
Politecnico di Torino

FACULTY OF ENGINEERING

Master’s Degree in Computer Engineering

Master’s Thesis

Continuous authentication with behaviometrics
on smartphones

Candidate:

Gabriele Vassallo
Supervisor:

Prof. dr. Silvia Chiusano

Research supervisor:

Dr. ir. D. Preuveneers

October 2017



Summary

The functionalities offered by smartphones are increasing, along with the demand
of stronger security mechanisms. Password based authentication methods for access
control are the only defenses that separate illegitimate users to access sensitive infor-
mation stored on these devices or online services. This thesis research investigates
the effectiveness of using keystroke dynamics to authenticate smartphones users
continuously and at the same time transparently. By using these techniques, the
identity of a user is verified based on his/her way of typing on the device keyboard.
We propose a keystroke dynamics authentication framework whose services can be
integrated into a contemporary Identity and Access Management (IAM) system to
provide continuous authentication capabilities. We implemented privacy-preserving
techniques for our solution − i.e. permutation, substitution and suppression − that
can be used in order to prevent service providers from reconstructing the text orig-
inally typed by users.
We evaluate our solution measuring the authentication accuracy by using real user
data. We also measured and compared the impact on this accuracy when the
privacy-preserving techniques are applied. The Equal Error Rate (EER) obtained
by applying the permutation technique remained around 16% for the ‘authentication
mode’ and 18% for the ‘anomaly detection mode’, the same as the one registered
without using this technique. Whereas, by applying the substitution technique, we
registered an increase of 15% for the first task, and of 11% for the second one.
For the third suppression technique, the EER increased as much as the number of
keystrokes suppressed.
In summary, the key contributions made by this thesis are (1) a server and client
side implementation for keystroke dynamics authentication on mobile, (2) the eval-
uation of state-of-the-art keystroke dynamics techniques using real datasets, (3) the
implementation of privacy extensions on top of existing algorithms.

ii



Acknowledgements

I would like to thank all the people who supported me writing my master thesis
during these last ten months. First of all, I would like to thank Professor Wouter
Joosen and all the people of the Distrinet research group that have steered me in the
right direction with their helpful comments and observations during our meetings.
Most of my gratitude goes to my supervisor, Davy Preuveneers, whose wise guid-
ance, week after week, has made possible the realization of this work. His valuable
knowledge, as well as his constancy in leading me, pushed me to do my best. It was
a pleasure to work with such a professional, interesting and inspiring person.
Furthermore, I would like to thank my Erasmus friends, who brightened my days
during these months in Leuven. Special thanks go out to my roommate, Stefano,
who was always by my side while facing good and bad times, and to Federica, who
kept me going with her endless encouragement.
Finally, I would not be able to have done all of this work without my family in Italy,
especially my parents and my sister, who have been able to send me their support
notwithstanding the distance.
To finish this preface, I would like to thank my assessors for reading this text.

iii



Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Context and problem statement . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Sections overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and related work 7
2.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Behaviometrics and continuous authentication . . . . . . . . . . . . . 8
2.3 Keystroke dynamics for user authentication . . . . . . . . . . . . . . 10

2.3.1 Machine learning algorithms for keystroke dynamics . . . . . . 11
2.3.2 Statistical techniques for keystroke dynamics . . . . . . . . . . 11

2.4 User privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Privacy definitions . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Privacy threats using behaviometrics . . . . . . . . . . . . . . 13
2.4.3 Privacy-preserving solutions for behaviometrics . . . . . . . . 13
2.4.4 Obfuscation techniques to prevent identification by keystroke

dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Gap analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Designing and extending a state of practice authentication plat-
form 17
3.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Chat application . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 State-of-practice architectures . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Identity Access Management systems . . . . . . . . . . . . . . 20

iv



3.2.2 OpenAM system architecture . . . . . . . . . . . . . . . . . . 20
3.2.3 A keystroke dynamics authentication framework . . . . . . . . 22
3.2.4 User authentication, identification and classification . . . . . . 24
3.2.5 Anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Feature extraction and processing techniques . . . . . . . . . . . . . . 25
3.3.1 Timing feature . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 The n-graph data type . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Choosing a statistical approach . . . . . . . . . . . . . . . . . 27
3.3.4 The “R” measure . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.5 The “A” measure . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Integration of the privacy-preserving authentication framework with
the OpenAM system . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Extending the architecture with privacy techniques . . . . . . . . . . 31
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Implementation 37
4.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Server component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Server endpoints and methods . . . . . . . . . . . . . . . . . . 38
4.3 Client component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 RegisterActivity . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 LoginActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 MainActivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.4 Discussion about the client . . . . . . . . . . . . . . . . . . . . 43

4.4 Implementation details of keystroke dynamics analysis . . . . . . . . 44
4.4.1 Training of the user model . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Authenticating the user . . . . . . . . . . . . . . . . . . . . . 46
4.4.3 Retraining of the user model . . . . . . . . . . . . . . . . . . . 47
4.4.4 Calculating the similarity between typing samples . . . . . . . 47

4.5 Privacy-preserving extensions . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Scaling the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Evaluation 53
5.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Dataset 1: Fixed-length text on smartphones . . . . . . . . . . 54
5.1.2 Dataset 2: Free and transcribed text on computers . . . . . . 54
5.1.3 Dataset 3: Transcribed text on smartphones . . . . . . . . . . 55

5.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 Dataset 1: results and observations . . . . . . . . . . . . . . . 57

v



5.3.2 Dataset 2: results and observations . . . . . . . . . . . . . . . 60
5.3.3 Dataset 3: results and observations . . . . . . . . . . . . . . . 60

5.4 Privacy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 The “permutation” technique . . . . . . . . . . . . . . . . . . . 65
5.4.2 The “substitution” technique . . . . . . . . . . . . . . . . . . . 65
5.4.3 The “suppression” technique . . . . . . . . . . . . . . . . . . . 65
5.4.4 Combining the privacy-preserving techniques . . . . . . . . . . 67
5.4.5 Privacy evaluation: observations . . . . . . . . . . . . . . . . . 68

5.5 Validity threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Qualitative evaluation of the non-functional requirements . . . . . . . 70

6 Conclusion 73
6.1 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 75

Appendices 79

A Popularizing article 81

B IEEE article 87

vi



List of Tables

3.1 Mapping of the LINDDUN threat categories to the DFD element types. 34
3.2 The mapping of the LINDDUN threat categories to the elements of

the system DFD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



List of Figures

2.1 Obfuscation techniques for keystroke dynamics (adapted from [33]). . 15
3.1 OpenAM high-level architecture1. . . . . . . . . . . . . . . . . . . . . 21
3.2 An example of an authentication chain in the OpenAM system. . . . 22
3.3 A keystroke dynamic authentication framework design. . . . . . . . . 24
3.4 Combinations for the flight time timing feature. . . . . . . . . . . . . 26
3.5 Computation of the disorder of the two typing samples E1 and E2. . 28
3.6 Complete system architecture design. . . . . . . . . . . . . . . . . . . 31
3.7 Scalable solution for the keystroke authentication framework. . . . . . 32
3.8 DFD representing the data flows in the designed solution. . . . . . . . 33
4.1 Example of a successful registration operation. . . . . . . . . . . . . . 39
4.2 Example of a successful login operation. . . . . . . . . . . . . . . . . 40
4.3 Example of a successful continuous authentication operation. . . . . . 41
4.5 MainActivity View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Example of substitution for the “s” key. . . . . . . . . . . . . . . . . . 50
4.7 Scaling the system among different machines. . . . . . . . . . . . . . 51
5.1 Dataset 1: results for authentication mode. . . . . . . . . . . . . . . . 58
5.2 Dataset 1: results for anomaly detection mode. . . . . . . . . . . . . . 59
5.3 Dataset 2: results for authentication mode. . . . . . . . . . . . . . . . 61
5.4 Dataset 2: results for anomaly detection mode. . . . . . . . . . . . . . 62
5.5 Dataset 3: results for authentication mode. . . . . . . . . . . . . . . . 63
5.6 Dataset 3: results for anomaly detection mode. . . . . . . . . . . . . . 64
5.7 Dataset 3: results for authentication mode with the permutation tech-

nique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.8 Dataset 3: results for anomaly detection mode with the permutation

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.9 Dataset 3: results for authentication mode with the substitution tech-

nique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.10 Dataset 3: results for anomaly detection mode with the substitution

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii





Chapter 1

Introduction

This chapter provides an introduction of the thesis work. Section 1.1 presents the
context and problem statement in order to introduce the reader to the goal of the
thesis, that will be described in more detail in Section 1.2. Then, Section 1.3 presents
the approach adopted to achieve the stated goal, followed with the achieved results
in Section 1.4. The chapter concludes with Section 1.5 giving an overview of the
thesis text.

1.1 Context and problem statement

The usage of smartphones and mobile devices during our day-life has become widely
common. The capabilities of these devices have increased as well, allowing users to
perform disparate kinds of tasks. Rather than simply placing calls, they are used to
store personal information, access online sensitive data, e.g. bank accounts, mak-
ing mobile payments, etc. For this reason, securing wisely these personal devices
is vital. The access control mechanism widely adopted relies on simply unlocking
them with a PIN code, a passcode, or a locking pattern. For some applications that
access remote services on the web, other authentication mechanisms are used. The
password based authentication method is the most universally adopted. By using
this method a user’s identity is verified by asserting the correctness of a secret string.
The string has to be known only by the service provider and the specific user.
The two mentioned access control mechanism, the former performed locally on the
device, the latter with the cooperation of a remote server, expose the same vulnera-
bility. A malicious user, in order to access an illegitimate device, needs only to know
a secret information. This information, that can be a passcode, a PIN, a password
or a locking pattern, can be stolen and replicated easily by skilled attackers. This
poses a great risk to smartphone users. In addition, these methods of authentication
can no longer be used on devices with limited interaction capabilities. For instance,
smartwatches does not let users type passwords or PIN codes. These are some of the

1



1 – Introduction

reasons that are making growing the interest in alternative authentication strategies.
This is the case for what is called active, or continuous, authentication. With this
new paradigm of authentication the identity of a user is continuously verified, pos-
sibly after the first login phase where a first validation of the identity is performed
by means of traditional security techniques. The assessment of the authenticity of a
post-login user session is measured using behaviometric techniques. These techniques
extract patterns from the interaction of the users with the system, and, based on
that, they are able to recognize or verify the users identities, without additional user
interactions. These characteristics strengthen the authentication mechanism and, at
the same time, make it user-friendly thanks to its transparency. Some behaviomet-
rics have already been investigated, such as keystroke dynamics, mouse movement,
stylometry, Web browsing, etc. Not all of them could be used with smartphones,
due to the different hardware components of these devices. However, some of them
still work in this different context. For instance, keystroke dynamics work with
smartphones, even if the keyboards are virtual instead of a physical ones. These
techniques, in addition with new (developed using the information extracted from
the different sensors of these devices) can be exploited in order to build stronger
authentication mechanisms.
The drawback of using these techniques is that some privacy concerns could arise.
Malicious users, or honest but curious service providers, could have access to these
behavioral data and exploit this data to possibly harm targeted users. Hence,
privacy-preserving techniques should be applied in order to protect the users privacy.
In addition, the continuous processing of data, used for authentication on remote
servers, may possibly create performance bottlenecks when the number of user is
sufficiently high. Therefore, a continuous authentication solution should be able to
scale when the number of users increases, to guarantee the reliability of the system.

1.2 Goal

The goal of the thesis is to implement a continuous authentication framework that
exploits behaviometrics, capable of working with smartphone devices. The frame-
work should be able to scale easily. For instance, it should allow the instantiation
of new resources when the number of users increases. It should also be composable
with other authentication mechanisms and other frameworks that make use of be-
haviometrics to authenticate users.
Precisely, the solution proposed uses keystroke dynamics as behaviometric. The pri-
vacy problems of using this behaviometric should be considered in the design of the
framework and mitigated. For instance, a common risk of using keystroke dynamics
is that the original text typed by users could be reconstructed. For this reason,
privacy-preserving solutions have to be investigated and implemented to avoid this
attack.

2



1.3 – Approach

To achieve the presented goal, a server and client side keystroke dynamics authenti-
cation framework has to be implemented. After designing the framework, together
with the integration with the state-of-practice authentication system, a prototype
will be developed that will serve as a proof-of-concept. Lastly, after the implementa-
tion phase, some experiments will be carried out, in order to evaluate our solution.

1.3 Approach

The approach followed starts with the presentation of a motivating example, in or-
der to highlight the requirements, both functional and non-functional, of the system
that has to be implemented. The example is used to identify the privacy threats that
could arise while using such kind of techniques. After that, the analysis of a state-of-
practice authentication architecture is presented. Precisely, the system described is
the OpenAM one. OpenAM is an open source Identity Access Management (IAM)
system. It provides different out-of-the-box authentication methods, along with the
possibility of creating new. By taking advantage of this extensibility feature, a
continuous authentication framework is designed, that can be integrated with the
OpenAM platform. To design and implement such a framework, pre-existing ap-
proaches have to be researched in order to follow common design patterns. Once the
design of a working solution is presented, along with the choice of which algorithms
will be used for the behaviometrics analysis, the integration of the designed frame-
work with the OpenAM system is illustrated. The complete architecture is then
subjected to a privacy threat analysis, by using the LINDUNN methodology. The
analysis is performed to identify the privacy threats in order to understand which
techniques should be implemented to mitigate these risks. These privacy-preserving
techniques are then presented. After the design phase, the implementation of a pro-
totype is presented. In particular the prototype is composed of two applications: a
server-side application, that provides the continuous authentication service, and a
client-side application, that uses this service.
A simple use case scenario of the proposed solution is described as follows. A user
can register, or log in, to the system and, after that, he/she can start writing in a
apposite message box. For each interaction of the user with the virtual keyboard, the
keystrokes are collected and sent to the server that continuously performs classifica-
tion operations to ensure the authenticity of the user session. The client-application
receives the authentication responses from the server. In the case in which it receives
negative results it forces the user to log in again by forcing him/her to provide again
his/her credentials.
The evaluation of the prototype is carried out by testing the system with data col-
lected from real users. In particular, three different datasets are used for the eval-
uation, the first two were publicly available, whereas the third is made of samples
collected through a self-developed web application. The purpose of the evaluation

3



1 – Introduction

is to measure the authentication accuracy. The metrics used for the evaluation are
the False Acceptance Rate (FAR) and the False Rejection Rate (FRR). The two
metrics measure whether the system is able to correctly accept legal user and reject
illegitimate ones. The same experiments are performed also by applying the privacy-
preserving techniques investigated. This will highlight how much the authentication
accuracy is affected when these techniques are used. To conclude, the validity threats
of these experiments are described in order to explain the encountered limitation
problems and possible future work.

1.4 Key contributions
The key contributions of the thesis work can be summarized in three main points.
They are listed below.

1. A server and client side implementation of keystroke dynamics authentication
for smartphones.

2. The evaluation of state-of-the-art keystroke dynamics techniques for computer
keyboards using real datasets of smartphone users with virtual keyboards.

3. The implementation and evaluation of privacy extensions on top of existing
algorithms.

Regarding the first contribution, the server side application provides the support
for the integration with an IAM authentication system. The focus of the work is
on strengthening state-of-the-art authentication systems and on mitigating privacy
threats that could arise when using behaviometrics for authentication.

1.5 Sections overview
The thesis text is structured as follows. Chapter 2 presents a discussion about some
background topics, such as: authentication, multi-factor and continuous authenti-
cation, behaviometrics, keystroke dynamics and in the end concepts of privacy and
privacy threats. Chapter 3 is about the design and extension of the authentication
platform. It illustrates the OpenAM architecture and how it is possible to extend this
architecture. It continues by presenting how the continuous authentication frame-
work should be implemented and the algorithms used for the keystroke dynamics
analysis, from an high level perspective. It concludes by describing how the complete
system should work and the privacy threats that could arise with the proposed sys-
tem, after having conducted the threat analysis with the LINDUNN methodology.
Chapter 4 describes how the prototype has been implemented, whereas Chapter
5 presents the evaluation of the results obtained with the experiments performed.

4



1.5 – Sections overview

Chapter 6 concludes with a look into the key contributions of the thesis and it
discusses about possible future research work in this area.

5



6



Chapter 2

Background and related work

This chapter begins with Section 2.1, explaining the concept of authentication. It
takes a look at the different strategies that have been developed in the past years and
that are currently in use. In Section 2.2 the concept of behaviometrics is presented,
i.e. the usage of behavioral characteristics to authenticate users, and the possible
employment of such techniques to provide continuous authentication services. Fur-
ther, in Section 2.3, a particular behaviometric technique is described, keystroke
dynamics, along with the state-of-the-art about the application of these technique
for authentication solutions. Then, in Section 2.4, the definitions of privacy are given
as well as the privacy threats that could arise using these behaviometric techniques
for authentication. Proposed strategies that have been implemented to mitigate
the privacy problems are illustrated. The chapter ends with the gap analysis about
behaviometrics technologies on mobile devices.

2.1 Authentication

A user has to identify himself/herself and confirm his/her identity on a local oper-
ating system or within an authentication server in order to access resources. This
two tasks are called respectively identification and authentication.
During the first phase, the user announces to the system his identity. Then, the
authentication phase is performed, in order to verify that the user is truly who he
claims to be. Several strategies have been proposed to authenticate a user. The
most well-known is the password based method, in which the identification phase is
typically performed providing a unique name, the username, that has to be specified
during the registration time. Along with the username, a secret string of characters
has to be sent, the password. This method relies on the fact that the password,
decided by the user during the registration phase, has only to be known by him/her
and the service provider. According to this assumption, the system can confirm the
identity of the user by verifying the correctness of these two pieces of information.

7



2 – Background and related work

This technique is largely adopted since it does not require too much effort, both
in implementation by developers and for the users who use it. However, it exposes
different vulnerabilities. The first one that arises derives from the nature of the
password, which is only a string, a single piece of information that can be copied,
reused, leaked or simply guessed. This has led to several types of attacks [36] that
pushed forward the research for stronger solutions.
To strengthen the user authentication paradigm, the Multi-factor authentica-
tion (MFA) access control method has been proposed. It increases the security
of a system, constructing the authentication phase of different authentication steps,
called factors. These factors belong mainly to three different categories: knowledge
(something users know), possession (something users have), inherence (something
users are). An example from the everyday life is the withdrawing of money. The
transaction, in order to be accomplished by the bank, requires first that the user
provides something he has (the bank card) and then something he knows (the PIN).
Regarding the inherence factors, these factors are associated to personal user’s char-
acteristics. The ones that describe the physiological peculiarities of individuals are
called biometrics. Examples of these metrics are fingerprints, hand geometry, face
recognition, iris recognition, etc. [12]. When a biological characteristic qualifies to
be a form of biometrics, it should generally bear the following four properties [24]

• Universality : Every person has the characteristic.

• Distinctiveness : Any two persons are distinguishable in terms of the charac-
teristic.

• Permanence: The characteristic is stable over a period of time.

• Collectability : The characteristic can be measured in numbers.

Instead of biological characteristics, behavioral characteristics can be used as au-
thentication factors. These characteristics are named behaviometrics.

2.2 Behaviometrics and continuous authentication
“Behaviometrics is measuring human behavior in order to recognize or verify the
identity of a person” [23].
Each person has his unique pattern of using an electronic device. For instance,
everyone could interact differently with the graphical interface of an application,
with different mouse gestures, typing rhythm, etc. More unusual techniques have
been studied to measure these particular behaviors, e.g. the battery consumption of
mobile devices used to model how the users normally interact with their personal
devices during the day [26]. Behaviometrics are interesting for the reason that the

8



2.2 – Behaviometrics and continuous authentication

combination of these techniques with the ones already used for authentication can
improve significantly the level of security and reliability of a system. Plus, they are
transparent and non-intrusive for users. They do not require different actions than
the usual interaction with the system. The security of these techniques is based
on the assumption that it is trickier to impersonate an individual behavior rather
than simply provide a passphrase or a stolen credit card. This could not always
be the case, very often new techniques let new attacks come out and new threats
arise. Despite that, if we consider that these techniques are used along with others,
in the context of multi-factor authentication, they still will make life difficult for
adversaries.
Besides, the employment of common authentication techniques is no longer feasible
on all kinds of smart devices. For instance, smartwatches do not include a keyboard
at all. For this reason, authentication methods that require the user to type his/her
credentials cannot be adopted anymore. Data collected from sensors of these devices
can be used to model the normal user’s behavior, in order to identify anomalies that
could indicate that something suspicious happened.

