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Abstract

Indoor environmental conditions, particularly air temperature and CO, concentration, play a central role
in shaping comfort, health, and energy performance in academic buildings. Despite the widespread
deployment of loT-based monitoring systems, most HVAC systems still operate reactively. This thesis
addresses this gap by developing an explainable, data-driven forecasting framework that predicts short-
term indoor environmental trends and integrates these predictions into a 3D BIM-based visualization
environment for improved decision support. Using approximately 20 months of sensor data from the
Aule R building at Politecnico di Torino, the study evaluates the performance of both machine-learning
and deep-learning methods, including Random Forest, CNN, and LSTM for modeling temperature and
CO, dynamics.

The methodology includes a pipeline of data cleaning, temporal alignment, feature engineering,
multivariate time-series forecasting, and uncertainty estimation. The framework connects predictive
outputs to an innovative dashboard, enabling spatial representation of forecasted indoor conditions
within the building’s 3D model.

The expected outcome is that machine-learning models can provide reliable short-horizon temperature
forecasts by leveraging the temporal structure inherent in indoor sensor data. Furthermore,
explainability tools help clarify the role of key variables, while the BIM-enabled data visualization aims
to offer an intuitive platform for exploring environmental trends and supporting proactive HVAC-related

decision-making.



Chapter 1 — Introduction

1.1 Problem Statement and Background

Indoor environmental conditions, such as air temperature, humidity, and CO, concentration, directly
influence thermal comfort, health, and cognitive performance of building occupants. These aspects are
particularly relevant in educational environments where classroom conditions change rapidly due to
fluctuating occupancy, intermittent ventilation, and variable outdoor weather[1]. Although many
university buildings are equipped with HVAC systems and dense sensor networks, the control logic of
these systems is still predominantly reactive; that is, they intervene only after discomfort conditions or
ventilation inadequacies have already occurred [2, 3]. A predictive approach requires short- to medium-
term forecasts of indoor temperature and CO, levels so that building operations can be proactively tuned

to mitigate discomfort and ventilation inadequacy.

For building data, which is inherently multivariate, nonlinear, and time-dependent, data-driven machine
learning (ML) techniques, especially deep learning architectures such as Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) models, tend to outperform traditional linear approaches
like ARIMA [4, 5, 6, 7]. For short forecasting horizons, CNNs tend to perform well because they capture
quick, high-frequency changes in the data. LSTMs, on the other hand, are generally better at handling
information that depends on patterns stretched over longer periods [6, 8, 9]. Furthermore, integrating
exogenous variables such as outdoor weather conditions and calendar indicators has been shown to
enhance predictive precision in academic research [5, 10]. Concurrently, progress in Explainable Al (XAl),
particularly using SHAP (SHapley Additive exPlanations), provides a mechanism for transparently
interpreting model outputs by quantifying the contribution of specific input features (e.g., lagged

temperature/CO, values, outdoor air temperature, and time-of-day) to the final forecasts [11, 12].

Case Study: Aule R Building

This research is conducted as a real-world case study on Aule R, an academic building at Politecnico di
Torino that is equipped with a long-term loT monitoring system. The building includes eight instructional
spaces (R1-R4 and R1B—R4B), where sensors continuously measure indoor air temperature, CO,
concentration, HVAC setpoints, and outdoor temperature. The dataset used in this thesis comprises
approximately 20 months of 15-minute environmental measurements, providing a high-resolution,
multivariate time series suitable for machine-learning forecasting.

In addition to the sensor infrastructure, Aule R already has a detailed Building Information Model (BIM)
and an interactive Power Bl dashboard developed during a previous internship, where historical

environmental data were linked to the 3D model through the Speckle platform. That system focused on



descriptive visualization of past measurements; in this thesis, it is extended by integrating short-term
forecasts of indoor temperature and CO; into the BIM-Power Bl environment.

Aule R provides an ideal case study for this research because the availability of long-term, high-frequency
sensor data enables robust forecasting, and its BIM model allows spatial visualization of predicted
environmental conditions, also the existing dashboard infrastructure makes it possible to evolve from
descriptive monitoring toward a predictive decision-support tool.

By grounding the analytical framework in a real building with rich data and existing visualization
pathways, this case study demonstrates how forecasting, explainability, and 3D representation can be

integrated into a unified, operationally meaningful workflow.

1.2 Research Questions

This thesis aims to answer the following key research questions:

A. Predictive Capability:
How accurately can short-term indoor variables, especially temperature and CO, concentration,
be predicted for the Aule R building using historical indoor sensor data combined with outdoor
weather information?

B. Model Comparison:
To what extent do the performance characteristics of Random Forest, CNN, and LSTM models
differ across short-term (1-hour) and medium-term (3-hour) forecasting horizons, and which
algorithm offers the most consistent balance between accuracy, robustness, and computational
cost?

C. Interpretability and Feature Influence:
How can SHAP-based interpretability help identify the most influential temporal (lag/rolling)
features contributing to the predictions produced by the best-performing models?

D. Decision-Support Visualization:
How can forecast outputs be integrated within the BIM-linked Power Bl dashboard to provide

intuitive, spatially contextualized visual analytics for building operators and facility managers?

1.3 Objectives

The main objective of this thesis is to design and validate an explainable, data-driven forecasting
framework capable of predicting indoor environmental conditions in Aule R and supporting HVAC-
related decision-making. The study focuses not only on improving prediction accuracy but also on

understanding model behavior and enhancing its practical applicability through visualization.

Specific objectives are:

e Data Acquisition and Preprocessing:



Collect and synchronize 20 months of 15-minute indoor sensor data (temperature and CO,) with
outdoor temperature and HVAC set point information, producing a reliable multivariate time-
series dataset.

Feature Engineering and Selection:

Create a customized set of temporal (lag and rolling) and contextual (calendar) features, and use
statistical feature-selection methods to eliminate redundancy while maintaining predictive
power.

Predictive Modeling:

Implement and compare Random Forest, CNN, and LSTM models for 1-hour and 3-hour
forecasting horizons, analyzing their accuracy, strengths, and limitations within the context of
Aule R’s operational characteristics.

Interpretability Analysis:

Use SHAP values to measure how individual features affect predictions, enabling a more precise
explanation of the model's behavior.

Integration and Visualization:

Integrate the predictive results and uncertainty estimates into the existing BIM-Power BI
dashboard to enable spatially contextual 3D visualization and enhance decision-support

capabilities.



Chapter 2 - Literature Review

2.1 Scope and Structure

This chapter brings together the core ideas and studies that inform the approach taken in this thesis. It
begins with a brief look at the indoor environmental quality (IEQ) standards that apply to educational
buildings, explaining how thermal comfort and indoor air-quality requirements are typically defined in
classrooms and why these criteria matter in practice. The chapter then turns to studies that use data-
driven or machine-learning approaches to forecast indoor temperature and CO, levels, highlighting how
such predictions can support comfort management.

In the following sections, the chapter reviews the deep-learning models that are most frequently used
for multivariate time-series data—particularly CNNs and LSTMs—and discusses the kinds of indoor-
environment patterns they are able to capture. Because the usefulness of predictive models depends
not only on accuracy but also on how well their results can be understood, the chapter also introduces
SHAP as a method for interpreting model behaviour and explaining the role of different input features.

The final part of the chapter shifts from modelling to visualization. Here, the focus is on how predictive
results can be integrated into BIM-based dashboards, allowing forecasted conditions to be explored
directly within a 3D visualization of the building. This combination of prediction, explanation, and spatial

visualization forms the conceptual basis for the framework developed in the thesis.

2.2 IEQ Frameworks and Standards

Indoor environmental quality (IEQ) includes thermal, air quality, visual, and acoustic dimensions. When
it comes to classroom comfort and indoor air quality, ASHRAE 55 and EN 16798-1 explain what counts
as acceptable conditions. They set recommended temperature limits and use CO, levels as a simple
indicator of whether aroom is being ventilated properly [13, 14, 15]. In many studies, CO, concentrations
near 1000 ppm are taken as a signal that a room is not being ventilated enough. It is worth noting,
though, that CO, mainly reflects ventilation effectiveness and should not be interpreted as a direct health
metric [16]. These standards contextualize the forecasting task: anticipating temperature and CO, helps
maintain compliance and occupant comfort under variable occupancy.

Key insight: Educational buildings exhibit rapid fluctuations in IEQ; static HVAC schedules are typically

inadequate, motivating the use of predictive analytics to anticipate and prevent excursions [2,17].

2.3 Data-Driven Forecasting of Indoor Temperature and CO;

Models like ARIMA rely on linear relationships and usually handle only one variable at a time, so they
tend to perform poorly when dealing with the multivariate and nonlinear dynamics that characterize
indoor environmental data [7]. In contrast, Random Forest (RF) and other tree-based methods handle

nonlinearities and mixed features (lags, rolling statistics, calendar/weather) effectively, often serving as



robust baselines with good interpretability [4, 18]. However, tree models require explicit temporal
features to represent memory.

Deep learning learns temporal structure directly from sequences. Comparative studies of campus
buildings show that CNNs often outperform LSTMs for short horizons by capturing localized temporal
patterns, whereas LSTMs excel at longer horizons due to their gated memory [6, 8, 9]. For indoor
temperature, ElImaz et al. (2021) reported CNN-LSTM and CNN dominance at 15-minute resolution [8].
Minassian et al. (2025) ran their tests on several rooms, trying out CNN, LSTM, and a combined CNN-
LSTM model. What they noticed was pretty simple: the results changed a lot depending on how much
past data they fed into the model and whether they added extra information, like the outdoor
temperature. In other words, the choice of history length and external inputs played a big role in how
well the models performed [6]. For CO,, studies emphasize the value of occupancy-related patterns and

weather inputs alongside recent CO, lags to improve forecasts [2].

Design implications for this thesis:

o Use multivariate inputs, including indoor temperature and CO, lags, outdoor temperature, to
capture both thermal and occupancy-related dynamics.

e Consider history lengths tuned to forecast horizon (shorter for 1-hour, longer for 3-hour).

e Compare RF (tabular) and CNN/LSTM (sequence) models.

e Analyze the contribution of CO,-related features to temperature forecasts to understand
occupancy effects.

e Discuss implications for predictive and proactive thermal comfort management, enabling a

transition from reactive to data-driven HVAC operation.

