.17).

The upper layer is composed of a smaller number of bricks having a bigger

memory capacity than the ones in the bottom layer: here the bricks are more in

number but their memory capacitance is small. In addition, only this plane is able to

communicate with the programmable logic layer: it is made of one ALU (arithmetic

and logic unit) for each brick of the bottom layer.

18

2 — Integral Image Algorithm

memory layers
iIn a 3D pipeline
structure

logic layer

Figure 2.16: Graphics representation of the architecture 2.0: the yellow pyramid
represent the 3D pipeline of smart memories whereas the blue layer represent the
programmable logic layer.

19

2 — Integral Image Algorithm

Figure 2.17: Structure of the LIM. The green layer represent the logic and is com-
posed of 81 ALUs communicating each one with every brick of the bottom layer
(red); the blue layer represent the upper plane and is composed of 9 bricks, one
every 9 bricks of the bottom layer. Only the pillars of the bottom layer can com-
municate with the upper layer; only the pillar of the upper layer can exchange data
with the outside.

20

2 — Integral Image Algorithm

2.5.5 Comparison with the LIM architecture

I take the results of the LIM’s architecture The pseudocode for the LIM architecture

is the following:
1. Each cell reads its own value;

2. Sums its value to the one received from the NORTH and sends the result to
the SOUTH;

3. Samples the value coming from the WEST, sums it to the previous result and
sends it to the EAST;

4. Writes the final result in its own memory;

The main advantage of the LIM architecture is the parallelism: the presence of many
cells that can work autonomously greatly increases the speed of the computation of
algorithms that can be executed in parallel. The duration of the algorithm depends
on the number of cells of the grid: in particular, supposing to have a grid of N - N

cells, the total duration is equal to:
e N clock cycles to write the data;
e 6N clock cycles to compute the algorithm;

e 2N+1 clock cycles to read the data through a remote read.

Therefore,
t=N+6N+2N+1=9N +1
LIM This work This work pipelined
Area N- N cells N-N-logyN adders N- N adders
Time 9N + 1 cycles | Time for 2(logoN) adders | Time for 2 adders

21

2 — Integral Image Algorithm

2.6 Characteristics of the Integral Image Algo-

rithm

PROCESSING ELEMENTS

1- Which kind of Processing element?
Adder

2- Functionality

Addition, summation

3- Complexity
Not pipelined Area N - N -logs(N) adders
Time(logs N)2x(time for an addition)
Pipelined Area N? adders

Time 2x(time for an addition)

4- Parallelism

All cells perform their Integral Image value in parallel.

5-Reconfigurability
No

6- Programmability
No

7- Need a dedicated memory?
If the architecture is pipelined, you need to store the partial sum.

If not pipelined, no memory is required.

8- Relationship with I/O
INPUT: values of the matrix’s cells
OUTPUT: result of the integral image algorithm

22

2 — Integral Image Algorithm

MEMORY ELEMENTS

1- Need a clever memory LIM?

No, but can be implemented

2- Is there a data search algorithm?
No

3-Interface mechanism with other PE or memories
Communication required between cells (even between distant cells e.g. the center
cell and the last cell).

4- Access mechanism

(No memory for this implementation)

5- Hierarchization

(No memory for this implementation)

6- Cache coherency

(No memory for this implementation)

7- Is it a a transactional memory?

(No memory for this implementation)

8- Are there virtualization (paging) mechanisms?

(No memory for this implementation)

ENCODING INFORMATION
1-Which encoding is used?

Binary encoding

23

2 — Integral Image Algorithm

CONNECTIONS

1-Packet Exchange Protocol
Directly

2-Timing (asynchronou/synchronous)

Synchronous

3-Are there multiple instances?
Yes, but the summation is not the same for all (some cells requires more data

exchanging than others)

4-Heterogeneity (Local/Distant I/O Connections)
Heterogeneous when storing the initial values to the cells, not heterogeneous when
exchanging the data (sometimes you exchange data between local cells, the other

times you exchange between distant cells.)

5-Are there any buffers?

There are pipeline registers.

24

Chapter 3
Discrete cosine transform

A discrete cosine transform (DCT) expresses a finite sequence of data points in terms
of a sum of cosine functions oscillating at different frequencies. DCTs are impor-
tant to numerous applications in science and engineering, from lossy compression of
audio (e.g. MP3) and images (e.g. JPEG). The DCT is often used in signal and
image processing, especially for lossy compression, because it has a strong ”energy
compaction” property: in typical applications, most of the signal information tends
to be concentrated in a few low-frequency components of the DCT. [9]

There are different variations of the discrete cosine transform, but the most
common one is the "DCT-II” which is also used in JPEG image compression and
by MATLAB ®:

T 1
Xi = Z w(k)x,cos [N(n + 5)/4:], k=01,.,N—1 (3.1)
1 _
il k=0
w(x) =
2 1<k<N-1

We can see the equation 3.1 as a product of matrices: we have to multiply the input

vector x; with a matrix of coefficients for cosine. Thus the equation 3.1 can be

rewritten as

Xo €080 coSp1 tr COSQp—1 o
X €081 c0S11 cc COSip_1 T
Xn-1 COSp—1,0 COSp—11 - COSp_1n—1 ITN-1

25

3 — Discrete cosine transform

where the matrix of coefficients for cosine is the following

_\/%cos(%(()--l-)N -1) \/%003(

\/LNCOS(%(O +2)-0) TS
\/%cos(%(() +1)-1) 2cos

=[a

3.1 Hardware Implementation

3.1.1 Not pipelined version

\/Lﬁcos(%(]\f —141%)-0)
\/%cos(%(]\/ —1+1)1)

\/%cos(%(N —14+34)N-1)

The result can be seen as a sum of products. Each element of the output array can

be written as:

Xi = x0c08;0 + 11€08;1 + -+ + X,,_1€0S; 1

We can perform all the multiplications in parallel and then do an accumulator

(or a chain of additions) with these product results. As we will see in the DCT

synthesys result (10.2), there is no practical difference between the pipelined and

not pipelined versions. The only difference is the area for the pipeline registers and

the time for the addition chain over the multiplications (One addition is faster than

one multiplications, however if the n number of additions in sequence to do is big

enough, this time can offset the time for a single multiplication).

26

3 — Discrete cosine transform

x(0) x(1) x(2) x(n)
v
X/cos(0)(0) cos(0)(1) cos(0)(2) - - - cos(0)(n)
X(0)
> + B+
x(0) x(1) x(2) x(n)
cos(1)(0) cos(1)(1) cos(1)(2) cos(1)(n)
X(1)
o B+ —
x(0) x(1) x(n)
\¥/cos(n)(0) cos(n)(1) cos(n)(2) - - - cos(n)(n)\X
X(n)
S+

Figure 3.1: Implementation of DCT algorithm (not pipelined). All multiplications
are done in parallel

27

3 — Discrete cosine transform

3.1.2 Pipelined version

The result can be seen as a sum of products. Each element of the output array can

be written as:
Xi = x0c08; 0+ 11€08;1 + -+ + Tp_1C0S; 1

Therefore, since there is no data dependencies between these elemnts, we can

evaluate them in parallel.

1. In the first clock cycle we can perform the multiplication xgcos;o for each

element of the array.

2. In the second clock cycle we evaluate the second multiplication and sum it to

the previous result [zocos; o] + T1c0s; 1

3. In the third clock cycle we evaluate the third multiplication and sum it to the

previous result [xocosw + :rlcasz-’l] + 29c08; 2

4. We repeat this process until we reach the last term of this sum of product.
In this clock cycle we have the final result X; = x¢cos;o + x1c08;1 + -+ +

Tp—1C0S8; n—1

In the following, we have the process explained in a matrix form, while figure

3.2 represents this implementation in a Register to Transfer Level.

X ToCoSoo T+ x1C0S01 + 0+ X,_1€0S0p—1
0
TpCOS1 0 + x1c0811 + o+ 110081 -1
X1
ToCOSp—1,0 TT1C0Sp_11 + *° FTp_1C08u_1,n—1
XN_]_ . ~ /
1ststep 2ndstep last step

28

3 — Discrete cosine transform

1st
step C0.0Xo €1.0Xo

CN-1,0 Xg

2" Coi1Xx; C1,1X;
step '
+

CN-1,1| X1

3 rd

step Co,2 Xy Ci2X%;
| |
\ ¥/

CN-1,|2X2

l_‘
T

CN-l,N-l XN-1

XN-l

Figure 3.2: Implementation of DCT algorithm (pipelined)

29

3 — Discrete cosine transform

3.2 Simulation and Test

I performed some tests of this implementation with different size and dimension. In

the fig.3.3 we can see the results of an array of six elements.

{000000A2} {00000033} {00000094} {00000055} {0 |{.

FF4003D 1IDCFFFA4FEASFFEC65F6FFEOD 112FFBA4DAD
131E00 1A69FBFFA4FDFBO00F 1920FFAFBD57FFADOOD7

Cursor 1

Figure 3.3: Discrete cosine transform-Results of the simulation

The simulation shows the input array:
in_r = 0x001100A200330094005500 F'6
that stands for

zo = 020011
x1 = 0200A2
T = 020033
z3 = 020094
x4 = 020055
rs = 0x00F'6

which in decimal is

ro =17
T, = 162
T = 5l
xr3 = 148
x4 = 85
Ty = 246

30

3 — Discrete cosine transform

During the first 6 clock cycles, we can see the partial sum and multiplications. The

output is available in the 6" clock cycle after the reset:

det_res = 020121700AF F9138AD001F FDOSFFAAAAASF FF6C05BF F883D6B

that stands for

Xo = 020121700A
X1 =0xFF9138AD
Xy = 02001 F F D05
X3 =0xFFAAAA4S
Xy =0z FFF6C058
X5 = 02 ' F883D68B

and if we convert them in decimal by reserving 16 bits for the floating points, we

get

Xo = 289.437653
X, = —110.778610
X9 = 31.988358
X3 = —85.334839
X4 = —9.248611
X5 = —119.760086

We checked this result by using the function dct on Matlab (Figure 3.4). We see
that it differs from the Matlab result by a value in the order of 1/100. This depends
on the precision used for the implementation, especially when converting the cosine

values into binary.

31

3 — Discrete cosine transform

Command Window
>> xxx=[17;162;51;148;85;246]

XXX =

17
162
51
148
85
246

>> dct (xxx)
ans =

289.4480
-110.7677
32.0000
—85. 3239
-9.2376
-119.7491

Figure 3.4: DCT result in MATLAB

32

3 — Discrete cosine transform

3.3 Comparison

3.3.1 Systolic array architecture

A systolic array can be seen as a homogeneous network of funtional units (called also
nodes or Data Processing Units (DPU)) which elaborate data and exchange them
with their neighbours following a flow; in particular each FU receives the data from
its upstream FU, elaborates it and passes it downstream. Each FU is indipendent
from the others and executes only one operation over a huge amount of data; for
this reason, systolic arrays are classified as SIMD (single instruction, multiple data)
architectures. The particular name ("systolic”) derives from the fact that inside
the array there is a continuous flow of data propagating from a FU to the next one
resembling the flow of the blood in the human body. Usually, systolic arrays cannot
be programmed and for this reason the circuit has to be designed ad — hoc. This
kind of structure is made of simple FUs which usually implement a simple operation
(addition, multiplication, ecc..) and that have a very small memory capability. The
main purpose of each node is to compute a data and send it to the next FU following
the flow. [11]

MEM
FU FU FU FU Fu k—| ru
0} L i3 $ i3 i
FU FU FU FU Fu k| ru
3 3 3 3 3 0
FU FU FU FU Fu k| Fu

Figure 3.5: A generic figure of a systolic array; it is possible to notice the presence
of parallel inputs and parallel outputs. Data are taken from the memory, eleborated
along the multiple paths of FUs and then stored again in the memory.

33

3 — Discrete cosine transform

3.3.2 Comparison with systolic array implementation

The DCT has been implemented in a systolic array architecture [11] with the fol-

Figure 3.6: Implementation of DCT algorithm in a systolic array architecture

lowing structure (Fig 3.6)

Given an input array (from the left), each element of this array will be multiplied
by the values of the cosine matrix, previously stored in the internal register (Fig 3.7).
At the output of each processing element (Fig 3.7), we have tha product IN; - cos; ;
towards the bottom and the I N; value toward the right.

The simulation’s results of this implementation are shown in figure 3.8 with a
check of the result in MATLAB (Fig. 3.9) As we can see from the simulation, for an
array of size IV, we need 2N — 1 clock cycles to get the result. On the other hand,
by looking to the structure of the systolic array, we can deduct the area to be N - N
processing elements.

An important observation has to be done for the table 3.3.2. For the implementation

not pipelined described in 3.1, the critical path is made of one multiplier and a

34

3 — Discrete cosine transform

OUT Right—p»

IN Up

Figure 3.7: Processing element structure

cascade of N — 1 adders, this is due because all the multiplication can be done in

parallel, while the adders have some dependencies between them.

Systolic array This work This work pipelined
Area N2 moltiplications N? moltiplications N moltiplications
N? additions N? additions N additions
Time (2N — 1) x (time for | (N — 1)x(time for an | time for an addition
an addition and a addition) + time for a | and a multiplication.
multiplication) single multiplication Also the synthesy’s
results 10.2 are
concordant with this
theory.

35

3 — Discrete cosine transform

Mdeycockrs™ | [_ [_ [o[L[L7 7 I
/tbdcYRESET_TB |
[tbdct/in_up_tb (X} {X} {X} {X} {X} {0} {0} {0} {0} {O)
[OFS fo
3) X o
2 X o
) X fo
) X Jo
/tbdct/in_left_tot (X} (X} (X} (X} (X} I I I I [0} {0} <0} {0} (0
) X f16777216 Jo
(3) X Jo Je3sss08 o
() X fo J16777216 o
(1 X o J2s16582¢ o
(0) X fo Je388608 |0
/tbdct/OUT_DOWN_TB ({0} {0} {0} {0} {0} 0} {0} {0} {0} {0
@ (o 0
[©10 0
@[0
m o 175211009802240 [0
o 0 2174513420697 |0
/tbdct/OUT_RIGHT_TB ({0} {0} {0} {0} {0} 0} {0} {0} {0} {0
@ 16777216 J0
3 [0 8388608 0
@ 16777216 [0
mf 25165824 o
o o 8388508 |0
L T T T T T T T T T O O TN S A O I S O (N N R N [T T
0.00 ns 500 ns 1000 ns 1500 ns 2000 ns 2500 ns

Figure 3.8: Results of the DCT in a systolic array architecture

36

3 — Discrete cosine transform

>> B
A=
16777216 8388608 16777216 25165824 8388608

>> dct (B) * 223

1.0e+014 *

Column=s 1 through 4

6.333186975989760 -0.157987674062715 -0.569295099125533 1.752110154373207
Column 5

-0.217451378237213

fx >>

Figure 3.9: Check results in MATLAB for systolic array architecture

37

3 — Discrete cosine transform

3.4 Characteristics of DCT

PROCESSING ELEMENTS

1- Which kind of Processing element?
Adder, multiplier

2- Functionality

Addition, mulltiplication, summation

3- Complexity
Not pipelined Area: N? multiplier, N - (N — 1) additions

Time: time for a multiplier followed by a chain of
N — 1 adder)

Pipelined Area: N multiplier, N additions
Time: time for a multiplication followed by an
adder

4- Parallelism

Multiplications and summation are done in parallel.

5-Reconfigurability
No

6- Programmability
No

7- Need a dedicated memory?
If the architecture is pipelined, you need to store the partial value of the DCT.

If not pipelined, no memory is required.

8- Relationship with I/0
INPUT: values of the cosine matrix, values of the input vector
OUTPUT: result of the DCT algorithm

38

3 — Discrete cosine transform

MEMORY ELEMENTS

1- Need a clever memory LIM?

No, but can be implemented

2- Is there a data search algorithm?
No

3-Interface mechanism with other PE or memories

Communication required between local cells

4- Access mechanism

(No memory for this implementation)

5- Hierarchization

(No memory for this implementation)

6- Cache coherency

(No memory for this implementation)

7- Is it a a transactional memory?

(No memory for this implementation)

8- Are there virtualization (paging) mechanisms?

(No memory for this implementation)

ENCODING INFORMATION
1-Which encoding is used?