Behaviometrics could also be used to modify the authentication paradigm itself.
Most of the authentication methods are static, since once the authentication phase
is accomplished successfully, then, no more checks are performed during the session.
This could create flaws from both the usability and security perspectives. These
“weak” authentication strategies could pose great security risks especially to mobile
devices, that are frequently stolen. These devices are able to support a vast variety
of services. Hence, they could contain personal information, such as private photos,
phone numbers, bank account credentials, data that can be valuable for malicious
people in case they want to harm someone for any reason. The majority of the appli-
cations in the market provide as method of authentication what is named one-shot
authentication. By using this method, the credentials to access a resource, e.g. an
application, are provided by the user only once, then they are stored on the device
and reused automatically, without the user interaction. It is obvious that more ef-
fective solutions are needed.

In the past decades, the interest in active methods of authentication is growing. The
objective of these authentication solutions is to continuously authenticate the users
during the session. This field is also known as continuous, implicit or context-
aware authentication. In order to accomplish that, the authentication system has
to monitor constantly the user behavior to identity anomalies. The likelihood of an
authentic user session is continuously assessed, thus it greatly increases the complex-
ity of potential intrusions. The advantage of using behaviometrics for continuous
authentication is that the system would act transparently, without interrupting the
user unless it begins to doubt the person’s identity.

9



2 – Background and related work

Different behaviometrics have already been investigated. A user identity can be
recognized and verified by means of disparate techniques, such as: keystroke dy-
namics, mouse movements (together with display resolution) [11], CPU and RAM
used [13], stylometry [7], Web browsing behavior [1], etc. However, not all of them
can actually work on smartphone devices, e.g. mouse movements.

Research on keystroke dynamics demonstrated that they can be used with smart-
phones, even if the keyboards are typically virtual instead of physical ones. In
addition, this behaviometric is the one that achieved the best results in terms of
authentication accuracy.

2.3 Keystroke dynamics for user authentication

Keystroke dynamics are the information that can be extracted when a person types
on a keyboard, both on physical and virtual ones, that is used to model a person’s
typing behavior. Since each person tends to write in a different way from the oth-
ers, researchers started to using the keystroke dynamic information to verify, or even
determine, the identities of users. The first research dates back to 1980 by Gaines
et al. [17]. They carried out an experiment in order to recognize six professional
secretaries by analyzing the way they typed three passages of text. Then, in 1996,
Obaidat and Soudun [35] for the first time attempted to use this information as user
personal identifier.

The typing behavior is defined using the timing information of when each key is
pressed and when it is released. The raw measurements are the Dwell Time (DT)
and the Flight Time (FT). The former is the time duration that a key is pressed,
the latter expresses the time duration in between releasing a key and pressing the
next one. The time spent to type a sequence of keys is also specific for each person,
therefore the time duration of combination of more than two keys can be exploited
for the analysis.
A lot of work focused on keystroke dynamics for authentication on computer key-
boards [10] [28] [41], more recent research focused on mobile devices with physical
keypads [8] [9], whereas in the last years the focus moved to touchscreen devices [3]
[34] [27].

Several techniques have been implemented to classify users as authentic or impostors.
The idea behind these techniques is, to some extent, always the same: during the
first stage the system needs authentic data from the user, in order to build his/her
typing model. Then, it computes a score, using some algorithms, which expresses the
likelihood that he/she is the legitimate user. Lastly, if the score is above a specified
threshold, the user is rejected, otherwise, he/she can continue using the application.

10



2.3 – Keystroke dynamics for user authentication

Different algorithms have been proposed to perform this analysis, coming from both
the machine learning and the statistical analysis domains.

2.3.1 Machine learning algorithms for keystroke dynamics

“Machine learning is the subfield of computer science that gives computers the ability
to learn without being explicitly programmed”. (Arthur Samuel, 1959).
These algorithms can be firstly trained to build a user model, and then they can be
used to determine whether the user acts suspiciously, by comparing the new received
data with the reference model. Different algorithms have been proposed to perform
these operations, that can work either in classification or clustering mode. In the
authentication context the classification task has been used for anomaly detection,
i.e. classify whether a user is legitimate or not, (binary classification) or even for
authentication, i.e. to identify from which user the data received came from in
order to verify whether the inferred user is the correct one or not (multi-class
classification). The algorithms that have been tested are: probabilistic modeling
(Bayesian Network) [16], decision tree [5], support vector machine [18] and neural
network [31].
Clustering techniques instead group data coming from the same user in a cluster,
that is a group of elements with same characteristics, and for each data coming from
that user they compute the distance from his/her cluster. If the distance is too high,
then the user is probably behaving in a unusual way. This could indicate that an
attack is taking place. The research has been done applying K-Means [43], K-Star
[37] and K-Nearest-Neighbors (k-NN) algorithms [6].

2.3.2 Statistical techniques for keystroke dynamics

There are several statistical techniques that have been used for biometric authen-
tication, including the mean, the standard deviation [39] and the deviation toler-
ance [14]. However, an interesting technique is the disorder-based one proposed by
Gunetti and Picardi [20] and perfectioned by Messerman et al. [32]. The work done
by the researchers from the University of Turin [20] focused on the analysis of the
typing behavior of people while they write freely on a keyboard. They proposed
a new measure, called degree of disorder (or simply disorder), that indicates how
differently two people write each combination of keys on a computer keyboard. The
disorder technique has been extended even more by analyzing the typing speed of
combination of more than two consecutive keys.
This measure is suitable for the analysis of free text since it takes into consideration
the relative typing speed of an individual. They gave, in their report, the following
explanation: “The rationale behind R measures (disorder) is that the typing speed of
an individual may change along with the psychological and physiological conditions of
the subject, but we may expect the changes to affect all the typing characteristics in

11



2 – Background and related work

a similar way. A headache can cause the individual to type more slowly than usual,
but the relative typing speed of the entered n-graphs will probably remain stable. If
the individual normally types the four-graph “wait” more slowly than the four-graph
“stop”, this is likely to remain unchanged, even with an headache”[20].
This technique will be explained much more in detail in the next chapters.

2.4 User privacy
The term privacy has been mentioned frequently in these past years, especially
after the revelations of Edward Snowden, former Central Intelligence Agency (CIA)
and National Security Agency (NSA) employee. He disclosed the truth about mass
surveillance programs that his ex-employers have been doing after the 9/11 terrorist
attacks, in order to protect the safety of citizens. The problem was that they were,
at the same time, spying and recording everyone’s conversations and Internet traffic.
Discussions about the correctness of using such extreme techniques raised after these
revelations. Even if they are supposed to be applied for Intelligence purposes, for
some people they also weaken everyone’s privacy. But, what is the correct definition
for privacy? There is not a unique interpretation of the term privacy, since it is an
abstract and subjective concept.

2.4.1 Privacy definitions

Different definitions have been proposed, each one from a different perspective, they
are listed below.
From a legal perspective:

• “The right to be let alone” [44]. This definition was given as a response to
technological developments (photography, and its use by the press).

• “The right of the individual to decide what information about himself should
be communicated to others and under what circumstances” [45].

From a social psychology perspective:

• “The freedom from unreasonable constraints on the construction of one’s own
identity” [2].

The common idea behind these definitions is that everyone should be able to decide
and control which personal information will eventually be shared and for which
purposes. This is because there are obvious risks related to the uncontrolled sharing
of sensitive information. Problems such as data breaches of service providers can
let bad people have access to everyone’s information that is supposed to remain
confidential and that only the service provider and the specific individual should

12



2.4 – User privacy

be able to retrieve. Other problems concerning the inappropriate usage of personal
information are practices like:

• profiling: categorizing people in different classes, based on socio-economical
state, health level, race, religion and sexual orientation;

• discrimination: the unjust or prejudicial treatment of different categories of
people, especially on the grounds of race, age, or sex.

• manipulation e.g. the filter bubble: “the intellectual isolation that can
occur when websites make use of algorithms to selectively assume the informa-
tion a user would want to see, and then give information to the user according
to this assumption. Websites make these assumptions based on the informa-
tion related to the user, such as former click behavior, browsing history, search
history and location”[40].

2.4.2 Privacy threats using behaviometrics

There are many methods for adversaries to track and observe user behavior remotely
on the web. Techniques such as website fingerprinting [21], persistent cookies [38],
audioContext fingerprinting and canvas fingerprinting [15] have already been stud-
ied and are ready to be used to track users. With keystroke biometrics algorithms,
practices like identification of users can be performed even more easily. They could
help to track users even if they use tool to avoid the possibility of being tracked.
For instance, using Tor1 to mask the IP address to navigate anonymously on the
web, could not be sufficient to achieve the goal of being anonymous. Users would
be identifiable by their behavior, that cannot be masked easily.
For these reasons, implementation of continuous authentication systems that use
behaviometrics should take into consideration the privacy problem. Solutions are
being studied also to preserve anonymity against adversaries who could exploit be-
havioral information to identify users on the web.

2.4.3 Privacy-preserving solutions for behaviometrics

Privacy aware solutions should avoid the service provider, or whoever has access,
legitimate or not, to the data of a particular user to be able to reconstruct his/her
behavior. At the same time, the authentication process should guarantee an high
level of security. One example of this approach is MACA, a privacy-preserving
multi-factor authentication system [30]. The researchers proposed, as a solution

1https://www.torproject.org

13



2 – Background and related work

to preserve privacy, the application of fully homomorphic encryption (FHE). Using
this cryptographic procedure, they could collect the data from different users, en-
crypt them and then, using the encrypted values, build users profiles in order to
verify the authenticity of their sessions. By using FHE the cloud operator does not
need to know the exact values of the data received to accomplish successfully the
authentication operation. For this reason, the leakage of user data will not be a
problem since only the users will have the keys to decrypt it. The results of their
proposed scheme were definitely acceptable, in addition both system overhead and
resource utilization were within the acceptable range. This could not be obvious,
since operations executed with FHE normally were 100 trillion times slower than
normal operations. A lot of research has been done in the field of FHE, to speed up
the computation. The fact that the computation speed of electronic devices is also
increasing will pave the way for the adoption of FHE techniques to develop different
kinds of privacy-aware continuous authentication systems.

Another privacy-preserving solution could be to delegate the keystroke analysis to
the client component. Behavioral data are collected on the client and then the
results of the computation will be sent to the remote server, where the authentication
decisions will take place. This could increase the overall performance of the system
and, in the meanwhile, it will mitigate the risks of user profiling for the reason that
the service provide will not have access to the personal data used for the analysis.
This method could only work if the system can trust the results of the computation
done in the client component. This could not always be the case. Potential attacks
on the client component could subvert this computation easily, either by tampering
the data provided to the algorithms or by sending arbitrary authentication messages
to the server. A possible solution to ensure the authenticity of the measurements
taken on the client is the one proposed by Nauman et al. in [34]. They used remote
attestation, a method by which the client authenticate its hardware and software
configuration to the server component. The goal of remote attestation is to enable a
remote system to determine the level of trust in the integrity of platform of another
system [25]. With this solution the server can trust the messages received from a
client.

2.4.4 Obfuscation techniques to prevent identification by keystroke
dynamics

The work done about exploiting keystroke dynamics for authentication purposes
demonstrated that these techniques can be used to identify users by observing their
typing behavior. In addition adversaries could exploit this information to imperson-
ate a victim to gain access to a system that implements keystroke biometric access
control. Therefore, Monaco et al. proposed two obfuscation strategies to prevent

14



2.5 – Gap analysis

adversaries from identifying and impersonating users [33]. Both strategies use the
Chaum mix. This device is normally used to provide anonymity to users behind a
router. In their first solution the Chaum mix has been used by exploiting its capa-
bility of reordering packets by introducing random delay to each packet, Figure 2.1a.
Doing that, an eavesdropper that observes the sequence of packets transmitted by
the mix can not distinguish by which particular user the packets have been origi-
nated. This strategy is effective but it requires the cooperation of different users to
increase the anonymity level. The second proposed, instead, uses one mix for each
user, Figure 2.1b. The packets that record the event generated by the user are sent
to the mix. The mix reorders the packets of the single user such that the adversary,
even if he/she knows who generated them, cannot reconstruct precisely their order.

(a) Chaum mix (b) User mix

Figure 2.1: Obfuscation techniques for keystroke dynamics (adapted from [33]).

2.5 Gap analysis
The demand of more secure authentication mechanisms has led to the research of
valid alternative solutions for authentication. Continuous authentication is one of
these solutions. It makes use of behaviometrics to verify continuously the identity
of users, strengthening the overall security of a system. Despite this, at the moment
there are very few implementations of continuous authentication solutions that are
available and integrated in commercial authentication systems. In addition, the so-
lutions proposed did not really face the privacy implications of using such techniques.

This research wants to investigate the effectiveness of using keystroke dynamics as
behaviometric to provide continuous authentication to smartphone users. In order
to accomplish that, a system has to be designed and developed. This system will
be used to test state of the art techniques for keystroke dynamics analysis, in order
to verify the authentication accuracy that these techniques achieved for smartphone
users. Additionally, privacy-preserving techniques also have to be designed, in order
to protect the privacy of the users of this system.

15



16



Chapter 3

Designing and extending a state of
practice authentication platform

This chapter describes the design of an architecture for a continuous authentication
framework, which authenticates users based on their typing behavior. The solution
has been designed taking into consideration the privacy problems that could arise
using these techniques for authentication.
Section 3.1 presents a motivating example, to give the reader an idea about the pos-
sible application of such authentication paradigm. In particular, a chat application
use case scenario is presented, along with its requirements. The next section, Sec-
tion 3.2, analyzes a state-of-practice authentication system, and a state-of-practice
keystroke dynamics authentication framework. In Section 3.3, we describe how the
analysis of keystroke dynamics is performed, illustrating specifically the techniques
presented by Gunetti et al. in [20]. These techniques are explained in detail −
even if they are not a research contribution of this thesis − because their under-
standing is required to comprehend the privacy enhancements researched, which
are presented in this section as well and are a key contribution of the thesis. The
examples provided to describe these techniques were also taken from the original
research. Further, Section 3.4 describes the integration of the keystroke dynamics
authentication framework with a state-of-practice authentication system. Section
3.6 concludes with a discussion about the arguments presented in this chapter.

3.1 Motivating example

This section illustrates a use case scenario, to give the reader an idea about the
employment of continuous authentication in a real application. In particular, a chat
application has been chosen, since the interactions of the users with the application
are mostly based on writing, using the devices’ keyboards. In addition, once the
application is compromised, an attacker could use it to impersonate legitimate users,

17



3 – Designing and extending a state of practice authentication platform

or to access their private information, e.g. conversations. It has to be said that the
same reasoning applies to other kind of applications, such as mail clients.

3.1.1 Chat application

Sending messages and making phone calls are the reasons for which mobile phones
were conceived. The spread of Internet on large scale, along with the increasing
capabilities that mobile phones have gained, have produced the diffusion of a large
number of chat applications. SMS are no longer used, messages are sent over the
Internet. During the last years, companies developed chat applications focusing
also on security and privacy of users. Techniques, such as end-to-end encryption,
at the moment, are implemented in most of the more used applications, in order to
avoid attackers to gain access to private conversations. The other main reason is
that privacy concerns are rising as well. Service provides could sell user information
to advertising companies, or they could let government agencies retrieve everyone’s
sensitive data. The security precautions already implemented can prevent remote
attackers to steal information, but they do not mitigate the threat of an illegitimate
access to this information by people who can have access physically to the device.
To mitigate this last mentioned risk, smartphones adopt a traditional access con-
trol mechanism: before using the phone, a user needs to unlock its screen with a
password, with a lock pattern, or with biometric techniques, like fingerprints or face
recognition. With only these techniques a malicious users could manage to gain
access to the device via peeping or smudge attacks, i.e. observing oily smudges on
the screen to reconstruct the password or the lock pattern.

At the moment, this access control mechanism is the only security precaution that
prevent attackers to access a chat application. This is because no other authentica-
tion techniques are implemented, not even the simple password based one. Adding a
static authentication, by forcing the user to provide his/her username and password,
every time he/she has to unlock the phone to read a new message, could probably
increase the security of the application, but it would not be very friendly for users.
Moreover, a password based authentication method would suffer of the same prob-
lems that afflict the access control methods used to unlock the device.

The solution for this problem could be to authenticate continuously users during
runtime, but current smartphones, normally, cannot do that. Monitoring continu-
ously the user typing pattern, in order to assess whether he/she is the valid user,
could be a possible countermeasure against device intrusions. The task could be
performed transparently, without extra hardware requirements. The authentication
process could be carried out by the interaction of an IAM (Identity and Access Man-
agement) system, with the operating system, or with the application itself. With

18



3.1 – Motivating example

this solution the user typing pattern is analyzed and after the first stage, during
which the user template is built. If a certain number of anomalies is registered,
the supposed impostor will be locked out of the application. This will ensure that
only the legitimate user can use his/her own phone. Furthermore, it will provide a
mutual authentication for users, since they will be ensured that the person to whom
they are talking to is continuously authenticated as well. Obviously this solution
will not solve all the security problems. The adversary could observe the user typing
behavior and try to mimic it. However, adding this new layer of authentication, will
increase the overall security of the application.

By using these techniques some privacy concerns could arise. The authentication
service provider could possibly have access to the typing information of the users.
In the scenario of the chat application the typing information is basically the text
typed by the users. Hence, the service provider could have the possibility of read-
ing users conversations. Besides, if an attacker can break into the server, he/she
will possibly access everyone’s private conversations as well. Therefore, the contin-
uous authentication solution should be implemented taking into consideration these
problems.

3.1.2 Requirements

The requirements for a continuous authentication framework, that can be integrated
into a chat application system are divided in functional and non-functional.
Regarding the functional requirements, the system should:

• let users register and log into the system with a password based mechanism;

• analyze user interactions while they type and extract their typing behavior;

• continuously authenticate users verifying their typing behaviors.

The identified security and privacy threats can be translated into non-functional
requirements, that are:

• the system has to block illegitimate users in a reasonable time;

• the system has to be scalable to prevent performance bottlenecks;

• the system has to avoid service providers from being able to reconstruct the
text typed by users.

19



3 – Designing and extending a state of practice authentication platform

3.2 State-of-practice architectures
The building blocks that implement a continuous authentication solution have al-
ready been designed and implemented. In this section a description of the two main
components is presented. The next section proposes their possible integration. In
particular here the focus is on how an Identity Access Management (IAM) is de-
signed, and how it works. Then, we will illustrate the design of a keystroke dynamics
authentication framework, which acquires, models and classifies users typing behav-
ior. This second component should be able to scale when it is required and it has
to be integrated with an IAM system or with other authentication systems.

3.2.1 Identity Access Management systems

An Identity Access Management system is a set of technologies that are used for
business processes for identity management. An IAM system can be used to capture,
record and manage user identities. It is also used to manage their access permissions
to resources. All these operations are performed in an automated fashion. Different
open source IAM systems are available. Three of them have been considered for
this research: Gluu1, Keycloak2 and OpenAM3. After an analysis of these systems,
it turned out that OpenAM is the most mature IAM system. It is widely used in
industry and it provides extensibility capabilities that let developers personalize the
system easily, by letting them script their own authentication procedures. The other
two have been discarded since Gluu is less flexible to extend, whereas Keycloak is a
recent initiative from RedHat, hence it is a fast moving target and still immature.
For these reasons OpenAM has been chosen as reference IAM system. The OpenAM
system architecture is presented below.

3.2.2 OpenAM system architecture

OpenAM is an open source, centralized access management solution, that provides
authentication, authorization and web security, in a single, integrated solution.
Figure 3.1 presents the OpenAM system architecture. The two main components
are:

• OpenAM core server: The OpenAM core is composed by the OpenAM
framework, OpenAM services and the OpenAM SPIs (Service Provider Inter-
face). The OpenAM SPIs let developers to extend the OpenAM services, with
the implementation of plugins that can be integrated in the OpenAM system.

1https://www.gluu.org
2http://www.keycloak.org
3https://www.forgerock.com/platform/access-management/

20



3.2 – State-of-practice architectures

• OpenAM Client SDK/API: OpenAM provides client APIs that can be
used by developers in order to integrate the OpenAM services, for authentica-
tion and authorization, within their applications.

Figure 3.1: OpenAM high-level architecture4.

By using the OpenAM SPIs it is possible to create an authentication chain. This
chain is a sequence of authentication operations, that are performed in order to
successfully authorize a user. The chain is composed of different modules, each
module can be configurable. A logical authentication chain is shown in Figure 3.2.
The modules in the chain are: password-based authentication mechanism module, a
device fingerprinting authentication module, a one-time password (HOTP) authen-
tication module, and so on. The chain can be extended as much as it is required.
In this example the modules are configured as Sufficient or Requisite. In particular,
the first module is specified Requisite, this means that if the first authentication
operation is not accomplished successfully, the user will not be successfully authen-
ticated to the system. On the contrary, if the user successfully logs in, then the
authentication can continue by executing the second module. The second module
is defined as Sufficient, so if the authentication is successful, the HOTP will not
be triggered. Otherwise, the third module will be executed and the authentication
chain will continue until it reaches its end.

