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Abstract

Urban water distribution networks (WDNs) are essential infrastructures that en-
sure the continuous supply of clean and safe water to communities. Due to popu-
lation growth, climate variability, and aging infrastructure, improving operational
efficiency and minimizing losses have become critical objectives for water utilities.
Among the major challenges faced by modern WDNs, leakages represent a signifi-
cant source of inefficiency; in Italy, networks lose approximately 42% of the treated
water before it reaches consumers. Such losses impose substantial economic costs,
reduce system resilience, and hinder the sustainable management of water resources.

This thesis work involved the development of a hydraulic digital model and
the evaluation of algorithms for leakage monitoring in two municipalities in the
Province of Cuneo, Piedmont, Italy: Cavallermaggiore and Marene. The thesis
was developed in collaboration with Alpi Acque, the water utility manager, and
the support of Tesisquare and Fondazione DIG421. The study builds upon real
infrastructure documentation, mainly GIS WDNs data, SCADA measurements,
operational knowledge and records of historical leakages.

The thesis is divided into two complementary parts:
In Part I, we developed hydraulic digital models of Cavallermaggiore and Marene

using the open source software EPANET. The models integrate reconstructed tank
geometries, pump curves, well output data, district-level time patterns derived from
SCADA flow measurements, yearly consumer-level demand, and rule-based controls
that replicate real operational logic. The models were calibrated to match flow and
pressure trends over a representative time period and were used to support the
definition of districts in Cavallermaggiore and the development of Part II.

In Part II, we evaluated leakage monitoring methods based on machine learn-
ing techniques. First, we evaluated the use of a data-driven anomaly detection
algorithm using real flow sensor data from the inlets of each district, to implement
leakage detection. With this approach we are able to reach over 90% of recall
of the historical leakages reported by the utility manager. Second, we used the
validated hydraulic model to generate simulated leakage scenarios and pressure
measurements, following the approaches described in the BattLeDIM competition.
This data was then used to feed the LILA algorithm for leakage detection and
localization.
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By integrating a hydraulic digital model with machine learning techniques, this
work provides a practical and scalable framework for monitoring leakage events
in medium-sized municipal water distribution networks. The collaboration with
Alpi Acque and the real-data-informed modelling of Cavallermaggiore and Marene
demonstrate how hydraulic simulation, SCADA analytics, and machine learning so-
lutions can support the transition toward smarter, more efficient, and more resilient
water management.
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Chapter 1

Introduction

Water distribution networks are essential for delivering clean and safe water to
communities, yet they face mounting challenges from aging infrastructure, climate
change, and growing demand. Among these challenges, water losses due to leakages
represent one of the most pressing concerns for utilities worldwide. In Italy, the
situation is particularly critical: approximately 42% of treated water is lost before
reaching consumers [1], resulting in significant economic costs, wasted energy, and
reduced system resilience. Addressing this challenge requires a combination of effec-
tive monitoring systems, predictive models, and automated detection algorithms.

The importance of leakage monitoring extends beyond economic considerations.
Undetected leaks compromise water quality, increase operational costs through ex-
cess pumping, and undermine public confidence in water services. Traditional leak-
age detection methods, such as acoustic surveys and field inspections, are reactive
and labor-intensive, making them unsuitable for continuous monitoring across large
networks. As a result, there is growing interest in data-driven and model-based ap-
proaches that leverage real-time sensor data and hydraulic simulations to enable
proactive leakage management.

Hydraulic modeling plays a central role in modern leakage management strate-
gies. A well-calibrated hydraulic model enables utilities to simulate system behav-
ior under various conditions, evaluate operational scenarios, and generate synthetic
data for training detection algorithms. This becomes especially valuable when
physical sensors are sparse or absent, as models can provide the hydraulic insights
needed to interpret limited measurements and identify anomalies. Recent bench-
mark initiatives, such as the BattLeDIM competition [2], have demonstrated the
effectiveness of combining hydraulic modeling with machine learning for leakage
detection and localization in controlled synthetic environments.

However, a significant gap exists between research developments in synthetic
benchmarks and practical applications in real operational networks. Most advanced
leakage detection methods are evaluated using simulated data with idealized con-
ditions, abundant sensor coverage, and perfect knowledge of network topology.
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In contrast, real municipal water networks operate under substantial constraints:
sensor deployments are limited by cost and maintenance requirements, hydraulic
models are subject to calibration uncertainties, and leakage records are incomplete
or delayed. While studies such as [3, 4, 5] have demonstrated promising results
on real networks, comprehensive case studies that integrate flow-based detection,
pressure-based localization, and real SCADA data on medium-sized municipal sys-
tems remain scarce.

This thesis addresses these gaps by developing and evaluating leakage moni-
toring methodologies on two real municipal water distribution networks: Cavaller-
maggiore and Marene, located in the Province of Cuneo (Piedmont, Italy). The
work was conducted in collaboration with Alpi Acque S.p.A., the local water util-
ity manager, with additional support from Tesisquare and Fondazione DIG421.
The study builds on real operational assets, including GIS infrastructure data,
SCADA measurements from flow and pressure sensors, historical leakage records
documented by utility staff, and operational knowledge of system behavior. Both
networks are characterized by complex topologies, multiple supply sources (wells
and tanks), variable elevations, and heterogeneous consumption patterns typical of
medium-sized Italian municipalities.

A key challenge addressed in this thesis is the constraint of limited sensor avail-
ability. Unlike synthetic benchmarks or large metropolitan networks where dense
sensor coverage may be assumed, Cavallermaggiore and Marene have sparse in-
strumentation: flow meters are installed at district inlets, but pressure sensors
are limited to a small number of critical nodes. This constraint reflects the opera-
tional reality faced by many small- and medium-sized utilities and requires adapted
methodologies that maximize the value of limited measurements. The hydraulic
model becomes essential in this context, providing virtual pressure observations
and enabling scenario-based evaluation of detection and localization performance.

The remainder of this manuscript is organized as follows:
Chapter 2 offers an in-depth overview of the literature, covering hydraulic mod-

eling and simulation, model calibration and uncertainty analysis, district metered
area design, flow and pressure based leakage detection methods, the BattLeDIM
benchmark, the LILA framework, and strategies for sensor placement.

Chapter 3 describes the study area and data sources, including the geograph-
ical and operational context of Cavallermaggiore and Marene, infrastructure data
from GIS Master records, SCADA measurement systems, and historical leakage
documentation provided by Alpi Acque.

Chapter 4 presents the hydraulic model development and calibration process,
including network reconstruction from GIS data, demand allocation and pattern
definition, tank and pump integration with control logic, extended-period simula-
tion, calibration against SCADA flow and pressure measurements, validation, and
the definition of district boundaries for Cavallermaggiore.
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Chapter 5 evaluates leakage monitoring methods based on machine learn-
ing techniques, including flow-based anomaly detection applied to real SCADA
measurements from district inlets, generation of synthetic leakage scenarios follow-
ing the BattLeDIM methodology, and implementation of the LILA algorithm for
pressure-based detection and localization under different sensor configurations.

Chapter 6 summarizes the main findings, discusses practical implications for
water utilities managing networks under sparse sensor constraints, and suggests
directions for future research in real-time deployment and SCADA integration.

By integrating real operational data, calibrated hydraulic models, and machine
learning techniques, this thesis provides a practical and scalable framework for
leakage monitoring in medium-sized municipal networks under realistic sensor con-
straints. The results demonstrate that even with limited instrumentation, effective
leakage detection and localization can be achieved through the strategic of flow-
based analytics and model-supported pressure analysis.
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Chapter 2

Literature Review

2.1 Water Distribution Networks: Challenges and
Water Losses

Water Distribution Networks (WDNs) are complex engineered systems composed
of pipelines, storage tanks, pumps, valves, and nodes that deliver potable water
from sources to consumers (Figure 2.1). Their performance depends on the ability
to maintain adequate pressure levels, ensure water quality, and minimize hydraulic
and operational inefficiencies. Over the past decades, WDNs worldwide have ex-
perienced increasing pressures due to demographic growth, climate variability, and
aging infrastructure [6, 7].

Real water losses remain one of the most critical challenges for water utilities.
These losses primarily originate from leakages caused by pipe deterioration, faulty
joints, corrosion, ground movement, and pressure fluctuations [9, 10]. The Inter-
national Water Association (IWA) has developed standardized terminology and
performance metrics to quantify and manage losses across different contexts [7, 11].
In many regions, non-revenue water exceeds 30% of total production, imposing
substantial economic costs and reducing system resilience [9].

In Italy, the situation is particularly severe, with annual leakage rates exceeding
42% in many municipalities, reinforcing the urgent need for advanced monitoring
and modeling strategies [1]. Excessive losses increase utility operating costs, reduce
network resilience, complicate long-term planning for sustainable water manage-
ment, and contribute to resource depletion. International studies highlight that
pressure control, sectorization through District Metered Areas (DMAs), and con-
tinuous monitoring play essential roles in reducing leakage levels [12, 13, 14].
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Figure 2.1: Schematic representation of the L-TOWN Water Distribution Network
showing main components: pipelines, storage tanks, pumps, valves, and demand
nodes[2, 8].

