
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Optimization and compression methods
for recurrent neural networks on-chip

Relatore:

Andrea CALIMERA

Correlatore:

Valerio TENACE

Laureando:

Federico PUGLIESE

October 2017

Table of contents

1 Introduction 3

1.1 Motivation . 3

1.2 Recurrent neural networks . 3

1.2.1 Neural networks generality . 3

1.2.2 Long Short-Term Memory (LSTM) 6

1.3 Training, validation and test set . 9

1.4 Experimental setup . 10

1.5 Thesis structure . 12

2 Theoretical background 14

2.1 Loss function . 14

2.2 Stochastic gradient descent (SGD) . 15

2.2.1 AdaDelta . 18

2.3 Backpropagation through time . 19

3 Pruning 22

3.1 Motivation . 22

3.2 Prunable weights selection . 23

3.2.1 Magnitude-based pruning . 24

3.2.2 Experimental and discarded approaches 24

3.3 Pruning time and modality . 25

3.3.1 Time . 25

3.3.1.1 Before the training phase 25

3.3.1.2 During the training phase 26

3.3.1.3 After the training phase . 26

3.3.2 Step by step approach . 28

3.3.3 Universal threshold . 29

3.4 Results . 30

3.4.1 Weights distribution . 30

3.4.2 Accuracy . 31

I

4 Clustering 37

4.1 Motivation . 37

4.1.1 Previous works . 38

4.2 Clustering formalization . 39

4.2.1 Clustering centers . 39

4.2.2 Clustering radius . 40

4.2.3 Clustering formula . 41

4.3 Clustering time and modality . 41

4.3.1 Revocability . 42

4.3.1.1 Irrevocable clustering . 42

4.3.1.2 Revocable clustering . 42

4.3.2 Clustering awareness . 43

4.3.2.1 Unawareness . 43

4.3.2.2 Total awareness . 43

4.3.2.3 Partial awareness . 44

4.4 Results . 45

4.4.1 Weights . 45

4.4.2 Accuracy . 46

5 Spiking 48

5.1 Motivation . 48

5.1.1 Previous works . 49

5.2 Starting point . 50

5.2.1 Primordial spiking procedure . 51

5.2.1.1 Grouping matrices . 52

5.2.2 Simple spiking formula . 53

5.3 Spiking formalization and effectiveness . 53

5.3.1 True weighted spiking formula . 54

5.3.2 Amount of pruned weights . 58

5.4 Results . 59

5.4.1 Accuracy . 60

6 Hardware-oriented optimizations and compressions 64

6.1 Introduction . 64

6.2 Previous encodings . 65

6.2.1 Run-length encoding . 65

6.2.2 Zeros encoding . 65

II

6.3 Proposed encodings and savings . 67

6.3.1 Clustering advantages . 67

6.3.1.1 Four-way encoding . 67

6.3.1.2 Operations savings . 68

6.3.2 Spiking improvements . 70

6.3.2.1 Matrix decomposition encoding 70

6.3.2.2 Two-bits encoding . 72

6.3.2.3 One-bit encoding . 75

6.3.2.4 Operations savings . 76

6.4 Final results and comparisons . 78

6.4.1 Encodings . 78

6.4.2 Savings . 80

7 Implementation of a general tool 83

7.1 Starting point . 83

7.2 Description . 83

7.2.1 Configurations . 85

7.2.2 Reports . 86

7.3 Pseudocodes . 87

7.3.1 Dichotomic search . 87

7.3.2 Encodings . 88

Bibliography 92

III

Acknowledgments

For this thesis, I would like to thank both Prof. Andrea Calimera and Valerio Tenace.

They believed in me and in my ideas, giving me plenty of freedom to realize them.

For these five years, I must thank Chiara. She was my lighthouse when the storm came.

Also, she taught me to be more realistic and more rational, which was a fundamental aid

to achieve this goal. She is still my challenge and my certainty.

I would like to thank my parents, too. Despite all differences, they made all of this

possible. They also gave me the greatest of gift: they taught me curiosity.

I must thank my brother. He is my greater supporter behind the curtain. He shares

my interests and can stand my long talks about any kind of idea. He is my constant.

I have to thank Simone. He was my mate in this long journey, supporting me during

projects, exams and all types of challenges. He made my fussiness feel less alone.

I must thank Federica. She believed in me since the first moment, despite all my flaws.

She continuously reminds me the importance of my passions, here and elsewhere.

I have to thank Glory, too. She was always there to listen. She helped my mind during

these years, extracting words I did not know to have. I owe her patience and time.

I would like to thank Davide C., Andrea, Davide L., Matteo and Gabriele for their

effort in bearing my imagination.

1

Abstract

Model compression and operations savings are fundamental when dealing with limited-

resources devices or computational-intensive applications. Neural networks models are

often huge because of their great number of weights, which makes them difficult to be

implemented on embedded systems, but also expensive on analytics servers: a reduction

is necessary when virtually infinite memory is not an option or power consumption is

relevant. While networks are theoretically evolving by a mathematical point of view,

with increasing complexity and expressiveness, an eye on the engineering aspect must

be kept to make them viable and affordable in critical contexts. However, this kind of

model reduction can also have significant effects on mathematical design: results showing

a comparable or even higher accuracy could suggest that models must be rethought, for

example because of great redundancy and unnecessary complexity.

This is the case of this work. New training and optimization methods are proposed to

give the model a proper shape for compression, without lowering its accuracy; actually,

in some cases, they can also improve it. Then, a powerful encoding scheme and a smart

operations scheduling are introduced to save memory, power and time.

Four fundamental results have been achieved: the chosen LSTM network can be com-

pressed obtaining a 50 − 100 times smaller model, or even 1000× with a little loss, both

with a new optimization method - a projection on a constrained solution space - and with

the associated bit-encoding technique; the proposed operations scheduling saves 99.9% of

multiplications in matrix-vector products, and 100% in some cases, avoiding the need of a

multiplier; cutting away around 90%−95% of network’s weights and applying the proposed

method still improves the accuracy with respect to the normally trained model, or at least

can keep it stable to the state-of-the-art one; also, when this percentage reaches 99%, all

recurrent connections are eliminated while accuracy keeps almost the same, showing that

a feed-forward model is enough for the target task with the aid of these techniques.

Furthermore, a general model compression tool has been developed. It applies all the

proposed techniques to the target function representing the desired network workflow;

finally, it returns the compressed and encoded model.

2

Chapter 1

Introduction

1.1 Motivation

Models compression allows the implementation of dedicated and compact hardware accel-

erators for neural networks. This is useful for their employment in critical contexts where

resources are limited or where their usage is intensive, like in analytics servers. Dedicated

devices can save memory, power and time: compression can significantly lower the huge

sizes of these models, but also regularize their structures to perform less mathematical

operations, or simpler ones, to obtain the same results.

There are some proposed hardware accelerators in literature and different possible

compressions methods [1][2][3], but most of the works concentrate on feed-forward net-

works, leaving the field of recurrent neural networks less explored. Even if some works

try to simplificate recurrent models by a design point of view proposing new schemes and

architectures [4], performing optimizations and compressions is still fundamental to reach

optimal results during their training. The proposed solutions are quite similar: they use

pruning to cut neuronal connections [5] and quantization to approximate the remaining

ones [6], but also a binarization of weights values [7] is possible. All these aspects will be

better discussed in this work while explaining the new proposed techniques.

1.2 Recurrent neural networks

1.2.1 Neural networks generality

Artificial neural networks are computational models inspired to the brain. They are very

complex functions, with many parameters, that can associate an input to a desired output;

these parameters work as coefficients for inputs, which are multiplied by them in many

different combinations to obtain precise output values.

Neural networks can be used to label some data or in general to elaborate information in

order to receive an answer. They are trained to properly do so, and the aim of this training

is indeed to find the right values for these parameters to mathematically transform each

input in its right output. In this way, intelligence is obtained simply through a perfectly

3

1 – Introduction

shaped function, exactly as our brain works with its electrical and chemical impulses:

however, while the brain works in the frequency domain, artificial neural networks work

with intensity. Instead of having frequent or infrequent electrical impulses to excite or

inhibit neuron functionalities, artificial networks will work with positive or negative values

to accomplish the same functions.

To understand the workflow of a simple artificial network, we can look at this so-called

single layer perceptron model:

Figure 1.1: Single layer perceptron

Here, in Figure 1.1, three inputs are given to two neurons. Each neuron computes a

single output: it multiplies each input value by a different coefficient and adds them up

together with a constant offset; then, it uses a particular non-linear function to adapt the

result. The non-linear functions relevant for the purposes of this work are only two: the

hyperbolic tangent tanh(x) and the squashing or sigmoid function σ(x). They are defined

in Figure 1.2.

-4 -3 -2 -1 1 2 3 4

-1

1

-4 -3 -2 -1 1 2 3 4

-1

1

tanh(x) = ex−e−x

ex+e−x σ(x) = 1
1+e−x

Figure 1.2: Definitions of hyperbolic tangent and sigmoid function.

Therefore, the behavior and the computation performed by a single neuron k ∈ {1, 2}

4

1 – Introduction

can be written in this way:

hk = tanh(wk1x1 + wk2x2 + wk3x3 + bk) = tanh(
3∑
j=1

wkjxj + bk)

So, if we consider a more compact vector notation, calling ~x = (x1, x2, x3)
T the three-

components input and ~y = (y1, y2)
T the two-component output, the above formulation

can be expressed by a element-wise hyperbolic tangent of a matrix-vector multiplication

with a bias vector ~b = (b1, b2)
T :

(
y1

y2

)
=

(
w11 w12 w12

w21 w22 w23

) x1

x2

x3

+

(
b1

b2

)

(
h1

h2

)
=

(
tanh(y1)

tanh(y2)

)
which can be written in compact notation as

~y = W~x+~b

~h = tanh(~y)

In this sense, a network is a function of the inputs: it computes ~h from ~x by linking each

input element to a neuron through a connection which has a coefficient, called weight. The

set of all weights becomes the weights matrix W . ~h(~x) is indeed

~h = tanh(W~x+~b)

Other types of networks can have different expressions, but they can be rewritten to get

a similar formulation.

However, the strength of neural networks stands in their multi-layer structure: con-

necting many layers can allow creating complex functions to solve complex tasks. In a

fully-connected network, each neuron is linked to all the outputs of the previous layer, for

example to create a so-called multi-layer perceptron shown in Figure 1.3. The dimension

of each layer can be chosen with proper rules, but once the model is fixed, its chain of

computations will produce the desired output only if weights are chosen correctly. This

is a non trivial problem for large and deep networks and it is especially hard when their

structure becomes less regular than this one.

5

1 – Introduction

Figure 1.3: Multi-layer perceptron

1.2.2 Long Short-Term Memory (LSTM)

The previous multi-layer perceptron was an example of feed-forward network : in this kind

of models data flows only in one direction, from the beginning to the end of the structure.

However, in some cases, it could be useful to redirect a previous output backwards, for

example when dealing with intrinsic sequential data: instead of giving the entire sequence

as a single input to a huge network, they can be passed to the network one by one.

Furthermore, the length of the sequence could be unknown, so that designing a proper

sized network is impossible.

A possible application can be understanding a question and replying with more or less

complex phrases, such as reading something about The Lords of the Rings and answering

to the questions “Where is Frodo now?” or “Where is the ring?” [8]; it can be looking at

an image and giving it a description [9]; it can be predicting the presence of an exoplanet

around a star through a temporal series of measures of its brightness to find if an eclipse

has occurred [10] or classifing supernovae [11]. The network will understand dependencies

between single elements of the sequence by feeding itself with its previous output at each

step, which of course will depend on the previous input(s).

For example, a simple recurrent neural network can be the one shown in Figure 1.4.

Figure 1.4: Simple recurrent neural network.

Here, in Figure 1.4, all outputs are redirected backwards, if we consider them as vectors.

Still, some studies specifies that, due to its structure, this kind of network cannot work well.

6

1 – Introduction

This is known as the exploding or vanishing gradients problem [12], which has been solved

with a new kind of neural network: Long Short-Term Memory (LSTM) [13] [14]. LSTM

are based on a different type of neuron, which is far more complex than the perceptron

one, and can decide what to remember and what to forget of the past: in this way, it can

be very powerful in managing data dependencies. As before, this neuron can be seen in

its vector form, in the sense of a layer: in this way, the description will be valid for each

possible dimensions of inputs and outputs, which can be also 1 - a single neuron.

LSTM adds three important components to the standard neuron: they are the input

gate, the forget gate and the output gate (Figure ??).

Data enters the network - or neuron - normally: the two contributions of the previous

output at step t−1 and the current input at step t are weighted and added up. Then, the

resulting quantity goes through the hyperbolic tangent.

+ tanh

+

sigm

• tanh

+

sigm

•+

sigm

•

+

d

𝑥𝑡

𝑥𝑡 𝑥𝑡

𝑥𝑡

ℎ𝑡−1 ℎ𝑡−1

ℎ𝑡−1

ℎ𝑡−1

ℎ𝑡

𝑖𝑡

𝑐𝑡

𝑓𝑡

𝑜𝑡
𝑚𝑡

𝑚𝑡−1

Input Gate

Forget Gate

Output Gate

Candidate Memory

Figure 1.5: LSTM neuron.

Now, differences begin: while normally this value would simple be the output, here it

is instead reduced by a number between 0 and 1, because it is multiplied by the result of

a sigmoid. Generally speaking, each element of the candidate memory ~ct is multiplied by

its respective element in the input gate vector, ~it. In this sense, the input gate can select

7

1 – Introduction

what and how much to remember of the candidate memory - which explains both the

vectors names - according to the previous output and the current input. This is obtained

by letting pass an element of ~ct with a value close to 1 in ~it or by truncating it with a

value close to 0, differently for each of ~ct elements. If weights are set properly, the network

truly learns to do so. This element-wise operation can be written as:

~c ∗t =~it � ~ct

where � denotes the Hadamard product, a multiplication between two vectors of the same

length, component by component.

This modified ~ct will contribute to the current memory of the LSTM, ~mt: this value is

truly stored by the neurons through all the steps. The old memory ~mt−1 is multiplied by

the forget gate vector, ~f . This works exactly as the input gate: it selects what and how

much to remember of the previous memory by multiplying it with values between 0 and

1, using ~ht−1 and ~xt to decide. The modified previous memory is added to ~c ∗t : usually,

it is forgotten something that will be replaced by the new information through this sum.

This combination of new and old will become the current memory ~mt.

~mt =~it � ~ct + ~ft � ~mt−1

This value is again squashed with a tanh to avoid explosions of its magnitude, thus re-

stricting it again between −1 and 1. Then, finally, an output gate decides what and how

much to propagate outside the network/neuron. This output will be used by the following

layer, but also by the LSTM itself with the recurrent connections. So, the outputs gate

vector ~ot multiplies tanh(~mt) to obtain the current output ~ht, which will soon become the

previous output for step t+ 1.
~ht = ~ot � tanh(~mt)

It is important to notice that data dependency is very strong: for example, each element

of the current input and the previous output contributes to decide what to drop from the

memory through the forget gate. Each component of ~f is indeed a weighted sum of every

element of ~ht−1 and ~xt. So, dimensions - neurons - are not independent: the network is

fully-connected like a multilayer perceptron, but with recurrent connections too.

It is possible to express the complete mathematical model of LSTM by introducing

three groups of weights matrices for the gates and one group for the candidate memory as

• Wi and Ui, the ones used to multiply ~xt and ~ht−1 respectively in the input gate;

8

1 – Introduction

• Wf and Uf , matrices of the forget gate for current input and previous output;

• Wo and Uo, matrices of the output gate;

• Wc and Uc, matrices used for the candidate memory;

also, four bias vectors bi, bf , bo and bc for each gate and the standard candidate memory

will be used.

This model can finally be written as a series of equations:

~it = σ(Wi~xt + Ui~ht−1 + bi)

~ft = σ(Wf~xt + Uf~ht−1 + bf)

~ot = σ(Wo~xt + Uo~ht−1 + bo)

~ct = tanh(Wc~xt + Uc~ht−1 + bc)

~mt =~it � ~ct + ~ft � ~mt−1

~ht = ~ot � tanh(~mt)

1.3 Training, validation and test set

All these three sets of data are divided into inputs and outputs. They express the desired

behavior of the network: given that specific input, the network must answer with the

relative specific output. If not, the training algorithm will try to modify its weights in

order to achieve this goal.

This algorithm will work only with the training set which, like the other two, has a

bunch of input-output couples. The assumption is simple: if this set is well gathered and

general enough, the weights so found will be able to behave in the same way for other

similar data. In other words, if the network has been properly trained to provide the

right outputs to this general and representative set of inputs for a certain task, the same

network will also give right outputs when new similar data will be proposed to it.

In this sense, a test set is useful to understand the performances of the training phase.

It has the test values to propose to the network: they will provide a measure of its accuracy

and ability to fulfill its task. This set will not be used to modify the weights, but it is just

a performance indicator for experiments and tunings of the training algorithm, also useful

to have a standard to compare results between different architectures and works.

In order to build a bridge between these two sets, the validation one is introduced by

picking a little number of examples from the training set. Like the test set, it will not be

used to modify the weights, but it will contribute in some ways during the training phase:

9

1 – Introduction

it will try to avoid the known problem called overfitting. Overfitting happens when the

training algorithm modifies the weights to perfectly provide the training-relative outputs

in a maniacal manner: if this happens, the network did not learn to generalize over the

the training examples but instead to simply replicate its outputs. Therefore, it could not

be able to provide the right answers to similar but not equal inputs. This problem usually

happens when the error on the training set is very low, almost zero; to understand if

it truly is a critical situation, measure the error on validation data, like a test set, can

be useful. If this error is also low, then we can conclude that the network did learn to

generalize; but if it is high, overfitting has happened. So, it is useless to pick the best

combination of weights with respect to the training error only: instead, a smarter choice is

to pick the model with the lowest validation error. In this way, the network will continue

to normally learn with the training set, but picking this model is a way to be quite sure

that a good test error will be reached, because the validation set simulates the function of

a test set. A typical evolution of these errors during the training phase is indeed the one

shown in Figure 1.6.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Training error

Validation error

Test error

Figure 1.6: Errors during training steps. The best model is the one with minimum validation error.