4https://backstage.forgerock.com/docs/openam/13.5/dev-guide

21



3 – Designing and extending a state of practice authentication platform

A module can define and implement the authentication mechanism itself, or it can
call an external service that already implements this capability and provides APIs
to expose the authentication mechanism.

Figure 3.2: An example of an authentication chain in the OpenAM system.

3.2.3 A keystroke dynamics authentication framework

The task of authenticating users by analyzing their typing behavior is performed
in different steps, that are showed in Figure 3.3. First of all, two different phases,
within the execution of this framework, have to be distinguished, that are the train-
ing phase and the classification phase. For both stages the first operations are the
same: data acquisition, data preprocessing and feature extraction.

22



3.2 – State-of-practice architectures

Data acquisition The first process is performed in order to acquire raw data from
the user. The task is normally performed continuously during the user session, or
possibly it can be performed in a specified period of time. During the data acquisi-
tion the events generated by the interaction with the device are collected and stored.

Data preprocessing The data preprocessing process is carried out in order to
transform raw data in an understandable format. Techniques such as outliers de-
tection and removal are performed within this process. The goal is to produce data
that is valuable for the analysis.

Feature extraction During this operation the system identifies and extracts from
the data the distinctive features common to a user. This data are intended to be in-
formative and non-redundant. They will be used later for the training of the model,
i.e. to build the template of the user.

Then, if the system is acting in training mode, the training of the model will
be performed. Otherwise, once the model is built, the classification process will
take place.

Model training The model training, or template generation, is the operation
carried out to transform the data into a compact form, that represents the user
keystroke dynamics characteristic. The learning algorithm finds patterns in training
data and it outputs a model that captures these patterns.

Classification process The classification process is the crucial operation. It is
responsible of comparing the new incoming data, produced by the user during the
sessions, against the generated templates. The operation has to produce as a result
a matching score that will be used for the decision making operation.

Decision making This operation is carried out once the matching score is gener-
ated by the classification algorithms. The decision is made comparing the matching
result, that expresses the similarity or the dissimilarity between the input data and
reference models, against a predefined threshold.

The retraining of the model eventually can be carried out. The latest keystrokes
could be used to retrain or update the reference template. This operation is per-
formed since the user typing behavior will probably change over time. The system
after successful logins should register the gradual changes of the user typing behavior.

The keystroke dynamics authentication system can be implemented in different
modes of operation. The next session describes three of them: authentication,

23



3 – Designing and extending a state of practice authentication platform

identification and classification.

Figure 3.3: A keystroke dynamic authentication framework design.

3.2.4 User authentication, identification and classification

Within biometrics, and then behaviometrics, the distinction between user authenti-
cation, identification and classification is often made. With user authentication,
called also verification, a typing sample is provided to the system, along with a dec-
laration of an identity. Then, the system has to assert whether the sample comes
from the user, whose identity has been declared, or not. For the identification (or
recognition) task the situation is slightly different. The system only sees the sample
and it has to decide to which user it belongs. Eventually, it could decide that the
sample does not belong to any user known to the system. Finally, classification
is similar to identification, with the only difference that the sample provided comes
only from a user known to the system. The operation has to decide from which
user it comes from. Unfortunately, this last approach could not always be useful.
Often attackers may come from the outside. Thus, their typing patterns may be
completely unknown to the system.
The three modes of operations, ordered by increasing difficulty, could be listed as
follows. When a new typing sample X is submitted to the system:

• Classification: X comes from a known user. The system has do decide from
which user it comes from.

24



3.3 – Feature extraction and processing techniques

• Authentication: X is provided along with an identity. The system has to
confirm if it belongs truly to that user. If it does not, it may possibly define
whether it comes from a known user or from an external attacker.

• Identification: X is presented to the system, that has to identify from which
user it comes from. It can produce two possible answers: X belongs to user
U; or X belongs to someone unknown.

Using these modes, the outcome of the classification task is defined by observing
which of the stored models matches better the sample X received from a user U.
These techniques need a pool of models which hold the typing habits of different
users, in order to carry on with the comparison tasks. If the comparison would
be performed only between the sample from the user U with his/her only model,
it would, in case of attack, incorrectly predict a wrong outcome. In the situation
in which, for any reason, no other users data is provided for the analysis, the an
anomaly detection mode would be more suitable.

3.2.5 Anomaly detection

An anomaly detection operation (also known as outlier detection) is responsible
of the identification of items, in this case typing samples, that do not conform to an
expected pattern, the user model. In the context of keystroke dynamics, the idea
is to find a distance metric that can express how far the new received samples are
from the user model. Once the metric is established, it can be used to compare
the distance of each typing sample, against a specified threshold. If the distance is
above the threshold, then it implies that an anomaly has been verified. This could
simply be identified as a normal deviation from the normal user typing behavior,
or, in case it continues to occur, it would result as a clear sign of intrusion.

3.3 Feature extraction and processing techniques

This section describes, from an high-level perspective, the different distance mea-
sures, that have been proposed by Gunetti et al. in [20] for the analysis of keystroke
dynamics for free text input. These techniques, even if they are not the contribu-
tion of these research, are explained, since the privacy extensions proposed have
been built on top of them. In the subsection 3.3.1 is explained which features are
relevant for the analysis. In Subsection 3.3.2 the data types that represent these
features are presented. Subsection 3.3.4 describes the so called “R” measure (or
disorder), whereas Subsection 3.3.5 describes the “A” measure (or similarity).

25



3 – Designing and extending a state of practice authentication platform

3.3.1 Timing feature

As has been described in 3.2.3, in a keystroke dynamics authentication framework,
the system has to extract from the raw data collected relevant and unique features.
These features may be of different types, such as timing, spatial and motion features.
For this analysis the focus is on the timing features. The raw data is usually in the
form: key, direction and timestamp. This combination expresses when a particular
key has been pressed, or released, on a (virtual) keyboard, and in which precise mo-
ment the event took place. The two most widely used timing features, that can be
extracted from these data, for keystroke dynamic biometrics, are the Dwell Time
(DW) and the Flight Time (FT).

Dwell time The dwell time expresses the time duration of a touch event with the
same key. It is also known as duration, or hold time.

Flight time The flight time is also known as latency. It describes the time duration
between two consecutive keys. There are four possible variations of FT. Each of that
is a different combination of the two possible events press and release of the two
consecutive keys. The four possible calculations of the FT are described in Figure
3.4.

Figure 3.4: Combinations for the flight time timing feature.

3.3.2 The n-graph data type

A timing feature can be extracted with different timing feature lengths. The shorter
timing feature that could be extracted is the unigraph. It is the timing feature that
expresses the dwell time, the time duration when a key is pressed. More interesting
timing feature lengths could be analyzed. The digraphs represents the flight time
time between two consecutive keys. This can be generalized defining a n-graph as

26



3.3 – Feature extraction and processing techniques

the elapsed time between the pressure of the first and the nth (the last) key of a
sequence of typed keys. Normally n-graphs of short size have been used. Digraphs
and trigraphs are the ones that produce higher accuracy performances. This has
been proven by Giuffrida et al. in [19]. In some cases, only the digraph representa-
tion is considered for the analysis.
The n-graph data type has been adopted due to its high expressiveness. It can be
used to express different timing feature lengths easily. For instance, starting from
a n-graph representation of a typing sample is straightforward to extend this rep-
resentation in terms of (n+1)-graphs. In addition, shuffling the order of a sequence
of n-graphs in a typing sample does not alter substantially the results of the com-
parison with another typing sample. This last characteristic can be exploited to
implement privacy-preserving techniques.

3.3.3 Choosing a statistical approach

Given a typing sample, a representation in terms of n-graphs can be extracted.
Then, the sequence can be analyzed by some algorithms in order to verify whether
the typing sample belongs to the legitimate user. A choice was made to decide
which algorithms could have been used to perform this verification. The statistical
approach proposed by Gunetti et al. [20] seemed to be interesting and extensible.
They achieved good results for the keystroke analysis of free text typed on com-
puter keyboards. From a scientific perspective, it was interesting to test whether
their techniques would work specifically with smartphone devices. The next two
subsections describe how a distance measure between two typing samples is calcu-
lated, combining what the researchers called the “R” (standing for “Relative”) and
“A” (standing for “Absolute”) measures. The examples proposed for the explanation
of the two measures are taken from [20].

3.3.4 The “R” measure

The idea behind the R measure, is that people tend to write combinations of keys
in a relative different way. For instance, user U1 may type the sequence ab faster
than the one composed of the keys cd. While another user U2, may type the second
sequence faster than the first one. These differences can be analyzed in order to
compute a score that expresses how two typing samples have been typed differently.
To give the reader an example, we can consider two typing samples E1 and E2,
produced by entering the text: authentication and theoretical respectively. The two
samples may be expressed in the following way, where each letter is preceded by the
time, in milliseconds, in which it has been pressed:

27



3 – Designing and extending a state of practice authentication platform

E1: 0 a 180 u 440 t 670 h 890 e 1140 n 1260 t 1480 i 1630 c 1910 a 2010 t 2320 i
2600 o 2850 n
E2: 0 t 150 h 340 e 550 o 670 r 990 e 1230 t 1550 i 1770 c 1970 a 2100 l

To calculate the degree of disorder, first of all, the digraphs can be extracted from
the two samples. The digraphs in common between E1 and E2 are then stored in two
different arrays, and ordered by their time duration. The disorder can be computed
as the sum of the distances between the position of each element in the two arrays.
As an example, the disorder between two arrays A=[2,5,1,4,3] and A’=[3,1,2,5,4]
will be computed as:(2+2+1+1+4)=10. Two array with the elements in the same
positions have 0 as disorder, whereas if one of the two has the elements in reverse
order we will have the maximum disorder, that is given by the formula:

|A2|/2 (if |A| is even); (|A2| − 1)/2 (if |A| is odd);

where |A| is the length of the array. We can normalize the disorder of A by di-
viding it by the maximum disorder. The normalized disorder of the array A is:
(2+2+1+1+4)/[(52-1)/2]=10/12=0.8333.
If now we come back to the two typing samples E1 and E2, we can compute the
disorder as shown in Figure 3.5. Hence, the degree of disorder of the two sam-
ples, considering only digraphs, that is expressed as R2(E1,E2), is calculated as
(2+0+2+3+1)/[(52-1)/2]=8/12=0.6666.

Figure 3.5: Computation of the disorder of the two typing samples E1 and E2.

This technique can also be applied using trigraphs, instead of digraphs, or with even
longer n-graphs. The only constraint is that the two typing samples have to share
enough n-graphs to compute Rn. Moreover, the values of the different Ri can be
combined in order to produce a single measure. For instance, if two typing samples
share N n-digraphs and M m-digraphs, with M > N, we can compute:

Rm,n(E1,E2)= Rm(E1,E2)+Rn(E1,E2)*N/M

The resulting distance is the sum of the two distances, Rm and Rn, weighted by the
different number of n-graphs and m-graphs they share.

28



3.3 – Feature extraction and processing techniques

This R measure does not take into consideration the absolute typing speed of an
individual n-graph. Two typing samples may have a disorder equal to 0, even if
all the digraphs of one sample are twice as fast than the ones of the other sample.
The idea behind this measure is that, in different conditions, even if users may type
differently in terms of speed, they would type still faster a certain combination of
keys with respect to another that usually is typed more slowly.

3.3.5 The “A” measure

The A measure, also called similarity, takes into consideration the absolute typing
speed of the different combinations of keys. Every user writes each n-graph with a
certain speed. The measurement is performed comparing the typing speeds of each
pair of identical n-graphs of two typing samples, and observing how many n-graphs
are typed differently. To compare two n-graphs, if we indicate with d1 and d2 the
time durations of the same n-graph, the two n-graphs are recognized as similar if
1 < max(d1, d2)/min(d1, d2) ≤ t, for a constant t greater than 1. The A distance
between the two typing samples S1 and S2 w.r.t the n-graph they share, for a cer-
tain value t, is defined as:

At
n(S1,S2) = 1 - (number of similar n-graphs between S1 and S2)/(total number

of n-graphs shared by S1 and S2)

As a consequence, the A measure can assume only values between 0 and 1. The value
0 means the all the pairs are similar, while 1 means that they are completely dif-
ferent. For instance, in the case of the two samples E1 and E2, with t=1.25 we have:

E1 E2
280 ca 200 (280/200 = 1.400)
220 he 190 (220/190 = 1.157) (similar pair)
150 ic 220 (220/150 = 1.466)
230 th 150 (230/150 = 1.533)
265 ti 320 (320/265 = 1.207) (similar pair)

The A measure is then computed as: A1.25
2 =1-2/5=0.6. Different A measures for

n-graphs with different n length can be combined, like we saw with the R measure.
The formula is strictly the same:

At
m,n(E1,E2)= At

m(E1,E2)+At
n(E1,E2)*N/M

The combination of the At
m,n and the Rm,n measure can be then preformed in order

to express more precisely the distance between two typing samples.

29



3 – Designing and extending a state of practice authentication platform

3.4 Integration of the privacy-preserving authenti-
cation framework with the OpenAM system

The keystroke dynamics authentication framework can be designed as a framework
that works independently. It can also be designed as a system that can possibly be
called by external authentication systems. By having this design in mind, a solution
that can fulfill these requirements can be designed and implemented. It has to pro-
vide some APIs that can be contacted by external components in order to perform
the authentication operations.

OpenAM, as it has been described in the Subsection 3.2.1, can be extended by means
of programmable authentication modules. A module that can call the continuous
authentication service can be developed, and executed when it is required by the
OpenAM system, to perform continuously the verification of the authenticity of a
user session.

The design for this integration is shown in Figure 3.6. OpenAM will be responsible
for the management of user identities. It would execute different authentication
operations, specified in its authentication chain. After the first login stage, it would
call the continuous authentication service. The system that furnishes the CA service
has to perform different tasks. It has to collect the keystrokes from a users thanks to
the interaction with the mobile device, through an application component that runs
on the device. This component will be responsible for: collecting the keystrokes,
performing privacy-enhancing techniques on them, and finally sending the processed
data to the CA system (that runs on a remote machine). When the CA service will
receive the data, it will store the user keystrokes and it will perform the authenti-
cation operation. Then, it will send a response to the IAM. The IAM is responsible
for deciding whether the user can continue to use the application or not, based on
the authentication messages received from the CA component.

The design of the authentication solution should also address the scalability require-
ment. With the solution proposed there could be different possible techniques to
scale out the system to prevent that computation overheads slow down the authen-
tication operations. These techniques are described in the next chapter, after the
presentation of the how the system has been implemented. The main idea behind
them is that a component of the system should regulate the resource utilization, and
in case a certain threshold is exceeded, new resources will be allocated to decrease
the overall computation overhead. A load balancer could be used to distribute the
traffic over the different instances of the system, as it is shown in Figure 3.7.

30



3.5 – Extending the architecture with privacy techniques

Figure 3.6: Complete system architecture design.

3.5 Extending the architecture with privacy tech-
niques

In order to extend the proposed architecture with privacy-preserving techniques, it
is required to identify the privacy threats of the system. To identify these threats
in the designed solution, the LINDDUN5 framework is used.

The threat modeling technique of the framework is composed of three steps 6. These
steps are: (1) defining a DTD (Data Flow Diagram), (2) mapping the privacy threats
to the DFD elements and (3) identifying the threat scenarios. The DFD presented
reflects the high-level system architecture proposed, that has been illustrated in

5https://distrinet.cs.kuleuven.be/software/linddun/index.php
6https://distrinet.cs.kuleuven.be/software/linddun/linddun.php

31



3 – Designing and extending a state of practice authentication platform

Figure 3.7: Scalable solution for the keystroke authentication framework.

Figure 3.6.

DFD modeling of the system

Figure 3.8 depicts the DFD of the system architecture.

Mapping threats to DFD

The second step requires to determine the threats that correspond to the DFD
proposed. The different privacy threats are defined below [46].

• Linkability (L): occurs when it is possible to distinguish whether two items
of interest (IOI) are related

• Identifiability (I): occurs when it is possible to identify a particular subject
(e.g. the user)

• Non-repudiation (Nr): occurs when it is possible to gather evidence so that
a party cannot deny having performed an action

32



3.5 – Extending the architecture with privacy techniques

Figure 3.8: DFD representing the data flows in the designed solution.

• Detectability (D): occurs when one can sufficiently distinguish whether an
IOI exists in a system

• Disclosure of information (D): is the exposure of information to individu-
als who are not supposed to have access to it

• Unawareness (U): occurs when the user is unaware of the information he is
supplying to the system and the consequences of his/her act of sharing

• Non-compliance (N): occurs when the system is not compliant with the
(data protection) legislation, its advertised policies and the existing user con-
sents

Table 3.1 indicates the threat categories that are applicable to the DFD elements
(Entity, Data Flow, Data Store, Process). Each “X” indicates if there could be a
potential threat risk to a certain DFD element, for each of these four elements.
The assumptions made are that the data the processes performed by the IAM en-
tity are trusted. Whereas, processes within the keystroke dynamics authentication

33



3 – Designing and extending a state of practice authentication platform

Threat Categories E DF DS P
Linkability X X X X
Identifiability X X X X
Non-repudiation X X X
Detectability X X X
information Disclosure X X X
content Unawareness X
policy/consent Non-compliance X X X

Table 3.1: Mapping of the LINDDUN threat categories to the DFD element types.

system are not trusted. It is assumed that even the service provider could try to to
derive the underlying sensitive information from the users data collected. Table 3.2
illustrates the mapping of the privacy threads to the DFD elements of Figure 3.8.

Identify threat scenarios

This phase tries to determine which are the potential threat scenarios in the designed
system. As stated before, the processes carried out by the IAM system are trusted.
For this reason, the static authentication process is not considered in the analysis.
The IAM system is supposed to be trusted and securely protected. The user data
store, that contains the profiles of the user and in particular their credentials, is
managed by the IAM, and supposedly secured as well. For the other elements of the
DFD this assumption does not hold.

The main privacy threat scenario is an attacker that gains access to the system
and tries to reconstruct the original text typed by the user. The same attack could
be executed by the continuous authentication service provider. If we consider the
situation in which the service provider is the same as the one carrying out the con-
tinuous authentication method, then the threat of reconstructing the text would
not be a problem. This is because the service provider already has access to the
text independently of this authentication method. However, if we consider the chat
application scenario, the conversations could be probably encrypted, therefore the
usage of this authentication system would make the encryption futile.

Privacy-preserving techniques

To prevent malicious users to misuse the system, privacy techniques must be de-
signed and implemented. A first solution to mitigate these privacy problems could
be to perform most of the authentication processes locally on the device. In this

34



3.5 – Extending the architecture with privacy techniques

Threat target L I N D D U N

Data store profile data X X X X X X
typing model X X X X X X

Data flow

OpenAM -> profile database X X X
OpenAM -> static authentication X X X
OpenAM -> continuous authentication X X X
profile database -> OpenAM X X X
static authentication -> OpenAM X X X
static authentication -> user X X X
continuous authentication -> OpenAM X X X
continuous authentication -> user X X X
continuous authentication -> KA framework X X X
user -> static authentication X X X
user -> application component X X X
KA framework -> typing models X X X X X X
KA framework -> continuous authentication X X X
KA framework -> classification process X X X X X X
application component -> keystrokes preprocessing X X X
keystrokes preprocessing -> KA framework X X X
typing models -> KA framework X X X X X X
classification process -> KA framework X X X X X X
classification process -> processing component X X X X X X
processing component -> classification process X X X X X X

Process

static authentication X X X
continuous authentication X X X
application component X X X
keystroke collection and transformation X X X
classification process X X X
processing component X X X

Entity
OpenAM X X X
User X X X
Keystroke authentication framework X X X

Table 3.2: The mapping of the LINDDUN threat categories to the elements of the
system DFD.

case the service provider would not have access to the user keystrokes, but it would
process only the authentication messages exchanged by the client component. For
instance, these messages could contain a score that expresses how much the user
typing behavior is similar to his/her typing model. Based on that, the authentica-
tion framework would decide to let the user continue using the application or not.
This could seem a sound solution, but the problem is that the application could be
somehow compromised. In case this happens, the application may send tampered
data in order to trick the continuous authentication mechanism. This is the rea-
son that determined the choice of not performing the classification process on the
user device. Another solution could be to apply privacy-preserving techniques to

35



3 – Designing and extending a state of practice authentication platform

the keystrokes, before sending them to the remote component. One can argue that
also in this case the attacker could still tamper the data before it is sent to the
authentication framework. However, in this case the attacker will not know how
the authentication is actually performed on the remote system, thus it will not be
able to tamper the data in order to trick the system. Some compromises have to
be made, between privacy and security, in order to protect users from both types
of threats. The implementation of the privacy-preserving strategies investigated is
discussed in the next chapter.

