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Abstract 

Indoor environmental conditions, particularly air temperature and CO₂ concentration, play a central role 

in shaping comfort, health, and energy performance in academic buildings. Despite the widespread 

deployment of IoT-based monitoring systems, most HVAC systems still operate reactively. This thesis 

addresses this gap by developing an explainable, data-driven forecasting framework that predicts short-

term indoor environmental trends and integrates these predictions into a 3D BIM-based visualization 

environment for improved decision support. Using approximately 20 months of sensor data from the 

Aule R building at Politecnico di Torino, the study evaluates the performance of both machine-learning 

and deep-learning methods, including Random Forest, CNN, and LSTM for modeling temperature and 

CO₂ dynamics. 

The methodology includes a pipeline of data cleaning, temporal alignment, feature engineering, 

multivariate time-series forecasting, and uncertainty estimation. The framework connects predictive 

outputs to an innovative dashboard, enabling spatial representation of forecasted indoor conditions 

within the building’s 3D model. 

The expected outcome is that machine-learning models can provide reliable short-horizon temperature 

forecasts by leveraging the temporal structure inherent in indoor sensor data. Furthermore, 

explainability tools help clarify the role of key variables, while the BIM-enabled data visualization aims 

to offer an intuitive platform for exploring environmental trends and supporting proactive HVAC-related 

decision-making.  



 

Chapter 1 – Introduction 

1.1  Problem Statement and Background 

Indoor environmental conditions, such as air temperature, humidity, and CO₂ concentration, directly 

influence thermal comfort, health, and cognitive performance of building occupants. These aspects are 

particularly relevant in educational environments where classroom conditions change rapidly due to 

fluctuating occupancy, intermittent ventilation, and variable outdoor weather[1]. Although many 

university buildings are equipped with HVAC systems and dense sensor networks, the control logic of 

these systems is still predominantly reactive; that is, they intervene only after discomfort conditions or 

ventilation inadequacies have already occurred [2, 3]. A predictive approach requires short- to medium-

term forecasts of indoor temperature and CO₂ levels so that building operations can be proactively tuned 

to mitigate discomfort and ventilation inadequacy. 

For building data, which is inherently multivariate, nonlinear, and time-dependent, data-driven machine 

learning (ML) techniques, especially deep learning architectures such as Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) models, tend to outperform traditional linear approaches 

like ARIMA [4, 5, 6, 7]. For short forecasting horizons, CNNs tend to perform well because they capture 

quick, high-frequency changes in the data. LSTMs, on the other hand, are generally better at handling 

information that depends on patterns stretched over longer periods [6, 8, 9]. Furthermore, integrating 

exogenous variables such as outdoor weather conditions and calendar indicators has been shown to 

enhance predictive precision in academic research [5, 10]. Concurrently, progress in Explainable AI (XAI), 

particularly using SHAP (SHapley Additive exPlanations), provides a mechanism for transparently 

interpreting model outputs by quantifying the contribution of specific input features (e.g., lagged 

temperature/CO₂ values, outdoor air temperature, and time-of-day) to the final forecasts [11, 12]. 

Case Study: Aule R Building 

This research is conducted as a real-world case study on Aule R, an academic building at Politecnico di 

Torino that is equipped with a long-term IoT monitoring system. The building includes eight instructional 

spaces (R1–R4 and R1B–R4B), where sensors continuously measure indoor air temperature, CO₂ 

concentration, HVAC setpoints, and outdoor temperature. The dataset used in this thesis comprises 

approximately 20 months of 15-minute environmental measurements, providing a high-resolution, 

multivariate time series suitable for machine-learning forecasting. 

In addition to the sensor infrastructure, Aule R already has a detailed Building Information Model (BIM) 

and an interactive Power BI dashboard developed during a previous internship, where historical 

environmental data were linked to the 3D model through the Speckle platform. That system focused on 



 

descriptive visualization of past measurements; in this thesis, it is extended by integrating short-term 

forecasts of indoor temperature and CO₂ into the BIM-Power BI environment. 

Aule R provides an ideal case study for this research because the availability of long-term, high-frequency 

sensor data enables robust forecasting, and its BIM model allows spatial visualization of predicted 

environmental conditions, also the existing dashboard infrastructure makes it possible to evolve from 

descriptive monitoring toward a predictive decision-support tool. 

By grounding the analytical framework in a real building with rich data and existing visualization 

pathways, this case study demonstrates how forecasting, explainability, and 3D representation can be 

integrated into a unified, operationally meaningful workflow. 

1.2 Research Questions 

This thesis aims to answer the following key research questions: 

A. Predictive Capability:  

How accurately can short-term indoor variables, especially temperature and CO₂ concentration, 

be predicted for the Aule R building using historical indoor sensor data combined with outdoor 

weather information? 

B. Model Comparison: 

To what extent do the performance characteristics of Random Forest, CNN, and LSTM models 

differ across short-term (1-hour) and medium-term (3-hour) forecasting horizons, and which 

algorithm offers the most consistent balance between accuracy, robustness, and computational 

cost? 

C. Interpretability and Feature Influence: 

How can SHAP-based interpretability help identify the most influential temporal (lag/rolling) 

features contributing to the predictions produced by the best-performing models? 

D. Decision-Support Visualization: 

How can forecast outputs be integrated within the BIM-linked Power BI dashboard to provide 

intuitive, spatially contextualized visual analytics for building operators and facility managers? 

1.3  Objectives 

The main objective of this thesis is to design and validate an explainable, data-driven forecasting 

framework capable of predicting indoor environmental conditions in Aule R and supporting HVAC-

related decision-making. The study focuses not only on improving prediction accuracy but also on 

understanding model behavior and enhancing its practical applicability through visualization. 

Specific objectives are: 

 Data Acquisition and Preprocessing: 



 

Collect and synchronize 20 months of 15-minute indoor sensor data (temperature and CO₂) with 

outdoor temperature and HVAC set point information, producing a reliable multivariate time-

series dataset. 

 Feature Engineering and Selection: 

Create a customized set of temporal (lag and rolling) and contextual (calendar) features, and use 

statistical feature-selection methods to eliminate redundancy while maintaining predictive 

power. 

 Predictive Modeling: 

Implement and compare Random Forest, CNN, and LSTM models for 1-hour and 3-hour 

forecasting horizons, analyzing their accuracy, strengths, and limitations within the context of 

Aule R’s operational characteristics. 

 Interpretability Analysis: 

Use SHAP values to measure how individual features affect predictions, enabling a more precise 

explanation of the model's behavior. 

 Integration and Visualization: 

Integrate the predictive results and uncertainty estimates into the existing BIM-Power BI 

dashboard to enable spatially contextual 3D visualization and enhance decision-support 

capabilities. 

 

  



 

Chapter 2 - Literature Review 

2.1 Scope and Structure 

This chapter brings together the core ideas and studies that inform the approach taken in this thesis. It 

begins with a brief look at the indoor environmental quality (IEQ) standards that apply to educational 

buildings, explaining how thermal comfort and indoor air-quality requirements are typically defined in 

classrooms and why these criteria matter in practice. The chapter then turns to studies that use data-

driven or machine-learning approaches to forecast indoor temperature and CO₂ levels, highlighting how 

such predictions can support comfort management. 

In the following sections, the chapter reviews the deep-learning models that are most frequently used 

for multivariate time-series data—particularly CNNs and LSTMs—and discusses the kinds of indoor-

environment patterns they are able to capture. Because the usefulness of predictive models depends 

not only on accuracy but also on how well their results can be understood, the chapter also introduces 

SHAP as a method for interpreting model behaviour and explaining the role of different input features. 

The final part of the chapter shifts from modelling to visualization. Here, the focus is on how predictive 

results can be integrated into BIM-based dashboards, allowing forecasted conditions to be explored 

directly within a 3D visualization of the building. This combination of prediction, explanation, and spatial 

visualization forms the conceptual basis for the framework developed in the thesis. 

2.2 IEQ Frameworks and Standards 

Indoor environmental quality (IEQ) includes thermal, air quality, visual, and acoustic dimensions. When 

it comes to classroom comfort and indoor air quality, ASHRAE 55 and EN 16798-1 explain what counts 

as acceptable conditions. They set recommended temperature limits and use CO₂ levels as a simple 

indicator of whether a room is being ventilated properly [13, 14, 15]. In many studies, CO₂ concentrations 

near 1000 ppm are taken as a signal that a room is not being ventilated enough. It is worth noting, 

though, that CO₂ mainly reflects ventilation effectiveness and should not be interpreted as a direct health 

metric [16]. These standards contextualize the forecasting task: anticipating temperature and CO₂ helps 

maintain compliance and occupant comfort under variable occupancy. 

Key insight: Educational buildings exhibit rapid fluctuations in IEQ; static HVAC schedules are typically 

inadequate, motivating the use of predictive analytics to anticipate and prevent excursions [2,17]. 

2.3 Data-Driven Forecasting of Indoor Temperature and CO₂ 

Models like ARIMA rely on linear relationships and usually handle only one variable at a time, so they 

tend to perform poorly when dealing with the multivariate and nonlinear dynamics that characterize 

indoor environmental data [7]. In contrast, Random Forest (RF) and other tree-based methods handle 

nonlinearities and mixed features (lags, rolling statistics, calendar/weather) effectively, often serving as 



 

robust baselines with good interpretability [4, 18]. However, tree models require explicit temporal 

features to represent memory. 

Deep learning learns temporal structure directly from sequences. Comparative studies of campus 

buildings show that CNNs often outperform LSTMs for short horizons by capturing localized temporal 

patterns, whereas LSTMs excel at longer horizons due to their gated memory [6, 8, 9]. For indoor 

temperature, Elmaz et al. (2021) reported CNN-LSTM and CNN dominance at 15-minute resolution [8]. 

Minassian et al. (2025) ran their tests on several rooms, trying out CNN, LSTM, and a combined CNN–

LSTM model. What they noticed was pretty simple: the results changed a lot depending on how much 

past data they fed into the model and whether they added extra information, like the outdoor 

temperature. In other words, the choice of history length and external inputs played a big role in how 

well the models performed [6]. For CO₂, studies emphasize the value of occupancy-related patterns and 

weather inputs alongside recent CO₂ lags to improve forecasts [2]. 

Design implications for this thesis: 

 Use multivariate inputs, including indoor temperature and CO₂ lags, outdoor temperature, to 

capture both thermal and occupancy-related dynamics. 

 Consider history lengths tuned to forecast horizon (shorter for 1-hour, longer for 3-hour). 

 Compare RF (tabular) and CNN/LSTM (sequence) models. 

 Analyze the contribution of CO₂-related features to temperature forecasts to understand 

occupancy effects. 

 Discuss implications for predictive and proactive thermal comfort management, enabling a 

transition from reactive to data-driven HVAC operation. 

Beyond improving predictive accuracy, these models support more informed decision-making related to 

thermal comfort and energy-efficient building management. 

