
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Brain inspired Image Understanding
Smart Algorithm: semantic reasoning

to enhance deeplearning models

Supervisor
prof. Elena Baralis

Candidate
Andrea Pasini

October 2017

Abstract

In this thesis we propose an object recognition algorithm to improve the accuracy of

convolutional neural network models. The goal is to classify multiple objects contained

into the analyzed picture. Our method is inspired by the way we understand images, using

both visual and semantic information. The key point of the reasoning is that objects of a

particular class maintain specific spatial relationships with the others. For example ceiling

lamps hang from the ceiling, floors lie to the bottom of the image. Computer screens are

more likely found near keyboards, desks near to chairs, windows close to walls. Also the

relative size between objects can be useful for scenery understanding, as many categories

present particular relationships. For example floors are larger than many other elements,

doors are taller, while lamps are smaller.

Considering a scene with multiple objects, each of them is classified firstly by the

convolutional neural network, which is considered here the baseline model. Afterwards,

our algorithm is applied to the whole scene with the aim of improving the baseline classifer

results. The method is called Smart Algorithm because it uses the contextual information,

as opposed to the neural network which only looks at the local characteristics of the image

sub-regions. Our model can also provide interpretability of the results, since it is rule

based; this cannot be easily done with the neural networks.

The dataset used for our experiments is Sun09, a collection of more than ten-thousands

images annotated with XML. These pictures are described with the positions and shapes

of the objects to be classified. The model is trained with indoor environments, containing

elements like ceiling, floor, lamp, oven, door. After applying the Smart Algorithm we ob-

tained an improvement of the 10 percent in accuracy with respect to the baseline classifier.

The set of rules currently used involves the relative positions and sizes between objects,

but many new features, such as textures and shapes, could be implemented in the future.

Contents

I Background 1

1 Introduction 2
1.1 Human Brain Skills . 2
1.2 Hierarchy . 3
1.3 Context . 4
1.4 Reconstruction . 5
1.5 Cognitive architectures . 5
1.6 Objectives . 6
1.7 Summary . 7

2 Automatic image recognition 9
2.1 Image recognition challenges . 9

2.1.1 Classification . 10
2.1.2 Detection . 12

2.2 Model evaluation . 14
2.2.1 Precision and recall: binary classification 15
2.2.2 Multi-class evaluation . 17
2.2.3 Mean Average Precision (mAP) 19

2.3 Image representation . 21
2.3.1 Tensors . 21
2.3.2 Tensor internal representation 23

3 Convolutional Neural Networks 25
3.1 Deeplearning origins . 25
3.2 Building blocks . 28

3.2.1 Convolution . 28
3.2.2 Activation Function . 32
3.2.3 Pooling operation . 33
3.2.4 Fully connected layer . 34

3.3 The complete architecture . 35
3.4 Training algorithms and regularization 35

3.4.1 Early Stopping . 37

ii

3.4.2 Dropout . 38
3.4.3 Dataset augmentation . 38

3.5 State of the art models . 39
3.5.1 Classification . 39
3.5.2 Detection . 40
3.5.3 Semantic Segmentation . 43

II Model implementation 44

4 Image Datasets 45
4.1 Choosing the dataset . 45
4.2 CIFAR-100 . 46
4.3 ImageNet . 48
4.4 Pascal VOC (visual object classes) . 48
4.5 NYU Depth Dataset V2 . 50
4.6 Our choice: Sun09 . 51

5 Base Model 53
5.1 Dataset Preparation . 53

5.1.1 Sceneries and classes . 53
5.1.2 k-fold partitions . 54
5.1.3 Sample extraction . 56
5.1.4 Batch creation and balancing . 58
5.1.5 File system organization . 61
5.1.6 BGRC: context layer . 61

5.2 Training pipeline . 64
5.3 Evaluation pipeline . 65
5.4 Architecture Experiments . 66
5.5 The final architecture: results . 68

6 The Smart Algorithm 71
6.1 Smart Model, overview . 71

6.1.1 A working example . 72
6.2 Smart-Rules: formalization . 74
6.3 Triplets value computation . 75

6.3.1 Relative position . 76
6.3.2 Size . 77
6.3.3 Distance . 78
6.3.4 Luminosity . 78

6.4 Histograms . 79
6.4.1 Impurity measure associated to histograms 81

6.4.2 Histogram importance and Jaccard index 82
6.4.3 Transition and label probabilities 84

6.5 Building the histograms . 86
6.6 Smart Rules application . 87

6.6.1 The main loop . 88
6.6.2 Smart Algorithm: first approximation 89
6.6.3 Smart Algorithm: complete version 91

6.7 Score computation . 93

7 Results 97
7.1 Evaluation of the Smart Algorithm . 97

7.1.1 Method-1, results . 100
7.1.2 Method-2, results . 101

7.2 Smart Algorithm - Illustrated Examples 102

8 Conclusions 105
8.1 Summary . 105
8.2 Future Works . 106

Bibliography 108

Part I

Background

1

Chapter 1

Introduction

1.1 Human Brain Skills

During million years of evolution nature has reached an increasingly level of complex-

ity. Humans have always tried to mimic it with the purpose of developing technologies,

realizing complex and autonomous systems which can simplify everyday life problems.

Recently, computer science researchers together with neuroscientists have concentrated

their efforts to study the working principles of our brain. The results of these studies can

be exploited to obtain more performing machines which really emulate our behaviour and

problem solving skills.

In particular the artificial vision and object recognition are among the most challenging

fields in computer science. These very complex tasks cannot be achieved with common

algorithms, but require complex mathematical models to analyze the pixels and understand

the meaning of the images. Indeed, our brain owns an extraordinary ability in elaborating

and interpreting the signals from our retinal photoreceptors. Computer vision techniques

are performing increasingly better in the last ten years, but they produce results which are

still less accurate than the ones humans can manually achieve.

In the next sections we try to focus some of the main principles at the base of our mind

2

1 – Introduction

processes. We will try to take these as a guideline and source of inspiration to develop

our object recognition model. We point out three simple but fundamental concepts. These

are the hierarchy of ideas and objects, the contextual information and the usage of past

knowledge and memories to reconstruct missing information.

1.2 Hierarchy

Our thoughts are organized in hierarchies with different abstraction levels. [1, p. 239]

The image understanding process analyzes and decomposes images into sections organized

with a hierarchical subdivision. Smaller image patches can be distinguished by color or

texture. These are then grouped to construct bigger shapes: from a finer analysis we reach

a coarser description of the main image components. At higher abstraction levels we can

perform semantic reasoning to understand the relationships between the objects of the

scene, while at lower levels we can only use local visual features.

All of these operations are performed without having to think about them. The con-

scious access occurs only at the last step. Indeed, in the first fractions of second after the

image stimulus the only information we become aware are the main shapes and the coarser

details. Afterwards, if our attention is captured by a smaller image region we can become

conscious of its finer characteristics. In other words the unconscious process is bottom

up, from finer to coarser image patches, while the conscious access occurs from the top

level to the bottom one. Unconscious thoughts are much faster than active thinking and

for this reason only the fundamental information of the image reaches our attention. Since

the other details would slow down the process, they are taken in consideration only when

required.

We previously talked about semantic reasoning over the components of the scene. To

learn recognizing a new object we don’t require to observe thousands of samples, but we

only need to understand its general structure and the parts it is composed of. For example

3

1 – Introduction

vehicles can be described by elements like wheels, doors, handles and windows, located

with specific spatial relationships from each other. These information help our brain to

recognize objects not only from their visual characteristics, but taking in consideration the

meaning of the whole image as well.

1.3 Context

Ideas and images are interpreted with the help of their context.

Both for speech and visual analysis we always consider the context surrounding the object

of our interest. Our brain is provided with mechanisms which bring the conscious attention

to an event every time we notice a mismatch with its context. Indeed, to solve the conflict

it is necessary the active participation of our reasoning.

Some neuroscience experiments confirm this theory. For example while hearing a sen-

tence like ”At breakfast, I like coffee with cream and socks”, the areas of our brain used to

recognize words in their context find the discrepancy between the last word and the others.

A brain wave called N400 originates at this point. Its amplitude is as big as the discrep-

ancy found in the sentence. This wave takes the information to the conscious level with the

purpose of generating more complex mechanisms to understand the reason of the conflict.

[1, p. 107-108]

It is above all in the case of image understanding that the elements of the scene are

interpreted using their context. To make an example, we don’t have to clearly see the image

of a smartphone to correctly recognize it, if it is held close to the ear of a man who is

talking without being in front of an interlocutor. A combination of contextual information

and hierarchical representation of a scene could be exploited to create more robust labeling

systems, like shown in the paper Exploiting Hierarchical Context on a Large Database of

Object Categories [2]. The usage of context to interpret the objects in a scene is a key point

of the algorithm presented in this thesis.

4

1 – Introduction

1.4 Reconstruction

We reconstruct the missing information with the usage of our previous experiences.

When we cannot clearly hear some words in a sentence we introduce them according to a

probabilistic guess based on the context and our memories. [1, p. 240]. The same process

applies in the case of image understanding. For example our retina presents a blind spot

located in the position of the optic disk, which is the optic nerve head. We don’t notice

a missing part or a black spot because our mind reconstructs this one and produces the

completed image.

Another evidence emerges from the experiment which demonstrates the McGurk ef-

fect. This consists of showing the video of a person saying the ”da” syllable, while the

audio track speaks clearly the syllable ”ba”. In this case the subject of the experiment

seems to perceive the sound ”da” because the cognitive processes of the visual cortex

correct the information coming from the auditory nerve [1, p. 93-94]. The McGurk ef-

fect demonstrates how the reconstruction performed by our mind is not always correct and

could mislead us. Nevertheless this process is essential to interpret the information which

originates from our senses to quickly produce a complete representation of the external

world.

1.5 Cognitive architectures

Trying to understand what is behind the cognitive processes of our brain is quite com-

plex and neuroscientists are concentrating their efforts to achieve this task. These theories

are commonly called cognitive architectures, since they describe the structure of the hu-

man mind. The most accepted descriptions compare the unconscious part of our brain to

a set of statistical elaborators which work in parallel. They elaborate the local informa-

tion such as image regions or the words in a sentence. Each of the elaborators produces

5

1 – Introduction

its probabilistic representation of the external world. This may be not correct, since it is

based only on a portion of the input data. The produced information reaches the more

abstract processes which choose the global interpretation and get a feedback to the local

elaborators. These ones will correct their decisions and converge to a single interpretation

[1, p. 133-138].

Our active perception is practically unaware of the complex mechanisms which hide

in the unconscious part of the brain. The only information we can observe, according to

the Global Workspace Theory (GWT), is the final result of this elaboration. In this way we

are only aware of the essential information describing the external world, leaving out the

statistical results of the intermediate areas which would otherwise be quite confusing [1,

p. 258-260].

This description is confirmed by imaging techniques, such as the fMRI (Functional

Magnetic Resonance Imaging). Thanks to these methods, neuroscientists have found long

connections between remote areas in our brain. If the area A is connected to area B, we will

likely observe neural signals in answer from B to A, generating a circuit of reverberating

brain waves. The visual cortex, for example, strongly interacts with the higher brain regions

such as the language area [1, p. 215, 233].

1.6 Objectives

The main objective of this thesis is to design an algorithm which emulates the brain

mechanisms with the purpose of enhancing the accuracy of a baseline image recognition

method. Specifically, given an input image representing multiple objects we would like to

categorize them by assigning a class label. The baseline model is a local classifier because

it produces the results by looking at the single objects in the image. The classification

produced by the baseline model is taken as input from our algorithm which tries to improve

the accuracy of the class labels using the information of the whole image.

This is called semantic reasoning as opposed to the local model which makes only use

6

1 – Introduction

of the visual patterns contained in the image pixels. The point of strength of our model

is not only the improvement of accuracy, but also its characteristic of being a rule based

algorithm. This feature can add more interpretability to the decisions because we can focus

to the reason why the algorithm changed or kept some of labels conferred by the local

model [3]. Instead, the baseline classifier, built with artificial neural networks, it is not

interpretable and we cannot see the explanation of the results it produces.

The system we designed in our thesis work is called Smart Algorithm, as it reminds

to the smart way of our brain to interpret the outside world by the usage of reasoning.

In the first sections of this chapter we described three principles which are at the base of

our brain mechanisms. We introduce now the way we were inspired by these concepts to

design our model. The hierarchy is given by the way we approach the problem. Firstly, local

models analyze the single pixels of a particular image region, then the Smart Algorithm

computes the global interpretation at a higher abstraction level. The context is exploited

to perform the correction, indeed the model tries to guess the new label of an object being

aware of the other elements into the scene. This is achieved by comparing the current scene

configuration to the ones analyzed during the learning process. The reconstruction feature

refers to the ability of the Smart Algorithm to reconstruct the real labels of the objects

even if the local model has given a wrong prediction for some of them.

1.7 Summary

The outline of this thesis goes from a presentation of the basic image understanding

concepts to the design choices of our model. In chapter 2 we describe the concepts of clas-

sification and detection for image processing, followed by a brief summary of the metrics

to evaluate the model results. In chapter 3 we present the working principles of the convo-

lutional neural networks, which will be used as local models to classify the objects of the

image. Since the choice of a good dataset is fundamental to test the algorithms, chapter

4 describes the main image collections that we analyzed before selecting the best one for

7

1 – Introduction

our experiments. The second part of this thesis presents in chapter 5 the preprocessing of

our dataset and the local classifier architecture. Finally, in chapter 6 we will point out how

we designed the Smart Algorithm and the way we use it to improve the accuracy of the

baseline model.

8

Chapter 2

Automatic image recognition

During the last decade the rapid growth of computational power and the birth of big-

data algorithms have allowed researchers to try new complex models in the field of com-

puter vision [4], [5], [6], [7], [8], [9], [10], [11], [12], [13].

These algorithms require heavy computation, as they elaborate great amounts of data re-

trieved by increasingly bigger datasets [14], [15], [17], [18].

This chapter firstly aims to clarify which tasks are mainly focused by modern research

about image recognition. Secondly, we will explain how evaluation metrics are defined

to compare different models. In particular, a brief summary about the classic measures is

given. Afterwards we will introduce the mean average precision metric, which became

popular more recently. Finally, the last section shows how we can represent generic data

or images with a mathematical concept called tensor. This is the basic object manipulated

by the most recent models called convolutional neural networks.

2.1 Image recognition challenges

Automatic image recognition is a very complex task of computer vision. For years

researchers have tried to find new models capable of achieving better performances and

overcome their ancestors. The common goal between these kinds of algorithms is finding

9

2 – Automatic image recognition

an abstract description of the input image, for example a label or a list of the represented

objects.

The first step of image processing is the feature extraction, a way of retrieving sig-

nificant information to describe a picture. Once features have been extracted they can be

provided to classifiers which can decide a label for the selected sample. Color histograms

are an example of features that provide the distribution of each color in the image. They

are thought as a way of summarizing all the pixels with a small list of values. Other charac-

teristics that may be important to describe visual objects can be edges and corners because

they define the key points of a shape. Many algorithms of this type can be found in literature

[19], [20], [21].

There are two main drawbacks associated with this step. The first one is the need for

algorithms that are specific to a particular goal and whose parameters must be tuned case by

case. For example they could vary with image resolution, lightness and contrast. We must

choose the best feature extractors keeping in mind the domain of our dataset. We could have

to deal with landscape images, to automatically drive a car or a space exploration vehicle.

A different approach would be necessary to analyze medical data, like MRIs (Magnetic

Resonance Imaging), CATs (Computed Axial Tomography), or even images coming from

soil drilling for civil engineering. The second one is the slowness of feature extraction,

since it requires analyzing many times all the pixels of a picture.