3.6 Discussion
The chapter started with presenting a motivating example with the purpose of high-
lighting the requirements for the proposed authentication system. After presenting
these requirements, the design of the system has been illustrated. In particular,
the architecture of OpenAM, an open source identity access management system,
has been explained along with the possibility of extending the platform. With the
purpose of extending this system, a CA component has been designed that can be
plugged in the authentication chain of OpenAM. This building block could also add
privacy capabilities to the system, along with support for independent scalability.
The next chapter describes how the system designed has been implemented.

36



Chapter 4

Implementation

This chapter presents the implementation details of the continuous authentication
system proposed in Chapter 3. Section 4.1 gives an overview about the different
components of this system. Then, following sections describe how the different
building blocks have been implemented. Precisely, in Section 4.2 we describe how
the server component has been implemented, whereas in Section 4.3 the client ap-
plication implementation is illustrated. In Section 4.4 the algorithms used for the
keystroke dynamics analysis are explained in detail while the privacy-preserving ex-
tensions are presented in Section 4.5. The chapter concludes with Section 4.6, where
solutions to scale the our system are presented.

4.1 System overview

To implement the authentication system, the client-server architecture pattern
has been adopted. The client component is responsible for collecting the keystroke
dynamics data generated when a user types on the keyboard. In the meanwhile,
it transmits the data collected to the server. The second component, the server,
has to retrieve the data from the client and it has to carry out the authentication
operation. The server is responsible for informing periodically the client whether
the authentication has been accomplished successfully or not. In the case in which
anomalies are detected, it has to prevent the client to continue using the application.
Given this architecture, two main applications have been developed: a client-side
application and a server-side one. The former runs on a remote server, while the lat-
ter runs on the user mobile device. The server application has been implemented in
Node.js, an event driven JavaScript runtime that is used to build scalable network
applications. The client application has been developed for the Android Operating
System.

37



4 – Implementation

4.2 Server component
The server application is the component responsible for managing the authentica-
tion processes of the different users of the system. It lets a new user register to the
system, log in with a password based mechanism and it has to continuously assess
the legitimacy of the user sessions. The server exposes JSON RESTful APIs,
that the client can contact to perform these operations. Exposing the APIs in an
established standard makes the integration with the client straightforward. Develop-
ers that want to integrate the authentication services in their applications will have
to implement only a module capable of communicating with the server application
through these APIs. Moreover, authentication systems that can call external ser-
vices to perform additional authentication tasks, could integrate our service easily.
This is the case of the OpenAM system presented in 3.2.1. OpenAM could manage
the static authentication of the users, delegating only the continuous assessment of
the authenticity of their sessions to the server application.
Subsection 4.2.1 describes the endpoints of this server application.

4.2.1 Server endpoints and methods

The communication between the client and the server is made possible by the ex-
change of HTTP (Hypertext Transfer Protocol) messages between the two com-
ponents. Since the REST APIs are accessible through HTTP, it is necessary to
identify the URIs (Uniform Resource Identifier), the respective methods, and where
the resources they expose can be accessed. The APIs have been implemented using
express, a Node.js framework. Express lets the programmer to define different
routes. These routes determine how the application responds to a client request
to a particular endpoint, which is a URI (or path) and a specific HTTP request
method (GET, POST, etc.). To give the reader an idea of how an express route is
defined, we propose an example taken from the official express website1.

The route definition has the following structure:

app .METHOD(PATH, HANDLER)

Where: app is an instance of express, METHOD is an HTTP request method,
PATH is a path on the server and HANDLER is the function executed when the
route is matched. Let us suppose that we want the server to respond with a Hello
world! messages on a GET request on the homepage, the route will be defined as:

app . get ( ’ / ’ , f unc t i on ( req , r e s ) {
r e s . send ( ’ He l l o World ! ’ )

1https://expressjs.com/en/starter/basic-routing.html

38



4.2 – Server component

})
Following this approach, the different endpoints of the application, the HTTP meth-
ods and their handlers have been defined as follows:

/api/register, method:POST This endpoint is contacted by the client application
in order to let a new user register to the system. The registration data is sent along
with the POST request, and it is expressed as a JSON. In detail:

• fullname: a string that represents the user complete name.

• username: a string used to identify uniquely the user within the system.
Hence, there cannot be two users with the same username.

• password: a secret string that will be provided by the user, along with the
username, in the next login operations in order to accomplish the authentica-
tion.

Passport2, a Node.js authentication middleware, has been used to implement the
authentication operation. A simple local authentication strategy, as it is called in
the passport notation, has been implemented for both the registration and the
login phases. It works as follows. Once the server receives a registration request,
it executes the local-signup strategy: the hash of the password is generated using
the bcrypt password hashing function, then the hash produced is provided, along
with username, firstname and lastname to the function responsible for creating a
new user into the “USER” database table.
If the operations are successfully performed, the server will send back to the client a
message with the 200 (OK) status code. Otherwise, the 500 (Server Error) status
code will be sent in the response.
An example of a successful registration operation is shown in Figure 4.1.

Figure 4.1: Example of a successful registration operation.

/api/auth, method:POST This endpoint is contacted in order to perform the
login operation. The POST data, sent along with the request, in the JSON format,
is:

2http://passportjs.org

39



4 – Implementation

• username: a string that represents the username chosen by the user during
the registration phase.

• password: a secret string associated with the username provided.

Once the endpoint is contacted, and the POST data received by the server, the login
operation is performed, by invoking the local-login authentication strategy. Like for
the local-signup strategy, the hash of the password is produced using the bcrypt
hashing function. Then, the system searches for a user in the “USER” table with
the username equal to the one provided in the POST request. If there is not such
a user, a 404 (Not Found) will be sent in the response. Otherwise, the server will
check whether there is a match between the hash of the password sent and the hash
of the password saved during the registration phase. If this is not the case, this
means that the password sent was wrong, therefore the 500 (Server Error) status
code will be sent back. Otherwise, if the two hashes match, the 200 (OK) status
code will be provided in the response. An example of a successful login operation is
shown in Figure 4.2.

After both the registration and login operations a JSON Web Token3 (JWT) is
sent in the server response, along with the 200 status code. The JWT is generated,
and digitally signed, by the server. Each subsequent request, made by the user,
must include the JWT, allowing the user to access the other routes, services and re-
sources4. A middleware function has been implemented in order to verify the JWT.
In the case that the JWT is missing, or not valid, the access to the other routes
will be denied, and a 403 (Forbidden) status code will be sent in the response.
The JWT contains the user identifier of each user, once it is verified and the content
decoded, it is used by the server to identify from which user the requests are coming.

Figure 4.2: Example of a successful login operation.

/api/monitor, method:POST This endpoint is contacted in order to perform the
continuous authentication operations. The POST data, in the JSON format, is:

3https://jwt.io
4https://jwt.io/introduction

40



4.3 – Client component

• from: the first key pressed.

• to: the second key pressed.

• time: the time elapsed between the two keys.

The server uses the keystroke information in order to analyze the user typing behav-
ior. If the authentication is not performed successfully, a 500 (Server Error) message
will be sent to the client. Otherwise, the 200 (OK) status code will be provided in
the response. Section 4.4 describes in detail how the keystroke dynamics analysis is
performed.

Figure 4.3: Example of a successful continuous authentication operation.

4.3 Client component

The client component is implemented as an Android application. It presents a simple
interface. It is composed of three Activities. An Activity in Android is a single,
focused thing that a user can do. The activity is responsible for creating a View
that lets the user to interact with the application to perform the operations specified
in the Activity. The three activities that compose the application are:

• RegisterActivity: it lets a user register with a new account.

• LoginActivity: it lets a user log in into the application, once he/she is already
registered.

• MainActivity: it lets a user to input some text to verify his/her typing
behavior, in order to perform the continuous authentication operation.

The next three subsections describe the operations performed by these three activ-
ities.

41



4 – Implementation

4.3.1 RegisterActivity

The RegisterActivity presents a view, that is shown in Figure 4.4a, composed of
a registration form. The form is made of three input boxes where the user can insert
his/her credentials in order to accomplish the registration, which are: his/her full
name (first and last name together), the username and the password. By clicking
on the submit button, an HTTP POST request is sent to the server in order to
trigger the registration operation on the server. A JSON is created with the string
inputted in the three boxes, which is sent as the POST data of the HTTP request.
After the request, the client waits for the server response. In the case in which the
registration is accomplished successfully, the activity saves on the device the JWT
that is received in the response. Then, the MainActivity is executed.
Whereas, if the authentication fails, an alert will appear to show the user an error
message.

4.3.2 LoginActivity

In the case the user is already registered, the LoginActivity will be executed in
order to let him/her log into the system. The activity presents a view similar to
the one of the RegisterActivity, Figure 4.4b. The form in this case is composed
by only two input boxes that let the user insert his/her credentials (username and
password). Once the user submits the form, the server endpoint responsible for the
login operation is contacted through a POST HTTP request. Even in this case,
a JSON that contains the strings username and password is provided along with
the request. Like for the RegisterActivity, if the login operation is completed
successfully, the server will send back the JWT that will be stored on the device.
Whereas, if an errors occurs, the login operation will be interrupted and an error
message will be shown to the user. Once the user is successfully logged in, the
MainActivity is executed.

4.3.3 MainActivity

The MainActivity shows a view with a simplistic message conversation interface,
Figure 4.5. It lets the user type in an input box and to send the written messages. In
fact, no message is actually sent. The view is for demonstration purpose only. The
application was not intended to be a real chat application. The relevant operations
performed by the activity are carried out when the user starts typing in the message
box. An event listener is registered to this box, that triggers the execution of a
Java method every time a user presses a key. In particular, the method has to sent
to the server the JSON composed of: first key pressed, second key pressed and
time elapsed between the two keys. The response from the server can be either a
successful response or an error response. In the first case the user can continue using

42



4.3 – Client component

(a) RegisterActivity View. (b) LoginActivity View.

the application. Otherwise, an alert will pop up showing an error message and, after
that, the LoginActivity will be executed in order to force the user to log in again
to the application.

4.3.4 Discussion about the client

The client application was developed as a proof of concept, to demonstrate how
in practice it is possible to integrate the continuous authentication service, that is
provided by the server application, in a real world application. The application was
not meant to be a real chat application, for this reason most of the functionalities
required by standard chat applications are missing. Each of the three activities
implemented for the application contacts a particular endpoint of the server appli-
cation, to demonstrate how these endpoints can be used.
Another possible solution, instead of implementing a native application, could have
been implementing a custom virtual keyboard. In this case, the keyboard would have
been responsible for contacting the server endpoints. The static authentication with
username and password would have been implemented in the keyboard settings.
Whereas, the keystrokes would have been sent to the server component for every
interaction of the user with the keyboard. In this way, the authentication would

43



4 – Implementation

Figure 4.5: MainActivity View.

have been not only in a particular application, but it would have been extended to
the whole Operating System.
Otherwise, another possible solution to do this keystroke dynamics OS-wide authen-
tication, instead of implementing a virtual keyboard, could have been to implement
an Android service. A service is an application component, without user interface,
that performs long-running operations. In this case, the service would have moni-
tored the interaction of the user with the virtual keyboard, and would have sent the
data to the server in order to continuously authenticate the user.
The reasons why we opted for the Android application are that (1) it reflects the
use case we presented in Chapter 3, (2) it is the least invasive solution for mobile
phone, since the collection of keystrokes is restricted to the application only, and (3)
it was easier to test with the emulator.

4.4 Implementation details of keystroke dynamics
analysis

In this section we describe the algorithms used for the authentication mechanism.
A JavaScript object, named Classifier, has been implemented in order to perform

44



4.4 – Implementation details of keystroke dynamics analysis

the authentication tasks. The object is instantiated globally in the application. It
represents the state of the application. At the first run, the application creates a new
instance of this object, providing in the constructor some options that are specified
in a configuration file as a JSON. The options define the algorithms settings. For
instance, they specify how many keystrokes are required to train the user model, the
threshold used to compare if two typing samples are similar, and so on. A cron job
is executed in order to save, every minute, the state of the Classifier (its attributes)
into a file. This is done because, every time the server restarts, the application can
restore the previous state of the Classifier, retrieving it from the backup file.

To summarize, when the server starts it first checks whether is present a backup file.
If it exists, then the Classifier will be created with the options and the previous
state in the constructor. Otherwise, a new fresh Classifier will be created, with
the options specified. The choice of instantiating this global object has been made
for performance reasons. A possible alternative to this approach could have been
to allocate this object for each new request made by the client. In this case the
users models would have been retrained each time, retrieving the data required for
the training from the database. This alternative approach would have created a
performance bottleneck, especially in the case of a high number of users. However,
if it would be required to store the keystroke data of the users, another component,
or another cron job, could be implemented in order to parse the backup file and
store its content in the database.

The next subsections describe how the models of the users are trained and how the
authentication operations are performed.

4.4.1 Training of the user model

After a user registers to the system, the training operation is performed. The sys-
tem collects the typing information from the user and stores it. The data received is
the JSON that contains the digraph sent by the client through the /api/monitor
endpoint. Each time the server receives a new digraph, it checks whether there are
enough digraphs stored in order to perform the training of the model. If there are
not, the new digraph received will be stored in an array, along with the previous
ones generated by that user. Once there is enough data, the training operation can
be executed.

In order to accomplish the training, a first filtering operation is performed. All the
digraphs that have the time associated above a given certain threshold are discarded,
along with all the ones that contain non printable characters. The threshold for the
time duration can be specified in the configuration file. After the filter is applied,

45



4 – Implementation

the remaining digraphs are organized in M arrays of N digraphs samples. The two
numbers, M and N, can be specified in the configuration file. At this point, the
mean of the distances between each possible pair of these samples is calculated. For
instance, suppose we have three samples for a user A that are A1, A2, A3, and that
we have:

d(A1,A2) = 0.312378; d(A1,A3) = 0.304381; d(A2,A3) = 0.326024;
m(A) = (0.312378 + 0.304381 + 0.326024)/3 = 0.314261

“The m(A) can be seen as a sort of number representative of the way user A types
on a keyboard. It gives us an idea of the distance we may expect between two typing
samples provided by user A” [20]. This number will be used for the authentication
process.

4.4.2 Authenticating the user

The authentication process is performed for every new digraphs received, once the
training phase is terminated. Like for the training phase, a specified number of di-
graphs is required in order to perform the authentication. The new digraphs coming
from a user are stored in an array, until the required number is reached. At this
point, the user identity can be verified. Two modes of operation can be distinguished.

Authentication mode (classification) The mean distance (md for short) of a
typing sample X from the user A is defined as:

md(A,X) = [d(A1, X)+d(A2, X)+...+d(An, X)]/n

where {A1, A2, ..., An} are the typing samples collected during the training phase
and d is a given distance measure. In order to authenticate user A correctly, two
requirements have to be satisfied:

1. md(A,X) must be the smallest w.r.t any other md(B,X), where B is another
legal user in the system;

2. md(A,X) is smaller than m(A), or md(A,X) is closer to m(A) than to any
other md(B,X) computed by the system.

The first condition implies that the sample X, coming from the user A, must be the
closer sample to A’s samples. Moreover, the second requirement states that it has
to be sufficiently close to A in order to accept it. The technique has been proposed
in [20].

Anomaly detection mode (clustering) By using the anomaly detection mode,
a user sample is compared only against his/her model. This technique is easier to
implement, faster in execution speed, but less precise in terms of accuracy.

46



4.4 – Implementation details of keystroke dynamics analysis

To assess that a sample X comes from the user A, the following condition has to be
satisfied:

1. md(A, X) must be smaller than m(A).

In this case, no other users’ samples are required. The sample must only be suf-
ficiently close to A. This mode of operation should only be used in case there is
no other user data to compare with, or when optimization, in terms of time and
computation, is required, since only one comparison is actually performed.

4.4.3 Retraining of the user model

The user typing behavior may probably change over time. Once he/she gets familiar
with the smartphone keyboard, his/her typing speed may eventually increase. This
would produce wrong results during the authentication process. To avoid unpleasant
situations, e.g. a legitimate user rejected by the system, the retraining of the model
could be performed. The retraining option can be specified in the configuration file.
If its value is set to true, once the authentication process is performed successfully
(the sample is classified as belonging to the legitimate user) the new sample can be
saved, replacing the oldest one. Then, the mean m can be recomputed. The system
has to be sure that the data used to retrain the model are legitimate data from the
user. This is because an attacker could use this property to subvert the user model.
For this reason, the retraining is performed only after a certain number of successive
typing samples is recognized as legitimate.

4.4.4 Calculating the similarity between typing samples

As we described in Section 3.3, the distance measure that is used to compute the
distance, or (dis)similarity, between two typing samples, is given by the combination
of the “R” measure and “A” measure, proposed by Gunetti et al. in [20].

R measure Different R measures can be produced, based on which representation
in terms of n-graphs is chosen to calculate it. The one we chose is the R2,3 measure,
since it is the one that produced best results. To compute it, R2 and R3 have to be
measured first. To calculate R2 between two typing samples, a series of operations
are performed.

1. Two sequences of digraphs are produced starting from the two samples. Since
the two samples are made of digraphs, the operation is almost performed. The
only operation required is the removal of same digraphs within the same user
sample. Only one of digraphs that express the transition of the same two
keys must remain. The mean of the time spent to write the same digraph is
calculated and assigned to the remaining digraph. For instance, suppose we

47



4 – Implementation

have three digraphs that represent the transition from key a to key b, called
DA, DB and DC, we have:

DA = (a, b, 100); DB = (a, b, 200); DC = (a, b, 300);
DR = (a, b, (100 + 200 + 300)/3) = (a, b, 200).

2. Once the two sequences of digraphs are created, they are filtered in order to
produce two sequences that share the same digraphs. For instance, if a digraph
is present only in sample S1, it has to be removed.

3. Then, the two sequences are ordered, producing two new sequences with di-
graphs that have been typed faster in the first positions.

4. The degree of disorder is computed as the sum of the distances between the
position of each element in the two arrays. The final result is the normalized
value of the disorder, i.e. the disorder calculated divided by the maximum
disorder.

Once the R2 measure is calculated, R3 is computed. The operations are the same.
The only difference is that trigraphs representation is used. To produce the trigraphs
two subsequent digraphs are combined together. If the second key of the first digraph
is equal to the first key of the second digraph, then the resulting trigraph can be
produced. The time duration is calculated summing the two time duration of the
two digraphs.

DA = (y, e, 200); DB = (e, s, 100);
TA = (y, e, s, 300).

In order to produce the R2,3 measure, the following formula is used:

R2,3(E1,E2)= R2(E1,E2)+R3(E1,E2)*N/M

Where E1 and E2 are the two typing samples, N and M are the lengths of the two
sequences of digraphs and trigraphs, respectively.

A measure The A measure, can be computed, like the R one, by combining dif-
ferent An with different values for n. Previous research [20][32] showed that using
only A2 gives the best accuracy. In order to calculate it, the two sequences of shared
digraphs have to be computed. Once the two are ready, the A measure is calcu-
lated using the technique described in 3.3.5. The threshold t, that is used to decide
whether two digraphs are similar, can be specified in the configuration file.

Once R2,3 and A2 are calculated, the resulting distance measure d is produced as
the sum of the two measures:

d = R2,3 + A2

48



4.5 – Privacy-preserving extensions

4.5 Privacy-preserving extensions

Privacy-preserving extensions have been implemented, with the aim of reducing the
possibility for illegitimate users (attackers or honest but curious service providers) of
reconstructing users’ behavior. Since the users’ typing habits are exploited in order
to model and analyze their behavior, the implemented system in order to preserve
their privacy should avoid the possibility of reconstructing the original text typed
by them.

The fact that the n-graph data type has been adopted to represent the timing fea-
tures of a typing behavior, is already a privacy precaution. The n-graph does not
include the timestamp of when a certain key was pressed. For this reason, the order
of the keystrokes in a typing sample can be shuffled and the result of the authentica-
tion process should not get worse. To implement this mentioned solution, it will be
futile to perform this keystrokes permutation on the server-side application. Thus,
this operation should be carried out by the client application. Instead of sending
each new keystroke collected, a batch of keystrokes is sent, where the order of the
keystrokes is permuted.

A similar solution is to sent only a certain portion of the keystrokes and observe if
the results are still good. A combination of the two techniques could also be applied
in order to make harder the reconstruction of the original text.