2.4 Deep-Learning Architectures for Multivariate Time Series 
CNN (1-D, causal). CNN models use temporal filters that scan across the input sequence to identify short-

term patterns directly from the data. This makes them particularly suitable for high-frequency indoor 

environmental measurements, where local temporal variations play a significant role in short-horizon 

forecasting [6, 8, 19]. 

LSTM. LSTMs retain longer-range temporal dependencies via gating mechanisms and are widely used in 

building forecasting when multi-hour dynamics (thermal inertia, occupancy cycles) matter [5, 9, 20]. 

Hybrid CNN-LSTM architectures leverage both local pattern extraction (CNN) and long-term memory 

(LSTM), frequently yielding strong results in building datasets with 10-15-minute sampling [6, 8]. Since 

this thesis already compares CNN and LSTM explicitly, hybrids are discussed as context but not 



 

implemented to keep the model zoo focused and reproducible. In the context of indoor environmental 

forecasting, CNNs and LSTMs not only offer superior accuracy but also serve as the computational core 

for data-driven comfort assessment and intelligent HVAC management. 

2.5 Interpretability with SHAP 

In building management, it is important for any predictive model to be understandable. SHAP helps with 

this by showing how each input feature influences a specific prediction, both at the individual level and 

across the whole dataset [11]. In building applications, SHAP has been used to reveal the relative 

contributions of outdoor temperature, recent indoor lags, and calendar effects, thereby improving trust 

in ML forecasts and informing operator decisions [12, 21]. In the case of Random Forest models, SHAP 

values can be computed exactly using TreeExplainer. For neural networks, however, the DeepExplainer 

version is used to estimate feature contributions, enabling comparison of how different models weigh 

their inputs.  

2.6 BIM-Power BI Visualization and Predictive Reporting  

BIM provides the spatial and semantic backbone for contextualizing sensor observations and model 

outputs within the physical layout of a building. Prior work has shown that coupling Revit models with 

data pipelines and analytics platforms, frequently via middleware such as Speckle, enables interactive 

exploration of environmental conditions across rooms and zones. 

In this thesis, the same ideas are applied in a predictive way by sending the forecasted temperature and 

CO₂ values—along with their uncertainty ranges—to a Power BI dashboard connected to the Aule R BIM 

model. While this setup is not a real-time digital twin, it still provides a useful visual layer that makes 

predictions easier to understand and supports communication and decision-making about HVAC 

operation and comfort [22]. 

2.7 Synthesis and Research Gap 

The review of existing studies shows a few clear tendencies. Deep-learning models such as CNNs and 

LSTMs typically outperform traditional methods when the goal is to forecast multiple indoor variables 

simultaneously. Random Forest, on the other hand, remains a strong and interpretable baseline that 

often delivers competitive results with less complexity. Another important finding is the value of SHAP, 

which helps make the behaviour of these models easier to understand by highlighting the influence of 

different features. Finally, several studies point out that BIM-based dashboards help place 

environmental data in its spatial context, making it easier to interpret room-level patterns and 

conditions. 



 

However, existing studies rarely integrate these components into a unified, predictive workflow for 

forecasting indoor conditions. In particular, there is a lack of frameworks that combine ML/DL 

forecasting, explainability (SHAP), and uncertainty estimation. 

This thesis addresses this gap by developing an explainable forecasting framework for Aule R that 

quantifies thermal and air-quality dynamics and supports analysis of HVAC operational efficiency 

through data-driven, spatially contextualized insights.  

2.8 Summary and Conceptual Framework 

The literature reviewed in this chapter shows that forecasting Indoor Environmental Quality (IEQ) in 

educational buildings requires analytical methods capable of capturing nonlinear behavior and strong 

temporal dependencies. Traditional linear time-series approaches, such as ARIMA, are generally 

insufficient for these complex conditions. In contrast, modern machine-learning and deep-learning 

models, including Random Forest (RF), Convolutional Neural Networks (CNNs), and Long Short-Term 

Memory (LSTM) networks, offer greater flexibility and consistently superior predictive performance for 

multivariate indoor-environmental data. 

Furthermore, recent advances in explainable AI (XAI) tools such as SHAP make it possible to interpret 

the predictions of these otherwise non-transparent models. SHAP helps clarify how the model works by 

showing how much different inputs, such as recent values, weather conditions, or calendar patterns, 

contribute to each prediction. This makes the results easier to interpret and helps experts see what is 

driving the temperature and CO₂ forecasts. 

From a systems perspective, BIM-linked dashboards offer a practical visual context for presenting sensor 

data and analytics outputs. However, most existing frameworks remain descriptive and lack predictive 

or decision-support capabilities relevant to HVAC operation. 

Conceptual Framework 

Building on the points discussed earlier, this thesis follows a framework comprising four interconnected 

components. 

The first part focuses on preparing the data. The historical temperature and CO₂ readings collected in 

Aule R are aligned with outdoor weather information and calendar markers so that all variables share a 

common structure and time base. This step turns the raw sensor data into a clean and consistent 

multivariate time series that both tree-based models and deep-learning architectures can use. 

The second element of the framework is the predictive modeling stage. Three algorithms (Random 

Forest, CNN, and LSTM) are trained to estimate indoor temperature and CO₂ levels one and three hours 

ahead. Their hyperparameters and input history lengths are adjusted based on how strongly the 

variables depend on past observations, allowing each model to learn the relevant temporal patterns in 

the data. 



 

A third component involves understanding how the models make their predictions. Here, SHAP is used 

to examine the influence of different feature types, such as temporal variables, outdoor weather 

conditions, and calendar effects. This analysis provides explanations both for individual predictions and 

for the overall behavior of the models, helping building operators interpret the results with greater 

confidence. 

The final part of the framework deals with visualization. The forecasted values are connected back to 

the BIM model through the Power BI dashboard developed during the earlier internship. This integration 

allows the predictions to be viewed directly within the 3D layout of the building, turning the dashboard 

from a purely descriptive tool into a simple, spatially contextualized decision-support interface.  



 

Chapter 3 – Methodology 

3.1 Overview 

This chapter describes the methodological framework developed to forecast and visualize indoor 

environmental conditions in the Aule R academic building at Politecnico di Torino. The approach is 

organized as a sequence of practical steps, each of which contributes to building a coherent and reliable 

analytical pipeline. 

The process begins with the collection of long-term environmental data from the building’s sensor 

network, followed by a careful preprocessing phase in which the raw measurements are cleaned, aligned 

in time, and checked for consistency. Once a stable dataset is obtained, a set of temporal and contextual 

features is engineered to capture the short-term fluctuations, daily patterns, and seasonal trends that 

characterize indoor temperature and CO₂ dynamics. 

These enriched datasets are then used to train three different machine-learning models (Random Forest, 

CNN, and LSTM) chosen because they reflect complementary ways of learning temporal behavior in 

buildings. Their performance is evaluated through standard forecasting metrics, and SHAP-based 

interpretability tools are applied to better understand which variables influence the predictions and why. 

Finally, the forecasting results are integrated into a BIM-linked Power BI dashboard, enabling the 

predictions to be explored directly within the 3D model of Aule R. In this way, the methodological 

framework connects data preparation, model development, and spatial visualization into a single 

workflow designed to support energy-efficient operation and improve comfort management in the 

building. 

3.1.1 Overview of the Analytical Framework 

The overall architecture of the proposed BIM-IoT Integrated Data Analytics Pipeline workflow is 

illustrated in Figure 3.1. The system integrates heterogeneous building information and sensor data into 

a unified pipeline for analysis, prediction, and visualization. 

 

 

 

 

 



 

 

 Figure 3.1 Overall architecture of the BIM-IoT Integrated Data Analytics Pipeline workflow 



 

3.2 Data Collection and Preprocessing 

3.2.1 Data sources and acquisition 

The dataset covers approximately 20 months (5 March 2024 - 25 November 2025), collected every 15 

minutes from the sensor network installed in Aule R, Politecnico di Torino. The environmental sensors 

measure:  

Table 3.1 Parameters measured in Aule R 

Parameter Symbol Unit Description 

Indoor air 

temperature 

Tin °C Mean of upper (Z2) and lower (Z1) room sensors, or a single 

sensor in basement rooms 

Outdoor air 

temperature 

Tout °C External reference sensor on facade 

Setpoint temperature Tset °C Control signal from the HVAC system 

CO₂ concentration C ppm Indoor air quality/occupancy indicator 

The extended monitoring period results in approximately 58,000-60,000 time-stamped samples per 

zone, enabling the analysis to capture both short-term dynamics (intra-hour and intra-day variations) 

and long-term seasonal effects (weekly and annual cycles). Such long-term, high-frequency data enhance 

the statistical reliability of the forecasting models and enable the learning of periodic behaviors, 

consistent with findings reported in recent studies on multi-season and annual indoor-environment 

forecasting [4, 5]. 

3.2.2 Data cleaning and alignment 

All raw CSV sensor files were imported and standardized through a dedicated Python preprocessing 

module developed for this study. The procedure ensured data consistency, temporal integrity, and 

reliability across all monitored zones. 

The main steps are summarized as follows: 

 File normalization and encoding: 

Non-data header lines (e.g., sep=;) and hidden byte-order marks (BOM) were automatically 

detected and removed. 

Column names in both English and Italian were standardized to consistent labels across all 

datasets. 



 

 Timestamp parsing and localization: 

All timestamps were localized to Europe/Rome (CET/CEST). To handle the DST fallback hour 

(02:00 duplicated), we used an ambiguity-masking strategy that identifies duplicate timestamps 

and consistently keeps the first occurrence (the DST instance), while discarding the second 

(standard-time duplicate). Nonexistent times during the spring transition were shifted forward. 

This yields a strictly increasing, unique datetime index before 15-minute resampling and 

canonical re-indexing. 

 Temporal resampling and alignment: 

Records were resampled on a strict 15-minute grid covering the whole monitoring period (5 

March 2024 - 25 November 2025). 

This ensured full temporal synchronization between temperature and CO₂ data for each zone. 

 Quality control and outlier handling: 

Physical plausibility limits were applied to indoor temperature (−10 °C ≤ Tin ≤ 50 °C), with out-of-

range values converted to NaN and short gaps (≤ 1 h) filled through time-based interpolation. 

Sensor inspection revealed that indoor CO₂ occasionally contained physically impossible low 

values (below the atmospheric background ≈ 400 ppm). To address this, a data-driven dynamic 

floor was defined as the maximum between a conservative 380 ppm baseline and a background 

estimate from the dataset (5th percentile − 30 ppm). All CO₂ values falling below this threshold 

were hard-clipped to restore physical plausibility, as these represent sensor errors rather than 

genuine missing data. Extremely high values (> 4000 ppm), if present, were converted to NaN, 

and short gaps (≤ 1 h) were interpolated. In contrast, longer gaps were removed during the final 

dropna() stage after lag/rolling feature generation. This correction improves the physical validity 

and stability of the time-series models [23]. 
 Calendar feature mapping: 

Each record was enriched with temporal attributes (hour of day, day of week, month, and season) 

to support the identification of diurnal and seasonal patterns and occupancy cycles. 