2.2 Hydraulic Modeling and Simulation
Hydraulic modeling is widely adopted by water utilities for design, planning, and
real-time decision support. Software tools such as EPANET, WaterGEMS and
InfoWorks WS enable simulation of pressure, flow, and tank dynamics across ex-
tended periods, allowing analysis of operational scenarios and fault conditions [15,
16]. A calibrated hydraulic model is fundamental for reproducing system behavior,
supporting design decisions, and enabling leakage management strategies [17].

EPANET (Figure 2.2), developed by the U.S. Environmental Protection Agency,
is the most widely used open-source hydraulic modeling platform for water distri-
bution systems. It implements the demand-driven analysis (DDA) approach by
default, where nodal demands are assumed to be satisfied regardless of pressure
availability. However, under abnormal operating conditions such as leakages or
pipe failures, pressure-driven analysis (PDA) becomes more appropriate, as it ac-
counts for the relationship between available pressure and actual delivered demand
[18, 19].

Modeling workflows generally include reconstruction of network topology from
GIS data, assignment of nodal demands and time patterns, characterization of
pumps, valves, and tanks, and validation of model predictions against SCADA
measurements [20]. Extended-period simulation (EPS) allows for the analysis of
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Figure 2.2: EPANET simulation example. (Image from EPANET’s Wikipedia).

time-varying behavior, including daily demand cycles, tank level fluctuations, and
pump scheduling [16]. This capability is particularly important when evaluating
the hydraulic signatures of leakages, which may evolve gradually over hours or days.

2.3 Model Calibration and Uncertainty Quantifi-
cation

Model calibration is the process of adjusting uncertain model parameters to min-
imize discrepancies between simulated and observed hydraulic data. Key param-
eters subject to calibration include pipe roughness coefficients, nodal demands,
pump characteristics, and control logic [20]. Calibration techniques range from
manual trial-and-error adjustments to advanced optimization approaches based on
evolutionary algorithms, surrogate modeling, or Bayesian inference [21, 22, 23].

Recent works emphasize the role of uncertainty quantification in improving
model robustness. Sources of uncertainty include measurement errors in SCADA
data, inaccuracies in GIS records, variability in consumer demand, and simpli-
fications in the hydraulic representation [24, 25]. Properly accounting for these
uncertainties is crucial when using models to support critical decisions such as leak
localization or operational optimization.

Demand estimation is a particularly challenging aspect of model calibration.
Real-time demand estimation methods have been developed to dynamically adjust
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nodal demands based on observed flow and pressure measurements [26]. These
methods are valuable for improving model accuracy under varying operational con-
ditions and for detecting anomalies that may indicate leakages or unauthorized
consumption.

2.4 District Metered Areas and Network Sector-
ization

District Metered Areas (DMAs) are hydraulically isolated zones within a distri-
bution network, typically defined by closing boundary valves and installing flow
meters at the inlets (Figure 2.1). DMAs enable water utilities to monitor consump-
tion at a finer spatial resolution, identify abnormal flow patterns, and prioritize
areas for leak detection campaigns [27, 14].

The creation of DMAs supports leakage management in several ways. First, it
reduces the search space for leak localization by narrowing the focus to a specific
district. Second, it facilitates minimum night flow (MNF) analysis, where flow
measurements during low-demand periods (typically 2:00 AM to 4:00 AM) are
used to estimate background leakage levels [13]. Third, it allows for controlled
pressure management within each zone, reducing stress on aging pipes and slowing
the development of new leaks [28].

However, DMA design requires careful consideration of hydraulic constraints,
including pressure requirements, redundancy, and emergency supply routes. Recent
studies have explored automated algorithms for optimal DMA boundary definition,
balancing monitoring benefits with operational flexibility [29]. In this thesis, the
hydraulic model of Cavallermaggiore was used to support the definition of district
boundaries and to evaluate the impact of sectorization on network performance.

2.5 Leakage Detection Methods
Leakage detection refers to the process of identifying the presence and timing
of anomalous water losses within a distribution network, distinguishing leakage
events from normal operational variability and measurement noise [5, 9] Leakage
detection is traditionally performed through acoustic surveys, step testing, ground-
penetrating radar, and field inspections. While effective for locating leaks once
they are suspected, these methods are labor-intensive, expensive, and do not scale
to large network areas [9, 10]. SCADA-based monitoring provides real-time flow
and pressure data but is often limited by sparse sensor availability and measure-
ment noise. As a result, utilities increasingly rely on data-driven and model-based
methods to enhance situational awareness and enable proactive leak management
[30].
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2.5 – Leakage Detection Methods

Leakage events typically manifest as deviations in flow or pressure compared
to expected behavior. Detection approaches can be broadly categorized into flow-
based methods and pressure-based methods, each with distinct advantages and
limitations depending on the available instrumentation and network characteristics.

2.5.1 Flow-Based Anomaly Detection
Flow-based methods exploit trends at district or subdistrict inlets, where sensors are
more commonly installed. These methods analyze time series of flow measurements
to detect abnormal consumption patterns or sudden increases in minimum night
flow, which may indicate the presence of leakages [31, 3].

Anomaly detection models based on statistical control charts, forecasting resid-
ual analysis, and machine learning techniques have been successfully applied to
SCADA flow data. Statistical process control (SPC) methods, such as CUSUM
(Cumulative Sum) charts, detect shifts in the mean or variance of a monitored
signal [32, 33]. Time-series forecasting approaches, including ARIMA, exponential
smoothing, and modern machine learning frameworks such as Prophet [34] and
DARTS [35], generate predictions of expected flow under normal conditions. Per-
sistent deviations between observed and predicted values trigger alarms that may
indicate leakage events.

Machine learning techniques, including artificial neural networks (ANN), sup-
port vector machines (SVM), and long short-term memory (LSTM) networks, have
also been explored for flow anomaly detection [36, 37]. These methods can cap-
ture complex nonlinear relationships and seasonal patterns in consumption data,
improving detection performance in networks with heterogeneous demand profiles.

Recent literature shows that flow-based methods can successfully identify his-
torical leakages when supported by reliable SCADA measurements at DMA inlets
[4]. This aligns with the approach adopted in Part II of this thesis, where a data-
driven anomaly detection algorithm is applied to real SCADA flow measurements
to detect historical leakage events in the Cavallermaggiore network.

2.5.2 Pressure-Based Leakage Detection
Pressure-based leakage detection relies on the principle that leaks cause localized
pressure drops throughout the network. The magnitude and spatial pattern of these
pressure changes depend on leak size, location, network topology, and operating
conditions [38, 39]. However, pressure sensors are typically sparse in operational
WDNs due to installation costs, maintenance requirements, and data transmission
constraints.

To overcome these limitations, recent research has explored the combination
of hydraulic models and machine learning to amplify the value of limited pressure
measurements. Pressure residuals, defined as the difference between observed and
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expected (model-predicted) pressures, serve as indicators of abnormal conditions
[5]. Statistical change detection algorithms, such as CUSUM, can be applied to
these residuals to identify the onset of leakage events.

Transient-based methods, which analyze pressure wave propagation following
sudden changes in flow or valve operations, have also been investigated for rapid
leak detection. These methods offer the potential for near-instantaneous detection
but require high-frequency pressure measurements and specialized instrumentation
[10]. In practice, most operational systems rely on quasi-steady-state pressure
measurements collected at intervals ranging from minutes to hours.

2.6 Leakage Localization Approaches
While leakage detection identifies when and whether a leak is present, leakage
localization aims to determine where the leak is occurring within the network,
requiring the spatial inference of leak positions from sparse sensor measurements
[40, 41]

Localizing leaks is significantly more challenging than detecting them. Pres-
sure gradients propagate across the network in complex nonlinear patterns, mak-
ing inversion of leakage-induced signatures an ill-posed problem. Small leaks may
produce weak and spatially diffuse pressure signatures, particularly in highly inter-
connected networks with significant background uncertainty [41].

The main approaches are commonly described in the literature: model-based
localization relying on hydraulic simulations and residual matching, data-driven lo-
calization exploiting sensor correlations and machine learning classifiers, and hybrid
methods that combine both paradigms [40, 5].

2.6.1 Model-Based Localization
Model-based localization involves comparing observed pressure variations with sim-
ulated leakage patterns at candidate nodes. For each node in the network (or within
a reduced search space such as a DMA), a synthetic leak is introduced in the hy-
draulic model and the resulting pressure distribution is computed. The simulated
pressure residuals are then compared against observed residuals using correlation
metrics, Euclidean distance, or other similarity measures [42].

Bayesian classifiers have been explored to formalize the probabilistic inference
process, combining prior knowledge (e.g., pipe age, historical leak frequency) with
likelihood functions derived from hydraulic simulations [43]. However, these meth-
ods require significant computational effort when applied to large networks with
hundreds or thousands of candidate nodes.

Search-space reduction strategies, such as coarse-to-fine localization or Most
Affected Sensor (MAS)-based filtering, are essential for improving computational
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2.7 – The BattLeDIM Competition

efficiency and localization [41]. In this thesis, the MAS approach is used to inform
the leakage localization step, restricting the search space to nodes identified as
hydraulically sensitive to the detected leakage event.

