Politecnico di Torino (logo)

Acoustic optimization of urban façades in the preliminary stages of the project

Roberto Manca

Acoustic optimization of urban façades in the preliminary stages of the project.

Rel. Arianna Astolfi, Louena Shtrepi, Cristina Calleri. Politecnico di Torino, Corso di laurea magistrale in Architettura Costruzione Città, 2017



Nowadays, acoustics is still problematic when talking about its relation to architecture. In most cases architectural projects consider interior sound quality and reduction of noise pollution as a secondary aspect to solve in the design process of a project. This attention is usually limited to indoor environments using simple geometries and materials variations. Very few studies have investigated the outdoor environments and the issues related to the acoustics when dealing with an urban scale, i.e. a street or square or even a whole city considering buildings design as a possible solution. The noise pollution is a real problem that could be faced from the architects in the very beginning of their projects. This thesis wants to be a step forward in the connection of the acoustic and architectural aspects through a helpful tool for the planner, the designer, the architect to approach acoustics in a project. First, a detailed analysis of the design process and workflow has been performed to understand how and when the acoustic aspects should be introduced. In most cases the preliminary phase of the project results the most suitable. Second, a case study has been selected based on some criteria, i.e. high noise level neighborhood, narrow street that is likely to enhance the "canyon effect’’ and new building on which modifications of the facades are likely to be applicable. A portion of the street has been modelled in a parametric way through Rhinoceros and Grasshopper, and acoustic simulations have been performed through an acoustic software integrated in Rhinoceros, i.e. Pachyderm Acoustic Simulation. Finally, the design of the façade materials has been investigated aiming at the noise sound level reduction on the street and façade levels compared to the real conditions. Results are shown in six projects realized using the procedure explained in this thesis. The first two projects are considering only materials changing on the building. The others are considering materials and geometries changes obtaining interesting results.

Relators: Arianna Astolfi, Louena Shtrepi, Cristina Calleri
Publication type: Printed
Subjects: A Architettura > AO Design
S Scienze e Scienze Applicate > SA Acustica
Corso di laurea: Corso di laurea magistrale in Architettura Costruzione Città
Classe di laurea: New organization > Master science > LM-04 - ARCHITECTURE AND ARCHITECTURAL ENGINEERING
Aziende collaboratrici: UNSPECIFIED
URI: http://webthesis.biblio.polito.it/id/eprint/6193

1 Introduction

1.1 The gap between architecture and acoustics

1.2 Noise pollution and canyon effect in cities

1.3 Design process

1.4 Thesis organization

1.5 References

2 Foundations and software

2.1 Foundations

2.1.1 Energy transmitted, absorbed, reflected

2.1.2 Absorption coefficient

2.1.3 Scattering coefficient

2.1.4 Reverberation time

2.1.5 Sound pressure level (SPL)

2.1.6 Digital ray tracing

2.1.7 Image source

2.1.8 Geometrical model

2.2 Rhinoceros

2.3 Grasshopper

2.4 Pachyderm Acoustical Simulations

2.5 References

3 Case study and workflow

3.1 Case study - via Saluzzo 29

3.2 The workflow

3.2.1 The algorithm procedure in a project flow

3.2.2 About a global approach in the workflow Framework of necessities Programmatic framework Planning framework Environmental framework

3.2.3 Design step and validation step

3.2.4 Approvation References

4 Mapping, metric survey and RDF software

4.1 Mapping procedure

4.2 About the metric survey

4.3 References

4.4 Appendix A - Mapping Appendix B - RDF software

5 3D model and acoustics survey

5.1 Realization of the 3D model

5.2 Acoustics survey

5.3 References

5.4 Appendix C - Acoustics survey Appendix D - Starting the algorithm

6 3D model calibration

6.1 How the 3D model has been calibrated

6.2 Reverberation time

6.3 Sound pressure level

6.4 Appendix E - Acoustics calibration

7 Final algorithm, results, future proposals

7.1 Final algorithm

7.2 Weighting curve A

7.3 Standard deviation and variance

7.4 Results

7.5 Future proposals

7.6 Appendix F - Algorithm

General bibliography




Alvaro, J.E., Azkorra, Z., Bures, S., Cabeza, L.F., Coma, J., Erkoreka,

A Urrestarazu, M. (2015) Evaluation of green walls as a passive

acoustic insulation system for buildings. Applied Acoustics, 89(03), 46-56. https://doi.org/10.1016/j.apacoust.2014.09.010

Andriejauskas, T., Fiks, B., Jagniatinskis, A., Vaitkus, A., Vorobjovas, V., & Zofka, E. (2017). Asphalt wearing course optimization for road traffic noise reduction. Construction and Building Materials, I52( 10), 345-356. https://doi.Org/10.1016/j.conbuildmat.2017.06.130

Barducci, I. (1992). Acustica applicata. (2nd ed.). Milan, IT: Masson, ESA.