Through these steps, the dataset was transformed into a uniform, timezone-aware, and quality-

controlled dataframe comprising approximately 58,000-60,000 records per zone. This temporally 

consistent and seasonally complete dataset provides a robust foundation for feature engineering and 

subsequent machine-learning modelling stages [24]. 

 

3.3 Feature Engineering and Selection 

To capture both short-term fluctuations and long-term thermal trends, a set of temporal and contextual 

features was engineered from the cleaned data. 



 

3.3.1 Temporal lag features 

To incorporate temporal memory, lag features of 15-minute data were generated for both indoor 

temperature (temp_mean) and CO₂ (co2) at multiple horizons: 

𝐿 = {1, 2, 3, 4, 8, 12, 24, 48} 

corresponding respectively to 15 min 

These lag terms encode autocorrelation patterns essential for forecasting. 

3.3.2 Rolling-window statistics  

Rolling means smooth short-term fluctuations and reveal aggregated trends. 

For each variable, rolling windows of 1 h (4 steps), 3 h (12 steps), 6 h (24 steps), and 24 h (96 steps) were 

computed, providing local trend information used by the learning algorithms. Such aggregated 

descriptors help capture mid-term thermal dynamics characteristic of massive building envelopes [18]. 

3.3.3 Calendar and contextual features 

To capture the intrinsic periodicity of building operation and environmental dynamics, a set of calendar 

and contextual features was engineered. 

Time-related variables, including hour of day, day of week, and weekend flag, were encoded using 

cyclical sine–cosine transformations to preserve the continuity between the end and start of each period 

[25]. 

Specifically: 

𝒉𝒐𝒖𝒓_𝒔𝒊𝒏 =  𝒔𝒊𝒏 (
𝟐𝝅⋅𝒉𝒐𝒖𝒓

𝟐𝟒
),  hour_cos =  cos (

2π⋅hour

24
) 

 

And similarly for the weekly cycle: 

𝒘𝒆𝒆𝒌_𝒔𝒊𝒏 =  𝒔𝒊𝒏 (
𝟐𝝅⋅𝒅𝒂𝒚_𝒐𝒇_𝒘𝒆𝒆𝒌

𝟕
),  week_cos =  cos (

2π⋅day_of_week

7
) 

These encodings allow the model to learn smooth transitions across 24-hour and 7-day boundaries, 

avoiding artificial discontinuities (e.g., between 23:00 and 00:00). 

Since the dataset spans more than one calendar year (March 2024 – November 2025), annual seasonality 

was represented using cyclical month encodings to capture inter-year climatic and operational patterns: 

𝒎𝒐𝒏𝒕𝒉_𝒔𝒊𝒏 =  𝒔𝒊𝒏 (
𝟐𝝅⋅𝒎𝒐𝒏𝒕𝒉

𝟏𝟐
), month_cos =  cos (

2π⋅month

12
) 



 

In addition, an academic-term indicator (in_academic_term) was constructed to reflect the operational 

schedule of the Politecnico di Torino across multiple academic years covered by the dataset. Teaching 

activities and examinations typically occur from October through July, and in September, while August 

corresponds to a low-occupancy, non-academic period. The indicator was computed for both academic 

years (2023/24 and 2024/25) to ensure consistency across the extended monitoring period. 

This combination of cyclic, seasonal, and academic-calendar features allows the forecasting models to 

distinguish long-term climatic trends from occupancy-driven behavioral patterns, thereby improving the 

characterization of indoor temperature and CO₂ variations. Outdoor temperature and HVAC setpoint 

were included as exogenous contextual drivers. At the same time, CO₂ concentration served both as an 

explanatory feature of occupancy patterns and as a target variable representing indoor air quality. 

3.3.4 Feature selection  

To avoid working with an unnecessarily large set of lagged, rolling, and time-encoding features, mutual 

information (MI) ranking was applied on the training set to determine which predictors contributed most 

to forecasting accuracy. MI measures how strongly each feature is related to the target variable, even 

when the relationship is nonlinear. 

Based on these scores, the top K = 80 features were selected for all models. These typically included the 

most relevant temperature and CO₂ lags, short-term rolling averages, key calendar encodings (such as 

hour and day-of-week), and external drivers like setpoint and outdoor temperature. 

Reducing the feature space in this way helped remove redundancy, sped up training, and improved 

model stability, while still preserving all essential information needed for accurate forecasting. 

3.4 Model Design and Training Procedure 

Three supervised-learning models were implemented to forecast indoor temperature and CO₂ 

concentration for horizons of 1 h (4 steps) and 3 h (12 steps) ahead. The selected models cover 

complementary learning paradigms: 

Table 3.2 Forecasting models used in this study 

Model Type Rationale 

Random Forest (RF) Ensemble of decision 

trees 

Captures nonlinear relations in tabular 

features; interpretable via SHAP [26]. 

Convolutional Neural 

Network (CNN) 

1-D sequence learner Efficiently extracts short-term temporal 

patterns from recent time windows [27]. 



 

Long Short-Term Memory 

(LSTM) 

Recurrent neural 

network 

Learns long-term dependencies and 

seasonality in time-series data [28]. 

 

Normalization of Input Features for Deep Learning Models 

Deep learning models such as CNNs and LSTMs are highly sensitive to the scale of input features. Since 

the indoor environmental dataset contains variables with different numerical ranges (for example, 

temperature values around 20–30 °C, CO₂ concentrations ranging from 400 to 2000 ppm, and cyclical 

encodings bounded between −1 and 1), unscaled inputs may lead to unstable training, slow convergence, 

or poor generalization. 

To ensure stable and efficient optimization, all numerical input features used by the sequence models 

were standardized before training. 

Standardization was performed using a StandardScaler, which transforms each feature as: 

𝐱 − 𝛍

𝛔
= 𝒛 

where μ and σ are the mean and standard deviation of the feature computed only from the training 

portion of the dataset. 

This prevents data leakage, ensuring that no information from the validation or test periods is used 

during preprocessing. 

The fitted scaler was then applied consistently across training, validation, and testing sets. 

Only the input features were normalized; the target variables (temperature and CO₂) were left in their 

physical units (°C and ppm) to preserve interpretability of the forecasting errors. 

This normalization step improves optimization stability, balances the contribution of each feature, and 

allows both CNN and LSTM models to learn temporal patterns effectively. 

3.4.1 Data splitting  

To ensure a precise and leakage-free evaluation of forecasting performance, the dataset was partitioned 

using fixed chronological boundaries rather than ratio-based or randomized splitting. This approach 

reflects standard best practices in time-series forecasting, where the model must be trained exclusively 

on past data and evaluated strictly on future periods. 

The full 20-month dataset (5 March 2024 – 25 November 2025) was therefore partitioned into three 

consecutive segments representing past, intermediate-future, and unseen-future conditions: 

 Training period: 5 March 2024 → 31 May 2025 



 

This segment spans roughly 450 days (~72%) and includes full seasonal variability. It provides the 

model with a broad range of climatic and operational scenarios necessary for learning robust 

temporal patterns. 

 Validation period: 1 June 2025 → 31 August 2025 

A three-month summer interval (~14%) is used exclusively for hyperparameter tuning and early 

stopping. This period represents a distinct thermal regime, making it suitable for optimizing 

model behavior without affecting the final evaluation. 

 Testing period: 1 September 2025 → 25 November 2025 

The final portion (~14%) corresponds to the beginning of the 2025/26 academic year and is held 

out strictly for unbiased performance assessment. Models never observe this period during 

training or tuning. 

This splitting approach ensures that the forecasting models learn only from past observations and are 

evaluated solely on future, operationally relevant data. Compared to proportional splits (e.g., 70/15/15), 

the fixed-calendar strategy preserves seasonal, academic, and occupancy-related patterns. It provides a 

more realistic assessment of forecasting performance in real-world building operation scenarios. 

 
Table 3.3 Chronological data-splitting strategy 

Subset Date Range Duration Percentage Purpose 

Training 5 March 2024 → 

31 May 2025 

~450 days  

~72% 

 

Model fitting: learning seasonal, 
daily, and CO₂/thermal patterns 

Validation 1 June 2025 → 

31 August 2025 

~92 days (3 

months) 

 

~14% 

 

Hyperparameter tuning, early 
stopping, and model selection 

Testing 1 September 

2025 → 25 

November 2025 

~86 days  

~14% 

 

Final unbiased performance 
evaluation on unseen future data 

 

3.4.2 Model configuration 

To capture the different temporal behaviors of indoor environmental data, three complementary 

machine-learning models were implemented:  



 

A Random Forest (RF), a Convolutional Neural Network (CNN), and a Long Short-Term Memory network 

(LSTM). 

Each model offers distinct advantages in terms of interpretability, the ability to model nonlinear 

dynamics, and the capacity to learn temporal dependencies. 

Their configurations and design rationales are described below: 

 Random Forest (RF): 

The Random Forest model serves as a strong non-parametric baseline that can model nonlinear 

feature interactions without requiring extensive hyperparameter tuning. 

Because RF does not rely on a sequential input structure, it is particularly effective when the 

target variable is primarily explained by engineered features such as lags, rolling statistics, and 

calendar embeddings. 

The RF model was trained separately for each zone, forecasting horizon, and target variable using 

a fixed configuration optimized through pilot experiments. Its main parameters are summarized 

in Table 3.4. 

 

Table 3.4 Configuration of the Random Forest model 

Parameter Specification Purpose 

n_estimators 120 Balance of accuracy and speed 

max_depth 15  Prevents overfitting 

Min_samples_leaf 5 Smoother prediction surface 

Max_features "sqrt" Standards for regression forests 

n_jobs –1 Full CPU parallelism 

bootstrap True Improves generalization 

Feature Selection Top 80 features (Mutual 

Information) 

Reduces redundancy and speeds 

training 

SHAP Analysis 600 validation samples, 

check_additivity=False 

Generates interpretable feature 

importance at low cost 



 

 

SHAP analysis was computed on 600 samples of the validation set (check_additivity=False) to 

derive interpretable feature importance and reduce computational overhead, consistent with 

standard practice for tree explainers in large ensembles. 

 

 Convolutional Neural Network (CNN):  

The CNN model is designed to learn short-term temporal dependencies directly from raw 

sequences. Unlike RF, which relies on engineered lags, the CNN automatically extracts local 

temporal patterns through convolutional filters. 

A causal architecture was employed to ensure that the model never uses information from the 

future. This is critical for forecasting tasks where the temporal order must be strictly preserved. 

The configuration is summarized in Table 3.5. 

Table 3.5 Configuration of the CNN model 

Parameter Specification Purpose 

Input shape (12 steps, n features) = 3 h 

window 

Fixed history length per sequence. 