2.6.2 Data-Driven Localization
Data-driven methods use clustering, dimensionality reduction, or supervised ma-
chine learning to infer leak locations from sensor patterns without explicit hydraulic
modeling [44, 40]. These methods typically require large training datasets of labeled
leakage events, which are often generated synthetically using hydraulic models.

Support vector machines (SVM), artificial neural networks (ANN), and ensem-
ble classifiers such as random forests have been applied to leak localization prob-
lems. These methods can capture complex nonlinear relationships between sensor
measurements and leak locations, potentially improving performance in networks
with heterogeneous topology or time-varying demand patterns.

However, data-driven methods are sensitive to the quality and representative-
ness of the training data. Overfitting, poor generalization to unseen scenarios, and
lack of interpretability remain challenges.

2.6.3 Mixed Approaches
Recognizing the complementary strengths and limitations of purely model-based
and purely data-driven methods, hybrid methodologies have emerged that inte-
grate both paradigms to leverage the physical interpretability of hydraulic models
alongside the pattern recognition capabilities of machine learning techniques [5,
38, 40]. Common strategies include sequential coupling, where data-driven meth-
ods reduce the search space before model-based refinement [40], and parallel fusion
through ensemble voting or Bayesian methods [38, 41]. A particularly important
approach uses hydraulic simulators like EPANET to generate synthetic training
datasets for machine learning classifiers, transferring knowledge to operational net-
works where real labeled data is scarce [8, 45]. While promising, challenges remain
in tuning, computational overhead, and interpretability [41].

2.7 The BattLeDIM Competition
The Battle of the Leakage Detection and Isolation Methods (BattLeDIM) was a
benchmark competition organized in 2020 to evaluate and compare leakage detec-
tion and localization algorithms under controlled conditions [2, 8]. The competition
was based on a water distribution network called L-TOWN, significantly modified
and extended to create a synthetic benchmark suitable for algorithm testing, (Fig-
ure 2.3).
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Figure 2.3: Schematic representation of a Water Distribution Network showing
main components: reservoir, tank, pumps, sensor nodes[2, 8].

The BattLeDIM team created an EPANET model, intended to represent the
WDN. Multiple leakage events with varying sizes, locations, and temporal char-
acteristics (incipient and abrupt leaks) were simulated starting from this model.
Figure 2.4).

The following material is given to the competitors:

• Network Model: A “noisy” EPANET model representing an imperfect ap-
proximation of the true network, generated by adding uncertainty to pipe
roughness coefficients and nodal demands of the “clean” model. This reflects
the real-world condition that network models are never perfectly calibrated.
The true network model was never revealed to participants.

• SCADA Measurements: Synthetic time-series data including pressure
measurements at selected nodes, flow measurements at pipes and DMA in-
lets, tank levels, and AMR (Automated Meter Reading) consumption data
at selected nodes, obtained by running the true network with the simulated
leakage scenarios.

• Historical data: of simulated leakages present in the network, so the com-
petitors can train and evaluate their models. This set of leakages is different
from the one the competitors need to identify.
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Figure 2.4: Schematic representation of a Water Distribution Network showing
simulated leakage locations.[2, 8].

The objective of the competitors is to develop algorithms capable of detecting
leakage events from SCADA time-series data and accurately localizing the leak
positions within the network using only the imperfect hydraulic model and sparse
sensor measurements provided [2, 8].

The BattLeDIM dataset has become a widely used benchmark for develop-
ing and validating leakage detection and localization algorithms. It demonstrated
the feasibility of combining hydraulic simulation with machine learning to create
synthetic training data for scenarios that may be rare or difficult to observe in
operational networks [8].

Participants were evaluated using a utility-oriented performance framework that
rewards timely and accurate leak detection and spatial localization within prede-
fined tolerances, while penalizing false alarms and delayed responses, in order to
reflect the operational impact on real water utilities [2, 8].

2.8 The LILA Methodology

Among the top-performing methods in BattLeDIM, the LILA (Leakage Identifi-
cation and Localization Algorithm) methodology proposed by Daniel et al. [45]
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introduced a sequential detection and localization framework based on linear re-
gression models and pressure residual analysis. LILA achieved 3rd (out of 18) place
(Third Place Award) in the BattLeDIM 2020 competition. However, the original
implementation relies on manual selection of sensor pairs for detection and expert
definition of MAS for localization. The LILA methodology consists of two main
steps: (Figure 2.5):

Figure 2.5: Flowchart of LILA, two-step method for leakage identification and
localization.

Stage 1: Leakage Detection LILA detects leakages through pairwise linear
regression analysis of pressure sensor data. The detection stage includes:

• Regression Modeling: LILA constructs pairwise linear regression models
between pressure sensors under normal (leak-free) conditions. For each sensor
pair (i, j), a regression model Pj = αij +βijPi is trained using historical data.

• Residual Calculation: During operational monitoring, the residual error
ej = P obs

j − P pred
j is computed for each sensor. The Median Residual Er-

ror (MRE) aggregates residuals across sensors to provide a robust leakage
indicator.

• CUSUM Detection: A CUSUM chart is applied to the MRE signal to
detect statistically significant deviations from normal behavior. When the
CUSUM statistic exceeds a predefined threshold, a leakage event is flagged.

Stage 2: Leakage Localization Once a leak is detected, LILA performs
model-based localization:

• Most Affected Sensor (MAS): The sensor with the largest residual during
the detected event is identified as the Most Affected Sensor. This sensor is
assumed to be hydraulically closest to the leak.
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• Candidate Node Selection: A subset of candidate leak locations is defined
based on hydraulic proximity to the Most Affected Sensor, reducing the search
space from all network nodes to a manageable subset.

• Sensitivity Analysis: For each candidate node, a synthetic leak is simulated
using the available hydraulic model. The simulated pressure residuals at all
sensor locations are compared against observed residuals to rank candidate
locations.

• Correlation Matching: The candidate leak location with the highest cor-
relation between simulated and observed residual patterns is selected as the
most likely leak location.

2.9 Sensor Placement and Network Design
Optimal sensor placement is a critical component of effective leakage detection and
localization. The goal is to determine the minimum number of sensors and their
locations such that detection sensitivity and localization accuracy are maximized,
subject to cost and operational constraints [46, 47].

Sensor placement strategies can be broadly classified into model-based and data-
driven approaches. Model-based methods rely on hydraulic simulation to evaluate
the sensitivity of each potential sensor location to leakages at different nodes [48].
Sensitivity matrices, which quantify the pressure change at each sensor due to a
unit leak at each node, are often used to formulate optimization problems that
maximize coverage or minimize uncertainty.

Data-driven methods use historical SCADA data and machine learning to iden-
tify sensor configurations that maximize information gain or detection performance
[49]. Evolutionary algorithms, such as genetic algorithms (GA) and multi-objective
optimization frameworks, are commonly employed to search the large combinato-
rial space of possible sensor configurations [48]. In practice, sensor placement must
balance competing objectives, including detection sensitivity, localization accuracy,
redundancy, and cost. Recent studies emphasize the importance of considering
model uncertainty and demand variability when designing sensor networks [47]. In
this thesis, a fixed sensor configuration of 10 pressure sensors is used, reflecting a
realistic constraint for medium-sized municipal networks.

2.10 Research Gaps
The literature highlights the increasingly important role of calibrated hydraulic
models, SCADA analytics, and machine learning techniques in modern leakage
management. Flow-based anomaly detection, synthetic hydraulic simulation, and
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regression-based pressure analysis each contribute to improving monitoring capa-
bilities in networks with limited instrumentation [4, 45].

However, several research gaps remain:

• Real-world validation: While synthetic benchmarks such as BattLeDIM
provide controlled testing environments, validation on real operational net-
works with actual SCADA data and documented leakage events remains lim-
ited. Notable exceptions include applications on real networks such as those
reported in [3, 4, 5], yet comprehensive case studies combining detection and
localization on medium-sized municipal systems are still relatively scarce.

• Limited data availability: Many water distribution networks, particu-
larly in small to medium-sized municipalities, lack comprehensive historical
SCADA data, accurate GIS records, or documented operational parameters
necessary for traditional model calibration. Developing reliable hydraulic
models under these data-scarce conditions requires alternative calibration
strategies that can work with minimal measurements [20, 21]. The challenge
of constructing and validating hydraulic models when baseline operational
data is limited or entirely absent represents a significant practical barrier to
implementing model-based leakage detection and localization methodologies
in real-world settings.

• Sparse sensor coverage challenges: Many existing methods assume rela-
tively dense sensor deployment or focus on networks where instrumentation is
abundant. However, real operational constraints often result in sparse sensor
coverage, where only a limited number of pressure sensors are available across
the network. Evaluating detection and localization performance under these
constrained conditions, particularly in networks where sensor-to-node ratios
are low, represents a practical challenge that requires further investigation.

The methodologies adopted in this thesis address these gaps by:

1. Performing an analysis of the limited available data in a real-world WDN, and
how this limited data can be exploited to build reliable software components.