Beyond improving predictive accuracy, these models support more informed decision-making related to

thermal comfort and energy-efficient building management.

2.4 Deep-Learning Architectures for Multivariate Time Series

CNN (1-D, causal). CNN models use temporal filters that scan across the input sequence to identify short-
term patterns directly from the data. This makes them particularly suitable for high-frequency indoor
environmental measurements, where local temporal variations play a significant role in short-horizon
forecasting [6, 8, 19].

LSTM. LSTMs retain longer-range temporal dependencies via gating mechanisms and are widely used in
building forecasting when multi-hour dynamics (thermal inertia, occupancy cycles) matter [5, 9, 20].
Hybrid CNN-LSTM architectures leverage both local pattern extraction (CNN) and long-term memory
(LSTM), frequently yielding strong results in building datasets with 10-15-minute sampling [6, 8]. Since
this thesis already compares CNN and LSTM explicitly, hybrids are discussed as context but not



implemented to keep the model zoo focused and reproducible. In the context of indoor environmental
forecasting, CNNs and LSTMs not only offer superior accuracy but also serve as the computational core

for data-driven comfort assessment and intelligent HYAC management.

2.5 Interpretability with SHAP

In building management, it is important for any predictive model to be understandable. SHAP helps with
this by showing how each input feature influences a specific prediction, both at the individual level and
across the whole dataset [11]. In building applications, SHAP has been used to reveal the relative
contributions of outdoor temperature, recent indoor lags, and calendar effects, thereby improving trust
in ML forecasts and informing operator decisions [12, 21]. In the case of Random Forest models, SHAP
values can be computed exactly using TreeExplainer. For neural networks, however, the DeepExplainer
version is used to estimate feature contributions, enabling comparison of how different models weigh

their inputs.

2.6 BIM-Power Bl Visualization and Predictive Reporting

BIM provides the spatial and semantic backbone for contextualizing sensor observations and model
outputs within the physical layout of a building. Prior work has shown that coupling Revit models with
data pipelines and analytics platforms, frequently via middleware such as Speckle, enables interactive
exploration of environmental conditions across rooms and zones.

In this thesis, the same ideas are applied in a predictive way by sending the forecasted temperature and
CO, values—along with their uncertainty ranges—to a Power Bl dashboard connected to the Aule R BIM
model. While this setup is not a real-time digital twin, it still provides a useful visual layer that makes
predictions easier to understand and supports communication and decision-making about HVAC

operation and comfort [22].

2.7 Synthesis and Research Gap

The review of existing studies shows a few clear tendencies. Deep-learning models such as CNNs and
LSTMs typically outperform traditional methods when the goal is to forecast multiple indoor variables
simultaneously. Random Forest, on the other hand, remains a strong and interpretable baseline that
often delivers competitive results with less complexity. Another important finding is the value of SHAP,
which helps make the behaviour of these models easier to understand by highlighting the influence of
different features. Finally, several studies point out that BIM-based dashboards help place
environmental data in its spatial context, making it easier to interpret room-level patterns and

conditions.



However, existing studies rarely integrate these components into a unified, predictive workflow for
forecasting indoor conditions. In particular, there is a lack of frameworks that combine ML/DL
forecasting, explainability (SHAP), and uncertainty estimation.

This thesis addresses this gap by developing an explainable forecasting framework for Aule R that
guantifies thermal and air-quality dynamics and supports analysis of HVAC operational efficiency

through data-driven, spatially contextualized insights.

2.8 Summary and Conceptual Framework

The literature reviewed in this chapter shows that forecasting Indoor Environmental Quality (IEQ) in
educational buildings requires analytical methods capable of capturing nonlinear behavior and strong
temporal dependencies. Traditional linear time-series approaches, such as ARIMA, are generally
insufficient for these complex conditions. In contrast, modern machine-learning and deep-learning
models, including Random Forest (RF), Convolutional Neural Networks (CNNs), and Long Short-Term
Memory (LSTM) networks, offer greater flexibility and consistently superior predictive performance for
multivariate indoor-environmental data.

Furthermore, recent advances in explainable Al (XAl) tools such as SHAP make it possible to interpret
the predictions of these otherwise non-transparent models. SHAP helps clarify how the model works by
showing how much different inputs, such as recent values, weather conditions, or calendar patterns,
contribute to each prediction. This makes the results easier to interpret and helps experts see what is
driving the temperature and CO, forecasts.

From a systems perspective, BIM-linked dashboards offer a practical visual context for presenting sensor
data and analytics outputs. However, most existing frameworks remain descriptive and lack predictive

or decision-support capabilities relevant to HVAC operation.

Conceptual Framework

Building on the points discussed earlier, this thesis follows a framework comprising four interconnected
components.

The first part focuses on preparing the data. The historical temperature and CO, readings collected in
Aule R are aligned with outdoor weather information and calendar markers so that all variables share a
common structure and time base. This step turns the raw sensor data into a clean and consistent
multivariate time series that both tree-based models and deep-learning architectures can use.

The second element of the framework is the predictive modeling stage. Three algorithms (Random
Forest, CNN, and LSTM) are trained to estimate indoor temperature and CO, levels one and three hours
ahead. Their hyperparameters and input history lengths are adjusted based on how strongly the
variables depend on past observations, allowing each model to learn the relevant temporal patterns in

the data.



A third component involves understanding how the models make their predictions. Here, SHAP is used
to examine the influence of different feature types, such as temporal variables, outdoor weather
conditions, and calendar effects. This analysis provides explanations both for individual predictions and
for the overall behavior of the models, helping building operators interpret the results with greater
confidence.

The final part of the framework deals with visualization. The forecasted values are connected back to
the BIM model through the Power Bl dashboard developed during the earlier internship. This integration
allows the predictions to be viewed directly within the 3D layout of the building, turning the dashboard

from a purely descriptive tool into a simple, spatially contextualized decision-support interface.



Chapter 3 — Methodology

3.1 Overview

This chapter describes the methodological framework developed to forecast and visualize indoor
environmental conditions in the Aule R academic building at Politecnico di Torino. The approach is
organized as a sequence of practical steps, each of which contributes to building a coherent and reliable
analytical pipeline.

The process begins with the collection of long-term environmental data from the building’s sensor
network, followed by a careful preprocessing phase in which the raw measurements are cleaned, aligned
in time, and checked for consistency. Once a stable dataset is obtained, a set of temporal and contextual
features is engineered to capture the short-term fluctuations, daily patterns, and seasonal trends that
characterize indoor temperature and CO, dynamics.

These enriched datasets are then used to train three different machine-learning models (Random Forest,
CNN, and LSTM) chosen because they reflect complementary ways of learning temporal behavior in
buildings. Their performance is evaluated through standard forecasting metrics, and SHAP-based
interpretability tools are applied to better understand which variables influence the predictions and why.
Finally, the forecasting results are integrated into a BIM-linked Power Bl dashboard, enabling the
predictions to be explored directly within the 3D model of Aule R. In this way, the methodological
framework connects data preparation, model development, and spatial visualization into a single
workflow designed to support energy-efficient operation and improve comfort management in the

building.

3.1.1 Overview of the Analytical Framework
The overall architecture of the proposed BIM-loT Integrated Data Analytics Pipeline workflow is
illustrated in Figure 3.1. The system integrates heterogeneous building information and sensor data into

a unified pipeline for analysis, prediction, and visualization.
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3.2 Data Collection and Preprocessing

3.2.1 Data sources and acquisition
The dataset covers approximately 20 months (5 March 2024 - 25 November 2025), collected every 15
minutes from the sensor network installed in Aule R, Politecnico di Torino. The environmental sensors

measure:

Table 3.1 Parameters measured in Aule R

Parameter Symbol Unit | Description

Indoor air Tin °C Mean of upper (Z2) and lower (Z1) room sensors, or a single
temperature sensor in basement rooms

Outdoor air Tout °C External reference sensor on facade

temperature

Setpoint temperature Tset °C Control signal from the HVAC system

CO, concentration C ppm Indoor air quality/occupancy indicator

The extended monitoring period results in approximately 58,000-60,000 time-stamped samples per
zone, enabling the analysis to capture both short-term dynamics (intra-hour and intra-day variations)
and long-term seasonal effects (weekly and annual cycles). Such long-term, high-frequency data enhance
the statistical reliability of the forecasting models and enable the learning of periodic behaviors,
consistent with findings reported in recent studies on multi-season and annual indoor-environment

forecasting [4, 5].

3.2.2 Data cleaning and alignment
All raw CSV sensor files were imported and standardized through a dedicated Python preprocessing
module developed for this study. The procedure ensured data consistency, temporal integrity, and

reliability across all monitored zones.

The main steps are summarized as follows:
¢ File normalization and encoding:
Non-data header lines (e.g., sep=;) and hidden byte-order marks (BOM) were automatically
detected and removed.
Column names in both English and Italian were standardized to consistent labels across all

datasets.



e Timestamp parsing and localization:
All timestamps were localized to Europe/Rome (CET/CEST). To handle the DST fallback hour
(02:00 duplicated), we used an ambiguity-masking strategy that identifies duplicate timestamps
and consistently keeps the first occurrence (the DST instance), while discarding the second
(standard-time duplicate). Nonexistent times during the spring transition were shifted forward.
This yields a strictly increasing, unique datetime index before 15-minute resampling and
canonical re-indexing.

e Temporal resampling and alignment:
Records were resampled on a strict 15-minute grid covering the whole monitoring period (5
March 2024 - 25 November 2025).
This ensured full temporal synchronization between temperature and CO, data for each zone.

e Quality control and outlier handling:
Physical plausibility limits were applied to indoor temperature (-10 °C < Tin £ 50 °C), with out-of-
range values converted to NaN and short gaps (< 1 h) filled through time-based interpolation.
Sensor inspection revealed that indoor CO, occasionally contained physically impossible low
values (below the atmospheric background = 400 ppm). To address this, a data-driven dynamic
floor was defined as the maximum between a conservative 380 ppm baseline and a background
estimate from the dataset (5th percentile - 30 ppm). All CO, values falling below this threshold
were hard-clipped to restore physical plausibility, as these represent sensor errors rather than
genuine missing data. Extremely high values (> 4000 ppm), if present, were converted to NaN,
and short gaps (< 1 h) were interpolated. In contrast, longer gaps were removed during the final
dropna() stage after lag/rolling feature generation. This correction improves the physical validity
and stability of the time-series models [23].

e Calendar feature mapping:
Each record was enriched with temporal attributes (hour of day, day of week, month, and season)

to support the identification of diurnal and seasonal patterns and occupancy cycles.