The validation set size must be small, because its elements are taken away from the

training set: the network will have less examples to learn from.

1.4 Experimental setup

To test the proposed methods, a light network was chosen. Its aim and architecture is

not important for the study: all these techniques are thought without looking at tasks or

10

1 – Introduction

models; however, a quickly trainable recurrent network had to be picked to perform the

experiments.

The chosen network is the one proposed by [15] [16]. It is used for sentiment analysis,

which in this case is a task that consists in stating if a certain review is positive or negative.

Even if this task can seem easy, sarcasm and cultural references are something that only

we, humans, can easily understand thanks to our previous experiences; and sometimes we

too fail in doing so. An artificial model must not only understand the language, but also

all its hidden shades that we give for implicit.

Each word in a dictionary of S = 105 entries will be mapped to a vector of D = 128

float-32 components; then, the review of length K will be given to an LSTM network with

float-32 weights, one word-vector at a time. LSTM’s K outputs on 128 elements will be

averaged on a single 128 components vector and given to a logistic regression layer, which

is a classical way to obtain the probabilities of the two classes, positive or negative. In this

way, the network can tell the nature of the review: the class with the highest probability

will be assigned to it. Figure 1.7 depicts this workflow.

LSTM Mean LRVect
𝑤𝑜𝑟𝑑 𝑐𝑙𝑎𝑠𝑠

Figure 1.7: Network workflow.

As a side note, the LSTM was also substituted by a GRU [4], one of its variants, in the

last phases of this work, to test these techniques and the generality of the developed tool.

Similar results were reached, so only the in-depth analysis on LSTM will be reported.

The reviews will be picked from the standard and famous IMDB large movie reviews

dataset [17]: it has 25000 reviews for training and other 25000 reviews for testing. Both

sets are balanced with positive and negative ones.

To lower the amount of time required for training, different subsets of the reviews will

be used, both for the training set and the test set. The validation set is built randomly

taking the 15% of the training examples.

• Type A - this is a type where the training set is built taking all the shortest reviews,

with a length lower or equal to 100 words (2103 reviews). The test set is build taking

500 random reviews with no restrictions;

11

1 – Introduction

• Type B - training set: reviews with length lower or equal to 150 words (5847 reviews).

Test set: 6000 random reviews, again with no restrictions;

• Type C - training set: reviews with length lower or equal to 300 words (17148

reviews). Test set: 12000 random reviews, again with no restrictions;

• Type D - the entire training and test sets.

All the techniques will work on the weights, leaving the little amount of biases un-

touched. This is the same approach used by other works, such as [1]. The training is

performed end-to-end: the vector representations of words are learned during the training

phase and modified during the application of the other techniques. The network will also

be trained with dropout [18], which is a lateral technique to improve its performances, as

the standard implementation of [15] does. However, dropout will not be used during the

optimization methods proposed in this work.

1.5 Thesis structure

After this summary of the context, Chapter 2 will introduce the theoretical background

useful to understand the following work and the proposed techniques, explaining the basic

concepts of neural networks and their training; it will also describe the model chosen to

test these methods.

Chapter 3 will discuss the well known pruning technique and some variations experi-

mented in this work; pruning is indeed the starting point for all the new proposed methods,

and its fundamental properties are necessary to obtain good results during the following

phases.

Chapter 4 will explain the first new method, called clustering. It was born as an

attempt to regularize neural networks by distorting their parameters. Its result will be

improved by its evolution, introduced in the following chapter; nevertheless, it is a quite

good option to reduce the complexity of a network.

Chapter 5 will describe the second new method, and the core of this work, which is

called spiking. Its mathematical bases are stronger than the ones of clustering, which was

a sort of simpler experiment to understand if the kind of domain-transformation proposed

by this technique could be effective.

Chapter 6 will provide multiple ways to save memory through network encoding, but

also a smart operations scheduling to save multiplications. These are the true motivations

that led to the development of clustering and spiking techniques: while the previous

12

1 – Introduction

chapters will introduce them in a formal way, chapter 5 will explain and exploit the

opportunities they offer.

Chapter 7 will show an high-level overview of the developed general compression tool

that implements the previous methods.

13

Chapter 2

Theoretical background

There are different methods to train a network, which is the process used to find the

right values for all its weights and biases. Although evolutionary algorithms have been

proposed, the standard procedure uses iterative methods, which follow the values of the

derivatives of a loss function to find its minimum - the lowest error: in fact, the loss

function expresses a difference between the desired outputs and the network’s ones when

a set of training inputs are given to it. This concept will be better explained below.

2.1 Loss function

The loss function L is the objective to minimize: it expresses the error between the actual

output of the network and the desired one. Of course, it depends on the weights, so that

it is possible to minimize it with respect to them. Given the set of all the weights, which,

for ease of modeling, will be now considered as a vector ~w by concatenating all the rows

of the weights matrices and all the biases together, a generic loss function is

z = L(~w, ~x)

Given a single input ~xk, it computes the error zk as a sort of difference between the desired

output ~dk and the current output of the network ~hk produced by ~xk. An example of this

function can be

L(~w, ~xk) =
∣∣∣∣∣∣~dk − ~hk∣∣∣∣∣∣2

which provides a measure of similarity between the two outputs. It is important to notice

that all this kind of functions must have a minimum to reach: in this way, it is possible

to apply the derivative-based method mentioned above.

However, we are usually interested in computing the overall error among an entire

set; so, we can define the total loss as the sum of all the single errors on the elements of

this set. This is possible because errors are always positive, so that minimizing the sum

implies minimizing also the single contributions. To avoid explosions of this sum, we can

use instead an average to divide it by the number N of the examples in the set S. The

14

2 – Theoretical background

total average error or loss L(~w) over S can be expressed as

L(~w) =
1

N

∑
S
L(~w, ~xk) =

1

N

∑
S

∣∣∣∣∣∣~dk − ~hk∣∣∣∣∣∣2 (2.1)

The ~w dependency is not explicit, even if ~hk depends on it. This will be a problem solved

by the introduction of backpropagation (section 2.3).

2.2 Stochastic gradient descent (SGD)

Gradient descent is an iterative method to minimize a function. When it is not possible to

analytically find a optimal solution in closed form, for example because of the complexity

of the expression or because of its huge number of parameters, iterative methods are an

useful tool. Gradient descent is guaranteed to find the global minimum only for convex

functions; otherwise, the found solution is just a local minimum. This is true if the

algorithm does not stop in a saddle point, which is a point where derivatives are equal to

zero, but this can be avoided with some remarks. However, a local minimum is enough

for neural networks: all the solutions found in many experiments since today have proved

gradient descent’s efficiency. This is a good compromise: networks are too much complex,

while this method is reasonably simple and provides very good results anyway.

As the name suggests, this method follows a negative slope of the objective function

in order to fall down, until a minimum is reached. It is an iterative exploration of the

solution space aimed to find the best point, in this case represented by the optimal ~w. This

is obtained by observing that if we compute the gradient of a function, which is defined

as the vector of its first-order partial derivatives as

~∇L = (
∂L
∂w1

,
∂L
∂w1

, ...,
∂L
∂wN

)

and we calculate its value in a point P (v1, v2, ..., vN), the direction and verse of ~∇PL will

tell where to move from P to maximize the function L. So, by taking −~∇PL, we will

know symmetrically how to minimize it.

To understand this concept, we can study the function

f(x, y) = x2 + y2

which has a gradient equal to

~∇f = (2x, 2y)

15

2 – Theoretical background

If we are in P (20, 0), we know that moving according to −~∇P f = (−40, 0) will take us

on a lower value of f(x, y): this is obtained by updating the two variables x and y in

the gradient verse, which in this case stands for increasing x, as the normalized versor is

negative in x: ~e = (−1, 0). This also means that altering y will not produce any benefits:

this is true because the y co-ordinate of P is already the same of the optimum, which

is obviously H(0, 0). Figure 2.1 shows it in graphical way, drawing a normalized ~∇P f
in orange: it points towards the maximum, which in this case tends towards infinity; it

also shows −~∇P f , which has the same direction of the previous vector but opposite verse.

Indeed, −~∇P f would make P fall down towards H.

Figure 2.1: Gradient ~∇P f , in orange, and its opposite towards the minimum.

However, derivatives are significant only in the neighborhood of P with radius r, which

is Nr(P), only if r → 0. So, in the case of L(~w), if we want to update the current point

~wt with the information of the gradient, we must take a very small ∆~w:

~wt+1 = ~wt +∆~w

16

2 – Theoretical background

in this way, wt+1 will be close enough to wt and, as ∆~w goes according to −~∇PL, the L
will be decreasing in this direction. Therefore,

L(~wt+1) < L(~wt)

which is the desired behavior. We can update the point with this formula:

~wt+1 = ~wt − η~∇L(~wt)

which moves ~wt on the same verse of −η~∇L(~wt), thus minimizing L. This basic gradient

descent version performs this update at each iteration, slowly; it multiplies the gradient

by a small factor η which is called step size, or learning rate when dealing with neural

networks. If η is chosen properly and decreases over time, a good solution can be found.

However, computing ~∇L(~wt) can be very expensive. Looking at the definition of L in

equation 2.1, the gradient must be calculated as:

~∇L(~wt) =
1

N

∑
S

~∇L(~wt, ~xk) (2.2)

so, the sum of all the gradients over the training set. Usually, to have good network

performances and generalization, this set is huge: so, a single iteration would be very

expensive - and always many iterations are necessary to find a minimum. To overcome

this obstacle, mini-batch Stochastic Gradient Descent (mini-batch SGD) was introduced.

Instead of computing the sum over the entire S, each iteration takes M random examples

of the set and approximates the gradient just with these M contributions: in other words,

a subset SM , called mini-batch, is taken at each step.

~∇LM (~wt) =
1

M

∑
SM

~∇L(~wt, ~xk)

So, the update formula becomes:

~wt+1 = ~wt − η~∇LM (~wt)

Each iteration will take a different mini-batch, until every example of the original set S
has been visited once. Then, S will be shuffled and again M random elements of S will

be taken at each iteration, repeating the process. This shuffling prevents any possible

collateral effect of providing the examples in a specific order to the network.

Mini-batch stochastic gradient descent has also another positive aspect: it can allow

17

2 – Theoretical background

the search to escape from saddle points or worse local minima, where ~∇L(~wt) = ~0. The

stochasticity obtained by picking random examples can differ the approximated gradient

~∇LM (~wt) from ~∇L(~wt): so, these little stochastic fluctuations will allow the point to

escape from these bad situations to possibly reach a better local minimum.

Mini-batch SGD is an intermediate version between the proper gradient descent and the

standard stochastic gradient descent: the last one, SGD, approximate the total gradient

with a single example instead of M . Of course, this leads to slower convergence, as a single

contribution is not enough to estimate the true ~∇L in a reasonable way.

2.2.1 AdaDelta

As choosing the proper learning rate η is fundamental for results, many formulations and

variations have been proposed. AdaGrad, RMSProp, Adam are just some examples, as

explained by [19]. However, AdaDelta is one of the common ones and it will be used in

this work for its good performances and properties.

Instead of having a unique and arbitrary η, AdaDelta proposes an ad-hoc adaptive

learning rate: ad-hoc because it is customized for each weight; adaptive because it changes

over time by itself, thus avoiding the necessity to manually tune its evolution before SGD

algorithm runs. AdaDelta extends AdaGrad, which stands for adaptive gradient. AdaGrad

divides η by a contribution which depends on the previous history of gradients, to adapt

it and decreasing it over time, which is a very good property as explained before. Calling

~et = ~∇LM (~wt) for brevity where et,k is one of its single elements - so a partial derivative

with respect to wk -, we can introduce this factor:

Qt,k =
t∑

τ=0

e2τ,k (2.3)

which is the sum of all squared gradients components until the current step t. The standard

update formula

wt+1,k = wt,k +∆wt,k ⇒ wt+1,k = wt,k − ηet,k

is modified by dividing η by the square root of this factor, which again is intended as

element-wise:

wt+1,k = wt,k −
η√
Qt,k

et,k

However, this sum is very expensive both in time and memory: so, RMSProp introduces

an exponentially decaying average to accumulate the sum of square gradients in a more

18

2 – Theoretical background

elegant way. This factor will be called EG, average of gradients.

wt+1,k = wt,k −
η√
EGt,k

et,k

EGt,k = αEGt−1,k + (1− α)e2t,k

where α < 1 is a number used for this purpose. AdaDelta also uses this decaying average

to substitute the simple numeric η: it averages in this sense all the previous updates ∆~w

of the wt+1,k = wt,k + ∆wt,k formula, so only until t − 1 because of course ∆wt,k is the

value to be computed:

wt+1,k = wt,k −
√
EWt−1,k√
EGt,k

et,k

EWt−1,k = φEWt−2,k + (1− φ)∆w2
t−1,k

So, ∆wt,k is inevitably and recursively found as

∆wt,k = −
√
EWt−1,k√
EGt,k

et,k

In vector and simpler notation, in this work this update formula will be expressed substi-

tuting

ηt,k =

√
EWt−1,k√
EGt,k

⇒ ∆wt,k = −ηt,ket,k

and so, using the Hadamard product,

~wt+1 = ~wt − ~ηt � ~∇LM (~wt)

In this way, AdaDelta adapts the η in oder to explore directions in different ways, according

to their gradients’ history.

2.3 Backpropagation through time

Computing the derivatives may seem a problem when ~w dependency in LM (~wt) is not

explicit. Also, the complexity of the layers architecture and their formulas can be over-

whelming. However, a simple mathematical concept can break this fake issue: the chain

rule.

When we have for example two feed-forward layers, we can represent them as two

functions f and g. g’s output, which is our ~h, is of course connected to the loss function

19

2 – Theoretical background

that we want to minimize by computing its gradients (Figure 2.2).

f g 𝐿𝑜𝑠𝑠
𝑥 𝑠 ℎw u

Figure 2.2: Example network with two layers f and g.

However, as each gradient is computed one example at a time thanks to equation

(2.2), the single input ~xj of the set S is considered as a constant: even if the sub-network

f would have ~w as fixed parameters and ~x as variable during its final deployment, the

gradient descent will try to search the best ~w for f having ~x as coefficient. In this sense

we can state that, during the training phase, f will be a function of ~w having the single

~xj as fixed parameter. In the same way, g will remain a function of f ’s output ~s but will

become also a function of ~u, which is its set of weights (Figure 2.3).

f g 𝐿𝑜𝑠𝑠
𝑤 𝑠 ℎ𝑥

𝑢

Figure 2.3: Layers written as functions of the weights.

To simplify again, we will consider each output as a scalar, so s and h. The vector

generalization can be later found by induction.

Therefore, if for example we want to compute the derivatives of L with respect to a

single weight of f , wk, we can state that:

∂L
∂wk

=
∂L
∂h

∂h

∂wk
=
∂L
∂h

∂h

∂s

∂s

∂wk

which is the simple repeated application of the chain rule of derivatives: L is a function of

h which is in turn a function of s which is finally a function of wk. The three derivatives

are direct and can be calculated easily. By repeating this process for each weight and each

components of vectors it is possible to compute the complete gradient without problems.

This process is called backpropagation.

For the sake of completeness, the chain rule for vector functions is the following, taking

20

2 – Theoretical background

a composite function z(~s(~w)):

∂z

∂wk
=

∂z

∂(s1, ..., sN)

∂(s1, ..., sN)

∂wk
=

N∑
j=1

∂z

∂sj

∂sj
∂wk

When the network is not feed-forward but recurrent, another problem seems to arise.

However, again an easy solution can help: if the network is unfolded in time, it is similar

to an only forward network with no recursive connections (Figure 2.4).

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥4

ℎ4

𝑥𝑡

ℎ𝑡ℎ𝑡−1

Figure 2.4: Unfolding in time.

In this way, the backpropagation can be applied normally, taking the name of back-

propagation through time.

21

Chapter 3

Pruning

3.1 Motivation

The first technique used also in literature either to simplify weights or to find a better

network is the so-called pruning. As its name may suggest, it is based on the idea of

removing some neural connections by setting their weights to zero. This concept is inspired

by different motivations, either philosophical or pragmatic ones.

As replication of biological solutions can be a good starting point when we deal with

artificial intelligence, the first reason can be found into the emulation of the mechanism

that controls and modify all neural connections in the human brain, especially during

its growth. Both artificial and natural neural networks are redundant and error-resilient:

they can work if damaged, even if some connections are cut off. As shown in many other

works, it is possible to simplify the model so that the accuracy keeps stable [1] [5] [6].

The second motivation is strictly related to the neural network model. Each neuron is

fully connected to all inputs, and therefore some connections can be useless: it is possible

that a specific input does not contribute (or does not contribute in a sensible way) to a

particular neuron functionality. In a worse case, a connection can even alter a neuron

work, for example because its weight is far from its optimal value, getting the model stuck

in a worse local minimum where all other neurons have learned to compensate this error

in a best-effort but not sufficient way. In this sense, pruning can be seen as a sort of

jump throughout the weights space, which can be useful to improve the ability of the

gradient descent method to escape from a local optimum. It also acts as an extreme form

of regularization: it reduces the number of parameters in order to keep the model far from

the risk of overfitting.

It is important to notice that this kind of algorithms is normally used to find the

optimal network for a specific task, and not to train it. Conceptually, a zero-weight

connection is different from an absent one: a zero value is what the training phase found

to be optimal for that connection in the target network, but this implies that the target

network had to be chosen previously. In other words, choosing the structure of a network

- units and links, fully-connected, recurrent - is different from choosing the values in it.

22

3 – Pruning

However, in this work, the aim of this technique is not to find an optimal shape for the

network: it is to compress an already existent and valid one, keeping the same accuracy

or selecting an accuracy-dimension compromise. In this sense, this distinction practically

fades: the network will be manipulated in many ways, and in this first phase some links will

be discarded regardless from the initial structure, in order to fit a compact compression

strategy.