2. Developing a calibrated hydraulic model of real-world WDS based on real
GIS and SCADA data.

3. Applying flow-based anomaly detection to historical leakage records from
district inlet flow meters.

4. Implementing a simplified pressure-based localization approach inspired by
LILA principles, adapted to the constraints of limited source code availability.

5. Evaluating detection and localization performance under realistic noise levels
and sensor configurations.
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These contributions provide a practical and scalable framework for leakage man-
agement in medium-sized municipal water distribution networks, building on es-
tablished methodologies such as BattLeDIM and LILA while adapting them to the
constraints and opportunities of real-world operational environments.
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Chapter 3

Study Area and Data Sources

3.1 Geographical and Operational Context
The study area comprises the municipal water distribution networks of Cavaller-
maggiore and Marene (Figures 3.1 and 3.2), located in the Province of Cuneo
(Piedmont, Italy). Both municipalities are managed by Alpi Acque S.p.A. and
form part of a broader regional supply system characterized by a combination of
groundwater abstraction, local storage tanks, and pressure management through
boosting stations. The two networks display heterogeneous elevation profiles, rang-
ing from low-lying residential sectors to areas located at higher altitudes, which
influences pressure levels and pumping requirements.

Figure 3.1: Aerial view of the Cavallermaggiore municipality showing the urban
layout and water distribution infrastructure coverage area.
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Figure 3.2: Aerial view of the Marene municipality showing the urban layout and
water distribution infrastructure coverage area.

Cavallermaggiore is supplied mainly by groundwater wells and a set of stor-
age tanks that regulate daily fluctuations in demand. The distribution network
serves residential, commercial, and agricultural consumers and includes multiple
pressure zones defined by local topography and operational constraints. Marene
exhibits a similar configuration but relies on a distinct set of wells and tanks. The
hydraulic behavior of both systems is governed by daily consumption cycles, tank
level variations, and operational pump controls implemented by the utility.

3.2 Infrastructure Data and GIS Master Records
The hydraulic models developed in this thesis are based on the official GIS Master
datasets provided by Alpi Acque through their technical design platform [50]. These
datasets include detailed information on pipelines, nodes, valves, tanks, pumps,
and wells, together with metadata describing installation dates, material types,
pipe diameters, and nominal pressures, (Figures 3.3 and 3.4). The GIS layers
were exported in vector format and processed to reconstruct the network topology
required for hydraulic simulation.

Key attributes extracted from the GIS Master records include:

• pipe connectivity, length, diameter, roughness classification, and material;

• node elevations derived from survey data integrated in the GIS platform;

30



3.2 – Infrastructure Data and GIS Master Records

Figure 3.3: GIS Master representation of the Cavallermaggiore water distribu-
tion network showing pipes, nodes, tanks, and pumps extracted from the utility
database.

• metadata for storage tanks (geometry, overflow elevation, minimum and max-
imum operational levels);

• pump characteristics and station layout;

• district boundaries and flow meter locations.

These datasets provided the structural baseline for generating the EPANET
input files of Cavallermaggiore and Marene. Missing or inconsistent entries were
addressed through cross-checks with operational maps, engineering drawings, and
discussions with the utility’s technical staff.
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Figure 3.4: GIS Master representation of the Marene water distribution network
showing pipes, nodes, tanks, and pumps extracted from the utility database.

3.3 Wells, Tanks, and Pumping Facilities
Groundwater wells constitute the primary source of supply for both systems. Op-
erational data from the utility indicate average well output, daily variability, and
pump activation cycles. Tanks play a central role in balancing intra-day demand
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and stabilizing pressure across sectors. Their geometries were reconstructed us-
ing capacity curves, survey measurements, and information provided by the utility
company (Figure 3.5).

Figure 3.5: Schematic representation of tank geometry parameters used in
EPANET modeling, including overflow elevation, maximum operational level, out-
let pipe elevation, and ground altitude.

Pump curves, tank level constraints, and control logic were integrated into the
hydraulic model to reproduce real system behavior. This included:

• pump characteristic curves derived from manufacturer data or field measure-
ments;

• rule-based controls based on tank levels or time schedules;

• interconnections between supply zones used during specific operating condi-
tions.

These parameters are essential for accurately simulating the hydraulic response
of the networks over an extended period.
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3.4 SCADA Measurements and Operational Data
SCADA measurements were provided by Alpi Acque through the IDEA platform
(Figures 3.6 and 3.7). These data were used for demand pattern extraction, cali-
bration, and performance evaluation. The available data consist of:

• flow at district inlets and main supply branches;

• pressures at some of the tank outlets, pumping stations, and selected network
nodes;

• flow at well pumps output and pump status logs;

• tank levels;

Figure 3.6: SCADA visualization interface for Cavallermaggiore Via Cuneo moni-
toring station showing real-time pressure, flow, and tank level measurements used
for model calibration and operational monitoring.
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Figure 3.7: SCADA visualization interface for Marene Via Torino monitoring sta-
tion showing real-time pressure, flow, and tank level measurements used for model
design, calibration and operational monitoring.

3.5 Demand Data and Time Patterns
Yearly consumption data were obtained from the utility’s billing system, which
records metered consumption at individual household and commercial connection
points (contatori). These annual volumes were spatially distributed across the
network model at the node level based on service connections documented in the
GIS Master platform, ensuring that each demand node reflected the consumption
of its associated users.

The temporal variability of consumption was captured through time patterns
derived from SCADA flow sensors at the district inlets and reconciled with the
yearly consumption records. This integration of SCADA-derived patterns with
yearly consumer data ensured consistency between the spatial distribution of de-
mands and the temporal variability observed in real operation, forming the basis
for the extended-period simulations and calibration described in the next chapter.
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Chapter 4

Part I: Hydraulic Model
Development and Calibration

This chapter describes the development, simulation, and calibration of the hy-
draulic models for Cavallermaggiore and Marene. The models were built using
EPANET, integrating GIS Master infrastructure data, SCADA measurements, and
operational knowledge provided by Alpi Acque. The workflow included network
topology reconstruction, demand allocation, tank and pump integration, control
logic implementation, extended-period simulation, and calibration against observed
tank level and pressure measurements. The workflow, summarized in Figure 4.1, is
divided into three main stages:

Static stage in which the static input data, that is, data that does not change
often, such as network topology and plant information, is used to build a
Steady state model. This stage requires both automatic and manual steps,
and requires an expert intervention. The stage is performed only when there
are changes to the static data.

Dynamic stage in which the dynamic input data, that is, data that changes every
day, such as SCADA flow measurements, is used to augment the Steady
state model, resulting in a Extended period simulation model. This stage is
automatic and it is performed at the beginning of each day.

Calibration stage in which the Steady state model is calibrated by using one
Extended period simulation model and the calibration input data, composed
of dynamic data that was not used during the dynamic stage, such as tank
levels and pressure measurements. This stage requires expert intervention,
and is performed every time the steady model changes, or periodically to
ensure the correctness of the model.
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Figure 4.1: Workflow used for hydraulic model constructions and calibration

4.1 Static Stage: Steady State Model

The foundation of both hydraulic models is the network topology extracted from
GIS Master records provided by Alpi Acque through their technical design plat-
form [50]. The GIS datasets contain comprehensive information about network
components, including pipes, nodes, valves, tanks, pumps, and wells considering
EPANET conceptions [6, 16].
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4.1.1 Draft model from Technical Design
Technical design provided a draft EPANET model automatically obtained from the
GIS data. This draft model included:

• Start and end node coordinates (used to define network connectivity), with
elevation information.

• Pipe length, nominal diameter, material type and installation date

• Yearly consumption volumes from the billing database—recorded at individ-
ual household and commercial connection points (contatori)—were spatially
assigned to network nodes using service-connection information available in
the GIS Master platform. This procedure establishes the base (static) demand
distribution across the network.

Although this draft EPANET model contains valuable information, it is not
complete and it is not even possible to perform a simulation from it. However it
served as a starting point used to build the working models.

4.1.2 Draft model automatic corrections
The following corrections were necessary, and were done automatically with a
Python script:

• Hydraulic units were converted to be compatible with SCADA units.

• Pipe roughness coefficients were assigned based on material type and age
using standard reference values from the literature [16].

• District information was added to each node, in the Pattern field. This is
used later to add the dynamic information.

4.1.3 Draft model manual corrections
• Elevation consistency was verified by comparing the EPANET values with

online topography information sources for some selected nodes.

• Nodes disconnected in the EPANET model were properly connected.

• Valves documented in the GIS dataset were integrated into the model accord-
ing to their functional role. District boundary valves were represented with
closed status to reflect the sectorized configuration.

39



Part I: Hydraulic Model Development and Calibration

4.1.4 Tank Modeling and Simulation
Storage tanks play a central role in the hydraulic behavior of both networks, reg-
ulating pressure fluctuations, balancing supply and demand, and providing opera-
tional flexibility. Accurate representation of tank geometry, operating levels, and
inlet/outlet configurations is essential for reproducing real system dynamics.

Tank Geometry Reconstruction

Tank geometries were reconstructed using survey measurements, and operational
data provided by the utility. Tanks in Cavallermaggiore and Marene are cylindrical,
allowing straightforward calculation of diameter from known volume and height:

D = 2
√︄

V

π · H
(4.1)

where D is the tank diameter, V is the total volume, and H is the height. As
shown in Figure 3.5, key elevation parameters include ground altitude, outlet pipe
elevation, maximum operational level, and overflow elevation.