The third technique we implemented is to modify each key sent, substituting it with
a close key on the keyboard. Figure 4.6 shows with which keys the “s” key could
be substituted. A random key among the colored ones of the figure is chosen to
substitute the “s” key. For instance, instead of sending the digraph composed by the
keys “s” and “o”, the digraph sent will be composed of the keys “a” and “l”. The key
used for the substitution is chosen randomly every time a new digraph has to be
sent. This means that same typed digraphs will result as different when they will
be sent.
This solution is based on the assumption that certain sequences of keys, with keys
that are close in the keyboard, are typed probably with the same speed. This could
not always be the case. Certain combinations of keys are typed more frequently
than others, hence they are typed faster. The impact on the authentication accu-
racy using this technique is presented in the next chapter. Also in this case, the
technique could be combined with the first two proposed.

The three techniques presented have been named respectively permutation, sup-
pression and substitution.

49



4 – Implementation

Figure 4.6: Example of substitution for the “s” key.

4.6 Scaling the system
In order to make the system scale, new resources have to be allocated when it is
required. Different possibilities have been explored to accomplish that. It has to
be noticed that the computation overhead increases proportionally to the number
of users of the system. This is because of two reasons: (1) when the number of
users increases the system has to manage more data at the same time, (2) as it
is described in 4.4.2, when the system works in authentication mode, it has
to compare the typing samples against the other users models. Whereas, using
the anomaly detection mode this problem does not occur. A possible solution
to prevent the delay of the authentication process could be to instantiate a new
classifier each time a certain number of users registers to the system. Doing so, the
system should have to keep track of which classifier is associated to a particular
user in order to redirect the typing samples received to the correct classifier. These
classifiers could be deployed on different machines, in order to scale out the system.
This configuration is depicted in Figure 4.7.
Another solution to scale the system horizontally could be to deploy the same clas-
sifiers across different machines, and distribute the computation over them, in order
to balance the machines load. This means that every machine should have the same
copy of the different classifiers and these replicas should be synchronized. In order
to do that, a centralized approach could be adopted. In this case, a central machine
would store the classifiers and the other machines would refer to the central one
to retrieve a certain classifier and to update it after an authentication operation is
performed.

50



4.6 – Scaling the system

Figure 4.7: Scaling the system among different machines.

51



52



Chapter 5

Evaluation

In Chapter 3 we identified six functional and non-functional requirements for our
continuous authentication system. In this chapter we focus on the evaluation of
our solution. We mainly focus on the evaluation of the authentication accuracy
of the system implemented, as well as the influence on this accuracy when our
privacy-preserving techniques are applied. Thus, we first propose a quantitative
evaluation of the functional requirements, that are (1) the system should let users
authenticate to the system with username and password, (2) it has to monitor
constantly the user behavior in order to (3) continuously authenticate them based
on their typing information. In particular, the only functional requirement that has
to be evaluated is (3). We present the experiments performed in order to evaluate
the authentication accuracy by presenting: the experimental settings in Section
5.1, the evaluation criteria in Section 5.2, the results of the experiments we have
performed without applying the privacy-preserving techniques in Section 5.3 and
the ones obtained using these techniques, in Section 5.4. In Section 5.5 we describe
the validity threats of our results. Finally, the chapter concludes with Section 5.6
with a qualitative evaluation of the non-functional requirements we identified for
our system.

5.1 Experimental settings

In order to evaluate our authentication system, different datasets have been used. In
particular, some datasets were publicly available, while new data has been collected
through a self-developed web site. The availability of these datasets is vital for
the evaluation of keystroke dynamics research. Even if some dataset were found
online, the problem encountered was that most of them were made of samples taken
from a user who typed fixed-length strings. This is because most of the work done
until now focused on exploiting the user typing behavior in order to provide an
additional step within the static multi-factor authentication process. The aim of

53



5 – Evaluation

these previous works was to research a more secure password based authentication
method. With this new method the correctness of the password is checked, along
with the way password was typed. Datasets used for the analysis of free text were
available, however they were constituted of samples collected through computer
keyboards, not with smartphones. This may be due to the fact that smartphone
devices have not been with us for a very long time, and the acquisition of such data
is a time and resource consuming process. The next subsections explain the settings
of the datasets that have been used for the evaluation. A python script has been
implemented in order to convert these datasets in the required form.

5.1.1 Dataset 1: Fixed-length text on smartphones

The first dataset1 is composed of data collected from 54 users who typed easy and
strong passwords on mobile devices. We refer to [4] for the associated research
and its results. The keystrokes were collected using an application implemented
for Android devices. They collected different types of features was collected: time-
based, touch-based and accelerometer-based. We used for our evaluation only the
time-based, since our solution exploits only this type of feature in order to model
and analyze user typing behavior. We considered this dataset for our evaluation in
order to understand whether the algorithms we implemented, that were supposed
to work for the analysis of free composed text, were also suitable for the analysis of
keystrokes generated by users who typed fixed length strings on smartphones.

5.1.2 Dataset 2: Free and transcribed text on computers

The second dataset2 used for the evaluation is made of samples collected from users
who typed on computer keyboards free and transcribed text. This data was col-
lected for the research conducted by Killourhy et al. in [29]. The aim of their
research was to establish, in the context of keystroke dynamics analysis, whether
samples produced by subjects that transcribed passages of text and samples gen-
erated by freely writing users would have produced equivalent results in terms of
authentication accuracy. The transcription task is often easier for the subjects of
the experiments, rather than free composition one. The results of their research
showed that the difficulty of collecting freely composed text is unnecessary, and the
transcription task can still be used.
This second dataset is made of keystrokes collected from 20 users, where each user
completed two free and two transcription tasks. We used this dataset in order to
verify whether the techniques we used would achieved high authentication accuracy

1https://www.ms.sapientia.ro/~manyi/mobikey.html
2http://www.cs.cmu.edu/~keystroke/laser-2012

54

https://www.ms.sapientia.ro/~manyi/mobikey.html
http://www.cs.cmu.edu/~keystroke/laser-2012


5.2 – Evaluation criteria

in the environment they were conceived for, e.g. analysis of free text on computer
keyboard [20].

5.1.3 Dataset 3: Transcribed text on smartphones

Since there was a lack of data produced by freely texting users on mobile devices,
we developed a website used to collect this kind of data. The website presents a
simple interface, composed by a paragraph of text and an input box to copy that
text inside. When this form is completed, and the “submit” button is pressed, the
generated keystrokes are sent to the collecting server. A client-side JavaScript script
gathers the timing information of the typed text. The script, as long as the user
types in the box, generates a sequence of digraphs, where each digraph is made of
two consecutive keys pressed and the time elapsed between the keys. The subjects
that were involved in the data acquisition process were 10, and they all used different
devices. The number may not seem sufficiently high, but the study carried out by
Messerman et al. [32] showed that an increasing number of users in the system
does not influence significantly the results. For this reason the conducted their
experiments by using a constant number of users, nr, choosing randomly nr users
among the ones of their dataset. This was done especially for scalability reasons, in
order to have constant performance in terms of time even when the number of users
would have increased.

5.2 Evaluation criteria

In order to test the system, we needed illegitimate user attempts, as well as legitimate
ones. Since in the datasets we used there were only legitimate users samples, we
opted for the following strategy. For each user of the dataset:

• To simulate legitimate samples, we simply used his/her keystrokes.

• To simulate illegitimate samples, we used other users keystrokes.

The evaluation metrics for the experiments are described in Subsection 5.2.1, whereas
Subsection 5.2.2 illustrates how the validation of the model has been performed.

5.2.1 Evaluation metrics

The metrics that are used for the evaluation of biometric authentication methods
are False rejection rate (FRR), False acceptance rate (FAR) and Equal
error rate (EER). Their definition is given below [42].

55



5 – Evaluation

False rejection rate (FRR) The FRR is the number of falsely rejected users at-
tempts, against the total number of legitimate attempts. A low FRR implies that
a few number of legitimate users is rejected, this means that the system as an high
level of usability. FRR is also knows as false alarm rate, false negative rate, false
non-match rate.

False acceptance rate (FAR) The FAR is the number of falsely accepted users
attempts against the total number of illegitimate attempts. A low FAR indicates
an high level of security, since illegitimate users are normally rejected. FAR is also
knows as miss alarm rate, false positive rate, false match rate.

Equal error rate (EER) The EER is the number that expresses the overall accu-
racy of a biometric authentication method. It has to be noticed that the FAR and
the FRR are negatively correlated, it is not possible to decrease at the same time
both the values of the FAR and the FRR. The EER can be found intersecting the
graphs of the FRR and FAR. A low value of FRR and FAR produces a low value of
EER. For this reason EER is used to express the overall accuracy since it represents
the correlation between these two measures.

5.2.2 Model validation

In order to perform the experiments, some data is required for both training the
models and testing the system. Since there is not a predefined distinction between
training and testing data within the datasets, the k-fold cross validation method
has been used to validate the results of the experiments. Using this method the
datasets are split into k subsets. At each iteration, one of the k subsets is used to
test the system, whereas the other k-1 subsets are used to train the model. We opted
for a 3-fold-cross validation because an high number of keystrokes was required in
order to build enough typing samples for the testing phase.

5.3 Performance evaluation

In this section we present the results of the experiments carried out with the three
datasets. Each subsection focuses on the results we obtained by using a specific
dataset and an observation about each of these results is proposed. We performed
these experiments modifying some parameters of the algorithm configuration. The
two important ones are:

• number of digraphs per sample: the number of digraphs required to build
a typing sample.

56



5.3 – Performance evaluation

• score adjuster: This value has been introduced in order to regulate the
FAR and FRR of the authentication. It defines how near to the user model a
typing sample has to be in order to recognize it as belonging to that user. By
modifying this parameter, different values of FAR and FRR can be obtained.
If an high value is assigned to this variable, it is very likely that the system will
have an high FAR and a low FRR. An high value can be used when the system
requires high usability. On the contrary, when more security is required, a low
value has to be assigned to this variable, in order to produce a low FAR and
an high FRR.

The experiments have been performed changing these two parameters, while others
have been left unchanged. Precisely:

• the number of samples required for the training of the models has been set to
50 samples.

• the threshold to calculate the similarity (A measure) between typing samples,
as we described in 3.3.5, has been set to 1.25, as proposed by Gunetti et al.
in [20].

• the threshold used to discard the digraphs based on their time duration are:
620 ms for both the first and third datasets, and 750 ms the second one.
We selected these numbers after a first round of experiments where we tested
different values. Hence, we selected the values that produced the best authen-
tication accuracies.

For each dataset the experiments have been carried out testing the two modes of
operation implemented: the authentication mode and the anomaly detection mode.

5.3.1 Dataset 1: results and observations

Dataset 1: authentication mode

Figure 5.1 shows the results of the experiments performed using the authentication
mode. In particular, Figure 5.1a, shows values for FAR and FRR obtained by chang-
ing the number of digraphs required for each typing sample. In this first experiments
the value of score adjuster has been set to 0.03, while the number of digraphs has
been varied between 10 digraphs and 80 digraphs. Results show that by increasing
this number the performance has increased as well. This is especially the case for
the FAR, whereas the FRR seems to stabilize around 25%. The problem in this case
is that a password normally is chosen of about 10 characters at maximum, 20 in
very special cases. For this reason, the only significant results are the ones obtained
when 10 and 20 digraphs are used to build typing samples.

57



5 – Evaluation

By setting the number of digraphs per sample at 20 digraphs, the next experiments
have been carried out changing the value of the score adjuster. Results are shown in
Figure 5.1b. The intersection of the two lines represents the EER, that is equivalent
to 26%.

10 20 30 40 50 60 70 80

10%

15%

20%

25%

30%

35%

Digraphs per sample

FRR
FAR

(a) FAR and FRR obtained by changing the number of digraphs per sample.

0 1 · 10−22 · 10−23 · 10−24 · 10−25 · 10−26 · 10−27 · 10−28 · 10−29 · 10−2 0.1

20%

25%

30%

35%

Score adjuster

FRR FAR

(b) FAR and FRR obtained by changing the value of the score adjuster.

Figure 5.1: Dataset 1: results for authentication mode.

Dataset 1: anomaly detection mode

The same reasoning was made for the experiments related to the second mode of
operation. In this case, the EER obtained, by setting the number of digraphs to 20,

58



5.3 – Performance evaluation

is around 39%. The results are shown in Figure 5.2.

10 20 30 40 50 60 70 80

20%

30%

40%

50%

Digraphs per sample

FRR
FAR

(a) FAR and FRR obtained by changing the number of digraphs per sample.

8 · 10−29 · 10−2 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

35%

40%

45%

50%

Score adjuster

FRR
FAR

(b) FAR and FRR obtained by changing the value of the score adjuster.

Figure 5.2: Dataset 1: results for anomaly detection mode.

Dataset 1: observations

These presented results demonstrate that the authentication techniques we used for
our solution do not achieve good results for both the two modes of operation. The
anomaly detection mode cannot be very suitable to analyze the typing behavior of
people who type fixed length strings. This is because the EER, that is around 39%,
is too high to be acceptable. The same reasoning applies to the authentication mode,

59



5 – Evaluation

since good performance is registered when there are more characters available with
respect to the normal number of characters that composes a password.

5.3.2 Dataset 2: results and observations

For these experiments only the keystrokes collected through the free-composition
task of the subjects have been used.

Dataset 2: authentication mode

Figure 5.3 shows the results of the experiments performed using the authentication
mode. The best performance is registered when 50 digraphs are used to compose
the typing samples. The EER is located in the intersection of the FAR and FRR in
Figure 5.3b. Its value is around 10%.

Dataset 2: anomaly detection mode

The results for the anomaly detection mode are similar to the ones obtained using
the authentication mode. The EER registered is between the 12% and 13%.

Dataset 2: observations

These results show that the techniques used are definitely suitable for the analysis
of the typing behavior of users who type freely on computer keyboards. Both the
authentication and anomaly detection mode work really well, since the EER are
respectively 10% and 12.5%. However, these values are still not sufficiently low in
order to use this method of authentication by itself. Other behavioral authentication
techniques should be used in combination with the proposed one, in order to obtain
values for the EER that are close to zero.

5.3.3 Dataset 3: results and observations

The third dataset is made of typing samples of 10 users, who transcribed the same
text. The text was composed of about 950 characters. The subjects of the experi-
ments had simply to copy the proposed text using their own smartphones, without
any restrictions. For instance, a subject could have used the autocompletion, the
suggestions proposed by his or her virtual keyboard, or he or she could have used
a third-party keyboard. Precisely, half of the subjects used an Android device and
the others an phone device; they all used the autocompletion and one of them used
the SwiftKey3 third-party keyboard for Android devices.

3https://swiftkey.com/en/keyboard/android

60



5.3 – Performance evaluation

10 20 30 40 50 60 70 80

10%

20%

30%

40%

Digraphs per sample

FRR
FAR

(a) FAR and FRR obtained by changing the number of digraphs per sample.

6 · 10−27 · 10−28 · 10−29 · 10−2 0.1 0.11 0.12 0.13 0.14 0.15 0.16

5%

10%

15%

20%

Score adjuster

FRR FAR

(b) FAR and FRR obtained by changing the value of the score adjuster.

Figure 5.3: Dataset 2: results for authentication mode.

Dataset 3: authentication mode

The results of the experiments are presented in Figure 5.5. Figure 5.5a illustrates the
results obtained by changing the number of digraphs per typing sample. The results
show that by increasing this number the overall performance increases significantly.
The best increase of performances is registered when the typing samples are made
of 40-50 digraphs, with values of FAR and FRR are between 15% and 20%.
For the second experiment the number of digraphs per typing sample has been set
to 50. The EER, that is represented by the intersection of the FAR and FRR in

61



5 – Evaluation

10 20 30 40 50 60 70 80

10%

20%

30%

40%

50%

Digraphs per sample

FRR
FAR

(a) FAR and FRR obtained by changing the number of digraphs per sample.

6 · 10−27 · 10−28 · 10−29 · 10−2 0.1 0.11 0.12 0.13 0.14 0.15 0.16
5%

10%

15%

20%

25%

Score adjuster

FRR
FAR

(b) FAR and FRR obtained by changing the value of the score adjuster.

Figure 5.4: Dataset 2: results for anomaly detection mode.

Figure 5.5b, is equivalent to 16%.

Dataset 3: anomaly detection mode

For the anomaly detection mode the results are slightly worse. The EER, calculated
using 50 digraphs per sample, increases by 2%, reaching the 18%.

62



5.3 – Performance evaluation

10 20 30 40 50 60 70 80

10%

15%

20%

25%

30%

35%

Digraphs per sample

FRR
FAR

(a) FAR and FRR obtained by changing the number of digraphs per sample.

0 1 · 10−22 · 10−23 · 10−24 · 10−25 · 10−26 · 10−27 · 10−28 · 10−29 · 10−2 0.1

10%

15%

20%

25%

Score adjuster

FRR FAR

(b) FAR and FRR obtained by changing the value of the score adjuster.

Figure 5.5: Dataset 3: results for authentication mode.

Dataset 3: observations

As we could be expected, the overall performance of the system using this third
dataset decreased, with respect to the previous one. This could be due to the fact
that the typing rhythm on a real keyboard is more personal than the one that
people have on a smartphone devices. A computer keyboard is larger and each
person writes on it with different fingers. For instance, one could only use his/her
4 fingers, whereas another person may use all the fingers of the two hands. On
the contrary, the typing rhythm on a smartphone is less personal. To type on a

63



5 – Evaluation

10 20 30 40 50 60 70 80

10%

20%

30%

40%

50%

Digraphs per sample

FRR
FAR

(a) FAR and FRR obtained by changing the number of digraphs per sample.

0 1 · 10−22 · 10−23 · 10−24 · 10−25 · 10−26 · 10−27 · 10−28 · 10−29 · 10−2 0.1

10%

20%

30%

40%

Score adjuster

FRR
FAR

(b) FAR and FRR obtained by changing the value of the score adjuster.

Figure 5.6: Dataset 3: results for anomaly detection mode.

smartphone the thumbs are normally, since the others fingers are used to hold the
device. In addition, on computer keyboards there are neither autocompletions nor
suggestions. Nevertheless, the performance is still acceptable if we consider using our
authentication framework along with other behavioral authentication techniques, or
simply other methods of authentication.

64



5.4 – Privacy evaluation

5.4 Privacy evaluation
In order to perform the privacy evaluation of the system, the same kind of exper-
iments have been conducted, applying the different privacy preserving techniques
implemented. Since the keystroke dynamics authentication framework we imple-
mented is conceived for the analysis of the typing behavior of users who type freely
on smartphones, the experiments have been only performed using the third dataset.
The next subsections illustrate the results obtained applying these techniques.

5.4.1 The “permutation” technique

The permutation technique is our first privacy-preserving technique. The results for
both the two modes of operation, shown in Figure 5.7 and Figure 5.8, are similar to
the one obtained without applying this technique. By permutating the keystrokes
before sending them to the server has the only drawback that the trigraphs cannot
be used for the to calculate the disorder between the typing sample. This is because
the trigraphs are created on the server-side application, by combining subsequent
digraphs. The problem here is that the order of the digraphs does not reflect the
order in which the digraphs were originally typed. For this reason, the “R3” measure,
hence the “R2,3” one, cannot be computed. The resulting distance measure that can
be used is only the one composed of “R2 + A2”, since only digraphs are required.
The results demonstrate that by applying this technique overall performance does
not decrease. The EER obtained is 16% for the authentication mode and 18% for
the anomaly detection mode. The same EERs that were obtained without applying
the permutation.

5.4.2 The “substitution” technique

By applying the substitution we have the same drawback encountered with the pre-
vious technique. The trigraphs cannot be used for the classification task. Moreover,
since the typing samples are altered, due to the substitution operation, we have ob-
tained worse results. The EER is around 30% for both the two modes of operation.
The results are presented in Figure 5.9 and Figure 5.10.

5.4.3 The “suppression” technique

For what concerns the suppression technique there can be two modes of applying
this technique. The first one avoids sending more than a certain percentage of
keystrokes collected by the client. In this case we would have the same results
obtained using the default configuration. The consequence will be that the system
will take more time to collect the required number of digraphs to perform the decision
making operation. Another possible application would be to send a fewer number

65



5 – Evaluation

10 20 30 40 50 60 70 80

10%

15%

20%

25%

30%

Digraphs per sample

FRR
FAR

(a) FAR and FRR obtained by changing the number of digraphs per sample.

0 1 · 10−22 · 10−23 · 10−24 · 10−25 · 10−26 · 10−27 · 10−28 · 10−29 · 10−2 0.1

5%

10%

15%

20%

25%

30%

Score adjuster

FRR FAR

(b) FAR and FRR obtained by changing the value of the score adjuster.