Nevertheless, removing just some connections is not enough. In order to effectively

reduce the dimension of the model, the pruning procedure must eliminate a huge amount

of weights; however, doing it abruptly will produce a mutilated network with a far worse

accuracy: the remaining weights will behave as normal, counting on the work of the other

ones [5]. The procedure needs a way to fix the network, working on the connections it still

has.

This sentence hides also another fundamental problem: how to select the right weights

to prune? What are the essential weights, if they exist?

3.2 Prunable weights selection

Different methods were developed in literature to choose the prunable weights. Some

of them are more complex than the other ones in terms of computation; some of them

are more widely used than others. For example, Optimal Brain Surgeon (OBS) [20] and

Optimal Brain Damage (OBD) [21] are two similar and famous algorithms that try to

understand the importance of a weight using a deeper level of information: while normally

every decision is made using just the first-order derivatives of the loss function, already

computed for training, these two methods use also the second-order ones. As they are

partial, there exist a derivative for each combination of two variables, thus meaning a

quadratic number of operations and values - the Hessian matrix. By gathering all this

information, these algorithms choose the weights to prune using the Taylor series of the

loss function and an index that explains the importance of each weight. They also repair

the network after the cut, but of course their application is expensive, particularly for

large network.

Still, another simpler approach is possible. It is based on the idea of using just the

information given by the training phase, selecting and pruning all the weights with an

absolute value under a certain threshold. Here the name: magnitude-based pruning.

23

3 – Pruning

3.2.1 Magnitude-based pruning

Numerically speaking, each weight is a coefficient which multiplies an input in a matrix-

vector manner, and so a small weight makes a specific input quite irrelevant in the total

sum; this behavior can be approximated by eliminating that input contribution from the

computation. In other words, small weights can be approximated by zero-value ones.

This idea finds its effectiveness in the objective of training. Generally speaking, the

training algorithm sets a weight high - in absolute sense - if that connection must have

a strong excitatory or inhibitory effect, and so a significant influence. In this way it is

possible to select the prunable weights knowing that the smallest ones are the best ones

to choose, without other computations. As a disadvantage, it requires a little retrain

afterwards, to adapt the remaining weights, which will be explained in section 3.3.

Anyway, it was the approach selected by many other similar works, and it worked well

also in this one (see section 3.4): it often improved accuracy even beyond any expectations,

as the aim of this work was just compressing while keeping accuracy as stable as possible,

thus there were no doubts about which approach to select.

3.2.2 Experimental and discarded approaches

Anyhow, before choosing this method, several new alternatives were tried to avoid the

use of a technique after the training phase: they were thought to mix it with the pruning

phase.

During the training phase, weights move according to the gradient. The smaller the

gradient, the smaller the step: and if it keeps small for many updates for a specific weight

w∗, it means that w∗’s influence on the loss function is also small. This also means that

moving on w∗’s direction is quite useless. Therefore, under certain circumstances, for

example if this is true quite everywhere on the solution space, it could be possible to

eliminate w∗. This idea need to be of course enforced, to be sure that setting w∗ = 0

does not have a catastrophic effect on the loss or that it can be compensated by changing

some other weights. For example, after the cut, all learning rates could be set to zero, to

simulate the restarting of training and to let the other weights have a better and faster

adaptation.

Experimental results show that even in its embryonal state, this idea could lead to

quite good results, even if not astonishing. However, like for other ideas, it was soon

discarded as the common approach with magnitude-based pruning was better studied,

already widely used and effective. It also leads to a good point to start with the new

24

3 – Pruning

technique proposed in this work, which are the true unstudied and innovative elements of

it.

3.3 Pruning time and modality

3.3.1 Time

Being most general as possible, the application of this pruning technique can happen in

three moments in time:

• before the training phase;

• during the training phase;

• after the training phase.

3.3.1.1 Before the training phase

Pruning before the training phase means to randomly select some connections and drop

them or, better, choose to use a less powerful model, eliminating some links according

to a certain criterion. This last approach is equivalent to use a different kind of network

and, of course, there is the possibility to prune out fundamental connections if not done

carefully. But carefulness would require a study for each architecture to develop a custom

solution, which cannot be acceptable for a general compression tool. Alternatively, the

pruning algorithm could be informed by other computations before training, but again it

would be too complex with respect to the results obtained by simpler approaches.

Nevertheless, setting some weights to zero before the training phase can be seen as

a form of initialization. As networks are quite always trained with iterative algorithms,

initialization plays an important role in the search of the optimum: therefore, as the desired

shape of the distribution of weights after pruning is known (Figure 3.2) and confirmed by

other works [5], it could be possible to help the training phase by imposing an initialization

similar to the final result.

However, imposing an initial distribution cannot always guarantee proximity to optimal

solution: without any other information, it could be possible to set a great number of

weights in wrong positions of the distribution, thus making vane the effort of setting the

initial point close to the supposed final one. Furthermore, performing other computations

to gather this kind of information that can simply be found after the training phase -

which has to be performed anyway - can be really a waste of resources and time. So, even

if this approach has given some potentially good results, it was soon discarded.

25

3 – Pruning

3.3.1.2 During the training phase

Looking at the their evolution during normal training (Figure 3.1), weights values start to

significantly change after a certain epoch, then they settle to a local minimum and quite

stop evolving, as the algorithm was intended to do.

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

Figure 3.1: Example of weights evolutions, with a different color for each weight.

For this reason, the first idea was to cut the weights between those two moments, or

soon after the settlement. This kind of approach offers an interesting possibility: the revo-

cability of pruning decisions. While normally a cut connection is permanently eliminated,

here the training could lead to its regrowth. It is a sort of backtrack, where a weight can

be restored if the gradient shows strong proofs of improvement and maybe tells what other

connection can be cut instead. A similar approach is used for the dropout technique [18]

and for the clustering technique introduced in this work (see Chapter 4).

Mixing training with pruning of course increases the time of the training phase itself, as

the gradient descent encounters lots of jumps, especially if pruning is performed gradually

step by step, which is the way explained and used in subsection 3.3.2. Again, no particular

gain has been found by using this approach with respect to the most common one.

3.3.1.3 After the training phase

Several works concerning model compressions use pruning methods after the training

phase. As said, other experiments were tried before testing this approach and taking

it as a sort of standard. Even if some works suggests the opposite, such as [20], results

were still far more than acceptable.

26

3 – Pruning

After the training phase ends, the network has reached a local minimum by setting

most of the weights to small values (Figure ??). It is possible to cut those weights, defining

what small means. Formally, a threshold τ is introduced so that all weights wj satisfying

|wj | ≤ τ (3.1)

are discarded. The right τ must be chosen according to the desired percentage p of pruning:

it is the value such that the number of wj satisfying (3.1) are equal to pNt, where Nt is

the total number of weights in the model.

Defining Tτ (wj) =

1, if |wj | ≤ τ

0, otherwise
it must hold

Nt−1∑
j=0

Tτ (wj) = pNt (3.2)

In this work, the right τ is found by dichotomic search (see Chapter 7).

After all the proper weights are eliminated, i.e. set to zero, the network needs a brief

re-training to adapt all the remaining connections. This new optimization run will start

from the pruned network’s parameters, as if it was training again the same model but with

weights initialized to the ones produced by the cut.

The strength of this approach is in the quick convergence of this phase: typically, a

very small number of epochs are necessary to find a new near local minimum [5]. Instead

of having ad-hoc formulas to repair the cut, it is the training algorithms to learn how

to compensate it by finding a new optimal solution, as it is its job. By constraining

the pruned weights to stay at zero, the gradient descent search will navigate throughout

the solution space without moving on their corresponding dimensions; alternatively, it is

possible to set the corresponding gradient’s components to zero.

As reported by several works, this new small training must be done slowing the learning

rate in order to stay as much as possible close to the previous optimum and to the starting

point - the pruned model right after the cut. This is obtained by introducing into the

update formula of the gradient descent algorithm a factor γp, whose values might be

around 0.0001 [22] (here 0.001 is used):

~wt+1 = ~wt − γp~η � ~∇LM (~wt) (3.3)

This kind of slowing down also guarantees a finer search on the solution space, which

is reduced in dimensionality, to better explore the neighborhood. This little detail allows

maintaining the accuracy and, of course, to maintain also all the decisions taken by the

training phase as much as possible, as they should be the best ones.

27

3 – Pruning

3.3.2 Step by step approach

However, in order to keep a stable accuracy, finding τ to directly prune the model to the

corresponding percentage p is not enough. It is possible to obtain the same accuracy only

if pruning is done step by step before reaching the quantity p. Therefore, this percentage

must be divided into subsequent pks that will gradually prune the model until they reach

pS , where S is the number of steps chosen.

Therefore, the model will be pruned S times, each time with a greater percentage of

cut with respect to the initial number of weights Nt. Formally, there will be a sequence

of percentage

{pk}k≤S = {p1, p2, p3, ...pS}

In this work, this steps will be defined as

pk = k
pS
S

(3.4)

which are equally separated and gradual steps of pruning, as pS is divided into S equal

parts and pk refers to the total number of parameters Nt. Indeed, this kind of structure

for pk guarantees that

pk = kp1 (3.5)

This can be easily derived from (3.4) noticing that

p1 =
pS
S

Thus, equation (3.5) in turn means that

{pk}k≤S = {p1, 2p1, 3p1, ...Sp1}

In this way, each pruning step will prune the same amount of parameters α, which is

α =
pS
S
Nt,

This is true also because each pruning step will keep all the previous (k − 1)α pruned

weights to zero and will add its α ones.

For this reason, τ will also become τS and

{τk}k≤S = {τ1, τ2, τ3, ...τS}

28

3 – Pruning

will be a sequence of τk such that each of them satisfies (3.2) with respect to the corre-

sponding pk. In this way, all the S thresholds will correctly follow the weights distribution.

Thinking that equally separated thresholds are associated to equally separated per-

centages is conceptually wrong, and trying to use them may pose some risks: they would

delete more or less weights than desired during itermediate steps, as weights values do

not follow the uniform distribution. As shown in Figure 3.2, weights follow a Gaussian

distribution. It means that

{τk}k≤S 6= {τ1, 2τ1, 3τ1...Sτ1}

Furthermore, the distribution itself evolves in time during the overall pruning stage, mak-

ing an a-priori decision on τk really dangerous; only searching the right threshold at each

step can guarantee the wanted pruning percentage pk.

Concerning the number of steps S, [22] suggests to prune slowly. Using for example

S = 11, considering the eleventh and last pruning step pS close to 100%, it is possible to

obtain an overview on the optimal pruning percentages, aside from very good results as

shown below (section 3.4).

3.3.3 Universal threshold

When networks have more than one matrix, some considerations can be done about the

threshold. These ideas were born in the context of this work and try to study a hidden

degree of freedom available when pruning is applied to the model.

Weights can be considered as unique set, without subdividing it among all the matrices:

τ will be chosen looking at this simple array of elements. In this way, p weights will be

pruned away without caring about the original matrix: if just one of them contains an

adequate number of values below the threshold, they will be cut even if they belong

exclusively to that single matrix. So, in general, some matrices can be pruned more than

the others and just a single threshold is required.

Otherwise, an equally distributed system can be applied, so that each matrix loses the

same amount of elements; alternatively, the same group of matrices. With this approach,

multiple thresholds must be found, separately for each matrix or group of them.

However, the first one seemed the rightful approach. Following the principal idea,

weights must be pruned away according to their utility, which is assumed proportional to

their magnitude value: if the lowest values are in a single matrix, then that matrix is will

be pruned. In this way, it is the algorithm itself to learn which are the best weights to

discard, without arbitrary impositions.

29

3 – Pruning

Experimental results confirm this idea: even if the recurrent matrices U of the LSTM

are pruned in a more aggressive way than W matrices, accuracy keeps stable. When the

pruning percentage reaches 99.9%, the entire group of recurrent matrices are set to 0:

the method identified them as useless. This outstanding result shows the importance of

making the technique as free as possible, because it is strong and powerful enough to learn

by itself. All these results will be better discussed below.

3.4 Results

All the choices performed well in this work, from the linearly separated pk to the number

of steps S, showing also a positive effect on reducing the error of the network quite always.

3.4.1 Weights distribution

Figure 3.2 depicts weights evolution during some of the pruning steps.

Figure 3.2: Weights distributions. Here, just the ones with 0% (only trained), 27%, 45% and 81%
pruning percentages are reported. Pruned weights, which would have produced high peaks on zero,
have been removed for readability.

30

3 – Pruning

It is easy to notice the particular shape of the distribution after each step: it shows

two peaks, as the central core of the Gaussian bell was erased. Also, there is not a

sharp separation on the thresholds, as one might expect. This is because the pruning is

performed just once at each step, and then all the weights begin to evolve again. Thus,

they can be shifted inside the [−τk; τk] region another time. This happens for not so

many weights, as the internal slope of the peaks is steeper than the external one, but this

possibly allows selecting the next-useless weights and saving other more important ones

from the following pruning step: useful weights tends to escape from the possibility of

being cut, as the distribution enlarges. This kind of result is obtained also by other works,

even for feed-forward networks [5].

3.4.2 Accuracy

To better understand what happens to accuracy during the pruning stage, pS was again

set close to 100%1 and for type A the number of steps S was doubled to 22, which is also

a good value due to the fact that usually the optimal pruning percentage is 90% − 95%,

as confirmed by the other works.

Here it is possible to see how this kind of pruning affects the accuracy. The first group

of plots describes the accuracy of the chosen network trained with the little dataset of type

A, with different seeds. The second group of plots shows the training done with datasets

of type B, C and D; for them, S was again halved to 11 due to the long time required for

the script to run.

In general, quite always a very high pruning percentage keeps good accuracy or im-

proves it: during the many experiments performed with different seed especially with the

little dataset of type A, it was rarely worse.

Furthermore, sometimes a 99.97% pruning percentage shows an interesting loss on

accuracy: even if it can be relatively high for type D (4%), it still can be acceptable in

some context, when compression is far more important than full precision. Figure ?? show

some examples.

However, this high pruning percentage introduces a new, significant result: as U ma-

trices of LSTM contain the lowest values, all of them are pruned away. It means that the

recurrent contribution has been erased from the network: the model is now purely for-

ward. Still, it can reach that kind of accuracy. This important result can suggest that a

feed-forward network can also work well and it can be enough, maybe if properly designed.

1Precisely, its value was set to 99.999%. See Chapter 7 for further details.

31

3 – Pruning

Type A shows a great variability (Figure 3.3). Each of them is different in terms of

initial training accuracy and evolution during the pruning phase because the portion of

validation set and test set were chosen randomly for each seed; also, the regularization

effect of pruning is strongly visible here, because the task was easier and the training

examples were fewer.

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=144, S=22

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=192, S=22

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=284, S=22

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=286, S=22

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=287, S=22

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=534, S=22

Training

Pruning

Figure 3.3: Type A, pruning.

32

3 – Pruning

In this second group of plots (Figure 3.4), accuracy scale has been set differently for

each type for better visualization. Here, accuracy keeps quite stable and its evolutions is

always similar for each seed or type.

0 10 20 30 40 50 60 70 80 90 100
80

82

84

86

88

90
TypeB, seed=288, S=11

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
80

82

84

86

88

90
TypeB, seed=376, S=11

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
84

85

86

87

88

89

90
TypeC, seed=289, S=11

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
84

85

86

87

88

89

90
TypeD, seed=205, S=11

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
84

85

86

87

88

89

90
TypeD, seed=176, S=11

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
84

85

86

87

88

89

90
TypeD, seed=837, S=11

Training

Pruning

Figure 3.4: Type A, B and C, pruning.

33

3 – Pruning

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=192, S=22

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
82

84

86

88

90
TypeC, seed=289, S=11

Training

Pruning

0 10 20 30 40 50 60 70 80 90 100
82

84

86

88

90
TypeD, seed=205, S=11

Training

Pruning

Figure 3.5: Pruning with also 99.97%-step is shown.

34

3 – Pruning

Figure 3.6 shows the distribution of the non-pruned weights among the matrices: a

blue dot in position (i, j) stands for wij 6= 0. These are the two group of matrices: the

four recurrent ones, U , and the four forward ones, W . This is a pruned model of type A

with 95% of pruning percentage.

The only matrix with a great amount of non-zero weights is the last one, which is Wc,

the matrix of the candidate memory. It also shows regular patterns of non-pruned weights.

Figure 3.6: Non-pruned weights distribution among LSTM matrices.

When the pruning percentage reaches 99.9%, only Wc survives the pruning stage:

again, for example for type D, it shows this kind of regular sparse structure (Figure ??),

which is slightly different from seed to seed.

Figure 3.7: Wc is the only survivor with regular structure when p = 99.9%.

This makes sense, because all the forget gate, input gate and output gate are just

controllers, while Wc carries the true information from the input. Uc, instead, would

35

3 – Pruning

contribute with the old outputs, but, for this kind of task, Wc is apparently enough, like

a direct, single and simple neuronal layer.

36

Chapter 4

Clustering

4.1 Motivation

Looking at the results obtained by the pruning stage, the final distribution of weights

suggested a new idea to further compress the network.

Its particular almost-bimodal shape let intend the importance of those values gathered

in two symmetrical and short intervals, for the great majority of weights were there. It

was clear that the optimization algorithm chose to put them in such a way to minimize the

total error, thus underlining the effectiveness of these two ranges of values. Nevertheless,

as another work suggests, weights on the edges of the distribution must not be forgotten:

following the logic that guided the pruning stage, these high-value weights dominate the

computations among the network because their contribution is significant. For this reason,

both ranges seemed relevant. This guideline led to the idea of approximating the ranges

where the majority of weights were concentrated with two real peaks: all the target weights

will be collapsed to a single value, as if it was a clustering center - here the chosen name.

Figure 4.1: Starting point and goal of clustering. The 0 peak is omitted for readability.

In this way, all the edge-weights will maintain their values, while the concentrated ones

will be unified to their representative center (Figure 4.1).