These parameters were carefully extracted from technical documentation and
cross-checked with SCADA tank level measurements.

Inlet and Outlet Pipe Configurations

Tank inlet pipes were configured to connect supply sources (wells or upstream
zones) to the tank. Outlet pipes distribute water from the tank to the downstream
network. In cases where tanks are equipped with level-dependent controls or mul-
tiple inlet/outlet pipes serving different pressure zones, these configurations were
explicitly modeled using EPANET’s pipe and valve elements.

4.1.5 Well and Pump Modeling
Groundwater wells constitute the primary water source for both Cavallermaggiore
and Marene. Wells are typically equipped with submersible pumps that deliver
water to storage tanks or directly to the distribution network. Accurate modeling
of well output and pump characteristics is essential for reproducing system behavior.

Well Representation Using Negative Demand

Wells were modeled in EPANET using the negative demand approach, where a
junction node is assigned a negative base demand equal to the average well produc-
tion rate. This method is consistent with standard EPANET practice and allows
wells to be represented without requiring explicit source elements (reservoirs with
fixed heads).
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For wells with variable output controlled by tank levels or time schedules, time-
varying negative demands were implemented using EPANET patterns linked to
control rules.

Pump Curve Development

Pump characteristic curves, which describe the relationship between flow rate and
head gain, were derived from manufacturer data sheets and validated using SCADA
measurements. The pump curve is typically represented as a polynomial or three-
point curve:

H = H0 − rQn (4.2)

where H is the head gain, H0 is the shutoff head (head at zero flow), Q is the flow
rate, and r and n are curve coefficients.

Manufacturer data provided nominal operating points (flow and head) at design
conditions. These points were used to fit the pump curve in EPANET. Where
available, SCADA measurements from flow meters and pressure sensors at pump
stations were used to validate the curve under real operating conditions.

4.1.6 Control Logic Implementation
Operational control logic governs the behavior of pumps, valves, and other ac-
tive elements in response to system conditions. The control rules implemented in
EPANET replicate the real operational strategies used by Alpi Acque to manage
tank levels, maintain pressures, and optimize energy consumption.

Tank Level-Based Pump Controls

The most common control strategy involves activating or deactivating pumps based
on tank water levels. A typical rule set includes:

• Pump startup when tank level falls below a minimum threshold (e.g., 20% of
capacity)

• Pump shutdown when tank level reaches a maximum threshold (e.g., 80% of
capacity)

• Hysteresis margins to prevent rapid cycling (pump restarts only after level
drops sufficiently below the maximum threshold)

In EPANET, these controls were implemented using pump curve, [CONTROLS]
or [RULES] sections. An example control rule syntax is:
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RULE 1
IF TANK Tank1 LEVEL BELOW 1.2
THEN PUMP Pump1 STATUS IS OPEN

RULE 2
IF TANK Tank1 LEVEL ABOVE 2.8
THEN PUMP Pump1 STATUS IS CLOSED

Time-Based Controls

Some pumps operate according to fixed time schedules to take advantage of off-peak
electricity rates or to align with anticipated demand patterns. Time-based controls
were implemented using EPANET’s AT CLOCKTIME syntax:
RULE 3
IF SYSTEM CLOCKTIME >= 6:00 AM
AND SYSTEM CLOCKTIME < 10:00 PM
THEN PUMP Pump2 STATUS IS OPEN

Validation of Control Logic

Control logic was validated by comparing simulated pump status logs and tank level
trajectories against SCADA operational records. Discrepancies were investigated
and resolved by refining threshold values, adjusting hysteresis margins, or correcting
misinterpretations of operational procedures. Close collaboration with utility staff
was essential for ensuring that the implemented control logic accurately reflected
real operational practice.

4.2 Dynamic Stage: Extended-Period Simulation
The Dynamic stage is executed at the beginning of every day, with the data collected
by the SCADA platform the day before. Flow measurements at the inlet of every
district are used to estimate the dynamic behavior of the nodes inside the district.
This dynamic behavior is combined with the base demand of each node obtained
in the static stage, as shown in Figure 4.2

The dynamic behavior is applied to each node in EPANET using the [PATTERNS]
section. Each pattern consists of a sequence of multipliers that scale the node’s base
demand according to the simulation time. During extended-period simulations
(EPS), EPANET applies these multipliers to reproduce realistic daily consumption
cycles over multi-day horizons. Figure 4.3 shows an example of such pattern.

Consistency between the spatial component (billing-based base demands) and
the temporal component (SCADA-derived time patterns) was assessed by com-
paring the simulated total consumption against district-level flow meter readings.
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Figure 4.2: Static and dynamic data to estimate nodes demand

Figure 4.3: Time Pattern example, concentrico district.

When discrepancies were detected, iterative adjustments were made to improve
agreement while maintaining the physical interpretation of both data sources.

Extended-Period Simulation (EPS) is a key feature of EPANET that allows the
analysis of time-varying hydraulic behavior over multi-day or multi-week periods.
Unlike steady-state snapshot simulations, EPS accounts for tank level changes,
time-varying demands, and dynamic control actions, providing a realistic represen-
tation of network operation.
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4.2.1 Output Extraction and Analysis
EPANET generates time-series outputs for all network elements, including nodal
pressures, pipe flows, tank levels, and pump status. These outputs were extracted
and compared against SCADA measurements to assess the accuracy of the model.

As shown in Figures 4.4 and 4.5 extended-period simulation captures the daily
cycling behavior of tanks, the phased activation of pressure and flow variations
across the network.

Figure 4.4: An Example of pressure calibration, node n324

4.3 Model Calibration
Model calibration is the process of adjusting uncertain parameters to minimize
discrepancies between simulated and observed hydraulic data. Calibration was
performed using data sources that were not used for model building:

• Pressure meters at tank outlets and selected network nodes

• Tank level sensors providing continuous water level records

• multi-day pressure measurement at specific nodes from campaigns performed
by the utility company.

Using EPANET’s calibration data option, plots of the simulated and measured data
were produced. Visual inspection allowed to recognize potential issues. Manual

44



4.3 – Model Calibration

Figure 4.5: An Example of tank level calibration, San Giorgio Tank

Figure 4.6: Cavallermaggiore Calibration, examples for tank level, flow and pressure
sensor

verification of the model was performed to understand the origin of the discrepancy,
and the model was fixed accordingly, when possible. In some cases instead, the
reason for the differences between simulation and measurements was determined to
be a fault in one of the sensors. The utility company was notified and after a check,
the sensor error was confirmed. Figures 4.4, 4.5 and 4.6 show some examples of
callibration plots.
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4.4 District Metered Area Definition for Cavaller-
maggiore

The calibrated hydraulic model of Cavallermaggiore was used to support the def-
inition of District Metered Areas (DMAs) for improved leakage monitoring and
management. DMAs are hydraulically isolated zones created by closing boundary
valves and installing flow meters at the inlets, enabling utilities to monitor con-
sumption at a finer spatial resolution and identify abnormal flow patterns, Figure
4.7.

Figure 4.7: District Metered Area (DMA) definition for Cavallermaggiore

4.4.1 DMA Design Criteria
The design of DMAs considered the following criteria:

• Monitoring capability: Selecting inlet locations suitable for flow meter
installation. according to existing flow sensors, since in the real-world in
Cavallermaggiore there are limitation to install then in the network perma-
nently.

• Operational flexibility: Maintaining emergency interconnections and re-
dundancy
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• Leakage detection sensitivity: Sizing districts to provide detectable anoma-
lies relative to measurement noise

Figure 4.8: Histogram of pressure differentials before and after DMAs

4.4.2 Simulation-Based Evaluation
The hydraulic model was used to simulate the impact of proposed DMA boundaries
on pressure distributions and flow patterns.
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Using the simulation, an analysis of the drop in pressure was performed, as can
be seen in Figure 4.8. This analysis was useful to identify if there were any nodes
with a significant pressure drop, or any nodes where the pressure would drop below
minimum required value to guarantee quality-of-service to the users.

The DMA boundaries were also implemented in the field by closing selected
boundary valves, then as a validation, pressure and flow trending were compared
using SCADA. As shown in Figure 4.9, the model is still able to predict the mea-
surements after the DMAs configuration.

Figure 4.9: Pressure calibration after (DMA) definition for Cavallermaggiore, in
node n470

48



Chapter 5

Part II: Leakage monitoring
algorithms

This chapter introduces two methods for leakage monitoring: SCADA-based flow
anomaly detection and pressure-based detection/localization using the LILA algo-
rithm with synthetic scenarios

5.1 Flow based leakage detection

5.1.1 Overview and Motivation

Leakage monitoring in water distribution networks requires methodologies that can
effectively detect anomalies and localize their sources under practical operational
constraints. Building upon the calibrated hydraulic models developed in Chapter 4,
this chapter presents two complementary approaches for leakage monitoring in the
Marene and Cavallermaggiore networks: data-driven flow-based anomaly detection
using machine learning techniques applied to SCADA measurements (Section 5.1),
and model-driven pressure-based detection and localization using synthetic scenario
generation combined with the LILA algorithm (Section 5.2).