Figure 5.7: Dataset 3: results for authentication mode with the permutation tech-
nique.

of keystrokes and build typing samples that are shorter. To observe the impact of
this second method on the authentication accuracy the reader can refer to Figure
5.7 and 5.8.

66



5.4 – Privacy evaluation

10 20 30 40 50 60 70 80

20%

30%

40%

50%

Digraphs per sample

FRR
FAR

(a) FAR and FRR obtained by changing the number of digraphs per sample.

0 1 · 10−22 · 10−23 · 10−24 · 10−25 · 10−26 · 10−27 · 10−28 · 10−29 · 10−2 0.1

10%

20%

30%

40%

Threshold

FRR
FAR

(b) FAR and FRR obtained by changing the value of the score adjuster.

Figure 5.8: Dataset 3: results for anomaly detection mode with the permutation
technique.

5.4.4 Combining the privacy-preserving techniques

The techniques presented are easily composable. The results obtained using the
substitution are the same that would have been achieved by combining this tech-
nique with the permutation. Moreover, the two techniques could also be applied
in combination with the third technique proposed, in order to strengthen the secu-
rity of the system, with the consequence that more time will be required to receive
authentication responses.

67



5 – Evaluation

10 20 30 40 50 60 70 80

20%

30%

40%

50%

60%

Digraphs per sample

FRR
FAR

(a) FAR and FRR obtained by changing the number of digraphs per sample.

0 1 · 10−22 · 10−23 · 10−24 · 10−25 · 10−26 · 10−27 · 10−28 · 10−29 · 10−2 0.1

20%

30%

40%

50%

Score adjuster

FRR
FAR

(b) FAR and FRR obtained by changing the value of the score adjuster.

Figure 5.9: Dataset 3: results for authentication mode with the substitution tech-
nique.

5.4.5 Privacy evaluation: observations

The techniques proposed certainly increase the privacy of users, since they make
harder the reconstruction of the text typed. However the privacy level depends
significantly on the number of keystrokes sent per typing sample. For instance, if a
typing sample is composed of few digraphs, after applying the permutation technique
the reconstruction of the original text is still easy for an attacker. The same applies
for the substitution technique. In this case, an attacker that knows in advance the

68



5.5 – Validity threats

10 20 30 40 50 60 70 80

20%

40%

60%

Digraphs per sample

FRR
FAR

(a) FAR and FRR obtained by changing the number of digraphs per sample.

0 1 · 10−22 · 10−23 · 10−24 · 10−25 · 10−26 · 10−27 · 10−28 · 10−29 · 10−2 0.1

20%

30%

40%

Score adjuster

FRR
FAR

(b) FAR and FRR obtained by changing the value of the score adjuster.

Figure 5.10: Dataset 3: results for anomaly detection mode with the substitution
technique.

privacy-preserving technique used, could try to infer the original text by doing some
frequency analysis of the combinations of letters.

5.5 Validity threats
The main validity threat, when biometric authentication systems have to be tested,
is that a lot of data produced by different users is required. The problem is that
there is not a specified threshold for the number of this data. In a realistic scenario,

69



5 – Evaluation

the system should be able to manage a large number of users. For this reason, the
more data is available in the evaluation phase, the more the results will be accurate
and realistic.
For each of the datasets used, the number of data samples per user was sufficiently
high. Whereas, more realistic results would have been obtained with more users for
each dataset. For the first two dataset, data from about 20 users has been tested.
This number can be satisfactory, since other experiments have been performed with
these same datasets. However, for the third dataset, the subject of the experiments
were only 10. A system with only 10 users registered may not be realistic and,
as a consequence, also the results obtained. However, the research of Messerman
et al. [32] demonstrated that, after a certain number of users considered in the
experiment, increasing this number did not influence their results. The techniques
of authentication used in their work were similar to the ones used in the solution
proposed. For this reason, we believe that the same reasoning could apply in the
case of the third dataset. However, more experiments should be performed to prove
that.
Another validity threat is that the data, used for the experiments, has been collected
in a controlled environment. This is especially the case for the first and the third
dataset. Smartphones could be used while the user is in motion. This will produce
possibly different authentication results. To validate the results obtained, more
experiments should be carried out in order to test the system in the different contexts
in which it could be used.

5.6 Qualitative evaluation of the non-functional re-
quirements

If we consider the non-functional requirements we listed in Chapter 3, we can ob-
serve that the first two focus mainly on performance, whereas the third one focuses
on privacy. For the first two, we stated that: (1) the system has to perform the
authentication operation in a reasonable time, in order to block illegitimate users in
a timely manner, and (2) the system has to scale in order to prevent performance
bottlenecks. It is logical that the two requirements are strictly correlated, since
scaling the system would help improving the response time of the authentication.
For this reason, these two requirements can be evaluated simultaneously.

Unfortunately, we could not perform this evaluation, due to the fact that there was
not enough user data in order to simulate a real scenario of a system made up of hun-
dreds or thousands of users. However, a possible solution to perform this evaluation
could have been stressing the system by issuing multiple concurrent authentication
requests. In our case, we would have sent a huge amount of keystrokes coming from

70



5.6 – Qualitative evaluation of the non-functional requirements

different users and calculated the rate at which those keystrokes would have been
successfully handled [22]. We would have made use of the Universal Scalability Law
(UCL) in order to give a quantitative evaluation of the scalability of our authen-
tication system. Despite these limitations encountered, we can still provide some
observations.

It has to be noticed that the computational performance depends on the configu-
ration used for the system. For instance, the space required to store a single user
model depends on the number of keystrokes used to train the model. The keystrokes
have to be saved, since they are used to compare new typing samples against the
user models of the system and to retrain the model (if required). If we consider the
distributed approach we proposed in Section 4.6 to scale out the system, the amount
of space for the user models will affect the update of these models among different
machines.

The other configuration aspect that influences the performance is the mode of oper-
ation used. By using the anomaly detection mode the effort required to authenticate
a user will not depend on the number of users of the system, since his/her typing
samples will be compared only against his/her typing model. Therefore, the com-
putational overhead will be linearly proportional to the number of users that sends
keystrokes to the server at the same time. Whereas, by using the authentication
mode the system has to compare a user typing sample against the different user
models. In this case, the authentication will have a quadratic complexity w.r.t. the
number of users of the system. If we indicate with N the total number of the users
managed by the system, we can state that for the first case the complexity of the
authentication operation is O(N) in the worst case, whereas in the second case it is
O(N2). Instead, if we compare a user sample against a fixed number of users, let us
say X users, as we proposed also in Section 4.6, the complexity will be O(N · X).
Moreover, if we split the users across different machines, where each machine man-
ages M users, with M < N, we will have a complexity of O(M ·X).
To have an idea, using typing samples made of 50 digraphs and user models com-
posed of 600 digraphs, we calculated that the time required to compute the distance
between a typing sample and a single user model is about 10 ms. Thus, if this
comparison is performed against 10 user models, e.g. using the authenticate mode,
the time required will be around 100ms, and so on. The machine used for the ex-
periments had an Intel Core i5 processor with a 2,4 GHz clock speed.

The third non-functional requirement we specified was that the authentication sys-
tem should avoid service providers from being able to reconstruct the text typed by
users. In order to meet this requirement, we implemented three privacy-preserving
techniques. The problem, in this case, is that it is not trivial to evaluate how our

71



5 – Evaluation

techniques make it more difficult to reconstruct the typed text. This highly depends
on the ability and ingenuity of attackers and the effectiveness of our techniques can-
not be easily evaluated in a quantitative manner.

72



Chapter 6

Conclusion

This final chapter summarizes the conclusions about the work carried in the frame
of this master thesis. The aim of this research was to investigate the effectiveness
of using keystroke dynamics to authenticate users continuously and transparently
specifically on smartphones and with consideration of privacy. In order to do that,
we implemented a client-server prototype that provides support for privacy and we
evaluated our solution by using real user data. This final chapter is structured as
follows. The first section presents the work that have done in order to achieve the
goals presented in Chapter 1. In addition, we present the results of the evaluation
of the proposed solution, along with the final insights. We conclude the chapter by
discussing opportunities for future research work in this area.

6.1 Key contributions

The contributions of this thesis are (1) a server and client side implementation for
keystroke dynamics authentication on mobile, (2) the evaluation of state-of-the-art
keystroke dynamics techniques using real user data, (3) the implementation of pri-
vacy extensions on top of existing algorithms.

For contribution (1) a prototype of the continuous authentication framework has
been developed. The authentication services are exposes by means of RESTful APIs
that can be contacted by clients and IAM systems through simply HTTP requests.
By adopting this design the clients are untied from the server application architec-
ture, and it leaves room for the extension and integration with other authentication
services.

Contribution (2) has been achieved by evaluating our solution which makes use of
state-of-the-art algorithms proposed for keystroke dynamics analysis. The evalua-
tion has been performed using three different datasets, in particular real data was

73



6 – Conclusion

appositely acquired in order to test the system in its real usage environment (users
who type freely on smartphones). The results obtained give us the evidence that our
solution analyzes better the typing behavior of users when they type free text rather
than fixed-length strings. They also show that more users have a more particular
typing behavior when they type on computer keyboard rather than on smartphones.
In the first case the EER of the system was 10% and 12% when using the authenti-
cation mode and the anomaly detection one respectively. Whereas, higher values of
EER has been obtained when users type on smartphones, the EER was 16% using
the authentication mode and 18% using the anomaly detection one.

For contribution (3) we researched, implemented and properly evaluated three privacy-
preserving techniques, named permutation, substitution and suppression. These
techniques can be used in order prevent honest but curious service providers to
reconstruct what users type. The impact of using these techniques on the authen-
tication accuracy demonstrated that there is a trade-off between the security of the
system and the privacy of the users. Precisely, for the permutation technique we
obtained the same values of EER, for both the two modes of operation, as the ones
registered without applying this technique. Whereas, by applying the substitution
technique, we registered an increase of 15% for the first task, and of 11% for the
second one. For the third suppression technique, the EER increased as much as
the number of keystrokes suppressed. The privacy-security trade-offs have to be
regulated based on application requirements.

6.2 Future work
As a possible future work first of all a more exhaustive evaluation of our solution
needs to be performed. This implies that more user data is required in order to vali-
date the authentication accuracy we obtained in our experiments. This also applies
for the experiments we performed with the privacy-preserving extensions. In addi-
tion, a qualitative evaluation of the two strategies we proposed to achieve scalability
should be carried out. It could be also interesting to combine keystroke dynamics
with other behaviometrics in order to characterize and verify better user behavior.
A possible solution could be to implement another behaviometric authentication
framework that can work in parallel with our proposed one. The final authentica-
tion decision would then be based on both the results obtained by the two systems,
weighted proportionally w.r.t. to their respective accuracy.

74



Bibliography

[1] M. Abramson and D. W. Aha. User authentication from web browsing behavior.
Technical report, DTIC Document, 2013.

[2] P. E. Agre and M. Rotenberg. Technology and privacy: The new landscape.
Mit Press, 1998.

[3] A. Alzubaidi and J. Kalita. Authentication of smartphone users using behav-
ioral biometrics. IEEE Communications Surveys & Tutorials, 18(3):1998–2026,
2016.

[4] M. Antal and L. Nemes. The mobikey keystroke dynamics password database:
Benchmark results. In Software Engineering Perspectives and Application in
Intelligent Systems, pages 35–46. Springer, 2016.

[5] M. Antal, L. Z. Szabó, and I. László. Keystroke dynamics on android platform.
Procedia Technology, 19:820–826, 2015.

[6] D. Buschek, A. De Luca, and F. Alt. Improving accuracy, applicability and
usability of keystroke biometrics on mobile touchscreen devices. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems,
pages 1393–1402. ACM, 2015.

[7] K. Calix, M. Connors, D. Levy, H. Manzar, G. MCabe, and S. Westcott. Sty-
lometry for e-mail author identification and authentication. Proceedings of CSIS
Research Day, Pace University, pages 1048–1054, 2008.

[8] P. Campisi, E. Maiorana, M. L. Bosco, and A. Neri. User authentication using
keystroke dynamics for cellular phones. IET Signal Processing, 3(4):333–341,
2009.

[9] N. L. Clarke and S. M. Furnell. Authenticating mobile phone users using
keystroke analysis. International Journal of Information Security, 6(1):1–14,
2007.

[10] H. Crawford. Keystroke dynamics: Characteristics and opportunities. In Pri-
vacy Security and Trust (PST), 2010 Eighth Annual International Conference
on, pages 205–212. IEEE, 2010.

[11] P. X. de Oliveira, V. Channarayappa, E. O’Donnel, B. Sinha,
A. Vadakkencherry, T. Londhe, U. Gatkal, N. Bakelman, J. V. Monaco,
and C. C. Tappert. Mouse movement biometric system. Proc. CSIS Research
Day, 2013.

75



Bibliography

[12] K. Delac and M. Grgic. A survey of biometric recognition methods. In Electron-
ics in Marine, 2004. Proceedings Elmar 2004. 46th International Symposium,
pages 184–193. IEEE, 2004.

[13] I. Deutschmann, P. Nordström, and L. Nilsson. Continuous authentication
using behavioral biometrics. IT Professional, 15(4):12–15, 2013.

[14] S. Dhage, P. Kundra, A. Kanchan, and P. Kap. Mobile authentication using
keystroke dynamics. In Communication, Information & Computing Technology
(ICCICT), 2015 International Conference on, pages 1–5. IEEE, 2015.

[15] S. Englehardt and A. Narayanan. Online tracking: A 1-million-site measure-
ment and analysis. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1388–1401. ACM, 2016.

[16] T. Feng, X. Zhao, B. Carbunar, and W. Shi. Continuous mobile authentica-
tion using virtual key typing biometrics. In Trust, Security and Privacy in
Computing and Communications (TrustCom), 2013 12th IEEE International
Conference on, pages 1547–1552. IEEE, 2013.

[17] R. S. Gaines, W. Lisowski, S. J. Press, and N. Shapiro. Authentication by
keystroke timing: Some preliminary results. Technical report, DTIC Document,
1980.

[18] H. Gascon, S. Uellenbeck, C. Wolf, and K. Rieck. Continuous authentication
on mobile devices by analysis of typing motion behavior. In Sicherheit, pages
1–12. Citeseer, 2014.

[19] C. Giuffrida, K. Majdanik, M. Conti, and H. Bos. I sensed it was you: authenti-
cating mobile users with sensor-enhanced keystroke dynamics. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assess-
ment, pages 92–111. Springer, 2014.

[20] D. Gunetti and C. Picardi. Keystroke analysis of free text. ACM Transactions
on Information and System Security (TISSEC), 8(3):312–347, 2005.

[21] D. Herrmann, R. Wendolsky, and H. Federrath. Website fingerprinting: attack-
ing popular privacy enhancing technologies with the multinomial naïve-bayes
classifier. In Proceedings of the 2009 ACM workshop on Cloud computing secu-
rity, pages 31–42. ACM, 2009.

[22] T. Heyman, D. Preuveneers, and W. Joosen. Scalability analysis of the openam
access control system with the universal scalability law. In Future Internet of
Things and Cloud (FiCloud), 2014 International Conference on, pages 505–512.
IEEE, 2014.

[23] B. Inc. Behaviometrics. https://www.behaviosec.com/behaviometrics.
Accessed: 2017-05-25.

[24] A. K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recogni-
tion. IEEE Transactions on circuits and systems for video technology, 14(1):4–
20, 2004.

[25] L. Jain and J. Vyas. Security analysis of remote attestation. Technical report,

76

https://www.behaviosec.com/behaviometrics


Bibliography

CS259 Project Report, 2008.
[26] W. J. Jan Spooren, Davy Preuveneers. Leveraging battery usage from mobile

devices for active authentication. Mobile Information Systems, 2017.
[27] G. Kambourakis, D. Damopoulos, D. Papamartzivanos, and E. Pavlidakis. In-

troducing touchstroke: keystroke-based authentication system for smartphones.
Security and Communication Networks, 2014.

[28] M. Karnan, M. Akila, and N. Krishnaraj. Biometric personal authentication
using keystroke dynamics: A review. Applied Soft Computing, 11(2):1565–1573,
2011.

[29] K. S. Killourhy and R. A. Maxion. Free vs. transcribed text for keystroke-
dynamics evaluations. In Proceedings of the 2012 Workshop on Learning from
Authoritative Security Experiment Results, pages 1–8. ACM, 2012.

[30] W. Liu, A. S. Uluagac, and R. Beyah. Maca: A privacy-preserving multi-factor
cloud authentication system utilizing big data. In Computer Communications
Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on, pages 518–523.
IEEE, 2014.

[31] Y. Meng, D. S. Wong, R. Schlegel, et al. Touch gestures based biometric au-
thentication scheme for touchscreen mobile phones. In International Conference
on Information Security and Cryptology, pages 331–350. Springer, 2012.

[32] A. Messerman, T. Mustafić, S. A. Camtepe, and S. Albayrak. Continuous and
non-intrusive identity verification in real-time environments based on free-text
keystroke dynamics. In Biometrics (IJCB), 2011 International Joint Confer-
ence on, pages 1–8. IEEE, 2011.

[33] J. V. Monaco and C. C. Tappert. Obfuscating keystroke time intervals to avoid
identification and impersonation. arXiv preprint arXiv:1609.07612, 2016.

[34] M. Nauman, T. Ali, and A. Rauf. Using trusted computing for privacy preserv-
ing keystroke-based authentication in smartphones. Telecommunication Sys-
tems, pages 1–13, 2013.

[35] M. Obaidat and B. Sadoun. Keystroke dynamics based authentication. In
Biometrics, pages 213–229. Springer, 1996.

[36] M. Raza, M. Iqbal, M. Sharif, and W. Haider. A survey of password attacks
and comparative analysis on methods for secure authentication. World Applied
Sciences Journal, 19(4):439–444, 2012.

[37] S. Sen and K. Muralidharan. Putting ‘pressure’ on mobile authentication. In
Mobile Computing and Ubiquitous Networking (ICMU), 2014 Seventh Interna-
tional Conference on, pages 56–61. IEEE, 2014.

[38] M. S. Siddiqui and D. Verma. Evercookies: Extremely persistent cookies. In-
ternational Journal of Computer Science and Information Security, 9(5):165,
2011.

[39] C.-J. Tasia, T.-Y. Chang, P.-C. Cheng, and J.-H. Lin. Two novel biometric
features in keystroke dynamics authentication systems for touch screen devices.

77



Bibliography

Security and Communication Networks, 7(4):750–758, 2014.
[40] Techopedia. What is a filter bubble? https://www.techopedia.com/

definition/28556/filter-bubble. Accessed: 2017-05-25.
[41] P. S. Teh, A. B. J. Teoh, and S. Yue. A survey of keystroke dynamics biometrics.

The Scientific World Journal, 2013, 2013.
[42] P. S. Teh, N. Zhang, A. B. J. Teoh, and K. Chen. A survey on touch dynamics

authentication in mobile devices. Computers & Security, 59:210–235, 2016.
[43] M. Trojahn, F. Arndt, and F. Ortmeier. Authentication with keystroke dynam-

ics on touchscreen keypads-effect of different n-graph combinations. In Third
International Conference on Mobile Services, Resources and Users (MOBIL-
ITY), pages 114–19, 2013.

[44] S. D. Warren and L. D. Brandeis. The right to privacy. Harvard law review,
pages 193–220, 1890.

[45] A. F. Westin. Privacy and freedom. Washington and Lee Law Review,
25(1):166, 1968.

[46] K. Wuyts. Privacy threats in software architectures. 2015.

78

https://www.techopedia.com/definition/28556/filter-bubble
https://www.techopedia.com/definition/28556/filter-bubble


Appendices

79





Appendix A

Popularizing article

81



Continuous authentication with
behaviometrics on smartphones
Gabriele Vassallo, KU Leuven

N
owadays almost all web-applications
and online services deal with our per-
sonal information, such us identity (so-

cial networks), friends (messaging apps) and
our money (mobile payments). For this rea-
son more sophisticated mechanisms of au-
thentication are becoming widely used to as-
sure stronger security for our personal data.
Interest is growing to behavioral authentica-
tion techniques, e.g. keystroke dynamics, as
a next step in a multi-factor authentication
mechanism, since it is powerful in identify-
ing intruders and does not require additional
hardware given that it uses built-in compo-
nents of the devices we use during our day
life.
The goal of the research is to investigate
which kinds of techniques fulfill better the
task of analyzing this data, and how much
these techniques can scale, since they have
to continuously process a big amount of data
and, at the same time, be responsive as much
as possible, while preserving security and pri-
vacy of users.

