
Robert Margelli

System-level Design of a

Latency-insensitive RISC-V

Microprocessor and Optimization

via High-level Synthesis

Master’s Thesis

Department of Control and Computer Engineering (DAUIN)

Politecnico di Torino

Supervision

Prof. Luciano Lavagno

Prof. Luca Carloni (Columbia University)

October 2017

Contents

Acknowledgements vii

Abstract ix

Acronyms xi

1 Introduction 1

1.1 Challenges and Contribution . 1

1.2 Thesis Organization . 1

2 Background 3

2.1 Microprocessors . 3

2.1.1 History and Market Trends . 3

2.1.2 Structure: Datapath and Control Unit 5

2.1.3 Performance Metrics . 7

2.1.4 Pipelining . 8

2.2 The RISC-V Instruction Set Architecture 10

2.3 System-level Design and High-level Synthesis 13

2.3.1 The SystemC Class Library . 15

2.3.2 The Theory of Latency Insensitive Design 16

3 RVXRed: A System-Level Microprocessor 17

3.1 From SystemC to Verilog RTL . 17

3.2 LICs: Latency-Insensitive Channels . 21

3.3 An HLS Approach to Microprocessor Design 23

3.3.1 Architecture . 25

3.3.2 Fedec . 26

3.3.3 Execute . 30

3.3.4 Memwb . 34

i

4 Experimental Setup 37

4.1 Logic Simulation and Synthesis . 40

4.2 FPGA Verification . 44

4.3 Test Programs . 50

4.4 CPU Time as a Performance Metric . 52

5 Evaluation and Results 53

5.1 FPGA Implementation . 53

5.2 CMOS Implementation . 54

5.3 Qualitative Results: Lines of Code . 56

6 Conclusion 59

6.1 Achievements . 59

6.2 Future Works . 59

A RVXRed Instruction Set 61

List of Figures

2.1 Basic CPU Structure . 6

2.2 Example of instructions flowing through a pipeline. 8

2.3 RV32I R-type and S-type instruction encodings. 12

2.4 Commonly used languages for hardware design. 13

2.5 Design Space Exploration [1]. 14

2.6 Example of Pareto curves in the performance-area space. 14

3.1 FSM resulting from the example SystemC module. 20

3.2 Signal-level LIC handshaking protocol. 22

3.3 CDFG of the put method. 23

3.4 CDFG of the get method. 23

3.5 High-level architecture of the RVXRed pipeline. 26

4.1 Experimental setup design flow. 39

4.2 RVXRed memory adapters. 45

4.3 Zero-riscy memory adapters. 45

4.4 Zero-riscy’s request-grant memory protocol for a read transaction. 46

4.5 Top-level wrapper module. 46

4.6 Complete FPGA IP block system. 48

5.1 CPU Time vs Area plots . 57

iii

List of Tables

2.1 RISC-V base and extension instruction sets. 11

2.2 RISC-V general purpose registers coding conventions. 11

5.1 FPGA clock frequency and resource utilizations 54

5.2 CMOS clock frequency and area occupation 55

5.3 Division characteristics for all implementations. 55

5.4 Comparing LOC, considering the manually written SystemC code for the

RVXRed versions. 56

5.5 Comparing LOC, considering the automatically generated Verilog RTL code

for the RVXRed versions. 56

A.1 RV32I instruction subset . 61

A.2 RV32M instruction subset . 61

v

Acknowledgements

I would like to thank my supervisors Luca Carloni and Luciano Lavagno for the opportunity

of conducting my research work on a topic I am passionate about. They have always been

present and supported me throughout this journey.

I would also like to thank Paolo Mantovani for valuable discussions on design decisions

and guidelines on writing this thesis, as well as Giuseppe Di Guglielmo for his lessons on

high-level synthesis and Stratus HLS.

Finally, I must express my very profound gratitude to my parents for providing me with

unfailing support and continuous encouragement throughout my years of study.

vii

Abstract

In recent years, the crisis of technology scaling has forced the semiconductor industry to

embrace new technologies and innovative strategies in order to respect the timing of the

design cycle. A first step has been the employment of multi-core architectures to exploit

the parallelism inherent to computer programs. However, this approach has been proven

to be insufficient to cope with a market that demands energy and power-efficient systems.

This has led to the adoption of System-on-chip (SoC) devices, which are ubiquitous in

electronic devices such as smart-phones or tablets. To this day, these integrated circuits

are comprised of an heterogeneous set of sub-systems including more classical components

such as microprocessors, memory blocks and input/output (I/O) peripherals, as well as

dedicated units known as hardware accelerators in charge of performing in hardware tasks

that were normally assigned to software programs. These units are for example: audio

or image processors, video encoders and decoders, just to name a few. Along with SoCs,

new design approaches have been introduced and put into practice to tackle with the

intrinsic diversity of these devices. Traditional design processes focused on implementing

and optimizing single components, for example the aforementioned accelerator units. In

contrast, given the heterogeneous nature of these new devices it is necessary to shift to

a higher level of abstraction capable of taking into account diverse sub-components and

their inter-dependencies. In addition, this enables a faster exploration of the architecture

of a SoC in order to find its optimal configuration.

System-level design (SLD) methodologies adopt high-level languages (such as C or C++)

to easily describe large SoCs from a higher perspective as opposed to using long-established

register-transfer level (RTL) languages (Verilog and VHDL) on single components. Design-

ers have started to utilize SLD tools such as those leveraging high-level synthesis (HLS),

which generate an RTL description starting from a high-level one, drastically reducing

the design cycle time and enabling engineers to meet market demands. This has yielded

interesting results for data-dominated applications, however, there hasn’t been significant

research on the application of HLS to implement microprocessors, which are in large por-

ix

tion control-dominated circuits.

The central processing unit (CPU) is the hardware component in charge of executing the

instructions of a computer program. It decodes the instructions and performs arithmetic,

logical, and input/output operations.

This work proposes a new methodology for system-level microprocessor design which has

been put into practice to generate several versions of RVXRed, a 32-bit 5 stage pipeline

core supporting the RV32I and RV32M instruction sub-sets of the RISC-V instruction set

architecture (ISA). Starting from a single SystemC description (a C++ library apt for

hardware design), several RTL descriptions were generated automatically with the use of

a commercial HLS tool. In total, 4 implementations were obtained: BASIC (a reference

design which does not include the application of particular HLS knobs), ASAP (a faster

version of BASIC, at the expense of larger area occupation), UNDIV2 (a version where

the CPU’s divider has been optimized to complete in 16 clock cycles) and UNDIV4 (as in

UNDIV2, but with a divider latency of 8 clock cycles).

To test each core, an experimental setup was adopted to perform: logic simulation, logic

synthesis and FPGA deployment for rapid prototyping.

In addition, this report includes implementation results, which have been compared with

a rival solution manually designed as Verilog RTL code by an academic research group

focused on developing RISC-V chips. The processors have been compared based on static

indicators such as area occupancy and achievable clock frequency, as well as program-

dependent values. Three benchmark programs were devised and then executed by all

implementations in order to determine the time required for executing them. The outcome

of these comparisons clearly reveals that the proposed approach yields significant results

and clears the path for future developments which will adopt this methodology.

Acronyms

SoC System-on-Chip

I/O Input/Output

SLD System-level Design

RTL Register-transfer level

VHDL VHSIC Hardware Description Language

HLS High-Level Synthesis

CPU Central Processing Unit

ISA Instruction Set Architecture

FPGA Field-Programmable Gate Array

SPEC Standard Performance Evaluation Corporation

LID Latency-insensitive Design

ALU Arithmetic Logic Unit

CMOS Complementary Metal-Oxide-Semiconductor

RISC Reduced Instruction Set Computer

CISC Complex Instruction Set Computing

CPI Clock Per Instruction

CDFG Control and Data Flow Graph

DUT Device Under Test

CLB Configurable Logic Block

LUT Lookup Table

CC Clock Cycle

LOC Lines Of Code

xi

Chapter 1

Introduction

1.1 Challenges and Contribution

The main goal of my research work was to implement a RISC-V compatible microprocessor

in a high-level programming language, and to explore the advantages and drawbacks of

resorting to an HLS tool to obtain multiple RTL implementations starting from a single

reference design.

Over the years, very little research regarding the high-level synthesis of microprocessors has

been produced. Some studies only concerned the use of SystemC as a means to describe

and simulate these systems [2], while others introduced the possibility of resorting to HLS

but did not elaborate on the quality of the developed processors [3]. Moreover, no work

has ever focused on a rigorous experimental procedure to extrapolate metrics used for the

evaluation of the generated circuits.

A first challenge was finding a way to describe the processor pipeline using SystemC, in such

a way that the generated Verilog description behaved in accordance to the specifications.

Next, the adopted tool was analyzed and exploited to understand where and how design

space exploration was applicable. This led to four different implementations which, in

addition to a reference processor, were employed in an experimental setup which included

logic simulation, logic synthesis and FPGA verification. Finally, I was able to obtain

indicators of the quality of each implementation, namely area occupation and effective

latency.

1.2 Thesis Organization

This report is structured as follows.

1

2 1.2. Thesis Organization

Chapter 2 exposes the reader to background information and the motivating factors of

my research activity. After an introduction to microprocessors and the RISC-V ISA, some

details on the topic of system-level design are uncovered.

Chapter 3 represents the main intellectual contribution of my work. In Section 3.1,

necessary information on the generation of Verilog starting from SystemC source code

is covered, before delving into the proposed methodology and architecture for high-level

microprocessor design.

Chapter 4 covers the design flow and experimental setup followed in order to obtain

performance indicators and results. These informations are used to draw conclusions and

compare my design with its rival implementation (Chapter 5).

Finally, Chapter 6 summarizes the contributions related to my work and gives recom-

mendations for future work.

Chapter 2

Background

2.1 Microprocessors

2.1.1 History and Market Trends

The history of the microprocessor is tied to some pivotal discoveries and contributions that

originated in the 20th century. One of the first steps in this evolution has been the invention

of the bipolar transistor by Bardeen, Brattain and Shockley at the Bell Laboratories in

1949. Nine years later, the first integrated circuit (IC), developed by Robert Noyce of

Fairchild Semiconductor and Jack Kilby of Texas Instruments, was demonstrated.

Many families of circuits were then introduced but one of the turning points in the micro-

electronic revolution is due to the Metal Oxide Semicondutor (MOS), which replaced the

use of Bipolar Junction Transistor (BJT) in microelectronic devices and led to the Comple-

mentary Metal-Oxide-Semiconductor (CMOS) technology for silicon-based devices. The

problem with the BJT fabrication process was that the metal gate implied a slow switching

and an unreliable metal-oxide-semiconductor contact.

In 1968, Federico Faggin introduced the silicon gate technology: now the gate was made

of polycrystalline silicon, much more conductive than silicon, and thus enabled a faster

switching of the transistors. Soon after, while at Intel, Faggin exploited this new technology

and defined a methodology for integrating in a unique circuit the first microprocessor

architecture. This was the 4004 chip produced in 1971. With a die area of 3 x 4 mm,

including 2300 transistors with a 10 µm technology and a 4-bit architecture, it was able

to run at 100 KHz.

In the following decades processor architectures grew rapidly alongside technology evolu-

tion, as predicted by the renowned Moore’s law. This observation made in 1965 by Gordon

Moore stated that the integration of transistors in integrated circuits would double every

3

4 2.1. Microprocessors

year [4] [5] [6]. Ten years later he revised the law, re-formulating that the integration com-

plexity would grow every to two years. The trend has confirmed such predictions. Today,

processors run at about 3GHz, include more that 100 million transistors and are fabricated

with technologies below 20 nm.

The key point that allowed this performance improvement was raising the level of abstrac-

tion of processor design. When first microprocessors were designed, the whole circuit was

drafted directly at the layout level. Specialist knew everything about their processor, from

the ISA to the final transistor layout. At this point, processors were described as hierarchi-

cal blocks using RTL languages, which abstract many low level details and the engineering

teams were much larger, with personnel dedicated to jobs such as verification and testing.

In the early 2000’s Moore’s law still seemed to be valid, however, today we find ourselves

at a possible stall and two directions can be followed. The first, known as more Moore,

suggests a change in the design process, requiring deep sub-micron considerations even

when designing at the system and register transfer levels. Vice-versa, at the physical design

step, system-level implications must be evaluated. The second, more than Moore, implies

the adoption of new advancements in the production process while leaving CMOS behind.