Bettarello, F., Caniato, M„ Fausti, P., Ferluga, A., Granzotto, N., Marsich, C., & Schmid, C. (2016). Energy and acoustic performances of windows and their correlation. Energy and Buildings, 136(02), 189- 198. https://doi.org/10.1016/j.enbuild.2016.12.024

Blyth, A., & Worthington, J. (2007). Il progetto e il committente. La pratica del briefing per la gestione del processo progettuale (Fontana C, Trans.). Napoli, IT: Sistemi Editoriali.

Botteldooren, D., Sanchez, G.M.E., & Van Renterghem, T. (2015). The influence of urban canyon design on noise reduction for people living next to roads. Paper presented at the EuroNoise 2015 Conference, Maastricht, NL.

Botteldooren, D., Sanchez, G.M.E., Thomas, P., & Van Renterghem, T. (2015). The effect of street canyon design on traffic noise exposure along roads. Building and Environment, 97(02), 96-110. https://doi. org/10.1016/j.buildenv.2015.11.033

Campioli, A., & Molinari, C. (1994). Formazione per il progetto progetto della formazione. Metodi, tecniche e nuovi operatori per una gestione innovativa dell'attività progettuale. Milano, IT: Angeli.

Can, A., Fortin, N., & Picaut, J. (2015). Accounting for the effect of diffuse reflections and fittings within street canyons, on the sound propagation predicted by ray tracing codes. Applied acoustics, 96(09), 83-93. https://doi.org/10.1016/j-apacoust.2015.03.013

Caracciolo, P.F. (2017, May 09). Basta fracasso, a San Salvano colletta anti-rumore per fare causa al Comune. La Stampa. Retrieved from http://www.lastampa.it/2017/05/09/cronaca/quartieri/san- salvario/basta-fracasso-a-san-salvario-colletta-antirumore-per-fare- causa-al-comune-P9Lwsc4Y4F3kB6GOtdGWCJ/pagina.html(last visit 10.09.2017).

Casini, M. (2009). Costruire l'ambiente. Gli strumenti e I metodi della progettazione ambientale. Milano, IT: Edizioni Ambiente.

Cox, J.T., & D’antonio, P. (2009). Acoustic Absorbers and Diffusers. Theory, design and application (2nd ed.). Abingdon, UK: Taylor & Fransis.

Editorial staff (2016, May 26). Movida fracassona, a San Salvario arrivano 4 telecamere di ultima generazione. Retrieved from http:// www.torinotoday.it/cronaca/telecamere-movida-san-salvario- largo-saluzzo.html (last visit 10.09.2017).

Forssén, J., Hornikx, M„ Kang, J„ & Smyrnova, Y. (2012). Effect of vegetation on noise propagation in streets and squares. Proceedings of the Institute of Acoustics. Environmental Noise Propagation 2012: Definitions, Measuring and Control Aspects, 34 (03), 57-67. Retrived from httpV/publications.lib.chalmers.se/publication/l 67611 -effect- of-vegetation-on-noise-propagation-in-streets-and-squares (last visit 10.09.2017)

Guccione, G., & Martinenghi, S. (2013, July 09). Inchiesta della procura sulla movida di San Salvario. Retrieved from http://torino.repubblica. it/cronaca/2013/07/09/news/inchiesta_della_procura_sulla_ movida_di_san_salvario-62641065/ (last visit 11.09.2017).

Horoshenkov K.V., & Hothersall D.C. (1999). Scale modelling of sound propagation in a city street canyon. Sound and Vibration, 223 (06), 795-819. https://doi.org/10.1006/jsvi. 1999.2157

Khabazi, Z. (2012). Generative Algorithms (using Grasshopper). Retrieved from https://issuu.com/zubinkhabazi/docs/generative_ algorithms

Katz, B.F.G., Lokki, T., & Patynen, J. (2011). Investigations on the balloon as an impulse source, in JASA Express Letters, The Journal of the Acoustical Society of America, 729(1), 27-33. https://doi. org/10.1121/1.3518780

Katz, B.F.G., & Postma B.N.J. (2015) Creation and calibration method of acoustical models for historic virtual reality auralizations. Virtual Reality, 19(10), 161-180. https://doi.org/10.1007/sl0055-015-0275-3

Kuttruff, H. (2000). Room Acoustics (4th ed.). London, UK: Spon Press. Li, K.M., & Cheung Lai, C.Y. A note on noise propagation in street canyons. The Journal of the Acoustical Society of America, 126(08), 644-655. http://dx.doi.org/10-l 121/1.3158599

Miljkovic, M., & Radenberg, M. (2011). Thin noise-reducing asphalt pavements for urban areas in Germany. International Journal of Pavement Engineering, 73(04), 569-578. http://dx.doi.0rg/lO.lO8O/l0298436.2011.569028

Paje, S.E., Vazquez, V.F. (2016). Study of the road surface properties that control the acoustic performance of a rubberised asphalt mixture. Applied Acoustics, 702(01), 33-39.https://doi.Org/10.1016/j.apacoust.2015.09.008

Peters B. (2009). Parametric Acoustic Surfaces, in Sterk,T.D.,Loveridge, R., & Pancoast D. (Eds.), ReForm. Proceedings of the ACADIA 2009 Conference (pp. 174-181).