The next chapter will explain how convolutional neural networks can solve the issues

we pointed out here. This section will instead describe the difference between classification

and localization tasks.

2.1.1 Classification

Classification for image recognition is defined as the task of assigning a label to de-

scribe a single image. It can be divided into binary and multi-class.

Binary classification aims to decide whether the sample belongs to a given class. For

10

2 – Automatic image recognition

example a system could distinguish images containing a particular object from the others.

If the answer is affirmative the sample is considered positive, otherwise negative. These

classifiers typically assign a score to support this decision. Positive images become those

whose confidence value is greater than a particular threshold.

A Multi-class task consists of selecting one among a set of predefined classes. The

complexity is greater than binary classification and grows with the number of classes.

Figure 2.1 depicts an example of classification between the two classes dog and cat.

Figure 2.1: Image Classification Example, the number associated to the label represents
the confidence of the result.

The result of a classified sample is a vector of scores between zero and one, each of

them related to a particular class. The highest confidence value is selected to assign the

label to the object being classified.

We illustrate this concept with an example. Supposing a multi-class task with three

classes [c1, c2, c3] and an output vector defined as: [0.2, 0.6, 0.2]

The class that will be assigned to this sample would be c2 with a 0.6 confidence. Of course,

results with higher confidence are preferred because they represent a strong decision with

low uncertainty.

To address the problem of image classification all the models require a long training

over big datasets. If the size of the training set is too small the system cannot generalize to

the newer samples. This issue is commonly called overfitting: when the model conforms

too much to the training data, the accuracy on the test set will be lower.

11

2 – Automatic image recognition

All modern deep learning models work with big datasets, composed of many thousands

or even some millions images. The most popular image datasets are MNIST (a set of hand-

written digits), Cifar-10, Cifar-100 with 10 and 100 classes, respectively. These present

some thousands of images, but they are considered relatively small. Newer datasets, like

ImageNet contain millions of samples. For this reason they are perfect to train deeplearning

models.

In the nineties many models were proposed to accomplish these tasks. Artificial neural

networks (ANN) were commonly used over the features extracted from an image, but they

cannot be directly applied to the raw pixels. Recently, the invention of convolutional neural

networks allowed to address the task of extracting features and proposing a label with a

single algorithm [4], [5], [6].

2.1.2 Detection

Detection refers to the task of finding the position of the objects into an image, assign-

ing them a class label. Images can contain one or multiple objects. We can distinguish two

different objectives. The first one consists of finding a rectangular bounding box that fits

around the object being classified. The second is called semantic pixel labeling (or seman-

tic segmentation) and it is achieved by labeling each pixel of the image with a class. In this

way the model outputs the real shape of each object, instead of showing only a bounding

box. The result will be a three dimensional matrix with shape:

[nClasses× imageWidth× imageHeight]

that means one score for each pair {class, pixel}. The class with the highest score is se-

lected for each pixel. Figures 2.3 and 2.4 show an example of detection with bounding

boxes and semantic pixel labeling, respectively.

12

2 – Automatic image recognition

Figure 2.2: Original image

Figure 2.3: Detection with bounding boxes

Figure 2.4: Semantic pixel labeling

Object detection has innumerable applications such as automatic driving, artificial vi-

sion for a grasping robot arm, search engines or even security systems. Detection can be

13

2 – Automatic image recognition

more challenging than simple classification and this is the reason why it is the main focus

of modern research in the object recognition field.

This task is quite complex because models must consider all the possible subregions

of the input image. These can vary between different sizes and shapes, and can assume

many positions inside the matrix of pixels. For example, because of perspective, objects

of the same class can be bigger or smaller and the model must recognize them in any case.

The first solutions we can find in literature used a technique called sliding windows.

This consists of applying convolutional neural networks over rectangular subregions of the

input picture. For each of them the algorithm reports whether an object is present and what

class it belongs to. The approach we described here was very slow because the number of

regions is in the order of thousands. For this reason many new attempts have been proposed

in the last years [7], [8], [9], [10]. The common idea behind those new models is to apply

the neural network only few times. This is achieved by analyzing only the regions that

more likely contain an object. Chapter 3 illustrates some of these state-of-the-art models.

2.2 Model evaluation

Model evaluation is fundamental to compare different algorithms. There are many met-

rics that have been defined to measure the accuracy of a specific model. Some of them

are specific for image recognition. From 2005 to 2012 the Pascal VOC (Visual Object

Classes) project organized yearly challenges about image recognition [15] [16]. The eval-

uation metric they decided to use was the mean average precision (mAP). We will present

how to compute this measure and will use it to evaluate the model proposed in this thesis.

To better understand mAP, in the next paragraphs a brief summary of precision and recall

is provided.

14

2 – Automatic image recognition

2.2.1 Precision and recall: binary classification

Binary classifiers perform the task of distinguishing between positive and negative

samples. For example positive images can be divided by negative ones if they represent a

particular object, such as a car or a house.

True-positives (TP) are the instances which are correctly recognized as positive by

the classifier, while false-positives (FP) are the negative samples which are erroneously

classified as positive. False-negatives are instead those positive instances that have been

classified as negative. True negatives (TN) are the samples correctly assigned to the nega-

tive label. The ideal classifier will produce only true-positives and true-negatives, with no

false-positives and false-negatives.

The confusion matrix is a table which contains these values. It is organized with the

predicted class on the horizontal axis and the actual class on the vertical one. With this ar-

rangement true-positives and true-negatives appear on the main diagonal. Table 2.1 shows

the graphical representation of a confusion matrix.

P’ N’

P TP FN
N FP TN

Table 2.1: Confusion matrix, binary classifier

Precision is the accuracy metric which specifies how many true-positives we can find

among all the instances classified as positive. It is defined as:

precision =
TP

TP + FP
(2.1)

The precision itself is not enough to evaluate the binary classifier. We illustrate this with

an example. Suppose to have a dataset with 100 positive samples. The classifier labels 10

instances as positive: 9 true-positives and 1 false-positive. The confusion matrix is shown

in table 2.2.

15

2 – Automatic image recognition

P’ N’

P 9 91
N 1 9

Table 2.2: Confusion matrix, with example values

The computed precision is:

precision = 9/(9 + 1) = 0.9 = 90%

We obtain a very high precision, but there are 91 false-negatives that have not been con-

sidered by the evaluation metric. This is the reason why recall was introduced.

Recall is the measure which specifies the percentage of true-positives among all the

positive samples of the dataset. This also considers the false-negatives, which are the in-

stances that should have been classified as positive by the model. The formal definition

is:

recall =
TP

TP + FN
(2.2)

In the example above recall is:

recall = 9/(9 + 91) = 0.09 = 9%

which is very low if compared to the 0.9 precision. The global behaviour of the classifier

is not good if we consider both precision and recall.

To summarize the values of the two measures described before we can use the F1. It is

a value between zero and one, defined as the harmonic mean of precision and recall:

F1 = 2 · p · r
p+ r

(2.3)

As expected, the value computed for the presented example is quite low, since the recall is

only 0.09:

F1 = 2 · (0.9 · 0.09)/(0.9 + 0.09) = 0.16

16

2 – Automatic image recognition

2.2.2 Multi-class evaluation

With multi-class tasks the confusion matrix becomes very useful to analyze the results.

The x-axis contains the predicted values, while the y-axis contains the expected classes. It

can be represented with two indexes as follows:

mati,j = matactual,predicted

where i = actual_class (y-axis) and j = predicted_class (x-axis); i, j ∈ [0, N − 1].

Elements on the main diagonal (mati,i) are the instances correctly classified.

The overall accuracy of the model is computed as the sum of the elements in the diag-

onal divided by the sum of all the elements of the matrix.

accuracy =

∑N−1
i=0 mati,i∑N−1

i=0

∑N−1
j=0 mati,j

(2.4)

We illustrate this with an example. Suppose a dataset with three classes, 40 samples for

each of them. The confusion matrix is:

c0’ c1’ c2’

c0 40 0 0
c1 0 38 2
c2 0 1 39

Table 2.3: Confusion matrix, multiple classes

c0’, c1’ and c2’ are the predicted classes, while c0, c1, c2 are the actual ones of the samples.

The overall accuracy is computed as follows:

accuracy = (40 + 38 + 39)/(120) = 0.975

Having established the overall accuracy, it would be interesting to compute precision and

recall separately for each class. We define the precision for classc in the following way:

precision(c) =
matc,c∑N−1
i=0 mati,c

(2.5)

17

2 – Automatic image recognition

The numerator refers to the number of correct instances for class c, while the denominator

is the sum of the elements into the columnc (in other words all the samples classified with

class c). Example:

c0’ c1’ c2’

c0 40 0 0
c1 0 38 2
c2 0 1 39

Table 2.4: Precision computation

precision(c1) = 38/(0 + 38 + 1) = 0.97

The recall in multi-class classification is defined to be:

recall(c) =
matc,c∑N−1
i=0 matc,i

(2.6)

In this case the denominator is the sum of all the elements into rowc, that is the set of

instances with actual class c.

c0’ c1’ c2’

c0 40 0 0
c1 0 38 2
c2 0 1 39

Table 2.5: Recall computation

recall(c1) = 38/(0 + 38 + 2) = 0.95

18

2 – Automatic image recognition

2.2.3 Mean Average Precision (mAP)

We will now consider the definition of mean average precision (mAP) described in the

Pascal VOC papers written by Mark Everingham and his team [15] [16]. The Pascal Visual

Object Classes (VOC) challenges can be used as a benchmark in visual object recognition.

The last challenge was organized in 2012.

Mean Average Precision is an evaluation metric which summarizes the behaviour of

the model over all the recognized classes. It is simply computed with the mean of another

measure called Average Precision (AP), which is defined for each class. More formally:

mAP =
1

N
·
N−1∑
c=0

AP (c) (2.7)

To illustrate how the average precision is computed, we have to consider the whole

model as a set of independent binary classifiers, one for each class. Considering class c,

the binary task consists of deciding whether a sub-image contains an object of that class.

For each subregion being classified we take the output score associated to class c and,

if it is greater than a particular threshold, the assigned label will be positive, otherwise

negative. For example we could select all positives for class horse with confidence greater

than thr = 0.7

Having selected the class and a particular threshold, we count all the true-positives,

false-positives and false-negatives in the test set. Precision and recall can be then com-

puted. We repeat this procedure for many values of threshold in the range 0-1. For each

value, a pair precision-recall can be drawn as a point of a curve. The x-axis represents the

recall, while the y-axis is related to the precision.

Precision and recall are related by a trade-off in this curve: when recall grows, precision

becomes lower. With threshold values closer to one only few samples will be labeled as

positive and the recall will be lower, with high precision. On the other hand, if the threshold

is closer to zero, there will be many positives and the recall will become closer to one. For

this reason the shape of the curve goes the from top-left to the bottom-right corners in the

19

2 – Automatic image recognition

graph. Figure 2.5 depicts an example of precision-recall curves.

According to Pascal VOC paper, the precision-recall curve must be corrected to avoid

wiggles as follows:

pinterp(r) = max
r̄≥r

p(r̄) (2.8)

where r̄ are the recall values greater than the recall for which we want to compute the

precision. This interpolated curve is monotonically decreasing. The interpolated average

precision is defined as the area under the curve, more formally:

AP =
N−1∑
i=0

pinterpi · (ri − ri−1) (2.9)

where ri is the recall value for the point i of the curve, r−1 = 0, pinterpi is the precision of

the interpolated curve at point i.

Each class has its own precision-recall curve and the AP value. When the average

precision is closer to one the classifier works correctly and the curve will be like the blue

one shown in figure 2.5.

Figure 2.5: Precision-recall curve. The blue curve (the one with higher precision values)
has a greater AP score.

20

2 – Automatic image recognition

In relation to the complexity of the task, significant values of AP can also be in the

order of 0.3− 0.5 (or 30%− 50% if written in percents). Some examples for Pascal VOC

challenge (2010) are:

mAP Paper
24.98% Learning Collections of Part Models for Object Recogni-

tion, University of Illinois at Urbana-Champaign, CVPR
2013

35.1% Search for Object Recognition, J.R.R. Uijlings, K.E.A. van
de Sande, T. Gevers, and A.W.M. Smeulders, IJCV 2013

40.4% Fisher and VLAD with FLAIR, Koen E.A. van de Sande,
Cees G.M. Snoek, Arnold W.M. Smeulders, CVPR 2014

Table 2.6: mAP examples

2.3 Image representation

Before analyzing how convolutional neural network are defined, we have to specify a

formal way to represent images with any color depth. Commonly pictures are represented

with a set of colored points, called pixels. They are disposed one after the other to form

the image. Grayscale images can be represented with one value per pixel, associated to the

intensity of the light. Color images need three channels to represent blue, green and red

intensities. We use the shorthand BGR image to name this encoding. Hence, to represent

a color image we need three bidimensional matrices, one for each channel. We will now

see a more general and formal representation for multidimensional data.

2.3.1 Tensors

A tensor is a mathematical entity representing a multidimensional vector that can store

any kind of numerical data. This can be seen as a general way to represent data organized

in matrices with an arbitrary number of dimensions. Like vectors, tensors are composed

21

2 – Automatic image recognition

of numbers characterized by the same type (single or double precision floating point num-

bers, integers, or even complex numbers). We adopt here the notation introduced with the

machine learning library Tensorflow [22].

Each tensor is characterized by a rank and a shape. The rank specifies the number of

dimensions. A scalar number has rank zero, common vectors (such as one-dimensional

arrays in programming languages) have rank one, while matrices are rank-two vectors.

The shape defines, for each dimension, the number of elements it contains. The shape of

a vector is equal to its length, for example [a, b, c, d] is a rank-one tensor with shape [4]

because it contains four elements. Matrices are tensors with rank two and shape equal to

their width and height. Example:

a b c

d e f

This matrix can be represented with a rank-2 tensor of shape [2, 3], since its width is 3 and

its height is 2. The general shape for a matrix is [height, width]. Continuing with this rea-

soning, we can generalize for rank-three tensors which have shape [depth, height, width].

The depth value can be used to represent the color channels for images. For example a

bitmap which is 512 pixels in width and 128 pixels in height, with three BGR color chan-

nels, is a rank-three tensor with shape [3, 128, 512]. Table 2.7 shows a summary of the

concepts presented in these paragraphs.

Example Rank Shape

Scalar 0 []
Vector 1 [length]
Matrix 2 [height, width]
BGR image 3 [channels, height, width]
Generic Tensor n [sn−1, ...s1, s0]

Table 2.7: Tensor examples

22

2 – Automatic image recognition

2.3.2 Tensor internal representation

We have analyzed the mathematical representation for tensors. To complete the overview

about these entities we have to understand how to represent them into the main memory. It

is convenient to find the most efficient solution to facilitate the application of the classifica-

tion algorithms. The majority of deeplearning libraries, like TensorFlow and Deeplearn-

ing4j serialize tensors into a single vector of floating point numbers. This is done by mak-

ing use of the stride concept.

A stride is a vector that specifies, for each dimension, the separation of contiguous

elements. To better understand this definition, we provide some examples. A vector has

stride s = [1] because it has only one dimension and elements are separated by one place.

Instead, matrices have stride equal to s = [width, 1]. When moving along a row the step

is equal to one element. Again when moving from one row to another, keeping the same

column, we have to skip a number of elements equal to the matrix width. When dealing

with a BGR image, in order to move from one channel to the other, keeping the same row

and column, we have to skip width ·height elements. Table 2.8 shows a recap of the stride

definition.

Example Rank Stride

Scalar 0 []
Vector 1 [1]
Matrix 2 [width, 1]
BGR image 3 [width · height, width, 1]

Table 2.8: Strides examples

23

2 – Automatic image recognition

Figure 2.6: Strides Example

The matrices shown in figure 2.6 compose a BGR tensor with rank three. Pixel values

are numbered from 0 to 17 and can be serialized as shown in the lower part of the picture.