Examples are devices that rely on carbon nanotubes, quantum dot cellular automata or

molecular electronics.

Not concerning directly the evolution of the microprocessor from a technology standpoint

but still part of its history, it is worth spending a few words on Reduced Instruction

Set Computers (RISC). This architecture is the groundwork of the ISA upon which my

processor is founded on.

To this day, RISC has been widespread with the advent of smartphones and tablets which

leverage the ARM ISA, a family of proprietary architecture based on the RISC concepts.

Among others, notable examples of ISAs that are derived from RISC are: MIPS, Blackfin,

SPARC and PowerPC. As opposed to Complex Instruction Set Computing (CISC), the

first RISC designers aimed at reducing the clock cycles per instruction (CPI) to the value

of 1 by significantly simplifying the ISA’s characteristics, such as:

• Utilizing a small and simple set of instructions;

• Pipelining: an implementation technique that allows various instructions to be exe-

cuted in parallel (Section 2.1.4);

• Introducing a large number of fixed-length general purpose registers which prevent

costly interactions with memory;

Chapter 2. Background 5

• Load/Store Instructions: memory accesses occur only when explicitly requested by

special instructions and not by any instructions;

• Encoding all instructions on a fixed number of bits.

This entailed shifting the complexity from hardware to software, specifically onto the com-

pilers.

From an analytical viewpoint consider:

CPU Time = CP ∗ avg_CPI ∗NCI (2.1)

Where:

• CP (clock period): function of the technology and depth of the pipeline;

• avg_CPI (average clock cycles per instruction): related to the micro-architecture

and ISA;

• NCI (number of committed instructions): depends on the program and input data,

this represents the number of instructions that are executed by the processor.

By lowering the avg_CPI, and allowing the NCI to slightly increase, the program exe-

cution time was successfully reduced. The increase in the NCI is due to utilizing simple

instructions and thus requiring many to describe a functionality that would otherwise be

coded in just a few lines using a CISC ISA.

Today, it is hard to identify an ISA as purely RISC or CISC. The line between the two

has blurred over the years and each school of thought has embraced concepts from one

another. Most commonly they have become labels used for marketing purposes. However,

the designers of the RISC-V ISA have maintained most, if not all, of the RISC features.

2.1.2 Structure: Datapath and Control Unit

To familiarize with the structure of a CPU, Figure 2.1 illustrates a block diagram resembling

its basic units.

The control unit and the datapath are the main components. The former is in charge of

controlling the behavior of the latter based on which instruction must be executed. In

this scenario, the data and instruction memories are not part of the core itself and can be

accessed through dedicated busses. In some units instead, the processor includes caches

for both memories to increase performance by lowering the latency of their accesses.

The data path contains, among others:

6 2.1. Microprocessors

Figure 2.1: Basic CPU Structure

• Register file: a bank of registers which are used to store information used during

program execution;

• Arithmetic and Logic Unit (ALU): circuitry in charge of performing arithmetic and

logic operations on the operands of an instruction.

The flow of information is from left to right and starts with the fetching of the data

contained in the instruction memory, addressed with the contents of the program counter

(PC). The value contained in this register is incremented at each clock cycle, this enables

stepping through the program to be executed. In a real scenario, programs are not fully

sequential as jumps and branches to other code sections commonly take place. Here, this

feature is omitted for simplicity but in practical terms this means multiplexing the input

of the PC with either the incremented value or the target address of the jump or branch

instruction. The obtained data is written into the instruction register and can now be

decoded. Generally an instruction encodes: the operation to be performed, the input

operands and the destination location (either in register file or in data memory). Such

information is used by the control unit to generate the control word, which manages the

components of the data path following the decoding logic, in particular for instructing the

ALU which operation must be performed on the operands. Once the ALU is finished its

computations, there may be an access to data memory, either for reading or writing, and

finally a writeback to the register file, in the case that the destination of the operation was

a register.

Chapter 2. Background 7

2.1.3 Performance Metrics

The performance of a computing system is a function of all of its components and their

interdependencies. Key metrics may be reported for the system as a whole or on specific

components such as the CPU alone. Traditionally, the two main measures of interest are

execution time and throughput, which are reciprocal values. The former is simply the

elapsed time from the start to the end of the execution of a generic instruction, while the

latter is the rate at which results can be processed by the system. Increasing performance is

not an immediate task. Today, computer based systems have found application in a variety

of fields and for such reason new metrics should be taken into consideration. For example,

in mobile embedded systems, those that are running within a limited power budget, power

consumption is an important factor for evaluating their quality and must be kept to a

minimum. In these cases, increasing the computational resources is not always the best

viable option for enhancing performance.

In multiprogramming, a CPU that is waiting for an I/O operation to be performed switches

to execute another program. The factor here reported as CPU time (or effective latency)

acknowledges this distinction by definition as it represents the time since the CPU has

started executing a program, excluding the intervals in which it is waiting for I/O or while

running other programs. Clearly the response time seen by the user is the elapsed time

of the program, not the CPU time. CPU time can be further divided into the time spent

executing the program, called user CPU time, and that dedicated to the operating system

performing tasks requested by the program, known as system CPU time. In Section 4.4,

an analytical explanation of CPU time is given. This measure is relevant when drawing

results and comparing different implementations (Chapter 5).

Ideally, to measure performance the computer should be let running programs by a differen-

tiated set of users over a long period of time. This is not the real case. Instead, companies

and researchers resort to benchmark suites. These are collections of programs which aim at

stressing specific units and features of the system. The Standard Performance Evaluation

Corporation (SPEC) is a non-profit organization which has been producing, maintain-

ing and releasing collections of benchmarks, which have become the most widely adopted

programs for evaluating new designs and come in a variety of programming languages (C,

C++, Java, and others). The SPEC CPU set is used for testing CPU performance by mea-

suring the effective latency of running several programs such as the Perl interpreter, video

compression, route planning, just to name a few. Instead of resorting to the SPEC suite,

three commonly used programs (Section 4.3) have been written and used to benchmark

the considered CPU cores.

8 2.1. Microprocessors

2.1.4 Pipelining

Probably the most common technique for improving CPU performance, pipelining enables

multiple instructions to be executed concurrently across the pipeline stages. The datapath

is split into separate units, divided by pipeline registers and, at each clock cycle, the stages

work on different instructions in a parallel fashion (Figure 2.2).

Figure 2.2: Example of instructions flowing through a pipeline.

Once the pipeline has been filled with instructions, it is able to complete the execution of

an instruction at each clock cycle. The CPU throughput benefits enormously from this

technique at the cost of a very low area overhead. In fact, the pipeline is implemented

by inserting registers among the stages. This placement gives optimal results when the

stages’ critical paths are balanced, in fact the slowest stage determines the clock period.

This value dictates the time for executing one step in the pipeline. Generally, clock cycle

per instruction (CPI) is a common metric to evaluate pipelines.

The throughput of an ideal pipeline (that is, one with perfectly balanced stages) is:

throughput(pipelined) = throughput(un− pipelined) ∗ n (2.2)

where n is the number of stages. It should be clear that pipelining increases throughput but

does not decrease instruction execution time. In fact, the processing of an instruction is

slower due to the overhead introduced by the pipeline implementation. Still, it is negligible

with respect to the increase in throughput. The execution of an instruction depends on

the architecture but in simple solutions can be decomposed into five cycles [7] .

Traditionally, the instruction is processed through the following steps:

Chapter 2. Background 9

• Instruction fetch cycle (IF): the instruction is read from the instruction memory;

• Instruction decode/register fetch cycle (ID): decodes the instruction and accesses the

register file;

• Execution/effective address cycle (EX): computations on the supplied operands occur

here;

• Memory access/branch completion cycle (MEM): access to data memory, if required;

• Write-back cycle (WB): sends the values to be written in the register file.

To have an idea of the advantage in throughput of a pipelined architecture, consider the

following. Let’s first assume that:

1. We have an un-pipelined datapath with clock period of 4 ns;

2. Operations that read from data memory require 4 cycles to terminate;

3. Operations that write to data memory require 3 cycles;

4. All other operations require 5 cycles;

5. A normal program consists in 20%, 20% and 60% of the operations 2,3 and 4 respec-

tively.

On average the execution time of an instruction is given by:

avg_exe_t = 4 ∗ (0.2 ∗ 4 + 0.2 ∗ 3 + 0.6 ∗ 5) = 4 ∗ 4.4 = 17.6ns (2.3)

Supposing that the pipelined architecture slows down the clock frequency by 20% (i.e. it

increases the period by 0.8 ns). Once the pipeline is full, the average instruction execution

time coincides with the clock period, that is 4.8 ns. Thus, the speedup introduced by

pipelining is:

speedup =
17.6

4.8
= 3.7 (2.4)

The pipelined architecture is 3.7 times faster than the initial one.

10 2.2. The RISC-V Instruction Set Architecture

2.2 The RISC-V Instruction Set Architecture

The ISA represents the software-hardware interface for any microprocessor core and is the

starting point for its design. Among the many available ISAs, I chose RISC-V (pronounced

risc five), a modern general-purpose RISC architecture that has been recently introduced

by researchers at the University of California, Berkeley [8] [9]. Since its initial inception in

2010, it has become a popular alternative in academia and has gained particular traction

in industry. Semiconductor companies such as IBM, Google and Oracle among many

others, have joined the RISC-V foundation. This non-profit corporation founded in 2015 is

controlled by its members, who direct the advancements of the RISC-V ISA by maintaining

and releasing the official ISA specifications, as well as periodically organizing events and

workshops.

Among many reasons, RISC-V is an appealing solution because:

• It is an universal instruction set with the goal of serving all market sectors, from

ultra-low power microcontrollers to data intensive processors, such as those found in

large servers;

• For smaller architectures (i.e. not VLIW, superscalar, etc.), the footprint is drasti-

cally reduced with respect to typical ARM or x86 solutions;

• Provides a base instruction set for 32, 64 or 128-bit architectures which can be

extended with official or custom subsets;

• It is BSD licensed, so anyone can access and tailor the ISA to its particular needs.

To this day, a diverse set of RISC-V compatible chips and architectures have been produced.

For instance, researchers at ETH Zurich and University of Bologna have created and have

been regularly contributing to the PULP Platform [10], a parallel platform for ultra-low

power computing which leverages RISC-V cores. PULP is released under the Solderpad

Hardware License, and the source RTL code can be freely accessed on-line. Among the

various cores PULP provides, I have chosen to compare my implementations with Zero-riscy

[11], a simple RISC-V processor supporting the RV32I and RV32M instruction subsets.

To introduce some of RISC-V’s features, some general details are covered in the following

as well as information concerning the RV32I and RV32M subsets. These instructions are

fully supported by my design (Chapter 3). The reader can refer to [12] for a more in-depth

analysis and description of all subsets. Table 2.1 lists the three base instruction sets and

the 6 official extensions. All have a clean and fixed length encoding, while variable length

encodings are only permitted in custom extensions. There are 32 general purpose registers

Chapter 2. Background 11

(x0-x31), to which the programming conventions listed in Table 2.2 are applied. Addition-

ally, each implementation can define an arbitrary collection of Control and Status Registers

(CSRs) to manage and provide system policies such as multi-threading or privilege levels

[13].

Subset N. Instructions Description

RV32I 47
32-bit address space and integer in-

structions

RV64I 59
64-bit address space and integer in-

structions, in addition to RV32I

RV128I 71

128-bit address space and integer

instructions, in addition to RV32I

and RV64I

Extension Subsets N. Instructions Description

M 8 Integer multiplication and division

A 11 Atomic memory operations

F 26
Single-precision (32-bit) floating

point operations

D 26

Double-precision (64-bit) floating

point operations, in addition to the

F extension

Q 26

Quad-precision (128-bit) floating

point operations, in addition to the

F and D extensions

C 46
Compressed (16-bit encoding) in-

teger instructions

Table 2.1: RISC-V base and extension instruction sets.

Register Description

x0 Hard wired to zero

x1 Return address

x2 Stack pointer

x3-x31 Temporary, function arguments/return values

Table 2.2: RISC-V general purpose registers coding conventions.

12 2.2. The RISC-V Instruction Set Architecture

In RV32I, the 47 instructions are encoded on 32 bits and can be functionally classified as

follows:

• Integer Register-Register: perform arithmetic and logical operations with both operands

as general purpose registers;

• Integer Register-Immediate: perform arithmetic and logical operations with one

operand as a general purpose register and the other represented as the value of

the immediate field;

• Control Transfer: used to alter the program flow (branches and jump instructions);

• Load and Store: for accessing data memory for reading (load) or writing (store);

• System: for operating on the CSRs and managing tasks related to the operating

system.