Binary encoding for the input vector
Binary encoding (by reserving some bits for the decimal part) for the cosine

matrix and for the result

39

3 — Discrete cosine transform

CONNECTIONS

1-Packet Exchange Protocol
Directly

2-Timing (asynchronou/synchronous)

Synchronous

3-Are there multiple instances?

Yes, except for the first row (no adders required)

4-Heterogeneity (Local/Distant I/O Connections)
Heterogeneous when storing the values of the DCT to the cells, and when ex-

changing the data

5-Are there any buffers?

There are pipeline registers.

40

3 — Discrete cosine transform

3.5 LLM DCT

There’s a faster DCT algorithm, sometimes called LLM for its authors: LoefHer,
Ligtenberg, and Moschytz. [10] As said before (section 3), we use this formula for

the computation of the Discrete Cosine Transformation.

1
Xy = w(k)x,cos [%(n + 5)4 k=01..,N-1 (3.2)
n=0
1 _
il k=0
w(z) =
2 1<k<N-1

It has been found that for a certain kind of matrix, we can reduce the number
of multiplications.
In this work I present the algorithm for a 8-point DCT [10].
First of all, let’s have a look to the cosine matrix. Setting (k) = cos(%y) the

8-point DCT matrix is

v4) v(4) v4) (@) 4 (@) 4) ~(4)
1) @) B A7) =T () B (D)
72 y(6) —(6) —(2) —(2) —(6) ~(6) (2
1[v@3) —(7) —(1) =) 5 1) A7) —(3)
2174) @) @) 4 4 @) @) 4
v(B) =) A7) vB) @) () A1) —(5)
y(6) —v(2) (2 —(6) —(6) ~(?2) —(2) ~(6)
(7)) =) A@B) (1)) @)) —(T)

We know that the DCT can be seen as a product of matrices:

41

3 — Discrete cosine transform

Xo 74) v4) 4 4 4 @) (@) (@) | |0
X, 1) @B B AT AT =B @) Q)| | =
X5 7(2) v(6) —(6) —(2) —(2) —(6) ~(6) A(2) | |72
K| _117@) =) =) —6G) 2(5) A1) A7) @) |
Xal 2174 @) @) @) 4 @) @) @) | |z
X5 75) =) (7)) @) @) (7)) (1) —B)| |5
X (6) —v(2) (2) —(6) —(6) ~¥(2) —(2) (6) | |z
| X7, () =) @B @) A1) @) G A7) 7]

More explicitly

(
(o — 27) - v(1) + (21 — 26) - Y(3) + (w2 — w5) - ¥(5) + (w3 — 24) - Y(7)
Xy = [(wo + m7) — (w3 + 24)] - ¥(2) + [(71 + 26) — (T2 + 25)] - 7(6)
= (v0 — w7) - v(3) + (w6 — 21) - Y(7) + (x5 — 22) - Y(1) + (24 — 73) - 7(5)
(

X5 = (w9 — 27) - v(5) + (w6 — 1) - Y(1) + (22 — 25) - ¥(7) + (23 — 74) - ¥(3)
Xo = [(zo + 27) — (x3 + 24)] - 7(6) + [(z2 + 75) — (21 + 76)] - 7(2)
X7 = (vo —x7) - Y(7) + (x6 — 1) - ¥(5) + (22 — 25) - V(3) + (24 — 23) - 7(1)

we can see that we can do some addition in parallel and some of them in series due
to the data dependencies.
Moreover, we can reduce the number of multiplications. For instance for Xy we need

only one multiplication, and for X, only 2.

3.5.1 Architecture of the LLM DCT

The architecture is shown in fig 3.10

The stages of the LLM Algorithm for an 8-point DCT, numbered 1 to 4, are
parts that have to be executed in series and can not be evaluated in parallel because
of data dependencies. However calculations inside one stage can be parallelized.
Stage 1 consists of 8 additions/subtractions.
In Stage 2 , the algorithm splits into two parts. One part is for even coefficients (only

additions and subtractions) and the second part is for odd coeflicients (rotations).

42

3 — Discrete cosine transform

stage 2 | stage 3| stage 4

\/§>_<

= c6

stage 1

@F

.}
[
|
W

c7

~N O WK

Figure 3.10: LLM DCT for an 8-point with 17 multiplications. For symbols, see
figure 3.11

The even part is nothing else than a 4-point DCT, again separating in even and odd

part in stage 3.

Figure 3.11 explains the building blocks of the algorithm. The second building block,

the rotation, can be calculated using only 3 multiplications and 3 additions instead

of 4 multiplications and 2 additions using the equivalence shown in equation 3.3.
™ ™

Since a = cos(gy) and b = sin(g3;) are constants and known a priori, also the values

(b —a) and —(b + a) are constants, so we do not need an hardware component to

43

3 — Discrete cosine transform

compute them.

Yo =a-To+b 11 = (b—a)-xl—i-a-(xo-l—:rl)
Y=—b-xot+a-x1= —(b+a) zo+a-(zg+x)
nm (3.3)
a:cos(ﬁ)
b:sin(%)
IO 00 OO =ID + Il
|1_>§:01 O1=lg- I,
lo — cnk— Oo Oy =lp cos[nm/(2N)] + |; sin[nm/(2N)]
I, — — 01 O;=-l, sin[n/(2N)] + |; cos[nm/(2N)]

@ 0 O=I| cos[nT/(2N)]

Figure 3.11: Symbols used to describe the LLM DCT for an 8-point with 17 multi-
plications (fig.3.10)

3.5.2 Simulation and test

I performed some tests of this implementation with different values.
In the fig.3.12 we can see the results of an array of 8 elements using the LLM
structure.

In the yellow box, we can see the input vector to be

ZL‘():3
331:9
552:6

44

3 — Discrete cosine transform
Messages
[tb_dctBfdct_0/ck 1
4 Jtb_dctBfdet Ofst |0
4 [tb_dct8/dct_0fin_x |000300090006001000130004000400C7
4 Jtb_dct8/dct_Ofout... |00SBECOSFFA239C9004DB758FFADE IF4004BABACFFCS0D8700
|- Jtb_dct8/dct O/stag (3} {9} {6} {16} {19} 199}} {{202} {13} {10]

-3} {2 -196
{237} {23} {3} {167} {-3649719} {96236} {147906} {-5285408)

£760) {714} {5093208) £7016040} {-6145591} £-5381644} {-3

200ns
37ns

Figure 3.12: LLM 8-point Discrete cosine transform-Results of the simulation

r3 = 16
ry =19
ry =4
T =4
x7 = 199

Between the yellow box and the red box, we can see the results of the different
stages.

The final result is shown in the red box. Since we reserved 16 bits for the decimal
part, these vector has to be shifted by 16 position, i.e. divided by 2'¢ = 65536.

Xo = 6024200/2'% = 91.9219
X, = —6145591/21¢ = —93.7742
X, = 5093208/2¢ = 77.7161
X3 = —5381644/2' = —82.1173
X, = 4958380/2'6 = 75.65887
X5 = —3797625/2'6 = —57.9471
X = 2016040/2'6 = 30.7623
X7 = —1192948/216 = —18.2029

We checked this result by using the function det on Matlab (Figure 3.13). We see
that it differs from the Matlab result by a value in the order of 1/100. This depends

45

3 — Discrete cosine transform

on the precision used for the implementation, especially when converting the cosine

values into binary.

Command Window

16
19

199
>> dct (p)
ans =

91.9239
-93.7753
77.7180
-82.1192
75.6604
—57 . 9500
30.5682
-18.2051

Jx >>

Figure 3.13: LLM 8-point DCT result in MATLAB

3.5.3 Comparison

Since this architecture is fon an 8-point DCT, I will compare it with the other
structure for the DCT shown before (subsection 3.1 and 3.3.2).

46

3 — Discrete cosine transform

Systolic array | This work This work | LLM LLM
N=8 pipelined pipelined
Area | 8% multiplica- | 8° molti- | 8 molti- | 17 molti- | 4.25 molti-
tions 8% addi- | plications plications plications plications
tions 8%additions Sadditions 33additions 8.25additions
Time | (2 - 8 — 1) | 8 x (time for | time for a | time for 8| time for 1
X (time for | a multiplica- | multiplication | multiplica- multiplica-
a multiplica- | tion followed | followed by | tions and 6| tion and 2
tion followed | by an addi- | an addition addition additions
by an addi- | tion)
tion)

We can see that the LLM (both pipelined and not) is the best solutions in terms of
area.

In terms of time, if we look to the pipelined LLM architecture, we have to consider
the longest critical path between the four stages. This is found in the rotation block,
which takes the time for a multiplication and 2 additions. The Data Flow Graph
is shown in fig. 3.14. So looking to the pipelined architectures of the LLM and the
one shown in this work (subsection 3.1), it’s better the one i presented above.

If we look to the architecture without any pipeline register, the critical path will
be 1 multiplication and 4 additions. To find this value, we can consider the critical
path for each output element, by taking into account that a rotation block take the
time for one multiplication and 2 additions. A scheme is shown in fig. 3.15. In
conclusion, without any pipeline registers, it’s better the LLM architecture in terms

of time.

47

3 — Discrete cosine transform

-(a+b) %o

Yo Y1
Figure 3.14: DFG for a rotation block

48

stage 3

+

X1, X3,
X5, X7

®)

X2, Xe

stage 1 stage 1 stage 1
+) +) +)
stage 2 stage 2 stage 2

I® (+) +)
% @ stage 3 | stage 3
Y o] ®

§ (%) stage 4

<

Xo» X4

Figure 3.15: Critical path for each output element

49

3 — Discrete cosine transform

3.5.4 High Order LLM DCT

Many studies has been done for the LLM architecture, and it has been theorized
that the LLM can be applied for the DCT that has a size of 2". [12]

Although we can see a recursive approach for the even parts at top, such as an
addition/substraction, nothing can be said for the odd parts. A brute-force search
is required. [13]

Fig. 3.16 and fig. 3.17 show an implementation for the LLM of order-16 and order-32

respectively.

Jr
i
/s

%

————————— Odd Part -~————————=~

————————— EvenPat —————————«
Xo [== — Jo
1] S
X2 = - S | f4
X3 - s /22 P : fi.2
X4 514 : f2
s S I ff'
X N : Sia
X7 Y T
Xg fJ
X9 - % | fiz
X10 = : Jo
X1 = I .fis
X12 - : _fi

X113 |

|

— kx — n £z
Cr = COS(32) S = Sm(32)

2

Figure 3.16: Order-16 LLM fast DCT algorithm

50

| <<7 | | << —_— uo
| X<<7 | | << — U8
N Sl 1T T T
- 167
/\ |_ — _70_ _| |<<2 <ct Uszg
3 144 —
XX\ NN
V& ng X | <t —— Uy
144 \99
VN
[—— _- —_— _3 _2_ _144_ 9_ _-_ >>1 I<<2 << — u28
- - S 22 <t —— Uy
Z T > [T
/ \ .
& > o
AR 50 = 17 << Us
\\‘l‘l‘l’t‘l‘l‘l‘l‘t‘l’ll 18 o4
- <t — Uys
Wi
VAV - 28 \\53 / \ / \ >10<22 » Uns
D * 1022 <t — Ug
i) A‘A‘A‘l‘l‘l 13 X, U,
13 Sios
12 ! X, Uo
& 12 l -
W 42
5 -
12 X3 Us
5 -
12] Uz7
13
— X u
\W/ / \ 4 13
13] Urg
X] Uzg
T 7
13\] U3
5 W\ 2 "
s \\12 "
12 5 Uss
/ 12 \5 \ / U
13 ?g e
Uis

Figure 3.17: Fast algorithm for the forward order-32 integer transform with the
fast algorithms for the forward order-4, order-8, and order-16 integer transforms
embedded. 51

3 — Discrete cosine transform

3.5.5 Characteristics of the LLM DCT 8-point

PROCESSING ELEMENTS

1- Which kind of Processing element?

Adder, multiplier, substractor

2- Functionality

Addition, mulltiplication, substraction, summation

3- Complexity
Not pipelined Area: 17 multiplier, 33 additions

Time: 8x(time for 3 multipliers and 6 adders)

Pipelined Area: 4.25 multiplier, 8.25 additions

Time: time for a multiplication and by 2 additions

4- Parallelism

Each operation belonging in a certain phase, can be done in parallel. (Fig. 3.10)

5-Reconfigurability
No

6- Programmability
No

7- Need a dedicated memory?
Yes, it needs to store the cosine values.

If not pipelined, no memory is required.

8- Relationship with I/0
INPUT: values of the input vector
OUTPUT: result of the DCT algorithm

52

3 — Discrete cosine transform

MEMORY ELEMENTS
1- Need a clever memory LIM?
No

2- Is there a data search algorithm?
No

3-Interface mechanism with other PE or memories

Communication required between local cells

4- Access mechanism

(No memory for this implementation)

5- Hierarchization

(No memory for this implementation)

6- Cache coherency

(No memory for this implementation)

7- Is it a a transactional memory?

(No memory for this implementation)

8- Are there virtualization (paging) mechanisms?

(No memory for this implementation)

ENCODING INFORMATION
1-Which encoding is used?

Binary encoding (by reserving some bits for the decimal part) for the cosine

matrix and for the result

53

3 — Discrete cosine transform

CONNECTIONS

1-Packet Exchange Protocol
Directly

2-Timing (asynchronou/synchronous)

Synchronous

3-Are there multiple instances?

Yes, but the architecture is not simmetric (3.10)

4-Heterogeneity (Local/Distant I/O Connections)

Heterogeneous when storing the values of the input vector.

5-Are there any buffers?

There are pipeline registers.

54

Chapter 4
Binomial Filter

Binomial filters are simple and efficient structures based on the binomial coefficients
for implementing Gaussian filtering. To extract these coefficients, we could use
Pascal’s Triangle.

The rows of Pascal’s triangle are conventionally enumerated starting with row n =0
at the top (the Oth row). The entries in cach row are numbered from the left
beginning with £ = 0 and are usually staggered relative to the numbers in the
adjacent rows. The triangle may be constructed in the following manner: In row 0
(the topmost row), there is a unique nonzero entryl. Each entry of each subsequent
row is constructed by adding the number above and to the left with the number
above and to the right, treating blank entries as 0. For example, the initial number
in the first (or any other) row is 1(the sum of 0 and 1), whereas the numbers 1 and

3 in the third row are added to produce the number 4 in the fourth row.

n=>0 1
1 1
1 2 1
1 3 3 1
= 1 4 6 4 1
5 1 5 10 10 5 1
= 1 6 15 20 15 6 1

The first odd sized serie is:
1 2 1

this form the basis for the 3x3 binomial filter.

The weights of the binomial filter are biggest at the center and taper down towards

55

4 — Binomial Filter

the outer areas of the neighborhood.

To create the 2D low pass binomial filter, we have to form the outer product of the
row with its corresponding column. In simple terms take the row and multiply each
element in it by the first value in the row. Then take the row and multiply each
element in it by the second value in the row. Repeat this until we have multiplied
the row by every element in the row. Then stack each of these resulting rows to
make a square table or matrix. [14]

For example, the 3x3 matrix is generated as

2|12 1=

— N
SRS V]
e

After multipling, we need to normalize, so the overall 3x3 binomial filter is:

1 21
1242
16

1 21

In particular, given a cell in position (z,y), the final value of the computation should
be:

flzy) = %[1(36 —1ly—-1)+2z—-1y)+1(z—1y+1)+
+2(xy — 1)+ 4(xy) +2(z,y + 1)+ (4.1)
+1l(z+1ly—1)+2x+1y)+ 1z +1y+1)]

As shown in the figure below, the value of the dark blue rectangle can be calcu-

lated as the weighted mean of all the light blue rectangles:

56

4 — Binomial Filter

Figure 4.1: Binomial Filter for a generic cell

57

4 — Binomial Filter

4.1 Hardware implementations

4.1.1 Hardware implementation type 1

This implementation will focus only to the possible cells for the binomial filter, i.e.

the ones not in the border of the matrix, bevause they are leaved unchanged.

1. for each row, whenever we find three consecutive cells, we evaluate the sum
Spy = celly_1y+2-celly, + cellyi1,

In order to so, we need 2 adder: we shift by one position the value of the
central cell (i.e. multiply by two) and sum it with the left and the right cells
as shown in fig 4.2 while fig 4.3 shows the overall picture of this step.