Through these steps, the dataset was transformed into a uniform, timezone-aware, and quality-
controlled dataframe comprising approximately 58,000-60,000 records per zone. This temporally
consistent and seasonally complete dataset provides a robust foundation for feature engineering and

subsequent machine-learning modelling stages [24].

3.3 Feature Engineering and Selection
To capture both short-term fluctuations and long-term thermal trends, a set of temporal and contextual

features was engineered from the cleaned data.



3.3.1 Temporal lag features
To incorporate temporal memory, lag features of 15-minute data were generated for both indoor

temperature (temp_mean) and CO, (co2) at multiple horizons:
L={1,2,3,4,.8,12, 24,48}

corresponding respectively to 15 min

These lag terms encode autocorrelation patterns essential for forecasting.

3.3.2 Rolling-window statistics

Rolling means smooth short-term fluctuations and reveal aggregated trends.

For each variable, rolling windows of 1 h (4 steps), 3 h (12 steps), 6 h (24 steps), and 24 h (96 steps) were
computed, providing local trend information used by the learning algorithms. Such aggregated

descriptors help capture mid-term thermal dynamics characteristic of massive building envelopes [18].

3.3.3 Calendar and contextual features

To capture the intrinsic periodicity of building operation and environmental dynamics, a set of calendar
and contextual features was engineered.

Time-related variables, including hour of day, day of week, and weekend flag, were encoded using
cyclical sine—cosine transformations to preserve the continuity between the end and start of each period
[25].

Specifically:

Zn-hour)
’

2n-hour)
24

hour_cos = cos(
24

hour_sin = sin(

And similarly for the weekly cycle:

21t~day_of_week)
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week_sin = sin(

These encodings allow the model to learn smooth transitions across 24-hour and 7-day boundaries,
avoiding artificial discontinuities (e.g., between 23:00 and 00:00).
Since the dataset spans more than one calendar year (March 2024 — November 2025), annual seasonality

was represented using cyclical month encodings to capture inter-year climatic and operational patterns:
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In addition, an academic-term indicator (in_academic_term) was constructed to reflect the operational
schedule of the Politecnico di Torino across multiple academic years covered by the dataset. Teaching
activities and examinations typically occur from October through July, and in September, while August
corresponds to a low-occupancy, non-academic period. The indicator was computed for both academic
years (2023/24 and 2024/25) to ensure consistency across the extended monitoring period.

This combination of cyclic, seasonal, and academic-calendar features allows the forecasting models to
distinguish long-term climatic trends from occupancy-driven behavioral patterns, thereby improving the
characterization of indoor temperature and CO, variations. Outdoor temperature and HVAC setpoint
were included as exogenous contextual drivers. At the same time, CO, concentration served both as an

explanatory feature of occupancy patterns and as a target variable representing indoor air quality.

3.3.4 Feature selection

To avoid working with an unnecessarily large set of lagged, rolling, and time-encoding features, mutual
information (Ml) ranking was applied on the training set to determine which predictors contributed most
to forecasting accuracy. Ml measures how strongly each feature is related to the target variable, even
when the relationship is nonlinear.

Based on these scores, the top K = 80 features were selected for all models. These typically included the
most relevant temperature and CO, lags, short-term rolling averages, key calendar encodings (such as
hour and day-of-week), and external drivers like setpoint and outdoor temperature.

Reducing the feature space in this way helped remove redundancy, sped up training, and improved

model stability, while still preserving all essential information needed for accurate forecasting.

3.4 Model Design and Training Procedure
Three supervised-learning models were implemented to forecast indoor temperature and CO,
concentration for horizons of 1 h (4 steps) and 3 h (12 steps) ahead. The selected models cover

complementary learning paradigms:

Table 3.2 Forecasting models used in this study

Model Type Rationale

Random Forest (RF) Ensemble of decision Captures nonlinear relations in tabular
trees features; interpretable via SHAP [26].

Convolutional Neural 1-D sequence learner Efficiently extracts short-term temporal

Network (CNN) patterns from recent time windows [27].



Long Short-Term Memory  Recurrent neural Learns long-term dependencies and

(LSTM) network seasonality in time-series data [28].

Normalization of Input Features for Deep Learning Models
Deep learning models such as CNNs and LSTMs are highly sensitive to the scale of input features. Since
the indoor environmental dataset contains variables with different numerical ranges (for example,
temperature values around 20-30 °C, CO, concentrations ranging from 400 to 2000 ppm, and cyclical
encodings bounded between -1 and 1), unscaled inputs may lead to unstable training, slow convergence,
or poor generalization.
To ensure stable and efficient optimization, all numerical input features used by the sequence models
were standardized before training.
Standardization was performed using a StandardScaler, which transforms each feature as:

X—

(4}

=Z

where p and o are the mean and standard deviation of the feature computed only from the training
portion of the dataset.

This prevents data leakage, ensuring that no information from the validation or test periods is used
during preprocessing.

The fitted scaler was then applied consistently across training, validation, and testing sets.

Only the input features were normalized; the target variables (temperature and CO,) were left in their
physical units (°C and ppm) to preserve interpretability of the forecasting errors.

This normalization step improves optimization stability, balances the contribution of each feature, and

allows both CNN and LSTM models to learn temporal patterns effectively.

3.4.1 Data splitting

To ensure a precise and leakage-free evaluation of forecasting performance, the dataset was partitioned
using fixed chronological boundaries rather than ratio-based or randomized splitting. This approach
reflects standard best practices in time-series forecasting, where the model must be trained exclusively
on past data and evaluated strictly on future periods.

The full 20-month dataset (5 March 2024 — 25 November 2025) was therefore partitioned into three

consecutive segments representing past, intermediate-future, and unseen-future conditions:

e Training period: 5 March 2024 - 31 May 2025



This segment spans roughly 450 days (~72%) and includes full seasonal variability. It provides the
model with a broad range of climatic and operational scenarios necessary for learning robust
temporal patterns.

e Validation period: 1 June 2025 - 31 August 2025
A three-month summer interval (~14%) is used exclusively for hyperparameter tuning and early
stopping. This period represents a distinct thermal regime, making it suitable for optimizing
model behavior without affecting the final evaluation.

o Testing period: 1 September 2025 - 25 November 2025
The final portion (~14%) corresponds to the beginning of the 2025/26 academic year and is held
out strictly for unbiased performance assessment. Models never observe this period during

training or tuning.

This splitting approach ensures that the forecasting models learn only from past observations and are
evaluated solely on future, operationally relevant data. Compared to proportional splits (e.g., 70/15/15),
the fixed-calendar strategy preserves seasonal, academic, and occupancy-related patterns. It provides a

more realistic assessment of forecasting performance in real-world building operation scenarios.

Table 3.3 Chronological data-splitting strategy

Subset Date Range Duration Percentage  Purpose

Training 5 March 2024 ->  ~450 days

31 May 2025 ~72% Model fitting: learning seasonal,
daily, and CO,/thermal patterns

Validation 1 June 2025 > ~92 days (3

31 August 2025 months) ~14% Hyperparameter tuning, early
stopping, and model selection

Testing 1 September ~86 days
2025 > 25 ~14% Final unbiased performance
November 2025 evaluation on unseen future data

3.4.2 Model configuration
To capture the different temporal behaviors of indoor environmental data, three complementary

machine-learning models were implemented:



A Random Forest (RF), a Convolutional Neural Network (CNN), and a Long Short-Term Memory network
(LSTM).
Each model offers distinct advantages in terms of interpretability, the ability to model nonlinear

dynamics, and the capacity to learn temporal dependencies.
Their configurations and design rationales are described below:

e Random Forest (RF):
The Random Forest model serves as a strong non-parametric baseline that can model nonlinear
feature interactions without requiring extensive hyperparameter tuning.
Because RF does not rely on a sequential input structure, it is particularly effective when the
target variable is primarily explained by engineered features such as lags, rolling statistics, and
calendar embeddings.
The RF model was trained separately for each zone, forecasting horizon, and target variable using
a fixed configuration optimized through pilot experiments. Its main parameters are summarized
in Table 3.4.

Table 3.4 Configuration of the Random Forest model

Parameter Specification Purpose

n_estimators 120 Balance of accuracy and speed

max_depth 15 Prevents overfitting

Min_samples_leaf 5 Smoother prediction surface

Max_features "sqrt" Standards for regression forests

n_jobs -1 Full CPU parallelism

bootstrap True Improves generalization

Feature Selection Top 80 features (Mutual Reduces redundancy and speeds
Information) training

SHAP Analysis 600 validation samples, Generates interpretable feature

check_additivity=False importance at low cost



SHAP analysis was computed on 600 samples of the validation set (check_additivity=False) to
derive interpretable feature importance and reduce computational overhead, consistent with

standard practice for tree explainers in large ensembles.

Convolutional Neural Network (CNN):

The CNN model is designed to learn short-term temporal dependencies directly from raw
sequences. Unlike RF, which relies on engineered lags, the CNN automatically extracts local
temporal patterns through convolutional filters.

A causal architecture was employed to ensure that the model never uses information from the

future. This is critical for forecasting tasks where the temporal order must be strictly preserved.

The configuration is summarized in Table 3.5.

Table 3.5 Configuration of the CNN model

Parameter

Input shape

Conv1D layers

Pooling layer

Dense layers

Optimizer

Loss function

Batch size

Epochs

Learning-rate
schedule

Specification

(12 steps, n features) =3 h
window

2 x ConvlD (64 filters, kernel =

3, RelU, causal padding)

Global Average Pooling 1D

Dense 128 (ReLU) - Dense 1
(output)

Adam (Ir=1x1073)

Mean Absolute Error (MAE)

64

<120 with Early Stopping
(patience = 15)

ReducelLROnPlateau (factor =
0.5, patience = 5)

Purpose

Fixed history length per sequence.