Figure 2.3 reports the encoding for the integer register-register (R-type) and the store

(S-type) types of instructions. The regularity in the encoding among classes of instruc-

tions greatly simplifies the decoding logic. Although this may results in complex encoding

schemes, such as the immediate field in S-types being split, this approach aims at solving

some implementations aspects at the ISA level. As a matter of example, the operands,

which are usually on the critical path of a processor core, are in fixed positions.
31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

Figure 2.3: RV32I R-type and S-type instruction encodings.

RV32M is an 8 instruction subset dedicated to multiplication and division operations. To

obtain the full result of a multiplication, a sequence of two instructions is needed. In fact,

given two 32-bit operands, mul returns the lower 32 bits of the result while mulh, mulhsu,

mulhu, return the upper 32 bits considering the input operands as signed, signed-unsigned

and unsigned pairs respectively. For division, the quotient and remainder are obtained

with div and rem when considering signed operands, while divu and remu are used with

unsigned operands.

Chapter 2. Background 13

2.3 System-level Design and High-level Synthesis

In recent years, struggles in productivity of the semiconductor industry have led to the

investigations of new design methodologies. Traditional bottom-up approaches have been

demonstrated to be inefficient in the light of modern heterogenous SoCs, mainly because

local optimizations do not necessarily entail global ones. This is a crucial aspect considering

the heterogeneity of these devices and a higher perspective of the system is necessary. For

such reason, recent system-level design (SLD) methodologies have gained the attention

and interest of several companies in the industry. These methods have been successfully

applied to components that deal with large sets of data and perform computationally

intensive tasks, such as computer vision or signal processing applications.

In this dissertation, I propose an SLD methodology for microprocessor design which lever-

ages high-level synthesis (HLS). HLS tools have become more popular and are increasingly

evolving, and supporting many high-level languages, such as C/C++, SystemC, BlueSpec

and MATLAB [14] [15].

Figure 2.4: Commonly used languages for hardware design.

Many companies which have strictly been working on software oriented products are now

producing and using custom hardware to gain a competitive advantage that is unsur-

mountable by commonly used software solution [16] [17]. For these applications HLS is

the right option as engineers can focus on the data structures and the characteristics of

the algorithm to implement. These components can be simulated on virtual platforms [18]

which are faster than RTL simulators and easily integrate the software stack that is meant

to be run on the final product. Although with its limitations, mainly the reduced set of

high-level programming language features that it supports, HLS provides designers with

a vast collection of configuration knobs that enables the automatic synthesis of different

microarchitectures, starting from a single system specification. This process is known as

design space exploration (DSE, Figure 2.5) and can be exploited by designers to perform

14 2.3. System-level Design and High-level Synthesis

multi-objective optimizations. The result is a Pareto set, i.e. a collection of optimal im-

plementations in the considered design space (area, latency, power, etc.). Figure 2.6 gives

a qualitative idea, implementations on curves 1 and 3 take part of the Pareto set, while

the ones on curve 2 are fully dominated, and so they can be discarded.

Figure 2.5: Design Space Exploration [1].

Figure 2.6: Example of Pareto curves in the performance-area space.

Chapter 2. Background 15

2.3.1 The SystemC Class Library

Since its initial inception in 1999, SystemC has grown to become an IEEE-standard (2005)

under the guidance of the Open SystemC Initiative (OSCI), with its last revision released

in 2011.

SystemC is a C++ library which has been developed to support system-level design and

verification. Although still evolving, it incorporates hardware and software concepts which

are generally treated separately by other languages, and thus can be used for system-level

modeling, architectural exploration, verification and high-level synthesis [19].

The main features which are added to the C++ language are reported in the following.

• Time model: at its core, the library provides an event-driven simulation kernel which

manages the timing of each existing process;

• Hardware data types: these support user-defined bit widths for integer and fixed-

point data types, as well as non-binary values such as high-impedance and unknown

commonly used in digital systems;

• Hierarchy and structure: designs can be broken down into sub-modules which are

integrated to form a larger block. Hierarchy enables an easier comprehension and

re-usability by the engineering team;

• Communications management: communication between modules can be modeled as

simple wires or as more complex communication infrastructures such as industrial-

grade bus-architectures. Modules are interconnected via ports and exchange infor-

mation through channels. Moreover, it is possible to have different versions of a

channel and use them interchangeably;

• Concurrency: the simulation kernel provides the illusion of executing processes con-

currently, as if they were real hardware units.

In order to understand implementation details found in later chapters, it is worth spending

a few words on the building blocks of a SystemC design: modules and threads.

Modules are used to encapsulate functionalities and are created using the SC_MODULE base

class. They may incorporate other modules, processes, channels and ports.

Processes, which are scheduled by the simulator, are defined as member functions of

SC_MODULE classes. They are C++ functions which return a void value and have an

empty argument list. From a software viewpoint processes are threads of execution, while

in hardware terms they model independently timed circuits.

There are three kinds of processes:

16 2.3. System-level Design and High-level Synthesis

• SC_METHOD: its execution will not cause the simulation time to advance and is invoked

only once, thus it is usually used to model combinational logic;

• SC_THREAD: it can be called multiple times and can suspend itself by calling the

wait() function, allowing time to pass before continuing execution;

• SC_CTHREAD: it merges the features of an SC_THREAD with the needs of synthesis, in

fact, when employed, one must assign clock and reset signals to it. This is the only

kind of process that is used in my design;

2.3.2 The Theory of Latency Insensitive Design

Latency-insensitive design (LID) is a correct-by-construction design methodology that

meets very well the challenges of designing modern SoC.

At its core, LID is comprised of the protocols and shells paradigm [20] which is the backbone

of obtaining a physical design starting from a system-level description. The protocols

separate the communication and computation portions of a system by defining it as a

collection of computational processes exchanging data through interfaces and channels,

thus enabling the latency-insensitiveness of the communication with respect to the delay

of the channels themselves. In addition, once the protocol has been defined, the interfaces

(shells) can be automatically generated. To designers this is a very attractive feature, not

having to deal with data synchronization issues typical of digital hardware design, and

being able to focus solely on the computational units and explore the design space.

We can say that by its nature, LID supports the concept of re-usability typical of SLD:

once the interfaces have been defined to respect a latency-insensitive protocol, the units

can be seamlessly replaced by other implementations. Ultimately, this enables a scalable

communication and computation infrastructure.

Among its advantages, we can point out that LID is efficient from a design viewpoint

(it enables the reuse of components) and scalable (the automatic generation of interfaces

renders a correct-by-construction system).

In my work LID has been adopted to handle communication among pipeline stages. Sec-

tion 3.2 covers the implementation aspects of including such feature in my design.

Chapter 3

RVXRed: A System-Level

Microprocessor

This chapter first introduces details regarding the generation of an RTL description starting

from SystemC source code, then it covers latency-insensitive channels (LICs), the means

through which information flows in the proposed pipeline. These concepts are necessary

in order to understand the design.

The proposed architecture is named RVXRed and supports the RV32I and RV32M subsets

of the RISC-V ISA specification for a total of 54 instructions (Appendix A).

The name ’RVXRed’ originated when first developing a very basic version of the core, which

only supported 9 instructions. The RISC-V Instruction Set Manual dictates a naming

convention for custom subsets, which consists in appending an alphabetic identifier to the

letter X. Given the initially limited amount of supported instructions, Red, abbreviating

the word reduced, was adopted and the label RVXRed was extended to the processor core

itself. The name continued to be used even after fully extending the instruction set to

the RV32I and RV32M subsets and its meaning today does not represent what it initially

stood for.

3.1 From SystemC to Verilog RTL

One of the first steps performed by behavioral synthesis tools is separating the design into

two portions: control and datapath [21] [22]. The input source code is scheduled and in

part transformed into a Finite State Machine (FSM) representation. Based on the data

dependencies of the algorithm to synthesize and the latency of the units in the technology

library, the operations of the algorithm are assigned to specific clock cycles and monitored

17

18 3.1. From SystemC to Verilog RTL

by the FSM. Given an algorithm, there may be more than one possible schedule. This is

where HLS directives can come into play, shaping the resulting implementation.

Among these directives, some can be used to instruct the HLS tool that the description is

cycle-accurate. In practical terms this means that no wait() statement within the protocol

region is pruned or added by the tool. In the following listings, the directive labeled as

PROTOCOL_REGION() is used to specify such code regions. The designer can also choose

to break the protocol region in specific code sections. In such areas the HLS tool freely

decides how many FSM states will be created and which operations are assigned to them.

When following an RTL design flow, the control portion of a digital system is defined

explicitly as an FSM using constructs provided by the chosen language. In my approach,

the control part is implemented as an FSM that is declared implicitly by using wait()

statements contained within protocol regions. This implies that the HLS tool might not be

able to schedule the datapath operations within the user defined states. As a consequence,

it is the designer’s responsibility to understand how FSMs are inferred when using protocol

regions.

To familiarize with implicit FSMs, an example is here presented.

Let’s take Listing 3.1. This SystemC source code describes a module we want to synthesize.

It is comprised of the SC_MODULE name mod. The first statement of the mod_cthread

SC_CTHREAD is the definition of a protocol region, so the whole function is considered in a

cycle-accurate manner. For each call to wait(), we are forcing the creation of a state (in

the listing, states are in-lined as comments for easier comprehension).

1

2 SC_MODULE(mod) {

3 sc_in < bool > rst_n ;

4 sc_in < bool > c lk ;

5 sc_in < bool > cond ;

6 sc_in < sc_int<32> > x ;

7 sc_in < sc_int<32> > y ;

8 sc_out < sc_int<32> > t ;

9 sc_out < sc_int<32> > w;

10 sc_out < sc_int<32> > z ;

11

12 sc_int<32> tmp_x , tmp_y ;

13 void mod_cthread () ;

14

15 SC_CTOR() {

16 SC_CTHREAD(mod_cthread , c l k . pos ()) ;

Chapter 3. RVXRed: A System-Level Microprocessor 19

17 r e s e t_s i gna l_ i s (r s t , f a l s e) ;

18 }

19

20 void mod : : mod_cthread () {

21 PROTOCOL_REGION() ;

22 x = 0 ;

23 y = 0 ;

24

25 whi le (t rue) {

26 wait () ; // State 0

27 tmp_x = in_1 . read () ;

28 tmp_y = in_2 . read () ;

29

30 i f (cond . read () == true) {

31 t = tmp_x ∗ tmp_y ;

32 wait () ; // State 1

33 w = tmp_x ∗ tmp_y ;

34 }

35 e l s e {

36 wait () ; // State 2

37 t = tmp_x − tmp_y ;

38 w = tmp_x + tmp_y ;

39 }

40

41 wait () ; // State 3

42 z = tmp_x ∗ tmp_y ;

43 }

44 }

Listing 3.1: Example SystemC source code input.

This translates to the FSM of Figure 3.1 and the Verilog RTL description of Listing 3.2.

As expected the FSM is made of a total of four states.

1

2 module mod(rst_n , c lk , x , y , t , w, z) ;

3 input r s t ;

4 input c l k ;

5 input cond ;

6 input [3 1 : 0] x ;

7 input [3 1 : 0] y ;

20 3.1. From SystemC to Verilog RTL

S1

S0start

S3

S2

Figure 3.1: FSM resulting from the example SystemC module.

8 output [3 1 : 0] t ;

9 output [3 1 : 0] w;

10 output [3 1 : 0] z ;

11

12 reg [3 1 : 0] rx , ry , rt , rw , rz ;

13 reg [1 : 0] gb l_state ;

14

15 always @(posedge (c l k))

16 begin :

17 i f (! r s t) begin

18 rx = 0 ;

19 ry = 0 ;

20 gbl_state <= ‘S0 ;

21 end

22 e l s e begin

23 case (gb l_state)

24 ‘S0 : begin

25 rx = x ;

26 ry = y ;

27 i f (cond == true) begin

28 r t = rx ∗ ry ;

29 g lb_state <= ‘S1 ;

30 end

31 e l s e

32 g lb_state <= ‘S2 ;

33 end

34 end

35 ‘S1 : begin

36 rw = rx ∗ ry ;

37 g lb_state <= ‘S3 ;

38 end

Chapter 3. RVXRed: A System-Level Microprocessor 21

39 ‘S2 : begin

40 r t = rx − ry ;

41 rw = rx + ry ;

42 g lb_state <= ‘S3 ;

43 end

44 ‘S3 : begin

45 rz = rx ∗ ry ;

46 g lb_state <= ‘S0 ;

47 end

48 endcase

49 end

50 end

51

52 a s s i gn t = r t ;

53 a s s i gn w = rw ;

54 a s s i gn z = rz ;

55 endmodule

Listing 3.2: Verilog description resulting from the example SystemC module.