37

4 – Clustering

This approach can also be seen as an application of the abstract idea that stands

behind the pruning technique: all the weights around a particular value are compressed

towards it, as they are going to be approximated. In this case, two symmetrical centers

will be considered.

However, there is another reason to cluster these values, which will be better explained

in the compression-dedicated chapter (see Chapter 6). Basically, this simplification allows

the normalization of all the weights so that the two clustering centers become 1 and

−1; multiplying the input values by the inverse of this normalizing factor, the result of

weights-input multiplication will remain the same. Therefore, the resulting network will be

a compromise between a binarized - zero or (minus) one - network, with all its advantages,

and a full precision one, with its edge-weights untouched.

It is important to state that this technique is applied after the pruning stage has been

performed. In this way, the two peaks are visible: if not, this algorithm would simply

perform a blind clustering, without any reason to support its choices. Therefore, once

chosen the pruned model where to start from, the clustering procedure will be applied to

further compress it, without touching the pruned weights.

4.1.1 Previous works

Previous works often stop altering the weights distribution after the pruning stage. Still,

other ones modify it in a soft manner or offer different approaches to continue simplifying

it: for example, with weight quantization [1]. With this technique, proposed in different

modalities, weights are substituted by simpler, lower-precision values spread throughout

the distribution, so that they can be represented on a lower number of bits; the original

value is then approximated by some formulas.

The proposed technique does the opposite: most of the values are approximated by

a single one or, to be precise, by two symmetrical ones. So, most of the values will have

a single (double) sample, while the remaining, external ones will have multiple samples -

themselves.

In [1]’s work, weights are balanced for parallel computation: some previously pruned

weights are restored and other ones are set to 0 for the sake of a regular matrix structure;

in [23]’s work, this regularity is accurately studied. In general, networks are distortion-

resistant, as stated by [24], allowing the movement or migration of some weights for savings

purposes: so, these remarks were indeed the foundations of this work.

38

4 – Clustering

4.2 Clustering formalization

The core of this procedure can be represented by the following sentence: if a weight has

a value close to the clustering center, that value will be set equal to the clustering center

itself. Of course, a formal definition for both the emphasized terms must be introduced.

4.2.1 Clustering centers

First of all, the two clustering center λ1 and λ2 will be symmetrical, thus meaning that

λ1 = −λ2 = λ. This choice is due to the shape of the distribution and to the normalization

reason mentioned above. Therefore, from now on, all the reasoning will be performed with

positive weights, i.e. on the positive side of the distribution, and then mirrored.

In this technique, the clustering center λ is a parameter, thus its choice has to be

performed carefully and will have a certain influence on the outcome; this weakness will

be overcome by an evolution of this method shown in Chapter 5. Nevertheless, it is easy

to see that the two peaks of the distribution are necessarily close to the pruning thresholds

found in the previous pruning stage: it means that the clustering center can be set close

to τ , if not to τ itself. To be more general as possible, the degree of freedom is transferred

to a more meaningful parameter, which is the threshold shift δ. In this way, λ becomes:

λ = τ + δ

Usually δ will be small and positive: during the pruning phase, only few values will re-

enter the pruned range below τ , meaning that the candidate center λ will be just to the

right of τ . This is true either if we want to choose the mode of the distribution as λ or

take a more weighted mean sample inside the peak-dominated range (Figure 4.2).

Figure 4.2: Choice of λ.

39

4 – Clustering

4.2.2 Clustering radius

Once δ is chosen, the procedure can start clustering weights that are close to λ. The

definition of close to relies on the introduction of another parameter: the radius ρ. All

the positive weights wj belonging to the interval [λ− ρ;λ+ ρ] are close to λ (Figure 4.3).

Figure 4.3: Clustering radius and ρ-closeness.

We can also state this sentence using the concept of distance: all the weights wj with

a distance from λ lower than or equal to ρ are close to λ. For we are speaking about

one-dimension Euclidean distance, its formula can be written in the following way:√
(wj − λ)2 = |wj − λ|

So, a weight wj > 0 is ρ-close to λ if this condition holds:

|wj − λ| ≤ ρ (4.1)

This condition is valid only for positive weights because λ is equal to λ1, which is the

positive clustering center; instead, negative weights must get clustered not because of their

ρ-closeness to λ1, but because of their ρ-closeness to the negative one, λ2 = −λ1 = −λ.

Thanks to this symmetry, saying that a negative weight wk is ρ-close to −λ is equivalent

to say that its absolute value |wk| is ρ-close to λ.

Therefore, we can extend (4.1) also to negative weights, without having two separate

formulas for the two clustering centers: a generic weight wj is ρ-close to λ or −λ if:

||wj | − λ| ≤ ρ (4.2)

40

4 – Clustering

The choice of ρ is again to be performed carefully: but in this case, the algorithm

can try several values and pick the one not worsening the network accuracy, making a

compromise between it and the amount of clustered values - which means compression

and operations savings, as explained in Chapter 6.

4.2.3 Clustering formula

The simpler sentence introduced at the beginning of this section (section 4.1) can now

become a more complete and formal statement to explain the clustering procedure: all the

(positive) weights which are ρ-close to λ will be clustered to λ; all the (negative) weights

which are ρ-close to −λ will be clustered to −λ; as previously said, pruned weights will

remain pruned; finally, all the other weights will keep their value. This can be summarized

up into the following, final clustering formula:

Cluster(wj) =


0, if wj = 0

sign(wj)λ, if wj 6= 0 and ||wj | − λ| ≤ ρ

wj , otherwise

(4.3)

4.3 Clustering time and modality

As it is for pruning (see Chapter 3), this technique will be applied together with a short

retraining to be sure that accuracy keeps stable. Again, a slowing factor γc is introduced

into the update formula of the gradient descent algorithm, similarly to equation (3.3):

~wt+1 = ~wt − γc~η �∇LM (~wt) (4.4)

and its value can be around 0.05, as found empirically.

Furthermore, in order to be as soft as possible, the step-by-step approach will also

be used here: the radius ρ will be substituted by a sequence of radiuses {ρk}k≤S linearly

increasing at each step k, and their limit ρS will be set to λ in order to bettere explore

all the possibilities. So, each clustering step will start from the result of the previous one,

building a progressive clusterization around the same λ.

For the same reasons shown for pruning, also the clustering centers can be considered

separately for each matrix. However, as their value would be arbitrary anyway, this

approach was not explored: instead, it evolved in a more sophisticated technique, precisely

based on the importance of λ’s position, which will be explained in Chapter 5.

41

4 – Clustering

Aside, another degree of freedom can be used, where two alternative are possible:

clustering can be revocable or irrevocable. Finally, the optimizator can interact in three

different ways with the clustering procedure.

All of these aspects will be accurately discussed below.

4.3.1 Revocability

4.3.1.1 Irrevocable clustering

This approach is based on the same idea of the pruning technique. In this case, the (4.3)

formula is applied once at the beginning of each step: thus, the model gets clustered once.

All the weights ρk-close to the two clustering centers are permanently set to ±λ; then, the

remaining non-pruned weights evolve as normal during the retraining phase to compensate

this change. This is too much restrictive.

4.3.1.2 Revocable clustering

This approach can be seen as the most general one. Here, clustering is done during the

retraining phase. It means that the clusterization is performed after each update, i.e. for

each mini-batch, depending on the evolution of weights. In this way, the ρk-closeness is

checked not simply for wj , but for wj + ∆wj : in other terms, the condition is evaluated

after the (4.4) is applied by the optimizer, where for the sake of brevity

∆wj = −γcη(wj)
∂LM
∂wj

(wj)

With this formalism, considering wj as the weight at time t, while wj +∆wj is the weight

at time t+ 1, the clustering formula (4.3) becomes

Cluster(wj , ∆wj) =


0, if wj = 0

sign(wj +∆wj)λ, if wj 6= 0 and ||wj +∆wj | − λ| ≤ ρ

wj +∆wj , otherwise

(4.5)

To be precise, if wj = −∆wj , this formula would also prune weight wj ; practically this

case cannot happen, as weights do not move so much during retraining, also because of the

slowing factor. Even if it was possible, it would mean that wj arrived to zero because the

loss was - at least locally - lower, and another pruned weight can just improve compression.

However, it is still possible to keep track of pruned and not pruned weights to avoid this

problem; of course, performing these checks requires memory and time.

42

4 – Clustering

With this formula, which can be considered as a complete update expression wrapping

the gradient descent one, weights can exit or enter the two clustering intervals, so that

they can better adapt to this new forced shape.

When ρ is reasonably small, AdaDelta’s gradients accumulation can eventually allow

a weight to jump far than ρ itself, if necessary. Of course, the same is true for a weight

on the edge of the interval pushed in: it will be immediately clustered into ±λ.

4.3.2 Clustering awareness

The gradient descent algorithm can be informed or not about the clustering procedure.

This distinction stands in the way in which the clustering formula interacts with AdaDelta’s

updates: they can be mixed with different degrees of entanglement.

In particular, the AdaDelta optimizator can be

• unaware of the clustering procedure;

• totally aware of the clustering procedure;

• partially aware of the clustering procedure.

4.3.2.1 Unawareness

The unaware approach is quite equivalent to the irrevocable clustering. If the updates are

not playing any role in the clusterization, it is useless to apply the clustering formula (4.5)

for each mini-batch. Weights will evolve normally during the retraining phase; of course,

clusterized weights must be kept to ±λ or all this phase would be useless. Again, this is

not a good choice.

4.3.2.2 Total awareness

The totally aware approach is instead quite equivalent to the revocable clustering. Here,

weights must follow all the restrictions imposed by the clustering stage; gradients will be

computed on ±λ for weights not able to escape the attraction area with a single update,

because they would return there. It is also possible to add a regularization term to the

loss function to represent that a movement lower than ρ would have no immediate effect

on a clusterized weight, while a little movement towards the clusterization intervals would

imply a jump on ±λ; this expedient would led to more meaningful and informed gradients,

but would also be difficult to insert without adding discontinuous - and so not derivable

- terms to the function. Instead of doing so, similar wrong situation will be eventually

43

4 – Clustering

corrected by subsequent runs of the update algorithm, which will extract or re-insert a

weight into the clusterization areas: auto-correction can substitute this information.

4.3.2.3 Partial awareness

The partially aware approach is based on the idea of having two separate copies of weights:

~w0, which can assume all the continuous values, and ~wλ, which is restricted to the dis-

cretization operated by the clustering procedure in the two intervals around ±λ. At the

beginning, ~w0 and ~wλ would be equal because clustering formula (4.3) would have been

applied on weights to start retraining. Then, ~w0’s elements will start to evolve normally,

without any kind of restriction, following the proper gradients indications.

Gradients will be computed in ~w0, but applied to update ~wλ elements too: this is very

different from the normal approach and the reason is the following one. Weights on ~wλ,

which are the ultimate target of this phase, will move with the same gradients of ~w0, but

they will also be clusterized, possibly obtaining a different result from the ones reached

by unaware and totally aware clustering. In fact, in the totally aware clustering all the

gradients are computed in and applied to the ~wλ point; in the unaware approach, gradients

are computed in and applied to ~w0, while ~wλ is created as a clusterized copy of it. Here,

instead, ~wλ is updated as

Cluster(Wλ, ∆W0) 6= Cluster(Wλ, ∆Wλ) (4.6)

To imagine why this inequality holds, it is enough to think about the simple update:

Wλ +∆W0 6= Wλ +∆Wλ

This is true only after the first update: there, W0 = Wλ and so ∆W0 = ∆Wλ, but there-

after Wλ is clusterized and so it starts a different journey (∆W0 6= ∆Wλ) as derivatives

are computed in different points.

This approach is quite complex and this partial blindness is risky. First experimental

results were indeed not so good; eventually, for this approach was difficult to be justified, it

was discarded: gradients would have been applied far from their neighborhood of validity,

as explained in Chapter 2. Therefore, their updates are not guaranteed to be meaningful

or right. A similar problem is further and better discussed in Chapter 5 for spiking.

44

4 – Clustering

4.4 Results

As said, revocable and total aware clustering was chosen for its best performances. The

following discussion and analysis of results will refer to it.

4.4.1 Weights

The evolution of weights distribution during some of the steps is shown in Figures 4.4 and

4.5. Weights escape from or enter to the clustering region during the retraining; as the

radius enlarges, most of the escaped ones will be re-clusterized during the following step.

Zero peak is removed and the ±λ ones are cut to better show the remaining weights.

Figure 4.4: First steps of clustering.

45

4 – Clustering

Figure 4.5: Last steps of clustering.

4.4.2 Accuracy

Even if it often improves over the original training accuracy of type A, clustering results

show a little worsening with respect to the starting pruned model, which was taken with p

almost equal to 95% - usually the optimal value for type A. Figure 4.6 shows this behavior,

where δ was set to 0.03, but this value is quite arbitrary and depends on the closest local

minimum.

Even if it was an improvement over the training accuracy, the clustering technique

evolved in something with more solid mathematical bases, as explained in the following

chapter. For this reason, this method was not tested on the other types; furthermore, its

resulting compression would have been less powerful than the spiking one (see Chapter 5).

46

4 – Clustering

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
76

77

78

79

80

81

82

83
TypeA, seed=192, S=22

Training

Pruning

Clustering

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
76

77

78

79

80

81

82

83
TypeA, seed=284, S=22

Training

Pruning

Clustering

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
76

77

78

79

80

81

82

83
TypeA, seed=287, S=22

Training

Pruning

Clustering

Figure 4.6: Clustering results.

47

Chapter 5

Spiking

5.1 Motivation

Even if not astounding, the results of the clustering method seemed quite good in an

accuracy-compression compromise perspective: a local, acceptable minimum has always

been reached, meaning that the weights collapsing approach was working. So, several

ideas arose to improve this methodology.

Looking at the distribution of weights after the clustering stage, and in particular

for high values of ρ, it is possible to notice the conglomerations of edge-weights standing

beyond the clusterization areas. This result was not only predicted, but also wanted: it

was done to respect the presumed importance of high-valued weights. But what would

happen if this concept was abandoned?

As a first step, instead of totally drop them, it could be possible to cluster the remaining

weighs in other two groups, using a secondary clustering procedure to collapse them around

a couple of opposite centers. In this way, the distribution would show five peaks, meaning

that just five values would be possible for weights (Figure 5.1).

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

20

40

60

80

100

Figure 5.1: Five peaks of secondary clustering.

Of course that would led to a significant compression, if done with a proper encoding, which

48

5 – Spiking

was the guideline of this improvement effort and research. Still, stronger approaches and

ideas are possible, which do not require the introduction of new parameters such as the

secondary clustering centers. For example, it could be possible to enlarge on one side

the clusterization areas in order to include the edge weights; however, in this case, the

clustering formulation with its symmetry around λ and the peaks would not be adequate

anymore. Therefore, the same problem arises: how to choose the new clustering center.

Such observation was the primary reason that led to this new technique: a smarter

method that can find which are the optimal centers where to collapse all the non-pruned

weights, in order to obtain a distribution with just two pronounced spikes aside from the

pruned elements.

This method is a substitution and an evolution of the clustering technique, which

means that it will start from the pruned model to find the best spiking centers to use.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

20

40

60

80

100

Figure 5.2: Finding the spiking centers: three peaks with the 0s one.

The secondary aspect of this method is the simplification of weights into their two

primitive functions, which are the inhibitory and excitatory ones. As Figure 5.2 shows,

three values will be possible for weights: zero, σ and −σ, calling ±σ the spiking centers.

Furthermore, if weights are normalized, it is possible to obtain a great result: a ternar-

ization of the model, where weights can only be 0, 1 or −1, with all the benefits implied.

All these aspects will be better explained in the dedicated chapter Chapter 6.

5.1.1 Previous works

This technique, as evolution of the clustering one, finds its inspiration in the same previous

works. Also, it is very similar to a binarization, like in [25]’s work, where weights are fully

49

5 – Spiking

binarized to +1 and −1: while this approach was initially believed impossible, or not able

to keep a stable accuracy, recent works have demonstrated the opposite.

In particular, after this technique was fully developed, a similar algorithm has been

found in literature [7], applied for a different network - a convolutional one - and with

different purposes and motivations: as explained below, in this work the spiking center is

updated thanks to a weighted sum, which is a scalar product, instead of a simple average

like in [7], even if the mean itself was the conceptual starting point; furthermore, there

different values are found for each layer and filter, making the general extraction of a single

spiking center impossible - and all the advantages it implies. A fundamental difference

stands also in the way the weights are updated. Here, gradients and updates are computed

and applied always to the same spiked matrix, because weights are immediately set to σ,

without the hard-to-justify mix of having a normal copy of matrices running thanks to the

gradients computed on other points, as it was for the discarded approach for clustering:

indeed, moving a weight on the direction found into another point can possibly take to a

maximum, or in general will not lead surely to a minimum. In this technique, instead, the

directions are computed regularly and are projected on the restrained searching space.

Also, this spiking technique is applied after a training stage and a pruning phase to

learn which weights are significant, and it requires a little number of epochs, because

it is aimed also to improve network performances, if possible. Furthermore, it can be

applied independently from the methodology used to initially train the network and, in

future works, this approach will be modified to find the better weighting strategy for the

updates, as explained below. Instead, in [7]’s work, the network is directly trained with

these mixed gradients.

5.2 Starting point

To learn the position of the spiking center σ, the gradient descent algorithm will be used

again, and in particular its AdaDelta version. However, differently from the previous

methods, its ability to find a local minimum will not be used to retrain and repair the

model, but as a searching guide to move into a constrained solution space. In other words,

this method will directly find σ while minimizing the loss function, using the information

provided by AdaDelta, instead of a blind and exhaustive search throughout all the possible

values. For this reason it could also be seen as a new constrained version of the SGD

algorithm and AdaDelta itself, in some ways. In this sense, it is a great improvement over

the clustering technique, which has an arbitrary choice of its centers.

50

5 – Spiking

Also, the step-by-step approach has no meaning here. Thus, only few epochs will be

required for the algorithm to find σ. In the terms of previous techniques, just a single

retraining will be necessary.