Conv1D layers 2 × Conv1D (64 filters, kernel = 

3, ReLU, causal padding) 

Extracts local temporal patterns. 

Pooling layer Global Average Pooling 1D Reduces dimensionality and prevents 

overfitting. 

Dense layers Dense 128 (ReLU) → Dense 1 

(output) 

Maps learned features to forecast 

value. 

Optimizer Adam (lr = 1 × 10⁻³) Adaptive gradient optimization. 

Loss function Mean Absolute Error (MAE) Robust to outliers, interpretable in 

°C/ppm. 

Batch size 64 Efficient GPU utilization. 

Epochs ≤ 120 with Early Stopping 

(patience = 15) 

Stops training when no validation 

improvement. 

Learning-rate 

schedule 

ReduceLROnPlateau (factor = 

0.5, patience = 5) 

Refines convergence. 

 



 

Training Strategy 

CNN models were trained for up to 120 epochs, using the Adam optimizer and MAE loss function. 

Early stopping (patience=15) prevented overfitting, while a ReduceLROnPlateau schedule 

allowed the model to refine its learning rate during training. 

 

 Long Short-Term Memory (LSTM):  

The LSTM model is responsible for capturing longer temporal dependencies that may span 

several hours. 

Whereas CNNs focus on local patterns, LSTMs maintain an internal memory that tracks trends 

and contextual information over extended periods. 

Although the input sequence length was kept consistent with the CNN (12 time steps = 3 hours) 

to allow fair comparison, the LSTM’s memory cells will enable it to retain information far beyond 

the explicit input window. 

Its configuration is presented in Table 3.6. 

Table 3.6 Configuration of the LSTM model 

Parameter Specification Purpose  

Input shape (12 steps, n features) = 3 h 

window 

Same sequence length as CNN for 

comparability. 

LSTM layer 128 units, dropout = 0.2 Captures long-term temporal dependencies 

while preventing overfitting. 

Dense layers Dense 128 (ReLU) → Dense 1 

(output) 

Nonlinear mapping to forecast the target. 

Optimizer Adam (lr = 1 × 10⁻³) Stable training of recurrent networks. 

Loss function Mean Absolute Error (MAE) Same metric as CNN for fair comparison. 

Batch size 64 Trade-off between stability and memory 

use. 

Epochs ≤ 120 with Early Stopping 

(patience = 15) 

Avoids overfitting and excessive runtime. 

Learning-rate 

schedule 

ReduceLROnPlateau (factor = 

0.5, patience = 5) 

Adaptive fine-tuning of learning rate. 



 

Each model was trained and validated independently for every zone and forecast horizon. For the 

sequence models (CNN and LSTM), both architectures were first trained on the training subset and 

evaluated on the validation subset using mean absolute error (MAE) as the primary selection criterion. 

For each zone–target–horizon combination, the architecture achieving the lowest validation MAE was 

selected as the best-performing sequence model. The chosen model was then fine-tuned on the 

combined training and validation data for an additional 10 epochs before being evaluated on the held-

out test set. This procedure ensured a fair comparison between architectures while exploiting all 

available data for final parameter refinement, and the overall multi-model setup enabled the capture of 

both short-term and longer-term temporal patterns of the indoor environment. 

Hyperparameter Selection Rationale: 

The chosen hyperparameters were selected through a small, literature-guided tuning process applied to 

a representative subset of the data. Full hyperparameter search was avoided due to the computational 

cost across all zones and horizons; instead, configurations that consistently provided a stable balance 

between accuracy and runtime were adopted. These settings follow standard practice in building 

forecasting studies and ensure reproducible performance without unnecessary model complexity. 

3.4.3 Model Architectures 

Table 3.7 Summary of the model architectures used for forecasting 

Model Key Layers Strength 

Random Forest 120 trees, depth ≤ 15 Interpretable via SHAP 

CNN Conv1D × 2 + Dense 128 Detects local temporal patterns 

LSTM LSTM 64 + Dense 128 Captures long-term dependencies 

 

All models were implemented in Python 3.12, using scikit-learn, TensorFlow Keras, and the SHAP library 

in Google Colab.  



 

3.5 Uncertainty Quantification in Forecasting Models 

To evaluate the reliability of the predictive models, the uncertainty of forecasts was also quantified. This 

step indicates how confident each model is about its predictions and helps interpret the results beyond 

single deterministic values. 

For the Random Forest (RF) model, the 95% confidence interval was computed from the variability of 

tree outputs as: 

𝜎𝑡𝑟𝑒𝑒𝑠   = √
1

𝑛
 ∑(𝑦𝑖 −  ȳ )2

𝑛

𝑖=1

  

Where 

 𝜎𝑡𝑟𝑒𝑒𝑠 represents the standard deviation across n trees 

 ȳ  is the mean prediction across all trees 

The 95% confidence interval was then computed as: 

ȳ ± 1.96 * 𝜎𝑡𝑟𝑒𝑒𝑠 

This interval reflects epistemic uncertainty arising from variability in model structure and training data. 

For the LSTM model, uncertainty was quantified using Monte Carlo (MC) Dropout, in which dropout 

layers remain active during inference. The model performs 𝑇=30 stochastic forward passes, yielding 

predictions 𝑦1, 𝑦2, … , 𝑦𝑇. 

The predictive mean is: 

ȳ =
1

𝑇
∑ 𝑦𝑇

𝑇

𝑡=1

 

The corresponding uncertainty is obtained from the standard deviation of these outputs: 

𝜎𝑀𝐶   = √
1

𝑇
 ∑(𝑦𝑇

 
−  ȳ )2

𝑇

𝑡=1

  

The 95% confidence interval is defined as: 

ȳ ± 1.96 * 𝜎𝑀𝐶  



 

This method captures model uncertainty due to stochasticity in neural network weights. These 

confidence bands highlight the model’s reliability and variation over time, improving interpretability 

and supporting decision-making for the Aule R building. [29] 

3.6 Evaluation Metrics and Validation Strategy 

Model performance was assessed using three standard regression error metrics: 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦^𝑖|𝑛

𝑖=1 , 𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑦𝑖 − 𝑦^𝑖)2𝑛

𝑖=1  , 𝑠𝑀𝐴𝑃𝐸 =
200

𝑛
∑

|𝑦𝑖−𝑦^𝑖|

|𝑦𝑖|+|𝑦^𝑖|

𝑛
𝑖=1  

MAE reflects the average magnitude of prediction errors in the physical units of the target (°C or ppm), 

RMSE penalizes larger deviations more heavily and therefore highlights instability or peak 

mispredictions, while sMAPE provides a unitless percentage error that facilitates comparison across 

zones and different environmental variables. 

For evaluation, a fixed chronological split was adopted instead of ratio-based partitioning. 

The full 20-month dataset (5 March 2024 – 25 November 2025) was divided into: 

 Training: 5 March 2024 → 31 May 2025 

 Validation: 1 June 2025 → 31 August 2025 

 Testing: 1 September 2025 → 25 November 2025 

This approach ensures that models are trained exclusively on past data and validated/tuned on an 

intermediate future period. At the same time, the final testing phase corresponds to a completely 

unseen segment reflecting the beginning of the 2025/26 academic year. 

Unlike proportional splits (e.g., 70/15/15), the fixed-boundary strategy preserves seasonal, academic, 

and occupancy-related dynamics and avoids temporal leakage without requiring artificial buffer zones. 

For sequence models (CNN and LSTM), the validation MAE was used for early stopping and model 

selection. 

Final performance was continuously computed on the held-out test period using all three metrics (MAE, 

RMSE, sMAPE). 

MAE evaluates the mean absolute deviation, RMSE penalizes larger errors more heavily, and sMAPE 

normalizes errors relative to magnitude, facilitating comparison across different zones [30]. 

3.7 Interpretability with SHAP Analysis 
To ensure transparency, model interpretability was achieved using SHapley Additive exPlanations (SHAP) 

[26, 11]. It was employed to interpret the Random Forest predictions. 
Each SHAP value quantifies the contribution of a specific feature to increasing or decreasing a given 

prediction relative to the model’s baseline output. 



 

Aggregating absolute SHAP values across all test samples provided global feature importance rankings, 

revealing the dominant factors driving the indoor temperature and CO₂ forecasts. 

Short-term temperature lags (e.g., temp_mean_lag1–4), outdoor temperature, and time-of-day features 

consistently appeared among the most influential predictors, reflecting the physical intuition of thermal 

inertia and occupancy-driven dynamics. 

For neural models (CNN and LSTM), the same interpretability concept can be extended using 

DeepExplainer to visualize temporal relevance patterns, although this was reserved for future work due 

to computational cost. 

This interpretability approach aligns with best practices in explainable building-energy forecasting [12]. 

3.8 Visualization through BIM-enabled Power BI Dashboard 

The final stage of the methodology focused on embedding the predictive results within the 3D 

environment of the Aule R building to create an innovative dashboard. In this phase, the Building 

Information Model (BIM) developed in Revit acted as a static geometric reference, a spatial container 

that provides room-level semantics but does not operate as a real-time digital twin. Its purpose was to 

serve as a structured spatial framework onto which analytical and predictive data could be mapped. 

The forecast outputs, including predicted indoor temperature and CO₂ concentration together with their 

associated uncertainty ranges, were exported from the modelling pipeline as structured CSV tables. 

These tables followed a unified schema containing the zone identifier, timestamp, target variable, 

forecasting horizon, predictive mean, and upper–lower confidence bounds. Once exported, the 

prediction datasets were imported into Microsoft Power BI and linked to the corresponding Revit spaces 

using the Speckle connector. 

This integration enabled the construction of a fully interactive 3D visualization of the Aule R building, 

where each classroom (R1-R4, R1B-R4B) displays its forecasted conditions directly within the spatial 

model. Through color-coded room shading and dynamic filtering controls, users can explore predicted 

values over different horizons, compare them against historical measurements, and visually inspect 

uncertainty propagation across zones and time periods. The dashboard also includes conventional time-

series charts and slicers that complement the 3D perspective and allow users to navigate specific dates, 

variables, or modeling configurations. 

Overall, the BIM-linked Power BI dashboard serves as a data-driven reporting layer that enhances the 

interpretability of the predictive analytics. Rather than functioning as a real-time digital twin, it provides 

a clear, intuitive environment for communicating model insights, supporting comparative analysis across 

rooms, and facilitating informed decision-making related to HVAC performance, comfort assessment, 

and operational planning within the Aule R building. 



 

3.9 Summary 

This chapter detailed the research design and methodological workflow adopted for forecasting indoor 

environmental conditions in Aule R. Starting from a 20-month dataset, the workflow encompassed data 

preprocessing, engineered temporal and contextual features, optimized Random Forest and deep-

learning models, and interpretable SHAP analysis. 