Each rectangular matrix represents the disposition of the pixels for a specific color channel.

The shape of the represented tensor is defined to be:

shape = [nChan, height, width] = [3,2,3]

While moving from pixel 0 to pixel 1 we just skip one element. The transition from pixel

2 to 5 requires skipping a row of three elements. Between value 11 and 17 the number of

places is equal to six (width×height). In this way the strides assume the following form:

strides = [6,3,1]

24

Chapter 3

Convolutional Neural Networks

Convolutional neural networks provide a solution to the feature extraction problem

since they are capable of analyzing and classifying directly the raw pixels. Their point of

strength is the structure composed of multiple layers. While data flows through these ones

it is transformed to abstract features. When the information arrives to the last layer it is

ready to produce the classification result.

In the next sections the structure of convolutional neural networks will be analyzed

in detail. To better illustrate their working principles, some examples are provided. We

will describe the way this model can learn from data and how it can be used to classify

images characterized by one or more color channels. Finally, some practical information

about training and overfitting are given. The last section of this chapter presents some of

the most popular state-of-the-art models.

3.1 Deeplearning origins

Instead of creating algorithms for each specific task, artificial neural networks can learn

our goal from a set of examples called training set. The first model of neural network was

presented by Frank Rosenblatt with his paper ”The Perceptron - a perceiving and recog-

nizing automaton.”, in 1957. Inspired by biological neurons, he created a linear model

25

3 – Convolutional Neural Networks

which computes a weighted sum of its input values to produce the result:

y =
N−1∑
i=0

wi · xi (3.1)

where xi represents the element i of the input vector and wi are the weights.

The output value y is subjected to an activation function which mimics the ability of

neurons to produce an output signal only if sufficiently excited. Mathematically, the pur-

pose of the activation function is to introduce non-linearity into the network. In particular

this is necessary for multi-layer models that will be described later. Figure 3.1 depicts how

a perceptron is composed.

Figure 3.1: Perceptron

Perceptrons work with the binary step activation function. It is characterized by a

threshold value, which is typically zero. If the activation y of the neuron is greater than this

value then the selected class is positive, otherwise negative. This acts as a binary classifier.

result =

1 if y ≥ 0

0 otherwise
(3.2)

Modern neural networks can choose between many different kinds of activation functions.

We will see some of them in the next sections.

Later models, called feed-forward neural networks, work with multiple perceptrons.

The first implementations can be found in the 70s and 80s. A multi-layer neural network

is composed of two or more neuron arrays. Each neuron is connected to all the others of

the previous layer. For this reason the topology is also called fully connected. The feed-

forward name is justified by the fact that data flows layer by layer as far as the output array.

26

3 – Convolutional Neural Networks

Figure 3.2 shows a graphical representation of a multi-layer neural network. In the case of

a classifier, the output layer can contain one neuron for each class to be recognized. The

neuron with the higher activation will represent the classification result.

Figure 3.2: A feed-forward neural network

Finally, the learning process is called back-propagation because, when a sample is

presented to the network, we compute the error of the predicted result and propagate it

back from the output layer to the input one. With a gradient-descent process, weights are

adjusted to minimize the error function of the model over the training data. Equation 3.3

shows the main principles of back-propagation:

∆Wi,j = −k ·
∂Ep

∂Wi,j

(3.3)

where Wi,j is the weight j of layer i that is being updated, ∆Wi,j is the adjustment of

the weight and it is proportional to the error gradient along the variation of Wi,j , Ep is

the error of the prediction for the presented sample p (input pattern). The error of the last

layer, given an input patter p, is computed with:

Ep =
1

2
·
∑
j

(dp,j − op,j)
2 (3.4)

where dp,j is the desired output for neuron j and op,j is the actual prediction made from

the model.

27

3 – Convolutional Neural Networks

The idea behind deeplearning is to use artificial neural networks (ANN) with many

hidden layers. To achieve better results, instead of making bigger layers, we increment their

number. This operation allows the neural network to ”understand” more abstract concepts

since each layer can be seen as a new abstraction level of the input data. The main issues

with these models are the long training time, because with deep topologies the gradient

computation becomes very complex, and the need for bigger datasets to provide a wider

range of examples.

3.2 Building blocks

Having presented a quick recap about older models, we will now describe the main

structure of convolutional neural networks (CNN). Some standard topologies have been

proposed in literature, but researchers can customize them to fit best their goals. These

models are structured by a concatenation of building blocks.

The first ones are a succession of convolutional and pooling layers which extract the

features from the input image. Instead, the last module is composed by a fully connected

feed-forward neural network. This has the task of performing the actual classification by

producing one score for each output class. In the next paragraphs we will go deeper with

some examples and illustrations.

3.2.1 Convolution

Convolutional layers are the main building blocks of CNNs. They take an input tensor

and produce a new one with a different shape, typically smaller to reduce data dimension-

ality. The result represents the extracted features. While going deeper into the network,

these features assume a more ”abstract” meaning until they are ready to produce the clas-

sification result.

A convolutional layer is composed of many squared filters which slide along the pixels

28

3 – Convolutional Neural Networks

of the image (or the input tensor for hidden layers). In this way they select a small squared

patch of data for each position. For each selected patch the sliding window produces a new

value that will be inserted into the output tensor. This is achieved by multiplying element

by element the filter with the subregion of the input data. All the multiplied values must be

summed up to a single result. Mathematically, this operation is defined as the dot product

between two tensors.

To represent more formally this concept, we specify a notation for selecting a subregion

from a tensor:

X[][y : y′][x : x′] (3.5)

This describes a rectangular patch of pixels which extends from x to x′ in width and from

y to y′ in height. All the three color channels are selected and for this reason the first

squared parenthesis are void. The pixel indexes of the image X are numbered from the

top-left corner (x = 0, y = 0) to the bottom-right (x = width− 1, y = height− 1). The

set of filters that will be applied to the input image is:

W = {W0...Wn...WN−1} (3.6)

where N is the number of filters. All of them must have the same shape. Working with tree

color channels, the generic filter Wn has shape [3, w, w] and its top-left corner is located

at position x, y of the input image. The selected subregion has the same shape of the filter

and can be written as:

X[][y : y + w − 1][x : x+ w − 1] (3.7)

The dot product between Wn and the patch of input image is defined to be:

Y [n][y][x] = Wn ·X[][y : y + w − 1][x : x+ w − 1]

=
2∑

i=0

w−1∑
j=0

w−1∑
k=0

Wn[i][j][k] ·X[i][y + j][x+ k]
(3.8)

As we can see from equation 3.8 the number of channels of the output tensor is equal to

the number of filters Wn that we have applied.

29

3 – Convolutional Neural Networks

Figure 3.3: Dot product and convolution: the two filtersW0 andW1 are applied to a patch of
image at position x = 1, y = 0. Each filter is 2x2 with three depth channels. The operation
produces an output tensor with shape 3x3 and two channels (equal to the number of filters).

While performing the convolution, filters can move along the input tensor with a step

greater than one pixel to reduce the size of the result. Suppose an input grayscale image

with shape [4,4]. We compute the convolution with a 2× 2 filter moving with step sx = 1

along the x-axis and step sy = 2 along the y-axis. With this configuration the filter can

assume three horizontal positions and two vertical ones, for a total of six. The result will

be a matrix with shape [2, 3] instead of [3,3] if we had used a constant step along both axes.

Tensor Shape

Input image [4, 4]
Filter [2, 2]
Output image [2, 3]

Table 3.1: Convolution examples, non unitary step: sx = 1, sy = 2

30

3 – Convolutional Neural Networks

We recap the concepts presented earlier with an illustrated example. A grayscale input

image has size 4× 4 and it is convoluted with a 2× 2 filter moving with non unitary step:

sx = 1, sy = 2. Picture 3.5 shows, for each position of the filter, the result of the dot

product with the corresponding patch of input image. Finally, figure 3.6 depicts the result

of the whole operation. The output tensor is only one channel in depth because we applied

a single filter. This is a toy example, typically the number of filters used for a convolutional

layer is in the range from 64 to 512.

Figure 3.4: Input image and filter

Figure 3.5: Convolution: the red square represents the filter moving along the image

31

3 – Convolutional Neural Networks

Figure 3.6: The output tensor

The values contained into convolutional filters are equivalent to the weights of a com-

mon feed-forward neural network and they are computed during the training process. Each

of these tensors can be thought as a pixel pattern to be recognized into the input image.

When the dot product assumes a high value, the model recognizes a pattern in a particu-

lar position and will propagate this information to the next layers. The combination of all

these patterns will allow the last layer to perform the actual classification.

3.2.2 Activation Function

Once the output tensor Y has been computed, the convolutional layer performs another

important operation: the application of the activation function. Each element of tensor Y

is transformed:

Y ′[c][y][x] = f(Y [c][y][x]) (3.9)

This operation introduces the non linearity factor into the model. Some examples of acti-

vation functions can be found in figure 3.7.

32

3 – Convolutional Neural Networks

Figure 3.7: Activation functions

3.2.3 Pooling operation

The output produced by the convolution increases data dimensionality because of the

big number of filters. To avoid this drawback and perform a better data summarization,

pooling layers are inserted.

A pooling layer divides the input tensor into squared sections and for each of them

it extracts a single value. The result will be a tensor whose size is given by the number

of sections. The most commonly used pooling operation is maxpool. This process simply

takes the maximum value as the representative one of each region. For example, if we have

an input tensor of shape [4, 4], we could divide it into four sections and take the maximum

value for each of them.

33

3 – Convolutional Neural Networks

Input tensor:

input =

0 1 3 0

2 0 2 1

0 1 3 0

4 0 4 1

Divide into sections:

sections =

0 1

2 0

3 0

2 1

0 1

4 0

3 0

4 1

Result of max-pooling:

output =

2 3

4 4

3.2.4 Fully connected layer

The last layers of a convolutional neural network are designed to produce a single

vector with the classification scores. The sum of these values must be equal to one in order

to assume the meaning of a categorical distribution. Each score represents the probability

of belonging to a particular class. To perform this task common fully-connected feed-

forward networks are used. They can be single or multi-layer.

In order to ensure that the output values will add up to one, we use the softmax acti-

vation. Unlike the other functions, softmax analyzes all the neurons of a layer, instead of

one at a time. The activation of a neuron zj is defined as follows:

softmax(zj) =
ezj∑N−1
i=0 ezi

(3.10)

where zi are the output values of all the neurons of the last layer.

34

3 – Convolutional Neural Networks

3.3 The complete architecture

In the previous sections we have described the main blocks which can be used to com-

pose a convolutional neural network. The typical architecture can be structured as follows.

First the input image is serialized to an input tensor. Then data flows through a com-

position of convolutional and pooling layers. Smaller networks can have only one or two

layers of this type. Bigger ones can have even ten or more. Of course, the higher is the

number of layer, the longer is the training time. Finally, one or two fully connected layers

are added to perform the actual classification. Figure 3.8 shows an example of complete

convolutional neural network.

Figure 3.8: An example of CNN with two convolutional layers.

3.4 Training algorithms and regularization

The training phase of convolutional neural networks is performed with a generalized

version of backpropagation. Samples can be presented one at a time or in batches. For

each of them the error gradient is computed from the fully connected network back to the

convolutional layers. The weights are updated to minimize the error. When all the samples

of the training set have been presented to the network an epoch is completed. After each

epoch the system can evaluate the model on the test set. This validation error will slowly

decrease until the process reaches its maximum accuracy.

35

3 – Convolutional Neural Networks

There are many variants of this gradient descent algorithm. Some of them are the

Stochastic Gradient descent, Adagrad [23], AdaDelta [24] and ADAM [25]. The main

differences can be found in the usage of momentum. Momentum avoids rapid changes of

direction in the update of the weights. This expedient can also prevent situations where

the algorithms gets stuck into a local minimum of the error function and guarantees better

results. Figure 3.9 shows the gradient descent for two algorithms with and without mo-

mentum.

Figure 3.9: The algorithm on the right makes use of momentum which allows a smoother
descent, without zig-zagging.

36

3 – Convolutional Neural Networks

3.4.1 Early Stopping

After some epochs the neural network will start overfitting the training set: the accuracy

over the test data will begin to decrease. Regularization techniques are designed to solve

this issue. Among these we can find a procedure called early stopping. It simply terminates

the training process when the accuracy on the test set starts to get worse. The complete

algorithm is described in the next lines.

Algorithm 1 Early Stopping
procedure training(trainingSet, testSet)

bestErr ←∞
for epoch = 0 to max-1 do

for all sample ∈ trainingSet.samples do
cnn.fit(sample)

error ← cnn.evaluateTestSet(testSet)
if error < bestErr then

bestErr ← error
bestModel← cnn

else
break;

Figure 3.10: Overfitting example. The curves represent the error loss evaluated on the test
set (the red one) and on the training data (the blue one). When the red curve starts growing,
the model is overfitting the training set and test accuracy starts getting worse.

37

3 – Convolutional Neural Networks

3.4.2 Dropout

Dropout is another important regularization technique thought to avoid the overfit-

ting issue [26]. The idea behind this methodology originates from bagging. Bagging is a

method which is realized by training m models on m different datasets, called bootstrap

samples. Bootstrap samples have the same size of the original training set and their obser-

vations are extracted from this one by sampling uniformly and with replacement. Some ob-

servations can be duplicated, but the m datasets will be statistically different. Each model

is trained on a single bootstrap sample and will learn different parameters. When testing

is performed, the result of the m models over a single sample is combined by averaging

or voting. This avoids overfitting because the models are trained only on a subset of the

original data.

Dropout is inspired by this technique, but works with a single neural network. Instead

of partitioning the dataset, at each training iteration we select a random subset of the neural

network connections. The new observation will adjust only those weights, while the others

will stay unchanged. The proportion of connections that is randomly selected every time

is specified by a parameter of the algorithm, which is typically set between 0.2 and 0.5

(20% and 50% of the connections). In this way the neural network won’t overfit because

each partition is trained on different data. Dropout can be applied to CNNs to both the

fully connected and the convolutional layers.

3.4.3 Dataset augmentation

To improve the learning process, samples of each class should be presented to the

network with the same frequency. If this rule were not satisfied, the classes with a smaller

cardinality would be hardly recognized by the model. When the dataset contains classes

with many more elements than others, we say that it is unbalanced.

Datasets can be re-balanced with a generative process called augmentation. Images

are randomly transformed with horizontal flips, zoom in and out, changes of lightness and

38

3 – Convolutional Neural Networks

contrast to generate new samples. This can fill the gap between the smaller classes and

the bigger ones. Augmentation can also be used with balanced datasets to increment their

size. It can be necessary in some cases where the examples are not sufficient and the model

overfits too easily the training data. The model trained for this thesis project works with a

small and unbalanced dataset. For this reason augmentation is performed to achieve better

results.

3.5 State of the art models

3.5.1 Classification

Chapter 2 presented how the classification task is defined for image recognition. We

briefly review now some of the standard convolutional neural network architectures which

were proposed in the last years for this purpose. One of the most popular model, called

Alexnet, was presented by Alex Krizhevsky in 2012 [4]. This neural network contains five

convolutional and three fully-connected layers. The filter shapes vary from 11 × 11 to

the smaller 3 × 3. The last fully connected layer performs the classification by using the

softmax activation function. Alexnet was tested with the ImageNet LSVRC-2010 contest

for 1000 different classes.

With the developing of big data techniques and more powerful GPUs the size of the

most recent models increased considerably. The VGG architecture is characterized by 16

layers for the smaller version and 19 for the deeper one [5] . This CNN is only built with

small 3× 3 filters and 2× 2 pooling layers.