Extracts local temporal patterns.

Reduces dimensionality and prevents
overfitting.

Maps learned features to forecast
value.

Adaptive gradient optimization.

Robust to outliers, interpretable in
°C/ppm.

Efficient GPU utilization.

Stops training when no validation
improvement.

Refines convergence.



Training Strategy
CNN models were trained for up to 120 epochs, using the Adam optimizer and MAE loss function.
Early stopping (patience=15) prevented overfitting, while a ReducelLROnPlateau schedule

allowed the model to refine its learning rate during training.

Long Short-Term Memory (LSTM):

The LSTM model is responsible for capturing longer temporal dependencies that may span
several hours.

Whereas CNNs focus on local patterns, LSTMs maintain an internal memory that tracks trends
and contextual information over extended periods.

Although the input sequence length was kept consistent with the CNN (12 time steps = 3 hours)

to allow fair comparison, the LSTM’s memory cells will enable it to retain information far beyond

the explicit input window.

Its configuration is presented in Table 3.6.

Table 3.6 Configuration of the LSTM model

Parameter

Input shape

LSTM layer

Dense layers

Optimizer

Loss function

Batch size

Epochs

Learning-rate

schedule

Specification

(12 steps, n features) =3 h

window

128 units, dropout = 0.2

Dense 128 (ReLU) - Dense 1
(output)

Adam (Ir=1x1073)
Mean Absolute Error (MAE)

64

< 120 with Early Stopping
(patience = 15)

ReducelLROnPlateau (factor =
0.5, patience = 5)

Purpose

Same sequence length as CNN for

comparability.

Captures long-term temporal dependencies

while preventing overfitting.

Nonlinear mapping to forecast the target.

Stable training of recurrent networks.

Same metric as CNN for fair comparison.

Trade-off between stability and memory

use.

Avoids overfitting and excessive runtime.

Adaptive fine-tuning of learning rate.



Each model was trained and validated independently for every zone and forecast horizon. For the
sequence models (CNN and LSTM), both architectures were first trained on the training subset and
evaluated on the validation subset using mean absolute error (MAE) as the primary selection criterion.
For each zone—-target—horizon combination, the architecture achieving the lowest validation MAE was
selected as the best-performing sequence model. The chosen model was then fine-tuned on the
combined training and validation data for an additional 10 epochs before being evaluated on the held-
out test set. This procedure ensured a fair comparison between architectures while exploiting all
available data for final parameter refinement, and the overall multi-model setup enabled the capture of

both short-term and longer-term temporal patterns of the indoor environment.

Hyperparameter Selection Rationale:

The chosen hyperparameters were selected through a small, literature-guided tuning process applied to
a representative subset of the data. Full hyperparameter search was avoided due to the computational
cost across all zones and horizons; instead, configurations that consistently provided a stable balance
between accuracy and runtime were adopted. These settings follow standard practice in building

forecasting studies and ensure reproducible performance without unnecessary model complexity.

3.4.3 Model Architectures

Table 3.7 Summary of the model architectures used for forecasting

Model Key Layers Strength

Random Forest 120 trees, depth <15 Interpretable via SHAP

CNN Conv1lD x 2 + Dense 128 Detects local temporal patterns
LSTM LSTM 64 + Dense 128 Captures long-term dependencies

All models were implemented in Python 3.12, using scikit-learn, TensorFlow Keras, and the SHAP library

in Google Colab.



3.5 Uncertainty Quantification in Forecasting Models

To evaluate the reliability of the predictive models, the uncertainty of forecasts was also quantified. This
step indicates how confident each model is about its predictions and helps interpret the results beyond
single deterministic values.

For the Random Forest (RF) model, the 95% confidence interval was computed from the variability of

tree outputs as:

n
1 N
Otrees = E Z(yi - Y)Z
i=1

Where

®  Oirees represents the standard deviation across n trees

e y isthe mean prediction across all trees
The 95% confidence interval was then computed as:
¥+ 1.96 * O¢rees
This interval reflects epistemic uncertainty arising from variability in model structure and training data.

For the LSTM model, uncertainty was quantified using Monte Carlo (MC) Dropout, in which dropout
layers remain active during inference. The model performs T=30 stochastic forward passes, yielding

predictions y1,y?, ..., yT.

The predictive mean is:
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The corresponding uncertainty is obtained from the standard deviation of these outputs:

T
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The 95% confidence interval is defined as:



This method captures model uncertainty due to stochasticity in neural network weights. These
confidence bands highlight the model’s reliability and variation over time, improving interpretability

and supporting decision-making for the Aule R building. [29]

3.6 Evaluation Metrics and Validation Strategy

Model performance was assessed using three standard regression error metrics:

MAE =% i=1lyi—y™il,  RMSE = \/% Yo i — y")?,  SMAPE = % ?:1%
MAE reflects the average magnitude of prediction errors in the physical units of the target (°C or ppm),
RMSE penalizes larger deviations more heavily and therefore highlights instability or peak
mispredictions, while sSMAPE provides a unitless percentage error that facilitates comparison across
zones and different environmental variables.

For evaluation, a fixed chronological split was adopted instead of ratio-based partitioning.
The full 20-month dataset (5 March 2024 — 25 November 2025) was divided into:

e Training: 5 March 2024 - 31 May 2025

e Validation: 1 June 2025 - 31 August 2025

e Testing: 1 September 2025 - 25 November 2025
This approach ensures that models are trained exclusively on past data and validated/tuned on an
intermediate future period. At the same time, the final testing phase corresponds to a completely
unseen segment reflecting the beginning of the 2025/26 academic year.
Unlike proportional splits (e.g., 70/15/15), the fixed-boundary strategy preserves seasonal, academic,
and occupancy-related dynamics and avoids temporal leakage without requiring artificial buffer zones.
For sequence models (CNN and LSTM), the validation MAE was used for early stopping and model
selection.
Final performance was continuously computed on the held-out test period using all three metrics (MAE,
RMSE, sMAPE).
MAE evaluates the mean absolute deviation, RMSE penalizes larger errors more heavily, and sMAPE

normalizes errors relative to magnitude, facilitating comparison across different zones [30].

3.7 Interpretability with SHAP Analysis

To ensure transparency, model interpretability was achieved using SHapley Additive exPlanations (SHAP)
[26, 11]. It was employed to interpret the Random Forest predictions.

Each SHAP value quantifies the contribution of a specific feature to increasing or decreasing a given

prediction relative to the model’s baseline output.



Aggregating absolute SHAP values across all test samples provided global feature importance rankings,
revealing the dominant factors driving the indoor temperature and CO, forecasts.

Short-term temperature lags (e.g., temp_mean_lagl-4), outdoor temperature, and time-of-day features
consistently appeared among the most influential predictors, reflecting the physical intuition of thermal
inertia and occupancy-driven dynamics.

For neural models (CNN and LSTM), the same interpretability concept can be extended using
DeepExplainer to visualize temporal relevance patterns, although this was reserved for future work due
to computational cost.

This interpretability approach aligns with best practices in explainable building-energy forecasting [12].

3.8 Visualization through BIM-enabled Power Bl Dashboard

The final stage of the methodology focused on embedding the predictive results within the 3D
environment of the Aule R building to create an innovative dashboard. In this phase, the Building
Information Model (BIM) developed in Revit acted as a static geometric reference, a spatial container
that provides room-level semantics but does not operate as a real-time digital twin. Its purpose was to
serve as a structured spatial framework onto which analytical and predictive data could be mapped.
The forecast outputs, including predicted indoor temperature and CO, concentration together with their
associated uncertainty ranges, were exported from the modelling pipeline as structured CSV tables.
These tables followed a unified schema containing the zone identifier, timestamp, target variable,
forecasting horizon, predictive mean, and upper—lower confidence bounds. Once exported, the
prediction datasets were imported into Microsoft Power Bl and linked to the corresponding Revit spaces
using the Speckle connector.

This integration enabled the construction of a fully interactive 3D visualization of the Aule R building,
where each classroom (R1-R4, R1B-R4B) displays its forecasted conditions directly within the spatial
model. Through color-coded room shading and dynamic filtering controls, users can explore predicted
values over different horizons, compare them against historical measurements, and visually inspect
uncertainty propagation across zones and time periods. The dashboard also includes conventional time-
series charts and slicers that complement the 3D perspective and allow users to navigate specific dates,
variables, or modeling configurations.

Overall, the BIM-linked Power Bl dashboard serves as a data-driven reporting layer that enhances the
interpretability of the predictive analytics. Rather than functioning as a real-time digital twin, it provides
a clear, intuitive environment for communicating model insights, supporting comparative analysis across
rooms, and facilitating informed decision-making related to HVAC performance, comfort assessment,

and operational planning within the Aule R building.



3.9 Summary

This chapter detailed the research design and methodological workflow adopted for forecasting indoor
environmental conditions in Aule R. Starting from a 20-month dataset, the workflow encompassed data
preprocessing, engineered temporal and contextual features, optimized Random Forest and deep-
learning models, and interpretable SHAP analysis.

Finally, the predictive outputs were integrated into the BIM-enabled data visualization in an innovative
Power Bl dashboard, establishing a coherent workflow that enhances data-driven building-management

decisions.



Chapter 4 — Results

4.1 Overview

This chapter presents the experimental results of the data-driven forecasting framework developed for
predicting indoor environmental conditions in Aule R academic building. The analyses follow the
methodological pipeline described in Chapter 3 and focus on evaluating the performance of Random
Forest (RF), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) models for
short-term forecasting of indoor temperature and CO, concentration across multiple zones of the
building.

The chapter begins with an exploratory analysis of the cleaned 20-month dataset (March 2024 —
November 2025), a high-resolution (15-minute) dataset used in this study. It then reports the forecasting
accuracy of the three modeling approaches, compares their performance across prediction horizons,
guantifies uncertainty, and provides model interpretability results using SHAP values. Finally, the chapter
showcases the integration of model outputs into a BIM-Power Bl dashboard, providing a concise visual

decision-support layer for interpreting indoor environmental performance.