1 2
| |

V
1 2 1 i

1|2 |1

Figure 4.2: Weighted sum for three consecutive cells

58

4 — Binomial Filter

Left cell+ Left cell+ Left cell+ Left cell+
2(this cell)+ | 2(this cell)+ | 2(this cell)+ | 2(this cell)+
right cell right cell right cell right cell
Left cell+ Left cell+ Left cell+ Left cell+
2(this cell)+ | 2(this cell)+ | 2(this cell)+ | 2(this cell)+
right cell right cell right cell right cell
Left cell+ Left cell+ Left cell+ Left cell+
2(this cell)+ | 2(this cell)+ | 2(this cell)+ | 2(this cell)+
right cell right cell right cell right cell
Left cell+ Left cell+ Left cell+ Left cell+
2(this cell)+ | 2(this cell)+ | 2(this cell)+ | 2(this cell)+
right cell right cell right cell right cell
Left cell+ Left cell+ Left cell+ Left cell+
2(this cell)+ | 2(this cell)+ | 2(this cell)+ | 2(this cell)+
right cell right cell right cell right cell
Left cell+ Left cell+ Left cell+ Left cell+
2(this cell)+ | 2(this cell)+ | 2(this cell)+ | 2(this cell)+
right cell right cell right cell right cell

59

Figure 4.3: First part of the binomial filter HW implementation

4 — Binomial Filter

2. Taking the result of the previous step as a matrix, for each column whenever

we found three consecutive cells we evaluate the sum
SUMw,y = Sw,y—l +2- Sfc,y + Sw,y+1
which is equal to

SUM,, =(celly—1y-1 + 2 cellyy—1 + cellyry—1)+
+ 2 (celly—1y+ 2 cellyy + cellyy1)+
+ (celly_1 y41 + 2 - celly yy1 + cellyiq yi1) = (4)
=celly_1y—1+ 2 cellyy 1 + cellyyq y—1+
+2-celly_1y +4-cellyy + 2 cellyyqy+

+celly—1yt1 + 2 - cellyyi1 + cellyi yi

fig 4.4 shows this step

<=

1121
2 (4|2
1 2 1 =1

Figure 4.4: Weighted sum for 3x3 cells

60

4 — Binomial Filter

pad
>
>
>
>

=
N~

>
pad

=N
<

RN
NANNNANNE NN AN

RN
S EN S
=N

RPNRPRPRNRPRPNRRPNR
>

ﬁi;ﬁﬁl—\ﬁq
SN ~NN~N
NRPRNRRNP

pad

[HY

N

;

RPNR RN

NPAPRNN SN

RPRNR RN
>

N =
=N

[N
> N
| -
H
H
>
>

N
Ny

RPRNRPRRPRNRRNR
NENNANN SN
P NRRNRRNR
RPNRRPRNRRNR RN

N DN
=N

[~]

Figure 4.5: Weighted sum for all 3x3 cells

3. Now that we have the weighted sum for all the 3x3 cells, we have to divided
by 16. In order to do so, the quickest way is to shift the result by 4 bits.
The values of the cells in the border of the matrix, are unchanged in the final

result.

4 — Binomial Filter

4.1.2 Hardware implementation type 2

This implementation will focus to all the cells. The only difference between this
implementation and the one described in the subsection 4.1.1 is that now we apply
the Binomial Filter also for the cells in the border of the matrix. We take the original
matrix and we set a neighborhood of cells at ‘0" as shown in fig ?? where the original
matrix has benn highlighted in black. The procedure to evaluate the final result of

the binomial filter is the same as explained in the subsection 4.1.1.

Figure 4.6: Binomial Filter, second implemetation

62

4 — Binomial Filter

4.2 Simulations

4.2.1 Simulation type 1

The simulation shown in this work is referred to the hardware implementation de-
scrived in the subsection 4.1.1 where the values of the matrix’s border are leaved
unchanged. In this testbench, we have a matrix 4x4 (fig.4.7 highlighted in yellow,
and the output highlighted in red).

Jtb_bf/dock
< [tb_bffreset
& /tb_bf/bf_values/a
8’ 0
8’ o
6’ @
e
&’ /tb_bfjbf_0/add_res
6’ 0
8’
R
EE)
& /tb_bf/bf_0ffinal_res
8’ 0

8’ o

8’ @

e
[tb_bf/bf_0/shift_res

o’ 0

o’ o

8’ @

Cursor 1

{1} {3} {6} {1} {{]
{1} {3} {6} {1}

G {92} {90} {X}
030G O3 0

() (3) (6) () (o

{1 {3} {6} {1}
(2 B8
{4} {5} {5} {3}
{6} {7} {9} {2

66293 ps

TIITI2} {50058 {20 1 {{4s {6} U 7% {30 K16t {73 ot 120

Figure 4.7: Binomial Filter-Results of the simulation type 1

At the beginning we have an input array that contains the values of the matrix

DD =N =

N O ot W

Ne g @)

N W N

The first step of this implementation is to do the partial weighted sum for three

consecutive cell

S%y = cellx_l?y +2- cell%y + Cellw—l—l,y
Vo € [1,n — 2]

Yy € [0,n — 1]

63

4 — Binomial Filter

1+2-3+6 3+2-6+1
24+2-5+5 H5+2-5+2
44+2-64+7 64+2-7+3
6+2-7+9 7T+2-9+2

e e
SECHCES

which will lead us to the result

13 16
17 17
23 23
29 27

e e e
SESICNS

which is the same shown in the simulation (fig 4.7, add_res array).

Now we have to do the final sum

SUM,py = Spy—1+ 2 Sey + Seyr1
Veeln—2] Vye[ln-—2]

X X X x| [x x x x
X 134217423 16+2-17+23 X| |X 70 73 X
X 174223429 174+2-23+27 X| |X 92 90 X
X X X X X X X X

this matrix is the same we obtained in the simulation (fig 4.7, final_res array). The

work is not over yet because we need to divide these sums by 16

X X X X X X X X

X B B X| |X 4375 45625 X

X 2 90yl X 575 5625 X

X X X X X X X X

Since the values of the pixel are integer, we can round the matrix as

PRV
SECECES

4 4
5 5
X X

64

4 — Binomial Filter

so the final result is

[I R
-q Ot W
O U = O
N W N

which is the same as shown in the simulation (fig 4.7, shifft_res array).

4.2.2 Simulation type 2

The simulation shown in this work is referred to the hardware implementation de-
scrived in the subsection 4.1.2 where also the final values of the matrix’s border are
computed using the binomial filter criteria. In this testbench, we have a matrix 4x4
(fig.4.7 highlighted in yellow, and the output highlighted in red).

Cursor 1
—

Figure 4.8: Binomial Filter-Results of the simulation type 2

At the beginning we have an input array that contains the values of the matrix

1 3 61
2 5 5 2
4 6 7 3
6 79 2

65

4 — Binomial Filter

For this implementation, we will perform the binomial filter for the matrix that has

a border of ‘0" and in the center the input matrix.

o O O O o O

Now we perform the same steps described in section 4.2.1.

S O =N = O

S N O ot w O

weighted sum for three consecutive cell

o © g ot o O

S N W NN = O

S O O O o O

Sy = celly_1y+2-cell,, + cellyy,
Vo € [1,n — 2

PV VEVEVEY

which will lead us to the result

e e b

>

0 0
2-14+3 1+2-3+6
2:2+5 2+2-5+5
2:446 44+2-647
2:64+7 64+2-7+9

0 0

14
19

0

0
13
17
23
29

0

Vy € [0,n — 1]

3+2-6+41
D+2-5+2
6+2-74+3
T+2-9+2

0
16
17
23
27

0

0

0

8
9

13
13

0

b b B b e

6+2-
S+2-
T+2-
9+2-

N W N =
b e b b e

We do the partial

which is the same shown in the simulation (fig 4.8, add_res array).

Now we have to do the final sum

SUMyy = Spy—1+2-Spy+ Seyr1
Vo € [1,n — 2]

Yy € [1,n — 2]

66

4 — Binomial Filter

X X X X X X
X 2549 213+ 17 216 + 17 2.849 X
X 5429417 13+2-17+23 16+2-17+23 8+2-9+13 X|
X 94214419 174+2-23+29 17+2-23+27 9+2-13+13 X|
X 14+2-19 234229 23+ 227 13+2-13 X
X X X X X X
X X X X X X|
z 19 43 49 25 X
X 37 70 73 39 X
X 56 92 90 48 X
X 52 81 77 39 X
X X X X X X

this matrix is the same we obtained in the simulation (fig 4.8, final_res array). The

work is not over yet because we need to divide these sums by 16

X X X X
1.1875 2.6875 3.0625 1.5625
2.3125 4.375 4.5625 2.4375

3.5 5.75 5.625 3

3.25 5.0625 4.8125 2.4375

X X X X

19 43 49 25
16 16 16 16
37 70 73 39
16 16 16 16
56 92 90 48
16 16 16 16
52 81 77 39
16 16 16 16

e e b e

I

I

I

I
b b e b e

|
e e b e
b b e b e

Since the values of the pixel are integer, we can round the matrix as

e e e
oo oo = e
oo e o e
SRS
SE TR
b b e e

67

4 — Binomial Filter

4.3 Comparison

4.3.0.1 Logic-In-Memory implementation

The architecture of the Logic-In-memory was already explained in the subsection
2.5.4. The pseudocode for the LIM is

1. Each cell reads its own value;

2. Reads all neighbouring cells data (8 different values);
3. Sums all values and divides them by 16;

4. Writes the final result in its own memory;

The main advantage of the LIM architecture is the parallelism: the presence of many
cells that can work autonomously greatly increases the speed of the computation of
algorithms that can be executed in parallel. [8] It has been calculated that the total

duration for the computation is equal to:
e N clock cycles to write the data;
e 28 clock cycles to compute the algorithm;

e 2N-+1 clock cycles to read the data through a remote read. Therefore,

t=N+28+42N +1=3N+29

LIM This work This work

version 1 version 2

Area N-N cells 2N- (N —2)+ (4N — 4)+
+2(N —2)% adders | 2(N — 2)? adders
Time 3N + 29 cycles | time for 4 adders | time for 4 adders

As for this work by looking to the section 4.1, we know that the time required is
the time for 4 adder in sequence, this because 2 adder are required for doing the
weighted sum of 3 consecutive cells, and the other 2 for doing the weighted sum of
the 9 cells

68

4 — Binomial Filter

4.4 Characteristics of the Binomial Filter

PROCESSING ELEMENTS

1- Which kind of Processing element?
Adder (static shifter)

2- Functionality
Addition, (static shifting i.e. multiply by 2 and 4, division by 16)
3- Complexity
Version 1 Area: 2[N(N —2) + (N — 2)?] adders
Time: time for 4 additions

Version 2 Area 4(N — 1) + 2(N — 2)? adders

Time: time for 4 additions

4- Parallelism

All the cell can perform their binomial filter value.

5-Reconfigurability
No

6- Programmability
No

7- Need a dedicated memory?
If the architecture is pipelined, you need to store the partial sum.

If not pipelined, no memory is required.

8- Relationship with I/O
INPUT: values of the matrix’s cells
OUTPUT: result of the binomial filter algorithm

69

4 — Binomial Filter

MEMORY ELEMENTS

1- Need a clever memory LIM?

No, but can be implemented

2- Is there a data search algorithm?
No

3-Interface mechanism with other PE or memories

Communication required between cells in the neighborhood

4- Access mechanism

(No memory for this implementation)

5- Hierarchization

(No memory for this implementation)

6- Cache coherency

(No memory for this implementation)

7- Is it a a transactional memory?

(No memory for this implementation)

8- Are there virtualization (paging) mechanisms?

(No memory for this implementation)

ENCODING INFORMATION
1-Which encoding is used?

Binary encoding

70

4 — Binomial Filter

CONNECTIONS

1-Packet Exchange Protocol
Directly

2-Timing (asynchronou/synchronous)

Synchronous

3-Are there multiple instances?
Yes

4-Heterogeneity (Local/Distant I/O Connections)
Heterogeneous when storing the initial values to the cells and when exchanging
the data (For version 2, the border cells require less computation and less data

exchanging)

5-Are there any buffers?
No

71

Chapter 5

Digital Filter FIR

A digital filter is a system performing a certain function on an input stream X|[n]
(samples are received at constant rate) and generating an output stream called Y [n].
In general it’s possible to have multiple input streams and multiple output streams

(for example in a parallel architecture this allows to speed up the filter).

5.1 Digital filters properties

Filters are systems characterized by the following properties [15]:

1. Linearity: it is possible to represent the output as an overlapping of the input
pulses. Let d[n — k] be the input signal and hg[n] the filter response, using

overlapping property, assuming that the input is a sum of pulses:
z[n] = ;(w[n] +0[n — k)

so the output is: hgx[n| = F(d[n — k]) (F is the filter funtion), so applying

linearity:

yln] = 2 z[n] - huln]

It means that if the input is a weighted sum of pulses, also the output will

have the same form.

2. Time invariance: the shape of the answer h; is not dependent on the selected
time k. So applying the same input signal at different time (i.e. different k),

the filter response will be always the same, just time-shifted. Therefore:

72

5 — Digital Filter FIR

hi[n] = hin — k]
The expression for the output found before can be rewritten as:

y[n| = zk::c[n] - hgln] = zk:x[n] - hln — k] = z[n| * hin|

where it has been used the definition of convolution product.

3. Stability: we expect to have at the output a stable stream of samples whose
values do not diverge. This is true if a sufficient numbers of bit has been
employed for representing the samples. Assuming that the system is BIBO
(bounded input bounded output), the following condition should be satisfied:

S:Zk:|h[n]| < 00

4. Causality: if we apply an input at time k, we expect that the output doesn’t
come before time k. Assuming that z[n] = 0 for n < 0, then y[n| = 0 for

k < 0: this property is true only if h[n] =0 for n < 0

5.2 Hardware Implementation

An FIR filter can be easily implemented using just three digital hardware elements, a
unit delay (D Flip Flop), a multiplier, and an adder. The unit delay simply updates
its output once per sample period, using the value of the input as its new output

value. In the convolution sum,
yln] = ;«’B[n] ~hln — k] = Zkix[n — k] - h[n]

notice that at each n we need access to z(n), z(n—1), z(n—2), ---, z(n — k). We
can maintain this set of values by cascading a set of D Flip Flops to form a delay
line, as shown in Fig. 5.1

For each of the previous k inputs, we have to scale them by h(0), h(1), ---,
h(k). To obtain these values, we simply put a multiplier as shown in the following
picture (Fig. 5.2). To obtain the final result, we have to sum all the results of these

multiplications.

73

5 — Digital Filter FIR

x(n) unit x(n-1) unit x(n-2) unit x(n-k
; delay b delay P E delay
Figure 5.1: Cascading D Flip Flops
x(n) unit x(n-1) unit x(n-2 unit x(n-k
v delay —T delay —T P E delay | |
y N
h(0) (1) h(2) h(k)
y(n)
o + B+

Figure 5.2: FIR hardware implementation

5.3 Simulation

The simulation shown in this work has 6 constants (fig. 5.3, fir_constants_value

scction)
ho =12
hy =10
hy =8
hs =6
hy =4
hs =2

and it will take into account the last 6 inputs.
When we start sampling after the reset, we set all the previous inputs to 0/,

therefore the output will be simply y[n] = x[n] - h.
In fact in the simulation, as soon as the reset was set low, we see the output (fig.

5.3,fir_res signal) to be
yln| =z[n]-hg=1-12=12.
In the next cycle we get
y[n] = zn| - ho +xn—1]-hy =10- 124+ 1-10 = 130.

74

5 — Digital Filter FIR

Jtb_fir/dock
Itb_firjreset
Itb_fie/fir_constants_valuefir _...
tb_fir finput_x
Jtb_firffir_res.

_fir /fir_0/m_res.

o

i;g Cursor 1 188.24341 ns

Figure 5.3: FIR’s simulation

For the next clock cycles we repeat the same procedure.
In the end, when the input has not changed for more than 6 clock cycles, we can
see the result to be

y[n]:ix[n—k]-h[k]z?i:7.42=294

75

5 — Digital Filter FIR

5.4 Characteristics of Filter FIR

PROCESSING ELEMENTS
1- Which kind of Processing element?

Adder, multiplier, registers

2- Functionality

Addition, multiplications, storing.