Google researchers proposed GoogleNet, a convolutional neural network built with a

new kind of internal module, called inception layer [6]. Instead of using a single filter size,

the inception layer applies to the input tensor either 1×1, 3×3 and 5×5 filters. The results

produced by the different filters are then put together with the concatenation layer. In this

way the architecture tries to achieve better results by combining more accurate features

39

3 – Convolutional Neural Networks

with coarser ones. Figure 3.11, extracted from the original GoogleNet paper, depicts the

structure of this neural network.

Figure 3.11: GoogleNet architecture [6].

3.5.2 Detection

Detection refers to the task of finding and classifying rectangular bounding boxes,

each containing one of the objects in the image. Selecting for every position and size all

the possible sub-regions of the input image and then applying a CNN to classify them is

too expensive in terms of computational time. This method was called sliding windows

and was soon overcome by the newer systems.

The first efficient solution was given by the model proposed in the paper Rich feature

hierarchies for accurate object detection and semantic segmentation [7]. The architecture,

called R-CNN (Regions with CNN features), is composed by three modules: region pro-

posal, feature extraction and SVM classifiers. The region proposal computes the positions

of the candidate bounding boxes which will be analyzed by the convolutional neural net-

work. Instead of trying every possible region, this module outputs only the ones which

more likely contain an object. This can be done with different methods, for example with

40

3 – Convolutional Neural Networks

selective search they perform a hierarchical color-based segmentation of the image to ex-

tract the regions and the candidate bounding boxes. The feature extraction module is com-

posed by a convolutional neural network without the fully connected layer. The actual

classification is performed by the last SVMs module.

Figure 3.12: R-CNN, Regions with CNN features [7].

One of the main efficiency issues of the R-CNN architecture is the need for applying

the convolutional neural network to every sub-region being classified. A remarkable im-

provement was achieved with the Fast R-CNN model [8]. The new approach executes the

CNN over the whole image, extracting a feature map which describes the entire scenery.

This map has the same shape of the input image, but each pixel presents the feature val-

ues instead of containing the color information in the BGR encoding. As the previous

method, the region proposal module computes the candidate bounding boxes. For Faster

R-CNN, instead of extracting the proposed regions from the original image, this operation

is performed directly to the feature map. With the operation called ROI (region of interest)

pooling, the feature map regions are subsampled and resized to squared tensors. The last

step applies a fully connected neural network to classify each of the produced tensors. The

presented method is faster than the simple R-CNN model, since the convolutional neural

network producing the features is applied only once.

41

3 – Convolutional Neural Networks

Figure 3.13: Fast R-CNN [8].

The last bottleneck with the detection task was the slowness of the region proposal

methods. The solution was proposed in the paper ”Faster R-CNN: Towards Real- Time

Object Detection with Region Proposal Networks” [9], in 2015. Instead of computing the

candidate bounding boxes from the original image, the Faster R-CNN uses directly the

feature map extracted by the CNN. The region proposal works with a neural network (RPN,

region proposal network) which takes as input the feature map and whose output represents

the position and sizes of the proposed bounding boxes. Afterwards, as shown for Fast

R-CNN, the fully connected layer classifies the squared tensors produced with the ROI

pooling method.

Another state-of-the-art model which makes use of these concepts is called YOLO

[10]. It is built with a single convolutional neural network. The fully connected module,

instead of producing a score vector with the softmax function, outputs directly a matrix

with the classified objects. Each cell of the matrix contains a set of rectangular bounding

boxes, with their size, position and class scores.

42

3 – Convolutional Neural Networks

3.5.3 Semantic Segmentation

The semantic segmentation task consists of assigning the class scores to each pixel of

the image. Three of the most popular models proposed in the last years are DeepLab [11],

SegNet [12] and PSPNet [13]. They are fully built with convolutional neural networks.

These models are characterized by being divided in two modules, one for computing the

features and the other for generating the output segmentation.

The first module, called encoder network, is a CNN which is responsible for computing

the feature map. The encoder network contains both convolutional and pooling layers to

generate a tensor which is smaller in width and height with respect to the input image. The

depth of the feature tensor is established by the number of applied convolutional filters.

The second half of the architecture, the decoder network, is designed to upsample the

feature map and obtain the segmented output image. Each pixel is associated to the class

scores generated by the softmax activation function. The decoder network is composed of

trainable convolutional filters and upsampling modules.

Figure 3.14: Segnet Architecture [12].

43

Part II

Model implementation

44

Chapter 4

Image Datasets

4.1 Choosing the dataset

In chapter 2 and 3 we pointed out how image segmentation and classification models

require big datasets for training and testing. Many resources of this kind can be found on

the web. These datasets contain images that can be annotated with single or multiple labels.

The case with single label has been studied for many years with the purpose of creating

models capable of predicting the image class given its pixels. Multi-label datasets propose

more interesting challenges because models must learn to find and classify objects into a

scene. These kinds of image collections can provide the object positions with rectangular

regions, usually called bounding boxes. They can also specify polygons around the object

boundings or even provide pixelwise segmentation. Currently, a lot of competitions are

organized to evaluate models capable of locating objects and segmenting images. As we

said in the previous chapters, the operation of assigning a label to each pixel is called se-

mantic image segmentation. This is one of the most complex tasks with image recognition

and understanding.

Choosing the right dataset is a crucial point that must be faced out before developing

such algorithms. For this reason a set of the most commonly used image collections are

45

4 – Image Datasets

described in the following paragraphs.

4.2 CIFAR-100

CIFAR-100 is a relatively rich dataset composed of 60,000 images. The classification

problem defines 20 superclasses divided into 100 subgroups. Each class contains 500 im-

ages for training and 100 for testing. All of them have the same size of 32× 32 pixels.

The collection of samples is easy-to-use, since all images have the same size and they

are stored as simple binary files containing the label and a row vector for the pixels. The

class hierarchy with two levels is an interesting feature that could be exploited by a label-

ing model working with multiple levels of abstraction. The main limitation of this dataset

is that each image contains only one object, not allowing reasoning with multi-label con-

textual information. Table 4.1 shows all the 100 classes and their hierarchy.

46

4 – Image Datasets

Table 4.1: CIFAR-100 classes

Class Sub-classes

aquatic mammals: beaver, dolphin, otter, seal, whale

fish: aquarium fish, flatfish, ray, shark, trout

flowers: orchids, poppies, roses, sunflowers,
tulips

food containers: bottles, bowls, cans, cups, plates

fruit and vegetables: apples, mushrooms, oranges, pears,
sweet peppers

household electrical devices: clock, computer keyboard, lamp, tele-
phone, television

household furniture: bed, chair, couch, table, wardrobe

insects: bee, beetle, butterfly, caterpillar, cock-
roach

large carnivores: bear, leopard, lion, tiger, wolf

large man-made outdoor things: bridge, castle, house, road, skyscraper

large natural outdoor scenes: cloud, forest, mountain, plain, sea

large omnivores and herbivores: camel, cattle, chimpanzee, elephant,
kangaroo

medium-sized mammals: fox, porcupine, possum, raccoon, skunk

non-insect invertebrates: crab, lobster, snail, spider, worm

people: baby, boy, girl, man, woman

reptiles: crocodile, dinosaur, lizard, snake, turtle

small mammals: hamster, mouse, rabbit, shrew, squirrel

trees: maple, oak, palm, pine, willow

vehicles 1: bicycle, bus, motorcycle, pickup truck,
train

vehicles 2: lawn-mower, rocket, streetcar, tank,
tractor

47

4 – Image Datasets

4.3 ImageNet

The ImageNet dataset [14] organizes images according to the WordNet hierarchy. Word-

Net is a big lexical database defining all the English nouns, verbs and adjectives, connected

with semantical relations. The samples of this dataset vary from animals to landscapes

and indoor objects. Differently from CIFAR-100 the number of classes is quite big, with

thousands of samples each. All of them are quality-controlled and human-annotated. The

database only provides thumbnails and URLs of the images because they are protected

by copyright, since they have been extracted from the web. For this reason the collection

cannot be used for commercial purpose. Another issue is the absence of a single file down-

load: data must be indeed downloaded in separate blocks. Even if this dataset is very big

and contains a lot of classes, it doesn’t meet the requirement of having multiple objects

for a single image.

The importance of ImageNet is reinforced by the annual ImageNet Large Scale Visual

Recognition Challenge (ILSVRC), active since 2010, where research teams can submit

algorithms for image classification, trying to achieve the best trade-off between efficiency

and accuracy.

4.4 Pascal VOC (visual object classes)

Pascal VOC (Visual Object Classes) [15] [16] presents a set of 14,743 images, an-

notated with bounding boxes. Each image can contain multiple objects. A subset of the

samples is also annotated with pixelwise segmentation of the regions being classified.

From 2005 to 2012 the Pascal VOC project organized yearly challenges. There were

three main types of competition: classification, detection and segmentation. Classification

was concerned about predicting the presence/absence of an object of a particular class

in the test image. Detection was about predicting the bounding box and the label of each

object in the test image. The version proposed in 2012 is characterized by 20 target classes,

48

4 – Image Datasets

divided into 4 groups. Table 4.2 shows the taxonomy in question. Figure 4.1 depicts in the

upper part an example of pixelwise segmentation then in the lower side two samples with

bounding boxes around objects.

Table 4.2: Pascal VOC classes

Class Sub-classes

Person person

Animal bird, cat, cow, dog, horse, sheep

Vehicle airplane, bicycle, boat, bus, car, mo-
torbike, train

Indoor bottle, chair, dining table, potted
plant, sofa, tv/monitor

Figure 4.1: Pascal VOC dataset

The interesting feature of Pascal-VOC is the presence of bounding boxes, which could

be used to train models like Fast R-CNN to find some objects into an image. Since the

49

4 – Image Datasets

number of classes is not very high and each sample contains only few labeled regions, this

dataset doesn’t allow semantic reasoning over the elements of a scene. For this reason it

doesn’t meet the requirements for models like the one proposed in this thesis.

4.5 NYU Depth Dataset V2

The NYU-Depth V2 dataset [17] contains a big video collection of indoor scenes,

recorded with RGB-depth Microsoft Kinect cameras. Depth can be used by classification

models to better understand the image they are requested to analyze. The most interest-

ing subset of NYU-Depth is composed of 1,449 densely labeled samples, for about 2.8

gigabytes of data. The remaining images are still unlabeled for now.

Each single scene is characterized by multiple objects, that are pixelwise annotated.

The annotation related to a sample is a HxWxN matrix, where N is the number of classes

and H, W the size of the image. The dataset is divided into folders, where each one cor-

responds to a different scene being filmed. Each image is associated with the timestamp

in the video sequence. Annotations are represented in Matlab format, which is not very

portable and requires a bit of preprocessing before being used in custom applications.

Concluding, NYU-Depth is a useful resource for training semantic image-segmentation

models because it is multi-object and regions are pixelwise annotated. Figure 4.2 depicts

some examples of annotated images. For each sample the first column is the original BGR

image, the second one is the color representation of the depth channel, the third one depicts

the pixelwise segmentation.

50

4 – Image Datasets

Figure 4.2: NYU Depth Dataset

4.6 Our choice: Sun09

Presented by researchers of Massachusetts Institute of Technology at IEEE CVPR 2010

(Computer Vision and Pattern Recognition conference) [2], Sun09 provides augmented an-

notations for Pascal-VOC dataset. It contains 12,000 images, divided into different scenery

types, for example kitchen, office, street or bathroom.

Annotations are represented by polygons around the boundings of each objects be-

ing recognized. They are handmade and very accurate, even smallest objects like han-

dles, faucets and glasses are labeled. This dataset is perfect to realize hierarchical models,

grouping elements into a complex taxonomy and allows studying the contextual informa-

tion given by the presence of multiple objects into an image. These reasons make it perfect

for our experiments. The Sun09 paper also presents a model which exploits this contextual

information to improve the results of the baseline object recognition methods [2]. The sys-

tem described in the paper is a probabilistic model and differs from our proposal, which

is a rule based algorithm.

51

4 – Image Datasets

Figure 4.3: Pascal VOC compared to Sun09

After download, Sun09 presents two main folders: Images and Annotations. The for-

mer contains the images in jpeg format, which can have different sizes and whose name

describes the environment being represented. This could be useful to filter samples by

type. The latter contains XML annotations, where each object is described by a label and

a list of points, defining a polygon around its boundings.

Picture 4.3 shows the differences between annotations for Pascal-VOC (c) and Sun09

(d). The latter presents a more accurate segmentation if compared with Pascal-VOC. In

listing 4.1 there is an example of XML description representing an object labeled as arm-

chair, followed by its boundings coordinates.

Listing 4.1: Sun09 annotations
1 < o b j e c t >
2 <name> a rmcha i r < / name>
3 <da te >05−Oct−2009 21 :55 : 32 < / da t e >
4 <id >7 </ id >
5 <polygon >
6 <pt ><x >12 </x><y >156 </y > </ pt >
7 <pt ><x >32 </x><y >210 </y > </ pt >
8 . . .
9 </ polygon >

10 </ o b j e c t >

52

Chapter 5

Base Model

5.1 Dataset Preparation

In chapter 4 we have described the reasons why Sun09 is the correct choice for our

experiments. We will exploit its characteristic of presenting multiple objects for each scene

to work with contextual information and correct convolutional neural network results. The

model proposed in this thesis will not make use of the entire data, but only of a subset. We

will present here the main phases of data preparation before its usage in our experiments.

The main steps that will be analyzed are: scenery selection, class names cleaning, cre-

ation of k-fold partitions, object extraction by reading XML annotations, samples augmen-

tation and batch balancing.

5.1.1 Sceneries and classes

Sun09 is stored into the file system with two main folders. Their names are Images

and Annotations. The first one contains the set of all the image samples, each of them

representing a scenery which can be indoor or outdoor. These images are in jpeg format

and their names are related to the type of scenery. We can find for example ”kitchen_i.jpg”,

”road_i.jpg” or ”office_i.jpg”. Each image contains the objects that will be recognized by

53

5 – Base Model

our model. For example inside a ”road” scenery we could find objects like ”street”, ”sky”,

”road sign” or ”car”.

For each scenery file the Annotations folder contains an XML document with the

same name. This stores the image segmentation by means of a set of polygons which

specify the object boundings. Each object is characterized by a class label that will define

the goal of our algorithm. Since they are manually annotated, object of the same type can

have slightly different labels. For this reason the first step of data preparation is the label

cleaning.

We created 18 classes from two indoor scenery types: ”kitchen” and ”office”. Each class

is represented by set of labels which refers to objects of the same type. An XML document,

called classGroups.xml, defines these name collections for all the 18 classes. We report

here a partial view of this file.

Listing 5.1: classGroups.xml
1 . . .
2 <group name=” door ”>
3 <e l >door < / e l >
4 <e l >door occ luded </ e l >
5 <e l >door crop </ e l >
6 <e l >open door < / e l >
7 <e l > doo r s crop </ e l >
8 </ group >
9 . . .

Listing 5.1 shows how classes are defined. In this example, all the objects with a label

which is contained into the <group> element will be assigned to the class ”door”.

5.1.2 k-fold partitions

The Java class responsible for extracting the objects from the scenery files is called

SunDBcreationPipeline. The algorithm selects all the images whose name contains

the words ”kitchen” or ”office” and prepares a list to index these files. We decided to use

a k-fold cross-validation with k = 10 partitions in order to evaluate our model. For this

54

5 – Base Model

purpose the list of the selected scenery files is randomly splitted into 10 parts, numbered

from 0 to 9. Each model will be trained on 9 of them and evaluated on the remaining one. In

particular we call modeli the model that will be evaluated on partitioni. The subdivision

of the file names is stored into the datasetConfig.xml file. Figure 5.1 depicts this dataset

organization.