4.2 Exploratory Data Analysis (EDA)

4.2.1 Data Coverage and Completeness

The cleaned 20-month dataset of indoor environmental measurements (March 2024 — November 2025)
contains 478,728 time-stamped samples at a 15-minute resolution. After applying the full preprocessing
pipeline, comprising timestamp normalization, DST ambiguity correction, removal of corrupted values,
physical-range filtering, and short-gap interpolation, the dataset achieves 100% data coverage for both
indoor temperature (temp_mean) and CO, concentration.

No missing values remain in either variable (0 NaNs), meaning that the final model-ready dataset is fully
complete and temporally continuous across the entire monitoring period. This complete coverage
ensures that the subsequent feature-engineering steps (lags, rolling statistics, and temporal encodings)
can be applied without introducing additional data loss, thereby providing a robust and consistent

foundation for forecasting models.

4.2.2 Data Quality Checks

During the preprocessing stage, several quality-control procedures were applied to ensure the physical
plausibility and temporal consistency of the 20-month dataset. This section summarizes the outcomes
of these procedures.

CO, Dynamic Floor and Clipping



Inspection of the raw CO, measurements revealed the presence of physically implausible low values
(often below 300 ppm), typically caused by sensor resets, power interruptions, or short communication
faults.
To correct these anomalies, a dynamic CO, background floor was computed for each zone as:
e the conservative baseline (380 ppm), and
e the 5th percentile of observed values minus 30 ppm,
with the larger of the two selected as the minimum plausible CO, value.
All CO, measurements falling below this dynamic threshold were hard-clipped.
The number of corrected samples differs significantly across zones, reflecting differences in sensor

stability and noise levels:

CO: Corrections per Zone (Dynamic Floor Clipping)
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Figure 4.1 shows the distribution of CO, corrections across the eight monitored zones

These corrections ensure physical plausibility of the CO, time series while preserving short-term

variability and the underlying occupancy-related patterns essential for forecasting.

Temperature Outlier Filtering

Indoor air temperature values outside the physical range -10 °C to 50 °C were identified as sensor faults
and replaced with NaN.

Such anomalies were rare and typically originated from short communication interruptions or corrupted
sensor packets.

Subsequently, time-based interpolation (< 1 hour) was applied to reconstruct short missing segments.
Longer gaps were eliminated automatically after generating lag and rolling features, ensuring that only

physically plausible and temporally consistent data entered the forecasting models.

DST Ambiguity Resolution



The transition from daylight saving time (CEST - CET) on 27 October introduced duplicated timestamps
at 02:00, creating ambiguity in chronological ordering.

These were automatically detected, and for each duplicated timestamp, the first occurrence (CEST
instance) was retained, while the duplicate was removed.

This correction enforces a strictly monotonic timestamp index across all zones, preventing temporal

leakage and ensuring consistent alignment during resampling and feature engineering.

4.2.3 Statistical Overview of Indoor Variables

Indoor temperature in Aule R ranges from 12.75°C to 33.80°C, with a mean of 23.06°C and a moderate
variability (std = 2.61°C). This relatively narrow spread reflects the combined effect of HVAC control and
seasonal changes over the 20-month monitoring period. The temperature distribution is approximately
unimodal and close to symmetric around 23°C, indicating that most observations cluster within a few

degrees of typical comfort conditions.
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Figure 4.2 Histogram of indoor temperature values across all zones over the 20 months.

CO, concentration exhibits a much broader and more asymmetric distribution. After applying the
dynamic background floor described in Section 4.2.2, values span from 380 ppm to 2013 ppm, with a
mean of 590.65 ppm and a standard deviation of 211.09 ppm. The histogram is clearly right-skewed,
with a large mass of observations around 400-600 ppm and a long tail extending toward higher
concentrations. This pattern highlights the strong influence of occupancy and ventilation events: CO,

remains near background levels during unoccupied periods but can rise above 1000 ppm during busy



class hours, confirming that CO, is considerably more variable and occupancy-driven than indoor

temperature.
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Figure 4.3 Histogram of indoor CO, concentrations across the dataset.

4.2.4 Temporal Patterns
The 20-month dataset exhibits clear and consistent temporal structures in both indoor temperature and

CO, concentration, reflecting typical occupancy cycles and HVAC operation in Aule R.

Daily Patterns
Daily temperature dynamics follow a smooth and predictable cycle:
e Minimum temperatures occur around 06:00-07:00 (= 22.7°C), reflecting overnight cooling under
reduced HVAC activity and no internal heat gains.
e From 08:00 onward, temperature gradually increases, reaching afternoon peaks of
approximately 23.4-23.45°C between 15:00 and 17:00.

o After 18:00, the temperature slowly declines toward nighttime levels.
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Figure 4.4 Average daily temperature cycle aggregated across all zones.

Daily CO, trends strongly reflect occupancy behavior:
e (CO,is lowest in the early morning (= 480-500 ppm).
e Asharp rise begins between 07:00 and 09:00, aligned with the start of class activity.
e (O, reaches its maximum levels around 10:00-12:00, peaking between 680 and 700 ppm.
e Concentrations remain elevated during classroom hours and then drop rapidly after 18:00,
returning toward background levels during the night.
These patterns clearly indicate that temperature dynamics are dominated by slow thermal inertia,

whereas CO, responds rapidly to changes in occupancy.
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Figure 4.5 Average daily CO; cycle aggregated across all zones.



Weekly patterns

Weekly patterns provide another layer of insight into how indoor conditions evolve in relation to building
usage. Unlike the more pronounced hour-to-hour variability observed in the daily cycles, changes across
the week are subtler yet highly informative.

For temperature, the weekly trend shows a mild but very consistent difference between weekdays and
weekends. During Monday—Friday, indoor temperatures tend to be slightly higher, with the weekly
maximum occurring on Tuesday (around 23.18-23.19°C). This pattern can be attributed to two combined
effects: regular occupancy throughout the workweek, which introduces internal heat gains, and the
HVAC system operating in its standard weekday mode. Because heating, cooling, and ventilation
schedules typically adjust to expected classroom activity, weekday temperatures remain marginally
elevated.

As the week transitions into Saturday and Sunday, temperature values dip noticeably, reaching a
minimum of approximately 22.85°C on Sunday. These lower values are consistent with reduced or absent

occupancy and less intensive HVAC operation over the weekend, when the building is largely unused.
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Figure 4.6 Average indoor temperature across days of the week.

CO, exhibits a much stronger weekly contrast. On weekdays, especially Monday and Tuesday, CO,
concentrations peak above 650 ppm, reflecting sustained occupancy levels and continuous classroom
turnover. Throughout the middle of the week, CO, remains elevated, mirroring the rhythm of teaching
schedules.

In contrast, weekend CO, levels drop dramatically, often stabilizing below 480 ppm. These low and
steady values align with background outdoor concentrations, clearly confirming that the building is
either unoccupied or only minimally used. This distinct weekday—weekend separation highlights the

direct sensitivity of CO, to human presence and ventilation control.
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Figure 4.7 Weekly CO, pattern showing significant differences between weekdays

Together, the weekly and daily temporal structures, smooth thermal cycles, sharp CO, peaks aligned
with occupancy, and apparent operational differences between weekdays and weekends, strongly justify
incorporating hour-of-day, day-of-week, and cyclical sine—cosine temporal encodings into the feature-

engineering pipeline used for forecasting.

4.2.5 Autocorrelation Analysis (ACF)

Autocorrelation analysis was performed to quantify the temporal persistence of indoor temperature and
CO, concentration and to guide the selection of lagged features for forecasting. Figures 4.8 and 4.9 show
the autocorrelation function (ACF) over the first 48 lags (equivalent to a 12-hour window at 15-minute

resolution).

Temperature exhibits very high persistence across the entire 12-hour period.

ACF values remain above 0.95 for all 48 lags, indicating an extremely strong autoregressive structure and
slow thermal dynamics typical of conditioned indoor environments. This high temporal memory
confirms the suitability of including multiple long lags and longer rolling windows in temperature

forecasting models.
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Figure 4.8 Autocorrelation function (ACF) of indoor temperature over 48 lags (12 hours). The very slow decay indicates high
temporal persistence and strong autoregressive behavior.

In contrast, CO, displays a much faster autocorrelation decay.

The ACF decreases from near 1.0 at lag 1 to approximately 0.70 at lag 10, falls below 0.30 by lag 30, and
approaches zero by lag 45. This rapid decay reflects the short-term and occupancy-driven nature of CO,
dynamics, which respond quickly to classroom presence and ventilation events. These characteristics
justify using short-horizon forecasting (1-3 hours) and emphasize the importance of recent CO, lags for

predicting near-future concentrations.
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Figure 4.9 Autocorrelation function (ACF) of indoor CO, concentrations. The rapid decay reflects short-term occupancy-
driven variability.



Together, the ACF results highlight the fundamentally different temporal behaviors of the two variables:
temperature is highly persistent with long-term memory, whereas CO, is transient and dominated by

short-term fluctuations.
4.3 Feature Engineering Verification

4.3.1 Most Informative Features (MI-based Selection)
To quantitatively assess the effectiveness of the engineered features, a mutual information (MI) analysis

was carried out for the 1-hour-ahead temperature target. All numerical predictors derived in the feature-
engineering pipeline (lags, rolling statistics, and contextual variables) were included, and the 20 features

with the highest Ml scores are reported in Table 4.1.