Finally, the predictive outputs were integrated into the BIM-enabled data visualization in an innovative 

Power BI dashboard, establishing a coherent workflow that enhances data-driven building-management 

decisions.  



 

Chapter 4 – Results 

4.1 Overview 

This chapter presents the experimental results of the data-driven forecasting framework developed for 

predicting indoor environmental conditions in Aule R academic building. The analyses follow the 

methodological pipeline described in Chapter 3 and focus on evaluating the performance of Random 

Forest (RF), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) models for 

short-term forecasting of indoor temperature and CO₂ concentration across multiple zones of the 

building. 

The chapter begins with an exploratory analysis of the cleaned 20-month dataset (March 2024 – 

November 2025), a high-resolution (15-minute) dataset used in this study. It then reports the forecasting 

accuracy of the three modeling approaches, compares their performance across prediction horizons, 

quantifies uncertainty, and provides model interpretability results using SHAP values. Finally, the chapter 

showcases the integration of model outputs into a BIM-Power BI dashboard, providing a concise visual 

decision-support layer for interpreting indoor environmental performance. 

4.2 Exploratory Data Analysis (EDA) 

4.2.1 Data Coverage and Completeness 

The cleaned 20-month dataset of indoor environmental measurements (March 2024 – November 2025) 

contains 478,728 time-stamped samples at a 15-minute resolution. After applying the full preprocessing 

pipeline, comprising timestamp normalization, DST ambiguity correction, removal of corrupted values, 

physical-range filtering, and short-gap interpolation, the dataset achieves 100% data coverage for both 

indoor temperature (temp_mean) and CO₂ concentration. 

No missing values remain in either variable (0 NaNs), meaning that the final model-ready dataset is fully 

complete and temporally continuous across the entire monitoring period. This complete coverage 

ensures that the subsequent feature-engineering steps (lags, rolling statistics, and temporal encodings) 

can be applied without introducing additional data loss, thereby providing a robust and consistent 

foundation for forecasting models. 

4.2.2 Data Quality Checks 

During the preprocessing stage, several quality-control procedures were applied to ensure the physical 

plausibility and temporal consistency of the 20-month dataset. This section summarizes the outcomes 

of these procedures.  

CO₂ Dynamic Floor and Clipping 



 

Inspection of the raw CO₂ measurements revealed the presence of physically implausible low values 

(often below 300 ppm), typically caused by sensor resets, power interruptions, or short communication 

faults. 

To correct these anomalies, a dynamic CO₂ background floor was computed for each zone as: 

 the conservative baseline (380 ppm), and 

 the 5th percentile of observed values minus 30 ppm, 

with the larger of the two selected as the minimum plausible CO₂ value. 

All CO₂ measurements falling below this dynamic threshold were hard-clipped. 

The number of corrected samples differs significantly across zones, reflecting differences in sensor 

stability and noise levels: 

 

 
Figure 4.1 shows the distribution of CO₂ corrections across the eight monitored zones 

These corrections ensure physical plausibility of the CO₂ time series while preserving short-term 

variability and the underlying occupancy-related patterns essential for forecasting. 

Temperature Outlier Filtering 

Indoor air temperature values outside the physical range −10 °C to 50 °C were identified as sensor faults 

and replaced with NaN. 

Such anomalies were rare and typically originated from short communication interruptions or corrupted 

sensor packets. 

Subsequently, time-based interpolation (≤ 1 hour) was applied to reconstruct short missing segments. 

Longer gaps were eliminated automatically after generating lag and rolling features, ensuring that only 

physically plausible and temporally consistent data entered the forecasting models. 

DST Ambiguity Resolution 



 

The transition from daylight saving time (CEST → CET) on 27 October introduced duplicated timestamps 

at 02:00, creating ambiguity in chronological ordering. 

These were automatically detected, and for each duplicated timestamp, the first occurrence (CEST 

instance) was retained, while the duplicate was removed. 

This correction enforces a strictly monotonic timestamp index across all zones, preventing temporal 

leakage and ensuring consistent alignment during resampling and feature engineering. 

4.2.3 Statistical Overview of Indoor Variables 

Indoor temperature in Aule R ranges from 12.75°C to 33.80°C, with a mean of 23.06°C and a moderate 

variability (std = 2.61°C). This relatively narrow spread reflects the combined effect of HVAC control and 

seasonal changes over the 20-month monitoring period. The temperature distribution is approximately 

unimodal and close to symmetric around 23°C, indicating that most observations cluster within a few 

degrees of typical comfort conditions. 

 

 
Figure 4.2 Histogram of indoor temperature values across all zones over the 20 months.  

 

CO₂ concentration exhibits a much broader and more asymmetric distribution. After applying the 

dynamic background floor described in Section 4.2.2, values span from 380 ppm to 2013 ppm, with a 

mean of 590.65 ppm and a standard deviation of 211.09 ppm. The histogram is clearly right-skewed, 

with a large mass of observations around 400–600 ppm and a long tail extending toward higher 

concentrations. This pattern highlights the strong influence of occupancy and ventilation events: CO₂ 

remains near background levels during unoccupied periods but can rise above 1000 ppm during busy 



 

class hours, confirming that CO₂ is considerably more variable and occupancy-driven than indoor 

temperature. 

 

 
Figure 4.3 Histogram of indoor CO₂ concentrations across the dataset. 

 

4.2.4 Temporal Patterns 

The 20-month dataset exhibits clear and consistent temporal structures in both indoor temperature and 

CO₂ concentration, reflecting typical occupancy cycles and HVAC operation in Aule R. 

Daily Patterns 

Daily temperature dynamics follow a smooth and predictable cycle: 

 Minimum temperatures occur around 06:00-07:00 (≈ 22.7°C), reflecting overnight cooling under 

reduced HVAC activity and no internal heat gains. 

 From 08:00 onward, temperature gradually increases, reaching afternoon peaks of 

approximately 23.4-23.45°C between 15:00 and 17:00. 

 After 18:00, the temperature slowly declines toward nighttime levels. 

 



 

 

Figure 4.4 Average daily temperature cycle aggregated across all zones. 

 

Daily CO₂ trends strongly reflect occupancy behavior: 

 CO₂ is lowest in the early morning (≈ 480-500 ppm). 

 A sharp rise begins between 07:00 and 09:00, aligned with the start of class activity. 

 CO₂ reaches its maximum levels around 10:00-12:00, peaking between 680 and 700 ppm. 

 Concentrations remain elevated during classroom hours and then drop rapidly after 18:00, 

returning toward background levels during the night. 

These patterns clearly indicate that temperature dynamics are dominated by slow thermal inertia, 

whereas CO₂ responds rapidly to changes in occupancy. 

 

 

Figure 4.5 Average daily CO₂ cycle aggregated across all zones. 



 

Weekly patterns  

Weekly patterns provide another layer of insight into how indoor conditions evolve in relation to building 

usage. Unlike the more pronounced hour-to-hour variability observed in the daily cycles, changes across 

the week are subtler yet highly informative. 

For temperature, the weekly trend shows a mild but very consistent difference between weekdays and 

weekends. During Monday–Friday, indoor temperatures tend to be slightly higher, with the weekly 

maximum occurring on Tuesday (around 23.18–23.19°C). This pattern can be attributed to two combined 

effects: regular occupancy throughout the workweek, which introduces internal heat gains, and the 

HVAC system operating in its standard weekday mode. Because heating, cooling, and ventilation 

schedules typically adjust to expected classroom activity, weekday temperatures remain marginally 

elevated. 

As the week transitions into Saturday and Sunday, temperature values dip noticeably, reaching a 

minimum of approximately 22.85°C on Sunday. These lower values are consistent with reduced or absent 

occupancy and less intensive HVAC operation over the weekend, when the building is largely unused. 

 

 

Figure 4.6 Average indoor temperature across days of the week. 

CO₂ exhibits a much stronger weekly contrast. On weekdays, especially Monday and Tuesday, CO₂ 

concentrations peak above 650 ppm, reflecting sustained occupancy levels and continuous classroom 

turnover. Throughout the middle of the week, CO₂ remains elevated, mirroring the rhythm of teaching 

schedules. 

In contrast, weekend CO₂ levels drop dramatically, often stabilizing below 480 ppm. These low and 

steady values align with background outdoor concentrations, clearly confirming that the building is 

either unoccupied or only minimally used. This distinct weekday–weekend separation highlights the 

direct sensitivity of CO₂ to human presence and ventilation control. 



 

 

Figure 4.7 Weekly CO₂ pattern showing significant differences between weekdays 

 

Together, the weekly and daily temporal structures, smooth thermal cycles, sharp CO₂ peaks aligned 

with occupancy, and apparent operational differences between weekdays and weekends, strongly justify 

incorporating hour-of-day, day-of-week, and cyclical sine–cosine temporal encodings into the feature-

engineering pipeline used for forecasting. 

4.2.5 Autocorrelation Analysis (ACF) 

Autocorrelation analysis was performed to quantify the temporal persistence of indoor temperature and 

CO₂ concentration and to guide the selection of lagged features for forecasting. Figures 4.8 and 4.9 show 

the autocorrelation function (ACF) over the first 48 lags (equivalent to a 12-hour window at 15-minute 

resolution). 

Temperature exhibits very high persistence across the entire 12-hour period. 

ACF values remain above 0.95 for all 48 lags, indicating an extremely strong autoregressive structure and 

slow thermal dynamics typical of conditioned indoor environments. This high temporal memory 

confirms the suitability of including multiple long lags and longer rolling windows in temperature 

forecasting models. 



 

 

Figure 4.8 Autocorrelation function (ACF) of indoor temperature over 48 lags (12 hours). The very slow decay indicates high 
temporal persistence and strong autoregressive behavior. 

In contrast, CO₂ displays a much faster autocorrelation decay. 

The ACF decreases from near 1.0 at lag 1 to approximately 0.70 at lag 10, falls below 0.30 by lag 30, and 

approaches zero by lag 45. This rapid decay reflects the short-term and occupancy-driven nature of CO₂ 

dynamics, which respond quickly to classroom presence and ventilation events. These characteristics 

justify using short-horizon forecasting (1–3 hours) and emphasize the importance of recent CO₂ lags for 

predicting near-future concentrations. 

 

Figure 4.9 Autocorrelation function (ACF) of indoor CO₂ concentrations. The rapid decay reflects short-term occupancy-
driven variability. 



 

Together, the ACF results highlight the fundamentally different temporal behaviors of the two variables: 

temperature is highly persistent with long-term memory, whereas CO₂ is transient and dominated by 

short-term fluctuations. 

4.3 Feature Engineering Verification 

4.3.1 Most Informative Features (MI-based Selection) 

To quantitatively assess the effectiveness of the engineered features, a mutual information (MI) analysis 

was carried out for the 1-hour-ahead temperature target. All numerical predictors derived in the feature-

engineering pipeline (lags, rolling statistics, and contextual variables) were included, and the 20 features 

with the highest MI scores are reported in Table 4.1. 