Figure 5.1: K-fold subdivision of the generated dataset. The example shows how model3
will be evaluated on partition3

The selected sceneries are 510. Each partition contains about 50 of them. Indeed, the

subdivision with k = 10 allows us to use the 90% of data as training set. The number of

objects for each class is slightly different among each of the partitions. The explanation

is that the sceneries are randomly splitted into 10 parts without caring about the samples

distribution inside them. The objective is to divide training and test set considering the

scenery as unit, instead of a single object. This is more correct to evaluate the final model,

which works with an entire scenery to analyze the contextual information. Table 5.1 shows,

for each class, the total number of objects that can be found into the generated partitions.

As we can see the dataset is highly unbalanced and provides a relatively small number of

samples, which makes our task quite complex.

55

5 – Base Model

Class Training Test Total

wall 879 98 977
cupboard 611 68 679
chair 384 43 427
window 376 42 418
floor 359 40 399
surface 298 33 331
plant 291 32 323
ceiling lamp 276 31 307
ceiling 215 24 239
sink 212 23 235
bottle 179 20 199
desk 137 15 152
screen 128 14 142
handle 123 14 137
door 111 12 123
oven 111 12 123
outlet 98 11 109
keyboard 88 10 98

Table 5.1: Class cardinalities relative to the 510 sceneries. Training and test values are
computed with the 90% and 10% of the total: these only represent the average number of
objects that we could find in one of the 10 k-fold subdivisions.

5.1.3 Sample extraction

The sample extraction phase consists of producing an image for each of the object sam-

ples contained into a scenery file. Each scenery presents typically more than one object.

This operation is achieved by reading the XML annotations and extracting the sub-images

defined by the object boundings. Since convolutional neural networks work with squared

images of a predefined size, we also need to resize the rectangular sub-images to squares.

The XML structure of the scenery annotations is built with a list of <object> ele-

ments, each of them containing the object label and the coordinates of the points which

define a polygon around its boundings. The algorithm computes the smallest rectangle

which fits around this polygonal region. Listing 5.2 shows a view taken from an example

of annotation file.

56

5 – Base Model

Listing 5.2: Example of scenery annotations
1 . . .
2 < o b j e c t >
3 <name>open door < / name>
4 <da te >05−Oct−2009 21 :47 : 59 < / da t e >
5 <id >1 </ id >
6 <polygon >
7 <pt ><x >19 </x><y >209 </y > </ pt >
8 <pt ><x >24 </x><y >190 </y > </ pt >
9 . . .

10 </ polygon >
11 </ o b j e c t >

Once all the polygons have been transformed to rectangular bounding boxes, the system

loads the jpeg file of the given scenery and extracts the pixel subregions. Each object

sample will be represented in memory by a label, a bounding box and the raw pixels.

We created a Java class, called Scenery, which contains the raw pixels of the scenery

image and the list of the bounding boxes computed from the polygonal regions. Each

bounding box is stored as RectangularROI (Region Of interest) class, which specifies

its size and position in percentage with respect to the complete picture.

After this point every RectangularROI is extracted from the whole image and stored

as a Sample instance, with a label and the pixels of the subregion. In this way, from a

Scenery, we obtain a Sample instance for each object. The FlatImage class, contained

into Scenery and Sample, provides the method to extract rectangular subregions from a

picture and stores the pixels into the form of a serialized tensor, as we described in section

2.3.2.

The last transformations required to prepare tensors before providing them to a con-

volutional neural network are the resizing to squared images and data normalization. The

second operation is required since each of these tensors has been extracted from a BGR im-

age and for this reason the pixel values vary from 0 to 255. These numbers are normalized

between 0 and 1 with a simple division by 255.

57

5 – Base Model

Figure 5.2: Sample extraction. The list of bounding boxes for a segmented image is firstly
stored in a Scenery, then each subregion is extracted and transformed to a Sample. The
Sample objects are ready to be provided to the neural network.

5.1.4 Batch creation and balancing

Before training the neural network each k-fold partition has to be divided into batches.

A batch is a group of data samples that will be fitted with a single training iteration. When

using gradient descent algorithms, providing more than one sample at once is a way of

describing better how data is distributed. Larger batches will give better results because the

gradient is computed on many samples from all the classes. Using only one example would

create a gradient which takes care only of that particular instance, making the training

process slower and less accurate.

Each batch must be balanced: all the 18 classes must provide the same number of ex-

amples. For our experiments the batch size was set to 486, giving 27 samples for each

class. Every k-fold partition is composed of 4 batches. The technique we adopted to bal-

ance the class samples is called data augmentation. When more examples are needed for

smaller classes, these are automatically generated from the existing ones with a set of

transformations. We first applied random horizontal flips, then some changes of lightness

and contrast, performed by choosing two random values gain and bias. Pixels are updated

58

5 – Base Model

with the following rule:

newV alue = bias+ gain · oldV alue (5.1)

We analyze the algorithm for batch balancing by focusing on how it works with a single

k-fold partition. The procedure is the same for all the 10 partitions. For each scenery, all

the object samples which belong to one of the 18 classes are extracted. Every sample is

normalized and converted to tensor, then stored into a bucket with the corresponding class

label. Once the process is finished we obtain 18 buckets, each serialized to a binary file.

The bucket with the greatest number of elements is selected as reference. All the other

buckets will be augmented with new generated samples until they reach the size of the

reference: ref.numElements. We obtain one bucket for each class, all with the same size.

The total number of instances, including the generated images, will be equal to the number

of elements of the reference bucket multiplied by the number of classes:

numObjects(partitioni) = ref.numElements · numClasses (5.2)

With this procedure all the classes will be represented into a batch by the same number of

elements. The number of batches is computed as follows:

numBatches(partitioni) = ceil

(
numObjects(partitioni)

batchSize

)
(5.3)

where batchSize is the number of elements contained into a single batch. In our experi-

ments the class with the highest cardinality is wall, with its average of 98 samples for each

k-fold partition. The number of batches will be:

numBatches(partitioni) = ceil(98 · 18 /486) = ceil(3.6) = 4

with numClasses = 18, batchSize = 486, numSamplesPerclass = 486/18 = 27.

For each k-fold partition we obtained 4 batches, each of them containing 486 images,

27 for each class. The reference bucket wall will only contain original elements, while the

other ones, among the 27 elements, will also include generated images. The created dataset

is 600 MB in size and can be stored into the main memory for a faster training process.

59

5 – Base Model

This is how the whole algorithm works:

Algorithm 2 Batch creation and balancing
procedure createBatches

for b = 0 to numBatches-1 do
for i = 0 to numSamplesPerClass-1 do

for c = 0 to numClasses-1 do
batch[b].add(bucket[c].getSample())

For every batch the algorithm extracts 27 elements from each bucket. The method

bucket[k].getSample() takes a sample from the bucket of class k or generates it if

no more images are available. Figure 5.3 shows an example of k-fold partition with the

described organization.

Figure 5.3: Batch balancing: this example shows, for a given k-fold partition, the subdivi-
sion of the 18 bucket into 4 batches. The reference bucket contains only original samples,
while the others include generated images (highlighted in red).

Figure 5.4: Batch creation pipeline. From sceneries to batches.

60

5 – Base Model

5.1.5 File system organization

Before continuing with the description of our experiments, we give an overview of how

the training and testing platform is organized in the file system. The environment is divided

into two folders. The first one, called cnnSamples, contains two XML files describing the

class labels subdivision and how the scenery files are splitted into the k-fold partitions. This

folder also includes, in one directory for each partition, the generated batches that will be

used to train the neural networks. The second folder is named cnnModel and contains

the 10 trained convolutional neural networks. For each model the evaluation results over

the training and test sets are stored into the files trainingSet.cnnr and testSet.cnnr,

respectively. These are required to save time, instead of executing the neural networks

every time we need the classification outputs for each scenery, for example when varying

the threshold to compute the mAP score or when running the Smart Model. The cnnModel

folder also contains an XML file which stores the configuration and the learning curves

for each of the trained convolutional neural networks. Figure 5.5 shows the described file

system organization.

Figure 5.5: Directories for the k-fold evaluation platform.

5.1.6 BGRC: context layer

The main problem with convolutional neural networks is their usage as local classi-

fiers on a subregion of the input image, the scenery in our case. This region is resized

61

5 – Base Model

to a squared matrix, loosing the information about its original shape. We tried to add a

fourth layer in addition to the BGR channels, obtaining a tensor with rank 3 and shape

[4, height, width]. We call this format BGRC image, where C stands for context layer.

This layer is a matrix which represents the information about the size of the selected

subregion and its position inside the original scenery. Size and positions are computed in

percents with respect to the input scenery. For example a bounding box position with

x = 0.5 and y = 0.5 will be located in the middle of the picture. The four values

x, y, width, heightwhich describe the selected bounding box are represented with grayscale

squares inside the context layer. Lighter pixels will depict higher percent values: the neural

network can use the contextual information as if it were just another color layer. Training

some CNN architectures with this approach gave better results than simply using BGR

images. For this reason all the final model presented in the next sections will use the

BGRC encoding. Figure 5.6 shows how the context layer would look if represented with a

grayscale image.

To understand how this context layer can help neural networks in the recognition phase

we provide some examples. Considering the class ceiling, objects of this type can be found

in the scenes at higher vertical positions and their shape is typically larger than taller. Floors

have the same shape of ceilings, but can be found more likely in lower vertical positions.

Objects of class door will be taller than larger and ceiling lamps will be smaller and in

higher vertical positions. For these classes, figure 5.7 shows some graphical examples of

context layer. Without knowing the real meaning of the squares drawn into the context

layer, one can easily recognize the separation between these classes, simply because the

grayscale images look different.

62

5 – Base Model

Figure 5.6: BGRC format: each sample contains a context layer describing its size and
position with respect to the input scenery

Figure 5.7: Context layer for different classes. Note how images look different without
thinking at the real meaning of the grayscale map.

63

5 – Base Model

5.2 Training pipeline

We describe now how the neural networks are trained, how they are evaluated and

which are the architectures we tried for our experiments. The Java class responsible for

training the CNNs is called NetTrainerPipeline. We built it as an automatic system able

to train all the 10 models and test their performances. It uses the regularization technique

called early stopping: at the end of every training epoch the algorithm computes the mAP

score related to the evaluation on the test set. If the value is better than the previous one,

the best CNN model is replaced, otherwise the old one will be kept. Since the mAP score

can have some wiggles between the training epochs, the process doesn’t stop at the first

sign of overfitting. It will instead continue until it reaches a predefined maximum number

of epochs.

NetTrainerPipeline trains one model at once, providing to the network all the

batches of the training set. The procedure works as described in algorithm 3.

Algorithm 3 Training pipeline
procedure trainModel(m, maxEpochs)

bestMAP ← 0
for e = 0 to maxEpochs-1 do

for b = 0 to numBatches-1 do
for p = 0 to numKfoldPartitions-1 do

if p ! = m then
model[m].fit(partition[p].batch[b])

mAP ← model[m].evaluate(partition[m])
if mAP > bestMAP then

bestMAP ← mAP
bestModel← cnn

else
break;

The pseudocode shown above has the task of training a single model m. The neural net-

work fits all the partitions except for the one with index m because it represents the test set

associated to the selected model. The XML file cnnConfig.xml stores the current batch,

64

5 – Base Model

partition, epoch and the mAP value for the test set. Each training epoch is associated to a

timestamp, making possible to reconstruct the learning curve after the process is finished.

In this way if something goes wrong, a backup of the temporary data is ready to restart

the process. Terminated the training for all the 10 models, the system automatically takes

the best epoch for each of them and generates the classification results for every scenery

in the test set.

The classified images are stored into the testSet.cnnr files, one for each model. The

classification results for the training set sceneries are computed as well and saved to the

trainingSet.cnnr files. These results will be used as the training data for our Smart

Model as we will show in the following chapter.

5.3 Evaluation pipeline

We describe in this paragraph how the classification results are represented with Java

objects. Once a scenery has been classified, it is represented by a ClassifiedScenery

object. This contains a list of ClassifiedROIs which are the bounding boxes associated

to the class scores predicted by the neural network. Each of them represents an object

in the scenery image. Every ClassifiedScenery also stores the associated file name to

retrieve the original annotation and jpeg files from the Sun09 folder. The testSet.cnnr

file contains the list of ClassifiedScenery objects generated from the test set. Figure

5.8 depicts how these Java objects are organized. Since the CNN classification results

are stored in the testSet.cnnr file, we save some time every time we need them for

our experiments. Indeed, performing the classification for all the objects takes about 15

minutes.

65

5 – Base Model

Figure 5.8: ClassifiedScenery: contains the list of the classified bounding boxes. Each
ClassifiedROI stores the bounding box position and size into the RectangularROI ob-
ject. The maximum value of the scores vector is corresponding to the selected class. If
this is equal to the label contained into the RectangularROI, then we consider the clas-
sified object as a True-Positive.

Figure 5.9: Evaluation pipeline. The classified sceneries stored into the testSet.cnnr
file are collected to build the confusion matrix and compute the mAP score.

5.4 Architecture Experiments

Having described how the neural network models are trained, we provide now a sum-

mary with the architectures evaluated in our experiments. This first step of evaluation was

performed without cross-validation. The proportion of dataset for training and test set were

respectively 80% and 20%.

We started with a small custom CNN, with two convolutional layers and one fully

66

5 – Base Model

connected layer. We chose first smaller models because they are easier and faster to train.

The result with the first network was 36.7 accuracy and 31.5 mAP.

The second model, CNN2, has the same structure of the first one, but the number of

filters for the first convolutional layer is duplicated. Also the neurons in the last layer have

been increased twice. We obtained a slight improvement, with 38.2 accuracy and 31.7

mAP. Both these two models work with an image size of 40× 40 pixels.

The neural network CNN3 was instead built with three convolutional layers and works

with 43 × 43 images. This gave the best result we achieved with our attempts: 46.2 ac-

curacy and 42.1 mAP. Having added one more convolutional layer improved a lot the

performances.

After that point we tried to use a network inspired by the famous AlexNet architecture.

CNN4 has five convolutional layers and two fully connected ones. Applying this model

didn’t give the expected improvement: we could get only 26.4 accuracy. The explanation

we give, according to what we learned about CNNs, is that our dataset is too small and

bigger networks, like AlexNet, overfit soon the training set.

We tried with two more architectures that gave us some noteworthy results. CNN10,

with the same structure of CNN3, but a higher number of filters and neurons, obtained the

46.4 of accuracy. The last network, CNN11, has five convolutional layers, but few filters

to avoid overfitting. It gave the 47.1 accuracy only after 3 epochs, while the CNN3 took 10

epochs to achieve its maximum accuracy. However the training time for CNN11 is longer

because with deeper network the gradient takes more time to be computed .

After the attempts presented in the previous lines, we decided to adopt the CNN3 struc-

ture as the classifier for our experiments with the context-aware Smart Model. The follow-

ing pages show the architectures we described here. In the next tables, convolutional layers

kernel size refers to the shape of the filters. For maxpool layers the kernel size represents

the shape of each patch of the input tensor that will be squashed to a single value. The fully

connected layers are described with the number of neurons.