Table 4.1 Top 20 most informative features for the 1-hour temperature forecast, ranked by mutual information (Ml)

Rank Feature Ml

1 temp_mean_lagl 2.60
2 temp_mean_roll_1h_mean 2.59
3 temp_mean_lag2 2.48
4 temp_mean_lag3 2.37
5 temp_mean_lag4 2.27
6 temp_mean_roll_3h_mean 2.23
7 temp_mean_lag8 1.98
8 temp_mean_roll_6h_mean 1.88
9 temp_mean_lagl2 1.78
10 temp_mean_roll_24h_mean 1.59
11 temp_mean_lag24 1.42
12 temp_mean_lag48 1.17
13 setpoint 0.85
14 temp_out 0.79
15 month 0.79
16 month_cos 0.46
17 month_sin 0.42
18 co2_roll_24h_mean 0.31
19 co2_lagl 0.22
20 co2_lag2 0.22



The results clearly show that short-term lagged and rolling statistics of indoor temperature dominate
the ranking. The first positions are consistently occupied by temp_mean_lagl, temp_mean_lag2,
temp_mean_lag3, temp_mean_lag4, together with temp_mean_roll_1h_mean and
temp_mean_roll_3h_mean. Longer lags and aggregates (temp_mean_lag8, temp_mean_lagl2,
temp_mean_lag24, temp_mean_lag48, and the 6-h and 24-h rolling means) also exhibit substantial Ml
values, confirming that both very recent history and multi-hour thermal inertia contribute relevant
predictive information. This pattern empirically supports the choice of lag set {1, 2, 3, 4, 8, 12, 24, 48}
and multi-scale rolling windows (1 h, 3 h, 6 h, 24 h) adopted in Chapter 3.

Among the contextual variables, setpoint and outdoor temperature (temp_out) show non-negligible Ml
scores, indicating that HVAC control actions and external climatic conditions meaningfully influence the
future indoor temperature. Seasonal calendar descriptors (month, month_sin, month_cos) also appear
in the top-20 list, reflecting slower seasonal drifts in the building’s thermal regime.

Finally, CO,-based features (e.g., co2_roll_24h_mean, co2_lagl, co2_lag2) achieve lower but still positive
MI values. This suggests that occupancy-related internal gains, as encoded by CO, dynamics, provide
additional, but secondary, information for temperature forecasting compared to direct thermal history.
The MI analysis confirms that the engineered lag and rolling features, together with a compact set of
contextual and calendar variables, form a highly informative predictor space and validates the feature-

engineering design choices presented in the methodology chapter.

4.3.2 Cross-zone Variability in Selected Features
To investigate whether different rooms within Aule R exhibit distinct thermal behaviors, mutual
information (MI) was computed separately for each zone. Table 4.2 summarizes the three most

informative features for the 1-hour-ahead temperature forecast in all eight monitored zones.

Table 4.2 Top three most informative features for the 1-hour temperature forecast across all monitored zones, ranked by
mutual information (MI).

zone topl_feature topl_MI | top2_feature top2_MI | top3_feature top3_MlI
R1 temp_mean_lagl 2.492 temp_mean_roll_1h_mean 2.487 temp_mean_lag2 2.363
R2 temp_mean_lagl 2.545 temp_mean_roll_1h_mean 2.542 temp_mean_lag2  2.42

R3 temp_mean_roll_1h_mean 2.453 temp_mean_lagl 2.45 temp_mean_lag2 @ 2.33

R4 temp_mean_lagl 2.477 temp_mean_roll_1h_mean 2.456 temp_mean_lag2 2.347

R1B temp_mean_roll_1h_mean | 2.756 temp_mean_lagl 2.706 temp_mean_lag2 2.604



R2B temp_mean_roll_1h_mean @ 2.355 temp_mean_lagl 2.283 temp_mean_lag2 @ 2.197

R3B temp_mean_roll_1h_mean | 2.557 temp_mean_lagl 2.506 temp_mean_lag2 2.395

R4B temp_mean_roll_1h_mean 2.52 temp_mean_lagl 2.474 temp_mean_lag2  2.377

Across all zones, the results reveal a consistent and dominant reliance on short-term thermal history,
with temp_mean_lagl, temp_mean_lag2, and the 1-hour rolling mean (temp_mean_roll_1h_mean)
appearing systematically among the top-ranked predictors. This uniformity highlights that temperature
evolution in Aule R is primarily governed by strong autoregressive dynamics and short-term thermal
inertia, regardless of specific room configuration or HVAC node.

Some degree of cross-zone variability does however emerge. In R1, R2, and R4, the first-order lag
(temp_mean_lagl) is the single most informative feature, suggesting a more immediate thermal
responsiveness to short-term fluctuations. Conversely, in R1B, R2B, R3B, R4B, and especially R1B, the 1-
hour rolling mean exhibits the highest Ml score, indicating smoother temperature profiles with more
substantial averaging effects, likely due to differences in HVAC exposure, airflow distribution, or thermal
buffering within these rooms.

Notably, contextual variables (e.g., setpoint, outdoor temperature) and CO, features do not appear
among the top predictors for any zone, reinforcing the conclusion that recent indoor temperature
history overwhelmingly explains short-term temperature dynamics. At the same time, other signals
provide secondary or indirect contributions.

The cross-zone comparison confirms that the feature-engineering strategy is robust and generalizable
across the building. At the same time, the subtle inter-zone differences offer meaningful insights into

room-level thermal characteristics and HVAC behavior.

4.4 Forecasting Performance of Machine Learning Models

This section evaluates the forecasting performance of the three implemented models—Random Forest
(RF), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM)—across all building
zones and for both target variables: indoor temperature (temp_mean) and CO, concentration. The
analysis considers two forecasting horizons: 1 hour (1h) and 3 hours (3h).

The forecasting results for indoor temperature and CO, concentration reveal clear, consistent patterns
across models, horizons, and building zones. By examining both aggregated metrics and zone-level
behavior (using MAE, RMSE, and a set of comparative plots), the distinctive characteristics of each model
and variable become evident. This section provides a unified interpretation of the forecasting

performance, drawing on all the supporting visualizations.



Table 4.3 reports the forecasting accuracy of the Random Forest (RF) and sequence models (CNN/LSTM)
for indoor air temperature and CO, concentration at two predictive horizons (1 h and 3 h). Across all
metrics, RF consistently outperforms the sequence models, achieving substantially lower MAE and RMSE
values.

Table 4.3 Forecasting accuracy of Random Forest and sequence models (CNN/LSTM) for temperature and CO; across 1-hour
and 3-hour horizons.

Model Target Horizon MAE RMSE sMAPE
RF temp_mean 1h 0.458 0.760 1.734
RF temp_mean 3h 0.753 1.112 2.899
RF CO, 1h 30.60 57.91 5.48
RF CO, 3h 53.90 9361 9.57
CNN/LSTM temp_mean 1h 1.497  2.049 5.924
CNN/LSTM temp_mean 3h 1.647 2.177 6.531
CNN/LSTM CO, 1h 43.25 92.06 7.58
CNN/LSTM CO, 3h 61.88 114.72  11.02

4.4.1 Temperature Forecasting Performance (Main Target)

1-hour ahead forecasting

Across all zones, the Random Forest (RF) model demonstrates the highest accuracy for short-term
temperature prediction. According to the aggregated metrics table, RF achieves an MAE of 0.46 °C, which
is considerably lower than the best-performing sequence model (CNN/LSTM, MAE = 1.5 °C). This large
performance gap is also reflected in the comparative bar charts for the 1-hour horizon Figure4.10, where

the RF bar is visibly shorter than those of the deep learning models.
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Figure 4.10 Comparison of 1-hour temperature forecasting errors (MAE) across Random Forest, CNN, and LSTM models.

This behavior is further clarified when looking at the zone-level breakdown in Figure 4.11. In every eight
classrooms, RF consistently maintains a low MAE, typically between 0.35 °C and 0.60 °C. CNN and LSTM,
on the other hand, show more fluctuation across rooms, and their errors are noticeably higher in all
cases.
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Figure 4.11 Zone-level 1-hour temperature forecasting errors (MAE) for Random Forest, CNN, and LSTM models across all
monitored rooms.
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Scatter plots also help visualize the structural difference between the models. The RF scatter plot, Figure

4.12, shows that predictions cluster tightly around the diagonal, indicating a very close match between



predicted and actual temperatures. The CNN/LSTM scatter plot in Figure 4.13 indicates much greater

dispersion, especially at higher temperatures, which explains why their MAE values are consistently
higher.
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Figure 4.12 Scatter plot of 1 h ahead RF temperature forecasts vs measured values (sample of 1000 points)
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Figure 4.13 Scatter plot of 1 h ahead CNN/LSTM temperature forecasts vs measured values (sample of 1000 points)



The high performance of RF at the 1-hour horizon reflects the strong short-term persistence of indoor
temperature, which was indicated by the autocorrelation analysis in Section 4.2.5. Since lagged features

capture most of this temporal structure, RF can exploit them directly and effectively.

3-hour ahead forecasting

At the 3-hour horizon, errors naturally increase for all models, yet RF again remains the most stable and
accurate method. The aggregated MAE for RF rises to 0.75 °C, whereas CNN and LSTM reach
approximately 1.45-1.65 °C. This trend is evident in the comparison plot in Figure 4.14, where the error
bars for CNN/LSTM remain considerably higher.
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Figure 4.14 Comparison of 3-hour temperature forecasting errors (MAE) for Random Forest, CNN, and LSTM models.

Zone-level results display the exact pattern, Figure 4.15. Even in the more challenging longer horizon, RF
maintains an MAE typically below 0.85 °Cin most rooms, while LSTM often exceeds 2.0 °C. RMSE patterns
reinforce this observation Figure 4.16, where RF shows the lowest variance and the smoothest error

profile among all models.
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Figure 4.15 Zone-level 3-hour temperature forecasting errors (MAE) for Random Forest, CNN, and LSTM models across all
monitored rooms.
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Figure 4.16 Zone-level 3-hour temperature forecasting errors (RMSE) for Random Forest, CNN, and LSTM models across all
monitored rooms.
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The “Forecast Error Vs Horizon” plot, Figure 4.17, illustrates how gracefully RF performance degrades
compared to CNN/LSTM. Whereas the RF curve increases only mildly between 1h and 3h, the deep

learning curve starts high at 1h. It shows only a marginal additional increase, indicating that the deep



models fail to capture the fine-grained short-term dynamics of the thermal environment and perform

substantially worse overall.
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Figure 4.17 Evolution of MAE with forecast horizon (1 h vs 3 h) for RF and CNN/LSTM temperature models.

In summary, both the tabular and graphical evidence clearly show that RF provides highly reliable
temperature forecasts in both 1h and 3h horizons, with errors consistently under 1 °C. This level of
accuracy is notable given the complex thermal behavior arising from mixed HVAC influences, envelope

inertia, and occupancy-related heat gains.