Table 4.1 Top 20 most informative features for the 1-hour temperature forecast, ranked by mutual information (MI) 

Rank Feature MI 

1 temp_mean_lag1 2.60 

2 temp_mean_roll_1h_mean 2.59 

3 temp_mean_lag2 2.48 

4 temp_mean_lag3 2.37 

5 temp_mean_lag4 2.27 

6 temp_mean_roll_3h_mean 2.23 

7 temp_mean_lag8 1.98 

8 temp_mean_roll_6h_mean 1.88 

9 temp_mean_lag12 1.78 

10 temp_mean_roll_24h_mean 1.59 

11 temp_mean_lag24 1.42 

12 temp_mean_lag48 1.17 

13 setpoint 0.85 

14 temp_out 0.79 

15 month 0.79 

16 month_cos 0.46 

17 month_sin 0.42 

18 co2_roll_24h_mean 0.31 

19 co2_lag1 0.22 

20 co2_lag2 0.22 



 

The results clearly show that short-term lagged and rolling statistics of indoor temperature dominate 

the ranking. The first positions are consistently occupied by temp_mean_lag1, temp_mean_lag2, 

temp_mean_lag3, temp_mean_lag4, together with temp_mean_roll_1h_mean and 

temp_mean_roll_3h_mean. Longer lags and aggregates (temp_mean_lag8, temp_mean_lag12, 

temp_mean_lag24, temp_mean_lag48, and the 6-h and 24-h rolling means) also exhibit substantial MI 

values, confirming that both very recent history and multi-hour thermal inertia contribute relevant 

predictive information. This pattern empirically supports the choice of lag set {1, 2, 3, 4, 8, 12, 24, 48} 

and multi-scale rolling windows (1 h, 3 h, 6 h, 24 h) adopted in Chapter 3. 

Among the contextual variables, setpoint and outdoor temperature (temp_out) show non-negligible MI 

scores, indicating that HVAC control actions and external climatic conditions meaningfully influence the 

future indoor temperature. Seasonal calendar descriptors (month, month_sin, month_cos) also appear 

in the top-20 list, reflecting slower seasonal drifts in the building’s thermal regime. 

Finally, CO₂-based features (e.g., co2_roll_24h_mean, co2_lag1, co2_lag2) achieve lower but still positive 

MI values. This suggests that occupancy-related internal gains, as encoded by CO₂ dynamics, provide 

additional, but secondary, information for temperature forecasting compared to direct thermal history. 

The MI analysis confirms that the engineered lag and rolling features, together with a compact set of 

contextual and calendar variables, form a highly informative predictor space and validates the feature-

engineering design choices presented in the methodology chapter. 

4.3.2 Cross-zone Variability in Selected Features 

To investigate whether different rooms within Aule R exhibit distinct thermal behaviors, mutual 

information (MI) was computed separately for each zone. Table 4.2 summarizes the three most 

informative features for the 1-hour-ahead temperature forecast in all eight monitored zones. 

Table 4.2 Top three most informative features for the 1-hour temperature forecast across all monitored zones, ranked by 
mutual information (MI). 

zone top1_feature top1_MI top2_feature top2_MI top3_feature top3_MI 

R1 temp_mean_lag1 2.492 temp_mean_roll_1h_mean 2.487 temp_mean_lag2 2.363 

R2 temp_mean_lag1 2.545 temp_mean_roll_1h_mean 2.542 temp_mean_lag2 2.42 

R3 temp_mean_roll_1h_mean 2.453 temp_mean_lag1 2.45 temp_mean_lag2 2.33 

R4 temp_mean_lag1 2.477 temp_mean_roll_1h_mean 2.456 temp_mean_lag2 2.347 

R1B temp_mean_roll_1h_mean 2.756 temp_mean_lag1 2.706 temp_mean_lag2 2.604 



 

R2B temp_mean_roll_1h_mean 2.355 temp_mean_lag1 2.283 temp_mean_lag2 2.197 

R3B temp_mean_roll_1h_mean 2.557 temp_mean_lag1 2.506 temp_mean_lag2 2.395 

R4B temp_mean_roll_1h_mean 2.52 temp_mean_lag1 2.474 temp_mean_lag2 2.377 

 

Across all zones, the results reveal a consistent and dominant reliance on short-term thermal history, 

with temp_mean_lag1, temp_mean_lag2, and the 1-hour rolling mean (temp_mean_roll_1h_mean) 

appearing systematically among the top-ranked predictors. This uniformity highlights that temperature 

evolution in Aule R is primarily governed by strong autoregressive dynamics and short-term thermal 

inertia, regardless of specific room configuration or HVAC node. 

Some degree of cross-zone variability does however emerge. In R1, R2, and R4, the first-order lag 

(temp_mean_lag1) is the single most informative feature, suggesting a more immediate thermal 

responsiveness to short-term fluctuations. Conversely, in R1B, R2B, R3B, R4B, and especially R1B, the 1-

hour rolling mean exhibits the highest MI score, indicating smoother temperature profiles with more 

substantial averaging effects, likely due to differences in HVAC exposure, airflow distribution, or thermal 

buffering within these rooms. 

Notably, contextual variables (e.g., setpoint, outdoor temperature) and CO₂ features do not appear 

among the top predictors for any zone, reinforcing the conclusion that recent indoor temperature 

history overwhelmingly explains short-term temperature dynamics. At the same time, other signals 

provide secondary or indirect contributions. 

The cross-zone comparison confirms that the feature-engineering strategy is robust and generalizable 

across the building. At the same time, the subtle inter-zone differences offer meaningful insights into 

room-level thermal characteristics and HVAC behavior. 

4.4 Forecasting Performance of Machine Learning Models 

This section evaluates the forecasting performance of the three implemented models—Random Forest 

(RF), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM)—across all building 

zones and for both target variables: indoor temperature (temp_mean) and CO₂ concentration. The 

analysis considers two forecasting horizons: 1 hour (1h) and 3 hours (3h). 

The forecasting results for indoor temperature and CO₂ concentration reveal clear, consistent patterns 

across models, horizons, and building zones. By examining both aggregated metrics and zone-level 

behavior (using MAE, RMSE, and a set of comparative plots), the distinctive characteristics of each model 

and variable become evident. This section provides a unified interpretation of the forecasting 

performance, drawing on all the supporting visualizations. 



 

Table 4.3 reports the forecasting accuracy of the Random Forest (RF) and sequence models (CNN/LSTM) 

for indoor air temperature and CO₂ concentration at two predictive horizons (1 h and 3 h). Across all 

metrics, RF consistently outperforms the sequence models, achieving substantially lower MAE and RMSE 

values. 

Table 4.3 Forecasting accuracy of Random Forest and sequence models (CNN/LSTM) for temperature and CO₂ across 1-hour 
and 3-hour horizons. 

Model Target Horizon MAE RMSE sMAPE 

RF temp_mean 1h 0.458 0.760 1.734 

RF temp_mean 3h 0.753 1.112 2.899 

RF CO₂ 1h 30.60 57.91 5.48 

RF CO₂ 3h 53.90 93.61 9.57 

CNN/LSTM temp_mean 1h 1.497 2.049 5.924 

CNN/LSTM temp_mean 3h 1.647 2.177 6.531 

CNN/LSTM CO₂ 1h 43.25 92.06 7.58 

CNN/LSTM CO₂ 3h 61.88 114.72 11.02 

 

4.4.1 Temperature Forecasting Performance (Main Target) 

1-hour ahead forecasting 

Across all zones, the Random Forest (RF) model demonstrates the highest accuracy for short-term 

temperature prediction. According to the aggregated metrics table, RF achieves an MAE of 0.46 °C, which 

is considerably lower than the best-performing sequence model (CNN/LSTM, MAE ≈ 1.5 °C). This large 

performance gap is also reflected in the comparative bar charts for the 1-hour horizon Figure4.10, where 

the RF bar is visibly shorter than those of the deep learning models. 



 

 
Figure 4.10 Comparison of 1-hour temperature forecasting errors (MAE) across Random Forest, CNN, and LSTM models. 

This behavior is further clarified when looking at the zone-level breakdown in Figure 4.11. In every eight 

classrooms, RF consistently maintains a low MAE, typically between 0.35 °C and 0.60 °C. CNN and LSTM, 

on the other hand, show more fluctuation across rooms, and their errors are noticeably higher in all 

cases.  

 

Figure 4.11 Zone-level 1-hour temperature forecasting errors (MAE) for Random Forest, CNN, and LSTM models across all 
monitored rooms. 

Scatter plots also help visualize the structural difference between the models. The RF scatter plot, Figure 

4.12, shows that predictions cluster tightly around the diagonal, indicating a very close match between 



 

predicted and actual temperatures. The CNN/LSTM scatter plot in Figure 4.13 indicates much greater 

dispersion, especially at higher temperatures, which explains why their MAE values are consistently 

higher. 

 

Figure 4.12 Scatter plot of 1 h ahead RF temperature forecasts vs measured values (sample of 1000 points) 

 

 

Figure 4.13 Scatter plot of 1 h ahead CNN/LSTM temperature forecasts vs measured values (sample of 1000 points) 



 

The high performance of RF at the 1-hour horizon reflects the strong short-term persistence of indoor 

temperature, which was indicated by the autocorrelation analysis in Section 4.2.5. Since lagged features 

capture most of this temporal structure, RF can exploit them directly and effectively. 

3-hour ahead forecasting 

At the 3-hour horizon, errors naturally increase for all models, yet RF again remains the most stable and 

accurate method. The aggregated MAE for RF rises to 0.75 °C, whereas CNN and LSTM reach 

approximately 1.45–1.65 °C. This trend is evident in the comparison plot in Figure 4.14, where the error 

bars for CNN/LSTM remain considerably higher. 

 

Figure 4.14 Comparison of 3-hour temperature forecasting errors (MAE) for Random Forest, CNN, and LSTM models. 

Zone-level results display the exact pattern, Figure 4.15. Even in the more challenging longer horizon, RF 

maintains an MAE typically below 0.85 °C in most rooms, while LSTM often exceeds 2.0 °C. RMSE patterns 

reinforce this observation Figure 4.16, where RF shows the lowest variance and the smoothest error 

profile among all models. 



 

 

Figure 4.15 Zone-level 3-hour temperature forecasting errors (MAE) for Random Forest, CNN, and LSTM models across all 
monitored rooms. 

 

 

Figure 4.16 Zone-level 3-hour temperature forecasting errors (RMSE) for Random Forest, CNN, and LSTM models across all 
monitored rooms. 

The “Forecast Error Vs Horizon” plot, Figure 4.17, illustrates how gracefully RF performance degrades 

compared to CNN/LSTM. Whereas the RF curve increases only mildly between 1h and 3h, the deep 

learning curve starts high at 1h. It shows only a marginal additional increase, indicating that the deep 



 

models fail to capture the fine-grained short-term dynamics of the thermal environment and perform 

substantially worse overall. 