67

5 – Base Model

Table 5.2: CNN1

Layer Kernel size Number

image size 40x40
conv 5x5 16
maxpool 2x2
conv 3x3 64
maxpool 3x3
fully c. 256

Table 5.3: CNN2

Layer Kernel size Number

image size 40x40
conv 5x5 32
maxpool 2x2
conv 3x3 64
maxpool 3x3
fully c. 512

Table 5.4: CNN3

Layer Kernel size Number

image size 43x43
conv 5x5 32
maxpool 3x3
conv 3x3 64
conv 3x3 64
maxpool 3x3
fully c. 512

Table 5.5: CNN10

Layer Kernel size Number

image size 43x43
conv 5x5 64
maxpool 3x3
conv 3x3 64
conv 3x3 128
maxpool 3x3
fully c. 1024

Table 5.6: CNN4

Layer Kernel size Number

image size 100x100
conv 11x11 64
maxpool 3x3
conv 5x5 128
maxpool 3x3
conv 3x3 128
conv 3x3 128
conv 3x3 128
maxpool 3x3
fully c. 512
fully c. 512

Table 5.7: CNN11

Layer Kernel size Number

image size 48x48
conv 5x5 32
conv 3x3 32
maxpool 2x2
conv 3x3 64
conv 3x3 64
maxpool 2x2
conv 3x3 64
fully c. 512

5.5 The final architecture: results

We have presented in the previous section how the CNN3 architecture was the best at-

tempt for classifying our data. This model presents three convolutional layers which work

68

5 – Base Model

Architecture Accuracy Epochs

CNN1 36.7 16
CNN2 38.2 18
CNN3 46.2 13
CNN10 46.4 15
CNN4 26.2 3
CNN11 47.1 3

Table 5.8: CNN classification results.

with the RELU (Rectified Linear Unit) activation function. Pooling layers use the max-

pooling method, as they take the maximum value to represent a single tensor partition.

The fully connected layer works with a Softmax activation function, which ensures that

the output scores will add up to one. This layer is subjected to the dropout regularization

technique, with probability 0.5, which means that the 50% of the connections will be ran-

domly turned off at each training iteration. Finally, the optimization algorithm we used is

the Stochastic Gradient Descent, with momentum 0.9 and learning rate 1× 10−2.

Architecture CNN3 was then evaluated with a k-fold cross-validation, with 10 parti-

tions. Since this allows using the 90% of the dataset as training, we obtained a slightly

better result than the one presented in the previous experiments. The training time for all

the partitions took 16 hours and 20 minutes, with 12 epochs per model.

Measure Value

mAP 0.448
accuracy 0.475
avg Precision 0.446
avg Recall 0.484
avg F1 0.431

Table 5.9: CNN3 classification results, k-fold with k = 10

69

5 – Base Model

Figure 5.10: Confusion Matrix for all the 18 classes being classified. The main diagonal
corresponds to the items correctly recognized.

Figure 5.11: Evaluation metrics separated by class. The values of the AP score are aver-
aged to compute the mean average precision (mAP). The classes with the lower scores are
typically those which presents less samples into the dataset.

70

Chapter 6

The Smart Algorithm

6.1 Smart Model, overview

In this chapter we will present the main contribution of our thesis work. The novel

approach is called Smart Model. This name refers to the ability of our brain to smartly

collect and elaborate the rich, but noised information coming from the five senses. It is

able to merge all these data with its memories and reconstruct the external world like a

complex puzzle with many missing parts.

In particular we use contextual information to provide a better classification than the

one obtained directly from the convolutional neural networks, which are only local mod-

els. If the image of a particular object is not clear enough and the system is not able to

recognize it, the context can be used to infer additional information. Indeed, in our life we

are used to see objects in their context and we hardly recognize them when they appear in

unusual places. Important information can be retrieved from relative comparisons between

the elements into the scene we are looking at. In particular we can compare their positions

and sizes or colors and shapes. For example, if the convolutional neural network confuses

the class floor with ceiling, we can correct it because the ceiling is more likely above every

other object into the scene.

71

6 – The Smart Algorithm

Even the semantical information of the class labels can be very helpful, indeed objects

with related functions will appear more likely together. To make an example, a bath soap

can be easily found in the scenery bathroom, near the sink and will be rarely seen into

another room like an office.

The contextual information which will be used for our experiments refers to a concept

that we call relative features. They are defined to describe pairs of objects which belong

to the scene. These features are compared to the statistical information learned from the

training set and allow to correct the local predictions of the CNN, obtaining better results.

They are also a way of providing more interpretability to the model. Neural networks are

not interpretable because of their internal structure. Indeed, after training we are not able

to easily understand the meaning of the learned weights. Enhancing the model with a rule

based algorithm would provide interpretability since these can explain the reason of the

correction applied to the neural network scores.

To summarize, our model works with relative features related to object pairs and com-

pares them to the Smart Rules which are the entity to represent the contextual information

learned from the training set. The result of this operation is used to update the CNN scores

and obtain the new classified images. In the next sections we will explain deeper the con-

cepts we described here.

6.1.1 A working example

As we pointed out in the introductory section the Smart Model is designed to update

the output scores of neural networks. We can provide the main idea of the algorithm with

an example. The following lines represents parts of the scores vector predicted by the

convolutional neural network for two object samples.

CNN scores for object1 = [floor = 0.6, ceiling = 0.3, ...]

CNN scores for object2 = [ceilingLamp = 0.9, f loor = 0.00001, ...]

72

6 – The Smart Algorithm

The class assigned to object1 is floor and the one for object2 is ceiling lamp. From the

dataset we know that the prediction for object1 is wrong, as the actual class is ceiling. The

scenery image presents the bounding box for object1 at the same vertical position of the

object2, like shown in figure 6.1.

Figure 6.1: Smart Rules. Object1 and object2 are at the same vertical position.

By analyzing the training set we obtained that the 0% of floors are at the same vertical

position of a ceiling lamp. This can be considered as a general rule useful to correct the

prediction. Moreover, from the dataset we know that the 90% of the ceiling objects are at

the same height of ceiling lamps and the remaining 10% are above them. Indeed, lamps

always hang from a ceiling in our sample sceneries.

Since the assigned label for object1 is wrong, we try to apply a correction to its CNN

scores using the two rules presented in the previous lines. Using the contextual information

we can easily understand that the model is confusing the class ceiling with floor. Object1

is a ceiling because it is at the same height of a ceiling lamp, assuming that the class for

object2 is correct.

The algorithm should vary the output scores for object1 by increasing the value asso-

ciated to ceiling and decreasing the one related to floor. The correction should be strong

enough to make the score of the first class overcome the second one. A variation of 0.2

would be sufficient for this example.

73

6 – The Smart Algorithm

Correction for object1 = [floor = 0.6 - 0.2, ceiling = 0.3 + 0.2, ...]

= [floor = 0.4, ceiling = 0.5, ...]

After the update of the scores we obtain the correct class for object1. The algorithm that

we will present in the following sections use this kind of reasoning as a guideline.

6.2 Smart-Rules: formalization

As previously anticipated, our model works with the concept called relative features.

The main entity used to represent these relationships between objects is the triplet:

< subject, featureType, reference >

The subject is the object that will be compared with the reference, according to a par-

ticular feature type. We designed some different feature types, according to the ways we

can compare visual objects jus by looking at their position, shape and color. Each feature

type is associated to a set of discrete values. For example the feature xDimension, which

refers to the bounding box width, can assume the values smaller, same or bigger. Table

6.1 presents for each feature type its possible values.

Triplets can be divided into instances and rules. A triplet instance refers to a pair of

objects in the input scenery which are compared with respect to a specific feature type.

By looking at the positions and sizes of the two objects, the system chooses one of the

possible discrete values associated to the feature type. We adopt the following notation to

represent a triplet instance and its assigned value:

< subject, featureType, reference > = value

For example, to express ”object1 larger than object2” we can write:

< object1, xDimension, object2 > = bigger

74

6 – The Smart Algorithm

A rule doesn’t refer to a particular scene instead, but it is thought to summarize the

information learned from the training set. It is composed by a triplet and a histogram. The

triplet involves the class labels, instead of the objects of a particular scenery. For example:

< floor, yPosition, ceiling >= [histogram]

which refers to the relative position between floors and ceilings. We will see in the next

sections how the histogram can describe the statistical distribution of the samples in the

dataset.

Feature type Values

yPosition: {above, same, below}
xPosition: {left, same, right}
xDimension: {smaller, same, bigger}
yDimension: {smaller, same, bigger}
distance: {near, far}
luminosity: {higher, same, lower}

Table 6.1: Feature Types and their possible values.

6.3 Triplets value computation

In this section we present how the system computes the values relative to each feature

type. All of these involve a pair of objects and make use of the bounding box coordinates

obtained from the input scenery.

Each object is associated to a position which refers to the coordinates of the top-left

corner of its bounding box. These coordinates are relative to the top-left corner of the scene

frame and they are defined in the range between zero and one. For example with x = 0.5

and y = 0.5 we obtain a rectangle whose top-left corner is in the middle of the scenery

image. The size of a bounding box is in percents, as well. A shape of width = 0.5 and

75

6 – The Smart Algorithm

height = 0.5 refers to a rectangle which is exactly half in size with respect to the input

scenery.

6.3.1 Relative position

The relative position between a pair of objects is described by two feature types: xPosi-

tion, referring to the horizontal alignment, and yPosition which refers to the vertical align-

ment. While computing these values, both take in consideration the size of the bounding

boxes. Considering the yPosition, the subject is above the reference if its bottom margin is

over the top of the reference. Practically, to make this definition less rigid we introduced

the concept of soft margin. Instead of considering strictly the bottom of the bounding box,

we say that the feature value is above if at least the α percent of the subject height is above

the top of the reference. A reasonable value for alpha can be in the range from 0.8 to 0.9.

More formally:

above: subj.y + α · subj.height < ref.y

Instead, subject is below the reference if at least the α percent of its height is under the

subject.

below: subj.y + (1− α) · subj.height > ref.y + ref.height

All the remaining cases are assigned to the value same position. This reasoning can also

be applied for the horizontal position. The definitions of left and right are the following:

left: subj.x+ α · subj.width < ref.x

right: subj.x+ (1− α) · subj.width > ref.x+ ref.width

The vertical position is very useful for our model because the scenes are not symmetric

along this direction. Think to ceilings and floors that cannot be exchanged along the vertical

axis. The horizontal position is less significant because the images can often be flipped

horizontally without producing any change of meaning. Actually, there is one case when

this feature becomes important: if the xPosition value is same and the yPosition is above

76

6 – The Smart Algorithm

or below, we can identify objects that are directly one on the top of the other. For example

surface and bottle would often be found at the same horizontal position because the latter

leans on the former.

Figure 6.2: Examples of yPosition computation

6.3.2 Size

The relative size is computed separately for width and height. The reason is that we

want to distinguish the concept of taller from larger. Considering the horizontal dimension,

we say that the subject is bigger than the reference if the ratio of their width is greater than

a threshold α. We set the value of α to 1.5, which means that the subject must be the 50%

larger than the reference to be considered bigger in width.

xDimension =

bigger if subj.width/ref.width > α

same if subj.width/ref.width < α

smaller otherwise

.

The same reasoning can be applied to the yDimension, by computing the ratio between the

bounding boxes height.

This kind of information can be used for example to distinguish smaller objects, such

as bottles or lamps, from the bigger elements of the scene. For example a door will be

always taller than floors, but not larger. This is the reason why we separated the measure

of width and height in two different features. Even if the relative size of the objects is quite

77

6 – The Smart Algorithm

important for our correction system, perspective may be an issue that could confuse the

algorithm. Indeed, some sceneries could present objects whose size is difficult to interpret

because of perspective reasons.

6.3.3 Distance

The concept of distance is fundamental to identify objects that more likely appear

together in the sceneries. For example we can find that bottles are always near surfaces or

shelves because they need a support to lay on. To compute this measure we consider the

distance between the middle of the bounding boxes, which is defined as follows:

x1 = subj.x+ 0.5 · subj.width

y1 = subj.y + 0.5 · subj.height

x2 = ref.x+ 0.5 · ref.width

y2 = ref.y + 0.5 · ref.height

Then the euclidean distance is calculated:

dist2 = (x1− x2)2 + (y1− y2)2

The squared distance is compared to a threshold to decide if the subject is near or far from

the reference.

6.3.4 Luminosity

The relative luminosity between objects could help in identifying light sources like

windows, lamps or screens. Another interesting feature could be considering separately

the three BGR colors to compare subjects and references. For each object we compute the

78

6 – The Smart Algorithm

average color, defined as the mean of each color channel like shown in equation 6.1.

avgBlue =
1

N

N−1∑
i=0

pixeli.B

avgGreen =
1

N

N−1∑
i=0

pixeli.G

avgRed =
1

N

N−1∑
i=0

pixeli.R

(6.1)

The luminosity is a value in the range 0,1 and can be computed as follows:

luminosity = 0.21 · avgRed+ 0.72 · avgGreen+ 0.07 · avgBlue (6.2)

The system computes the difference of luminosity between subject and reference, then it

compares this value to a threshold, deciding which is the lighter object of the pair.

6.4 Histograms

The last concept we have to introduce before explaining the main algorithm of our

Smart Model is called histogram. This entity is designed to represent the information that

the model learns from the training set sceneries. Indeed, histograms can collect statistics

about the relative features computed on the training samples. As we anticipated, we define

rule as the association of a histogram with a triplet. For each of the possible values related

to the feature type of the triplet, the histogram provides the percentage of the training

samples that satisfy the relationship.

We provide an example to better understand this concept. Consider the triplet describ-

ing the relative vertical position between cabinet and floor. For each value of the yPosition

feature the histogram specifies the number of examples that satisfy this relationship in the

79

6 – The Smart Algorithm

training set:

< cabinet yPosition:above floor > = 78

< cabinet yPosition:same floor > = 7

< cabinet yPosition:below floor > = 0

< cabinet, yPosition, floor >= [above, same, below][78, 7, 0]

The obtained histogram [78, 7, 0] means that in 78 object pairs cabinets are above floor,

while in the remaining 7 they are at the same height. In total we have 78 + 7 = 85 pairs

cabinet-floor into our training set. Note that a scenery can contain zero, one or more pairs

for the rule in analysis. As shown in the example, we can find that a cabinet is at the same

height of the floor because of perspective reasons, like depicted in figure 6.3.

Figure 6.3: Example of perspective issues.

Histograms can also be normalized to obtain a discrete distribution of probabilities. In

this way all the numbers will add up to one. For the example in analysis, by dividing all

the histogram elements by 85, we obtain:

< cabinet, yPosition, floor >= [above, same, below][0.918, 0.082, 0.0]

We must point out that, when interpreting these values as percents, the 92% or the 8% are

referred to the number of pairs cabinet-floor and not to the number of cabinets (which we

would have obtained dividing the histogram elements by 78).

80

6 – The Smart Algorithm

6.4.1 Impurity measure associated to histograms

The number of different histograms that can be computed on the training set is given

by the combination of all the class pairs with the feature types:

nFeatureTypes× nClasses2

With 6 features and 18 classes we obtain 1,944 histograms. Actually, this is not a huge

number for modern computational resources, but trying to reduce it by filtering only the

most significant statistics would improve the performances.

To evaluate the quality of a histogram we need to define an impurity measure, index of

how its discrete probabilities are unbalanced. A lower impurity means a significant rule,

for example ”all the lamps are on the ceiling” or ”many cabinets are above the floor”.

Instead, when the impurity is higher the histogram is useless because all the probabilities

are equally distributed. Inspired by the Gini-index measure, the impurity of a histogram is

defined to be:

impurity = 1−
∥h∥−1∑
i=0

(
h[i]

sum(h)

)2

(6.3)

where:

∥h∥ = n. elements of the histogram

h[i] = element i of the histogram

sum(h) =

∥h∥−1∑
i=0

h[i]

We provide here a practical example with two histograms.

impurity([0, 2, 235]) = (1− (2/237)2 + (235/237)2) = 0.017

impurity([0, 61, 235]) = (1− ((61/296)2 + (235/296)2) = 0.33

The first rule has lower impurity, for this reason is more relevant than the second one.