Introduction

Ensuring security in modern applications is becoming
more and more challenging. New security threats
are proving that single-factor authentication is not
robust enough to assure a reasonable level of security,
especially for applications that deal with sensitive
data.
Single-factor authentication (SFA) is a process
for securing access to a given system, that identifies
the party, which is requesting access, through only
one category of credentials. These credentials, that

should be something that only the user can know,
prove the identity of that user. The password-based
authentication method is the most common example
of SFA.

It relies on the fact that: only the user knows his/her
own password, the password is highly difficult to be
guessed, and that the authentication system is robust
enough to prevent intrusions and dictionary based
attacks [1]. In order to carry out these last mentioned
attacks, a malicious user has to enumerate, and try,
all the possible passwords until he/she finds the right
one. In order to decrease the number of passwords to
try, a dictionary of common passwords can be used.

Password-based authentication can be considered
as the weakest form of authentication, but it is still
the most widely adopted. This is because it has low
cost of implementation, it is intuitive and it is not
intrusive, since it does not require users’ personal
information, such as biometric data (e.g. eye iris,
fingerprints, face recognition, etc.).

The other reason is that companies implemented
this method of authentication in their system several
years ago, therefore a transition to new standards
could be really expensive.

Multi-factor authentication (MFA), also called
Multi-Modal authentication, adds new layers of se-
curity in a system, granting the access to a resources
after the verification of at least two type of creden-
tials, named factors, provided by the user. The
authentication factors have to be of different natures,
in particular they should be:

• something secret to the user, e.g. passwords,
PINs, etc.

• something the user possesses, e.g. a USB with
a token, a bank card, etc.

Page 1 of 5



• some physical characteristics of the user (biomet-
rics), e.g. fingerprints, eye iris, typing pattern
behavior, etc.

An example of MFA authentication is the combina-
tion password and security token we use to access
a bank account. The security token is a passcode
with short lifetime that is generated randomly and
that only a specified user can read it , e.g. through
a USB stick, such that if an attacker guess it, it will
not work for the next session. The good advantage
of MFA is that it can be extended as much as the
system requirements. This extension is simply pro-
vided by the composition of new factors, which will
implement additional steps for the authentication
operation.
Biometric can be seen as secure factor in authenti-
cation, considering that it validates the identity of a
user, who wishes to sign into a system, by measuring
some intrinsic characteristics of that specific user, i.e.
his/her unique biological attributes.
Nevertheless, new researches are showing that also
this kinds of verifications can be easily circumvented
with the help of new technologies. An attacker can
extract eye iris simply from a photo of a targeted user,
whereas fingerprints can be reproduced just with a
camera and glue, or in extreme cases by physical
attacks.
For these reasons, and since these techniques can
be considered intrusive, not hygienic, and risky, the
interest is moving to new forms of authentication,
which are based on users’ behavioral characteristics.

Figure 1: Biometrics cfindbiometrics.com

Behavioral Authentication

Behavioral Authentication (BA) is the cutting-
edge technology that analyzes user behavior to help
verifying a user’s identity by continuously collecting
information about his/her usage of an application.

This information could be keystroke dynamics, mouse
events or even more unique characteristics, e.g. mo-
tion behavior.

BA is a good trade off, since it provides unique char-
acteristics of the user, as biometric authentication
does. On the other hand, it is not intrusive and user
friendly (it runs in the background providing passive
authentication).

These techniques can be exploited to develop Con-
tinuous Authentication systems, that continu-
ously analyze the users’ behavior in order to au-
thenticate them. In this way, the risk of session
hijacking or Man in the Middle (MITM) attacks are
mitigated, since the users are re-authenticated during
their sessions. Considering that a lot of applications
ask credentials only at the first usage (one-shot au-
thentication), this re-authentication mechanism adds
a worthwhile layer of security.

However, new types of attack could be developed,
such as the observation of a user’ behavior in order to
mimic it and circumvent the authentication system.

There are already some behavioral based authentica-
tion solution providers, one of the most well-known
is BeavioSec [4]. They assure that with their solu-
tion it can be possible securing end-user accounts, as
well as preventing fraud and delivering continuous
authentication.

This new trends are showing that sooner BA will be
brought to the mainstream, thanks to the support of
new data analysis techniques and algorithms. The
techniques developed in the last years had satisfac-
tory results, but the key challenge at the moment is
to apply them on smartphones, and this could not be
very straightforward. We use these devices are dur-
ing our day life, sometimes while we are in motion,
or in general in ‘not controlled environments’. There
are several data that can be combined to construct
users’ behavior patterns, the goal is to find which
ones embed most meaningful characteristics.

Machine Learning for Authentication

Machine learning is the subfield of computer science
that “gives computers the ability to learn without be-
ing explicitly programmed” (Arthur Samuel, 1959).

Different numbers of algorithms have been imple-
mented during the last years, with the aim of build-
ing models of data that has to be analyzed, such
that predictions for future data can be automated
without manual intervention.

Machine Learning (ML) techniques have at-
tracted the interest of the security community since

Page 2 of 5



they can be used to correlate security-related data
efficiently and automate the process of identifying
anomalies.

Most of the techniques used for BA rely on ML
to construct user models and verify their identities.
For instance, a user can be rejected when his/her
analyzed behavior differs from his/her normal one,
described in his/her model.

For this kind of tasks it has to be taken into account
that the accuracy of the techniques used is much
more relevant than in other scenarios of data analysis.
False positive predictions, e.g. a suspicious behavior
that is not detected as an intrusion, or a false negative
one, e.g. an authorized user that is classified as an
intruder, have to be limited, since they can lead to
unpleasant outcomes.

Extending a state of practice
authentication platform

Let us consider as a use case scenario a messaging
application for smartphone devices (e.g. What-
sapp, Telegram, Messenger etc.). The security goal
of the application is that user accounts cannot be
violated. In addition, users may want to have the
certainty about the identity of the other users with
whom they are messaging. Thus, the authentication
has to be personal but also mutual. To design the
authentication service to accomplish these goals, dif-
ferent solutions can be explored. Here we propose
two configurations that rely on the client/server
architecture, and both provide continuous authen-
tication based on behavioral verification.

In this conformation two parties are involved: the
client, that is the application used by the user, and
the server, which is the identity that provides the au-
thentication mechanism (and possibly the messaging
services). The client is an Android application that
interacts with the server through HTTP requests.

In our first solution, the client sends authentication
information throughout the entire usage of the appli-
cation. This information is constantly processed by
the server which has to detect whether the user is the
legitimate one. In the second solution we propose, the
processing of the authentication information is split
both on the client application and onto the server,
such that less information is sent during the session
and the server is much less overloaded. For both
the solutions, Keystroke dynamics is exploited as
first behavioral data to perform the authentication.

Figure 2: ccoolestech.com

Keystroke Dynamics

Keystroke dynamics or typing dynamics refers
to the automated method of identifying or confirming
the identity of an individual based on the manner
and the rhythm of typing on a keyboard. Keystroke
dynamics is a behavioral biometric, this means that
the biometric factor is ’something you do’[3].

Two measurements can be taken: dwell time and
flight time.

• The Dwell Time, or Duration, is the time
duration that a certain key is pressed.

• The Flight Time, or Latency, is the time
duration in between pressing two consecutive
keys.

In order to calculate these values, the application has
to intercepted two events, which are the KeyDown
and KeyUp events. The first is generated when a
key is pressed, the latter when the key is released.
The dwell time is measured as the time elapsed be-
tween the KeyDown and KeyUp events on the same
key. The flight time is measured as the time elapsed
between two consecutive KeyDown events.

Figure 3: cbehaviosec.com

Other events could be recorded along with keystroke
dynamics. For mobile devices the data intercepted

Page 3 of 5



from the Operating System may help characterizing
more precisely the user interactions with the applica-
tion. For instance, touch events, such as hit zone,
pressure applied on the screen and multi-touch ges-
tures could be considered for this analysis, as well
as data collected by the sensors of the smartphone
devices. This last kind of data could be useful to
profile the user’s behavior based on the contextual
usage of the application. For instance, gyroscope
and accelerometer measurements could be used to
determine whether the user is walking, and use this
information to adapt the verification of his/her typ-
ing pattern [5].

Data Preprocessing

Data preprocessing and sanitation has to be done
on the input received in order to eliminate outliers.
These outliers are data that has no meaning for the
analysis and that may be due to variability in the
measurement and compromise the system reliability.
For keystroke dynamics to compute the Flight Time
between two keys, the digraph data type is used.
This digraph is a graph with two nodes, the two
consecutive keys pressed, and the edge that links
them weighed with the latency. Some filters can
be applied on the generated digraphs to eliminate
outliers. As a first crude filter, digraphs with times
lesser and greater than given thresholds should not
be considered. Digraph with non-printable ASCII
characters should also be excluded from the analysis
[6].

Possible algorithm configurations

For the modeling and analysis of user data different
algorithms can be explored. The techniques used
belong mainly to two families, that are: classification
techniques and clustering techniques.

Classification

By using the classification, the objective is to di-
vide the input data into two or more classes. Then,
for each new data analyzed, this data has to be as-
signed to one of these classes, or to different classes,
i.e. multi-label classification. The most common us-
age of classification is the binary classification. It
divides the input space in two classes, a positive and
a negative one, and assigns the new data to one of
them.

In the context of authentication, multi-class classifi-
cation and binary classification are both suitable.

Multi-class classification can be exploited by instan-
tiating a new class for each user of the system. Then,
for each new input from a specific user, if it is not
predicted as belonging to correct user, an alert can
be generated. Binary classification behaves differ-
ently, since a classifier is used for each user. Once
the model is built, if new data are classified as nega-
tive, probably it does not belong to the legitimate
user. The latter example sounds much better in
terms of efficiency, since no other data belonging to
other users is involved in the analysis. Moreover, in
the first scenario, the general model represents the
single point of failure (SPOF); once it is broken,
the whole system will not work anymore.

In practice, the situation is different for binary clas-
sification, since, in order to construct the model, the
algorithm needs negative instances, otherwise the
system will accept all the new data, legitimate and
not. To circumvent this problem, data generated
from other users could be used to provide negative
examples when a model has to be built. This will
decrease the efficiency of the system, but it will avoid
the SPOF intrinsic of the of multi-class classification
method.

Another method to solve the problem is using clus-
tering techniques.

Clustering

Clustering algorithms group a set of elements into
subsets or clusters, so that similar elements are as-
signed to the same cluster [2].

The idea of using clustering is to build a cluster for
each user. This cluster has to circumscribe the user’s
typical behavior. When new input are analyzed, the
algorithm checks, whether or not, the new actions
reflect user usual behavior. If the new input does not
belong to the user cluster, e.g. its distance from the
cluster is above a certain threshold, it is considered
as suspicious behavior and the user could be locked
out of the system.

The advantage of using clustering, besides that a
definition of distance has to be introduced, is that
it can work correlating only the data belonging to
the particular user analyzed, without involving other
users.

Preserving Privacy and Reliability

Implementing a behavioral authentication system in
this way, implies that the service providers needs
access to all the user keystrokes in order to perform
the authentication. In particular for the first archi-

Page 4 of 5



tecture presented, all the events generated by the
users, i.e. what he/she typed, are sent to the server
and analyzed. Privacy concerns could arise, and in
order to mitigate this problem, privacy by design
choices should be adopted. This is why the second
configuration has been proposed. In such a configura-
tion the objective is to send less relevant information
to the server, migrating part of the computation to
the client side. In this new architecture the server
receives only significant information that are then
processed and analyzed. It has to be taken into ac-
count that an attacker could tamper the information
sent to the server and the system could be compro-
mised more easily. For this reason, robust technique
of validation of the data sent by the client has to
be developed. Strong cryptography could be inves-
tigated as one possible solution. Another solution
is to mutate the data that has to be analyzed be-
fore sending it, e.g. adding some noise to the data.
However, by doing this, the data sent has to remain
valuable for the analysis in order to provide a reliable
authentication.

Evaluation

The evaluation of the two different architectures pro-
posed, along with the algorithms used, will be car-
ried out by testing the system with some publicly
available datasets [7]. Testing the system will help
identifying the filters for the data sanitation and the
most appropriate feature selection. The filters will
be helpful to separate outliers from the data for the
keystroke dynamics analysis in order to built a robust
and reliable authentication system. This evaluation
will be also useful to evaluate the machine learning
techniques from a privacy perspective, and to verify
whether adding noise would weaken the accuracy of
the system.

In conclusion

Keystroke dynamics authentication seems to be an
interesting method for user authentication, but it
has its drawbacks. Privacy and scalability are the
obvious ones. The former especially, since using these
techniques means building a model for each user
by recording their behavior. This models could be
exploited by service providers, but also by malicious
users, in case the user personal information is lost for
any reason, e.g. data breaches. The other possible
usage of keystroke biometric algorithms is to identify
users even if they are surfing the web anonymously.

This could become another tool for companies for
their targeted advertisement purposes, but also for
governments for their mass surveillance programs.
Hence, exploring techniques of obfuscation to protect
individuals’ privacy is necessary to actually use them
in mainstream applications, but also in order to
weaken the tracking techniques used by adversaries.

References

[1] Raza, M., Iqbal, M., Sharif, M., & Haider, W.,
(2012), ‘A survey of password attacks and com-
parative analysis on methods for secure authen-
tication’, World Applied Sciences Journal, 19(4),
439-444.

[2] Tan, P.N., Steinbach, M., Kumar, V., (2006),
‘Introduction to Data Mining’, Addison Wesley.

[3] http://www.biometric-
solutions.com/keystroke-dynamics.html
(2006).

[4] https://www.behaviosec.com

[5] Abdulaziz Alzubaidi and Jugal Kalita, (2015),
‘Authentication of Smartphone Users Using Be-
havioral Biometrics’, Journal of IEEE Commu-
nications Surveys and Tutorials,

[6] Maximiliano Bertacchini, Carlos E. Benitez1
and Pablo I. Fierens, (2010), ‘User Clustering
Based on Keystroke Dynamics’.

[7] Vinnie Monaco, Keystroke Dynamics Datasets,
http://www.vmonaco.com/keystroke-datasets

[8] Yampolskiy, R.V. and Govindaraju, V., (2008),
‘Behavioural biometrics: a survey and classifica-
tion’, Int. J. Biometrics, Vol. 1, No. 1, pp.81-
113.

Page 5 of 5



Appendix B

IEEE article

87



Privacy-preserving Keystroke Authentication on
Smartphones

Gabriele Vassallo
Department of Computer Science, KU Leuven

Leuven, Belgium
gabriele.vassallo@student.kuleuven.be

Abstract—The functionalities offered by smartphones are increas-
ing, along with the demand of stronger security mechanisms.
Password based authentication methods for access control are
the only defenses that separate illegitimate users to access
sensitive information stored on these devices or online services.
Our research investigates the effectiveness of using keystroke
dynamics to authenticate smartphones users continuously and
at the same time transparently. By using these techniques, the
identity of a user is verified based on his/her way of typing
on the device keyboard. We propose a keystroke dynamics
authentication framework whose services can be integrated
into a contemporary Identity and Access Management (IAM)
system to provide continuous authentication capabilities. We
implemented privacy-preserving techniques for our solution −
i.e. permutation, substitution and suppression − that can be used
in order to prevent service providers from reconstructing the text
originally typed by users. We evaluate our solution measuring
the authentication accuracy by using real user data. We also
measured and compared the impact on this accuracy when the
privacy-preserving techniques are applied. The Equal Error Rate
(EER) obtained by applying the permutation technique remained
around 16% for the ‘user classification’ and 18% for ‘user
clustering’, the same as the one registered without using this
technique. Whereas, by applying the substitution technique, we
registered an increase of 15% for the first task, and of 11% for
the second one. For the third suppression technique, the EER
increased as much as the number of keystrokes suppressed.

I. INTRODUCTION

The usage of smartphones and mobile devices during our day-
life has become widely common. The capabilities of these
devices have increased as well, allowing users to perform
disparate kinds of tasks. Rather than simply placing calls,
they are used to store personal information or access online
sensitive data, such as bank accounts, mobile payments, social
networks, etc. For this reason, securing wisely these personal
devices is vital. The access control mechanisms to access a
device and the authentication methods adopted to access online
services rely mostly on password based approaches. This poses
a great risk to smartphones users. Attackers need only to know
a single piece of information, e.g. a passcode, a PIN code, a
locking pattern or a password, in order to access illegitimately
a device and gather sensitive information. In addition, some of
these methods can no longer be used on devices with limited
interaction capabilities, e.g. smartwatches.
These are some of the reasons that motivate the growing
interest in alternative authentication strategies. This is the case
for what is called active or continuous authentication. With this

new paradigm of authentication the identity of a user is contin-
uously verified. The authenticity of a user identity is verified
by means of behaviometric techniques that are used to monitor
transparently the user interaction with the device. The aim
of this research is to extend a state-of-the-art authentication
system with continuous authentication capabilities, by using
keystroke dynamics [1], [2], [3] as a behaviometric technique.
Keystroke dynamics refers to identifying a user based on the
rhythm of typing on a keyboard.
Previous research has shown that these techniques achieved
good results in terms of accuracy for the authentication of
users on desktop and laptop computers. However, our research
investigates whether keystroke dynamics are suitable for the
authentication of smartphones users given the virtual nature
of the keyboard. We evaluated our solution that builds on top
of state-of-the-art keystroke dynamics techniques with three
different datasets.
A second challenge we address in this work is that privacy con-
cerns could arise when this technique is used to continuously
authenticate against online services. Honest but curious service
providers can use the keystrokes collected for authentication
purposes, to reconstruct the original text typed by the users.
Hence, we researched and implemented privacy-preserving
techniques in order to mitigate these privacy threats. The rest
of the paper is organized as follows: in Section II we present
the related work on keystroke dynamics and continuous au-
thentication, giving the reader some understanding of already
existing techniques that we have used for our solution, which
is described in Section III. Section IV illustrates the results
obtained from the experiments that we have performed in order
to evaluate our solution, followed by the conclusion of the
paper in Section V.

II. RELATED WORK

The metrics that measure human behavior to recognize or
verify the identity of a person are referred to as behaviomet-
rics. Several studies have investigated the application of using
behaviometrics in order to provide an authentication that is
(a) continuous, during an entire user session, and (b) non-
intrusive, since the normal user interaction with the system is
analyzed. It has been demonstrated that a user identity can be
recognized and verified by means of several behaviometrics,
such as keystroke dynamics, mouse movements (together with
display resolution) [4], CPU and RAM used [5], stylometry



[6], Web browsing behavior [7], etc. Keystroke dynamics are
the techniques used to identify a user based on his/her typing
behavior. Previous research [8] [5] demonstrated that keystroke
dynamics gave better results w.r.t. other behaviometrics. The
first research on keystroke dynamics dates back to 1980 [9].
Despite all these years, this topic is still appealing for research.
Lot of studies have focused on keystroke dynamics with com-
puter keyboards [1] [2], whereas in the last years the interest
is growing on using this behaviometric for authentication on
smartphone devices [10] [11] [12]. As it has been already
mentioned in the introduction, the focus of this research is
on this last mentioned application of keystroke dynamics.
Several algorithms have been proposed for the analysis of
keystroke dynamics on smartphones using machine learning
techniques. We refer to a survey [13] for the comparison of the
accuracy rates when using these different algorithms. Despite
the high number of techniques investigated, good results, in
terms of accuracy, have been registered also by applying
statistical techniques [14] [15]. In particular, Gunetti et al.
proposed in their work [16] a new measure, named degree of
disorder, that can be used to distinguish whether two typing
samples are likely to have been typed by the same person.
This distance measure can then be exploited to build several
authentication strategies. Our solution is built upon their work,
even if their techniques were not developed having in mind
that smartphones would have come into play.

III. IMPLEMENTATION OF A PRIVACY-PRESERVING
KEYSTROKE DYNAMICS AUTHENTICATION SYSTEM

The goal of this work is to investigate the effectiveness of us-
ing keystroke dynamics as a behaviometric for the continuous
authentication of smartphones users. In order to collect and
analyze this behavioral data, a client and a server component
are required. The former collects the keystrokes whenever
the user types on the smartphone keyboard, whereas the
latter collects the keystrokes and performs the authentication
operations, continuously. We adopted a design strategy such
that an integration with an Identity Access Management (IAM)
system can be straightforward. In particular, we analyzed the
possible integration with the ForgeRock’s OpenAM authen-
tication system. OpenAM is a platform that provides out-of-
the-box authentication modules, along with the possibility of
making use of external authentication services. By having this
integration in mind, we developed a continuous authentication
framework which exposes RESTful APIs that can be contacted
by the OpenAM system.
The authentication strategies implemented by this framework
rely on a distance measure, proposed by Gunetti et al. [16],
that is used to compare the similarity between typing sam-
ples generated by users. Thus, it is required to comprehend
how this distance is calculated in order to understand how
the authentication is performed. At the end of this section
we present three privacy-preserving techniques that we have
implemented, that can be used to prevent untrusted service
providers to reconstruct the text typed by users.