We see that starting from a SystemC description in which all wait() statements are con-

tained within a protocol region, its Verilog description is easily predictable. There is a one

to one correspondence between each wait() statement and the FSM states. As previously

mentioned, this would not be the case in a region where the protocol is broken, as the FSM

states would be generated according to the HLS tool’s scheduling decisions.

3.2 LICs: Latency-Insensitive Channels

In my design, the concept of latency-insensitiveness introduced in Section 2.3.2 is put into

practice with the use of LICs. These are point-to-point pipes through which inter-stage

information flows. From a software standpoint, LICs are made of interfaces (one type for

the receiving end and one for the transmitting end) and pipes. The former provide the

means to send or receive the information, while the latter carry the data itself. One of

the many advantages of using LICs is that they can be either simulated in TLM or at the

signal level without changing the source code that is used to define them. By simply setting

or not a preprocessor directive we can instruct the tool at which level we are intending

to work at. The TLM version can be used for fast system-level prototyping (in terms of

simulation speed), while the signal level implementation is used in high-level synthesis and

is the one we are referring to in the following.

At the signal level, a LIC includes an arbitrary amount of wires dedicated to the data to

22 3.2. LICs: Latency-Insensitive Channels

be transmitted and 2 wires for implementing a ready-valid handshaking mechanism like

the one depicted in Figure 3.2, resembling a typical latency-insensitive protocol.

clock

rdy

vld

data A B C

Figure 3.2: Signal-level LIC handshaking protocol.

LIC interfaces are either of type put (for transmitting) or get (for receiving) and each

exposes 2 methods:

• void reset_put(): resets the put interface;

• void reset_get(): resets the get interface;;

• void put(T value): puts value on the associated LIC pipe;

• T get(): returns the data (if any) from the associated LIC pipe.

The reset methods initialize the interfaces and the channel to which these are attached

to. This ensures that they start in a consistent state. The behavior of a call to get()

or put() is best described in terms of their CDFGs (Figures 3.3 and 3.4) and behavioral

code (Listings 3.3 and 3.4). It is clear that both of these invocations may result in a

call to a wait() statement if data is not valid (in case of a get()) or if the receiving end

is not ready (for calls to put(); this is equivalent to the concept of back-pressure proper

of latency-insensitive design [23]). The darkened states represent the possibility of not

waiting for the next clock cycle if data or the receiver are ready.

Chapter 3. RVXRed: A System-Level Microprocessor 23

wait() wait()

! can_put / -

can_put /

set_valid(); data = v;

can_put /

set_valid(); data = v;

! can_put / -

Figure 3.3: CDFG of the put method.

wait() wait()

can_get /

toggle_ready();

v = (ready)? data : buffered_data;

! can_get /

! can_get / -

can_get /

toggle_ready();

v = (ready)? data : buffered_data;

Figure 3.4: CDFG of the get method.

1 whi le (! can_put) wait () ;

2 togg le_val id_curr () ;

3 data = v

Listing 3.3: put() sample

implementation.

1 whi le (! can_get) wait () ;

2 toggle_ready_curr () ;

3 v = (ready) ? data :

buf fered_data ;

Listing 3.4: get() sample

implementation.

As shown in the next section, LICs are used at the interface of each pipeline stage and

provide the means to clearly separate the computation and communication portions of the

system.

3.3 An HLS Approach to Microprocessor Design

A first major challenge was to find the most effective way to describe a pipeline and its

stages in SystemC. Previous experience with modeling a processor in RTL was very useful,

but shifting the abstraction to a higher level meant a change in how the architecture should

be conceived and not all practices of the RTL methodology could be re-used.

The result was to describe each stage as an SC_CTHREAD called within a dedicated SC_MODULE.

The thread is comprised of two parts: a reset section where initializations are performed,

and an infinite loop where normal communication and computation occur (Listing 3.5).

This is the typical approach when describing digital hardware.

1 void p ipe l ine_stage_cthread () {

24 3.3. An HLS Approach to Microprocessor Design

2

3 {

4 PROTOCOL_REGION(" p ipe l i n e_stage r e s e t p ro to co l ") ;

5 from_previous_stage_if . r e se t_get () ;

6 to_next_stage_if . reset_put () ;

7 // . . .

8 }

9

10 whi le (t rue) {

11 PROTOCOL_REGION(" p ipe l i n e_stage body pro to co l ") ;

12 din = from_previous_stage_if . get () ;

13 dout = compute (din) ; // DSE, i f any , can be app l i ed here

14 to_next_stage_if . put (dout) ;

15 wait () ;

16 }

17 }

Listing 3.5: Example pipeline stage thread

The first part is the reset region executed at system start up, this includes reset configu-

rations such as initializing the LIC interfaces, and other stage-dependent reset operations.

The second and main portion, is an infinite loop which acquires new data from the pre-

vious stage, performs some computation on such data and finally transfers the processed

information to the following stage. It should be clear that the computation section of the

loop can be un-timed (that is, no constraints are forced on the timing of the final hard-

ware implementation related to such code section), hence behavioral synthesis tools can

here be leveraged to perform optimizations. This is done by breaking down the protocol

region and providing directives to influence the RTL generation. This way, there is a clear

separation between the I/O sections, which are expressed in a way that is closer to real

hardware, from the computation sections of the code. In particular, from_previous_stage

and to_next_stage are LIC interfaces templatized to the same type of din and dout, the

data structures associated to the pipes. As a matter of example, Listing 3.6 presents the

data structures and LIC interfaces for the memwb stage (presented in Section 3.3.4). The

members of each struct are of type sc_bv, this effectively models a single or a bundle of

wires (for simplicity, the many contents of the exe2memwb_t structure are omitted in the

listing). Whenever these wires should be used for computation it is possible to cast them

to other types (such as sc_int) that support the C++ arithmetic and logic operators.

1

Chapter 3. RVXRed: A System-Level Microprocessor 25

2 /∗ rvxred_datatypes . h ∗/

3 s t r u c t exe2memwb_t{

4 // . . .

5 } ;

6

7 s t r u c t memwb2fedec_t{

8 sc_bv <1> regwr i t e ;

9 sc_bv <5> reg f i l e_add r e s s ;

10 sc_bv <32> reg f i l e_da ta ;

11 } ;

12

13

14 /∗ memwb. h ∗/

15

16 // LIC i n t e r f a c e s

17 LIC_get_if<exe2memwb_t> memwb_get_if ;

18 LIC_put_if<memwb2fedec_t> memwb_put_if ;

19

20 // LIC data s t r u c t u r e s

21 exe2memwb_t memwb_din ;

22 memwb2fedec_t memwb_dout ;

Listing 3.6: Definition of the data structure and LIC interfaces for the memwb stage.

3.3.1 Architecture

After having defined the thread structure, writing the source code for the pipeline stages

is straightforward. Each of the following subsections presents and describes the code that

was developed.

Figure 3.5 graphically introduces the adopted pipeline structure. There are 3 SC_MODULEs

(fedec, execute, memwb), each with an associated SC_CTHREAD, which are encapsulated

in an upper layer (rvxred). The use of multiple SC_MODULEs was initially intended for

simply keeping the design modular and thus easier to manage, however it has an additional

advantage. In fact, an alternative solution could be to instantiate the 3 threads within a

single module, but this does not enable the observation of signals exchanged among stages

during logic simulation.

Threads have multiple data structures, some are used for storing temporary values while

others are associated to the LICs’ get and put initiators. Information among threads flows

through these pipes, which effectively decouple communication from computation.

The execute stage is where most of the DSE procedures can be applied, mainly aiming at

26 3.3. An HLS Approach to Microprocessor Design

reconfiguring the structure of the algorithms it implements (addition, subtraction, multi-

plication, division). Still, some HLS directives can be applied to the all stages, as discussed

later (Chapter 4).

Figure 3.5: High-level architecture of the RVXRed pipeline.

3.3.2 Fedec

The fetch and decode stages are the beginning of a pipeline and in most architectures they

are entities separated by pipeline registers. However, this concept turned out not to be

explicitly definable when modeling in a high-level programming language. In fact, fetching

involves reading from the instruction memory. Typically, the core requests an instruction

by providing the address to the memory, which provides such data with one clock cycle of

delay. My initial architecture had two separate threads, one for each stage, but intuitive

as it may be, this is not the correct way to describe fetching and decoding. In addition,

to the clock cycle required to obtain data from memory, one more is needed to propagate

it the decode stage. This is in unacceptable characteristic and has led to merging both

threads into one. Listing 3.7 reports parts of the fedec thread. Note that, before accessing

the memory (line 17), a wait() statement is necessary to correctly imply the FSM and

obtain a schedulable design. The same concept is applied to the memwb stage, which

Chapter 3. RVXRed: A System-Level Microprocessor 27

combines the memory and writeback stages. The remaining parts of the fedec thread are

straightforward, after fetching, it gets data from the writeback stage. It may then write

to the register file, read from it and proceeds with decoding the instruction fields and

propagating information to the following stage (execute).

From a SystemC viewpoint the register file is abstracted as a simple array of type sc_bv

while the memory is generated automatically by the HLS tool. The designer is in charge

of defining the interfaces from the core to the memory and instructing the tool on the

characteristics of the desired memory (such as the number of ports, bit-width, number of

entries and so on). The tool automatically generates the SystemC and Verilog descriptions

of the memory based on these parameters.

In the case of the instruction memory only one interface is needed (the read port), but for

the data memory (accessed by the memwb thread) two distinct ports must be defined and

used (one for reading, the other for writing).

1

2 whi le (t rue) {

3 PROTOCOL_REGION() ;

4

5 // −−− Fetch

6 i f (s e l f_ f e ed . jump == "1")

7 pc = (sc_uint<PC_LEN>) s e l f_ f e ed . jump_address ;

8 e l s e i f (s e l f_ f e ed . branch == "1")

9 pc = (sc_uint<PC_LEN>) s e l f_ f e ed . branch_address ;

10 e l s e i f (! f r e e z e) // I f f e t c h i n g i s unfrozen increment the PC.

11 pc = sc_uint<PC_LEN>(pc + 4) ;

12

13 f r e e z e = f a l s e ; // Un−f r e e z e f e t c h i n g

14 output . pc = pc ;

15

16 wait () ;

17 in sn = sc_bv<INSN_LEN>(imem_port [pc]) ; // Ret r i eve i n s t r u c t i o n from

imem

18

19 i f (insn == "11111111111111111111111111111111") { // HALT i n s t r u c t i o n

20 program_end . wr i t e (t rue) ; // S igna l end o f program

execut ion .

21 }

22 // −−− ENDOF Fetch

23

24 // −−− Decode

28 3.3. An HLS Approach to Microprocessor Design

25 f e ed input = feed_from_wb . get () ; // Get from writeback .

26 // Reg i s t e r f i l e wr i t e .

27 i f (f e ed input . r e gwr i t e == "1" && feed input . r e g f i l e_add r e s s != "00000"

) {

28 r e g f i l e [sc_uint<REG_ADDR>(feed input . r e g f i l e_add r e s s)] =

feed input . r e g f i l e_da ta ;

29 s e n t i n e l [sc_uint<REG_ADDR>(feed input . r e g f i l e_add r e s s)] = 0 ;

30 }

31

32 // Reg i s t e r f i l e read .

33 output . r s1 = r e g f i l e [sc_uint<REG_ADDR>(sc_bv<REG_ADDR>(insn . range

(19 , 15)))] ;

34 output . r s2 = r e g f i l e [sc_uint<REG_ADDR>(sc_bv<REG_ADDR>(insn . range

(24 , 20)))] ;

35

36 // Handle jump i n s t r u c t i o n s .

37 i f (insn . range (6 , 0) == OPC_JAL) {

38 s e l f_ f e ed . jump_address = sc_bv<PC_LEN>((sc_int<PC_LEN>)

sign_extend_jump (immjal_tmp) + (sc_int<PC_LEN>)pc) ;

39 s e l f_ f e ed . jump = "1" ;

40 }

41 e l s e i f (insn . range (6 , 0) == OPC_JALR){

42 // . . .