81

6 – The Smart Algorithm

The impurity vary in the range between 0 and normFactor, whose value is:

normFactor = 1− 1

∥h∥
(6.4)

Sometimes it could be useful to normalize the impurity, obtaining a value which does not

depend to size of the histogram:

impuritynorm =
impurity

normFactor
(6.5)

6.4.2 Histogram importance and Jaccard index

We could think about using the sum of the elements of a histogram as another impor-

tance index. Indeed, this value represents the number of sample pairs which support the

associated rule. Actually this method generates problems because it penalizes the rules

which are related to classes with lower cardinality. For example, since we have few exam-

ples of class keyboard, all the histograms which are related to this class would have low

importance and would be filtered out.

We should define another measure which takes in consideration both the number of

samples that support the histogram and the cardinality of the two involved classes. Let’s

call A and B the classes of the subject and the reference associated to a given rule. The sum

of the elements of the histogram is index of how many times we find sceneries containing

both objects of class A and B. We want to compare this value with the number of times

that we find either objects of class A or class B in the training set.

The definition of the Jaccard index comes in our help. In statistics, it is used to compare

two sample sets by computing the ratio between the size of their intersection and the size

of their union. In our case the index takes in consideration how many times the two classes

appear together in a scene with respect to the number of times they appear in the dataset.

The higher is the coefficient, the higher is the number of pairs A-B with respect to the

occurrences of two classes considered separately. In other words it is an index of how

much the two classes are related. If A and B always appear together in the scenes, the

82

6 – The Smart Algorithm

value will be maximum. More formally, it can be written as:

jaccard(A,B) =
∥A ∩B∥
∥A ∪B∥

=
∥A ∩B∥

∥A∥+ ∥B∥ − ∥A ∪B∥
(6.6)

Figure 6.4: Jaccard index computation: intersection and union

The procedure to compute the Jaccard coefficient works by analyzing each image in the

training set. For each scenery we get all the possible object pairs, calling A and B the

classes for the subject and the reference respectively. The loop counts the number of cou-

ples containing both A and B, the ones containing A and the ones containing B. When

computing the index for two classes A’ and B’, the intersection is equal to the number of

pairs containing both of them. Instead, the union is equal to the number of pairs containing

at least an object of class A’ or B’. The pseudocode is described in algorithm 4.

Algorithm 4 Jaccard computation
procedure computeJaccard

for all scenery ∈ trainingSet do
for all a ∈ scenery.objects do

for all b ∈ scenery.objects, a ̸= b do
A← a.label
B ← b.label
countPairs[A, B]++
count[A]++
count[B]++

procedure getJaccard(A’, B’)
intersection← countPairs[A', B']
union← count[A'] + count[B'] - intersection
return intersection / union

83

6 – The Smart Algorithm

The condition a ̸= b avoids counting each pair two times. Note that since we don’t care

about the couple order, countPairs[A, B] is equivalent to countPairs[B, A].

We present here a practical example of computation.

A ∩B = 20, A = 100, B = 50, Jaccard =
20

100 + 50− 20
= 0.15

A ∩B = 20, A = 30, B = 20, Jaccard =
20

30 + 20− 20
= 0.67

A ∩B = 20, A = 100, B = 100, Jaccard =
20

100 + 100− 20
= 0.11

All the three cases have the same value for the intersection, but different cardinalities for

the individual classes. For this reason the histograms are evaluated differently, giving more

importance to the case where A and B have less elements.

6.4.3 Transition and label probabilities

The algorithm responsible for updating the class scores should also take in consider-

ation the number of times that the neural network gives the wrong prediction for a given

class. In particular the label probability is defined as the probability of finding an object

belonging to class A labeled with the class B. More formally:

P (actual = A | predicted = B) =
count(actual = A ∩ predicted = B)

count(predicted = B)
(6.7)

During our experiments we used this measure to apply the Smart-Rules associated to a

particular reference object. Since we don’t know the real class of the reference, the algo-

rithm weights the importance of the Smart-Rules over all the possible classes. The weight

is computed by taking in consideration both the CNN class scores and the label proba-

bility, as we will see later. By looking at the confusion matrix relative to the CNN results

extracted from the training set, we observe that this probability is simply computed as the

ratio between the element mat[actual=A][predicted=B] and the sum of the values in the

column related to the objects with predicted class B.

84

6 – The Smart Algorithm

When the correction of the Smart-Algorithm tries to move an object from class B to

class A, we should take in consideration another measure that we call transition proba-

bility. It specifies how many objects of class A have been classified by the neural network

with class B. The formal definition is:

P (B → A) = P (predicted = B | actual = A)

=
count(actual = A ∩ predicted = B)

count(actual = A)
(6.8)

The transition probability is computed from the confusion matrix with the ratio between

mat[actual=A][predicted=B] and the sum of the elements in the row related to the objects

with actual class A, as shown in the right half of figure 6.5.

Figure 6.5: Transition and label probabilities computed on the training set confusion ma-
trix.

85

6 – The Smart Algorithm

6.5 Building the histograms

We have seen in chapter 5 how the the neural network results are stored into the

trainingSet.cnnr and testSet.cnnr files in the form of ClassifiedScenery. Each

classified scenery contains for every object the bounding boxes coordinates and the clas-

sification scores. Starting from this data and using the procedures defined in section 6.3,

the histogram computation considers all the possible couples of objects belonging to a

scenery and computes a value for each feature type. This procedure generates many triplet

instances of the type:

< subject, featureType, reference > = value

For every triplet instance the system retrieves the rule with its histogram:

< subject.label, featureType, reference.label > = hist

Afterwards it adds an occurrence to the histogram element corresponding to the computed

feature value. At the end of the process we obtain the statistics about the object pairs into

the training set. The algorithm works as follows.

Algorithm 5 Histogram computation
procedure computeHistograms

for all scenery ∈ trainingSet do
for all subj ∈ scenery.objects do

for all ref ∈ scenery.objects, ref ̸= subj do
for all featureType ∈ featureTypes do

subjL← subj.label
refL← ref.label
triplet← <subjL, featureType, refL>
histogram← histograms[triplet]
value← computeValue(<subj, featureType, ref>)
histogram[value]++

Suppose an example with two objects lamp1 and ceiling1. The computeValue() method

produces the feature values. Let’s focus for example to ”yPosition=below”. The object

86

6 – The Smart Algorithm

histograms is encoded with a Java Map which can retrieve the histogram given a triplet.

In our case:

histograms[<lamp, yPosition, ceiling>]

could return something like histogram = [below, same, above][55, 12, 0].

The line histogram[value] selects the element corresponding to the computed feature

value; in our example histogram["below"] returns 55. The selected element is then

incremented with a new occurrence:

[below, same, above][56, 12, 0]

6.6 Smart Rules application

In this section we present how the system will apply the learned rules and histograms to

improve the convolutional neural network results. We will explain the algorithm in steps,

with two different approximation levels. The process works, one scenery at a time, with

the objects classified by the convolutional neural network. These are encoded with the Java

object ClassifiedROI. We introduce some notations that will be used in the pseudocode

shown later.

Global lists:

labels = list of all the possible class labels (18 in our experiments)

Sceneries and objects:

scenery.objects = list of the objects (classifiedROI) into the scenery

obj.predicted = label predicted by the CNN for the object

obj.score[label] = predicted CNN score for the specified label

87

6 – The Smart Algorithm

Statistics:

jaccard[A,B] = Jaccard coefficient of the two classes

pLab[A, B] = label probability P (actual = A | predicted = B)

pTrans[A, B] = transition probability P (predicted = B | actual = A)

Histograms:

histograms[triplet] = histogram associated to the triplet.

h[featureValue] = histogram element related to the specified feature value

h.length = histogram length, equal to the number of feature values

6.6.1 The main loop

The main idea behind the algorithm is to apply a correction considering as subject one

object at a time and comparing it with the other elements in the scenery. At each iteration,

the class scores of the selected subject are updated by exploiting the information of the

Smart-Rules.

Algorithm 6 Smart-Rules Application
procedure applySmart(scenery)

for all subject ∈ scenery.objects do
updatedSubject← applyToSubject(subject)
outputScenery.put(updatedSubject)

return outputScenery

The procedure applyToSubject(subject) generates the new subject with the updated

class scores. This method internally selects as reference the other objects in the scene, one

at a time, generating all the possible pairs <subject, reference>. Afterwards, it performs

the correction using the generated couples and the statistics collected into the histograms.

Once the subject has been updated, its newer version is inserted into the outputScenery,

which is the result produced by the algorithm.

88

6 – The Smart Algorithm

6.6.2 Smart Algorithm: first approximation

Now we can analyze how the procedure applyToSubject() is defined. This method

works always with the same subject, which is going to be updated. The references will

remain untouched. The algorithm picks one class at a time and pretends the subject belongs

to this one. With this idea in mind we extract the relative features between the subject

and the reference objects. If these are consistent to the statistical information learned by

the histograms, then the score relative to the pretended class of the subject is increased,

otherwise it is penalized. In this way the adjustments will support the most probable classes

and oppose to the others. If the re-balancing of the scores is sufficient, the result will be a

change of the predicted class for the subject.

Figure 6.6: Feature extraction for all the pairs composed by the subject and the other objects
considered as reference.

The algorithm described informally above is composed by two nested loops. The outer

one selects the class pretended by the subject. Instead, the inner cycle computes the cor-

rections for all the possible references. The relative features between the subject and the

reference are extracted with the computeValues() method. This produces a Java Map

containing for each feature type the corresponding value. The accumulate() procedure

takes as input the pretended label of the subject, the class predicted by the neural net-

work and the feature values. By comparing the features with the information stored into

the histograms, it produces a value that we call decision, represented in figure 6.7 with the

bold arrows. The arrows supporting the pretended class point up, while the others point

89

6 – The Smart Algorithm

Figure 6.7: The rows in the table represent the pretended classes of the subject (outer
loop), while the columns specify the reference used to compute the decisions (inner loop).
The arrows pointing up are supporting the pretended class, while the ones pointing down
are penalizing it. Finally, the last column represents the average of the previous decision
values.

down. Once all the references have been presented to the accumulate() method, we call

apply() to obtain the average decision and update the subject score. If the most part of

the decisions was in favour of the pretended label then the score is increased, otherwise

decreased. Before returning the result, the subject scores are processed with the softmax

function to obtain a vector whose elements add up to one.

Algorithm 7 Smart Algorithm, first approximation
procedure applyToSubject(subj)

var updatedSubj ← subj.clone()
for all subL ∈ labels do

var corr ← emptyCorrection
for all ref ∈ scenery.objects, ref ̸= subj do

var values← computeValues(subj, ref)
var refL← ref.predicted
corr.accumulate(subL, refL, values)

updatedSubj.score[subL] ← corr.apply(subj, subL)

updatedSubj.scores← softmax(updatedSubj.scores)
return updatedSubj

90

6 – The Smart Algorithm

6.6.3 Smart Algorithm: complete version

The algorithm presented in the previous section makes an assumption: the label refL

conferred by the CNN to the reference is correct. This might be not true and could influence

negatively the functioning of the procedure, as it could bring the correction in a wrong

direction. To overcome this issue we applied the rules considering for the reference not only

the class predicted by the neural networks, but all the possible labels with their associated

score.

Given a pair subject-reference the algorithm selects one class at a time for the reference.

Afterwards it computes a decision value using the histograms. The decisions are weighted

with the probability that the class assigned to the reference is correct, then averaged. We

call this as the inner average because it belongs to the inner loop. The outer average is

instead computed with the mean of the inner averages, after all the references have been

analyzed. Figure 6.8 depicts the difference between inner and outer average.

Figure 6.8: Inner and Outer average. The upper table shows how the inner weighted average
is computed among the possible reference labels. In particular the weight for lamp is very
high and the result takes in consideration almost only this class. The inner average for
reference-1 is then inserted in the second table, where the outer average is computed.

91

6 – The Smart Algorithm

The weights of the inner average are computed with the class scores assigned by the

neural network and the label probabilities defined in section 6.4.3. The value weights[i]

is index of how likely the reference belongs to class i. It is computed with the product

between the class score and the probability P(actual = i | predicted = ref.predicted), which

is learned from the training set. The vector containing the weights is then scaled until its

values add up to one. The pseudocode to compute the weights is shown in algorithm 8.

Algorithm 8 Reference Weights Computation
procedure computeWeights(ref)

for all i ∈ labels do
weights[i]← ref.score[i] · pLab(i, ref.predicted)

sum← sum(weights)
for all i ∈ labels do

weights[i] /= sum
return weights

Resuming the working principles of the algorithm, one subject at a time is selected to

apply the correction. The subject pretends to belong to a particular class and it is compared

with the other objects. For each of these references the system computes the decisions

related to every possible class label and obtains the inner average. The calculated values

are then collected to retrieve the outer average. This last number is used to actually correct

the subject score relative to its pretended class.

We describe now the procedure more in detail. The pseudocode is composed by three

loops. The the most inner one selects the possible classes for the reference. For each of

them a decision value is computed by calling the accumulate() method. When the loop

is terminated the method nextReference() is invoked and the Correction object per-

forms the inner average of the accumulated decisions. The middle loop runs through the

references found into the scenery and when it is completed the outer average is performed

calling the apply() method. Finally, the outer cycle is the one responsible for selecting

the subject labels. The pseudocode is shown in algorithm 9.

92

6 – The Smart Algorithm

Algorithm 9 Smart Algorithm, complete version
procedure applyToSubject(subj)

var updatedSubj ← subj.clone()
for all subL ∈ labels do

var corr ← emptyCorrection
for all ref ∈ scenery.objects, ref ̸= subj do

var values← computeValues(subj, ref)
var weights← computeWeights(ref)
for all refL ∈ labels do

corr.accumulate(subL, refL, values, weights[refL])
// inner-average
corr.nextReference()

// outer-average
updatedSubj.score[subL] ← corr.apply(subj, subL)

updatedSubj.scores← softmax(updatedSubj.scores)
return updatedSubj

6.7 Score computation

We have described in detail the working principles of the Smart Algorithm. The last

important module to be explained is the Correction object, which actually updates the

subject scores. Its life cycle starts when the pretended label subL is decided and termi-

nates as the update is applied to the subject. The local variables of the Correction object

store the values necessary to build the inner and the outer averages. The former is com-

puted using the variables whose name starts with the prefix "inner", while the latter uses

variables with the prefix "outer".

We distinguish between positive and negative decisions, which were depicted by arrows

pointing up or down in the graphical representation of figure 6.7 and 6.8. The variables

associated to positive decisions have the suffix "pos", while the negative ones have the

suffix "neg". The innerSum and outerSum variables are the denominators of the two

averages.

93

6 – The Smart Algorithm

Algorithm 10 The Correction object
// Initialization: empty Correction
var innerPos← 0
var innerNeg ← 0
var innerSum← 0

var outerPos← 0
var outerNeg ← 0
var outerSum← 0

procedure Correction.accumulate(subL, refL, values, weight)
var positiveRules← 0
var negativeRules← 0
var countRules← 0

for all feat ∈ values do
hist← histograms[<subL, feat.type, refL>]
jacc← jaccard(subL, refL)
score1← (hist[feat.value] - 1/hist.length) · jacc
if score1 > 0 then

positiveRules += score1
else

negativeRules += score1
countRules++

innerPos += (positiveRules / countRules) · weight
innerNeg += (negativeRules / countRules) · weight
innerSum += weight

procedure Correction.nextReference
// Inner-average
innerAvgPos = innerPos / innerSum
innerAvgNeg = innerNeg / innerSum

outerPos += innerAvgPos
outerNeg += innerAvgNeg
outerSum ++

innerPos← 0
innerNeg ← 0
innerSum← 0

94

6 – The Smart Algorithm

As shown in algorithm 10 the accumulate() method takes as parameters the pre-

tended label of the subject (subL), the label selected for the reference, its associated weight

and the Map<> of computed feature values. For each entry <FeatureType, FeatureValue>

in the Java Map, the algorithm creates the triplet instance:

<subL, feat.type, refL> = feat.value

Afterwards, the histogram related to the triplet is extracted into the variable hist. With

the instruction hist[feat.value] the algorithm selects the histogram element related to

the feature value. This is normalized in the range 0-1 and refers to percentage of object

pairs in the training set which satisfy the relationship described by the triplet instance.