 

Figure 4.17 Evolution of MAE with forecast horizon (1 h vs 3 h) for RF and CNN/LSTM temperature models. 

In summary, both the tabular and graphical evidence clearly show that RF provides highly reliable 

temperature forecasts in both 1h and 3h horizons, with errors consistently under 1 °C. This level of 

accuracy is notable given the complex thermal behavior arising from mixed HVAC influences, envelope 

inertia, and occupancy-related heat gains. 

4.4.2 CO₂ Forecasting Performance (Secondary Target) 

1-hour ahead forecasting 

Forecasting CO₂ concentration is inherently more challenging because it depends on occupancy, which 

is not directly available in the dataset. Despite this limitation, RF again delivers the most accurate short-

horizon predictions. The aggregated metrics report an MAE of 30.6 ppm for RF, compared to 43.3 ppm 

for CNN/LSTM. The corresponding bar chart, Figure 4.18, visually confirms this difference. 



 

 

Figure 4.18 Comparison of 1-hour CO₂ forecasting errors (MAE) for Random Forest, CNN, and LSTM models. 

Zone-level plots, Figure 4.19, highlight a wider variability in CO₂ forecasting error than in temperature. 

Certain rooms (notably R3 and R1B) experience higher spikes in error for all models. These zones are the 

largest classrooms and tend to exhibit more dynamic occupancy patterns, which explains their more 

volatile CO₂ profiles. Even in these difficult rooms, RF maintains the lowest MAE, whereas LSTM often 

exceeds 60 ppm. 

 

Figure 4.19 Zone-level 1-hour CO₂ forecasting errors (MAE) for Random Forest, CNN, and LSTM models across all monitored 
rooms. 



 

 

3-hour ahead forecasting 

The challenge of CO₂ prediction becomes even more apparent at the 3-hour horizon. All models 

experience a significant increase in error, but RF continues to perform best. The average MAE for RF 

increases to 53.9 ppm, while CNN/LSTM reach 61.9 ppm and often exceed this value in individual rooms. 

The bar chart Figure 4.20 clearly reflects this horizon-dependent degradation. 

 

Figure 4.20 Comparison of 3-hour CO₂ forecasting errors (MAE) for Random Forest, CNN, and LSTM models. 

The zone-level 3h chart Figure 4.21 indicates that error growth is not uniform across classrooms: zones 

with previously high volatility (e.g., R3, R1B) exhibit the greatest increases in error at longer horizons. 

Basement rooms tend to maintain slightly lower CO₂ variability, which is consistent with their lower 

occupancy density. 



 

 

Figure 4.21 Zone-level 3-hour CO₂ forecasting errors (MAE) for Random Forest, CNN, and LSTM models across all monitored 
rooms. 

These patterns also agree with the autocorrelation analysis for CO₂ in Section 4.2.5, which showed a 

rapid decay of temporal correlation within the first 30–45 minutes. This explains why the 3-hour 

forecasts deteriorate more sharply for CO₂ than for temperature. 

The “CO₂ Forecast – MAE by Model and Horizon” plot Figure 4.22 summarizes how prediction accuracy 

changes between the 1h and 3h horizons. Similar to temperature forecasting, RF shows a smoother and 

more controlled increase in error, rising from about 31 ppm at 1h to 54 ppm at 3h. In contrast, the 

sequence models start from a higher error level and continue to diverge at the longer horizon, reaching 

approximately 62 ppm. This pattern highlights the difficulty of forecasting CO₂ (due to its rapid 

fluctuations and occupancy-driven behavior) and emphasizes the advantage of RF in short-term 

prediction. 



 

 

Figure 4.22  Mean absolute error (MAE) for 1 h and 3 h ahead CO₂ forecasts for RF and CNN/LSTM models.1  

CO₂ forecasting remains more challenging than temperature prediction, but RF consistently provides the 

most reliable short-term performance, maintaining a clear error margin over the deep learning models 

across both horizons. 

4.4.3 Why Random Forest Outperformed Sequence Models 

The superior performance of the Random Forest model can be understood by looking at both the 

characteristics of the data and the way temporal information was represented in this study. Indoor 

temperature in Aule R changes gradually and has strong short-term persistence. Because of this, the 

lagged and rolling features created during feature engineering already capture most of the relevant 

temporal dynamics. Random Forest is particularly effective with such structured, tabular inputs, allowing 

it to turn these features into highly accurate forecasts. 

In contrast, the CNN and LSTM models must learn temporal patterns directly from short raw sequences. 

Without longer histories or explicit occupancy information—particularly important for CO₂—they face a 

more difficult learning problem. Their predictions show greater variability and higher errors, especially 

as the forecasting horizon increases. Deep learning models are also more sensitive to hyperparameters 

and data scaling, making them less robust when the dataset is moderate in size or when specific drivers 

of the dynamics are excluded. 

Taken together, the results across all zones and horizons indicate that the forecasting task in Aule R 

favors a feature-driven approach over sequence-based representation learning. Random Forest benefits 

directly from the strong autocorrelation of temperature and the carefully engineered inputs, whereas 



 

CNN and LSTM cannot fully exploit their potential under these conditions. This explains why Random 

Forest consistently achieves lower errors than the sequence models for both temperature and CO₂. 

4.5 SHAP Explainability for Random Forest 

To better understand how the Random Forest model generates its temperature predictions, SHAP values 

were computed for all zones and then averaged to produce a global importance ranking. The resulting 

plot, Figure 4.23, offers a clear and intuitive picture of which signals the model relies on most strongly. 

A dominant pattern emerges immediately: 

the current indoor temperature (temp_mean) and its first lag (temp_mean_lag1) overwhelmingly drive 

the 1-hour-ahead forecast. This is fully consistent with the strong thermal persistence observed earlier 

in the autocorrelation analysis. In practice, this means that the building’s temperature in the next hour 

is largely determined by where it stands right now and where it was just a short moment before. 

Following these two core predictors, the 1-hour rolling mean (temp_mean_roll_1h_mean) also shows 

substantial influence. Its importance highlights the smoothing effect of recent thermal history and 

reinforces the idea that local thermal inertia plays a central role in shaping short-term indoor conditions. 

The SHAP ranking also assigns meaningful weight to the individual sensor readings (temp_z1, temp_z2). 

Their presence among the top features indicates that small temperature variations within the room 

(caused perhaps by stratification, differences in airflow, or proximity to occupants) carry useful 

predictive content that the model can exploit. 

Higher-order lags, and multi-scale rolling windows (e.g., lag2, lag3, lag4, lag8, rolling_3h, rolling_6h) 

contribute progressively less but still play a supporting role. These patterns reflect slower temperature 

dynamics and the influence of accumulated heat gains and HVAC effects across several hours. 

Contextual drivers such as outdoor temperature (temp_out) and setpoint appear further down the list. 

While they do matter, their lower SHAP values indicate that short-term indoor temperature evolution is 

more dominated by internal conditions than by external ones. This agrees with the physical behavior of 

conditioned academic spaces, where HVAC systems tend to buffer indoor air from rapid outdoor 

fluctuations. 

Finally, calendar-based features (e.g., month, hour_cos) show only minor effects. Their low SHAP values 

suggest that, at the 1-hour forecasting horizon, seasonal or time-of-day signals add relatively little 

beyond what is already encoded in the recent temperature history. 

Overall, the SHAP analysis provides strong validation of the feature-engineering choices outlined in 

Chapter 3. The model’s behavior aligns closely with physical intuition: indoor temperature forecasts 

depend heavily on very recent conditions, complemented by short-term averages and a modest 

contribution from longer-term thermal memory and contextual factors. The clarity and consistency of 



 

these results help build confidence in the Random Forest model as both an accurate and interpretable 

forecasting tool. 

 

 

Figure 4.23 Top 20 most influential features for the 1-hour temperature forecast based on SHAP importance values from the 
Random Forest model. 

 

4.6 Uncertainty Quantification 

To better understand the reliability of the forecasting models, uncertainty intervals were estimated for 

both temperature and CO₂ predictions. These intervals represent the range within which the true value 

is likely to fall and therefore provide an additional layer of interpretability beyond point forecasts. 

Examining these bands helps clarify not only how accurate the models are, but also how confident they 

remain across different conditions, horizons, and variables. 

Uncertainty analysis for temperature reveals a remarkably stable behavior. In the 1-hour-ahead 

temperature forecast for Zone R1, the Random Forest model produces consistently narrow prediction 

intervals, closely enveloping the true temperature curve throughout the day, Figure 4.24. This pattern 

reflects the strong persistence of indoor temperature: changes occur gradually, and the model largely 

relies on recent thermal history, which is well captured by the engineered lag and rolling features. Even 



 

during moderate fluctuations in the early morning or midday periods, the confidence band remains tight, 

indicating that the model has a solid grasp of the underlying thermal dynamics. By contrast, the LSTM 

model exhibits much greater uncertainty and predicts a nearly flat temperature profile, Figure 4.25. The 

wide confidence band suggests that the model is unsure about the direction or magnitude of 

temperature changes, reinforcing the earlier conclusion that sequence models struggled to capture 

short-term temperature behavior in this building. 

 

Figure 4.24 Random Forest 1-hour temperature forecast for Zone R1, showing predicted values with 95% uncertainty 
intervals compared to actual measurements. 

 

Figure 4.25 LSTM 1-hour temperature forecast for Zone R1, showing predicted values with uncertainty intervals compared to 
actual measurements. 

A similar contrast can be observed when examining a different day with nearly flat cooling-driven 

temperature patterns, Figure 4.26. Even under these steady conditions, the Random Forest model 

retains narrow and coherent intervals, whereas the sequence model produces very wide uncertainty 



 

bands, showing that it remains unsure even when the true signal varies only minimally. This example 

helps highlight that the limitations of the sequence model are not only tied to dynamic temperature 

changes but also appear when the signal is too stable for the model to interpret effectively. 

 

Figure 4.26 Comparison of 1-hour temperature forecasts and uncertainty intervals for Random Forest and sequence models 
(CNN/LSTM) in Zone R1 on 15 August 2025. 

As the forecasting horizon increases, uncertainty naturally widens. In the 3-hour temperature forecast 

for the same zone, Figure 4.27, the Random Forest intervals expand slightly but remain coherent and 

informative. The model still follows the overall temperature pattern, but the greater spread reflects the 

reasonable increase in uncertainty when looking several hours ahead. This widening is expected and 

aligns with the physical nature of indoor environments, where the influence of recent conditions 

gradually diminishes with time. Despite this, the RF model maintains meaningful predictive structure, 

suggesting that it remains reliable even at longer horizons. 



 

 

Figure 4.27 Random Forest 3-hour temperature forecast for Zone R1, showing predicted values with 95% uncertainty 
intervals compared to actual measurements. 