Again, a slowing factor γs will be introduced, better discussed in section 5.4.

5.2.1 Primordial spiking procedure

The spiking center is found by using all the information available: initially, this was done

by a simple arithmetic mean, which instead hides several fundamental weighted aspects

explaining its effectiveness: they will be introduced with the complete new formalization.

Here, the primitive version will be shown.

First of all, because of the intrinsic symmetry of the problem, the absolute values of

updated weights |wj +∆wj | is taken. Signs are discarded because, of course, computing

an arithmetic mean on quite symmetrical and opposite values would result in a spiking

center close to zero, which is not useful. Also, the spiking center σ must represent not

only the positive or negative half of weights, but all of them, and so the absolute value

allows them to equally participate in a single computation instead of having two possibly

different means for the positive σ1 and negative σ2: the identity σ = σ1 = −σ2 must hold,

as it was for λ, otherwise the idea of having equal inhibitory and excitatory strengths

would not be satisfied and all normalization process could not be applied anymore. By

performing a single global computation, this equality is automatically reached.

After that, the mean can be applied to obtain the positive spiking center. It is impor-

tant to explicitly state that pruned weights are excluded from this computation: otherwise,

their contribution would be a huge bias. It would shift back σ, making the non-pruned

weights unable to significantly participate into the mean. This is especially true for highly

pruned models, where the 90− 95% of weights are zero.

Then, exactly as it is for clustering, all the weights are set to σ or −σ according to the

signs they had, and the spiking process continues for each update, i.e. for each mini-batch.

To summarize,

1. Take the non-pruned weights;

2. Compute their absolute value;

3. Compute their arithmetic mean;

4. Set them to ±σ according to their signs.

Figure 5.3 shows this process in a graphical way.

51

5 – Spiking

As explained below, this process will be substituted by a smarter one (see section 5.3),

which is its natural evolution.

Figure 5.3: Primitive procedure to find σ.

5.2.1.1 Grouping matrices

When networks have more than one matrix, like LSTMs and GRUs, a single σ is required

for each of them to obtain matrices with only 0, 1 and −1 with the normalization process.

Each matrix will have weights ∈ {−σ; 0; σ}, possibly with different values of σ.

However, this restriction is not mandatory. It is possible to perform the spiking average

on groups of matrices to find a common σ. The number of spiking centers σ is strictly

related to the number of operations savings, so this idea can lower them.

To be precise, operations are saved only if the n matrices to be grouped multiply the

same vector. See Chapter 6 for further details.

Experimental results show that this approach is valid (see section 5.4). For example,

it is possible to group matrices with similar jobs, as they have similar distributions. In

the LSTM case, grouping the four input matrices W and doing the same with U matrices

52

5 – Spiking

is a good idea; instead of having eight different σ values, just two will be used. As similar

distributions and jobs will reasonably lead to very similar σ values, it is useless to keep

four distinct spiking centers which differ by a tiny number.

To be precise, even this two σ values were very similar, but the W matrices and the U

matrices multiply two different vectors, ~x and ~h, meaning that a further grouping would

not have saved any other operations.

5.2.2 Simple spiking formula

Formally, the initially found spiking procedure can be written as:

Spike(wj , ∆wj) =

0, if wj = 0

sign(wj +∆wj)σ, if wj 6= 0
(5.1)

It is very simple because all the complexity is hidden by σ, which conceals the details of

its computation as:

σ =
1

Ns

Ns−1∑
j=0

|wj +∆wj | (5.2)

This is the arithmetic mean introduced above, where Ns < Nt is the number of non-

pruned weights {wj}. Remembering the definition given for ∆wj (??), equation (5.2)

above becomes:

σ =
1

Ns

Ns−1∑
j=0

∣∣∣∣wj − γsη(wj)
∂LM
∂wj

(wj)

∣∣∣∣ (5.3)

η’s properties and the derivative-dependent updates are part of the motivations why this

spiking procedure works so well (see section 5.4 for results) as explained in the dedicated

section below.

5.3 Spiking formalization and effectiveness

Even if the initial choice of using the arithmetic mean can seem arbitrary or too much

simple, it is not. The true spiking formula, which is a scalar product, will explain why.

This method inherits all the good properties held by AdaDelta, and SGD algorithm

in general. It is a training in full, with an appropriate and particular initialization, if we

consider the previous phases as a black box initializer.

Three are the main reasons:

• The hidden weighted formula behind the arithmetic mean;

53

5 – Spiking

• The (huge) amount of pruned weights;

• The stochasticity of mini-batches.

While stochasticity and its ability to escape from only-locally optimal solutions are

the same considered for general SGD, thus already explained in Chapter 2, the other two

reasons are particular for this method and require a longer explanation.

5.3.1 True weighted spiking formula

The first reason is represented by the adaptive learning rate η and the gradient: each

update is weighted depending on η and the gradient. Thus, each wj moves in a weighted,

different way. This inevitably results in a sort of weighted arithmetic sum of wj , where

one wj can have more or less strength in pulling the mean σ towards itself.

To better formalize this idea, equation (5.2) can be written separating positive and

negatives w∗j = wj +∆wj :

σ =
1

Ns
(
∑

j:w∗j>0

(wj +∆wj) −
∑

j:w∗j<0

(wj +∆wj))

which can be further manipulated:

σ =
1

Ns
(
∑
w∗j>0

wj +
∑
w∗j>0

∆wj −
∑
w∗j<0

wj −
∑
w∗j<0

∆wj) =

=
1

Ns
(

Ns−1∑
j=0

|wj | +
∑
w∗j>0

∆wj −
∑
w∗j<0

∆wj) =

=
1

Ns

Ns−1∑
j=0

|wj | +
1

Ns
(
∑
w∗j>0

∆wj −
∑
w∗j<0

∆wj) (5.4)

The first term of the last member (5.4) is the arithmetic mean of the previous weights’

values wj , i.e. before the ∆wj is applied. Aside from the first update, all the weights are

always set to ±σ: it means that the first term is equal to the previous σ, here called σt,

because |wj | = σt,∀j < Ns.

1

Ns

Ns−1∑
j=0

|wj | =
1

Ns

Ns−1∑
j=0

σt =
1

Ns
Nsσt = σt

54

5 – Spiking

The second term of (5.4) can be seen as ∆σ, the update of the spiking center. Therefore,

this technique is finding the best σ applying the same principles used for wj :

∆σ =
1

Ns
(
∑
w∗j>0

∆wj −
∑
w∗j<0

∆wj) (5.5)

σt+1 = σt +∆σ

which is equal to the update formulation used for wj . Also, joining the two sums of (5.5)

with a general term Λj instead of ∆wj to keep into account the right sign, and extracting

η(wj) to underline it Λj = η(wj)Λ
∗
j , we obtain:

∆σ =
1

Ns

Ns−1∑
j=0

Λj =
1

Ns

Ns−1∑
j=0

η(wj)Λ
∗
j

So, the spiking method updates the spiking center with a weighted sum of Λ∗j ,

σt+1 = σt +
1

Ns

Ns−1∑
j=0

η(wj)Λ
∗
j (5.6)

where, if wj +∆wj > 0 and wj = +σt, with the definition (??) of ∆wj , Λ
∗
j can be written

as:

Λ∗j = −γs
∂LM
∂wj

(σt)

so it depends on the partial derivative of the loss function. The derivative is computed

in wj = σt because if wj + ∆wj > 0 it is unlikely that wj < 0 (wj = −σ): due to the

slowing factor and because weights inhibitory or excitatory nature has already been learnt

previously, weights practically keep their sign after the update. However, to be more

general as possible,

Λ∗j = −sign(wj +∆wj)γs
∂LM
∂wj

(sign(wj)σt)

but practically:

Λ∗j = −sign(wj)γs
∂LM
∂wj

(sign(wj)σt) (5.7)

In this sense, (5.2) is not a simple arithmetic mean. As shown by equation (5.6) and

knowing the formulation of η, σ is updated by a weighted arithmetic mean of gradients’

components. So, if a weight is very far from its optimal value, its associated partial

55

5 – Spiking

derivative would be high, thus it will contribute in a sensible way to the mean and to σ’s

shifting.

In other words, averaging the weighted gradients will still be an optimum search, but

instead of moving in a totally free space, weights will move on a constrained one, departing

from or approaching to the origin - here the meaning of the absolute value. Indeed, Λ∗j
values will be positive if the actual point must get away from the origin, or negative

otherwise.

However, properly, the constrained space is half of a straight line, thus a segment, and

it is a sort of semi-bisector : its normalized direction is given by a vector ~e in the solution

space defined as

~e =
~s

||s||

where ~s is a vector whose components sj are

sj = sign(wj)

The norm of ~s is:

||s|| =

√√√√Ns−1∑
j=0

sign(wj)2 =

√√√√Ns−1∑
j=0

1 =
√
Ns

where Ns is the number of dimensions of ~s, so the amount of non-pruned weights.

In practice, by writing W in its vectorized form ~w by columns or rows, as done for

the training phase, all the weights, and thus the solution, can be found just along this

direction, and it is

~w = σt~s

As explained above, some components of the direction can theoretically change, because

wj can potentially change sign: indeed, the solution space is the set of all the possible

semi-bisectors, and the real definition of sj is sign(wj + ∆wj), but for simplicity the

explanation will concentrate on one of them only.

Figure 5.4 shows this remark in a graphical way. Supposing the original matrix is

a simple 5 × 5 pruned until 2 positive weights wx, wy and 1 negative weight wz are left

(so with a reasonable 88% pruning percentage), the solution space can be represented in

three dimensions and becomes a segment, whose direction is ~s = (1, 1,−1)T . If the actual

solution ~w = (wx, wy, wz) = (σt, σt,−σt) is in the attractive valley of the local minimum

H, then −~∇L(~w) will point it. However, ~w can only move in ~s direction, which is ~e: so, it

is possible to find the projection of −~∇L(~w) on ~e to know which is the best movement ∆σ

to get as close as possible to H: getting away from the origin or not. This is the ultimate

56

5 – Spiking

sense of this algorithm: lowering or increasing σ to get close to the minimum in the best

approximated way. This projection can be represented in two dimensions anyway, because

it lays on a plane with the semi-bisector: the solution space dimensions do not matter.

Semi-bisector

Optimum H

Current position

Optimal spiking center

Update

Update projection

Figure 5.4: Projection on the semi-bisector.

The projection is found by using the scalar product between −~∇L(~w) and ~e:

〈~e,−~∇L(~w)〉 =
1

||s||
〈~s,−~∇L(~w)〉 =

1√
Ns

Ns−1∑
j=0

(−sj
∂L
∂wj

(sign(wj)σt))

So, remembering the definition of sj , it becomes:

1√
Ns

Ns−1∑
j=0

(−sign(wj)
∂L
∂wj

(sign(wj)σt))

Finally, if we add the mini-batch influence (the sum over M examples, by simply writing

LM), the slowing factor for the gradient (γs), the learning rate parameter (η) because

for the minimum search we are not simply using −~∇LM (~w) as in the simplified example,

we exactly obtain the definition of ∆σ above, a part from a constant normalization by
1√
Ns

, once know the number of non-pruned parameters, which can be absorbed into the γs

definition and tuning. In particular, the single element inside the previous sum becomes

Λ∗j , by confronting it with equation (5.7). Thus, ∆σ is now:

∆σ =
1√
Ns

Ns−1∑
j=0

(
η(wj)(−sign(wj)γs

∂LM
∂wj

(sign(wj)σt))

)

57

5 – Spiking

So, the complete scalar product in vector and readable notation becomes:

∆σ =
〈
~e,−~η � γs~∇LM

〉
And the final, updating spiking formula becomes:

σt+1 = σt −
〈
~e, ~η � γs~∇LM

〉
Still, σ0 will be computed with the first primitive formula, because of course no previous

σ exists to be updated.

So, the optimality (or a saddle point) H ′ is reached not only when ~∇LM = ~0, which

is the most lucky condition, but when〈
~e, ~η � γs~∇LM

〉
= 0

In other words, this happens when the point cannot move anymore along the semi-bisector

because the only movement possible to reach the true H would be orthogonal to the

permitted direction.

5.3.2 Amount of pruned weights

Starting from a pruned model is effective for two reasons.

First of all, all the useless weights have been cut. As explained in Chapter 3, they

could have been also dangerous because of their possible ability to keep the model in a

bad area of the solution space. Here they would be possibly dangerous too: because of

their huge quantity, which is at least 90% of the total, they would heavily shift σ towards

bad values, overcoming the influence of relevant weights.

Symmetrically, the small amount of non-pruned weights allows each of them to have

a significant influence to the computation of σ, because the mean is calculated on a little

set of values or, by a scalar product point of view, the dimensionality of the problem is

reduced, so that each component can have an important effect on deciding to go far from

or close to the origin.

As a proof of these observations, it is enough to see that this method produces the best

result when applied to highly pruned networks (see section 5.4), which is a great property:

it allows greater compressions and operations savings. In this sense, this technique can

perfectly work together with the pruning method.

58

5 – Spiking

5.4 Results

This method leads to a perfectly spiked distribution, as desired. All the three peaks are

shown in Figure 5.5.

-0.15 -0.1 -0.05 0 0.05 0.1
10

0

10
2

10
4

10
6

Figure 5.5: Weights distribution after spiking, 90% of pruning. Y axis scale is logarithmic because
the two σ peaks are 20 times shorter than the 0 one: each one is an half of the 10% non-pruned
weights.

Of course, σ value has some little variations from seed to seed, but the overall distribution

is the same . The strength of this method stands in its absence of arbitrary parameters,

apart from the slow factor γs, but its value is good when very low. For example, Figure

5.6 shows the γs-accuracy plot of a pruned model spiked with different γs.

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

80.5

81

81.5

82

82.5

83

Figure 5.6: γs-accuracy plot.

59

5 – Spiking

5.4.1 Accuracy

Accuracy keeps stable with respect to the pruning technique. In particular, before the

95% of pruning percentage, spiking method often improves the accuracy of the model. For

type D, just the 90% pruned models have been reported, because spiking’s improvement

over compression are significant when the pruning percentage is high.

Spiking performs very well: for example, until type C (Figure 5.7), the accuracy is

generally higher than the one of the normally trained model and pruned ones, even with

the 90% of weights pruned away. Furthermore, for 99.9% pruned models, there are no

significant degradations when the network is trained with the larger datasets B and C.

When model compression is more important than 1% or 2% of accuracy loss, spiking

method can achieve very good results.

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=144, S=22

Training

Pruning

Spiking

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=192, S=22

Training

Pruning

Spiking

60

5 – Spiking

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=284, S=22

Training

Pruning

Spiking

0 10 20 30 40 50 60 70 80 90 100
70

72

74

76

78

80

82
TypeA, seed=286, S=22

Training

Pruning

Spiking

0 10 20 30 40 50 60 70 80 90 100
82

83

84

85

86

87

88
TypeB, seed=376, S=11

Training

Pruning

Spiking

61

5 – Spiking

0 10 20 30 40 50 60 70 80 90 100
82

83

84

85

86

87

88
TypeC, seed=289, S=11

Training

Pruning

Spiking

Figure 5.7: Spiking accuracies until type C (also in the previous pages).

For type D and pruning percentage 90%, accuracy keeps stable around 88.6% for

various seeds, while the best model found had an only-training accuracy of 88.82% (seed

837). This technique can sometimes find a better minimum with respect to the previous

phases, such in the case shown in Figure 5.8, but in general for p = 90% it shows a

0.2% − 0.3% loss with respect to only-training accuracy, which is still far more than

acceptable.

0 10 20 30 40 50 60 70 80 90 100
87

87.2

87.4

87.6

87.8

88

88.2

88.4

88.6

88.8

89
TypeD, seed=205, S=11

Training

Pruning

Spiking

Figure 5.8: Particular spiking case: only the spiked 90% pruned model is shown.

Also another important result has been found: for type D, with a pruning percentage

62

5 – Spiking

of 81.8%, an accuracy equal to 88.9% has been found (Figure 5.9). This is state-of-the-art

result, and slightly higher, as the best accuracy found in literature with this architeture is

88.89% [16]; also, as an intermediate result during the spiking phase, an 89.048% accuracy

has been found. Probably, properly setting all the hyperparameters and with many runs

(see Chapter 7), an even better result could have been reached.

0 10 20 30 40 50 60 70 80 90 100
88

88.1

88.2

88.3

88.4

88.5

88.6

88.7

88.8

88.9

89
TypeD, seed=837, S=11

Training

Pruning

Spiking

Figure 5.9: State of the art: only the spiked 81.8% pruned model is shown. The y scale is halved
with respect to Figure 5.8.

To conclude, with p = 99.78%, spiking has an accuracy slightly higher than simple

pruned method (84.52% against 84.27%), as Figure 5.10 shows.

0 10 20 30 40 50 60 70 80 90 100
84

84.5

85

85.5

86

86.5

87

87.5

88

88.5

89
TypeD, seed=837, S=11

Training

Pruning

Spiking

Figure 5.10: Spiking with 99.78% pruning.

63

Chapter 6

Hardware-oriented optimizations

and compressions

6.1 Introduction

All the previous methods find their motivation and ultimate goal here. Their effort is

aimed to reduce the number of a network’s parameters or, better, to give the possibility

of a smart implementation on a dedicated device.

The word encoding is used in this work to indicate the reduction of memory space and

accesses required to store and get all the information about the network model, through

the usage of clever codes and similarity patterns.

The word savings here refers to the elimination of a great quantity of operations or

to an alteration of their order to obtain a smarter schedule for network’s functionalities,

which is useful to save computations.

This final stage of the overall process is a manipulation of the representation of net-

works. It can be done off-line because it does not require further retraining: it does not

alter the model, but just its implementation and parameters storing.

It is important to state that even if this phase follows the other ones in practice,

because it must be applied inevitably afterwards, it was the true starting point and the

real motivation of the previous methods. They cannot be separated: spiking was developed

because the compression shown in this work would have been very effective. Clustering

and spiking methods themselves are also part of the compression in its most general sense.