3- Complexity
Area: N — 1 adders
N — 1 registers
N multipliers

Time: Time for one registers, one multiplication and N — 1 additions

4- Parallelism

Registers and multiplications can work in parallel, The chain made of adder not
(fig. 5.2).

5-Reconfigurability

No

6- Programmability
No

7- Need a dedicated memory?
It needs some memory to store the previous N — 1 input values.

It is possible also to store the N constants

8- Relationship with I/0
INPUT: values of the input and values of the constatnts.
OUTPUT: result of the filter FIR algorithm

76

5 — Digital Filter FIR

MEMORY ELEMENTS

1- Need a clever memory LIM?

No, but can be implemented

2- Is there a data search algorithm?
No

3-Interface mechanism with other PE or memories

Communication required between local elements

4- Access mechanism

(No memory for this implementation)

5- Hierarchization

(No memory for this implementation)

6- Cache coherency

(No memory for this implementation)

7- Is it a a transactional memory?

(No memory for this implementation)

8- Are there virtualization (paging) mechanisms?

(No memory for this implementation)

ENCODING INFORMATION
1-Which encoding is used?

Binary encoding

"

5 — Digital Filter FIR

CONNECTIONS

1-Packet Exchange Protocol
Directly

2-Timing (asynchronou/synchronous)

Synchronous

3-Are there multiple instances?
Yes

4-Heterogeneity (Local/Distant I/O Connections)
Heterogeneous. Each elements is connected to the previous and following ele-

mentss. (No connections between distant elements)

5-Are there any buffers?

There are some registers.

78

Chapter 6
Transport equation problem

Fluid dynamics and transport phenomena, such as heat and mass transfer, play a
vitally important role in human life.

Gases and liquids surround us, flow inside our bodies, and have a profound influence
on the environment in which we live.

Fluid flows produce winds, rains, floods, and hurricanes.

Convection and diffusion are responsible for temperature fluctuations and transport
of pollutants in air, water or soil.

The ability to understand, predict, and control transport phenomena is essential for
many industrial applications,such as aerodynamic shape design, oil recovery from
an underground reservoir, or multiphase/multicomponent flows in furnaces, heat
exchangers, and chemical reactors.

The traditional approach to investigation of a physical process is based on obser-
vations, experiments, and measurements. The amount of information that can be
obtained in this way is usually very limited and subject to measurement errors.
Alternatively, an analytical or computational study can be performed on the basis of
a suitable mathematical model. As a rule, such a model consists of several differen-
tial and/or algebraic equations which make it possible to predict how the quantities

of interest evolve and interact with one another. [16]

The equations and the functionality used in this work, are the same described
in the work of a student for the Logic-In-Memory.
The transport equation is a partial differential equation that describes the distribu-

tion of heat (or variation in temperature) in a given region over time.

o 0 0

9,0 _ 90 1
0r oy ot (6.1)

79

6 — Transport equation problem

Temperature values are calculated over a grid and initialized with a gaussian dis-
tribution. The points of the grid represent the local indexes (ix, iy) of the matrix
that contains the temperature values. The domain is shown in orange in the picture
below. Boundaries are represented in white. Data are evolved along Y=X direction,

i.e. towards the up-right corner of the coordinate system [8].

-

Nx Nx+1 Ix

Figure 6.1: Grid for the Transport equation Problem

Each dot of the grid represents a cell. All the cells inside the orange rectangle
have to calculate the new value of temperature and the cells at the boundary have
to copy the calculated value from the cells at the border of the orange rectangle.

Each cell works autonomously performing these calculations:
temp =ty —alt(i+1,j) —t(i — 1,5) + t(i,j + 1) — t(i,j — 1)] (6.2)

As shown below, each cell reads the values of temperature of the adjacent cells to
compute the equation illustrated above: After that, the cells near the boundary

copy the calculated values to the boundary cells:

80

6 — Transport equation problem

Figure 6.2: Transport Equation Problem for a single cell

Figure 6.3: Propagarting the values to the boundary

6.1 Hardware Implementation

Since each cell has to compute the same equation, and since there is no data de-
pendencies between them, we can implement a component that compute this result.

Let’s call it tep_unit. The tep_unit has as input

81

6 — Transport equation problem

t0: the value of the interested cell

tr: the value of the cell on the right side

tup: the value of the cell on the upper side

tl: the value of the cell on the left side

tdn: the value of the cell on the lower side

alpha : the value of theconstant

with these values, it is possible to calculate the final value.

The equation above can be rewritten as :
temp =ty +aft(i — 1,7) +t(i,j — 1)] = [t(i + 1,5) + t(i,5 + 1)] (6.3)

For the cell on the border or on the angle of the matrix, we will compute the equation

as if there were some zero cells in the neighborhood. In fig. 6.4 we can see the DFG.

82

6 — Transport equation problem

tl tdn tr tup

\

alphaE{

t0

res
Figure 6.4: Tep_unit DFG

83

6 — Transport equation problem

6.2 Simulation

The simulation shown in this work has a 4x4 matrix (fig. 6.5, highlighted in yellow)

0 [tb_tep/tep_topOjfin_tep
0 [tb_tep/tep_topDjout_tep

0

[tb_tep/tep_topO/cell
= 2(0)
“ (1)
-* (2
_‘A (3)
v
= 2(5)
[ib_tep/tep_topQ/res
-* (0)
v
- 2(3)
P)
-* (5)
0’ [tb_tep/tep_top0/zero
0B /tb_tep/tep_topO/alpha

I
[

o

+
-
-
-
£
£
-
-
£
£
-
&

Cursor 1

1 2 3

3 4 2 8
5 6 1 18
7 8 0 22

{0} {0} {0} {0} {0} 1033 {0} {
{0} {0} {0} {0} {0} {0}

{0} {13 {2} {3} {9} {0}

{0} {3} {4} {2 {8} {0}

{0} {5} {6} {1} {18} {0}

{0} {73 48} {0} {22} {0}

{0} {0} {0} {0} {0} {0}

{3} {3} {6} {3} {26} {26}
{3} {3} {6} {3} {26} {26}
{3} {3} {14} {-10} {40} {40}
{13 {13 {223 {-27} {48} {38}

2

Figure 6.5: Transport Equation Problem’s simulation

If we compute the equation 6.3 for each element we will get

84

6 — Transport equation problem

3 6 3 26

3 14 —-10 40

1 22 =27 48
-19 10 -30 —14

Now we have to propagate the values on the border to the boundary, thus having

6 3 26 26
6 3 26 26
14 —10 40 40
22 =27 48 48
19 -19 10 =30 —-14 -14
19 -19 10 =30 —-14 -14

W W W
W W W

6.3 Comparison with LIM’s architecture

I take the results of the LIM’s architecture. The pseudocode for the LIM architecture

is the following:

1.

2.

3.

4.

d.

Each cell reads its own value;

Reads N-W-S-E cells data (4 different values);
Computes sums/subtractions and a multiplication;
Boundary cells just copy their neighbours’ values;

Writes the final result in its own memory;

As already said, the main advantage of the LIM architecture is the parallelism: the

presence of many cells that can work autonomously greatly increases the speed of

the computation of algorithms that can be executed in parallel.

In particular, the duration of the algorithms doesn’t depend on the number of cells

composing the grid. The total duration for the computation is equal to:

e N clock cycles to write the data;

85

6 — Transport equation problem

e 16 - iclock cycles to compute the algorithm;

e 2N + 1 clock cycles to read the data through a remote read.

Therefore,
t=N+16-1+2N+1=3N+16-1+1
LIM This work
Area N2 cells 3N? adders, N? substractors,
multipliers
Time 3N +16-i+1 (time for 3 additions) + time for
a single multiplication

86

6 — Transport equation problem

6.4 Characteristics of Transport Equation Prob-

lem

PROCESSING ELEMENTS

1- Which kind of Processing element?

Adder, multiplier, substractors

2- Functionality

Addition, multiplications, substractions.

3- Complexity
Area: 3N? adders
N? substractors
N? multipliers

Time: Time for one one multiplication and 3 additions

4- Parallelism

Each cell can evaluate their Transport Equation Problem output

5-Reconfigurability
No

6- Programmability
No

7- Need a dedicated memory?
No

8- Relationship with I/0
INPUT: values of the cells in the matrix
OUTPUT: result of the Transport Equation Problem. algorithm

87

6 — Transport equation problem

MEMORY ELEMENTS

1- Need a clever memory LIM?

No, but can be implemented

2- Is there a data search algorithm?
No

3-Interface mechanism with other PE or memories

Communication required between local elements

4- Access mechanism

(No memory for this implementation)

5- Hierarchization

(No memory for this implementation)

6- Cache coherency

(No memory for this implementation)

7- Is it a a transactional memory?

(No memory for this implementation)

8- Are there virtualization (paging) mechanisms?

(No memory for this implementation)

ENCODING INFORMATION
1-Which encoding is used?

Binary encoding

88

6 — Transport equation problem

CONNECTIONS

1-Packet Exchange Protocol
Directly

2-Timing (asynchronou/synchronous)

Synchronous

3-Are there multiple instances?
Yes

4-Heterogeneity (Local/Distant I/O Connections)
Heterogeneous. Each cell exchanges data with local cells (No connections between
distant cells)

5-Are there any buffers?
No.

89

Chapter 7

Magnetostatic field calculation 3D

To compute the total magnetostatic energy, the ferromagnetic systems can be dis-

cretized as three-dimensional cubes.

Figure 7.1: The selected cell is supposed to sum all the magnetostatic field contri-
butions between it and all the other cells

The following is the implementation of an algorithm shown in the paper [17],
related to the evaluation of the contribution of the magnetostatic field to the total
energy of a system.

In general, the magnetostatic field is connected to the magnetization []_4) | through
the magnetizing tensor [TG].

The evaluation of the magnetostatic field of a given cell requires the summation

on all cells of the mesh due to the the long range of the dipole interaction.

90

7 — Magnetostatic field calculation 3D

Hijky = -, 33N |16, TGy, TG, my (7.1)
i'=1j/'=1k'=1 Tsz TGzy TGzz

it bty L7V
7.1 Product TG and M

Each cell (7'7'k’) has a finite state machine that evaluates the magnetostatic field

contribution between the cell 45k and the cell i%%".

. TGy TGy TG, My
hii—i'j—3k—F)= TG TG, TG, my
TG.., TG, TG..

m
(i~ j—j" k—k') 24 (i ,50 k)

The matrix TG ;_y j—j k—k) is the magnetizing tensor between the 2 cells, while
M (i jiiry is the magnetization of the cell 7/,5",k’.

The FSM is composed by the following states:
e READ_MX: save m, value
e READ_MY: save m, value
e READ _MZ: save m, value
¢ READ _TGxx: read TG, value and computing opl = TG, - m,
e READ _TGxy: read TG, value and computing op2 = TG, - m,
e READ TGxz: read TG,, value and computing h, = TG, - m, + opl + op2.
e READ _TGyx:read T'G,, value and computing opl = T'G, - m,
e READ _TGyy:read T'Gy, valuc and computing op2 = T'Gy,, - m,
e READ _TGyz: rcad TG\, valuec and computing h, = TG, - m, + opl + op2

¢ READ TGzx:read TG, value and computing opl = TG, - m,

91

7 — Magnetostatic field calculation 3D

e READ_TGzy:read TG, value and computing op2 = TG, - m,

e READ TGzz: read TG,, value and computing h, = T'G,, - m, + opl + op2

7.2 Logic Plane

This component groups all the cells in a given plane, and enables the computation
of the magnetostatic field contributions between the cell 77k and all the cells in a

given plane (i.e. k is fixed).

%
W(i—ij—jk—k) Vi'<N, j <N, k=k

%
which can be also seen as h (i —',j — 7',k — k*) and can be computed as

TGy TG TG, My
TGy, TG, TG, my Vil < Ny, ' < N,
TG, TG, TG..

m
(i~ j—j' ke—k*) 2 (@5 k")

All this computation can be done in parallel.

=
=l
=

=
=
=l

=
B)
=
=
=

=
=
=

Figure 7.2: Magnetostatic field of each cell in a given plane

92

7 — Magnetostatic field calculation 3D

7.3 Sum all

The sum_all is a component that given a fixed k* (i.e. a given plane) evaluates the
magnetostatic field of all cells in a fixed plane. The input is given by the logic plane,

as shown in the fig. 7.2.

TG, TG,, TG, My
N:c N’y Y
Z Z TGy, TGy, TG, my
U TG, TG, TG,

(=it =gt hk) L2 e
By looking to the formula 7.1, we have to evaluate the sum for each plane, so we
store this sum and wait for the next plane to be computed and added to the previous

sum.
Of course when we reach the k" plane, we stop the sum and we set a signal to tell

that the calculation is finished.

Overall, this component perform the following computation

TGy TGy TGy, My

Y| X X TG TG, TG, my
TG.., TG, TG..

m
(i—i/\j—j' k—k') 24 (i3 k)

7.4 Simulation and Test

I wrote a testbench to check the correct behaviour of this architecture.

7.4.1 Testbench of the cell

First we check that the component cell is working according to the specifications.
We can distinguish the 4 main phase of this test as shown in fig. 7.3. The 4 phases

are

1. Reading the magnetization: here we read the magnetization in the 3 di-
rection. This phase is highlighted in yellow in the figure.

73. my =1, my =2, m, =3,

93

7 — Magnetostatic field calculation 3D

/tb_tg_cell/dock
Jtb_tg_cellfreset
ftb_tg_cell/dut/finput
[tb_tg_cell/dut/output
/tb_tg_cell/dut/mx
[tb_tg_cell/dut/my
th_tg_cell/dut/mz
[tb_tg_cell/dut/tgxx
[tb_tg_cell/dut/tgxy
ftb_tg_cell/dut/taxz
[tb_tg_cell/dut/tgyx
[tb_tg_cell/dut/tgyy
[tb_tg_cell/dut/tgyz

[tb_tg_cell/dut/op2
[tb_tg_cellfdut/hx
[tb_tg_cell/dut/hy
[tb_tg_cell/dut/hz
/tb_tg_cell/dut/fsm...

Figure 7.3: The phases of a single cell

2. Reading the magnetization x-axis: Reading the magnetizing tensor con-
tributions between 2 cells. Right now we look only to the contributions along
the x-axis with the x-axis, y-axis, z-axis.

In the meantime we can evaluate the magnetostatic field h,. This phase is
highlighted in blue in the figure.

t9ue = 4, 192y = 5, tga. = 6

opl =my -tgy, =4

op2 = my * tgzy = 10

hy, =opl +op2+m, -tg,, = 32

output = h, = 32

3. Reading the magnetization y-axis: Similarly as the previous phase, we

94

7 — Magnetostatic field calculation 3D

look only to the magnetizing tensor contributions along the y-axis with the
X-axis, y-axis, z-axis.

In the meantime we can evaluate the magnetostatic field h,. This phase is
highlighted in red in the figure.

tGyz = 7, 1Gyy = 8, tgy. = 9

opl =my - tgy, =7

op2 = my - tg,, = 16

hy = opl + op2 +m - tg,. = 50

output = h, = 50

4. Reading the magnetization z-axis: Similarly as the previous phase. This
phase is highlighted in pink in the figure.
tgys = 10, tgy, = 11, tg,. = 12
opl = my - tgy, = 10
op2 = my, - tgy, = 22
hy = opl + op2 +m, - tg,, = 68
output = h, = 68

After these 4 phases, the cell starts again from phase 1 as shown in fig. 7.4.

Hii

il

i

|

1t
1
I
)
1t
1t
)
)
1
1
1
tb_tg_c
1
)
)
1t
)
)
1o
)
1
1t

il

I (5 (S (5 1 () (6 (O N o N €5 5 (5 f 5 (5 5 BV B O N = EE 5 =5 = a5 55 68 S e 1 8)| 55 a8

=e Now

OB cusort| usosms

Figure 7.4: Testbench of a single cell

95

7 — Magnetostatic field calculation 3D

7.4.2 Testbench of the Top entity

After testing the cell components, we integrate them (logic_plane) with the sum_all
accumulator.

The logic_plane and the sum_all components have to be synchronized, so a delay is
needed (i.e. the logic plane evaluate the magnetostatic field of a plane and then the
accumulator is ready to sum).

For simplicity, we test the behaviour of a parallelepiped which base is 2x2 and which
height is 4.