The flow-based approach leverages existing flow measurements at district inlets
to identify deviations from normal consumption patterns using the DARTS time-
series forecasting framework [35]. While this method provides effective district-level
detection using readily available data, it cannot pinpoint leak locations within the
district. To address this limitation, a pressure-based methodology is developed
utilizing the calibrated EPANET model to generate synthetic leakage scenarios
following the BattLeDIM competition framework [2, 8], combined with the LILA
(Leakage Identification and Localization Algorithm) [45] for both detection and
spatial localization.

LILA was selected for this thesis due to several key advantages: (1) its proven

49



Part II: Leakage monitoring algorithms

performance in the BattLeDIM competition, where it successfully detected and lo-
calized both abrupt and incipient leaks; (2) its ability to operate effectively with
sparse sensor deployments, making it suitable for medium-sized networks with lim-
ited instrumentation; (3) its model-based approach that leverages hydraulic simu-
lation to overcome the scarcity of real leak events with concurrent pressure mea-
surements; and (4) its two-stage framework combining statistical process control
(CUSUM) for detection with correlation-based pattern matching for localization,
providing both robustness and interpretability.

These methodologies provide a practical framework for water utilities with lim-
ited sensor infrastructure, enabling both rapid detection of significant leakages and
spatial localization to guide field inspection efforts.

5.1.2 DARTS Framework for Time-Series Forecasting and
Anomaly Detection

DARTS (Data Analysis with Recurrent Time Series) is a Python library designed
for time-series forecasting and anomaly detection [35]. The framework provides a
unified interface for training, evaluating, and deploying various forecasting models,
including classical statistical methods (ARIMA, exponential smoothing), machine
learning approaches (Random Forest, LightGBM), and deep learning architectures
(LSTM, Transformer).

For this thesis, DARTS was selected due to its ability to handle time series,
integrate exogenous variables, and provide robust anomaly detection capabilities
through residual-based scoring. The library’s modular design allows for rapid pro-
totyping and comparison of different modeling approaches, facilitating the selection
of the most appropriate method for each district’s consumption characteristics.

Darts first trains a forecasting model on the historical time series in order to
learn the expected temporal dynamics. Given an observed series xt and the model’s
predictions x̂t, the residuals are defined as

rt = xt − x̂t.

These residuals are then processed through an aggregation step. Using sliding
windows of length w, each window is represented as

r(t) = [rt−w+1, . . . , rt].

Feature vectors are extracted from each window and clustered using a k-means
clustering aggregator. Let the k-means algorithm learn K cluster centers {µk}. The
anomaly score for window t is computed as the minimum distance to the nearest
cluster center:

scorekmeans(t) = min
k

⃦⃦⃦
f(r(t)) − µk

⃦⃦⃦
2

.
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A quantile-based detector is then applied to the distribution of these scores.
Given a chosen quantile level α, the threshold is defined as

qα = Quantileα ({scorekmeans(t)}) .

Finally, a time point is flagged as anomalous if

scorekmeans(t) > qα.

In summary, Darts trains the forecasting model, computes residuals, aggregates
them through k-means clustering, and applies a quantile-based detector to identify
anomalies.

5.1.3 Model Selection and Configuration
Based on preliminary experiments, an LSTM (Long Short-Term Memory) network
was selected as the primary forecasting model primarily due to the limited avail-
ability of historical consumption data. In scenarios with relatively few data points,
LSTM networks have been observed to perform better than alternative machine
learning models because of their ability to effectively capture temporal dependen-
cies without requiring extremely large datasets. Their internal memory cells enable
the model to learn patterns over time, even when the training data are sparse, and
to generalize better than simpler architectures.

For each district, two years of historical consumption data were used, with a
temporal resolution of 15 minutes. This corresponds to 96 measurements per day,
resulting in a total of approximately 70080 samples per district, which provides a
sufficiently rich dataset for the LSTM to learn both short-term fluctuations and
long-term patterns.

The chosen model architecture is designed to balance complexity and regular-
ization to prevent overfitting, and includes:

• Input sequences of 96 timesteps, corresponding to 24 hours of consumption
data at 15-minute intervals

• 4 stacked LSTM layers, each with 128 hidden units, allowing the network to
model increasingly abstract temporal patterns

• Dropout regularization with a rate of 0.2, applied to each layer to reduce the
risk of overfitting

• Training for 20 epochs with a batch size of 32, ensuring adequate learning
without excessive computational cost

• Optimization using the Adam optimizer with a learning rate of 0.001, which
provides a good balance between convergence speed and stability
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To further account for the heterogeneous consumption characteristics across
the network, the model was trained independently for each district. This approach
allows the LSTM to adapt to local consumption behaviors, capturing both short-
term fluctuations and long-term trends, while maintaining robustness in situations
with limited historical data.

5.2 Pressure based leakage detection and local-
ization

Pressure-based leakage localization requires relating observed pressure patterns to
potential leak locations through hydraulic modeling. However, documented leak-
age events with concurrent high-quality pressure measurements are scarce in opera-
tional networks. To address this challenge, this thesis adapts the strategy followed
by the BattLeDIM (Battle of the Leakage Detection and Isolation Methods) com-
petition [2, 8], which established a benchmark framework for evaluating detection
and localization algorithms using synthetic data.

The BattLeDIM approach involves generating a network model representing the
real system and a ”noisy“ model with uncertain parameters to simulate imperfect
knowledge conditions. Synthetic SCADA measurements are generated from sim-
ulations, including pressure and flow time series with realistic characteristics and
multiple leakage scenarios with varying sizes, locations, and temporal patterns.
While BattLeDIM used an idealized synthetic network (L-TOWN), this thesis ap-
plies the methodology to the real Cavallermaggiore network using the calibrated
EPANET model developed in Chapter 4.

For detection and localization, the LILA (Leakage Identification and Localiza-
tion Algorithm) [45], validated in the BattLeDIM competition, is adapted to the
Cavallermaggiore case. LILA employs a two-stage framework: first, pairwise linear
regression models between pressure sensors are constructed during leak-free periods,
and deviations from these relationships are monitored using CUSUM (Cumulative
Sum) statistical process control charts to detect anomalies; second, once a leak is
detected, the Most Affected Sensor (MAS) is identified, and the hydraulic model
simulates candidate leak locations to find the best correlation match with observed
pressure patterns. This model-based approach enables effective localization even
with sparse sensor deployments typical of medium-sized municipal networks.

5.2.1 Simulation of leakages with BattleDIM approach for
Cavallermaggiore

The synthetic leakage scenario generation follows the BattLeDIM methodology
adapted to the calibrated Cavallermaggiore network model. The process involves
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creating both a baseline “clean” model and a “noisy” model to represent realistic
uncertainty conditions.

Model Uncertainty Representation:

To replicate the imperfect knowledge conditions, a noisy version of the calibrated
model was generated by introducing controlled 10% perturbations to uncertain
parameters. The noise was applied systematically to:

• Pipe roughness coefficients: ±10% variation around calibrated values to
simulate pipe aging uncertainty and calibration errors

• Pipe lengths and diameters: ±10% variation to account for survey un-
certainties and database inaccuracies

• Nodal base demands: ±10% variation to represent demand estimation
uncertainty from billing data and consumption pattern variability

Hydraulic Simulator Selection:

For the hydraulic simulation backend, EpanetSimulator was selected over WNTR’s
Python-based solver. The EpanetSimulator uses the native EPANET engine and
provides significantly better computational performance for extended-period sim-
ulations, completing annual simulation cycles in approximately 5-10 minutes com-
pared to 2-5 hours with the WNTR Python solver. This performance advantage is
particularly important for generating comprehensive datasets with multiple leakage
scenarios spanning full annual cycles.

Reservoir and Pump Configuration:

During the initial leak scenario generation, simulations encountered negative pres-
sure values, particularly when adding significant leakages to the network. Since
the simulated network model represented the water supply to the tank using neg-
ative base demands at the tank node to simulate inflow, this approach lacked the
flexibility to automatically maintain tank levels within operational ranges during
leak events, causing the tank level to drop minimum thresholds and resulting in
negative pressures in downstream areas.

Following EPANET modeling practices, this issue was resolved by introducing a
reservoir (Reservoir_SanGiorgio) with fixed head at 310 m elevation, representing
an infinite water source such as an aqueduct connection. A pump (Tank_Pump)
was added to transfer water from the reservoir to the tank, controlled by simple
rules based on tank levels:

Pump =

⎧⎨⎩OPEN if Tank level < 1.3 m
CLOSED if Tank level > 2.7 m

(5.1)
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This configuration ensures that the tank automatically refills when levels drop
due to increased demand or leakage, maintaining realistic pressure conditions through-
out the network and preventing the occurrence of physically impossible negative
pressures during extended simulations.

5.2.2 LILA for detection
Leakage detection in water distribution networks relies on analyzing the pressures
measured at different nodes and identifying deviations from their expected be-
haviour. To characterise these expected relations, a simple linear model is built for
each node i, using the pressures of the neighbouring nodes as explanatory variables.