Uncertainty patterns for CO₂ present a very different picture. CO₂ concentrations fluctuate far more 

suddenly than temperature because they are strongly affected by human occupancy and ventilation 

events. These rapid changes contribute to broader and more variable uncertainty intervals across all 

models. In the 1-hour-ahead forecast for Zone R1 on September 15, Figure 4.28, the Random Forest 

model still manages to capture the general shape of CO₂ variations, but its confidence band widens 

noticeably during periods of sudden increases or decreases. The sequence model shows even broader 

uncertainty intervals, particularly during sharp occupancy-driven transitions, highlighting its difficulty in 

anticipating CO₂ dynamics without explicit behavioral inputs. 

 

Figure 4.28 Comparison of 1-hour CO₂ forecasts and uncertainty intervals for Random Forest and sequence models 
(CNN/LSTM) in Zone R1 on 15 September 2025. 



 

These observations become more pronounced at the 3-hour horizon. Both RF and LSTM show 

significantly wider uncertainty bands in multi-day CO₂ forecasts, reflecting the reduced predictability of 

this variable as the time window expands. While Random Forest maintains a recognizable structure that 

tracks the overall trend, the sequence model’s intervals become extremely broad, suggesting low 

confidence across most of the forecast window. This behavior underscores the inherently stochastic 

nature of CO₂ dynamics and the limited ability of data-driven models to infer occupancy-driven peaks 

solely from past CO₂ values. 

Together, these examples demonstrate the value of uncertainty quantification in contextualizing the 

forecasting results. Temperature forecasts exhibit high confidence and limited variability, especially over 

short horizons, which strengthens the case for using Random Forest as a dependable tool for short-term 

thermal management. CO₂ forecasts, on the other hand, inherently carry greater uncertainty due to their 

sensitivity to occupancy, and the corresponding intervals highlight the need for richer contextual or 

occupancy-related data if more reliable CO₂ predictions are desired. Across all scenarios, the Random 

Forest model expresses narrower and more stable uncertainty bounds than the sequence models, 

reinforcing its role as the most robust and trustworthy option for indoor environmental forecasting in 

Aule R. 

4.7 BIM-enabled Data Visualization in Power BI 

An important step in translating the forecasting models into a practical decision-support tool is 

integrating their outputs into the 3D BIM-enabled data visualization in the Power BI environment. During 

the internship phase, the dashboard was designed primarily to display historical sensor data, allowing 

users to explore temperature and CO₂ conditions across the building in a spatially intuitive way. Each 

room in the 3D model could be highlighted according to its measured parameter ranges, and users could 

switch between metrics or drill down into time-series plots for individual zones. This historical dashboard 

served as a proof of concept for a data-enhanced BIM model, demonstrating how sensor information 

can be visualized directly on top of a geometric representation of the building, figure 4.29 and figure 

4.30. 



 

 

Figure 4.29 BIM-Power BI dashboard developed during internship, visualizing historical data across the 3D model of Aule R. 

 

 

Figure 4.39 BIM-Power BI dashboard developed during internship, visualizing historical data across the 3D model of Aule R. 



 

 

In the extended work for this thesis, the visualization framework is enriched by incorporating the 

forecasted environmental conditions generated by the machine-learning models developed in previous 

sections. Instead of limiting the dashboard to past measurements, it is now possible to display near-

future predictions (e.g., 1-hour or 3-hour-ahead forecasts) alongside historical trends. These forecasts 

can be associated with the BIM geometry in the same way as the original data: each room in the 3D 

model can be dynamically colored based on its predicted temperature or CO₂ concentration, while the 

time-series plots update to show both the recent observations and the upcoming forecast interval. 

This integration fundamentally shifts the purpose of the dashboard, from a retrospective monitoring tool 

to a forward-looking decision-support system. Building managers, HVAC operators, or researchers can 

visually assess not only what has happened in the past 24–48 hours, but also how indoor conditions are 

expected to evolve shortly. For example, zones predicted to reach higher CO₂ levels can be highlighted 

in advance, enabling proactive ventilation adjustments. Similarly, predicted temperature trends can 

inform thermal comfort management or HVAC scheduling. 

The ability to visualize future conditions within the spatial context of the 3D model also strengthens the 

interpretability of the forecasting pipeline. Forecast anomalies, uncertainty intervals, or rapid transitions 

become easier to identify when viewed in combination with the building layout and room-specific 

characteristics. 

Overall, extending the BIM-enabled data visualization in Power BI dashboard to include forecasted 

values represents a natural evolution of the initial internship work. By merging predictive analytics with 

data-driven 3D visualization, the system provides a more comprehensive understanding of the indoor 

environment, one that supports both monitoring and predictive insights. This enhancement 

demonstrates how machine learning, sensing data, and BIM visualization can be combined into a unified 

platform capable of supporting smarter, more informed building-management decisions. 

4.8 Summary of Findings 

The results of this chapter show a consistent pattern across all analyses. Indoor temperature in Aule R 

exhibits smooth and highly predictable behavior, which allowed the Random Forest model to achieve 

very strong forecasting performance, with errors remaining low even for longer horizons. CO₂, in 

contrast, fluctuates sharply due to occupancy and is therefore harder to predict; yet Random Forest still 

performed more reliably than the sequence models. SHAP analysis confirmed that short-term indoor 

temperature history is the dominant driver of accurate predictions, while contextual factors such as 

outdoor conditions play a smaller role. Uncertainty quantification further highlighted the differences 

between variables and models: temperature forecasts showed tight and stable confidence bands, while 



 

CO₂ uncertainty was naturally larger. Integrating these forecasts into the BIM–Power BI dashboard 

transformed the visualization into a forward-looking tool, enabling users to see not only what has 

happened in the building, but also what is likely to occur next. Altogether, the findings demonstrate that 

a feature-driven machine-learning approach, supported by explainability and visualization, can 

effectively anticipate indoor environmental conditions and provide meaningful insights for building 

operations. 

  



 

Chapter 5 – Conclusion 

5.1 Summary of Research and Key Contributions 

This thesis presented an integrated, data-driven framework for forecasting indoor environmental 

conditions in the Aule R building at Politecnico di Torino. Using 20 months of high-resolution (15-minute) 

sensor measurements of indoor air temperature and CO₂, combined with outdoor temperature and 

HVAC setpoint data, the study developed an analytical pipeline that spans data preprocessing, feature 

engineering, machine-learning modelling, uncertainty quantification, interpretability through SHAP, and 

3D visualization in a BIM-linked Power BI environment. This work extends a previous internship project 

that focused on BIM modeling and historical data visualization in Power BI by introducing a predictive 

layer and connecting it to the BIM-based dashboard. 

Three major methodological pillars define the contributions of this thesis: 

1) Multivariate data preparation and feature engineering 

Twenty months of IoT sensor data were cleaned, temporally aligned, corrected for DST shifts, 

and enriched with multi-scale lag features, rolling-window statistics, and contextual calendar 

descriptors. The temporal persistence patterns, very strong for temperature and moderate for 

CO₂, justified the feature design and were validated through autocorrelation analysis. Feature-

selection results confirmed that short-term indoor temperature history dominated predictive 

information, while setpoint and outdoor temperature played secondary but meaningful roles. 

2) Comparative modelling using Random Forest, CNN, and LSTM 

Across all zones and all horizons, the three modelling approaches; Random Forest, CNN, and 

LSTM were systematically trained and evaluated across multiple zones and forecasting horizons. 

Overall, the Random Forest model emerged as the most robust and stable approach for this 

specific building context. Its advantage stems from the highly autoregressive nature of indoor 

temperature and the strong effectiveness of engineered lag features, which provide a rich 

representation of temporal patterns. The deep-learning sequence models, although common in 

time-series forecasting, were less suited to this specific building context due to limited occupancy 

observability, strong short-term persistence, and the relatively moderate dataset size. 

3) Explainability and BIM-linked visualization 

SHAP analysis revealed that recent indoor temperature values, short-horizon rolling averages, 

and secondarily outdoor temperature were the principal drivers of RF predictions. These insights 

provide interpretability and strengthen trust in the model’s behavior. Finally, the predictive 

outputs, together with uncertainty ranges, were linked to the Aule R BIM model and integrated 

within Power BI, transforming the existing dashboard from a purely descriptive historical viewer 



 

into a spatially contextualized predictive decision-support tool. This expands the earlier 

internship work by creating a unified pipeline that merges forecasting, explainability, and 3D 

visualization. 

The combined results demonstrate that explainable and computationally efficient machine-learning 

models can reliably forecast short-term indoor environmental conditions in educational buildings, laying 

a strong foundation for data-driven HVAC assessment. 

5.2 Implications and Practical Insights 

The findings of this research have several practical implications for building operation, HVAC 

performance assessment, and occupant comfort. The stability of short-term forecasts indicates that 

HVAC operation can gradually shift from reactive control toward proactive, forecast-informed strategies, 

particularly for regulating indoor temperature. Although CO₂ forecasting proved more challenging due 

to the absence of explicit occupancy data, short-term predictions remain sufficiently reliable to support 

ventilation-on-demand approaches, helping to anticipate periods of insufficient air exchange. Moreover, 

the use of SHAP interpretability provides facility managers with clear insight into how and why 

environmental conditions evolve, making model outputs more transparent and easier to adopt in 

practice. Finally, embedding predictive results into the BIM-Power BI 3D visualization enhances 

communication and operational awareness by allowing building operators to spatially visualize 

upcoming thermal and air-quality patterns at room level.  

5.3 Future Development  

Base on the outcomes of this work, future research can advance the predictive framework in several 

directions: 

 Integrating real-time occupancy data 

Using Wi-Fi counts, camera-based anonymized occupancy, or course timetables data would 

significantly improve the accuracy of both temperature and CO₂ forecasts and enable predictive 

ventilation strategies. 

 Expanding the forecasting horizons and model diversity 

Exploring a broader range of modelling approaches, including hybrid CNN–LSTM architectures, 

and transformer-based time-series models, would enable more accurate medium and long-term 

forecasting. 

 Developing a real-time BIM-IoT monitoring platform 

Transitioning from descriptive visualization to a dynamic digital twin capable of continuous 

prediction and control optimization. 

 Deployment in additional buildings for generalizability 



 

Applying the workflow to other Polito buildings or similar academic environments would test its 

generalizability across diverse spatial layouts, thermal characteristics, and usage patterns. 

This thesis demonstrated that combining IoT sensor data, explainable machine-learning models, and 

BIM-based 3D visualization can substantially enhance understanding and forecasting of indoor 

environmental conditions in educational buildings. The proposed framework provides actionable 

insights into HVAC behavior, enables proactive comfort management, and moves toward more 

intelligent, data-driven building operation. While the framework does not yet constitute a fully real-time 

digital twin, it establishes a solid foundation for future predictive building-management platforms at 

Politecnico di Torino and represents a meaningful step toward data-driven and occupant-centric 

environmental control. 
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