¢ [tb_tg_top_2d/dutftg_logic/ck 0

7 Itb_tg_top_2d/dut/tg_logic/rst o

- Itb_tg_top_2d/dut/tg_logic/in_tg 0017000200030000

/ [tb_tg_top_2d/dut/tg_logicjout_tg |0016000200030000

< Itb_tg_top_2d/dut/tg_logic/input {23} {23} ({3} O} |
>0 {23} {2 IX.

>
& /tb_tg_top_2d/dut/tg_logic/output
>0

)
/ Itb_tg_top_2d/dut/tg_sum/dk

¢ Itb_tg_top_2d/dut/tg_sum/rst

* " tb_t_top_2djdutftg_sumfinput

“ ftb_tg_top_2d/dut/tg_sum/finished

* " Itb_tg_top_2ddut/tg_sumfoutput_hx

ftb_tg_top_2d/dut/tg_sum/output_hy

“ fio_tg_top_2djdutftg_sumfoutput_hz

“ fio_to_top_2djdutftg_sum/fom_state |read_mz
* Itb_tg_top_2ddut/ta_sumitg_input

8’

Figure 7.5: Testbench of the top entity - first plane

As we can see in the fig. 7.5, in the first 3 clock cycles we see the input m,, my,
mz (th_tg_top_2d/dut/tg_logic/input signal) of each of the 4 cells of the first plane.
In the next 9 clock cycles we have all the 9 values of the TG matrix (tb_tg_top_2d/dut/tg_logic/input
signal). When we have the required input we can compute the output value h, h,,
h, of each cell (in the signal tb_tg_top_2d/dut/tg_logic/output we have h, at 23 ns,
hy at 29 ns, h, at 35). To better understand the FSM see the testbench of a single
cell (7.4.1), the only difference is that now we have 4 cells (2x2 matrix) computing
in parallel.

When we have all the cells h, h,, h. values, we can compute the H,, H,, H, of the
plane. In the figure 7.5, at 25 ns we have the H, value of the first plane which is
given by the sum of the h, values computed by the cells (324-244-544+-0=110). Same

96

7 — Magnetostatic field calculation 3D

thing for H, and H..
Without doing any more tedious calculations, we can see in fig. 7.6 that we accu-
mulate the H,, H,, H, values of each plane in order to get the final value ﬁ of the
whole parallelepiped.

Cursor 1
o

Figure 7.6: Testbench of the top entity - whole parallelepiped

97

7 — Magnetostatic field calculation 3D

7.5 Characteristics of Magnetostatic field calcu-
lation 3D

PROCESSING ELEMENTS

1- Which kind of Processing element?
Adder, multiplier

2- Functionality
Addition, multiplications (Evaluatin the multiplication between matrix and vec-

tors. Another function is the accumulator.).

3- Complexity
Area: i-j cells
one accumulator
Time: (12 clock cycles)-k

4- Parallelism

Each cell can evaluate their magnetostatic contributions.

5-Reconfigurability
No

6- Programmability
No

7- Need a dedicated memory?

Yes, to store the magnetization values (rn,,m,,m;)

8- Relationship with I/0
INPUT: values of the magnetization values, magnetizing tensor of each cells.
OUTPUT: result of the magnetostatic field. algorithm

98

7 — Magnetostatic field calculation 3D

MEMORY ELEMENTS

1- Need a clever memory LIM?

No, but can be implemented

2- Is there a data search algorithm?
No

3-Interface mechanism with other PE or memories
No

4- Access mechanism

(No memory for this implementation)

5- Hierarchization

(No memory for this implementation)

6- Cache coherency

(No memory for this implementation)

7- Is it a a transactional memory?

(No memory for this implementation)

8- Are there virtualization (paging) mechanisms?

(No memory for this implementation)

ENCODING INFORMATION

1-Which encoding is used?

Binary encoding

99

7 — Magnetostatic field calculation 3D

CONNECTIONS

1-Packet Exchange Protocol
Directly

2-Timing (asynchronou/synchronous)

Synchronous

3-Are there multiple instances?
Yes

4-Heterogeneity (Local/Distant I/O Connections)

Heterogeneous when storing the values from the Input connections.

5-Are there any buffers?
No.

100

Chapter 8

Smith Waterman

In this chapter I have to understand how to use the architecture done by a student
for his thesis. I tried to explain the theory of his work in just few pages, but for a

better understand I suggest to read his thesis [18].

8.1 The scoring model. The BLOSUMG62 matrix

When two sequences are compared the question that needs an answer is:

How much they are similar?

The scoring model that we want to consider is based on the use of Substitutional
matriz and Gap penalty in the chosen alignment algorithm.

Substitutional matrix and Gap penalty have been created to evaluate different mu-
tation processes that can occur (as we can see in Fig. 8.1).

With a Substitutional matrix we consider amino acids matching and substitutions.

While with the Gap penalty we consider amino acid insertions or deletions.

(Qy) ACDEFG ACDEFG ACDEFG AC--EFG

(Shy) ACDEFG ACLEFG AC--EFG ACDEFG

match substitution deletion insertion

Figure 8.1: Alignments with matching, substitution, insertion and deletion.

The BLOSUMG62 matrix was introduced in 1992 by Henikoff & Henikoff [19] to
give a score for substitution in the amino acid sequence comparisons. matrix assigns
to each pair of AAs (amino acids), a value that indicates the degree of similarity. A
positive value in the matrix (Fig. 8.2) means that the two amino acids are similar

and they are frequently exchanged each other.

101

8 — Smith Waterman

=&

-1

71
=1

<
-1
=2

=2
<1
=1
2
=1

i

-3

<

=3
-3

3
-3
]

o
=3
-2
-2

5
-1

=3

=1

3
4

-3
3
2

1
-4
3
3

-1

=1

=3
3
=3
=
3
<2
=3

3
1
=2

-1
=2
g

=3
3

=

=

=1

=2
=2
2
-3
=2
-1
-2
=3

& |
-1
=2
=1
3
-3
2
-2
2

=1
T
-2
=1

3
3
-4
-4
2
2
3
2
2
3
2
3
-1
1
-4
3
2

3
4
3
5

T W|Y|[Vv|B|Z]|X

-1
0
=1
-1
=
-1
[
o2
|
ok
b -
-1
=2
3

e
=2
0
il
-1

-1

1
0
-1
0
0
0
=1
-2
2
0
il
2
=1,

i3
-2
A

0

0
0

2
2
1
3
1
1
2
g
3
3
2
2
-4

41
]
-4
3
5
2
1
2

-3
=2
-3
2
3
-3
=3
-1
0
0
-]

4
-2
2
1
3
-1
-3
-3

=)

-1
2
-3
=1

-2

]
-2

2
-1

0
-2

il
=1
-1

1

=1
3

0
-1
=)

: §
2
=

2

-1

-1

=k
=3
-2
=2

0
1
oF

3
-4
]
2
3
-4
3

-3
5
=1
2

Y
=
=

=
-3
-1,
3
-3
4

i

-3
7
chy
3
-1

o
-3
=

-1
-3

0
-2

=3
-3

=2
=1
-2
=)
-2
-2

2
=

0
0
-1

-1
=3
2
-2

B

3
o
-2

2
=2
o
=
-1

*

e

-4

=2

3|4
3|4

2
=3
=1

0|0

=1
3
-2
w2

3

Q

o

-3

o

=3
=2

0
=
o
0
-1
2
2l
=2

3

C
0
-3
-3
-3

23

=2
=3
2!
=
2
=1
=2
-3

=1
2
-2
=1

-2

-2
2

3

=1
=
-3

tai
-3
3
-1

=1

=
0

-1

-2

=3

0|0

0

-3

3[4

0
o
=3
-2

0

4|4

=2
=

3

R|N|D
-1

A

EL
2
=2

i
=

=2

=
=2

3
=
2

=1
3
=2
R
x

3

0

&
=1
=1
Rk
2l
=2
-1

=3
-2

0
=2
-

D
C

M

W
¥
A
B

Figure 8.2: The BLOSUMG62 substitution matrix.

102

8 — Smith Waterman

8.2 Smith-Waterman Local alignment method

Smith and Waterman in 1981 described a Local alignment method whose aim is to
find common regions between two protein (Qry, Sbj) through calculation of similarity
score.

This algorithm can be substantially described in three steps:

1. Initialization; first row F(i,0) and first column F(0,j) are initialized to 0.
Since it is always better to start a new local alignment instead of extend

alignments that have got a negative score.

2. Score matrix filling; the score is calculated with the Eq. (8.1) cell by cell.

(

0
F(Z,j) — maz 4 F(Z - 17.7: o 1) + S(QTy(Z),Sb](j)) (81)
Fi—-17j)—d
\F(i,j —1)—d

if the first term ’0’ in the equation is selected as max it means that the previous
alignment is ended or not alignment is possible.
Since this algorithm evaluates local alignments, in this matrix there are not

negative score.

3. output_writing: works concurrently with the second process. It checks, in
each clock cycle, if the stored Sbj id is changed. If the Sbj id is different,
this process will write on the output file the n of Sbj id and the associated

Maximum Alignment Score.

8.3 Simulation and Test

The testbench of this architecture is divided in 3 phases:

1. sub_matr_and_gap_load : configure the systolic array trough the loading of
all the storage registers with values coming from the substitutional matrix and
gap files.

103

8 — Smith Waterman

2. s_-w_computation: It starts when the configuration process is terminated
and reads from the DB file the Sbj_id number and the associated amino acids
sequence. In this phase we compute the S-W algorithm. This process is ended

when all the database is scanned.

3. output_writing: It checks, in each clock cycle, if the stored Sbj id is changed.
If the Sbj id is different, this process will write on the output file the n. of Shj

id and the associated Maximum Alignment Score.

fsystolic_array_tb/subject_id_s
[systolic_array_tb/d_vect s
[systolic_array_tb/sel_aa_or_gap...
[systolic_array_tb/gap_sel load s
fsystolic_array_tbfr_w_en_s
fsystolic_array_tbfpe_w_en_sel_s
[systolic_array_tb/aa_code_s
fsystolic_array_tbjdk_s
Isystolic_array_th/out_subject_id_s

Jsystolic_array_tb/out_ma
fsystolic_array_tb/aa_code_1.s
[systolic_array_tb/aa_code_2_s
fsystolic_array_tb/end_test

S phase 3

Figure 8.3: Phases of the testbench

104

8 — Smith Waterman

Start Testbench
systolic_array_tb.vhd

A 4

Execute sub_matr_and_gap_load process All the PEs are configurated

L Configuration process end?

Si

A

The amino acid and the
Sbj_id coming from the DB
are provided in the systolic
array input

Execute s_w_computation process

no

All the actual Sbj amino acids are evaluated?

si

v
The Maximum alignment
Execute output_writing process score and the Sbj_id are
writed on the output file

[NO All the database Sbj are evaluated?

Si

End Testbench

Figure 8.4: Main flow chart of systolic_array_tb.vhd testbench. In blue the testbench
name, in red the processes name

105

8 — Smith Waterman

8.3.1 Phase 1-sub_matr_and_gap_load

[systolic_array_th/subject_id_s 000008 00000000000000000000

[systolic_array_tb/d_vect s G R R R R e b A R RV e) ST S (|
Jsystolic_array_th/sel_aa_or_gap... |
Isystolic_array_th/gap_sel_load_s

s
[systolic_array_tb/aa_code_1_s
[systolic_array_tb/aa_code_2_s

Cursor 1 [)18ns

Figure 8.5: Phase 1 of the testbench

In this phase we start to configure all the processing elements.
We need a file where are stored all the Qry AAs in the right format accepted by our
testbench:

out_casual _case_config.txt that is composed by:

e 23 rows that correspond to the used amino acids number.
e Each of these rows is associated to an amino acid (see fig. 8.6).

e The first value of each row is the number of PE that must be loaded with the
row associated to the amino acid. The following numbers identify the PE id

number that must store the Substitutional matrix column.

e [f the first value is 0 it means that the amino acid associated to this row is not

present into the Qry.

106

8 — Smith Waterman

17
19

11

18

21

14

O O O N O W+ O O N i b W O O N = O O O - =
S

23

26
15

29

24

16

12

28
20
10

30

out_casual _case_config.txt

22

25
13

27

we can see that in the first rows it’s written 71

177, that means that we need

to store the similarity values (fig. 8.2) of the first amino acid (’A’) to the PE whose

id is 17.

In other words we need to store in the 17-PE the values of the first column (the

pink one in fig. 8.7), as we can see also in the simulation (fig. 8.8)

107

8 — Smith Waterman

Amino Acid | Identification Code
(decimal) | (binary)
A 1 00001
R 2 00010
N 3 00011
D 4 00100
C, U 5 00101
Q 6 00110
E 7 00111
G 8 01000
H 9 01001
| 10 01010
L 11 01011
K 12 01100
M 13 01101
F 14 01110
P 15 01111
S 16 10000
T 17 10001
W 18 10010
Y 19 10011
\Y% 20 10100
B 21 10101
Z 22 10110
X 23 10111

Figure 8.6: Amino acid encoding

108

8 — Smith Waterman

ADGGKFSWV

Qry

Systolic Array

Sbj

Maximum
Alignment
Score

0
-1
-1
-1
2
-1
-1
-1
-1
-1
-1
-1

-1
2
0

2
-1
-1
-1
-1

1

0

-3

-2

-3
-3

-3

1

-3
-2
-2

2

]

4

3

1
-1

4

0

3

2

4

3

4

1

-3

3[3]0
-3

-1

2]0
-2
-3

31010
313

1

-2

-1

-2

2(0]0

3|4

-1

4|3
3
2

-1

20
2
2

2
1

2

2
K
A

2

3

2

2|0
2

-1

2

1

hy

3

4|3
-2
-2

-3

2|3

2
3
Z

-3

1

413

3

-2

4|3
3

-2

’
v

01]-3

1

0|-4

-1
-1
-1
-1
-2
-2
-1
-1
-1

2
-1
1

5

2 |11

2127

-1
-1

1
-1
1

0
1

0

0

1

-2
-2
0

-1

-2
-1
4

1

-3
-2

2|03

0

"

-1
-2
-2
-1
-3
-1
-1

2]0
2
3
3
Kl
2
4

1
1
4
3
2

210

-1

2(0]0

-2
-3
-3

-2
-3
-3
-3
-1

0

-3
0
6

417
-2

-2

1

3

-1

-3
-3
-1

-1
-2
-3
-1
0
-2
-3
-2
1

2
-1
5
0

-2

1

1
K]

3
1
1

1

-1
-3
1
1
-2
-1

3

1
=

1

-1
-3
-2

w;‘ VPEs
_Krl F

LIKIM|F|P|S|T|W|Y|V|B|Z]|X

1

212

310

X
2
3

-3
2

2|5

-3

210
-1
-2
-1

-3

|
-1
-3
-3

-3]-4

K
3
3

-3
4
2
-3

1

0]0
-3
-2
-1
-3
-1

3

3|-4]0

-3

2

1
A

-3

244

-3
-3

-1

-2

-1

-2

K]

-2
-2

-3
0

0

2(0
0
-1

-3

20

2(0

2|8

-2
-3
-3
-2
0
-2
-2

32
-3

-1

2(0

1

0

2
5

26

3|4
3|4

-2
-3

1

-1
-3
-2
-2

4

1

1

3|4

5
2
-2

-3
-2

0
3

-1

-1
-2
-1

-2

3

K

-3

3]10]0
310]2

-3

4

-3

31010
-1
-1
-3
-1
-2
-3

-1
-2
-2

-1

3
2

20
;

1

6
319

1
1

3

-1
-3
-3

-1

1

-3
-3

-1

2

0

1

-3

3

3[4

-2
-3
-2

-2
-3

ot

K]

5

2

210

0

3
2

-1

2

1

2

-1

1

bt

A(R|N|D|C[Q|E|G|H

1

2|0]6

-2

1

K]
1

2|3

-1

3|3|4|4

-2

Z

Al4

N
D

cC|0([3

G|O0

F

T|0
w

i

vVIio[3

X|0

BLOSUM_62

each PE of the systolic array is stored the column that corresponds to the associated

Figure 8.7: S-W systolic array initialized with the Substitutional matrix columns: in
Qry amino acid.