43 }

44 e l s e {

45 s e l f_ f e ed . jump = "0" ;

46 }

47

48 // Handle branch i n s t r u c t i o n s .

49 s e l f_ f e ed . branch = "0" ;

50 i f (insn . range (6 , 0) == OPC_BEQ){

51 switch (sc_uint <3>(sc_bv<3>(insn . range (14 , 12)))) {

52 case FUNCT3_BEQ:

53 i f (r e g f i l e [sc_uint<REG_ADDR>(sc_bv<REG_ADDR>(insn . range

(19 , 15)))] == r e g f i l e [sc_uint<REG_ADDR>(sc_bv<REG_ADDR>(insn . range (24 ,

20)))])

54 s e l f_ f e ed . branch = "1" ; // BEQ taken .

55 break ;

56 // . . . case statements f o r other branch i n s t r u c t i o n s

57 de f au l t :

58 s e l f_ f e ed . branch = "0" ; // d e f au l t to not taken .

59 break ;

60 }

61 }

Chapter 3. RVXRed: A System-Level Microprocessor 29

62

63 // Control word genera t i on .

64 switch (sc_uint<OPCODE_SIZE>(sc_bv<OPCODE_SIZE>(insn . range (6 , 2)))) {

65 case OPC_ADD: // R−type i n s t r u c t i o n s .

66 output . a lu_src = (sc_bv<ALUSRC_SIZE>)ALUSRC_RS2;

67 output . r e gwr i t e = "1" ;

68 s e n t i n e l [sc_uint<REG_ADDR>(sc_bv<REG_ADDR>(insn . range (11 , 7)

))] = 1 ;

69 output . ld = NO_LOAD;

70 output . s t = NO_STORE;

71 output . memtoreg = "0" ;

72 trap = "0" ;

73 trap_cause = NULL_CAUSE;

74 // FUNCT7 decodes the c l a s s o f R−type i n s t r u c t i o n .

75 switch (sc_uint <7>(sc_bv<7>(insn . range (31 , 25)))) {

76 case FUNCT7_SUB: // SUB, SRA

77 switch (sc_uint <3>(sc_bv<3>(insn . range (14 , 12)))) {

78 case FUNCT3_SUB:

79 output . alu_op = (sc_bv<ALUOP_SIZE>)

ALUOP_SUB;

80 break ;

81 case FUNCT3_SRA:

82 output . alu_op = (sc_bv<ALUOP_SIZE>)

ALUOP_SRA;

83 break ;

84 de f au l t :

85 output . alu_op = (sc_bv<ALUOP_SIZE>)

ALUOP_NULL;

86 break ;

87 }

88 break ;

89 // . . . o ther R−type FUNCT7 case statements .

90 de f au l t :

91 output . alu_op = (sc_bv<ALUOP_SIZE>)ALUOP_NULL;

92 break ;

93 }

94 break ;

95 // . . . o ther OPCODE case statements .

96 de f au l t : // i l l e g a l i n s t r u c t i o n

97 output . a lu_src = (sc_bv<ALUSRC_SIZE>)ALUSRC_RS2;

98 output . r e gwr i t e = "0" ;

99 output . ld = NO_LOAD;

100 output . s t = NO_STORE;

101 output . memtoreg = "0" ;

30 3.3. An HLS Approach to Microprocessor Design

102 trap = "1" ;

103 trap_cause = ILL_INSN_CAUSE;

104 output . alu_op = (sc_bv<ALUOP_SIZE>)ALUOP_CSRRWI;

105 output . imm_u. range (19 , 8) = (sc_bv<12>)MCAUSE_A;

106 output . imm_u. range (7 , 3) = (sc_bv<5>)ILL_INSN_CAUSE;

107 break ;

108 }

109

110 // S t a l l mechanism

111 i f (((s e n t i n e l [sc_uint<REG_ADDR>(sc_bv<REG_ADDR>(insn . range (19 , 15))

)] == 1) && // I f read−a f t e r−wr i t e (RAW) hazard on RS1 . . .

112 (insn . range (6 , 2) != OPC_JAL) &&

113 (insn . range (6 , 2) != OPC_LUI) &&

114 (insn . range (6 , 2) != OPC_AUIPC)) | | // . . . or RAW on RS2 ,

send a bubble and f r e e z e f e t c h i n g f o r the next cy c l e .

115 ((s e n t i n e l [sc_uint<REG_ADDR>(sc_bv<REG_ADDR>(insn . range (24 , 20)

))] == 1) &&

116 ((insn . range (6 , 2) == OPC_ADD) | |

117 (insn . range (6 , 2) == OPC_SB) | |

118 (insn . range (6 , 2) == OPC_BEQ))))

119 {

120 // Bubble .

121 output . r e gwr i t e = "0" ;

122 output . ld = NO_LOAD;

123 output . s t = NO_STORE;

124 // @ Next cyc le , don ' t f e t ch a new i n s t r u c t i o n

125 f r e e z e = true ;

126 }

127 // −−− ENDOF Decode

128

129 dout . put (output) ;

130

131 }

Listing 3.7: Fedec thread body

3.3.3 Execute

The Execute stage is the centerpiece of the pipeline as it performs arithmetic and logical

operations on operands and returns a result to be stored either in data memory or in the

register file. Generally the first operand is statically mapped to RS1 (the first register

operand), while the second (RS2) depends on the instruction: the second register operand

or the immediate field of the instruction. A large switch statement, governed by the

Chapter 3. RVXRed: A System-Level Microprocessor 31

previously encoded ALU_OP signal, selects the operation that must be performed on the

operands. All operations except for the C++ operators / (division) and % (modulo, or

remainder) were synthesizable by the adopted HLS tool. A separate division algorithm was

implemented and encapsulated as a function in a separate SystemC file (Section 3.3.3).

1 whi le (t rue) {

2 PROTOCOL_REGION() ;

3

4 input = din . get () ;

5

6 // Propagate some s i g n a l s to the downstream stage

7 output . r e gwr i t e = input . r e gwr i t e ;

8 output . memtoreg = input . memtoreg ;

9 output . ld = input . ld ;

10 output . s t = input . s t ;

11 output . dest_reg = input . dest_reg ;

12 output . mem_datain = input . r s2 ;

13

14 // ALU 2nd operand mul t ip l ex ing .

15 sc_bv<XLEN> tmp_rs2 = (sc_bv<XLEN>)0 ;

16 i f (input . a lu_src == (sc_bv<ALUSRC_SIZE>)ALUSRC_RS2)

17 tmp_rs2 = input . r s2 ;

18 e l s e i f (input . a lu_src == (sc_bv<ALUSRC_SIZE>)ALUSRC_IMM_I)

19 tmp_rs2 = sigext_imm_i ;

20 e l s e i f (input . a lu_src == (sc_bv<ALUSRC_SIZE>)ALUSRC_IMM_S)

21 tmp_rs2 = sigext_imm_s ;

22 e l s e // ALUSRC_IMM_U

23 tmp_rs2 = zerofi l l_imm_u ;

24

25 // ALU body

26 switch (sc_uint<ALUOP_SIZE>(input . alu_op)) {

27 case ALUOP_ADD: // ADD, ADDI, SB, SH, SW, LB, LH, LW, LBU, LHU

28 output . a lu_res = sc_bv<XLEN>((sc_int<XLEN>)input . r s1 + (

sc_int<XLEN>)tmp_rs2) ;

29 break ;

30 case ALUOP_SLT: // SLT, SLTI

31 i f (sc_int<XLEN>(input . r s1) < sc_int<XLEN>(tmp_rs2))

32 output . a lu_res = (sc_bv<XLEN>)1 ;

33 e l s e

34 output . a lu_res = (sc_bv<XLEN>)0 ;

35 break ;

36

32 3.3. An HLS Approach to Microprocessor Design

37 // Other ALU ope ra t i on s

38 // . . .

39

40 case ALUOP_DIV: // DIV c a l l s div_func

41 div_res = div_func ((sc_int<XLEN>)input . rs1 , (sc_int<XLEN>)

tmp_rs2) ;

42 output . a lu_res = (sc_bv<XLEN>)div_res . quot i ent ;

43 break ;

44

45 de f au l t : // ALUOP_NULL

46 output . a lu_res = (sc_bv<XLEN>)0 ;

47 break ;

48 }

49

50 dout . put (output) ;

51 wait () ;

52 }

53 }

Listing 3.8: Execute thread body

Divider

The 32-bit division algorithm supports the execution of the div, divu, rem and remu

instructions. The main computation loop (DIVIDE_LOOP) is contained with udiv_func(),

it performs a serial division on unsigned integers and is leveraged by div_func() for signed

division by simply reversing the quotient’s sign whenever the numerator and denominator

differ in sign.

Loops are commonly used to model hardware functionality in software. In this case, the

main loop is a protocol-free region and DSE can be done to obtain different implemen-

tations. For example, loop unrolling replicates the logic inside the loop by a number of

times indicated by a user-defined parameter. This means, one can control how much the

loop is parallelized i.e. hardware is duplicated in order to process multiple loop iterations

in a single cycle. In traditional RTL synthesis, there is no control of such kind and loops

are always completely unrolled. In this case, a division which by the definition of the

algorithm takes 32 clock cycles (CC), may be transformed into different implementations

which may take as little as a few clock cycles to perform the operation. On the down-side

the replication of hardware yields a larger area occupation.

Another common loop optimization technique is loop pipelining. This method enables one

iteration of the loop to begin before the previous one has terminated. The result is an

Chapter 3. RVXRed: A System-Level Microprocessor 33

increase in throughput while keeping the possibility of sharing resources, and thus mini-

mizing the required area. Unfortunately, loop pipelining can’t be applied to the mentioned

algorithm because the algorithm includes long data dependencies between loop iterations.

This type of data dependency occurs whenever a loop iteration requires input data that is

produced by the previous iteration. Yet, for short dependencies (e.g. the i++ operation for

the loop iterator) it is possible to apply pipelining. In general, the longest data dependency

chain needs to fit within the initiation interval.

1 u_div_res_t udiv_func (sc_uint<XLEN> num, sc_uint<XLEN> den) {

2 sc_uint<XLEN> rem ;

3 sc_uint<XLEN> quot i ent ;

4 u_div_res_t u_div_res ;

5 rem = 0 ;

6 quot i ent = 0 ;

7

8 DIVIDE_LOOP:

9 f o r (sc_int<6> i = 31 ; i >= 0 ; i−−){

10 BREAK_PROTOCOL_REGION() ;

11 UNROLL_LOOP(4) ; // other loop opt imiza t i on d i r e c t i v e s can go

here

12 const sc_uint<XLEN> mask = 1 << i ;

13 const sc_uint<XLEN> l sb = (mask & num) >> i ;

14 rem = rem << 1 ;

15 rem = rem | l s b ;

16 i f (rem >= den) {

17 rem −= den ;

18 quot i ent = quot i ent | mask ;

19 }

20 }

21 u_div_res . quot i ent = quot i ent ;

22 u_div_res . remainder = rem ;

23

24 re turn u_div_res ;

25 }

26

27

28 div_res_t div_func (sc_int<XLEN> num, sc_int<XLEN> den) {

29 bool num_neg ;

30 bool den_neg ;

31 div_res_t div_res ;

32 u_div_res_t u_div_res ;

34 3.3. An HLS Approach to Microprocessor Design

33

34 num_neg = num < 0 ;

35 den_neg = den < 0 ;

36

37 i f (num_neg)

38 num = −num;

39

40 i f (den_neg)

41 den = −den ;

42

43 u_div_res = udiv_func ((sc_uint<XLEN>) num, (sc_uint<XLEN>) den) ;

44 div_res . quot i ent = (sc_int<XLEN>)u_div_res . quot i ent ;

45 div_res . remainder = (sc_int<XLEN>)u_div_res . remainder ;

46

47 i f (num_neg ^ den_neg)

48 div_res . quot i ent = −div_res . quot i ent ;

49 e l s e

50 div_res . quot i ent = div_res . quot i ent ;

51

52 re turn div_res ;

53 }

Listing 3.9: Division algorithm

3.3.4 Memwb

This stage simply performs accesses to data memory whenever requested and sends infor-

mation back to the register file. As discussed in Section 3.3.2 for the instruction memory, a

wait() statement must be placed before an access to memory to correctly imply a schedu-

lable design.