The encoding procedures and operations manipulations introduced below will exploit the

advantages produced by them and will finally explain the reasons behind some choices.

All of these encodings are indeed thought to be easily and efficiently decoded by a

hardware device, in order to reduce the overall number of memory accesses required to

obtain the weights matrices, stored in little sized memories. Also, operations optimizations

are meant to significantly reduce the amount of power consumption and time required by

the dedicated device, using a smarter and quicker scheduling.

64

6 – Hardware-oriented optimizations and compressions

6.2 Previous encodings

The following one is a simple encoding already introduced by other works, such as [1],

which can be used right after the pruning phase. This method is a kind of run-length

encoding (RLE).

6.2.1 Run-length encoding

RLE is based on the idea of compressing the similarities, where a sequence of identical

values is replaced by its length: instead of reporting n sequential values v, it simply stores

that v shows n time, v[n]. For example, the following set of integers is compressed in this

way:

(4, 6, 2, 2, 2, 2, 2, 8, 3, 3, 7, 7, 7, 8)→ (4, 6, 2[5], 8, 3[2], 7[3], 8)

It is easy to notice that when sequences are very long, this encoding is very efficient.

It is also possible to omit the value v in the v[n] notation if it is the only one chosen

for the encoding; this happens in [1], where the only encoded value is obviously zero.

6.2.2 Zeros encoding

The following explanation of [1]’s solution is slightly adapted here in order to better

introduce the new encodings proposed in this work: in this way, they will be easier to

understand.

As the pruning percentage is usually very high, it is common to see long 0-sequences

in the weights matrices. These matrices are seen in their vectorized form, where one row

(or column) is attached to the end of the previous one. In this way they are a long array

of values, which can of course be perfectly encoded. So, supposing A,B,C are different

non-pruned elements, this matrix can be encoded by rows as
0 0 0 0

0 0 0 A

0 0 0 0

B C 0 0

→ (0, 0, 0, 0, 0, 0, 0, A, 0, 0, 0, 0, B,C, 0, 0, 0, 0)→ ([7], A, [4], B,C, [4])

which requires 6 elements instead of 5∗4 = 30 for the full matrix.

On an implementation point of view, counters, the zero-sequences lengths, can be

represented on a lower number of bits with respect to the weights, which here will stand

for non-pruned weights. However, using different sizes for counters and weights arises a

problem: they cannot be identified in the stream of bits, as they have no more structure.

65

6 – Hardware-oriented optimizations and compressions

But knowing that on big, highly pruned matrices the probability to find two non-zero

elements is very low - which is experimentally verified in the analysis done for this work

- it is possible to decide a fixed schema to encode them and to avoid problems. Counters

and weights will be alternated: so, if two weights are adjacent, the counter between them

will be set to zero.

([n1], w1, [n2], w2, ..., [nf], wf)

The starting counter will be set to zero if the original matrix starts with a weight, or to

the relative number of sequential zeros otherwise. It ends with a weight because the last

sequence of zeros is useless and, knowing the dimension of the matrix, it can be implicit.

In the example above, the relative encoding would be the following, inserting a fake

zeros sequence counter between B and C:

([7], A, [4], B,C, [4])→ ([7], A, [4], B, [0], C)

Choosing N bits for the counters, it is possible to represent sequences long at most 2N −1

elements. So, if some sequences are longer, a zero-weight can be inserted to bypass the

problem. This can be useful when only few counters exceed 2N − 1 and adding a bit to all

of them by increasing N would require more space than inserting these fake weights. In

practice, a non-pruned element is considered a weight, even if it is zero, and it is inserted

into the final encoding as if it was a wk. Another motivation for applying this trick can

be the same found in [1]’s work: they wanted word-aligned ([nk], wk) couples, and because

weights were represented on twelve bits, they were obliged to choose N = 4, even if some

sequences where longer than 24 − 1 = 15.

In the example above, choosing to represent counters on two bits would result in the

following encoding, remembering that the limit length is 22 − 1 = 3:
0 0 0 0

0 0 0 A

0 0 0 0

B C 0 0

→ ([3], 0, [3], A, [3], 0, [0], B, [0], C)

Of course this is not the best choice for N , which in this case is instead N = 3.

Even if this encoding seems the best one and can be sustained by weights quantization

and by the reduction of the number of bits required to represent them, this work will

introduce an improvement to further compress matrices and also save operations thanks

to the spiking phase results.

66

6 – Hardware-oriented optimizations and compressions

6.3 Proposed encodings and savings

The proposed optimizations are the outcome of a series of thoughts improved step by

step, following the evolution that produced the clustering technique and then the spiking

method. All these techniques were guided by the idea of normalizing the necessary weights

to avoid performing redundant operations and to increase the similarity inside matrices.

6.3.1 Clustering advantages

The first attempt was done with clustering, which allows an intermediate weights com-

pression and operations saving with respect to the previous works and the new approaches

introduced by spiking.

6.3.1.1 Four-way encoding

Following the RLE idea, clusterized weights matrices allows a possible better compression.

Using the same notation introduced in section 6.2, the following example shows how this

is possible.

By introducing the t[p] notation, where label t is 0 if p is a zeros sequence counter or

t = 1 if p is a non-zero value, the following pruned matrix will have this encoding:
0 0 0 A

B C D 0

0 0 E F

G 0 0 0

→ (0[3], 1[A], 1[B], 1[C], 1[D], 0[3], 1[E], 1[F], 1[G])

Supposing instead to have the same matrix after the clustering phase, so with the same

amount of non-pruned weights in the same position, but most of them clustered into the

two clustering centers λ1 and λ2, the resulting encoding would be the following. Two new

rules are introduced for the t[p] notation: t is λ1 when p is a λ1s sequence counter, and so

for λ2. 
0 0 0 λ1

λ1 λ1 X 0

0 0 Y λ2

λ2 0 0 0

→ (0[3], λ1[3], 1[X], 0[3], 1[Y], λ2[2])

The number of elements required to store the matrix in the first case is 9; in the second

one, it is 6. Of course labels cannot be omitted as it happens for the zero-encoding: here,

the repeated value must be specified to know which it is. But only four values are possible,

67

6 – Hardware-oriented optimizations and compressions

thus meaning that they can be encoded too. Just two bits are necessary to identify them,

as they are only 0, λ1, λ2 and none of them. For example, they can be respectively encoded

as 00, 01, 10 and 11.

As it is easy to see, this encoding can work reasonably well for not too much pruned

matrices; otherwise, its ability to compress λ repetitions becomes useless. When a great

number of weights get pruned away, the probability to find many adjacent λ values is very

low, thus making the zeros-encoding less expensive thanks to its implicit labels.

Other ideas were tested: for example rewriting the matrix as a sum of other ones with

a better possibility of encoding, as it is similarly proposed in the spiking-dedicated section

below, but they were expensive anyway. However, all these ideas were re-adapted and

used afterwards.

6.3.1.2 Operations savings

There is an operation performed by every neural network: the matrix-vector multiplication

~y = W~x (6.1)

where W is the weights matrix, or one of them, and ~x is the input vector; collapsing the

majority of weights into two opposite values can lower the amount of operations necessary

to compute its result. Knowing that most of the weights are equal to the clustering centers

±λ, it is possible to extract it from the matrix:

W = λA

which means to perform an element-wise extraction of λ from all the elements wk, indicated

it in such a way:

wk = λ
(wk
λ

)
= λak (6.2)

so, all the weights gets normalized by λ, which implies that most of the ak elements of A

are now equal to 1 or −1, and this is true when the starting element wk is equal to ±λ.

For example, an extraction on a clusterized matrix can look like
0 0 0 0.1

0.1 0.1 0.3 0

0 0 −0.2 −0.1

−0.1 −0.1 0 0

 = 0.1


0 0 0 1.0

1.0 1.0 3.0 0

0 0 −2.0 −1.0

−1.0 −1.0 0 0


68

6 – Hardware-oriented optimizations and compressions

Thanks to this observation and by manipulating the order of multiplications in

~y = (λA)~x (6.3)

it is possible to drastically reduce the number of products to be computed. Writing the

matrix-vector multiplication (6.3) in its explicit formulation for each element yi of the

result vector ~y, the following equivalences are found:

yi =

M−1∑
j=0

wjxj =

M−1∑
j=0

(λaij)xj =

M−1∑
j=0

aij(λxj) = λ

M−1∑
j=0

aijxj

where xj is the j-th element of the input vector ~x and wj is the j-th element of the i-th

row of W matrix. M is the number of elements in ~x and in W ’s rows. It demonstrates,

obviously, the validity of this property:

(λA)~x = A(λ~x) = λ(A~x) (6.4)

So, looking for example at the first equality of the above (6.4) equation and calling ~z = λ~x,

the matrix-vector product (6.1) becomes:

~y = W~x = (λA)~x = A(λ~x) = A~z

Once the M products represented by ~z are computed, only few of the aijzj are indeed

true multiplications: as previously said, most of aij are now equal to 1 or −1. So, just

M multiplications are needed instead of all the original wijxj ones where wij = ±λ,

which of course are usually much more than M : their quantity is equal to the number of

clusterized elements, by definition. In other terms, once W has been off-line normalized

into A, the number of product required is M plus the ones needed by the remaining non-

clusterized weights. There are also some changes of signs to be performed instead of the

fake multiplications where aij = −1, but there is also a way to avoid them; furthermore,

even the M products can be avoided in some cases, as explained in section 6.4.

Therefore, in formulas, the matrix-vector multiplication is reduced to:

yi =

M−1∑
j=0

aijzj =
∑
aij=1

zj −
∑

aij=−1
zj +

∑
aij /∈{±1,0}

aijzj (6.5)

As a side note, only the second member of the previous (6.4) equalities will be used

for the purposes of this work: this is due to the fact that for LSTMs and GRUs more than

69

6 – Hardware-oriented optimizations and compressions

one W matrix is multiplied by ~x, thus pre-calculating λ~x saves a lot of operations, instead

of post-multiplying each result vector by λ.

6.3.2 Spiking improvements

As it is easy to imagine, the spiking technique can eliminate all the clustering flaws,

improving compression: weights can only assume three values: 0, σ or −σ. In a way

similar to the one applied for the clusterized matrix with (6.2), a normalization can be

applied to its elements by extracting σ:

W = σS

Now, all sk elements are 0, 1 or −1. From a practical point of view, this will only be

useful for operations savings, but it also allows talking about pruned (0) or non-pruned

(±1) weights in an easier manner.

Also, it underlines an extremely important result of spiking: the following encodings

will be independent from the number of bits chosen for weights representation. Once

known the value of σ, only three kind of values have to be stored: thus, they can be

substituted by three simple labels, for example on two bits. All these encodings are an

attempt to take advantage of this detail in different ways.

After this overview, general spiking’s improvements over operations savings will be

introduced.

6.3.2.1 Matrix decomposition encoding

This proposed encoding needs a bit of previous formalization.

A sparse (pruned) matrix W whose elements can assume K possible values v1, v2, ..., vn

apart from 0 can be split into a sum of K matrices

W = (L1 + L2 + ...+ LK) (6.6)

where Ln is a matrix with only two possible values for elements, 0 or vn. It is build setting

to zero all the non-vn elements of W : in this way, in a certain position, just one matrix

will have a non-zero element, so that the resulting sum, which is performed position by

position, will be again W . For example, if K = 2 and values are a and b, the following

70

6 – Hardware-oriented optimizations and compressions

matrix can be decomposed as
0 0 0 0

b 0 0 0

0 0 a a

0 b 0 0

 =


0 0 0 0

0 0 0 0

0 0 a a

0 0 0 0

+


0 0 0 0

b 0 0 0

0 0 0 0

0 b 0 0


These two matrices can now be encoded as an array of alternated counters

[d0][c0][d1][c1]...[ds][cs]

in a sort of RLE manner. These counters implicitly and alternatively refer to a sequence

of 0s or to a sequence of the other value. The only information to be saved is which is

the starting value, and in this case it is 0 for both the matrices. So, discarding the last

counter which is always implicit if matrix dimension is known - both if it refers to a (b)

or 0, because its number can be derived - the example matrices can be encoded as
0 0 0 0

0 0 0 0

0 0 a a

0 0 0 0

 → [10][2]


0 0 0 0

b 0 0 0

0 0 0 0

0 b 0 0

 → [4][1][8][1]

Instead, the original matrix RLE code, which is conceptually equivalent to the previous

counters approach, is:
0 0 0 0

b 0 0 0

0 0 a a

0 b 0 0

→ (0[4], b[1], 0[5], a[2], 0[1], b[1])

Here, the last counter could also be omitted because it is possible to choose a meaning for

omission, too; of course, there is an high probability that a matrix ends with a zero, thus

the best choice is to omit a zero counter if it is the last one.

71

6 – Hardware-oriented optimizations and compressions

So, the same amount of counters is required for the two encodings: in the decomposition

case, 6 counters are needed, 2 for a-matrix and 4 for b-matrix; in the RLE case, always 6.

Nevertheless, labels of the second case require space, too.

Generally speaking, the amount of counters strictly depends on the position of non-

zero elements in the original matrix: considering that they are rarely adjacent, however, it

is possible to state that decomposition encoding and original matrix RLE result in quite

the same amount of elements. As an average case, it is possible to consider this basic

pattern example where the last counter is omitted (matrix ends with zeros) and n and m

are two indefinite length of zeros sequences:

(0[n], a[1], 0[m], b[1])↔ [n][1] ∪ [n+ 1 +m][1]

The two on the right are the encodings of the decomposition matrices. Always 4 values are

required; but in general, for longer arrays, each a element adjacent to a b element reduces

the number of elements required for RLE by one. As said, this eventuality is unlikely, and

can be compensated by the amount of space required for labels.

Also, having two separate codes for the two matrices can be useful for an operations

scheduler.

6.3.2.2 Two-bits encoding

Another approach is to notice that, for three values, just two bits are necessary as an

encoding. So, instead of using an RLE, it is possible to simply encode all the weights

on two bits, for example choosing 00, 10 and 11 for 0, 1 and −1 respectively. Normally,

the fourth code, 01, would be wasted; but in this case, it can be used to produce a

smarter compression thanks to the particular structure of the matrix. The fourth code

can substitute long sequences of zeros, which can be represented by a counter. Counters

will be stored separately, in order to keep the two-bits-structure of the resulting encoding

regular, by using the fourth code like a marker or a pointer: the k-th 01 will point the k-th

counter. Otherwise, counters can be inserted immediately after the fourth code, because

they would be identified by its presence, like a prefix. The amount of bits will be the

same: it is just a matter of decoder design ease. Again, the number N of bits required for

the counters can be chosen properly.

Without this marker optimization, representing a sequence of zeros normally requires

a number of bits equal to two times its length M . So, if 2M is greater than the length

of the representation by means of the fourth code and the counter, which requires N + 2

72

6 – Hardware-oriented optimizations and compressions

bits, the sequence of 00 can be substituted profitably. The condition can be expressed as

2M > N + 2 ⇒ M >
N

2
+ 1 (6.7)

For example, the following normalized spiked matrix can be encoded without using the

fourth code as
0 0 0 −1

−1 0 0 0

0 0 1 0

1 0 0 0

→ 00 00 00 11 11 00 00 00 00 00 10 00 10 00 00 00

but using the fourth code with N = 3, it is possible to shorten the sequence. Below,

the first one is the main stream, while the second one is the counters stream. To make

them better understandable, they are put together with a decimal and human-readable

translation. The letter X will stand for the fourth code, i.e. the marker for sequences

longer than N
2 + 1 = 2.5.

0 0 0 −1

−1 0 0 0

0 0 1 0

1 0 0 0

→
X −1 −1 X 1 0 1 X

01 11 11 01 10 00 10 01

011 101 011

(3) (5) (3)

The first marker X refers to the first counter, and so on. Calling Mk the length of the

k-th substituted sequence, and P their total number, the second optimized encoding saves

a number of bits with respect to the first one equal to

P−1∑
k=0

(2Mk − (N + 2)) = 2
P−1∑
k=0

Mk − P (N + 2)

which is of course the sum of all the savings when condition (6.7) is true, i.e. the difference

between the longer 2Mk bits representation and the shorter N + 2 one obtained by the

use of the fourth code.

In this case, the second encoding has saved 2(3 + 5 + 3) − 3(3 + 2) = 7 bits; the first

encoding is 32 bits long, while the second one is only 25.

As a side note, counters are binary integers without signs, but the representation of

0, i.e. 000, would not make sense: if a counter exists, a sequence exists, thus its length

cannot be zero. This remark allows the counters to be able to represent also the 2N (8)

73

6 – Hardware-oriented optimizations and compressions

value with 000, while normally unsigned integers can not.

There is also another possible improvement. When, on large matrices, only few coun-

ters would require N bits instead of N − 1 - if only few of them are greater than 2N−1 - or

when slicing a sequence into smaller ones is convenient, it is possible to split the counters

into several parts. For example, if in the example above N = 2 is chosen, the following

encoding is found:
0 0 0 −1

−1 0 0 0

0 0 1 0

1 0 0 0

→
X −1 −1 X X 1 0 1 X

01 11 11 01 01 10 00 10 01

11 00 01 11

(3) (4) (1) (3)

The second sequence is split into two parts, so that two counters are obtained. But when

the last sub-sequence representation with N + 2 bits - counters and marker - is longer

than the one with a sequence of 00 - 2M∗ bits if it is long M∗ -, the above substitution

condition (6.7) does not hold: it can be replaced back with 00s. So:
0 0 0 −1

−1 0 0 0

0 0 1 0

1 0 0 0

→
X −1 −1 X 0 1 0 1 X

01 11 11 01 00 10 00 10 01

11 00 11

(3) (4) (3)

which requires two bits less. It is a sort of remainder concept: if two times the remainder

of the integer division between M and 2N is lower than N + 2, thus if two times the

remaining zeros to be represented is lower than the length of their representation with the

fourth code, this back-substitution can be applied. The formula is:

2(M % 2N) < N + 2

In this case, the number of bits required for the encoding with N = 2 and the remainder is

24: the ones required for the encoding with N = 3 requires 1 bit more, 25. When matrices

are larger, this effect can have an high contribution in the total number of bits required.