109

8 — Smith Waterman

fsystolic_array_tb/subject_id_s
[systolic_array_tb/d_vect s
[systolic_array_tb/sel_aa_or_gap._...
[systolic_array_tb/gap_sel load s
fsystolic_array_tbfr_w_en_s
fsystolic_array_tbfpe_w_en_sel_s

| R R T (I (N R R

L T L T LT I T T | 0 g 8) (8 gy 8

fsystolic_array_t
[systolic_array_tb/aa_code_1_s
[systolic_array_tb/aa_code_2_s
fsystolic_array_tb/end_test

Cursor 1 [70 ns]

Figure 8.8: Loading into the 17-PE the Substitutional matrix column associated to
the amino acid "A’

In the simulation we select the 17-PE ("r-w_en_sel_s’=1 and 'pe_w_en_sel_s’=17
@ 70 ns) then we load the substitutional matrix column associated to the amino
acid A’ (the pink one in fig. 8.7).

d_vect_s 4 1-11-21-2|101|-11-1
aa_code_s 1121314516
Amino Acid |A| R|N | D | C

~J

Loading for 17-PE

110

8 — Smith Waterman

The second row of the file out_casual_case_config.trt (as seen in section 8.3.1 has
71 197, so we do the same thing as before where we store the second column of
the BLOSUM62 matrix (fig. 8.7).

[systolic_array_tb/subject_id_s
[systolic_array_th/d_vect_s
[systolic_array_tb/sel_aa_or_gap_...
[systolic_array_tb/gap_sel_load_s
[systolic_array_th/r_w_en_s
[systolic_array_th/pe_w_en_sel_s
[systolic_array_tb/aa_code_s
[systolic_array_tb/dk_s
[systolic_array_tbfout_subject_id_s
[systolic_array_tbjout_f_i_j_s
[systolic_array_tbfout_max_i_j_s
[systolic_array_tb/aa_code_1_s
[systolic_array_tb/aa_code_2_s
[systolic_array_tb/end_test

Cursor 1

Figure 8.9: Loading into the 19-PE the Substitutional matrix column associated to
the amino acid 'R’

—
(S8
[en}
I
A}
I
w
(e}

d_vect_s -

—_
[\
w
e
ot
(@)
\]

aa_code_s
Amino Acid | A|R|N|D|C|Q|E

Loading for 19-PE

111

8 — Smith Waterman

The third row has only the value '0’, so no PE has to be configured for the third
amino acid 'N’.
The fourth row has”5 5 6 12 22 277. Therefore we need to configure five
PEs (i.e. 5, 6, 12, 22, 27) with the values associated to the Amino Acid 'D’ (orange
column in fig. 8.7) as shown in fig. 8.10.

Jsystolic_array_tb/subject_id_s

1]

[systolic_array_tb/d_vect_s VN A I A N 2 NN W A T AN = N (O A 0 A 5
[systolic_array_th/sel_aa_or_gap_reg_s

[systolic_array_tb/gap_sel_load_s

[systolic_array_th/r_w

[systolic_array_tb s 9)15 0 5 f6 17 J22 127 o

[systolic_array_tb/aa_code VIS I I N N ¢ W N - N N 3 N T N - N A .
[systolic_array_tb/dk_s |

[systolic_array_tbjout_subject_id_s

Jsystolic_array_thfout_f_i_j_s T UUUUUU

[systolic_array_thfout_max_i_j_s) LuuUUU

systolic_array_thjaa_code 1.5 fools | Jooo01 Joonu0 Joooil Yo0ido Jpoini Jpotio Joorii Joiod
[systolic_array_th/aa_code_2_s

[systolic_array_th/end_test

Figure 8.10: Loading into the 5, 6, 12, 22, 27-PEs the Substitutional matrix column
associated to the amino acid D’

d_vect_s 21-2]11161(1-3]0
aa_code_s 11213 516
Amino Acid | A| R[N |D|C|Q

N

Loading for 5, 6, 12, 22, 27-PEs

We keep this process until we reach the last PE to be configured, which is the number
8 (row 20).
At the end of this configuration (fig. 8.11), we need to store the two gap values
(written in the file gap_open_ext.tzt) to all the PEs, the first value is the Open gap
(fig. 8.12) while the second one is the Extension gap (fig. 8.13).
The signal gap_sel_load is high only when storing the extension gap, while sel_aa_or_gap_reqg

is at 1’ only when storing both the penalties (open and extension)

8.3.2 Phase 2- s_.w_computation

When the configuration phase ends, we can start the second process called s_w_computationalready

explained in section 8.3 and showed in fig. 8.3. Here we scan the DataBase file

112

8 — Smith Waterman

[systolic_array_tb/subject_id_s
fsystolic_array_tb/d_vect_s
Isystolic_array_tb/sel_aa_or_gap_re...
fsystolic_array_tb/gap_sel_load_s
[systolic_array_tbjr_w_en_s

Jsystolic_array_tb/pe_w_en_sel_s
Isystolic_array_tb/aa_code_s
[systolic_array_tb/dk_s
[systolic_array_tbjout_subject_id_s
Isystolic_array_tbjout_f i j_s
Jsystolic_array_tbjout_max_i_j_s
[systolic_array_tb/aa_code_1 s
Isystolic_array_tb/aa_code_2 s
[systolic_array_tb/end_test

configuration of the PE 8

Cursor 1 (480 ns
—

Figure 8.11: Loading into the 8-PEs the Substitutional matrix column associated
to the amino acid "V’. On the right side, we see that we start to load the open gap
penalty.

Isystolic_array_th/subject id_s
Isystolic_array_tb/d_vect s
Isystolic_array_tb/sel_aa_or_gap...
Isystolic_array_tb/gap_sel_load_s
Isystolic_array_tbjr_w_en_s
Isystolic_array_thjpe_w_en_sel s |17 A2 B 5 7 8 Jo Jo Ju Jio J13 [14 J3s 16 Ji7 (18 [19 oo Joi| J22 123 [oa o5 Joe[
[systolic_array_tb/aa_code_s 0 0

Jsystolic_array_tb/ck s I -

[systolic_array_tbjout_f i j s

Jsystolic_array_thjout max_ij_s |ULULLY|UULUUUULUUUU
Jsystolic_array_tbfsa_code_1s |0 0
Isystolic_array_tb/aa_code 25 [0 0
Jsystolic_array_tb/end_test 0

Cursor 1 | 70ns

Figure 8.12: Loading into all PEs the open gap penalty which value is -10

DB_num_casual_case_2.tat which is composed by: -In the first row of the file is writ-
ten the number of sequences that compose this database.

- In this file all the letters are converted in number using, for the conversion, a code
that doesn’t take into account the amino acids frequency (fig. 8.6). The encoding
code is written directly into the program.

- The protein id number is the first value of the row (in this case 68).

113

8 — Smith Waterman

[systolic_array_tb/aa_code_s
Jsystolic_array_tb/dk_s

[systolic_array_tbjout fijs
Isystolic_array_tbjout_max_i_j_s
/systolic_array_tb/aa_code_1_s
[systolic_array_tb/aa_code_2_s
[systolic_array_tbfend_test

Cursor 1 | 70ns

Figure 8.13: Loading into all PEs the extension gap penalty which value is -1

- The number of AAs that compose this protein is the second value in the same row.

- All the other numbers are the encoded amino acids.

114

8 — Smith Waterman

o

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13

08 06 10 05 06 02 07 16
10 01 01 06 11 11 01 19
10 01 01 06 11 11 01 19
10 01 01 06 11 11 01 19
08 18 08 01 15 11 11 16
10 01 01 06 11 11 01 19
10 01 16 09 11 11 01 19
10 01 16 09 11 11 01 19
10 01 16 09 13 10 01 05
10 01 16 09 13 10 01 05
10 01 16 09 11 11 01 19
14 01 20 09 11 20 01 14
14 01 20 09 11 13 01 14
04 16 10 08 16 16 08 11
01 17 10 08 15 16 08 11
01 01 10 07 15 16 08 11

11 04 04 02 01 02 13 07
11 04 04 02 01 02 13 07
02 12 16 17 02 11 11 17
20 14 16 04 06 06 11 14

02 12 01 01 01 01 01 20
16 01 01 01 01 10 01 16
08 12 01 01 01 20 08 17
20 02 11 08 15 12 12 15
16 20 17 20 16 16 15 01
16 11 09 04 01 19 09 18
08 12 08 17 20 20 08 17
20 09 11 08 15 12 15 01
01 01 20 07 01 07 12 20
01 03 17 14 03 15 07 07
02 12 01 01 20 08 01 01
20 09 11 08 15 12 12 15
20 09 11 08 15 12 15 15
20 09 11 08 15 12 12 15
12 12 01 17 20 08 01 01
12 12 01 17 20 08 01 20
01 01 01 01 20 01 01 04
16 11 13 14 16 16 15 20
08 02 20 08 11 08 20 01
02 12 01 01 01 11 01 16
08 12 20 01 20 01 17 17
08 12 20 01 20 08 01 17
08 12 20 11 20 13 11 17
08 12 20 01 20 01 14 01
20 08 20 08 15 12 02 15
16 04 15 12 11 17 12 01
16 14 04 04 11 095 12 01
16 16 01 11 11 04 07 01

07 01 03 14 06 06 01 20
16 07 19 04 10 01 12 03

06 15 02 06 15 08 04 07
12 12 20 17 20 08 01 01
17 01 15 11 20 12 20 11
17 02 12 07 20 20 11 01
17 10 07 16 17 11 01 02
05 16 16 20 17 08 12 11
05 16 16 20 01 01 12 11
05 16 16 20 01 01 12 11
05 16 06 11 18 14 11 17
01 12 06 10 20 19 16 07
16 02 11 03 04 15 20 07
05 01 06 20 18 11 11 17
03 01 17 10 15 06 02 16
12 16 15 01 15 19 10 04

Figure 8.14:

17 01 01 07 12 15 12 11
14 17 07 11 12 04 04 06
14 17 07 11 12 04 04 06
14 17 07 11 12 04 04 06
13 11 09 08 15 08 06 01
14 17 07 11 12 04 04 06
14 17 07 11 03 09 04 06
14 17 07 11 03 09 04 06
14 17 07 11 03 06 03 06
14 17 07 11 03 06 03 06
14 17 07 11 03 09 04 06
14 17 12 11 12 07 04 06
14 16 12 11 12 07 04 06
06 08 07 07 17 11 16 05
15 08 07 02 01 16 20 05
15 08 07 02 04 16 16 05
01 12 12 07 12 20 07 06

17 12 12 07 12 20 07 06
16 11 14 08 15 20 14 12
12 20 20 07 10 11 12 15
06 20 20 01 01 11 02 07
01 01 01 01 20 08 20 01
10 15 01 01 10 01 20 20
20 20 20 01 01 01 20 08

02 16 14 09 10 16 02 16
16 02 17 15 16 02 12 08
20 20 20 05 01 01 01 01
12 02 12 08 17 14 17 04
01 07 11 02 07 02 05 01
14 15 07 20 19 12 20 05
20 05 17 01 01 20 05 01
01 02 12 08 16 13 01 04
09 02 12 08 16 14 11 04
01 02 12 08 16 13 01 04
10 08 01 01 17 20 05 01
20 08 17 01 01 01 20 01
12 20 20 17 13 17 16 11
17 15 01 11 08 16 14 17
08 05 01 01 20 17 05 01
01 13 01 01 01 01 20 01
20 05 16 20 01 20 05 01
20 05 17 01 01 20 05 01
01 01 01 20 20 01 05 16
20 01 20 20 01 01 05 16
16 02 12 08 16 13 16 04
04 16 10 05 04 06 14 10
07 02 01 20 10 06 01 20
02 10 01 02 06 14 04 19

12 11 20 03 04 14 07 19
20 17 19 17 12 11 04 17
20 01 01 20 08 18 01 20
12 06 11 01 07 11 07 20

02 13 06 07 11 14 16 03
17 01 01 17 10 17 01 20
11 07 16 11 10 11 15 01
14 11 17 04 02 02 10 02
14 11 17 04 02 02 10 02
14 11 17 04 02 02 10 02
02 02 10 02 07 04 19 15
16 02 06 01 10 11 02 08
11 06 06 17 02 16 03 14
02 11 10 02 07 04 19 15
12 06 03 15 20 07 11 19
17 11 11 12 01 04 01 17

Section of the database file to be loaded in this testbench

115

02
13
13
11
02
13
01
16
16
16
16
13
13
14
20
14
07
07
07
17
08

07
01
01

01
10
07
12
07
17
10
17
17
17
10
10
01
17
1
01
10
10
1
10
17
07
10
12
10
12
1
02
07
10

02
17
04
04
04
20
07
1
20
07
15

02
12
12
12
06
12
12
12
12
12
12
01
01
01
11
17
11
11
11
01
17
07
05
16
12

11
11
01
20
16
02
04
20
17
17
07
07
20
17
07
04
07
07
07
07
20
04
12
11
12
11
16
20
11
07
08
14
15
20
20
20
10
08
06
10
20
16

01
13
13
13
16
13
13
13
13
13
13
13
13
11
06
11
11
11
b
12

08
01
10
01
09
12
02
01
09
20
09
03
09
09
09
12
12
07
14
08
06
04
04
01
04
09
16
11
06
11
13
11
04
13

01
02
05
04
04
04
20
17
09
20
01
01

8 — Smith Waterman

8.3.3 Phase 3- output_writing

In the subject_id_s and out_subject_id_s, we can see the code for the selected protein,
and in the aa_code_s the proteins associated to such protein (the list of aminoacids

is consistent with the database provided in the file DB_num_casual_case.txt).

Messages
= @ Jsystolic_array_tb/subject_id_s
[systolic_array_tb/d_vect s

[systolic_array_tb/sel_aa_or_gap...

[systolic_array_tb/gap_sel_load_s
“ [Jsystolic_array_tbjr_w_en_s

[systolic_array_tb/pe_w_en_sel_s

[systolic_array_tb/out_subject_id_s

[systolic_array_tbjout_f i j_s

[systolic_array_tbjout_max_i_j_s

[systolic_array_tb/aa_code_1_s 0

[systolic_array_tb/aa_code_2_s I‘DDZ)Z)EE)EEEEE:)ZJDEDT)DSESH—)SDEDEEDEZ)a

Cursor 1 345600 ns | [GEEE0G]

Figure 8.15: scanning the list of aminoacid (aa_code_s) of the first protein while
computing the Maximum Alignment Score

The out_f i j_s contains the Score matrix value calculated in the last PE (matrix
cell F(i,j)) and the out_maz_i_j_s is the Maximum Alignment Score. Both these value
are evaluated and shifted through the systolic array. As expected, we can clearly
see the Maximum Alignment Score increasing. In th fig. 8.16 the value increases
from an initial value of 5 to 149. When all the process ends, we can write for each

protein the Maximum Alignment Score evaluated in out_id_subj_and_max_i_j.txt file

116

8 — Smith Waterman

Isystolic_array_tb/subject id_s
[systolic_array_tb/d_vect_s

CCC0000000n0000

o ———0000000a00000e 000 00000000
/ 00000000

[systolic_array_th/aa_code_1_s

Jsystolic_array_th/aa_code_2_s (000000000 o000 00 000000
Isystolic_array_tb/end_test

Figure 8.16: Computing the Maximum Alignment Score (at the end out_max_i_j_s
= 149) for the first protein

Eﬂ DB_num_casual_case 2.txt H out_id_subj_and_max_i_j.txt E4 ‘
1 1 149
2 2 149
3 149

3

4 140
5 96
6 142
7 106
8 106

Figure 8.17: In the first row of out_id_subj_and_maz_i_j.txt file we can see that the
first protein has 149 as Maximum Alignment Score

117

Chapter 9
Singular Value Decomposition

Given a complex matrix A having m rows and n columns, the matrix product U XV’

is a singular value decomposition for a given matrix A if
e U and V| respectively, have orthonormal columns.
e) has nonnegative clements on its principal diagonal and zeros elsewhere.
e A=UXVT

One application of the SVD is data compression. Consider some matrix A with
rank five hundred; that is, the columns of this matrix span a 500-dimensional space.
Encoding this matrix on a computer is going to take quite a lot of memory! We
might be interested in approximating this matrix with one of lower rank. How close
can we get to this matrix if we only approximate it as a matrix with rank one
hundred, so that we only have to store a hundred columns?
It turns out that you can prove that taking the n largest singular values A, replacing
the rest with zero (to form X)), and recomputing UXV7T gives you the provably best
n-rank approximation to the matrix. [21]

It means that we can take a list of n unique vectors, and approximate them as

a linear combination of k unique vectors.[22]

118

9 — Singular Value Decomposition

Figure 9.1: Image made of k=10 unique row vectors

119

9 — Singular Value Decomposition

Figure 9.2: Image made of k=50 unique row vectors

120

9 — Singular Value Decomposition

Figure 9.3: Image made of 400 unique row vectors

121

9 — Singular Value Decomposition

9.1 Example of a SVD computation

For simplicity, we compute the SVD of a 2x2 matrix C:

<[5

and we want to write it as C = UX VT,

We have to take into account these 2 equations:
o CTC=VXTXVT
o CV=UX

We first use the first equation C7C = VEXTX VT and find the eigenvalues and the
cigenvectors of CTC'. The cigenvalues will be the entries of the diagonal entries of
XT3 while the eigenvectors will be the entries of V.