4.4.2 CO, Forecasting Performance (Secondary Target)

1-hour ahead forecasting

Forecasting CO, concentration is inherently more challenging because it depends on occupancy, which
is not directly available in the dataset. Despite this limitation, RF again delivers the most accurate short-
horizon predictions. The aggregated metrics report an MAE of 30.6 ppm for RF, compared to 43.3 ppm
for CNN/LSTM. The corresponding bar chart, Figure 4.18, visually confirms this difference.
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Figure 4.18 Comparison of 1-hour CO; forecasting errors (MAE) for Random Forest, CNN, and LSTM models.

Zone-level plots, Figure 4.19, highlight a wider variability in CO, forecasting error than in temperature.
Certain rooms (notably R3 and R1B) experience higher spikes in error for all models. These zones are the
largest classrooms and tend to exhibit more dynamic occupancy patterns, which explains their more
volatile CO, profiles. Even in these difficult rooms, RF maintains the lowest MAE, whereas LSTM often

exceeds 60 ppm.
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Figure 4.19 Zone-level 1-hour CO; forecasting errors (MAE) for Random Forest, CNN, and LSTM models across all monitored
rooms.
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3-hour ahead forecasting

The challenge of CO, prediction becomes even more apparent at the 3-hour horizon. All models
experience a significant increase in error, but RF continues to perform best. The average MAE for RF
increases to 53.9 ppm, while CNN/LSTM reach 61.9 ppm and often exceed this value in individual rooms.

The bar chart Figure 4.20 clearly reflects this horizon-dependent degradation.
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Figure 4.20 Comparison of 3-hour CO, forecasting errors (MAE) for Random Forest, CNN, and LSTM models.

The zone-level 3h chart Figure 4.21 indicates that error growth is not uniform across classrooms: zones
with previously high volatility (e.g., R3, R1B) exhibit the greatest increases in error at longer horizons.
Basement rooms tend to maintain slightly lower CO, variability, which is consistent with their lower

occupancy density.
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Figure 4.21 Zone-level 3-hour CO, forecasting errors (MAE) for Random Forest, CNN, and LSTM models across all monitored
rooms.
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These patterns also agree with the autocorrelation analysis for CO, in Section 4.2.5, which showed a
rapid decay of temporal correlation within the first 30-45 minutes. This explains why the 3-hour

forecasts deteriorate more sharply for CO, than for temperature.

The “CO, Forecast — MAE by Model and Horizon” plot Figure 4.22 summarizes how prediction accuracy
changes between the 1h and 3h horizons. Similar to temperature forecasting, RF shows a smoother and
more controlled increase in error, rising from about 31 ppm at 1h to 54 ppm at 3h. In contrast, the
sequence models start from a higher error level and continue to diverge at the longer horizon, reaching
approximately 62 ppm. This pattern highlights the difficulty of forecasting CO, (due to its rapid
fluctuations and occupancy-driven behavior) and emphasizes the advantage of RF in short-term

prediction.
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Figure 4.22 Mean absolute error (MAE) for 1 h and 3 h ahead CO; forecasts for RF and CNN/LSTM models. 1

CO, forecasting remains more challenging than temperature prediction, but RF consistently provides the
most reliable short-term performance, maintaining a clear error margin over the deep learning models

across both horizons.

4.4.3 Why Random Forest Outperformed Sequence Models

The superior performance of the Random Forest model can be understood by looking at both the
characteristics of the data and the way temporal information was represented in this study. Indoor
temperature in Aule R changes gradually and has strong short-term persistence. Because of this, the
lagged and rolling features created during feature engineering already capture most of the relevant
temporal dynamics. Random Forest is particularly effective with such structured, tabular inputs, allowing
it to turn these features into highly accurate forecasts.

In contrast, the CNN and LSTM models must learn temporal patterns directly from short raw sequences.
Without longer histories or explicit occupancy information—particularly important for CO,—they face a
more difficult learning problem. Their predictions show greater variability and higher errors, especially
as the forecasting horizon increases. Deep learning models are also more sensitive to hyperparameters
and data scaling, making them less robust when the dataset is moderate in size or when specific drivers
of the dynamics are excluded.

Taken together, the results across all zones and horizons indicate that the forecasting task in Aule R
favors a feature-driven approach over sequence-based representation learning. Random Forest benefits

directly from the strong autocorrelation of temperature and the carefully engineered inputs, whereas



CNN and LSTM cannot fully exploit their potential under these conditions. This explains why Random

Forest consistently achieves lower errors than the sequence models for both temperature and CO,.

4.5 SHAP Explainability for Random Forest

To better understand how the Random Forest model generates its temperature predictions, SHAP values
were computed for all zones and then averaged to produce a global importance ranking. The resulting
plot, Figure 4.23, offers a clear and intuitive picture of which signals the model relies on most strongly.
A dominant pattern emerges immediately:

the current indoor temperature (temp_mean) and its first lag (temp_mean_lagl) overwhelmingly drive
the 1-hour-ahead forecast. This is fully consistent with the strong thermal persistence observed earlier
in the autocorrelation analysis. In practice, this means that the building’s temperature in the next hour
is largely determined by where it stands right now and where it was just a short moment before.
Following these two core predictors, the 1-hour rolling mean (temp_mean_roll_1h_mean) also shows
substantial influence. Its importance highlights the smoothing effect of recent thermal history and
reinforces the idea that local thermal inertia plays a central role in shaping short-term indoor conditions.
The SHAP ranking also assigns meaningful weight to the individual sensor readings (temp_z1, temp_z2).
Their presence among the top features indicates that small temperature variations within the room
(caused perhaps by stratification, differences in airflow, or proximity to occupants) carry useful
predictive content that the model can exploit.

Higher-order lags, and multi-scale rolling windows (e.g., lag2, lag3, lag4, lag8, rolling_3h, rolling_6h)
contribute progressively less but still play a supporting role. These patterns reflect slower temperature
dynamics and the influence of accumulated heat gains and HVAC effects across several hours.
Contextual drivers such as outdoor temperature (temp_out) and setpoint appear further down the list.
While they do matter, their lower SHAP values indicate that short-term indoor temperature evolution is
more dominated by internal conditions than by external ones. This agrees with the physical behavior of
conditioned academic spaces, where HVAC systems tend to buffer indoor air from rapid outdoor
fluctuations.

Finally, calendar-based features (e.g., month, hour_cos) show only minor effects. Their low SHAP values
suggest that, at the 1-hour forecasting horizon, seasonal or time-of-day signals add relatively little
beyond what is already encoded in the recent temperature history.

Overall, the SHAP analysis provides strong validation of the feature-engineering choices outlined in
Chapter 3. The model’s behavior aligns closely with physical intuition: indoor temperature forecasts
depend heavily on very recent conditions, complemented by short-term averages and a modest

contribution from longer-term thermal memory and contextual factors. The clarity and consistency of



these results help build confidence in the Random Forest model as both an accurate and interpretable

forecasting tool.
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Figure 4.23 Top 20 most influential features for the 1-hour temperature forecast based on SHAP importance values from the
Random Forest model.

4.6 Uncertainty Quantification
To better understand the reliability of the forecasting models, uncertainty intervals were estimated for

both temperature and CO, predictions. These intervals represent the range within which the true value
is likely to fall and therefore provide an additional layer of interpretability beyond point forecasts.
Examining these bands helps clarify not only how accurate the models are, but also how confident they
remain across different conditions, horizons, and variables.

Uncertainty analysis for temperature reveals a remarkably stable behavior. In the 1-hour-ahead
temperature forecast for Zone R1, the Random Forest model produces consistently narrow prediction
intervals, closely enveloping the true temperature curve throughout the day, Figure 4.24. This pattern
reflects the strong persistence of indoor temperature: changes occur gradually, and the model largely

relies on recent thermal history, which is well captured by the engineered lag and rolling features. Even



during moderate fluctuations in the early morning or midday periods, the confidence band remains tight,
indicating that the model has a solid grasp of the underlying thermal dynamics. By contrast, the LSTM
model exhibits much greater uncertainty and predicts a nearly flat temperature profile, Figure 4.25. The
wide confidence band suggests that the model is unsure about the direction or magnitude of
temperature changes, reinforcing the earlier conclusion that sequence models struggled to capture

short-term temperature behavior in this building.
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Figure 4.24 Random Forest 1-hour temperature forecast for Zone R1, showing predicted values with 95% uncertainty
intervals compared to actual measurements.
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Figure 4.25 LSTM 1-hour temperature forecast for Zone R1, showing predicted values with uncertainty intervals compared to
actual measurements.

A similar contrast can be observed when examining a different day with nearly flat cooling-driven
temperature patterns, Figure 4.26. Even under these steady conditions, the Random Forest model

retains narrow and coherent intervals, whereas the sequence model produces very wide uncertainty



bands, showing that it remains unsure even when the true signal varies only minimally. This example
helps highlight that the limitations of the sequence model are not only tied to dynamic temperature

changes but also appear when the signal is too stable for the model to interpret effectively.
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Figure 4.26 Comparison of 1-hour temperature forecasts and uncertainty intervals for Random Forest and sequence models
(CNN/LSTM) in Zone R1 on 15 August 2025.

As the forecasting horizon increases, uncertainty naturally widens. In the 3-hour temperature forecast
for the same zone, Figure 4.27, the Random Forest intervals expand slightly but remain coherent and
informative. The model still follows the overall temperature pattern, but the greater spread reflects the
reasonable increase in uncertainty when looking several hours ahead. This widening is expected and
aligns with the physical nature of indoor environments, where the influence of recent conditions
gradually diminishes with time. Despite this, the RF model maintains meaningful predictive structure,

suggesting that it remains reliable even at longer horizons.
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Figure 4.27 Random Forest 3-hour temperature forecast for Zone R1, showing predicted values with 95% uncertainty
intervals compared to actual measurements.