As always, the last element can be omitted if it refers to a sequence of zeros, thus

making the bits required by this encoding equal to 20 for this example (also the last

counter can be omitted).

74

6 – Hardware-oriented optimizations and compressions

6.3.2.3 One-bit encoding

As word or byte alignment can always be replicated by an intermediate decoder, its re-

strictions can be discarded, especially here where single codes are smaller than a word or

even than a byte. In this way, further compression can be achieved, mixing the ideas of

zeros encoding and two-bits encoding.

If zeros sequences are represented by counters, just two values have to be represented

by a code: 1 and −1. So, they can be coded as binary 0 and 1, only with a single bit. This

was not possible in two-bits encoding, because single zeros, markers and 1 and −1 had to

be of the same length to be identified in the not regular stream, as their positions were

variable. However, using a known, repeated structure like in zeros encoding, it is possible

to recognize a weight-bit against a counter simply by its position. So, the basic repeated

structure can be

[ck], bk

a counter on N bits followed by a weight on one single bit. In this way, the two redundant

bits of the marker are avoided. If two weights are adjacent, the counter is set to zero, but

this is not a huge problem for the rarity of the event, exactly as it was for zero encoding. As

a side note, it means that the zero representation of unsigned integers is again necessary,

so length can go normally up to 2N − 1. For example, the same matrix used for two-bits

encoding becomes, with N = 3:
0 0 0 −1

−1 0 0 0

0 0 1 0

1 0 0 0

→
−1 −1 1 1

011 1 000 1 101 0 001 0 011

(3) (0) (5) (1) (3)

Even if two weights are adjacent, which makes the counter waste very proportionately

strong in this small example, this method still result in a better encoding, requiring 19

bits instead of the best result of the previous one, 24 (16 against 20 removing the last

counter).

However, due to the same remark observed in zeros encoding, if a lower N is chosen

and two counters are needed, the addition of a fake weight is not possible here, because

all the 0 and 1 codes on a single bit are already occupied: but a notable consideration can

be done, which also holds both for zeros encoding and possibly for two-bits encoding as a

further optimization. Even if here elements must be identified by their position, a strict

alternation is not required. Two subsequent counters can be recognized as such thanks

to this hint: if a counter has a follower, it means that its value is set to the greatest one

75

6 – Hardware-oriented optimizations and compressions

possible, 2N − 1. However, the reversed implication is not true: if a counter is set to

2N −1, 2N −1 can be the exact length of the sequence. To overcome this little flaw, a fake

counter set to zero will be inserted afterwards, and it is not a significant waste: maybe,

none of the lengths is perfectly equal to 2N − 1 and generally speaking their amount will

be derisory. In this way, the decoder can perfectly identify a following counter without

confusing it with a weight. Therefore, the basic repeated structure becomes

[ck]
+, bk

where the + sign stands for “one or more”, as it is for regular expressions. So, for example,

if N = 2 is chosen to encode the same matrix without the last 0s sequence:
0 0 0 −1

−1 0 0 0

0 0 1 0

1 0 0 0

→
−1 −1 1 1

11 00 1 00 1 11 10 0 10 0

(3) (0) (0) (3) (2) (2)

this encoding requires again only 16 bits, even if it is applied in the worst case (all the two

improbable situations appear). For example, if the first −1 was in the previous position,

N = 3 would led to 17 bits, while N = 2 only 14.
0 0 −1 0

−1 0 0 0

0 0 1 0

1 0 0 0

→ 010 1 001 1 101 0 010 0 (N = 3)

10 1 01 1 11 10 0 10 0 (N = 2)

Also, two-bits encoding would be worse, even if N = 3 would be better than N = 2,

because just one marker would be used: it would require 21 bits, without the last counter.

For larger matrices, this difference with two-bits encoding will be greater, as markers are

avoided and spiked weights are represented on a single bit.

6.3.2.4 Operations savings

As seen for the clustering technique, it is possible to operate some manipulations on

operations order to perform a significantly lower number of computations. Spiking is far

more efficient in doing so: it works even for highly pruned networks and eliminates all the

non-clustered weights left by its ancestor.

76

6 – Hardware-oriented optimizations and compressions

Following the same procedure shown for clustering with equation (6.3), the matrix-

vector multiplication W~x can be rewritten as

~y = W~x = (σS)~x = S(σ~x) = S~z

by extracting σ from W and calling σ~x = ~z. However, as the S matrix contains only

elements equal to 0, 1 or −1, a great result can be achieved: it is possible to eliminate the

third contribution in the equation (6.5), as there are no more residual weights. It becomes:

yi =
M−1∑
j=0

sijzj =
∑
sij=1

zj −
∑

sij=−1
zj (6.8)

In other words, a fundamental result has been reached: the matrix-vector multiplication

of (6.1) has been reduced to a very limited number of sums, also considering the possibility

to avoid the σ~x product introduced in section 6.4. Furthermore, because of the grouping

shown in Chapter 5, a single σ~x can be used for multiple matrix-vector multiplications,

such as in the case of the four forward matrices of LSTM. For a quantitative estimation

of savings, see section 6.4.

Similarly, it is possible to see this result using (6.6) decomposition and extracting ±σ:

~y = W~x = (P +Q)~x = (σB + (−σ)D)~x = σB~x− σD~x = B~z −D~z

where B and D are binary matrices obtained by P and Q that simply tell which elements of

z must be picked and added together to obtain the elements of ~y. In this sense, separated

codes for matrices can be useful for an operation decoder and scheduler: two accumulators

can add this two separated results, and then a subtractor can give the final result, so that

no change of sign is necessary, and no additional operation at all, too. The number of

operations in formula (6.8) is indeed (p− 1) + (n− 1) additions plus 1 subtraction, where

p is the number of elements equal to 1 and n is the number of elements equal to −1, so

(p− 1) + (n− 1) + 1 = p+ n− 1

operations; by adding together all the elements instead, after a change of sign, the number

of operations would have been p+n−1 additions plus one change of sign for each of them,

so 2(p + n − 1). Even if the change of sign is operated only after the two separate p − 1

and n− 1 accumulations, so p+ n− 2 plus 1 sign change (p+ n− 1 operations), there is

still an addition to be performed, making the first scheduling, represented by (6.8), the

best one. Of course, this additional operation can be preferred in hardware design choices

77

6 – Hardware-oriented optimizations and compressions

if a subtractor is undesired, like a sort of trade-off.

This is the core of this work: up to now, only the properties of number 0 were ex-

ploited in previous works to avoid multiplications after the pruning method. However,

multiplication has two other particular numbers, 1 and −1:

6.4 Final results and comparisons

6.4.1 Encodings

All these encodings were tested on different pruning percentages: of course, higher per-

centages imply higher compressions. The final size of the LSTM network will be compared

to the initial one, where no spiking or pruning has been applied: of course, the compression

factor is computed as the inverse of the final size percentage with respect to the original

one. As shown in Figures 6.1, 6.2 and 6.3, the one-bit encoding is always the best one.

2 3 4 5 6 7 8

2

2.5

3

3.5

4

4.5

5

5.5

6

Two-bit enc

One-bit enc

2 3 4 5 6 7 8

15

20

25

30

35

40

Two-bit enc

One-bit enc

Figure 6.1: Pruned weights: 82%.

2 3 4 5 6 7 8

1.5

2

2.5

3

Two-bit enc

One-bit enc

2 3 4 5 6 7 8

30

35

40

45

50

55

60

Two-bit enc

One-bit enc

Figure 6.2: Pruned weights: 91%.

78

6 – Hardware-oriented optimizations and compressions

2 3 4 5 6 7 8

1

1.5

2

2.5

Two-bit enc

One-bit enc

2 3 4 5 6 7 8

40

50

60

70

80

90

100

Two-bit enc

One-bit enc

Figure 6.3: Pruned weights: 95%.

However, when the pruning percentage reaches very high values, a more simple and

common Compressed row storage (CSR) could be better. Reading the matrix M row by

row, this method saves for each non-pruned element its value and the index in M of its

column: it is a group v of parallel arrays of Ns elements each, where Ns is the number of

non-zero weights. Separately, it stores the index in v of the first non-pruned element of

the row, for each row of M , in order to understand when to change line while decoding

v: another array r, whose dimension is R ≤ n, the number of rows with at least one non-

pruned weight, where n is their total number in M . This simple method can achieve good

performances when the sparsity of the matrix is very high: it needs just (2Ns) + (R + 1)

storage locations, where +1 stands for the element that permits the acknowledgment of

the end of the structures (an index equal to R + 1 as last element of r). To confront it

with the proposed methods, a single LSTM matrix is taken, in order to have its exact

pruning percentage: as shown in Figure 3.6, matrix density is different for each of them.

In general, these two methods performed better (Figure 6.4):

2 3 4 5 6 7 8

1

1.5

2

2.5

CRS

2 3 4 5 6 7 8

40

45

50

55

60

65

70

75

80

CRS

Figure 6.4: The two proposed encodings perform better than CRS.

79

6 – Hardware-oriented optimizations and compressions

But, in a very extreme case, when the pruning percentage is 99.78% and the remaining

36 weights are on R = 31 different rows instead of 36, CRS almost reaches one-bit encoding

(Figure 6.5). After this moment, for example because R < 31, CRS performs better.

However, this example shows that the compression factor is higher than 1000× with only

a 4% of accuracy loss (this is type D, seed 205).

9 10 11 12 13 14

0.09

0.095

0.1

0.105

0.11

0.115

CRS

9 10 11 12 13 14

850

950

1050

1150

CRS

Figure 6.5: Extreme case: limit of one-bit encoding against CRS.

The green value is computed with the formula above, but looking at the bits for a

precise comparison: the values of the elements in v are stored on a single bit (−1 and

1), while their column index is on 7 bits (128 rows); elements in r are represented on

dlog2(Ns − 1)e bits, the minimum to represent Ns − 1, which is the maximum index to

point an element in v. So, with this formula:

Ns + 7Ns + dlog2(Ns − 1)e(R+ 1)

6.4.2 Savings

The multiplications savings can be quantified by the ratio between the total required num-

ber of products after a technique application and the number of initial ones. Originally,

for the LSTM case, eight matrix-vector multiplications must be computed, thus 8n2 prod-

ucts, as matrices are n×n: indeed, one product for each weight. Calling X the number of

required multiplications, the actual saving can be expressed with a number between 0 (no

saving) and 1 (total saving) through this formula, which compares the saved operations

8n2 −X to the initial ones:

φ =
8n2 −X

8n2
= 1− X

8n2

If p is the pruning percentage, then 8pn2 is the number of zero elements, and so the

number of saved multiplications. Therefore, the total number Xp of products after the

80

6 – Hardware-oriented optimizations and compressions

pruning method is:

Xp = 8n2 − 8pn2 = 8(1− p)n2

But calling q the percentage of clusterized weights with respect to the number of non-

pruned weights Ns, the relative method can achieve a better result. By extracting λ, qNs

multiplications can be saved by simply computing λ~x for the forward matrices and λ~h

for the recurrent matrices: the same input ~x is given to the forward group and the same

previous output ~h is given to the recurrent group. So, they are 2n products. The remaining

(1− q)Ns weights have to be multiplied anyway, because they are not normalized to 1 or

−1. Therefore, the total number of multiplications is (1− q)Ns + 2n, or equivalently:

Xc = 8(1− q)(1− p)n2 + 2n

However, the spiking method can eliminate the first term contribution, because all the

weights are spiked: if we see q as the percentage of collapsed weights with respect to Ns,

then q = 1 ⇒ (1 − q) = 0. Indeed, if the two sets of recurrent and forward matrices U∗

and W∗ are grouped to find σr and σf respectively, the spiking technique only requires

the σf~x and σr~h multiplications, thus a number of operations equal to

Xs = 2n

Therefore, generally speaking, O(n) products against O(n2): linear against quadratic.

When matrices are very large, this effect can be very powerful; also, it does not depend on

the pruned percentage, so that savings are very high even p is possibly very low, when for

example compression is not so important but power consumption and time are. Simply

with eight 128× 128 matrix, the saving is

φs = 1− 2n

8n2
= 1− 1

4n
= 0.998→ 99.8%

Nevertheless, if the input vector ~x is given to the network already normalized by σf , then

of course its n products can be saved. Even if this idea can seem strange, in many contexts

it is not: for example, the input of a network can be the output of a previous process or

even another network; it can be arbitrary manipulated for many reasons to adapt it; it

can be simply arbitrary. This is the case of the tested network: the input of the LSTM

unit is a vector whose components are decided during the training phase. So, they can be

normalized by σf , eliminating the necessity of an on-line multiplication at each iteration.

81

6 – Hardware-oriented optimizations and compressions

The resulting number of operations is given by the only σr~h product, and the saving is:

X ′s = n

φ′s = 1− n

8n2
= 1− 1

8n
= 0.999→ 99.9%

Furthermore, also the σr~h product can be avoided in some cases. If a highly pruned

network is chosen, the recurrent connections are set to 0: so, all U matrices are void,

which implies that no recurrent products must be computed. Also, looking at these result,

it can be possible to arbitrary drop them, forcing the pruning algorithm to eliminate

them without touching Wc, because it is the fundamental matrix, as shown in Chapter

3. However, generally speaking, all recurrent products are automatically discarded if the

target network is feed-forward: either if the model was altered or if these methods are

simply applied to feed-forward networks. In this case:

X ∗s = 0

φ′s = 1→ 100%

In this way, spiking can eliminate all the multiplications: while designing a dedicated

hardware device, arrays of multipliers can be totally avoided or enormously simplified if

just n products are necessary.

82

Chapter 7

Implementation of a general tool

7.1 Starting point

A general software tool was developed to train a model and apply all the techniques in-

troduced above. It was written in Python using Theano [26] [27], a library for compiling

and optimizing complex mathematical functions in order to make their execution very fast

with high parallelization on CPUs. Theano can also work very well for GPGPU, which

stands for General-Purpose computing on Graphics Processing Units, a usage of GPUs

which is not related to graphics but simply to exploit its massively-parallel architecture.

This library allows the code to take advantage of GPUs’ computational power in a trans-

parent way, without a change on its lines; this will be useful for future works where this

tool could be used on GPUs, because, for the little studied network, CPU computing was

enough. Furthermore, Theano offers symbolic differentiation capabilities, which are very

helpful for backpropagation and so for neural network modeling.

Because SGD optimizers are nowadays well studied and widely used, many are their im-

plementations. For example, the case-of-study network was written by [15] using Theano;

also, some code to train it was provided, with the standard SGD procedures. This was

very useful, because differently from other higher level libraries where AdaDelta and other

optimizers have already been wrapped in function calls, here all the details were visible

and so they could be manipulated and extended to quickly implement the new techniques

without starting from scratch.

All the experiments were run on HACTAR, one of the two academic computing systems

of Politecnico di Torino [28]. HACTAR is an InfiniBand cluster of 24 nodes which can

perform 9 TFLOPS; each of the nodes has 24 Intel XEON v3 core and 128GB of RAM.

7.2 Description

The developed tool offers a flexible way for optimizing a function with respect to some

variables, which is tipically a network. It also applies one or more of the proposed methods,

showing the resulting matrices.

83

7 – Implementation of a general tool

This tool offers an adaptable and parametrized Python function, whose arguments

allow the specification of some behaviors and can be used to communicate the name of a

file in which further details are listed. These arguments will be explained below, together

with the most important ones of the configuration file.

train_compress(

seed , # [Integer]

max_kilobytes , # [Integer]

prepare_data , # [Function] x, mask , y = prepare_data(x, y)

train , valid , test , # [Tuple of arrays] (array_of_inputs , labels)

build_net_model , # [Function] build_net_model(options)

options_training , # [Dictionary]

options_pruning , # [Dictionary]

options_clustering , # [Dictionary]

options_spiking , # [Dictionary] .

filters , # [Array]

notfilters=None , # [Array]

report_file=’report.txt’, # [String]

configuration_file=None # [String]

)

seed is the integer received by the function to initialize the random numbers generator

for SGD: in this way, passing the same value will generate the same results. This is useful

to exactly repeat an experiment and obtain its precise results.

max kilobytes is a constraint used by the function to choose the model with the best

accuracy among the pruning steps: the best one that can be also compressed at least to

this size with spiking and one-bit encoding will be picked.

prepare data for recurrent network, this function can adapt data of mini-batches in

order to have them on the proper length through the usage of a 0− 1 mask; this is useful

for Theano to make the management of different length sequences simpler and quicker.

train, valid, test are the datasets with the proper label that the network will try

to obtain; of course, just the training set will be used for SGD, while validation set is used

to avoid overfitting and test set is used only for final evaluation. However, just to see test

accuracy evolution during the training phase for tuning purposes, it will be used to print

also the test error with a proper frequency.

build net model is a Python function called before training, pruning, clustering and

spiking to build the model of the network in a Theano format. It specifies and returns the

format of inputs and outputs, together with the Theano cost function to minimize and

other details. Also, it must return a dictionary of weights as Theano variables so that each

matrix (or group of matrices) is labeled with a string name; here, biases are listed, too.

options training, options pruning, options clustering, options spiking are

the arguments received by build net model(options) function, one for each phase. As

84

7 – Implementation of a general tool

it is a totally user-written function, these parameters can be useful to specify different

behaviors for each model. For example, they can be used to specify the use of dropout for

training, but not for the other methods.

filters is an array that specifies which of the matrices will be the target of the

compression techniques, by listing their names in the previously introduced dictionary.

notfilters is an optional array that specifies which of the parameters (matrices, biases

and so on) in the dictionary must also be considered into the max kilobyes account: they

are the non-prunable weights which must be stored respecting the memory constraint.

report file is the name of the file where reports will be written. Aside from the

global and summarizing one, different files will be produced for each technique with further

details. Their name will have this string as a suffix.

configuration file is the name of the file where all optional configurations are listed

in a key<space>value format. They have otherwise default values.