Let’s compute CT - C

5 =115 5 26 18
CT . C - =
5 T |-1 7 18 74
Now we can find the eigenvalues of the matrix CT - C.

We know that an eigenvalue of C7 - C, is a solution of the polynomial equation
det(CT - C — \I) = 0, where [is the identity matrix.

2% 18 10
det(CT - C — M) = det —A -
18 74 01

26—\ 18
18 74—\

=det

]:(26—)\)(74—)\)—18-18=

= A% — 100\ + 1600

Since A2 — 100\ + 1600 is a second degree equation, we can solve it using the general

formula

al’ 4+ b+ ¢

122

9 — Singular Value Decomposition

bt Vb2 — 4ac

2a

A

~ —100 £ V1002 — 4 - 1600

A
2

which will provide the two solutions Ay = 20 and Ay = 80.
Now we want to find the eigenvector associated to the eigenvalue A\; = 20. We know

that this eigenvector v solve the equation (C7 - C' — A\)v =0

V1,2

6 18 V11
CT.C—\Dv, = (CT-C—200)v, = 1 =0
(1D = (Jur !18 54] []

We can see it as an equations system

6'U1,1+18-1)172=O
18"(11,14‘54‘1)1’2:0

-3
and have v1; = =3, wv12 =1, therefore v; = .

If we want the matrix V' to be othonormal, then each vector of the matrix V' has to
be a unit vector (i.e. have lenght 1). To make it possible, we divide each entries of

the vector by the lenght of the vector. The lenght of vy is:

[v1] = \/U%,l +U%,2 =/ (=3)?+12= V10

=3

V10

Now we can do the same steps for the second eingenvector

(CT-C — XDy = (CT - C — 801 vy = !—124 186] [U2,1] _0

—54 - V2,1 + 18- V2,2 = 0
18'11271—6'1)2,2:0

123

9 — Singular Value Decomposition

1 _1
Vg = [] — orthonormal=— vy = [‘/31_0]
3 710
Now we can write the matrix V

=3 _1_
V: [Ul ’UQ] - [\/11_0 \/31_0]

V10 V10
and the matrix Y. We know that X' is a diagonal matrix, so its transpose matrix

is Y7 = ¥ and doing X7 X is the same thing of doing the square of each diagonal
entries of . As said before at the beginning, the eigenvalues are the entries of X7 %
so to find the matrix X we just need to make the square root of the eigenvalues and

put them in diagonal.

VA 0| [vV20 0] |2v56 0
0 VA 0 80 0 45
Now we need to find the last part of the SVD, which is the matrix U. To find it we

use the second property listed at the beginning of this section

o CV=UX

CV =

1 3 -
-1 7 75 1o V10 24/10

_—\/ﬁ 2@.
| V10 2v10]
—\/E 2\/m- Uy,1 U1,2- 2\/3 0
VIO 2V10| 0 4v5

If we split the matrix, we obtain

AR L e

To find U, we have to decompose as the product of U and Y

U1 U22

— 10=u171-2\/5+u1,2-0 = U, =—-
2¢/10 = Uy -0+ ug- 45 = U2 = %
V10 = Ug1 2v/5 + Uz 0 = ugy =
210 = Uz - 0+ ugg - 45 = U2 =

Then finally

124

9 — Singular Value Decomposition

9.2 Difficulties for the SVD in ASIC

As you can see in the example above, the SVD is a complex algorithm. I had some
problems in designing it in ASIC especially for a generic matrix nxn. In order we

have

e Determinant, find the determinant requires times and memory. Greater the

dimension of the matrix, harder the computation of the determinant.

e Eigenvalues assuming we have find the Characteristic polynomial of the ma-
trix, we will have a polynomial equation of degree n, and we have to find n

solutions of this polynomial in hardware.

¢ Eigenvectors assuming we have all the n eigenvalues, for each of the we have
to solve a system of n equations with n variables. In total there will be n?

equations to be solved.

125

Chapter 10
Synthesis Results

After having properly tested the architecture of each hardware implementation, the
following step is its synthesis to determine the maximum clock frequency, area and
power consumption.

In some synthesys the chosen sizes are smaller because I used the Pentium 4 adder
and the booth multiplier as adder and as multiplier. Due to their complexity, the
synthesys requires much time. In other case, I used the library ieee.std_logic_arith

for the adder and the multiplier.

10.1 Integral Image

e 16 bits
e size = 8x8

e Pentium 4 adder, Booth multiplier

Integral Image
Pipelined
Total cell area 37055.540208 pm?
Data arrival time 0.62 ns
Internal Power 3.910TmW
Switching Power 1.8435mW
Total Dynamic Power 5.7542mW
Leakage Power 0.3724 mW
Total Power 6.1266 mW

e 32 bits

126

10 — Synthesis Results

e size = 16x16

e icee.std _logic_arith

Integral Image

Pipelined
Total cell area 164944. 777137 pum?
Data arrival time 1.49 ns
Internal Power 16.6224mW
Switching Power 5.3584mW
Total Dynamic Power 21.9808mW
Leakage Power 1.5235 mW
Total Power 23.5043 mW

e 16 bits
e size = 8x8

e icee.std _logic_arith

Integral Image

Pipelined

Total cell area 14549.606922 pim?
Data arrival time 0.77 ns

Internal Power 1.8278mW
Switching Power 0.6281mW

Total Dynamic Power 2.4558mW
Leakage Power 0.1380 mW

Total Power 2.5938 mW

10.2

Discrete Cosine Transformation

For this DCT’s hadware implementation (3.1), I synthesized both the pipeline and

not pipeline architecture. I also synthesized a small version of the LLM architecture

(3.5.1). The not pipelined version, consumes more power and take a little time more

127

10 — Synthesis Results

than the pipelined one. However it has a smaller area due to the absence of pipeline

registers.

10.2.1 DCT pipelined

e 8 bits for integer part
e 8 bits for fractional part
e size = 4 (cosine matrix 4x4)

e Pentium 4 adder, Booth multiplier

Discrete Cosine Transformation
Pipelined

Total cell area 70428.471340m>

Data arrival time 1.83 ns

Internal Power 4.5759mW

Switching Power 3.4865mW

Total Dynamic Power 8.0625mW

Leakage Power 0.6491 mW

Total Power 8.7116mW

16 bits for integer part

16 bits for fractional part

e size = 9 (cosine matrix 9x9)

ieee.std_logic_arith

128

10 — Synthesis Results

Discrete Cosine Transformation
Pipelined

Total cell area 142762.305198 um?

Data arrival time 1.78 ns

Internal Power 7.1778mW

Switching Power 5.3690mW

Total Dynamic Power 12.546TmW

Leakage Power 1.1714 mW

Total Power 13.7181mW

10.2.2 DCT not pipelined

e 8 bits for integer part
e 8 bits for fractional part
e size =4

e Pentium 4 adder, Booth multiplier

Discrete Cosine Transformation
Not Pipelined

Total cell area 69801.783318um?

Data arrival time 2.05 ns

Internal Power 5.1175mW

Switching Power 3.9349mW

Total Dynamic Power 9.0523mW

Leakage Power 0.6446 mW

Total Power 9.6970mW

e 16 bits for integer part

e 16 bits for fractional part

129

10 — Synthesis Results

e size = 9 (cosine matrix 9x9)

e icee.std _logic_arith

Discrete Cosine Transformation
Not Pipelined

Total cell area 132202.285691 pm?

Data arrival time 2.05 ns

Internal Power 45.6441mW

Switching Power 34.0752mW

Total Dynamic Power 79.7267TmW

Leakage Power 1.2945 mW

Total Power 81.0204mW

10.2.3 LLM DCT

The LLM DCT architecture shows better performance in everything.

However we remember the complexity of the design for high order (subsection 3.5.4).
e 8 bits for integer part
e 8 bits for fractional part
e size =4

e Pentium 4 adder, Booth multiplier

LLM DCT
Total cell area 21937.344292m?
Data arrival time 1.70 ns
Internal Power 2.8416mW
Switching Power 2.3913mW
Total Dynamic Power 5.2329mW
Leakage Power 0.2063 mW
Total Power 5.4392 mW

130

10 — Synthesis Results

16 bits for integer part

16 bits for fractional part

e size = &

ieee.std_logic_arith

LLM DCT
Total cell area 29145.562493um?>
Data arrival time 2.96 ns
Internal Power 11.4379mW
Switching Power 9.7003mW
Total Dynamic Power 21.1382mW
Leakage Power 0.2789 mW
Total Power 21.4174 mW

10.3 Binomial Filter

I synthesized both the implementation described in the subsection 4.1.1 and 4.1.2.
We can clearly see that the version 1 is better than the version 2 because it requires

less computation, actually it leaves the border values unchanged.

10.3.1 Binomial Filter v1

e 16 bits

e size = 4x4

e Pentium 4 adder, Booth multiplier

131

10 — Synthesis Results

Binomial Filter v1

Total cell area

Data arrival time
Internal Power
Switching Power
Total Dynamic Power
Leakage Power

Total Power

3795.3792964m?
0.87 ns

1.5640 mW
1.0043mW
2.5684mW
0.0405198 mW
2.6089mW

e 32 bits
e size — 9x9

e icee.std _logic_arith

Binomial Filter v1

Total cell area

Data arrival time
Internal Power
Switching Power
Total Dynamic Power
Leakage Power

Total Power

18318.384653 pum?
1.39 ns

10.1199 mW
6.6068mW
16.726TmW
0.1970 mW
16.923TmW

10.3.2 Binomial Filter v2

e 16 bits

e size = 4x4

e Pentium 4 adder, Booth multiplier

132

10 — Synthesis Results

Binomial Filter v2

Total cell area

Data arrival time
Internal Power
Switching Power
Total Dynamic Power
Leakage Power

Total Power

8223.321808m>
0.93 ns

3.3129 mW
2.0846mW
5.3975mW
0.0870836 mW
5.4846mW

e 32 bits

e size = 9x9

e iecee.std_logic_arith

Binomial Filter v2

Total cell area

Data arrival time
Internal Power
Switching Power
Total Dynamic Power
Leakage Power

Total Power

21143.050352pm?
1.39 ns

11.5835 mW
7.5642mW
19.1476mW
0.2275 mW
19.3751mW

10.4 FIR

e 16 bits

e size = 8

e Pentium 4 adder, Booth multiplier

133

10 — Synthesis Results

FIR Filter
Total cell area 35128.637271um?
Data arrival time 2.55 ns
Internal Power 2.3964 mW
Switching Power 1.843TmW
Total Dynamic Power 4.2401 mW
Leakage Power 0.3212 mW
Total Power 4.5612mW
e 32 bits
e size = 81
e ieee.std_logic_arith

FIR Filter
Total cell area 141218.759616um?
Data arrival time 5.97 ns
Internal Power 5.2915 mW
Switching Power 4.38056mW
Total Dynamic Power 9.6725 mW
Leakage Power 1.1524 mW
Total Power 10.8229mW

10.5 Transport Equation Problem
e 16 bits
e size = 3x3

e Pentium 4 adder, Booth multiplier

134

10 — Synthesis Results

Transport Equation Problem
Total cell area 43544.045428 j1m?
Data arrival time 1.88 ns
Internal Power 8.9910 mW
Switching Power 7.1353mW
Total Dynamic Power 16.1263 mW
Leakage Power 0.4151 mW
Total Power 16.5418mW
e 32 bits

e size — 9x9

e icee.std _logic_arith

Transport Equation Problem
Total cell area 153012.244757um?
Data arrival time 1.47 ns
Internal Power 15.8138 mW
Switching Power 13.7583mW
Total Dynamic Power 29.5719 mW
Leakage Power 1.3007 mW
Total Power 30.8707TmW

10.6 Magnetostatic field calculation 3D
e 32 bits
e size = 5x4x4 (80 cells)
e icee.std_logic_arith

135

10 — Synthesis Results

Magnetostatic field calculation 3D

Total cell area

Data arrival time
Internal Power
Switching Power
Total Dynamic Power
Leakage Power

Total Power

115854.867133um?
0.04 ns

26.6830 mW
17.0509mW
43.7346 mW
1.0923 mW
44.8267TmW

136

-

M

10

11

12

13

14

15

Chapter 11

Thessa tool

This experimental tool was the work of another student [23]. It’s a tool that given a C
code, it translates it into a Mid-level Intermediate Representation code (MIRcode).
After that the tool can show the Program Dependence Graph (PDG), the Control

Flow Graph (CFG) and the Quotient graph (Q) of the program in MIRcode.

11.1 Analysis of Thessa on the Binomial filter al-

gorithm

The binomial filter implemented in this tools, is different from the one in this thesis.

The difference is that in this case it performs an arithmetic average as you can see

below in C code (mine was a weighted average)

#include <stdio.h>
#define V 10000

int main () {

(
int w = 8§;
int h 8

]

int in| =4{{ 0,0,0,0,0,0,0,0},{ 0,1,6,6,1,1,1,0}.,{

,1,1,1,0},{ 0,1,6,6,1,1,1,0},{ 0,1,6,6,1,1,1,0},4
1,1,6,0},{ 0,1,6,6,1,1,6,0},{ 0,0,0,0,0,0,0,0}};
int out
int i;
int j;

int divisor = §;

for (i =1; 1 < h—=1; i++){
for (j = 1; j <w=1; j=j+1){

137

1

(=

17

18

19

20

21

11 — Thessa tool

out [i1][j] = (in[i-1][j—1] + in[i-1][j] + in[i-1][j+1] + in[i][j—1] + in
[i][j] + in[i][j+1] + in[i+1][j—=1] + in[i4+1][j] + in[i4+1][j+1])/

divisor;
}
}
return 0;
}

11.1.1 Output generated
11.1.1.1 MIRcode

Having the C code, we have yo translate it in a lower language as the MiRcode and

obtain the following code.
0 [7$Sv 7'7 717]

1 P4, 1,01, 1)

2 [”’fO’,”,’l]

3 L3: [for,'>=",", 7, 'goto’, L0
4 [$s’, 7§, 1]

5 P4, 3,07 1]

6 [, 062,07, 1)

7 L2 [’ L >="7, T, "goto’, 'L1]
8 [+, 740", ’m[l- J0I7; "infi-1][j-1]]
9 P4+, 741, 7407, "infi-1][j+1)]
10 k ’, ' £2’, 741, "in[i] [j-1]]

11 i ’, 37, 742, "infi] j]]

12 [+, 647,743, "infi][j+1]]

13 [+, 745, 44, "in[i+1][5-1]]
14 k ’, 467, 757, infi+1][j]]
15 [+, 777, 767, in[i+1][j+1]]

138

11 — Thessa tool

16 /)7, 't8’, "7, *divisor’]
17 ['$s”, Joutli][j]’, *-t8]
18 [+, 7.t9",), 1]
19 (855,00

20 [+, 743,737, 1]
21 [”’ ”’,’1]
22 [’goto’ 'L27]

23 L1: [+, 410", 1", 1]
24 [$s’ 7, t107]

25 P4, 1,07, 1]
26 [, 707, 7, 1)
27 ['goto’, 'L3’]

28 LO: ['$s, 'reset’, 0]

11.1.1.2 Program Dependence Graph (PDG)

After the generation of the MIRcode, we have to understand the data and memory
dependencies between each single instruction or some critical sections. We obtain
the following graph (Program Dependence Graph (PDG)) where each number rep-

resent a single instruction (as you can see in the previous MiRcode).