In its simplest form, the expected pressure at node i can be approximated as:

P̂i(t) = a0,i +
∑︂

j∈N (i)
aj,i Pj(t),

where Pj(t) denotes the pressure at a neighbouring node j, N (i) is the set of nodes
hydraulically connected to i, and a0,i, aj,i are coefficients estimated from leak–free
data.

The deviation between the measured and the predicted pressure,

MREi(t) = Pi(t) − P̂i(t),

represents the residual error of the model. Under normal operating conditions,
MREi(t) fluctuates around zero. When a leak occurs, the additional unmodelled
water loss perturbs the hydraulic equilibrium and produces systematic deviations
in the residuals, especially at nodes located close to the leakage.

By comparing the predicted pressures with the observed measurements, it is pos-
sible to compute the Model Residual Error (MRE) for each node. Under normal,
leak-free conditions, the MRE fluctuates around zero, reflecting only measurement
noise or minor natural variations. When a leakage occurs, the additional unac-
counted flow produces systematic deviations in the MRE, particularly at nodes
located near the leak.

The linear regression-based MRE allows the identification of the most affected
sensors at any given time, i.e., nodes with the largest deviations from their predicted
pressures. The magnitude of these deviations can be aggregated into a score for
each node, which provides a ranking of nodes according to their likelihood of being
impacted by a leak. By monitoring the time evolution of these scores, it is possible
to detect the start of a leakage event and evaluate its impact across the network.

This methodology works for both single and multiple simultaneous leaks. In
the case of multiple leaks, the aggregated MRE highlights all critical areas, al-
though disaggregation into individual leaks may require further analysis. Overall,
the combination of linear regression modeling and residual error analysis provides
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a systematic, data-driven framework for leakage identification, enabling operators
to exploit the existing network of pressure sensors effectively, even when the precise
location of leaks is unknown.

This approach is inspired by the LILA (Leak Identification in Large-scale water
networks) methodology [45], which applies a similar combination of linear regression
and residual analysis to identify critical nodes and detect leakages, providing a
validated framework for data-driven leak detection in complex water distribution
systems.

5.2.3 LILA for localization
In this work, the leak localization methodology originally proposed by LILA was
adapted to our network and simulation setup, since the complete LILA code is
not publicly available. The underlying idea remains the same: to characterize how
pressure at monitoring nodes responds to leaks occurring at different pipe locations,
allowing the identification of likely leak positions.

In a preliminary stage, a synthetic leak is simulated on every pipe of the network.
For each simulated leak, the induced pressure variation ∆P at all pressure sensors
is computed. This process yields a dataset in which each pipe is associated with
a vector of pressure deviations—its hydraulic signature. These signatures describe
how a leak at that specific pipe propagates through the system and affects the
monitored nodes.

Using this dataset, it is possible to determine, for each sensor, which pipes
have the strongest influence on its readings. Since each simulation quantifies the
magnitude of the pressure drop at each sensor, the pipes can be ranked according to
their ∆P values for a given node. For each monitoring node, the 30 most influential
pipes are selected, representing the most hydraulically plausible leak candidates
from that sensor’s perspective.

To further refine the candidate set and avoid overly broad localization, an addi-
tional filtering step is applied. Specifically, for each sensor we retain only the pipes
for which that sensor is the most affected node in the corresponding simulation,
i.e., the node exhibiting the maximum ∆P . This ensures that the remaining pipes
are both highly influential and directly connected to the local pressure response
observed at the sensor.

Through this two-step selection and filtering process, each sensor is associated
with a compact and hydraulically consistent set of candidate pipes. The resulting
framework significantly reduces the spatial search area and enhances the precision of
the leak localization procedure, providing a reliable basis for subsequent diagnostic
or operational actions.
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Chapter 6

Results from Leakage monitoring
strategies

Here we present the results obtained from the two proposed leakage monitoring
strategies, covering both flow-based anomaly detection and pressure-based detec-
tion and localization.

6.1 Leakage detection based on flow sensors
A portion of the experiments in this work concerns anomaly detection using flow
sensors. In fact, we initially worked in the city of Marene, where only flow sensors
are available; for this reason, anomaly detection was carried out based on them.
Specifically, each flow sensor was associated with a district of the city, and in
turn each district was assigned its own anomaly-detection model, given that every
district has a different data distribution.

Before applying the methodology to Marene, the leak detection approach was
first tested on the BattleDim benchmark dataset (2018). The performance metrics
obtained in this preliminary evaluation are reported in Table 6.1. These metrics
are computed as follows:

• Precision: Precision = T P
T P +F P

• Recall: Recall = T P
T P +F N

• F1-score: F1 = 2 · Precision·Recall
Precision+Recall

• AUC: Area under the ROC curve, measuring overall discrimination ability.

Figure 6.1 shows the comparison between detected anomalies and the actual
anomalies on the BattleDim dataset. This illustrates how well the model identifies
anomalous flow patterns.
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Metric Value
Precision 0.745
Recall 0.84
F1-score 0.79
AUC 0.84

Table 6.1: Performance metrics of the leak detection model on the BattleDim
dataset 2018.

Figure 6.1: Detected anomalies vs actual anomalies on the BattleDim dataset.

Figure 6.2 shows the receiver operating characteristic (ROC) curve and the cor-
responding AUC, highlighting the model’s ability to discriminate between normal
and anomalous flow conditions.

Finally, Figure 6.3 shows the confusion matrix for the model predictions, pro-
viding a detailed view of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN).

Once the leak detection methodology demonstrated satisfactory performance
on the BattleDim dataset, it was applied to all districts of the city of Marene.
However, during this phase, several challenges emerged. Specifically, not all leaks
were properly reported in the hsitorical dataset, and some detected leaks were
signaled with delays of several days. This made it difficult to define quantitative
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Figure 6.2: ROC curve for the leak detection model on the BattleDim dataset. The
AUC value is 0.84, indicating strong classification performance.

Figure 6.3: Confusion matrix of the leak detection model on the BattleDim dataset
2018 year.

performance metrics for the Marene case, as a direct comparison with ground truth
was not always possible (see Figure 6.4).

Despite these limitations, qualitative analysis of the plots shows that, for ex-
ample, in the district of Pellaverne, the model is able to signal anomalies with
reasonable timing (Figure 6.5). This indicates that the approach can still provide
valuable operational insights, allowing early detection of abnormal flow patterns
and supporting proactive maintenance actions.

As can be observed from Figures 6.7 and 6.6, the behavior of the leak detection
model in Marene varies across districts. Notably, the sensors were not always
fully operational or correctly configured. For instance, in the district of Marconi,
a significant number of false positives were recorded. This was primarily due to
misconfigurations or temporary malfunctions of the flow sensors, which prevented
the model from running correctly on that data.

Such issues underscore a key practical consideration when deploying anomaly
detection models in real-world water networks: unlike benchmark datasets such as
BattleDim, where the data is clean and well-structured, real sensors can exhibit
missing readings, noise, or misconfigurations. These factors can significantly affect
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Figure 6.4: Overview of leak detection results for the district of Pellaverne, Marene,
using 15-minute intervals. The variability in reporting times and occasional miss-
ing detections across all districts highlights the challenges in computing standard
performance metrics.

Figure 6.5: Detected anomalies in the district of Pellaverne, Marene, for the nightly
period between 2:00 and 4:00 a.m. These hours provide a clearer view of the flow
behavior, allowing better identification of potential leaks. The model is able to
signal anomalies with reasonable timing, supporting timely intervention.

the reliability of anomaly detection, making it crucial to account for sensor per-
formance and maintenance when interpreting results and planning interventions.
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Figure 6.6: Overview of leak detection results for the district of Marconi, Marene,
using 15-minute intervals. The variability in reporting times, false positives, and
occasional missing detections highlights the practical challenges of deploying real-
world sensors and explains why computing standard performance metrics was not
feasible.

Figure 6.7: Detected anomalies in the district of Marconi, Marene, during the
nightly period between 2:00 and 4:00 a.m. Compared to Pellaverne the signal has
more peaks, due the misconfiguration problems
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6.2 Leakage detection and localization based on
pressure sensors

6.2.1 Initial evaluation on BattleDIM
Since the LILA algorithm was presented during the BattleDIM competition, there
was no need for evaluation against this dataset. However, only the detection com-
ponent of the algorithm has been released with clear usage instructions. For this
reason, we re-implemented the localization component following the description of
the algorithm in the paper, and first tested it on the BattleDIM dataset for District
A. The purpose of this preliminary evaluation was to verify that our implementation
is consistent with the original methodology.

Figure 6.8: Leak localization results for the BattleDIM 2019 dataset for MAS 276.
Plot shows the pressure response of an individual sensor to simulated leaks. The
model is able to rank candidate pipes according to the likelihood of being the leak
location, providing a clear indication of the most probable leak positions.

The results, shown in Figures 6.8, indicate that the localization model is able
to provide, with reasonable accuracy, an ordered list of candidate pipes. Each pipe
is ranked according to the likelihood of being the leak location, demonstrating that
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the reimplemented algorithm effectively reproduces the leak localization behavior
reported in the original LILA study.