To discriminate between positive and negative decisions we have to define a threshold

and compare it with hist[feat.value]. A histogram with maximum impurity presents

all the elements with the same value. Since they represent percentages and they add up

to one, these values are equal to 1/hist.length. If the selected histogram element is

greater than this threshold, then it is sufficiently high to be considered as positive decision.

According to this reasoning we compute the difference:

hist[feat.value] - 1/hist.length

If it is greater than zero, the value is added to the positive decisions, otherwise to the neg-

ative ones. To weight the importance of the rules, each decision value is multiplied by the

Jaccard coefficient of the two classes involved in the relationship. Once all the features have

been analyzed, the positive and the negative rules are averaged, multiplied by the weight

associated to the reference label and added to the variables innerPos and innerNeg re-

spectively. When the nextReference() method is called, the inner average is computed

dividing innerPos and innerNeg by the sum of the weights stored into innerSum. These

inner averages are accumulated to the outerPos and outerNeg variables.

95

6 – The Smart Algorithm

Algorithm 11 Rule Application
procedure Correction.apply(subj, subL)

// Outer-average
outerAvgPos = outerPos / outerSum
outerAvgNeg = outerNeg / outerSum

if Method == 1 then
p = pLab(subL, subject.predicted)

else if Method == 2 then
p = pTrans(subL, subject.predicted)

finalCorrection = (outerAvgPos+ outerAvgNeg) · gain1 − bias

if finalScore > 0 then
retval = subj.score[subL] + (p) · finalCorrection

else
retval = subj.score[subL] + (1− p) · finalCorrection

return gain2 · retval

Finally, the apply() method actually elaborates the new score for the subject. To

achieve this task the outer average is computed separately for the positive and the negative

decisions into outerAvgPos and outerAvgNeg. At this point, the algorithm considers two

methods which differ from the choice between using the label probability or the transition

probability. They both are capable of estimating how likely we could have a change from

the predicted label to subL. The variable p contain either of these two values.

The final correction is computed by adding together the positive and the negative de-

cisions, since they are opposite in sign. To make this value effective for the score update, a

gain and a bias are added. These are the parameters of the algorithm and must be manually

tuned. A positive final correction means that the majority of the decisions support the sub-

ject label. In this case, the subject score is updated with the correction multiplied by the

probability p. Instead, when the final correction is negative, it is multiplied by 1-p which

is the probability for the subject of maintaining its original label. The result is amplified

with gain2, necessary to have bigger numbers before applying the softmax function.

96

Chapter 7

Results

7.1 Evaluation of the Smart Algorithm

In the previous chapter we presented how our model learns the contextual information

from the training set and the way it uses the Smart-Rules to correct the neural network pre-

dictions. We applied the algorithm to the 510 sceneries of the dataset, already labeled by

the convolutional neural network that we presented in chapter 5. Maintaining the same 10

partitions for the cross-validation technique, we trained 10 Smart Models. Each was eval-

uated on the related test set and the results were collected into a single confusion matrix.

In this way we can easily compare the improvement brought from the Smart Algorithm

with respect to the baseline model composed only by the neural network.

Our model is quite fast, indeed to apply the CNN to all the sceneries it took about ten

minutes, while few seconds to perform the Smart correction. After tuning properly the

parameters of the apply() method in the Correction object we obtained some remark-

able results. We succeeded in improving the accuracy of the 10% with respect to the base

CNN-only model, with an increasing of the 7% for the mAP score.

As anticipated in section 6.7 we designed two methods to compute the correction into

the apply method. The first one defines the value p, which specifies how likely the subject

97

7 – Results

will change its predicted class, with the label probability:

P(actual=A | predicted=B)

The second one defines p with the transition probability:

P(predicted=B | actual=A)

After trying the method-1 we obtained a very low F1 for the class oven. The neural network

is very imprecise with this class and the Smart Model didn’t manage to improve the results.

We noticed from the confusion matrix that the most of the ovens were confused with chairs

by the CNN. When the Smart Model selects oven as the pretended class of the subject, if

the label predicted by the neural network is chair we would like to have a high value of p

in order to encourage the transition from chair to oven. This requirement is not satisfied

with the label probability P(actual=oven | pred=chair). Indeed, the class chair has many

more samples than oven and for this reason the ratio:

count(actual = oven ∩ pred = chair)

count(pred = chair)

has always a low value. In other words the label probability counts the percentage of objects

which actually belong to the class oven among those with predicted class chair. Since we

have many chairs and few ovens, this value is always low.

Instead, when using the transition probability the denominator is defined with the num-

ber of objects whose actual class is oven:

count(actual = oven ∩ pred = chair)

count(actual = oven)

In other words, this ratio refers to the percentage of ovens which have been classified as

chairs. This new value is independent from the number of chairs and gives better results.

Another attempt we tried to improve the F1 of the classes with smaller cardinality was

to avoid correcting objects whose predicted label has a low recall in the confusion matrix.

In the apply() method we just added a condition which leaves untouched the score if the

98

7 – Results

recall of the predicted class is lower than a threshold. In this way we avoid the Smart-

Algorithm to reduce the recall for classes like oven, which are hardly recognized by the

neural network. We obtained a slight improvement of the average F1 and a loss of accuracy.

Choosing between the two method depends to a trade-off between accuracy and F1, but

the differences are very small. The table below shows the scores for the neural-network-

only method, the improvement with the application of method-1 and and the results with

method-2.

Measure Before (%) After 1 (%) Delta 1 (%) After 2 (%) Delta 2(%)

mAP 44.77 52.43 + 7.66 51.50 + 6.72
accuracy 47.49 57.77 + 10.28 57.51 + 10.02
avg Precision 44.66 54.13 + 9.47 51.45 + 6.80
avg Recall 48.44 50.93 + 2.49 51.65 + 3.22
avg F1 43.11 50.18 + 7.07 50.62 + 7.50

Table 7.1: Smart Model - final results.

In the next two section we will present a set of tables with the evaluation for the in-

dividual classes. Firstly we show the difference cell-by-cell between the confusion matrix

before and after the application of the Smart Model. A cell with a positive number means

that new samples were added by the algorithm. A negative number specifies that some

objects were removed and positioned to another cell. The model works properly when we

obtain positive numbers only on the main diagonal, where the actual class is equal to the

predicted one. The other tables represent the variation of the precision, recall and F1 scores

for the single classes. Positive values represent an improvement with respect to the base

model.

99

7 – Results

7.1.1 Method-1, results

Figure 7.1: Method-1, Confusion Matrix. Actual class on the vertical axis, predicted on
the horizontal one.

Figure 7.2: Method-1. Evaluation metrics separated by class.

100

7 – Results

7.1.2 Method-2, results

Figure 7.3: Method-2, Confusion Matrix.

Figure 7.4: Method-2. Evaluation metrics separated by class. Note the improvement of the
F1 with respect to method-1, in particular for the classes door and oven.

101

7 – Results

7.2 Smart Algorithm - Illustrated Examples

In the following illustrations we show some examples of classified sceneries. The im-

ages to the left represent the results with the baseline model, while the ones to the right

depict the same scenery after the application of the Smart Algorithm. For each bounding

box we show the corresponding class label and confidence value. Blue regions represent

the objects correctly classified by the baseline model. Instead, the red regions have been

assigned to a wrong class label. The green rectangles into the right images represent the

objects whose label was incorrect with the baseline model and which were correctly up-

dated by the Smart Algorithm.

Figure 7.5: Example 1. We can notice in the left image that the keyboard (1) and screen (2)
objects are clearly out of context, since they more likely appear in the office sceneries and
not into kitchens. Also object (3) is incorrect because too small for being a window. Object
(1) and (2) were correctly converted to the plant class. Instead, object (3) was updated to
the ceiling lamp label because it is near to the ceiling: the reasoning is correct, but in this
case brings to an error as the actual label would have been plant.

102

7 – Results

Figure 7.6: Example 2. In this picture we can notice the transition between surface and floor
for object (1), motivated by its position to the bottom of the image. The window object (2)
was already correct with the baseline model, but after the Smart Algorithm application
has increased its confidence.

Figure 7.7: Example 3. The example shows an office scenery where the algorithm suc-
ceeded in updating object (1) from oven to screen.

103

7 – Results

Figure 7.8: Example 4. Kitchen scenery: chair, plant and ceiling lamp were correctly rec-
ognized by the Smart Algorithm.

Figure 7.9: Example 5. Object (1) is near to a screen and its label is more likely a keyboard
than a sink.

104

Chapter 8

Conclusions

8.1 Summary

The aim of this thesis was to develop a new algorithm which could exploit semantics to

enhance deeplearning models in the field of computer vision. We have presented in the first

chapters the common challenges for image understanding and object recognition, pointing

out the difference between classification and detection. These methods require standard

measures to be evaluated and compared, in particular we described the mAP score which

was used in the Pascal VOC contest for object detection. Modern models try to achieve

these tasks by using deeplearning techniques, such as the convolutional neural networks.

These can solve the issue with feature extraction and can work directly on the raw pixel

of the image. To understand how convolutional neural networks can perform the image

processing we explained the concept of tensors, which can represent multidimensional

data or multi-channel pixel arrays. By analyzing the input tensors, the neural networks let

data flow through their layers and transform the information into more abstract features.

The last fully connected layer actually performs the classification.

We trained some CNN architectures on the Sun09 dataset, over 510 indoor sceneries

with 18 class labels. To improve the performances, the context layer was added. The BGRC

105

8 – Conclusions

format adds the information about the real shape and position of the object into the scenery.

This helps the convolutional neural network which is a local model and it is not able to

consider the whole scene. We learned that since our dataset is small the results cannot be

very accurate, but they could be enhanced with the usage of semantics.

The novel method proposed in our thesis is called Smart Model. This uses the con-

textual information related to the objects inside a single scenery and corrects the CNN

predictions. To achieve this task we defined some relative features between object pairs.

They involve characteristics like size, position and luminosity. For each pair of objects

the model tries to guess a correction of the predicted class label. The class scores update

is based on the statistical information stored in the histograms, which are built by ana-

lyzing the training set sceneries. We obtained a method which improves the accuracy of

about the 10% with respect to the baseline model. The algorithm is also quite fast, since

its application on the 510 sceneries takes only few seconds on a common laptop.

8.2 Future Works

The Smart Algorithm presented in this thesis can really increase the accuracy of a pure

CNN based model. There are many possibilities to improve our system and extend its us-

age to other state-of-the-art deeplearning model, instead of applying it to a small custom

network. The main limit was the Sun09 dataset, which seemed great at the beginning of our

work, but revealed quite small during the experiments. A better idea would be to use for

example the state-of-the-art SegNet as the baseline model. This is a deeplearning network

for pixelwise labeling of the input image, presented in CVPR 2015 [12]. There is an avail-

able instance pre-trained on the Sun RGB-D dataset, with labeled indoor sceneries [18].

The images in this dataset are captured with 3D cameras and contain a depth map which

could be exploited to enhance the Smart Rules and create new types of relative features.

The pixelwise segmentation obtained as output from SegNet presents some noise, like

small isolated regions labeled with an incorrect class. The semantic model should remove

106

8 – Conclusions

this noise and use the contextual information to correct the label predictions. Instead of

looking at the rectangular bounding boxes, we could also try to retrieve information from

the actual shape of the classified regions. It could be interesting trying to generate a 3D

reconstruction of the scene starting from the segmented image and merging it with the

depth map. The reconstruction could be enhanced with the semantical data computed with

our Smart Model.

107

Bibliography

[1] Stanislas Dehaene, Coscienza e cervello. Come i neuroni codificano il pensiero,

Scienza e Idee, Raffaello Cortina Editore, 2014.

[2] Myung Jin Choi, Joseph J. Lim, Antonio Torralba, Alan S. Willsky, Exploiting Hier-

archical Context on a Large Database of Object Categories, Massachusetts Institute

of Technology, CVPR 2010.

[3] Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin, ”Why Should I Trust You?”

Explaining the Predictions of Any Classifier, KDD 2016.

[4] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with

Deep Convolutional Neural Networks, NIPS, 2012.

[5] Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-

Scale Visual Recognition, ICLR, 2015.

[6] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, Going deeper

with convolutions, CVPR, 2015.

[7] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies

for accurate object detection and semantic segmentation, CVPR, 2014.

[8] Ross Girshick, Fast R-CNN, ICCV, 2015.

[9] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks, NIPS, 2015.

[10] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You Only Look Once:

108

Bibliography

Unified, Real-Time Object Detection, CVPR, 2016.

[11] George Papandreou, Liang-Chieh Chen, Kevin P. Murphy, Alan L. Yuille, Weakly-

and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image

Segmentation, ICCV, 2015.

[12] Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla, SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2017.

[13] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, Pyramid

Scene Parsing Network, CVPR, 2017.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li and Li Fei-Fei, ImageNet:

A Large-Scale Hierarchical Image Database, Dept. of Computer Science, Princeton

University, USA, CVPR, 2009.

[15] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, Andrew

Zisserman, The PASCAL Visual Object Classes (VOC) Challenge, International Jour-

nal of Computer Vision, 2010.

[16] Mark Everingham, John Winn, The PASCAL Visual Object Classes Challenge 2012

(VOC2012) Development Kit, May 18, 2012.

[17] Nathan Silberman, Rob Fergus Indoor Scene Segmentation using a Structured Light

Sensor, ICCV, 2011.

[18] Shuran Song, Samuel, P. Lichtenberg, Jianxiong Xiao, SUN RGB-D: A RGB-D Scene

Understanding Benchmark Suite, Princeton University, CVPR, 2015.

[19] Gaurav Kumar, Pradeep Kumar Bhatia, A Detailed Review of Feature Extraction

in Image Processing Systems, Advanced Computing & Communication Technologies

(ACCT), 2014.

[20] Dong ping Tian, Baoji, Shaanxi, A Review on Image Feature Extraction and Repre-

sentation Techniques, International Journal of Multimedia and Ubiquitous Engineer-

ing, 2013.

[21] Rajkumar Goel, Vineet Kumar, Saurabh Srivastava, A. K. Sinha, A Review of Feature

109

Bibliography

Extraction Techniques for Image Analysis, ICACTRP, 2017.

[22] Martìn Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat

Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viègas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng, TensorFlow: Large-Scale Machine Learning

on Heterogeneous Distributed Systems, 2015.

[23] John Duchi, Elad Hazan, Yoram Singer, Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization, Journal of Machine Learning Research 12,

2011.

[24] Zeiler, Matthew D, ADADELTA: An adaptive learning rate method, arXiv, 2012.

[25] Diederik P. Kingma, Jimmy Lei Ba, Adam: A Method for Stochastic Optimization,

arXiv, 2014.

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan

Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks from Overfitting,

Journal of Machine Learning Research 15, 2014.

[27] Chenxia Wu, Ian Lenz and Ashutosh Saxena, Hierarchical Semantic Labeling for

Task-Relevant RGB-D Perception. Department of Computer Science, Cornell Univer-

sity, USA. Robotics: Science and Systems (RSS) 2014.

110

		Politecnico di Torino
	2017-10-15T20:58:34+0000
	Politecnico di Torino
	Elena Maria Baralis
	Tesi 224135