Uncertainty patterns for CO, present a very different picture. CO, concentrations fluctuate far more
suddenly than temperature because they are strongly affected by human occupancy and ventilation
events. These rapid changes contribute to broader and more variable uncertainty intervals across all
models. In the 1-hour-ahead forecast for Zone R1 on September 15, Figure 4.28, the Random Forest
model still manages to capture the general shape of CO, variations, but its confidence band widens
noticeably during periods of sudden increases or decreases. The sequence model shows even broader
uncertainty intervals, particularly during sharp occupancy-driven transitions, highlighting its difficulty in

anticipating CO, dynamics without explicit behavioral inputs.
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Figure 4.28 Comparison of 1-hour CO, forecasts and uncertainty intervals for Random Forest and sequence models
(CNN/LSTM) in Zone R1 on 15 September 2025.



These observations become more pronounced at the 3-hour horizon. Both RF and LSTM show
significantly wider uncertainty bands in multi-day CO, forecasts, reflecting the reduced predictability of
this variable as the time window expands. While Random Forest maintains a recognizable structure that
tracks the overall trend, the sequence model’s intervals become extremely broad, suggesting low
confidence across most of the forecast window. This behavior underscores the inherently stochastic
nature of CO, dynamics and the limited ability of data-driven models to infer occupancy-driven peaks
solely from past CO, values.

Together, these examples demonstrate the value of uncertainty quantification in contextualizing the
forecasting results. Temperature forecasts exhibit high confidence and limited variability, especially over
short horizons, which strengthens the case for using Random Forest as a dependable tool for short-term
thermal management. CO, forecasts, on the other hand, inherently carry greater uncertainty due to their
sensitivity to occupancy, and the corresponding intervals highlight the need for richer contextual or
occupancy-related data if more reliable CO, predictions are desired. Across all scenarios, the Random
Forest model expresses narrower and more stable uncertainty bounds than the sequence models,
reinforcing its role as the most robust and trustworthy option for indoor environmental forecasting in
Aule R.

4.7 BIM-enabled Data Visualization in Power BI

An important step in translating the forecasting models into a practical decision-support tool is
integrating their outputsinto the 3D BIM-enabled data visualization in the Power Bl environment. During
the internship phase, the dashboard was designed primarily to display historical sensor data, allowing
users to explore temperature and CO, conditions across the building in a spatially intuitive way. Each
room in the 3D model could be highlighted according to its measured parameter ranges, and users could
switch between metrics or drill down into time-series plots for individual zones. This historical dashboard
served as a proof of concept for a data-enhanced BIM model, demonstrating how sensor information
can be visualized directly on top of a geometric representation of the building, figure 4.29 and figure
4.30.
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Figure 4.29 BIM-Power Bl dashboard developed during internship, visualizing historical data across the 3D model of Aule R.
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Figure 4.39 BIM-Power Bl dashboard developed during internship, visualizing historical data across the 3D model of Aule R.




In the extended work for this thesis, the visualization framework is enriched by incorporating the
forecasted environmental conditions generated by the machine-learning models developed in previous
sections. Instead of limiting the dashboard to past measurements, it is now possible to display near-
future predictions (e.g., 1-hour or 3-hour-ahead forecasts) alongside historical trends. These forecasts
can be associated with the BIM geometry in the same way as the original data: each room in the 3D
model can be dynamically colored based on its predicted temperature or CO, concentration, while the

time-series plots update to show both the recent observations and the upcoming forecast interval.

This integration fundamentally shifts the purpose of the dashboard, from a retrospective monitoring tool
to a forward-looking decision-support system. Building managers, HVAC operators, or researchers can
visually assess not only what has happened in the past 24—48 hours, but also how indoor conditions are
expected to evolve shortly. For example, zones predicted to reach higher CO, levels can be highlighted
in advance, enabling proactive ventilation adjustments. Similarly, predicted temperature trends can

inform thermal comfort management or HVAC scheduling.

The ability to visualize future conditions within the spatial context of the 3D model also strengthens the
interpretability of the forecasting pipeline. Forecast anomalies, uncertainty intervals, or rapid transitions
become easier to identify when viewed in combination with the building layout and room-specific

characteristics.

Overall, extending the BIM-enabled data visualization in Power Bl dashboard to include forecasted
values represents a natural evolution of the initial internship work. By merging predictive analytics with
data-driven 3D visualization, the system provides a more comprehensive understanding of the indoor
environment, one that supports both monitoring and predictive insights. This enhancement
demonstrates how machine learning, sensing data, and BIM visualization can be combined into a unified

platform capable of supporting smarter, more informed building-management decisions.

4.8 Summary of Findings

The results of this chapter show a consistent pattern across all analyses. Indoor temperature in Aule R
exhibits smooth and highly predictable behavior, which allowed the Random Forest model to achieve
very strong forecasting performance, with errors remaining low even for longer horizons. CO,, in
contrast, fluctuates sharply due to occupancy and is therefore harder to predict; yet Random Forest still
performed more reliably than the sequence models. SHAP analysis confirmed that short-term indoor
temperature history is the dominant driver of accurate predictions, while contextual factors such as
outdoor conditions play a smaller role. Uncertainty quantification further highlighted the differences

between variables and models: temperature forecasts showed tight and stable confidence bands, while



CO, uncertainty was naturally larger. Integrating these forecasts into the BIM—Power Bl dashboard
transformed the visualization into a forward-looking tool, enabling users to see not only what has
happened in the building, but also what is likely to occur next. Altogether, the findings demonstrate that
a feature-driven machine-learning approach, supported by explainability and visualization, can
effectively anticipate indoor environmental conditions and provide meaningful insights for building
operations.



Chapter 5 — Conclusion

5.1 Summary of Research and Key Contributions

This thesis presented an integrated, data-driven framework for forecasting indoor environmental

conditions in the Aule R building at Politecnico di Torino. Using 20 months of high-resolution (15-minute)

sensor measurements of indoor air temperature and CO,, combined with outdoor temperature and

HVAC setpoint data, the study developed an analytical pipeline that spans data preprocessing, feature

engineering, machine-learning modelling, uncertainty quantification, interpretability through SHAP, and

3D visualization in a BIM-linked Power Bl environment. This work extends a previous internship project

that focused on BIM modeling and historical data visualization in Power Bl by introducing a predictive

layer and connecting it to the BIM-based dashboard.

Three major methodological pillars define the contributions of this thesis:

1)

2)

3)

Multivariate data preparation and feature engineering

Twenty months of loT sensor data were cleaned, temporally aligned, corrected for DST shifts,
and enriched with multi-scale lag features, rolling-window statistics, and contextual calendar
descriptors. The temporal persistence patterns, very strong for temperature and moderate for
CO,, justified the feature design and were validated through autocorrelation analysis. Feature-
selection results confirmed that short-term indoor temperature history dominated predictive
information, while setpoint and outdoor temperature played secondary but meaningful roles.
Comparative modelling using Random Forest, CNN, and LSTM

Across all zones and all horizons, the three modelling approaches; Random Forest, CNN, and
LSTM were systematically trained and evaluated across multiple zones and forecasting horizons.
Overall, the Random Forest model emerged as the most robust and stable approach for this
specific building context. Its advantage stems from the highly autoregressive nature of indoor
temperature and the strong effectiveness of engineered lag features, which provide a rich
representation of temporal patterns. The deep-learning sequence models, although common in
time-series forecasting, were less suited to this specific building context due to limited occupancy
observability, strong short-term persistence, and the relatively moderate dataset size.
Explainability and BIM-linked visualization

SHAP analysis revealed that recent indoor temperature values, short-horizon rolling averages,
and secondarily outdoor temperature were the principal drivers of RF predictions. These insights
provide interpretability and strengthen trust in the model’s behavior. Finally, the predictive
outputs, together with uncertainty ranges, were linked to the Aule R BIM model and integrated

within Power BI, transforming the existing dashboard from a purely descriptive historical viewer



into a spatially contextualized predictive decision-support tool. This expands the earlier
internship work by creating a unified pipeline that merges forecasting, explainability, and 3D

visualization.

The combined results demonstrate that explainable and computationally efficient machine-learning
models can reliably forecast short-term indoor environmental conditions in educational buildings, laying

a strong foundation for data-driven HVAC assessment.

5.2 Implications and Practical Insights

The findings of this research have several practical implications for building operation, HVAC
performance assessment, and occupant comfort. The stability of short-term forecasts indicates that
HVAC operation can gradually shift from reactive control toward proactive, forecast-informed strategies,
particularly for regulating indoor temperature. Although CO, forecasting proved more challenging due
to the absence of explicit occupancy data, short-term predictions remain sufficiently reliable to support
ventilation-on-demand approaches, helping to anticipate periods of insufficient air exchange. Moreover,
the use of SHAP interpretability provides facility managers with clear insight into how and why
environmental conditions evolve, making model outputs more transparent and easier to adopt in
practice. Finally, embedding predictive results into the BIM-Power Bl 3D visualization enhances
communication and operational awareness by allowing building operators to spatially visualize

upcoming thermal and air-quality patterns at room level.

5.3 Future Development
Base on the outcomes of this work, future research can advance the predictive framework in several

directions:

e Integrating real-time occupancy data
Using Wi-Fi counts, camera-based anonymized occupancy, or course timetables data would
significantly improve the accuracy of both temperature and CO, forecasts and enable predictive
ventilation strategies.

e Expanding the forecasting horizons and model diversity
Exploring a broader range of modelling approaches, including hybrid CNN-LSTM architectures,
and transformer-based time-series models, would enable more accurate medium and long-term
forecasting.

e Developing a real-time BIM-loT monitoring platform
Transitioning from descriptive visualization to a dynamic digital twin capable of continuous
prediction and control optimization.

e Deployment in additional buildings for generalizability



Applying the workflow to other Polito buildings or similar academic environments would test its

generalizability across diverse spatial layouts, thermal characteristics, and usage patterns.

This thesis demonstrated that combining loT sensor data, explainable machine-learning models, and
BIM-based 3D visualization can substantially enhance understanding and forecasting of indoor
environmental conditions in educational buildings. The proposed framework provides actionable
insights into HVAC behavior, enables proactive comfort management, and moves toward more
intelligent, data-driven building operation. While the framework does not yet constitute a fully real-time
digital twin, it establishes a solid foundation for future predictive building-management platforms at
Politecnico di Torino and represents a meaningful step toward data-driven and occupant-centric

environmental control.
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