1 whi le (t rue) {

2 PROTOCOL_REGION() ;

3 input = din . get () ;

4

5 // Memory ac c e s s

6 wait () ;

7 i f (input . ld != NO_LOAD) // Memory read (LOAD in s t r u c t i o n)

8 mem_dout = dmem_port_2 [input . a lu_res] ;

9 e l s e i f (input . s t != NO_STORE) // Memory wr i t e (STORE in s t r u c t i o n)

10 dmem_port_1 [input . a lu_res] = input . mem_datain ;

11

Chapter 3. RVXRed: A System-Level Microprocessor 35

12 // Writeback

13 output . r e gwr i t e = input . r e gwr i t e ;

14 output . r e g f i l e_add r e s s = input . dest_reg ;

15 output . r e g f i l e_da ta = (input . memtoreg == true) ? mem_dout : input .

a lu_res ;

16

17 dout . put (output) ;

18 }

Listing 3.10: Memwb thread body

36 3.3. An HLS Approach to Microprocessor Design

Chapter 4

Experimental Setup

This section covers the various tools used to test the device under test (DUT), as well as

the environment that was set up in order to obtain results and performance metrics.

In the following, the DUT is a processor core: either a specific implementation of RVXRed

or Zero-riscy (one of the RISC-V cores developed by researchers from ETH Zurich and

University of Bologna [11]). In total, four instances of RVXRed were produced after a

DSE phase:

• BASIC: a basic version that does not include the application of particular HLS knobs

but has been the result of many code changes in the SystemC design space;

• ASAP: a faster version of BASIC obtained by controlling the composition of the dat-

apath and control portions of the generated Verilog. This means that the HLS tool

can optimize the latency of the system (at the expense of a larger area occupation)

by blurring the distinction between these two parts. In fact, the default schedul-

ing algorithm is designed for datapath-oriented designs (those that have a minimal

control unit). The ASAP optimization changes approach by transforming control

statements (such as if, else, switch, etc.) into datapath elements.

• UNDIV2: a version where the division algorithm’s loop has been unrolled by a factor

of 2;

• UNDIV4: as in UNDIV2, but with an unrolling factor of 4.

Figure 4.1 reports the experimental flow that was followed, starting from the SystemC de-

scription of the processor to the final results (when working on Zero-riscy the entry point

was its Verilog description, thus the first step was skipped). Following logic simulation,

37

38

the left branch represents steps for the CMOS implementation while the right branch rep-

resents the steps for the FPGA design flow.

Chapter 4. Experimental Setup 39

Figure 4.1: Experimental setup design flow.

40 4.1. Logic Simulation and Synthesis

4.1 Logic Simulation and Synthesis

In order to verify the DUT, logic simulation was performed. The goal was to assess

the functional correctness of each core given a benchmark program consisting of all the

supported instructions and checking the behavior of the DUT.

The test-bench used to feed input stimuli and observe the output results has the following

structure:

1 ‘ t imes ca l e 1ns / 1ps

2

3 ‘de f i n e CLK_PERIOD 40.00 ns // 25 MHz

4

5 /∗ Test−bench module ∗/

6 module tb

7 #(

8 parameter CLK_CNTR_WIDTH = 20

9) ;

10 // Support l o g i c w i r e s

11 l o g i c prog_end ;

12 l o g i c [CLK_CNTR_WIDTH−1:0] c lk_counter ;

13 l o g i c fetch_en ;

14

15 // Clock and Reset

16 l o g i c c lk_i ;

17 l o g i c rst_ni ;

18

19 // IMEM Block i n t e r f a c e

20 l o g i c [3 1 : 0] imem_addr_o ;

21 l o g i c imem_clk_o ;

22 l o g i c [3 1 : 0] imem_din_o ;

23 l o g i c [3 1 : 0] imem_dout_i ;

24 l o g i c imem_en_o ;

25 l o g i c imem_rst_o ;

26 l o g i c [3 : 0] imem_we_o ;

27

28 // DMEM Block i n t e r f a c e

29 l o g i c [3 1 : 0] dmem_addr_o ;

30 l o g i c dmem_clk_o ;

31 l o g i c [3 1 : 0] dmem_din_o ;

32 l o g i c [3 1 : 0] dmem_dout_i ;

33 l o g i c dmem_en_o;

34 l o g i c dmem_rst_o ;

Chapter 4. Experimental Setup 41

35 l o g i c [3 : 0] dmem_we_o;

36

37

38 // Input program f i l e handl ing .

39 i n t e g e r da ta_f i l e

40 i n t e g e r s c an_f i l e

41 b i t [3 1 : 0] captured_data ;

42 ‘de f i n e NULL 0

43

44

45 /∗ I n s t a n t i a t e the DUT ∗/

46 rvxred_top DUT_rvxred_top(

47 // Support l o g i c

48 . fetch_en_i (fetch_en) ,

49 . prog_end_o (prog_end) ,

50 . clk_count_o (clk_counter) ,

51

52 // Clock and Reset

53 . c lk_i (c lk_i) ,

54 . r s t_ni (rst_ni) ,

55

56 // IMEM Block i n t e r f a c e

57 . imem_addr_o(imem_addr_o) ,

58 . imem_clk_o(imem_clk_o) ,

59 . imem_din_o(imem_din_o) ,

60 . imem_dout_i (imem_dout_i) ,

61 . imem_en_o(imem_en_o) ,

62 . imem_rst_o(imem_rst_o) ,

63 . imem_we_o(imem_we_o) ,

64

65 // DMEM Block i n t e r f a c e

66 . dmem_addr_o(dmem_addr_o) ,

67 . dmem_clk_o(dmem_clk_o) ,

68 . dmem_din_o(dmem_din_o) ,

69 . dmem_dout_i(dmem_dout_i) ,

70 . dmem_en_o(dmem_en_o) ,

71 . dmem_rst_o(dmem_rst_o) ,

72 .dmem_we_o(dmem_we_o)

73) ;

74

75

76 // Clk−gen proce s s

77 always

78 #(‘CLK_PERIOD/2) c lk_i = ~clk_i ;

42 4.1. Logic Simulation and Synthesis

79

80

81 // Rst p roce s s

82 i n i t i a l

83 begin

84 $d i sp l ay ($time , "<< Sta r t i ng the s imu la t i on >>") ;

85 data_f i l e = $fopen (" . / program .memb" , " r ") ;

86 i f (da ta_f i l e == ‘NULL) begin

87 $e r r o r ("program .memb handle was NULL") ;

88 $ f i n i s h ;

89 end

90 c lk_i = 1 ' b0 ;

91 rst_ni = 1 ' b0 ; // Reset the DUT

92 fetch_en = 1 ' b0 ;

93

94 #1500ns ;

95 rst_ni = 1 ' b1 ; // Release r e s e t

96

97 #1500ns ;

98 fetch_en = 1 ' b1 ; // Star t execut ing program .

99 end

100

101 // Prog−end proce s s

102 always_comb begin

103 i f (prog_end === 1 ' b1) begin

104 $d i sp l ay ("∗∗prog_end r e c e i v ed ") ;

105 $ f i n i s h ;

106 end

107 end

108

109 // Mem−mgmt proce s s

110 always_ff @(posedge c lk_i) begin

111 // Once we enable f e t ch ing , we send one i n s t r u c t i o n per c l o ck cy c l e

112 // I n s t r u c t i o n s are read from the ' program .memb' f i l e

113 i f (fetch_en === 1 ' b1 && imem_en_o === 1 ' b1) begin

114 s c an_f i l e = $ f s c an f (data_f i l e , "%b\n" , captured_data) ;

115 i f (! $ f e o f (da ta_f i l e)) begin

116 $d i sp l ay (captured_data) ;

117 imem_dout_i <= captured_data ;

118 end

119 e l s e begin

120 $ f i n i s h ; // Reached EOF, end s imu la t i on

121 end

122 // Emulate a DMEM that responds with a f i x ed value o f dout equal

Chapter 4. Experimental Setup 43

to 20

123 i f (dmem_en_o === 1 ' b1 && dmem_we_o === 4 ' b0000) begin

124 dmem_dout_i <= 32 ' h00000014 ;

125 end

126 e l s e begin // I f a read i s not reques ted output 0 .

127 dmem_dout_i <= 32 ' h00000000 ;

128 end

129 end

130 e l s e begin

131 imem_dout_i <= 32 ' h00000000 ;

132 dmem_dout_i <= 32 ' h00000000 ;

133 end

134 end

135

136 endmodule

Listing 4.1: Logic simulation test-bench.

The test-bench instantiates the DUT and has four processes:

1. Clk-gen: the clock generation process, which inverts the clk_i signal every CLK_PERIOD/2;

2. Rst: opens the program file handler, resets the DUT and sends the signal for starting

the execution (fetch_en);

3. Prog-end: sends the $finish system task to the simulator when prog_end is asserted;

4. Mem-mgmt: at each clock cycle it reads a line from program.memb before sending it

to the DUT, and emulates the data memory. Note: just for demonstration purposes

any data memory reads (load instruction in the processor) returns the hard-coded

value of 20. This value has no particular meaning and any value different from 0 could

have been outputted to simulate a read operation. This approach was only adopted

in the logic simulation step, where the focus was on studying the behavior of the

processor as executing all supported instructions. In the experiments conducted on

the FPGA (Section 4.2), memory blocks were used in order to enable the execution

of real programs.

The program to be executed is contained in program.memb. It is a text file containing the

binary encoding of an instruction per line. To obtain it, a script which calls programs

provided by the RISC-V software tool-chain was written. Starting from a C/C++ or

assembly source file, the object code resulting from compilation is parsed and manipulated

to obtain the binary encoding of each instruction.

44 4.2. FPGA Verification

This setup was run in a commercial logic simulation program. Both CPU interfaces to

memories were examined in a waveform window to monitor their behavior. Instruction

fetching was observed on the instruction memory interface, while any write or read opera-

tions were observed on the data memory interface. Additionally, the signals composing the

3 LICs between the stages were tracked to ensure the correct behavior of each individual

stage. This was extremely useful as new instructions or functionalities were added to new

versions of RVXRed.

By counting the clock cycles from the start of an instruction’s fetch to a write operation

in the register file, the latency of the execution of a single instruction was determined. In

the ideal case (no dependencies of any sort) for a RVXRed core, an instruction is fetched

at each clocked cycle and the latency for committing it is equivalent to 5 clock cycles. A

store operation instead needs 4 cycles as there is no writeback operation to the register

file. Additionally, there is no clock cycle penalty for branch and jump instructions.

Once the DUT was validated, its gate-level description was obtained by resorting to a

commercial logic synthesis tool. This operation yielded the first set of results used for

comparing RVXRed with its rival implementation. The metrics of interest were area oc-

cupation and clock frequency. Refer to section 5.2 for the comparisons and discussion of

the CMOS implementations.

4.2 FPGA Verification

Before deploying and testing the DUT on an FPGA, The RTL description was packaged

as an intellectual property (IP) module, the basic building block for modern FPGA-based

tools. IP packaging enables the re-use of a module in separate projects and systems.

The module was integrated with proprietary IP blocks within the Xilinx Vivado Design

Suite. The full system was then deployed on the Xilinx Zynq-7000 AP SoC ZC702 Evalu-

ation Kit. To integrate a core into the FPGA system, two memory adapters were written

in Verilog to translate the memory protocol implemented in the core to the one supported

by the adopted SRAM IP blocks. A total of two pairs of adapters were written, one for

RVXRed and the other for Zero-riscy. Each pair includes an instruction memory adapter

and a data memory adapter as shown in Figures 4.2 and 4.3.

Chapter 4. Experimental Setup 45

(a) RVXRed imem adapter (b) RVXRed dmem adapter

Figure 4.2: RVXRed memory adapters.

(a) Zero-riscy imem adapter (b) Zero-riscy dmem adapter

Figure 4.3: Zero-riscy memory adapters.

The RVXRed adapters are of easier comprehension with to respect to Zero-riscy’s. In fact,

the latter implemented a request-grant memory transaction protocol as the one depicted

in Figure 4.4. For any memory transaction, the core starts by providing a valid address

and asserting req. The memory then answers by setting gnt high when it is ready to serve

the request, which may happen in the same cycle as the request was sent or any number

of cycles later. When ready to provide data for a read request, the memory answers with

rvalid set high and data on rdata (this may happen one or more cycles after the core has

received the grant). Since the SRAM IP blocks always satisfies the requested operation in

the following clock cycle, the gnt signal is directly connected to the req line, and rvalid

is a delayed version of req.