7.2.1 Configurations

Many are the configurations options, so only the most important ones within the following

list will be briefly explained to introduce the significant aspects of the developed tool.

patience 10 # [Integer]

disp_freq 10 # [Integer]

lrate 0.0001 # [Float]

valid_freq 370 # [Integer]

save_freq 1110 # [Integer]

batch_size 16 # [Integer]

valid_batch_size 16 # [Integer]

training_max_epochs 200 # [Integer]

pruning_max_epochs 20 # [Integer]

clustering_max_epochs 30 # [Integer]

spiking_max_epochs 15 # [Integer]

threshold_just_clustering None # [Float]

pruning_steps 11 # [Integer]

clustering_steps 11 # [Integer]

final_radius MAX # [Integer or String]

slow_pruning 0.005 # [Float]

slow_clustering 0.05 # [Float]

slow_spiking 0.00001 # [Float]

choose_just_accuracy true # [Boolean]

trained_model None # [String]

pruned_model None # [String]

threshold_shift 0.0 # [Float]

do_clustering false # [Boolean]

do_spiking_foreach_pruning true # [Boolean]

85

7 – Implementation of a general tool

pruning steps, clustering steps are the number of steps S used for pruning and

clustering.

final radius is the last ρS used to clusterize all the weights. Normally, it is ’MAX’,

as it is set to λ.

slow pruning, slow clustering, slow spiking are the γ slowing factor introduced

with the various methods.

choose just accuracy is used to pick the best pruned model among all the steps: if

it is true, the model with the highest accuracy respecting the memory constraint will be

chosen; otherwise, the model with the best compromise between accuracy and required

size is picked. This compromise is a simple quadratic sum of the two percentages.

trained model is the name of a previously trained model saved in a special format,

npz, which is the same in which the tool saves all of them, so that the pruning phase will

directly start without the launching of a training stage.

pruned model is the name of a pruned model which will be clustered or spiked. The

pruning and the training phases are skipped.

threshold shift is the δ parameter introduced in Chapter 4 to shift the clustering

center λ from the threshold τ .

do clustering tells whether to perform clustering or spiking. Normally, this option

is set to false.

do spiking foreach pruning, if false, the tool performs spiking only on the best

pruned model among all the steps; otherwise, the spiking technique will be applied sepa-

rately for each of them.

7.2.2 Reports

Among the various reports of the tool, the main one lists all the accuracies found by the

various phases. Respecting the format of the starting point script, it prints the error,

which is simply one minus the accuracy. This is an example:

<<<<<<REPORT FILE >>>>>>

TRAINING

Iter: 0 Pruning: 0.0 Error: 0.1118

PRUNING

Iter: 1 Pruning: 0.0911865234375 Error: 0.11232

Iter: 2 Pruning: 0.180961608887 Error: 0.11124

Iter: 3 Pruning: 0.2734375 Error: 0.11112

Iter: 4 Pruning: 0.36450958252 Error: 0.11156

Iter: 5 Pruning: 0.455215454102 Error: 0.11204

86

7 – Implementation of a general tool

Iter: 6 Pruning: 0.545562744141 Error: 0.11268

Iter: 7 Pruning: 0.637092590332 Error: 0.11196

Iter: 8 Pruning: 0.726356506348 Error: 0.11272

Iter: 9 Pruning: 0.817710876465 Error: 0.11416

Iter: 10 Pruning: 0.908699035645 Error: 0.11616

Iter: 11 Pruning: 0.999687194824 Error: 0.15732

BEST ACCURACY (under pruning constraint) --- Iter: 9 Pruning: 0.817710876465

Error: 0.11416

BEST COMPROMISE --- Iter: 10 Pruning: 0.908699035645 Error: 0.11616

SPIKING

Error: 0.111

The other specific reports lists for example the value of the spiking center, the number

of clustered weights and so on. The tool also prints the time required by each step:

this times depends on many factors related partially to the HACTAR cluster and also

to the possible early stop if accuracy does not improve for many epochs. To have an

idea of the order of magnitude for type D, these time are in the order of 4∗104s for each

step. Considering all the 11 steps of pruning, plus training and a single spiking, times of

execution are around 6 or 7 days.

7.3 Pseudocodes

7.3.1 Dichotomic search

The dichotomic search is used to find the right τ for each pruning step. A tolerance of

0.001 is used to obtain the desired pruning percentage in Pseudocode 7.1.

Pseudocode 7.1: Dichotomic search

threshold = INITIAL_VALUE

maxthreshold = MAX_VALUE

minthreshold = MIN_VALUE

perc_notfound = True

search_time = 0

while(perc_notfound and search_time <MAX_ITERATIONS)

pruned_percentage = count_weights_greater_than(threshold)

perc_notfound = abs(pruned_percentage - DESIRED_PERC)>TOLERANCE

if(perc_notfound)

search_time += 1

if(pruned_percentage >pruning_perc)

maxthreshold = threshold

else

minthreshold = threshold

threshold = (maxthreshold + minthreshold)/2.0

87

7 – Implementation of a general tool

7.3.2 Encodings

Pseudocodes 7.2 and 7.3 show how two-bits encoding and one-bits encoding can be im-

plemented. There is also a formula to compute the total number of required bits. As it is

possible to see here, two-bits encoding is far more complex than one-bit encoding.

Pseudocode 7.2: Two-bits encoding

flag_seq = false # Utility flag for printing

two_enc_w = 0 # Total number of ’10’ or ’10’ weights

two_enc_markers = 0 # Total number of ’01’ markers

two_enc_singles = 0 # Total number of ’00’ single zeros

two_enc_counters = 0 # Total number of counters

m_zeros = 0 # Number of adjacent zeros in a sequence

N = TWO_ENC_N # Number of bits used for counters

max_value = 2^N # Max representable value on a single counter

for(i from 0 to length(vectorized_matrix) -1)

if(vectorized_matrix(i) == 0)

m_zeros = m_zeros + 1

else

if(m_zeros <= (N/2 + 1)) # Using single values is better

print_singles(m_zeros) # Print multiple ’00’

two_enc_singles = two_enc_singles + m_zeros

else

print_marker () # Optimization: always a single marker

two_enc_markers = two_enc_markers + 1

if m_zeros < max_value # Single counter

print_counter(m_zeros , N) # Binary value of the counter on N bits

two_enc_counters = two_enc_counters + 1

else

remainder = mod(m_zeros , max_value)

n_counters = ceil(m_zeros/max_value) # Required counters

if(remainder !=0 and 2*remainder <N) # N+2 if n markers

n_counters = n_counters - 1 # Replace last counter

m_zeros = m_zeros - remainder # with ’00’ sequence

flag_seq = true

print_counters(m_zeros , N, n_counters) # On n counters

if(remainder == 0) # Fake counter

print_counter (0, N)

n_counters = n_counters + 1

else if(flag_seq)

print_singles(remainder)

two_enc_singles = two_enc_singles + remainder

flag_seq = false

two_enc_counters = two_enc_counters + n_counters

m_zeros = 0

print_weight(vectorized_matrix(i))

two_enc_w = two_enc_w + 1

Possible last zero sequence can be omitted

total_bits = two_enc_counters*N + (two_enc_singles+two_enc_markers+two_enc_w)*2

88

7 – Implementation of a general tool

Pseudocode 7.3: One-bit encoding

one_enc_w = 0 # Total number of one -bit weights

one_enc_z = 0 # Total number of counters

m_zeros = 0 # Number of adjacent zeros in a sequence

N = ONE_ENC_N # Number of bits used for counters

max_value = 2^N-1 # Max representable value on a single counter

for(i from 0 to length(vectorized_matrix) -1)

if(vectorized_matrix(i) == 0)

m_zeros = m_zeros + 1

else

if(m_zeros < max_value) # True even if the first element is non -zero

print_counter(m_zeros , N) # Binary value of the counter on N bits

one_enc_z = one_enc_z + 1

else

n_counters = ceil(m_zeros/max_value) # Required number of counters

print_counters(m_zeros , N, n_counters) # Print on multiple counters

if(mod(m_zeros ,max_value) == 0) # Add fake counter

print_counter (0, N)

n_counters = n_counters + 1

one_enc_z = one_enc_z + n_counters

m_zeros = 0

print_weight(vectorized_matrix(i))

one_enc_w = one_enc_w + 1

Possible last zero sequence can be omitted

total_bits = one_enc_z*N + one_enc_w *1;

89

Conclusions

State of the art comparisons

The best accuracy reached in literature on IMDB movie review dataset with this LSTM

architecture is 88.89% [16]; other approaches are possible, and the winner of a Kaggle

competition obtained an under ROC curve area of 0.9925 [29]. The aim of this work was

not to reach a better accuracy, but to keep it stable with a great reduction of model ex-

pressiveness, and it has been fully achieved; furthermore, in a particular case, an accuracy

of 89.9% has been reached.

The other main goal was to better compress the network and save operations, which

was again accomplished. The resulting model of LSTM weights matrices is 50− 100 times

smaller than the original one with the proposed one-bit encoding: its exact value depends

on the pruning percentage and the affordable accuracy loss. It can also reach more than

1000× if 4% loss is acceptable. Other works obtained a value equal to 20[1] or 32[7] for

this factor and similar methods.

Final comment

Differently from most of the quantization works, these techniques can compress the net-

work as if it was quantized and can save operations as if it was truly binarized even if

additions and values keep their precision untouched, whatever representation is chosen:

binarization is only virtualized by the extraction of full-precision σ from the matrices.

Of course, these operations savings can be useful for software models, too: the new local

minimum found by these methods can transform a matrix-vector multiplication into a

limited number of sums, which is a great result even for reducing the temporal and spatial

complexity of a software operation.

Comparing the two last and proposed methods, clustering technique led to worse result

probably because λ was arbitrary and not customized according to the weights. Spiking

method, instead, finds the best σ by itself and it is far more powerful: it collapses all

the non-pruned weights together in two values, using a projection on the new constrained

solution space, and can achieve better compression.

Furthermore, pruning and spiking work well together: after the training phase assigns a

role to each connection, which can be positive or negative, the pruning phase finds the right

90

7 – Implementation of a general tool

reduced structure of all the connections, while the spiking phase search for their optimal

value. They can achieve very good compressions thanks to the three-peaks distribution of

the final weights.

Future works

These techniques could be applied to other networks - like feed-forward ones - and for

other tasks, not only for sentiment analysis, to see what happens. However, thanks to the

99.9% pruning, the LSTM model has been transformed into a non-recurrent one, because

all recursive connections have been cut, suggesting inevitably the effectiveness of these

methods also for feed-forward networks.

The spiking center update can be further improved by modifying the learning rate for-

mula, to find the better expression to rescale the partial derivatives. Here, the AdaDelta’s

one has been used, but it is possible that another type of formula can achieve better results

if customized for the semi-bisectors solution space.

Also, instead of trying to approximate a local minimum with a point on the constrained

space, it could be possible to distort the initial space A into another one, D, in order to

directly move the optimum on one of its semi-bisectors.

To improve the compression, as it depends on the number of adjacent non-pruned

elements, an evolutionary algorithm can be applied to swap two or more rows and two or

more columns of the matrix in order to regularize its structure, because each change can

be compensated by simply swapping some elements of the input or the output vector of

the product, without loss.

As a side note, other ideas were discarded during the development of this work; in

future, they can be further studied. For example, it can be possible to train a smaller

network to perfectly reproduce a section k of the encoding bits stream when index k is

given as an input, for each possible k: this will transform memory in computation, in

order to save space while paying power consumptions.

91

Bibliography

[1] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang, H.

Yang, W. J. Dally, “ESE: Efficient Speech Recognition Engine with Sparse LSTM on

FPGA”, FPGA, 2017.

[2] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, D. Marr, “Accelerating Re-

current Neural Networks in Analytics Servers: Comparison of FPGA, CPU, GPU, and

ASIC”, 26th International Conference on Field Programmable Logic and Applications

(FPL), 2016.

[3] Y. Guan, Z. Yuan, G. Sun, J. Cong, “FPGA-based Accelerator for Long Short-Term

Memory Recurrent Neural Networks”, ASP-DAC, 2017.

[4] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y.

Bengio, “Learning Phrase Representations using RNN Encoder-Decoder for Statistical

Machine Translation”, EMNLP, 2014.

[5] S. Han, J. Pool, J. Tran, W. J. Dally, Learning both weights and connections for

efficient neural networks, NIPS, 2015.

[6] S. Han, H. Mao, W. J. Dally, “Deep Compression: Compressing Deep Neural Networks

with Pruning, Trained Quantization and Huffman Coding”, ICLR, 2016.

[7] M. Rastegari, V. Ordonez, J. Redmon, A.Farhadi, “XNOR-Net: ImageNet

Classification Using Binary Convolutional Neural Networks”, ECCV, 2016.

[8] J. Weston, S. Chopra, A. Bordes, “Memory Networks”, ICLR, 2015.

[9] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, “Long-term Recurrent

Convolutional Networks for Visual Recognition and Description”, CVPR, 2015.

[10] N. Grabaskas, D. Si, “Anomaly Detection from Kepler Satellite Time-Series Data”,

Machine Learning and Data Mining in Pattern Recognition, pp.220-232, 2017.

[11] T. Charnock, A. Moss, “Deep recurrent neural networks for supernovae classification”,

The Astrophysical Journal Letters, 2017.

[12] Y. Bengio, P. Simard, P. Frasconi, “Learning Long-Term Dependencies with Gradient

Descent is Difficult”, IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166,

1994.

[13] S. Hochreiter, J. Schmidhuber, “Long Short-Term Memory”, Neural Computation. 9

(8): 1735–1780, 1997.

[14] F. A. Gers, J. Schmidhuber, F. Cummins, “Learning to forget: Continual prediction

with LSTM”. Neural computation, 12(10), pp. 2451-2471, 200.

92

Bibliography

[15] P. L. Carrier, K. Cho, LSTM Networks for Sentiment Analysis, Deeplearning,

http://deeplearning.net/tutorial/lstm.html

[16] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, C. Potts, “Learning

Word Vectors for Sentiment Analysis”, 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies, 2011.

[17] IMDB large movie review dataset for sentiment analysis,

http://ai.stanford.edu/∼amaas/data/sentiment/

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout:

A Simple Way to Prevent Neural Networks from Overfitting”, JMLR, 2014.

[19] S. Ruder, “An overview of gradient descent optimization algorithms”, arXiv preprint

arXiv:1609.04747, 2016.

[20] B. Hassibi, D.G. Stork, G.J. Wolff: “Optimal Brain Surgeon and general network

pruning”, IEEE International Conference on Neural Networks, 1993.

[21] Y. LeCun, J.S. Denker, S.A. Solla, R.E. Howard, L.D. Jackel, “Optimal brain

damage”, NIPS, 1989.

[22] S. Han, J. Pool, J. Tran, W. J. Dally, “A pruning based method to learn both weights

and connections for LSTM”, NIPS, 2015.

[23] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, W. J. Dally, “Exploring the

Regularity of Sparse Structure in Convolutional Neural Networks”, NIPS, 2017.

[24] P. Merolla, R. Appuswamy, J. Arthur, S. K. Esser, D. Modha, “Deep neural networks

are robust to weight binarization and other non-linear distortions”, arXiv preprint

arXiv:1606.01981, 2016.

[25] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, “Binarized Neural

Networks: Training Neural Networks with Weights and Activations Constrained to +1

or -1”, arXiv:1602.02830, 2016.

[26] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron,

N. Bouchard, Y. Bengio, “Theano: new features and speed improvements”, NIPS

Workshop on Deep Learning and Unsupervised Feature Learning, 2012

[27] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J.

Turian, D. Warde-Farley, Y. Bengio, “Theano: a CPU and GPU math expression

compiler”, Proc. of the Python for Scientific Computing Conference (SciPy), 2010.

[28] Computational resources were provided by HPC@POLITO, a project of Academic

Computing within the Department of Control and Computer Engineering at the

Politecnico di Torino (http://www.hpc.polito.it)

[29] Bag of Words meets Bags of Popcorn, Kaggle Competition on IMDB dataset,

https://www.kaggle.com/c/word2vec-nlp-tutorial

93

	Introduction
	Motivation
	Recurrent neural networks
	Neural networks generality
	Long Short-Term Memory (LSTM)

	Training, validation and test set
	Experimental setup
	Thesis structure

	Theoretical background
	Loss function
	Stochastic gradient descent (SGD)
	AdaDelta

	Backpropagation through time

	Pruning
	Motivation
	Prunable weights selection
	Magnitude-based pruning
	Experimental and discarded approaches

	Pruning time and modality
	Time
	Before the training phase
	During the training phase
	After the training phase

	Step by step approach
	Universal threshold

	Results
	Weights distribution
	Accuracy

	Clustering
	Motivation
	Previous works

	Clustering formalization
	Clustering centers
	Clustering radius
	Clustering formula

	Clustering time and modality
	Revocability
	Irrevocable clustering
	Revocable clustering

	Clustering awareness
	Unawareness
	Total awareness
	Partial awareness

	Results
	Weights
	Accuracy

	Spiking
	Motivation
	Previous works

	Starting point
	Primordial spiking procedure
	Grouping matrices

	Simple spiking formula

	Spiking formalization and effectiveness
	True weighted spiking formula
	Amount of pruned weights

	Results
	Accuracy

	Hardware-oriented optimizations and compressions
	Introduction
	Previous encodings
	Run-length encoding
	Zeros encoding

	Proposed encodings and savings
	Clustering advantages
	Four-way encoding
	Operations savings

	Spiking improvements
	Matrix decomposition encoding
	Two-bits encoding
	One-bit encoding
	Operations savings

	Final results and comparisons
	Encodings
	Savings

	Implementation of a general tool
	Starting point
	Description
	Configurations
	Reports

	Pseudocodes
	Dichotomic search
	Encodings

	Bibliography

		Politecnico di Torino
	2017-10-11T17:30:07+0000
	Politecnico di Torino
	Andrea Calimera
	Tesi 226807