Rosaspina E. (2017, July 4). Torino e i «deportati» della movida. Retrived from http://www.corriere.it/cronache/17_luglio_04/torino-deportati- movida-largo-saluzzo-san-salvario-estate-inchiesta-6eOd87be- 60cc-l 1 e7-b845-9e35989ae7e4.shtml (11.09.2017).

Tedeschi, A. (2014). AAD_Algorithms-aided design. Parametric strategies using Grasshopper. Brienza, IT: Le Penseur.

Vorländer, M. (2008). Auralization. Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Aechen, DE: RWTH edition.

Vorländer M., & E. Mommertz (2000). Definition and measurement of random-incidence scattering coefficients. Applied Acoustics, 60(2), 187-199. DOI: 10.1016/S0003-682X(99)00056-0


ALLPLAN (n.d.). Software house. Retrieved from https://www.allplan. com (last visit 25.08.2017).

Arpa Piemonte (n.d.). Official web page of Arpa Piemonte. Retrieved from http://www.arpa.piemonte.gov.it (last visit 05.09.2017).

Autodesk Inc. (2017). Software house. Retrieved from https://www. autodesk.com (last visit 26.08.2017).

Boya Audio Equipment (2012). BY-MI omnidirectional lavalier specifications. Retrieved from http://boya-mic.com/ lavaliermicrophones/BY-Ml .html (last visit 05.09.2017).

Brüel & Kjcer (n.d.). Sound Power Source type 4205 specifications. Retrieved from https://www.bksv.com/media/doc/bp0264.pdf (last visit 05.09.2017).

Davidson, S. (2017). Algorithmic modeling for Rhino. Retrived from http://www.grasshopper3d.com (last visit 25.08.2017).

Davidson, S. (2017). Grasshopper's list of apps. Retrieved from http://vwAv.grasshopper3d.com/groups/group/list (last visit 28.08.2017).

Graphisoft Se. (2017). Software house. Retrieved from http://www. graphisoft.com/archicad (last visit 26.08.2017).

Heumann, A. (2017). Human plugin webpage. Retrieved from http:// www.grasshopper3d.com/group/human (last visit 25.08.2017).

Meizu Mart (2015). Meizu M3s specifications. Retrieved from https:// www.meizumart.it/it/smartphone/72-meizu-m3s-32-gb-grigio.html (last visit 05.09.2017).

McNeel & Associates (2017). Rhinoceros software. Retrieved from https://www.rhino3d.com/ (last visit 25.08.2017).

McNeel & Associates (2017). Rhinoceros software specifications. Retrived from https://www.rhino3d.com/features (last visit 25.08.2017) .

McNeel & Associates (2017). Software house of Rhinoceros and Flamingo. Retrieved from https://www.mcneel.com (last visit 27.08.2017) .

McNeel Europe S.L. (n.d.). Website of apps for Rhinoceros and Grasshopper. Retrived from http://www.food4rhino.com (last visit 25.08.2017) .

NTI audio (2017). Sound level meter XL2 specifications. Retrieved from http://www.nti-audio.com/en/products/xl2-sound-level-meter. aspx (last visit 05.09.2017).

Rispettando San Salvario association (n.d.) Retrived from http:// www.rispettandosansalvario.it (last visit 12.09.2017).

Simply Rhino (n.d.). Support website of Rhinoceros. Retrived from http://www.simplyrhino.co.uk (last visit 27.08.2017).

Studio Rolla S.r.l (2015). Retrieved from http://www.studiorolla.it (last visit 05.06.2017).

Van Der Harten, A. (n.dPachyderm acoustical simulation software. Retrieved from http://www.perspectivesketch.com/pachyderm (last visit 25.08.2017).

Suono e Vita (n.d.). Presentation of APM tool. Retrieved from http:// www.suonoevita.it/sites/www.suonoevita.it/files/Presentazione%20 apm%20tool%20ITA%20MARZO%202015.pdf (last visit 05.09.2017).

TEAC Corporation (2017). PCM Linear recorder specifications. Retrieved from http://tascam.com/product/dr-05/ (last visit 05.09.2017).

Van Der Harten, A. (n.d.). Pachyderm acoustical simulation software benchmark 1. Retrieved from http://www.perspectivesketch.com/ pachyderm/index.php/pachyderm/benchmarks/ 12-benchmark-1 - ptb-round-robin-3 (last visit 25.08.2017).

Van Der Harten, A. (n.d.). Pachyderm acoustical simulation software benchmark 2. Retrieved from http://www.perspectivesketch.com/ pachyderm/index.php/pachyderm/benchmarks/13-benchmark-2- ptb-round-robin-2 (last visit 25.08.2017).

Modify record (reserved for operators) Modify record (reserved for operators)