46 4.2. FPGA Verification

clock

addr A

req

gnt

rdata mem[A]

rvalid

Figure 4.4: Zero-riscy’s request-grant memory protocol for a read transaction.

Before packaging a core as an IP block, a final top-level Verilog description was written.

This encapsulates the core, the memory adapters and a counter which is in charge of

counting the clock cycles since the fetch enable signal has been sent to the core. The

purpose of this counter is to have a reliable metric for measuring the duration of execution

of a program in the form of clock cycle count, later used to compute the CPU time (a key

performance metric in this experimental setup).

Figure 4.5: Top-level wrapper module.

The core IP module was integrated with the following:

Chapter 4. Experimental Setup 47

1. ZYNQ7 Processing System: this IP represents the processor contained within the

adopted FPGA. A C/C++ program was executed on such processor to initialize,

manage and monitor the other blocks via an AXI bus.

2. SRAM modules: two identical blocks were used for instruction and data memories.

These have two interfaces, one for the DUT and the other for the ZYNQ7.

3. SRAM AXI controllers: enable interaction between the SRAMs and the ZYNQ7,

which initializes the memory contents at startup and dumps them at simulation end

for comparing them with a golden model.

4. Core controller: it is in charge of receiving commands from the ZYNQ7 and driving

signals for reset and fetch enable to the core. Additionally, it reads the core clock

counter and checks whether program execution ended, signaling this event to the

ZYNQ7. The functionality of this module was described in C and the IP block was

obtained through Xilinx Vivado HLS. This was yet another demonstration of the

ease and speed with which HLS tools can be used for hardware design.

5. Logic analyzer: this module is optional as it is used for debugging and tracking signal

values on wires between blocks. After debugging, it is removed to get the correct

value of the system clock frequency (the high complexity of this module greatly

reduces such value).

Figure 4.6 illustrates the full system. Note, the clock tree is not reported for simplicity

but it is a single one driven by the ZYNQ7 and shared among all blocks.

The system was synthesized and its FPGA implementation provided automatically by the

FPGA software suite, which produced the final bitstream file to be downloaded on the

FPGA. For each new implementation of RVXRed generated during DSE, a new IP block

was packaged and integrated in the system.

Finally, the program to be run on the ZYNQ was written in C++. This file is shared

among all implementations as it is core independent.

The program operates as follows. First, the core controller, data and instructions memories

are initialized. Then, the reset signal and fetch enable signals are sent to the controller

which relays this information to the DUT. The controller is now polled until it asserts

the end of program signal (this occurs whenever the DUT signals the end of the program

execution). At this point, data memory contents are compared with the golden model and

the clock counter is read and printed to monitor (this value is later used to compute the

effective latency of the core, as described in Chapter 5). If using a logic analyzer, any

48 4.2. FPGA Verification

Figure 4.6: Complete FPGA IP block system.

signal between the IP blocks can be observed. This was a useful way to ensure the correct

behavior of the DUT, especially in regards to the memories, in a similar fashion to what

was done during logic simulation. Listing 4.2 reports a simplified C++ program similar to

the one adopted during experiments.

In this setup, whenever a new benchmark must be tested, the designer is simply in charge

of changing the value of the num_insn variable and the contents of the program array.

These lines are automatically generated by the script mentioned in Section 4.1, making

this process effortless.

1 // Enum with commands f o r the core c o n t r o l l e r b lock

2 enum cmd {rst_on = 0 , r s t_of f , go } ;

3

4 // Po inte r s to the SRAM AXI c o n t r o l l e r s

5 unsigned ∗dmem_ptr = (unsigned ∗) SRAM_0_BASEADDR;

Chapter 4. Experimental Setup 49

6 unsigned ∗imem_ptr = (unsigned ∗) SRAM_1_BASEADDR;

7

8 // Core c o n t r o l l e r i n s t anc e

9 Core_ctr l doCore_ctrl ;

10 Core_ctrl_Config ∗Core_ctrl_cfg ;

11

12 // I n i t i a l i z e the core c o n t r o l l e r

13 void i n i t_c t r lCo r e ()

14 {

15 i n t s t a tu s = 0 ;

16 Core_ctrl_cfg = Core_ctrl_LookupConfig (CORE_DEVICE_ID) ;

17 i f (Core_ctrl_cfg)

18 {

19 s t a tu s = Core_c t r l_Cfg In i t i a l i z e (&doCore_ctrl , doCore_ctrl_cfg) ;

20 i f (s t a tu s != SUCCESS)

21 {

22 p r i n t f ("ERROR: Fa i l ed to i n i t i a l i z e core c o n t r o l l e r \n") ;

23 }

24 }

25 }

26

27 // Program entry po int

28 i n t main (i n t argc , char ∗∗ argv)

29 {

30 i n i t_c t r lCo r e () ;

31

32 // Clear data memory content

33 f o r (unsigned idxX = 0 ; idxX < len (dmem_ptr) ; idxX++)

34 dmem_ptr [idxX] = 0 ;

35

36 // Clear i n s t r u c t i o n memory content

37 f o r (unsigned idxX = 0 ; idxX < len (imem_ptr) ; idxX++)

38 imem_ptr [idxX] = 0 ;

39

40 // F i l l the temprorary program array

41 unsigned num_insn = 32 ;

42 unsigned prog [num_insn] =

43 {

44 52429075 ,

45 // . . . ,

46 4294967295

47 } ;

48

49 // Load program in to i n s t r u c t i o n memory

50 4.3. Test Programs

50 f o r (unsigned idxX = 0 ; idxX < num_insn ; idxX++)

51 imem_ptr [idxX] = prog [idxX] ;

52

53 // Reset the DUT

54 Core_ctrl_Set_axi_cmd(&doCore_ctrl , rst_on) ;

55 us l e ep (1) ;

56

57 // Remove r e s e t from DUT

58 Core_ctrl_Set_axi_cmd(&doCore_ctrl , r s t_o f f) ;

59 us l e ep (1) ;

60

61 // Send the f e t ch enable s i g n a l

62 Core_ctrl_Set_axi_cmd(&doCore_ctrl , go) ;

63

64 // Wait u n t i l the core has f i n i s h e d execut ing the provided program

65 whi le (! Core_ctrl_Get_end_of_prog(&doCore_ctrl)) ;

66

67 // Dump c lock counter

68 p r i n t f ("Clock counter : %u\n" , clk_cnt) ;

69

70 // Dump data memory

71 f o r (unsigned idx = 0 ; idx < len (dmem_ptr) ; idx++)

72 p r i n t f ("Data memory : index=%d value=%d\n" , idx , dmem_ptr [idx]) ;

73

74 // Dump i n s t r u c t i o n memory

75 f o r (unsigned idx = 0 ; idx < len (imem_ptr) ; idx++)

76 p r i n t f (" I n s t r u c t i o n memory : index=%d value=%u\n" , idx , imem_ptr [

idx]) ;

77

78 re turn (0) ;

79 }

Listing 4.2: C++ program for FPGA system verification.

4.3 Test Programs

To better understand and compare the speed of each implementation, three programs were

written and then loaded into the instruction memory. These are:

1. 1D CONV: one-dimension convolution;

2. 2D CONV: two-dimension convolution;

Chapter 4. Experimental Setup 51

3. HIST EQ: histogram equalization.

Listings 4.3, 4.4 and 4.5 report code snippets for each program. 1D CONV and 2D CONV

perform MAC operations on vectors and matrices respectively; while HIST EQ includes

several matrix operations, including a loop with a division, which yields interesting results

when run by processor implementations with an optimized division algorithm (Section 5.2).

1 f o r (i n t i = 0 ; i < samples ; i++){

2 y [i] = 0 ; // r e s e t be f o r e MAC

3 f o r (i n t j = 0 ; j < ke rn e l s ; j++){

4 y [i] += x [i − j] ∗ h [j] ; // MAC

5 }

6 }

Listing 4.3: 1D CONV

1

2 kern_center_X = kern_cols / 2 ;

3 kern_center_Y = kern_rows / 2 ;

4

5 f o r (i n t i =0; i < rows ; i++){ // rows

6 f o r (j =0; j < c o l s ; j++){ // columns

7 f o r (i n t h = 0 ; h < kern_rows ; h++){ // ke rne l rows

8 hh = kern_rows − 1 − h ;

9 f o r (i n t l = 0 ; l < kern_cols ; l++){ // ke rne l columns

10 l l = kern_cols − 1 − l ;

11 i i = i + (h − kern_center_Y) ;

12 j j = j + (l − kern_center_X) ;

13

14 i f (i i >= 0 && i i < rows && j j >= 0 && j j < c o l s)

15 out [i] [j] += in [i i] [j j] ∗ k e rne l [hh] [l l] ; // MAC

16 }

17 }

18 }

19 }

Listing 4.4: 2D CONV

1 f o r (i n t i = 0 ; i < 256 ; i++){ // bu i ld p r obab i l i t y t ab l e

2 prob_tab [i] = histogram [i] / p i x e l s ;

52 4.4. CPU Time as a Performance Metric

3 }

4

5 cd f [0]= prob_tab [0] ; // cd f : cumulat ive d i s t r i b u t i o n func t i on

6 f o r (i n t i = 1 ; i <256; i++){

7 cd f [i] = prt [i] + cdf [i −1] ;

8 i f (cd f [i] > cdfmax)

9 cdfmax = cdf [i] ;

10 i f (cd f [i] < cdfmin)

11 cdfmin = cdf [i] ;

12 }

13

14 f o r (i n t i =0; i < l i n e s ; i++){ // f i n a l image

15 f o r (i n t j = 0 ; j < columns ; j++){

16 image_out [i] [j] = cd f [image_in [i] [j]] ∗ 255 ;

17 }

18 }

Listing 4.5: HIST EQ

4.4 CPU Time as a Performance Metric

For each program execution, the clock cycle count (CLK_CNT) was extracted and used

to compute the CPU time. Consider equation 2.1 from Section 2.1.1.

Note that:

avg_CPI =
CLK_CNT

NCI
(4.1)

And so we obtain an alternative expression to easily compute the CPU Time:

CPU Time = CP ∗ CLK_CNT (4.2)

This equation is used in Chapter 5, which reports numerical results gathered during the

experimental process described in this chapter and draws conclusions regarding a collection

of microprocessor implementations.

Chapter 5

Evaluation and Results

The focus of this chapter is on the results obtained with the FPGA and CMOS exper-

iments. These numerical indicators are useful for comparing the RVXRed versions with

Zero-riscy. Additional measures and characteristics must be taken into consideration for

a more exhaustive comparison. For such reason, Section 5.3 tries to compare the effort

required by developing a processor at the system and register transfer levels.

As previously mentioned, both processor architectures support the RV32I and RV32M in-

struction subsets (listed in Appendix A). Zero-riscy also supports the execution of the

RV32C subset, a compressed version (16-bit long instructions) of the RV32I instructions.

Before deploying the target processor to FPGA or performing logic synthesis, the adopted

HLS tool has proven to be effective in indicating characteristics of the architecture it was

synthesizing. In fact, it provided relevant details such as the achievable clock frequency,

area distributions and the CDFG associated to the input description. These were useful

indicators for exploring a varied collection of configurations, which included different HLS

directives and also diverse coding styles. In an iterative fashion, results were compared

with previous implementations in order to find the configurations that yielded the best

Quality of Results (QoR). Finding the optimal coding style has proven to be quite time

consuming, but once discovered, a guideline can be drafted and used in later projects.

5.1 FPGA Implementation

All processor cores were synthesized and implemented on a Xilinx Virtex 7 FPGA (model

identifier "xc7z020clg484-1"). Table 5.1 reports the achievable frequency and resource

utilization values for each solution.

The basic logic element in the Series 7 FPGAs by Xilinx is a Configurable Logic Block

53

54 5.2. CMOS Implementation

(CLB). Each CLB contains two slices and is connected to the interconnection matrix via a

dedicated switch. Slices are the fundamental resource and most importantly include Look-

Up Tables (LUTs) and registers. The former can be used to implement combinational logic

and combined with the latter to form a sequential resource. Additionally, multiplexers are

embedded within slices to route internal signals. Special resources, known as DSP slices

are high-speed blocks which include, among others, circuitry for multiplication.