This graph is used to recognize the point in the code where it’s not possible to
parallelize the code. This point are highlighted by the SSCs component that in the
figure are colored in gray box. This graph has also a different color and shape edge.

Here we will list all the different color and their meaning;:

e Blue edge : Memory Output Dependence

Red edge : Register Flow Dependence

Light Green edge : Memory Flow Dependence

Black edge : Memory Anti-Dependence

Brown dashed edge : Data Dependence with indexes involved

139

11 — Thessa tool

e Dark Green dotted edge : Control Dependence

Figure 11.1: Program Dependence Graph (PDG) of the Binomial Filter’s MIRcode

140

11 — Thessa tool

11.1.1.3 Quotient Graph (Q) and topological sort

Quotient Graph (Q) is just the same graph PDG but with the SCCs components

collapsed into a unique node. This graph allows us to run a topological sort.

Figure 11.2: Quotient Graph Q of the Binomial Filter’s MIRcode

The topological sort can be defined as a linear ordering of the vertexes of a directed
acyclic graph (DAG). In general can be done only if the graph has no cycle inside, if
there are some cycles (in general each SCCs correspond to a cycle) we can generate

the quotient graph (Q) and then use the topological sort on this graph.

141

11 — Thessa tool

DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG

graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation
graphmanipulation

Figure 11.3: Topological sort of the Binomial Filter’s MIRcode

-1z
— iz
1.3
-1z
=L Thi
L]
-1z
il
ot 8
-1z
=1L
=13
LB
=1
-1z
—~fLE
=1
IR
=13
-1z
ot %
=13
—13
== 1L
-13
-1

1449
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453
1453

Hp >
>
1 >>
13>
1 >>
>>
13>
1 >>
e o>
= >>
P
3>
1 >>
o>
2>
S>>
o>
2>
Hp 2
2 >>
s>
Hp 2
2 >>
Hb 22
23>
b

The following list
frozenset (['START']
frozenset ([28])
frozenset (['STOP'])
frozenset ([0])
frozenset ([1])
frozenset ([2])

is the topological sort

)

frozenset ([24, 3, 231])
frozenset ([4])
frozenset ([6])
frozenset ([5])
frozenset ([18, 19, 71)

frozenset ([20])
frozenset ([26])
frozenset ([21])
frozenset ([8]
frozenset ([9]
frozenset ([10
frozenset ([11
frozenset ([12
frozenset ([25
frozenset ([13
frozenset ([14
frozenset ([15
frozenset ([16
frozenset ([17

]
)
)
1)
1)
1)
1)
1)
1)
1)
1)
1)

142

11 — Thessa tool

11.1.2 Code Generation hints

The instruction in the SCC (Strongly Connected Components), shown as gray box,
have to be performed sequentially in the same core with the instruction linked with
black arrows towards these SCC. (example instructions (1) and (2) points to the
SCC #1 in fig. 11.1).

While the instructions linked in red lines (Register Flows dependencies) can be
performed sequentially in pipeline.

To simplify the understanding, i have drawn the PDG graph (shown before in fig.

11.1) with some blocks. In the next lines, if I want to talk about the n'® instruction

B

Figure 11.4: PDG divided in blocks of the Binomial Filter’s MIRcode

of the MIRcode generated (section 11.1.1.1), T will write (n).

e The Red blocks shows the instruction with data dependencies. You can either

put them in a single core (easier to manage, but the core will have more work

143

11 — Thessa tool

to do), or have each instruction in a single core (faster but requires more area).
The blocks with black border represent the SCC.

The Blue blocks, represent the instructions ((1)(2)) before the first loop (3),
and the instructions ((25)(26)) are put before going backwards (27) to the loop
(3). Since in the computation, they are near to the SCC-loop ((24)(25)(3)) I
suggest to put them all together.

The orange blocks has similar characteristic with the blue ones. The instruc-
tions (5)(6) are before the loop (7) and the lines (20)(21) are executed before
going backwards (22) to the loop (7). Lines (18)(19)(7) are in SCC because
here we have the update (increase) of the variable ’j” and the comparison. I

suggest to put all these instructions in the same core.

The Green block it’s an instruction performed after the first loop and before

the second loop. You can put with the blue blocks or with the orange ones.

11.1.3 Comments and improvements

I can’t comment on the MIRcode generation, because i don’t know this language
and i don’t understand the meaning of instructions [(1) (2) (25) (26)] and [(5) (6)
(20) (21)]. Maybe they are used for the synchronization of the for loop (3) and loop

For other lines, it’s easier to understand the translation from C code to MIRcode.

Here i will post some quotation of the original work [23].

"The topological sort doesn’t give the best solution, but what it gives is

always correct (with respect to the correct starting graph).”

I can’t comment on the utility of this topological sort, because i didn’t use it.

Futhermore, i believe you need to see the MIRcode to see the dependencies and the
PDG to see the SCCs.

144

11 — Thessa tool

"Only the nodes that are inside the loop are relevant for the optimization.
This because the nodes that don’t need to be executed multiple time because
they are inside a for can be are not liked in particular to as specific core,

but can used and merged to other one,”

That’s true, but to optimize better, i suggest the Loop unrolling, a technique
that attempts to optimize a program’s execution speed at the expense of its binary
size.

In other words, instead of writing this piece of code, (because in a given time it

performs iteratively the binomial filter of ONLY a single cell)

i for (i = 1; i < h=1; i++){
2| for (j = 1; j < w—1; j=j+1){
) out[i][j] =
4}
)}
write
1| out[1][1] =
2| out[1][2] =
3| out[1][3] =
4| out[1][4] =
6| out[6][3] =
7| out[6][4] =
s/ out[6][5] =
9| out[6][6] =

this will enable the computation of all the cells in parallel.
Another suggestion is to use a computation optimization like the one i used for my

binomial filter: instead of doing

1| out[1][1] = ...4+...4 in[2][0] + in[2][1] 4+ in[2][2]; //rowl[O]l, row[1],
row [2]

2| out[2][1] = ...+ in[2][0] + in[2][1] + in[2][2] + ...; //rowl[l]l, row
[2], rowl[3]

3 out[3][1] = in[2][0] + in[2][1] + in[2][2] + ... + ...;// row[2], row
[3], rowl[4]

you could simplify by writing

145

11 — Thessa tool

temp=in [2][0] + in[2][1] + in[2][2];

out [1][1] = ...4+...+ temp
out [2][1] = ...+temp + ...;
out [3][1] = temp + ... + ...;

This will save you to do the same additions three times.

11.2 How to use

11.2.1 Install python 2.7

To install python 2.7.13 you can see this website It is adviced to install these pre-

requisites before installing Python

$ sudo apt—get update

$ sudo apt—get install build—essential checkinstall

$ sudo apt—get install libreadline —gplv2—dev libncurseswb—dev libssl—

dev libsqlite3 —dev tk—dev libgdbm—dev libc6—dev libbz2—dev

download and extract the package (if you cannot download it normally, open the

package and then extract it manually)

$ c¢d /usr/src

$ wget https://www.python.org/ftp/python/2.7.13/Python—2.7.13.tgz

3§ tar xzf Python—2.7.13.tgz

compile python source

$ cd Python—2.7.13
$ sudo ./configure

$ sudo make altinstall

to see which version of python you have, open the terminal and digit

$ python2 —version

11.2.2 PIP (Python package manager) and setuptools

First, make sure you have the lastest version of pip (Python package manager) in-

stalled. if you do not, digit the following lines

146

11 — Thessa tool

1 $§ sudo apt install python—pip
2 $ pip install —upgrade pip

Before installing networkx, you need the setuptools
1 $sudo apt—get install python—setuptools
11.2.3 networkx
Now you can try to install networkx

1 $ pip install networkx

If you do not have permission to install software systemwide, you can install into

your user directory using the "—user” flag:

1 $§ pip install —user networkx

11.2.4 Graphviz

Now you need to install Graphviz, an open source graph visualization software and

other things:

1 $sudo apt—get install graphviz

11.2.5 Running Tessa tool

You can run the tessa tool. Open the terminal and go to the folder ” graphelab” and

run the bash script

1 $ bash run)_tool.sh

147

11 — Thessa tool

File Edit View Search Terminal Help

kresigmenta bash run_tool.sh
- TWX WX WX kresi kresi 786 : BinomialF.c
-rwW-r--r-- kresi kresi 2080 : dct.c

- TWX MWX MW kresi kresi 1581 : extraIndexCheck.c

- TWX WX WX kresi kresi 574 : Fibonacci.c

- TWX WX WX kresi kresi 2888 : FInalTestlLables.c

- TWXTWXTWX kresi kresi 765 4: gauss-jordan_elm.c

- TWX MWX WX kresi kresi 10826 : GaussSeidel.c

- TWX WX WX kresi kresi 2272 : IFELSELABEL.c
-TwW-r--r-- kresi kresi 1366 :06 iia.c

- TWXTWXTWX kresi kresi 2218 - IntImage.c

- TWX WX WX kresi kresi 237 : latex.c

- TWXTWXTWX kresi kresi 885 : Matrix Mult.c

- TWX WX WX kresi kresi 1987 : 0ddEven.c

-rwW-r--r-- kresi kresi 3851 : pardct.c

- TWXTWXTWX kresi kresi 1376 temptestExprClassl.c
- FWX FWX WX kresi kresi 667 : temptestExprClass2.c
- TWX MWX WX kresi kresi 1376 temptestExprClass.c
- TWX WX WX kresi kresi 2553 testCFG.c

- TWX WX WX kresi kresi 1286 testdeleteme.c

- WX WX TWX kresi kresi 416 testdeploop.c

- TWX FWX WX kresi kresi 2148 test forstruct.c

- TWXTWXTWX kresi kresi 1417 test if.c

- TWX WX WX kresi kresi 1260 testLable.c

Insert File: == BinomialF.c

1
1
1]
1
1
1
1]
1]
1
1
1
1]
1
1
1
1]
1]
1
1
1
1]
1
1

Figure 11.5: List of all your C files

A list of all the C codes (in the folder "modules/class/test”) will appear.
You have to digit the C file you want to analyze If you get the error:
ImportError: No module named pylab

Is probably because you need some packages which provide additional functionality:

e NumPy provides matrix representation of graphs and is used in some graph

algorithms for high-performance matrix computations.

e SciPy provides sparse matrix representation of graphs and many numerical

scientific tools.

e pandas provides a DataFrame, which is a tabular data structure with labeled

axes.
e Matplotlib provides flexible drawing of graphs.

e PyGraphviz and pydot provide graph drawing and graph layout algorithms
via GraphViz.

148

[un

-

11 — Thessa tool

e PyYAML provides YAML format reading and writing.
e gdal provides shapefile format reading and writing.
e Ixml used for GraphML XML format.

Since I keep getting some errors, i decided to install all the packages.

To install networkz and all optional packages, do:

$ pip install networkx[all]
To explicitly install all optional packages, do:

$ pip install numpy scipy pandas matplotlib pygraphviz pydot pyyaml
gdal

If you get the error:

gnome-open: command not found

$sudo apt—get install libgnome2—0

Now this is where my exploration on tessa tools ends. I get the error:

TypeError: 'OutEdgeDataView’ object does not support indexing I tried to find where

kresi@menta ~/Desktop/Tesi Cetrulo/graphelab -+ X
File Edit View Search Terminal Help

graphmanipulation E :>> singleblock || 62
- graphmanipulation -1:99 >>

- graphmanipulation -1: add edge [61][62]
- graphmanipulation -1:

- graphmanipulation -1: :>> singleblock || 63
graphmanipulation :

- graphmanipulation -1:99 add edge [62][63]

- graphmanipulation -1:992 >3

---START ELAB PDG---
DEBUG - graphmanipulation -1: >
DEBUG - graphmanipulation -1: NTER BRANCH >> F:START S:0 || 2
DEBUG - graphmanipulation -1:

DEBUG graphmanipulation :>> StepNode >> 0 START - TE:> 2
Traceback (most recent call E
File "graphmanipulation.py”, line 1363, in <module>

controlDepEdge (strMIR
File "graphmanipulation.py”, line 258, in controlDepEdge
extlactEdge(START',0 UNCONDD
File " graphmanlpulatlon " ine 200, in evtractEdge
elif cnntrolnodn(:rppNodn)[TYPE] == BRANCH
File qraphmarupul , line 294, in controlnode
dlctedue[t eedq t edges(node data=True))] = CFG.out_edges(node) [0][1]
' object does not support indexing
: can' x open graphCDG.dot
: can't open graphDDG.dot
: can't open graphPDG.dot
: can't open graphPDGscc.dot
kresi@menta

Figure 11.6: OutEdgeDataView

the object ’OutEdgeDataView’ was declared but I didn’t find it on the script. Then,

149

11 — Thessa tool

after searching on internet, I figure it out it was written in the file ” reportviews.py”
which was in the folder ” /.local/lib/python2.7/site-packages /networkz/classes” And
without this modified file, i can’t get the graphs

150

Bibliography

[1] Performance driven FPGA design with an ASIC perspective. Andreas Ehliar,
2009

[2] 1. Kuon and J. Rose, “Measuring the gap between fpgas and asics”,in Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 2007.

[3] Actel, “Igloo low-power flash fpgas handbook,”2008. [Online|. Available:
http://www.actel.com/documents/IGLOO_HB.pdf

[4] 2013 by Yong Cao, Referencing UTUC ECE408/498AL Course Notes (Lecture
10 - Virginia Tech)

[5] Prefix sum - Parallel algorithm - Wikipedia

[6] Patrick Cozzi,University of Pennsylvaniam, Summed area tables, CIS 565 -
Spring 2011

[7] Qingqing Dang, Shengen Yan, Ren Wu, A fast integral image generation algo-
rithm on GPUs, 2014 IEEE

[8] 2015, Mario Cofano, Mariagrazia Graziano, Maurizio Zamboni, Design of a
Logic-in-Memory architecture for massive parallel algorithms

[9] Discrete cosine transform - Wikipedia

[10] PRACTICAL FAST 1-D DCT ALGORITHMS WITH 11 MULTIPLICA-
TIONS, Christoph Loeffler, Adriaan Lieenberg, and George S. Moschytz

[11] 2015, Filasieno Francesco, Garino Simone, Garlando Umberto, Progettazione
di Sistemi a Basso Consumo : Array Sistolico Riconfigurabile

[12] LLM Integer Cosine Transform and Its Fast Algorithm Chi-Keung Fong, Stu-
dent Member, IEEE, and Wai-Kuen Cham, Senior Member, IEEE

[13] High Order Integer Transform Design for Video Compression,Jie Dong, Mem-
ber, IEEE, and Yan Ye, Member, IEEE

[14] DIGITAL IMAGE FILTERING By Fred Weinhaus

[15] Integrated system architecture, lecture notes by E. Raviola, 2017

[16] A Guide to Numerical Methods for Transport Equations, Dmitri Kuzmin

[17] DEVELOPPEMENT D’UN CODE DE CALCUL MICROMAGNETIQUE 2D
ET 3D: APPLICATION A DES SYSTEMES REELS DE TYPES FILMS,

151

Bibliography

PLOTS ET FILS, Liliana-Daniela BUDA

[18] Analysis and Design of an Optimized HW Accelerator for Protein Alignment,
Gianvito Urgese, Mariagrazia Graziano, Maurizio Zamboni, September 2012,
Politecnico di Torino

[19] S. Henikoff, J. G. Henikoff, Amino acid substitution matrices from protein
blocks in Proceedings of the National Academy of Sciences of the United States
of America, v. 89(22), pp. 10915-10919, November 1992.

[20] T. F. Smith, M. S. Waterman, ”Identification of Common Molecular Subse-
quences” in Journal of Molecular Biology, v. 147.

[21] Andrew Gibiansky, Cool Linear Algebra: Singular Value Decom-
position, http://andrew.gibiansky.com/blog/mathematics/cool-linear-algebra-
singular-value-decomposition/

[22] Jason Liu, on Quora https://www.quora.com/What-is-an-intuitive-
explanation-of-singular-value-decomposition-SVD

[23] Eugenio CETRULO, Mariagrazia Graziano, Maurizio Zamboni, Algorithm par-

allelization for Logic-in-Memory architectures

152

		Politecnico di Torino
	2017-10-11T09:23:47+0000
	Politecnico di Torino
	Mariagrazia Graziano
	Tesi 231562