A. Measuring the distance between two typing samples

A user typing sample is composed of a sequence of keystrokes.
Following the approach proposed by Gunetti et al. [16], these
typing samples can be reorganized in sequence of n-graphs,
for a certain value of n. The n-graph is the data type that
represents a sequence of n keys and the latency between them,
i.e. the time duration between the pressure of the first and
the nth one. Once the value of n is chosen, a distance d
can be calculated between two typing samples E1, E2. This
distance is computed by measuring the degree of disorder and
the (dis)similarity between the two samples. To compute the
disorder the n-graphs of the two typing samples are ordered
by increasing time duration and filtered in a way that the
two samples share only common n-graphs. The disorder can
than be computed as the sum of the distances between the
position of each element in the two arrays. For instance, the
disorder between two arrays A=[2,5,1,4,3] and A’=[3,1,2,5,4]
will be computed as: (2+2+1+1+4)=10. The idea behind this
measure is that even if a user may type differently in terms
of speed, he/she would type still faster certain combinations
of keys w.r.t. others that usually are typed more slowly.
The number obtained is then normalized, dividing it by the
maximum value of disorder. The similarity measure, instead,
takes into consideration the absolute typing speed of the
different combinations of keys. To compare two n-graphs,
if we indicate with d1 and d2 the time durations of the
same n-graph, then two n-graphs are recognized as similar
if 1 < max(d1, d2)/min(d1, d2) ≤ t, for a constant t > 1.
The similarity between two samples is then calculated as:
1 - (number of similar n-graphs between S1 and S2)/(total
number of n-graphs shared by E1 and E2). The final distance
is produced combining these two measures described.

B. Authentication strategies

In order to perform the authentication operations, the frame-
work has to create and store user typing models. Once
this first training phase is completed, the verification of the
user identities can be executed by comparing the user typed
keystrokes against their reference models. This user model is
a NxM matrix, where each row of the matrix is a user typing
sample, which is composed of M digraphs. Once the N typing
samples are collected by the system during the training phase,
the mean distance between all the training typing samples is
computed. For instance, suppose we have a three samples for
a user A that are A1, A2, A3, and that we have:

d(A1,A2) = 0.312378; d(A1,A3) = 0.304381; d(A2,A3) =
0.326024;

m(A) = (0.312378 + 0.304381 + 0.326024)/3 = 0.314261

This m(A) is a number that represents how a certain user
A types on a keyboard. After the training of the model,
the next keystrokes received from user A will be used for
the authentication. In order to verify the identity of a user,
two modes of operation have been implemented, i.e. user (1)
classification to recognize an individual in a set of users, and
(2) clustering to verify the identity of a given user.

2



1) User classification: The mean distance (md for short) of
a typing sample X from the user A is defined as:

md(A,X) = [d(A1, X)+d(A2, X)+...+d(An, X)]/n

where {A1, A2, ..., An} are the typing samples collected
during the training phase and d is the distance measure
presented in III-A.
In order to authenticate user A correctly, two requirements
have to be satisfied:

1) md(A,X) must be the smallest w.r.t any other md(B,X),
where B is another legal user in the system;

2) md(A,X) is smaller than m(A), or md(A,X) is closer to
m(A) than to any other md(B,X) computed by the system.

The first condition implies that the sample X, coming from the
user A, must be the closer sample to A’s samples. Moreover,
the second requirement states that it has to be sufficiently close
to A in order to accept it. This technique has been proposed
in [16].
2) User clustering: By using the clustering technique, a user
sample is compared only against his/her model. This technique
is easier to implement, faster in execution speed, but less
precise in terms of accuracy.
To assess that a sample X comes from the user A, the following
condition has to be satisfied:

1) md(A, X) must be smaller than m(A).

In this case, no other users’ samples are required. The sample
must only be sufficiently close to A. This mode of operation
should only be used in case there is no other user data
to compare with, or when optimization, in terms of time
and computation, is required, since only one comparison is
required.

C. Privacy-preserving extensions

Privacy-preserving extensions have been investigated and im-
plemented, with the aim of reducing the possibility for honest
but curious service providers of gathering user behavior. Since
the user typing habits are exploited to model and analyze their
behavior, the implemented system should avoid the possibility
of reconstructing the original typed text to preserve the privacy
of the user. The fact that the n-graph data type has been
adopted to represent the timing features of a typing behavior
is already a privacy countermeasure. This is because the n-
graph does not include the timestamp of when a certain key
was pressed. Hence, three privacy-preserving techniques have
been implemented:

(i) Permutation: keystrokes in a typing sample are shuffled
before they are sent to the server component.

(ii) Substitution: each typed key is substituted with a close
key on the keyboard.

(iii) Suppression: only a certain portion of keystrokes is sent
to the server.

The effects on the authentication accuracy, when these tech-
niques are applied, are presented in the next evaluation section.

IV. EVALUATION

In order to evaluate the solution proposed, three datasets, made
of keystrokes collected from real users, have been used to test
the system. In particular, the first two were publicly available
online, whereas for the third dataset the data has been collected
through a deployed web-site. The first dataset1 was composed
of keystrokes taken from 54 users who typed easy and strong
passwords on mobile devices. The second one2 is constituted
of samples taken from 20 users that typed on computer
keyboards free and transcribed text. The last dataset was made
of keystrokes generated by 10 users that transcribed text using
smartphones. On all the datasets a first filtering operation has
been carried out in order to eliminate keystrokes that could
have represented outliers for our analyzes. These filters have
been used to remove all the keystrokes that contained non
printable characters. In addition, all the keystrokes with a time
associated above a certain threshold have been discarded as
well. The time thresholds used are: 620 ms for both the first
and third datasets, and 750 ms the second one. We selected
these numbers after a first round of experiments where we
tested different values. Hence, we selected the values that
produced the best authentication accuracies.

A. Evaluation metrics and model validation

To evaluate the accuracy for the authentication the following
metrics have been used:

(i) False Rejection rate (FRR): the number of falsely re-
jected user attempts against the total number of legiti-
mate attempts.

(ii) False Acceptance Rate (FAR): the number of falsely
accepted user attempts against the total number of il-
legitimate attempts.

(iii) Equal Error Rate (EER): the EER is used to evaluate
the overall security of a biometric/behaviometric authen-
tication system. It has to be noticed that the FRR and
FAR are negatively correlated, thus the EER is used to
measure the correlation between them. Its value can be
found by intersecting the graphs of the FRR and FAR.
A low value of EER means that the authentication is
accurate.

Since there is not a predefined distinction of training and test-
ing data in the datasets used, the k-fold cross validation method
has been used to validate the results of the experiments. We
opted for a 3-fold-cross validation because an high number
of keystrokes was required in order to build enough typing
samples for the testing phase.

B. Performance evaluation

The results of the experiments performed using the third
dataset (freely texting users on smartphones) are shown in
this subsection. These results are then compared with the
ones obtained using the other two datasets. The two modes
of operation of the proposed framework have been tested. The

1https://www.ms.sapientia.ro/∼manyi/mobikey.html
2http://www.cs.cmu.edu/∼keystroke/laser-2012

3



first results for the classification mode are presented in Figure
IV-B and Figure IV-B. Figure IV-B shows that by increasing
the number of digraphs that constitute a typing sample the
overall performance increases significantly. The best increase
in performance is registered when the typing samples are made
of 40-50 digraphs, when FAR and FRR are between 15% and
20%.

10 20 30 40 50 60 70 80

10%

20%

30%

Digraphs per sample

FRR
FAR

Fig. 1. Impact on authentication accuracy for user classification, when varying
the number of digraphs per typing sample.

For the second experiment, samples of 50 digraphs are used to
calculate the EER of the system. In order to calculate the EER
a threshold parameter has been introduced. These threshold
defines how near to the user model a typing sample has to
be, in order to recognize it as belonging to that user. By
modifying this parameter, different values of FAR and FRR
can be obtained. In this second experiment, the EER can be
found as the intersection of the FAR and FRR in Figure IV-B.
It is equivalent to 16%.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1

10%

20%

30%

Threshold

FRR FAR

Fig. 2. Impact on authentication accuracy for user classification, when varying
the threshold parameter.

We performed the same experiments using the clustering
mode. The results obtained by changing the number of
digraphs required for each typing sample show the same
evidence that by increasing this number the overall accuracy
improves as well. The best improvement was registered when
50 digraphs were used. The results are shown in Figure IV-B.
We performed the second experiment using 50 digraphs per
typing sample. Figure IV-B illustrates the results obtained
when the threshold parameter is modified. The EER in this
case is around 18%.

10 20 30 40 50 60 70 80

20%

40%

Digraphs per sample

FRR
FAR

Fig. 3. Impact on authentication accuracy for user clustering, when varying
the number of digraphs per typing sample.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1

20%

40%

Threshold

FRR
FAR

Fig. 4. Impact on authentication accuracy for user clustering, when varying
the threshold parameter.

The insight of these results is that the when using other user
data for the decision making process (for the classification
method), the authentication accuracy increases. The same was
obtained by testing the system with the other two datasets.
The comparison of the results is shown in Figure IV-B.

Classification Clustering

0%

20%

40%

26%

39%

10% 12%
16% 18%E

E
R

Dataset 1 Dataset 2 Dataset 3

Fig. 5. Comparison of the EER for both user classification and clustering of
the three datasets.

This comparison shows that the techniques used are not really
suitable for the analysis of keystroke dynamics for fixed-
length strings. The EER registered using the first dataset is
26% and 39% for classification and clustering respectively.

4



The experiments conducted using the second dataset, instead,
shows that the algorithms used produce a higher accuracy
when users type on computer keyboards free text, rather
than when they type on smartphones. This is because the
typing rhythm on a real keyboard is more personal than
the one on a smartphone device. A computer keyboard is
larger and each person writes on it using possibly different
number of fingers. In addition, on computer keyboards there
are neither autocompletions nor suggestions. Nevertheless,
the performances are still acceptable in both cases if the
keystrokes dynamics framework will be used along with other
authentication methods, or perhaps by combining keystroke
dynamics with other behaviometrics.

C. Privacy evaluation

The same experiments have been performed applying the
privacy-preserving techniques proposed. The EER registered
by applying permutation and substitution are compared to the
ones obtained without using them. The results are shown in
Figure IV-C.

Classification Clustering

10%

20%

30%

16%
18%

16%
18%

31%
29%

E
E

R

default permutation substitution

Fig. 6. Comparison of EER for both user classification and clustering when
the permutation and substitution techniques are applied.

The results show that by applying the permutation technique,
the EER remains the same. This is because the order of the
digraphs in a typing sample does not influence the decision
making process. Instead, applying the substitution technique
increases the EER by 15% for classification and by 11% for
clustering.
For what concerns the suppression technique there can be
two modes of applying this technique. The first one avoids
sending more than a certain percentage of keystrokes collected
by the client. In this case we would have the same results
obtained using the default configuration. The consequence will
be that the system will take more time to collect the required
number of digraphs to perform the decision making operation.
Another possible application would be to send a fewer number
of keystrokes and build typing samples that are shorter. To
observe the impact of this second method on the authentication
accuracy the reader can refer to Figure IV-B and IV-B.

D. Validity threats

The main validity threat, when biometric authentication sys-
tems have to be tested, is that a lot of data produced by
different users is required. The problem is that there is not
a specified threshold for the number of this data. In a realistic
scenario, the system should be able to manage a large number
of users. For this reason, the more data is available in the
evaluation phase, the more the results will be accurate and
realistic.
For each of the datasets used, the number of data samples
per user was sufficiently high. Whereas, more realistic results
would have been obtained with more users for each dataset.
For the first two dataset, data from about 20 users has
been tested. This number can be satisfactory, since other
experiments have been performed with these same datasets.
However, for the third dataset, the subject of the experiments
were only 10. A system with only 10 users registered may not
be realistic and, as a consequence, also the results obtained.
However, the research of Messerman et al. [3] demonstrated
that, after a certain number of users considered in the experi-
ment, increasing this number did not influence their results.
The techniques of authentication used in their work were
similar to the ones used in the solution proposed. For this
reason, we believe that the same reasoning could apply in the
case of the third dataset. However, more experiments should
be performed to prove that.
Another validity threat is that the data, used for the ex-
periments, has been collected in a controlled environment.
This is especially the case for the first and the third dataset.
Smartphones could be used while the user is in motion.
This will produce possibly different authentication results.
To validate the results obtained, more experiments should be
carried out in order to test the system in the different contexts
in which it could be used.

V. CONCLUSION

The contributions of this research are (1) a server and client
side implementation for keystroke dynamics authentication
on mobile, (2) the evaluation of state-of-the-art keystroke
dynamics techniques using real datasets, (3) the implemen-
tation of privacy extensions on top of existing algorithms. For
contribution (1) a prototype of the continuous authentication
framework has been developed. The authentication services
are exposes by means of RESTful APIs that can be contacted
by clients and IAM systems through simply HTTP requests.
By adopting this design the clients are untied from the
server application architecture, and it leaves room for the
extension and integration with other authentication services.
Contribution (2) has been achieved by evaluating our solution
which makes use of state-of-the-art algorithms proposed for
keystroke dynamics analysis. The evaluation has been per-
formed using three different datasets, in particular real data
was appositely acquired in order to test the system in its real
usage environment (users who type freely on smartphones).
The results obtained give us the evidence that our solution
analyzes better the typing behavior of users when they type

5



free text rather than fixed-length strings. They also show that
more users have a more particular typing behavior when they
type on computer keyboard rather than on smartphones. In
the first case the EER of the system was 10% and 12%
when using the user classification strategy and the clustering
one respectively. Whereas, higher values of EER has been
obtained when users type on smartphones, the EER was 16%
using classification and 18% using clustering. For contribution
(3) three privacy-preserving techniques have been presented,
which can be used in order prevent honest but curious service
providers to reconstruct what users type. The impact of using
these techniques on the authentication accuracy demonstrated
that there is a trade-off between the security of the system and
the privacy of the users. These trade-offs have to be regulated
based on application requirements.
As a possible future work first of all a more exhaustive
evaluation of our solution needs to be performed. This im-
plies that more user data is required in order to validate
the authentication accuracy we obtained in our experiments.
This also applies for the experiments we performed with
the privacy-preserving extensions. It could be also interesting
to combine keystroke dynamics with other behaviometrics
in order to characterize and verify better user behavior. A
possible solution could be to implement another behaviometric
authentication framework that can work in parallel with our
proposed one. The final authentication decision would then
be based on both the results obtained by the two systems,
weighted proportionally w.r.t. to their respective accuracy.

REFERENCES

[1] H. Crawford, “Keystroke dynamics: Characteristics and opportunities,”
in Privacy Security and Trust (PST), 2010 Eighth Annual International
Conference on. IEEE, 2010, pp. 205–212.

[2] M. Karnan, M. Akila, and N. Krishnaraj, “Biometric personal authen-
tication using keystroke dynamics: A review,” Applied Soft Computing,
vol. 11, no. 2, pp. 1565–1573, 2011.

[3] A. Messerman, T. Mustafić, S. A. Camtepe, and S. Albayrak, “Contin-
uous and non-intrusive identity verification in real-time environments
based on free-text keystroke dynamics,” in Biometrics (IJCB), 2011
International Joint Conference on. IEEE, 2011, pp. 1–8.

[4] P. X. de Oliveira, V. Channarayappa, E. O’Donnel, B. Sinha,
A. Vadakkencherry, T. Londhe, U. Gatkal, N. Bakelman, J. V. Monaco,
and C. C. Tappert, “Mouse movement biometric system,” Proc. CSIS
Research Day, 2013.

[5] I. Deutschmann, P. Nordström, and L. Nilsson, “Continuous authenti-
cation using behavioral biometrics,” IT Professional, vol. 15, no. 4, pp.
12–15, 2013.

[6] K. Calix, M. Connors, D. Levy, H. Manzar, G. MCabe, and S. West-
cott, “Stylometry for e-mail author identification and authentication,”
Proceedings of CSIS Research Day, Pace University, pp. 1048–1054,
2008.

[7] M. Abramson and D. W. Aha, “User authentication from web browsing
behavior,” DTIC Document, Tech. Rep., 2013.

[8] R. V. Yampolskiy and V. Govindaraju, “Behavioural biometrics: a survey
and classification,” International Journal of Biometrics, vol. 1, no. 1, pp.
81–113, 2008.

[9] R. S. Gaines, W. Lisowski, S. J. Press, and N. Shapiro, “Authentication
by keystroke timing: Some preliminary results,” DTIC Document, Tech.
Rep., 1980.

[10] A. Alzubaidi and J. Kalita, “Authentication of smartphone users using
behavioral biometrics,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 3, pp. 1998–2026, 2016.

[11] M. Nauman, T. Ali, and A. Rauf, “Using trusted computing for privacy
preserving keystroke-based authentication in smartphones,” Telecommu-
nication Systems, pp. 1–13, 2013.

[12] G. Kambourakis, D. Damopoulos, D. Papamartzivanos, and E. Pavli-
dakis, “Introducing touchstroke: keystroke-based authentication system
for smartphones,” Security and Communication Networks, 2014.

[13] P. S. Teh, N. Zhang, A. B. J. Teoh, and K. Chen, “A survey on touch
dynamics authentication in mobile devices,” Computers & Security,
vol. 59, pp. 210–235, 2016.

[14] C.-J. Tasia, T.-Y. Chang, P.-C. Cheng, and J.-H. Lin, “Two novel
biometric features in keystroke dynamics authentication systems for
touch screen devices,” Security and Communication Networks, vol. 7,
no. 4, pp. 750–758, 2014.

[15] S. Dhage, P. Kundra, A. Kanchan, and P. Kap, “Mobile authentication
using keystroke dynamics,” in Communication, Information & Comput-
ing Technology (ICCICT), 2015 International Conference on. IEEE,
2015, pp. 1–5.

[16] D. Gunetti and C. Picardi, “Keystroke analysis of free text,” ACM
Transactions on Information and System Security (TISSEC), vol. 8, no. 3,
pp. 312–347, 2005.

6


	List of Tables
	List of Figures
	Introduction
	Context and problem statement
	Goal
	Approach
	Key contributions
	Sections overview

	Background and related work
	Authentication
	Behaviometrics and continuous authentication
	Keystroke dynamics for user authentication
	Machine learning algorithms for keystroke dynamics
	Statistical techniques for keystroke dynamics

	User privacy
	Privacy definitions
	Privacy threats using behaviometrics
	Privacy-preserving solutions for behaviometrics
	Obfuscation techniques to prevent identification by keystroke dynamics

	Gap analysis

	Designing and extending a state of practice authentication platform
	Motivating example
	Chat application
	Requirements

	State-of-practice architectures
	Identity Access Management systems
	OpenAM system architecture
	A keystroke dynamics authentication framework
	User authentication, identification and classification
	Anomaly detection

	Feature extraction and processing techniques
	Timing feature
	The n-graph data type
	Choosing a statistical approach
	The ``R'' measure
	The ``A'' measure

	Integration of the privacy-preserving authentication framework with the OpenAM system
	Extending the architecture with privacy techniques
	Discussion

	Implementation
	System overview
	Server component
	Server endpoints and methods

	Client component
	RegisterActivity
	LoginActivity
	MainActivity
	Discussion about the client

	Implementation details of keystroke dynamics analysis
	Training of the user model
	Authenticating the user
	Retraining of the user model
	Calculating the similarity between typing samples

	Privacy-preserving extensions
	Scaling the system

	Evaluation
	Experimental settings
	Dataset 1: Fixed-length text on smartphones
	Dataset 2: Free and transcribed text on computers
	Dataset 3: Transcribed text on smartphones

	Evaluation criteria
	Evaluation metrics
	Model validation

	Performance evaluation
	Dataset 1: results and observations
	Dataset 2: results and observations
	Dataset 3: results and observations

	Privacy evaluation
	The ``permutation'' technique
	The ``substitution'' technique
	The ``suppression'' technique
	Combining the privacy-preserving techniques
	Privacy evaluation: observations

	Validity threats
	Qualitative evaluation of the non-functional requirements

	Conclusion
	Key contributions
	Future work

	Bibliography
	Appendices
	Popularizing article
	IEEE article

		Politecnico di Torino
	2017-10-19T08:25:57+0000
	Politecnico di Torino
	Silvia Anna Chiusano
	Tesi 231584