It is clear that Zero-riscy dominates all RVXRed implementations under all aspects for

the FPGA design (clock frequency and resource utilization). The main reason is that the

adopted HLS tool is not apt for FPGA design, and only in future releases will be capable

of delivering better results. Nonetheless, following the FPGA design flow was necessary

to obtain the clock cycle count used to compute the CPU time for each test program

(Section 5.2).

RVXRed BASIC Zero-riscy RVXRed ASAP RVXRed UN-

DIV2

RVXRed UN-

DIV4

Frequency (MHz) 55 70 60 50 40

Slice 1790 977 1877 1916 2159

Slice LUTs 4521 2390 4699 5325 6080

Slice Registers 3944 1529 3974 3899 3932

F7 Muxes 323 281 304 426 358

F8 Muxes 4 0 5 90 90

LUT-FF Pairs 1853 404 1855 1796 1778

DSPs 3 1 3 3 3

Table 5.1: FPGA clock frequency and resource utilizations

5.2 CMOS Implementation

For the CMOS implementation, each core was synthesized with Synopsys Design Compiler

using a commercial 32 nm CMOS library. Table 5.2 lists the achievable clock frequency

and area occupation values for each solution. All RVXRed solutions have a larger footprint

than Zero-riscy, mainly, this is due to the overhead introduced by describing the RVXRed

cores at a higher level of abstraction. Designing the processor in an RTL language enables

a finer tuning and control over the architecture with respect to a high-level description.

Nevertheless, different coding styles as well as new HLS tools and updates may yield better

results. ASAP and Zero-riscy have the highest achievable clock frequency with a value of

2 GHz, with BASIC, UNDIV2 and UNDIV4 following. The comparison of Tables 5.1 and

5.2 clearly indicate that the adopted HLS tool performs better for CMOS implementations.

Figure 5.1 reports CPU time versus area plots for the test programs.

Chapter 5. Evaluation and Results 55

RVXRed BASIC Zero-riscy RVXRed ASAP RVXRed UNDIV2 RVXRed UNDIV4

Clock Frequency (GHz) 1.9 2 2 1.8 1.8

Area (µm2) 17789 12948 17565 19022 19912

Table 5.2: CMOS clock frequency and area occupation

RVXRed BASIC Zero-riscy RVXRed ASAP RVXRed UNDIV2 RVXRed UNDIV4

Latency 32 32 32 16 8

Throughput 1/32 1/32 1/32 1/16 1/8

Table 5.3: Division characteristics for all implementations.

The plots show that although always dominated in terms of area occupation, some RVXRed

solutions give the lowest values of CPU time for the given set of test programs. For 1D

CONV and 2D CONV, all RVXRed solutions are faster. These programs mainly perform

multiply-accumulate (MAC) operations. The C++ * operator is broken down into the

RISC-V assembly instruction sequence reported in Listing 5.1.

1 mulh x3 , x2 , x1 # s t o r e s in x3 the upper 32 b i t s o f the r e s u l t

2 mul x4 , x2 , x1 # s t o r e s in x4 the lower 32 b i t s o f the r e s u l t

3 add x5 , x5 , x3

4 add x6 , x6 , x4

Listing 5.1: MAC RISC-V assembly code snippet.

In all implementations, the mul instruction is executed by a multiplication circuit that

returns the result in 1 clock cycle (CC). On the contrary, mulh requires 4 CCs in Zero-

riscy’s multiplier and only 1 CC in any RVXRed version.

This means that the above instructions require 7 CCs to be executed by Zero-riscy, while

only 4 CCs by RVXRed, and thus the value of the clock count when executing the convo-

lution programs, which perform many multiplications, is lower in the RVXRed implemen-

tations.

As mentioned in Section 4.3, histogram equalization, among other operations, performs a

division in the body of a loop which iterates over all points of the given histogram.

The drawbacks of the UNDIV2 and UNDIV4 architectures are a higher area occupation

and lower clock frequency. Nonetheless, they employ less time to perform divisions and,

in a division-oriented algorithm like the chosen one, they are the clear winners in terms of

CPU time.

To conclude, Zero-riscy is the winning solution for area occupancy, but some RVXRed

versions yield better values for CPU time and take part of the Pareto set, while others

56 5.3. Qualitative Results: Lines of Code

remain dominated with respect to both metrics.

5.3 Qualitative Results: Lines of Code

It should be noted that the effort and time required by the proposed design activity is

notably less than that involved into the traditional RTL design flow. Let alone, the ease

with which different implementations were obtained in the DSE phase.

These aspects are hardly measured in numerical terms, however one indicator can be

the lines of code (LOC). Table 5.4 shows a clear difference in LOC between the SystemC

(RVXRed) and Verilog (Zero-riscy) designs. This was a predictable result due to raising the

level of abstraction, and thus omitting several details that must be written explicitly when

using RTL languages. For completeness, Table 5.5, instead, reports the LOC considering

the Verilog RTL code that was automatically generated starting from the SystemC files.

RVXRed BASIC Zero-riscy RVXRed ASAP RVXRed UNDIV2 RVXRed UNDIV4

LOC 2042 6205 2042 2042 2042

Table 5.4: Comparing LOC, considering the manually written SystemC code for the

RVXRed versions.

RVXRed BASIC Zero-riscy RVXRed ASAP RVXRed UNDIV2 RVXRed UNDIV4

LOC 17900 6205 17692 18541 18740

Table 5.5: Comparing LOC, considering the automatically generated Verilog RTL code for

the RVXRed versions.

Chapter 5. Evaluation and Results 57

0

12
94
8

17
78
9

19
91
2

0

93
1

1,
25
0

Area [µm2]

C
P
U

T
im

e
[n
s]

1D CONV

Zero− riscy
BASIC
ASAP

UNDIV 2
UNDIV 4

0

12
94
8

17
78
9

19
91
2

0

4,
53
05,

12
2

Area [µm2]

C
P
U

T
im

e
[n
s]

2D CONV

Zero− riscy
BASIC
ASAP

UNDIV 2
UNDIV 4

0

12
94
8

17
78
9

19
91
2

0

48
1

68
8

1,
16
8

Area [µm2]

C
P
U

T
im

e
[n
s]

HIST EQ

Zero− riscy
BASIC
ASAP

UNDIV 2
UNDIV 4

Figure 5.1: CPU Time vs Area plots

58 5.3. Qualitative Results: Lines of Code

Chapter 6

Conclusion

6.1 Achievements

A 5-stage pipelined 32-bit instruction set processor compatible with the RISC-V ISA has

been implemented in a high-level language and synthesized with a commercial HLS tool.

Design options and issues have been analyzed and overcome, leading to a new methodology

for microprocessor design at the system level. The proposed core has been validated

following steps in an experimental setup which included: logic simulation, logic synthesis

and FPGA verification. Finally, several implementations were obtained starting from a

single SystemC description and were compared with a modern RISC-V core supporting the

same instruction set. The outcome of these comparisons clearly reveals that the proposed

approach yields significant results and clears the path for future developments which will

adopt this methodology.

6.2 Future Works

Many enhancements may be applied and introduced in the proposed core.

At an architectural level, data forwarding schemes, exception handling techniques, out-of-

order execution, among other features, should be implemented.

Additionally, the core can be extended to support other RISC-V subsets, such as the RV64I,

RV128I and the F/D/Q extensions for floating point operations. The modularity of the

proposed architecture easily enables such additions.

Furthermore, solutions and results provided by other commercial HLS tools could be in-

vestigated and compared with the ones listed in this report.

59

60 6.2. Future Works

Appendix A

RVXRed Instruction Set

Integer Register-Register Integer Register-Immediate Control Transfer Load and Store System

add addi beq sb csrrw

slt slti bne sh csrrs

sltu sltiu blt sw csrrc

sll slli bge lb csrrwi

srl srli bltu lh csrrsi

sra srai bgeu lw csrrci

or ori bgeu lbu ecall

and andi jalr lhu ebreak

xor xori jal

sub lui

auipc

Table A.1: RV32I instruction subset

Multiplication Division

mul div

mulh divu

mulhu rem

mulhsu remu

Table A.2: RV32M instruction subset

61

62

Bibliography

[1] Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni. High-Level Synthesis

of Accelerators in Embedded Scalable Platforms. Proceedings of the Asia and South

Pacific Design Automation Conference (ASPDAC), 2016.

[2] Yen-Ju Lu et al. Microprocessor Modeling and Simulation with SystemC. International

Symposium on VLSI Design, Automation and Test, 2007. VLSI-DAT 2007., 2007.

[3] G. De Micheli and D.C. Ku. HERCULES-a system for high-level synthesis. Design

Automation Conference, 1988. Proceedings., 25th ACM/IEEE, 1988.

[4] Gordon Moore. Cramming more components onto integrated circuits . Electron. Mag

38(8), 1965.

[5] ITRS. The International Technology Roadmap for Semiconductors, 2009 Edition.

International SEMATECH: Austin, TX 2009, 2009.

[6] Andrew B. Kahng. The ITRS design technology and system drivers roadmap: process

and status. Proceedings of the 50th Annual Design Automation Conference (DAC),

Article No. 34, 2013.

[7] David A. Patterson and John L. Hennessy. Computer Organization & Design: The

Hardware/Software Interface, Fifth Edition. Morgan Kaufmann Publishers, 2013.

[8] Andrew Waterman et al. The RISC-V instruction set. Hot Chips 25 Symposium

(HCS), 2013 IEEE, 2013.

[9] Yunsup Lee et al. An Agile Approach to Building RISC-V Microprocessors. IEEE

Micro (Volume: 36, Issue: 2), 2016.

[10] Andreas Traber and Michael Gautschi. PULPino: Datasheet. ETH Zurich and Uni-

versity of Bologna, 2016.

63

64 Bibliography

[11] Pasquale Davide Schiavone. zero-riscy: User Manual. University of Bologna and ETH

Zurich, 2017.

[12] Andrew Waterman Yunsup Lee, David Patterson, and Krste Asanovic. The RISC-V

Instruction Set Manual Volume I: User-Level ISA Version 2.1. University of Califor-

nia, Berkeley, 2016.

[13] Andrew Waterman, Krste Asanovic, and SiFive Inc. The RISC-V Instruction Set

Manual Volume II: Privileged Architecture Privileged Architecture Version 1.10. Uni-

versity of California, Berkeley, 2017.

[14] Mentor Graphics, Inc. Google Develops WebM Video Decompression Hardware IP

Using High-Level Synthesis. Mentor Graphics, Inc, 2015.

[15] Mentor Graphics, Inc. Bosch Visiontec Rapidly Brings New Automotive IP to Market

Using the Catapult HLS Platform. Mentor Graphics, Inc, 2015.

[16] Andrew Putnam et al. BA Reconfigurable Fabric for Accelerating Large-Scale Data-

center Services. 2014 ACM/IEEE 41st International Symposium on Computer Archi-

tecture (ISCA), 2014.

[17] Norman P. Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing

Unit. 44th International Symposium on Computer Architecture (ISCA), 2017.

[18] D. Aarno and J. Engblom. Software and System Development using Virtual Platforms.

Morgan Kaufmann Publishers, 2014.

[19] David C. Black, Jack Donovan, Bill Bunton, and Anna Keist. SystemC: From the

Ground Up, Second Edition. Springer, 2014.

[20] Luca P. Carloni. From Latency-Insensitive Design to Communication-Based System-

Level Design. Proceedings of the IEEE, vol. 103, no. 11, 2015.

[21] Cadence Design Systems, Inc. Stratus High-Level Synthesis User Guide. Cadence

Design Systems, Inc, 2017.

[22] Cadence Design Systems, Inc. Stratus High-Level Synthesis Reference Guide. Cadence

Design Systems, Inc, 2017.

[23] Luca P. Carloni. The Role of Back-Pressure in Implementing Latency-Insensitive De-

sign. Second International Workshop on Formal Methods for Globally Asynchronous

Locally Synchronous Architectures (FMGALS ’05), 2006.

Bibliography 65

[24] Luca P. Carloni. The Case for Embedded Scalable Platforms. Proceedings of the

Design Automation Conference (DAC), 2016.

[25] Christian Pilato, Qirui Xu, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P.

Carloni. On the Design of Scalable and Reusable Accelerators for Big Data Appli-

cations. Proceedings of the International Conference on Computing Frontiers (CF),

2016.

[26] Andreas Traber. RI5CY Core: Datasheet. ETH Zurich and University of Bologna,

2016.

		Politecnico di Torino
	2017-10-10T11:25:31+0000
	Politecnico di Torino
	Luciano Lavagno
	Tesi 224854