Figure 6.9: All pressure sensors together

Figure 6.10: Statistics of simulated leakages
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6.2.2 Data generation

For the Cavallermaggiore network, 39 leakages scenarios were added. The simula-
tion is run for a full year (2024), were the first month has no leakages and is used
for model training, while the rest of the years contains the 39 leakages. A total
of 39 pressure sensors were simulated, distributed across all the districts. Figure
6.9 shows the data from the virtual sensors overlayed with the time periods with
leakages. Figure 6.10 summarizes some important statistics of the leakages.

6.2.3 Leakage identification step

To evaluate the methodology described on previous chapter, the city of Cavaller-
maggiore was considered as a case study. The network was divided into multiple
districts, and for each district, the linear regression–based leakage detection algo-
rithm was executed independently. This district-wise approach accounts for the
different hydraulic characteristics and operational conditions across the network,
allowing a more precise identification of critical nodes.

For each district, the algorithm computes the Most Affected Sensors (MAS) by
evaluating the magnitude of the Model Residual Error (MRE) over time. The MAS
indicate the nodes that are likely to be influenced most strongly by potential leaks,
providing a ranked list that can guide further investigation or intervention.

Figures 6.11–6.17 show the MAS plots for all seven districts of Cavallermaggiore.
In each plot, the nodes with the highest deviations from their predicted pressures
are highlighted, illustrating how the algorithm captures the spatial distribution of
anomalies and identifies the most critical monitoring points in the network.

Figure 6.11: Most Affected Sensors (MAS) for District Concentrico of Cavallermag-
giore. Nodes with larger MRE values indicate higher likelihood of being influenced
by a leak.
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Figure 6.12: Most Affected Sensors (MAS) for District Via Bra of Cavallermaggiore.

Figure 6.13: Most Affected Sensors (MAS) for District Via Europa of Cavallermag-
giore.

Figure 6.14: Most Affected Sensors (MAS) for District Via Roma of Cavallermag-
giore.
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Figure 6.15: Most Affected Sensors (MAS) for District Provinciale of Cavallermag-
giore.

Figure 6.16: Most Affected Sensors (MAS) for District Foresto of Cavallermaggiore.

Figure 6.17: Most Affected Sensors (MAS) for District Madonna Del Pilone of
Cavallermaggiore.
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6.2.4 Leakage localization step

The results of the adapted leak localization methodology are illustrated for the
Concentrico district of Cavallermaggiore. The analysis focuses on the identification
of likely leak positions using the MAS (Most Affected Sensors) approach, comparing
predicted leaks with the ground truth events. Figure 6.18 shows the network lay-
out of Cavallermaggiore, highlighting the predicted leak pipe, the actual leak pipe
(ground truth), and the sensor identified as the MAS for this event. This visualiza-
tion provides an immediate understanding of how closely the localization algorithm
can approximate the true leak location and which sensors are most informative for
the detection.

Figure 6.18: Leak localization results in the Concentrico district of Cavallermag-
giore. The red marker indicates the Most Affected Sensor (MAS), the blue line
shows the predicted leak pipe, and the green line corresponds to the ground truth
leak pipe.
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As can be observed, the algorithm correctly identifies the pipe associated with
the leak, and the MAS sensor is positioned in close hydraulic proximity to the
leak. This confirms that the adapted methodology effectively reduces the spatial
search area and provides actionable insights for network monitoring and timely
intervention. Overall, this case demonstrates that even with partial access to the
original LILA implementation, the adapted procedure is able to localize leaks ac-
curately within the network, highlighting both the candidate pipes and the key
sensors involved in detecting pressure deviations.

Figure 6.19: Leak localization results for the misclassified cases in the Concentrico
district of Cavallermaggiore. Although the predicted leak pipes (in blue) do not
exactly match the ground truth pipes (in magenta), the algorithm still identifies
locations in close hydraulic proximity to the actual leaks. The red marker indicates
the Most Affected Sensor (MAS).

However, it is important to note that not all cases are perfectly identified by the
adapted methodology. As illustrated in Figure 6.19, there are situations where the
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algorithm does not pinpoint the exact leaking pipe but instead predicts a neigh-
bouring pipe with similar hydraulic influence. In the visualization, these incor-
rectly classified pipes are highlighted in magenta, emphasizing the areas where the
model’s prediction deviates from the ground truth. Despite these inaccuracies, the
algorithm consistently identifies pipes that are hydraulically close to the actual leak
location. This proximity still provides valuable operational guidance, substantially
narrowing the search area and allowing field operators to concentrate their inspec-
tions where pressure anomalies are most likely to originate. Furthermore, the MAS
sensor identified in these cases continues to serve as a reliable indicator of the zone
most affected by the leak event.

6.2.5 Results summary and discussion
The results reported in Table 6.2 highlight substantial differences in leak localization
performance across the various districts of the Cavallermaggiore network. Among
all areas, the Concentrico (CON) district shows the most reliable behaviour. In
this district, all detectable leaks are successfully identified and correctly localized
within the ranked candidate list. This strong performance is largely attributable
to the specific sensor configuration: since the artificially generated leaks happened
to occur near existing pressure sensors, the hydraulic disturbances produced by
each event were captured clearly and unambiguously. As a consequence, the MAS
identification was straightforward, and the localization algorithm was able to isolate
the correct pipe or its immediate neighbours.

In contrast, the Via Roma (ROM) district represents the most challenging sce-
nario. Here, several leaks remain undetected or cannot be accurately localized
despite being detected. A key reason is the hydraulic role of this district within
the network: ROM acts as a primary supply corridor feeding multiple downstream
areas. Because of this, the pressure dynamics are strongly influenced by global
network behaviour rather than by purely local conditions. When a district is re-
sponsible for feeding the rest of the system, pressure sensors within it may undergo
significant variations originating from demand fluctuations, valve operations, or
distant hydraulic interactions. These background variations can mask or dilute the
pressure signatures generated by leaks, making the MAS assignment less reliable
and reducing the contrast between normal and faulty conditions.

Moreover, since leak-induced pressure drops propagate across a wider portion
of the network, the spatial sensitivity of the sensors becomes less sharp. Instead of
capturing a localized disturbance, sensors in ROM may register a more distributed
and attenuated pressure response. This results in lower ranking accuracy for the
true leaking pipe and, in some cases, prevents the algorithm from including the
correct pipe among the top candidates.
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Dis Pipe Start End Size Type Det. MAS Loc. Rank
CON 278 02-01 02-06 0.0117 ABR YES 436 YES 7
CON 280 03-01 03-06 0.0111 INC YES 309 YES 35
CON 486 04-01 04-06 0.0110 ABR YES 309 YES 4
CON 191 05-01 05-06 0.0115 ABR NO - - -
CON 24 07-01 07-06 0.0115 ABR YES 247 YES 15
CON 463 08-01 09-07 0.0012 INC NO - - -
CON 150 10-10 10-25 0.0110 ABR YES 254 YES 1
BRA 553 02-19 02-24 0.0114 ABR YES 108 NO -
BRA 567 03-07 03-12 0.0118 INC NO - - -
BRA 11 04-07 04-12 0.0111 ABR YES 224 YES 18
BRA 3 06-01 06-06 0.0111 ABR YES 300 YES 8
BRA 245 07-07 07-12 0.0114 ABR YES 471 YES 3
BRA 114 09-07 10-05 0.0117 ABR YES 232 YES 26
BRA 314 10-26 11-04 0.0051 ABR YES 232 YES 5
EUR 273 02-07 02-12 0.0112 ABR YES 457 YES 3
EUR 100 05-07 05-12 0.0111 ABR YES 328 YES 23
EUR 40 06-07 06-12 0.0115 ABR YES 328 YES 16
EUR 37 07-13 07-18 0.0113 ABR YES 328 YES 15
EUR 251 08-07 09-07 0.0112 INC YES 187 NO -
EUR 122 09-13 09-30 0.0113 ABR YES 213 YES 5
MDP 81 03-13 03-18 0.0111 INC YES 412 YES 5
MDP 548 05-13 05-18 0.0115 ABR YES 412 YES 7
MDP 83 06-13 06-18 0.0110 ABR YES 150 YES 4
MDP 79 08-19 09-07 0.0115 INC YES 145 YES 3
PRO 606 03-19 03-24 0.0058 INC YES 464 YES 29
PRO 539 04-19 04-24 0.0116 ABR YES 167 YES 16
PRO 98 06-19 06-24 0.0051 ABR YES 374 YES 10
PRO 164 07-19 07-24 0.0115 ABR NO - - -
PRO 89 07-25 08-07 0.0110 INC NO - - -
PRO 76 12-19 12-24 0.0114 ABR YES 374 NO -
ROM 272 10-19 11-06 0.0114 ABR NO - - -
ROM 65 02-13 02-18 0.0115 ABR YES 118 YES 9
ROM 165 04-25 04-30 0.0117 ABR YES 118 YES 10
ROM 587 06-25 06-30 0.0118 ABR YES 485 NO -
ROM 57 07-25 07-30 0.0115 ABR NO - - -
ROM 356 07-31 08-07 0.0110 INC YES 420 YES 10
ROM 239 10-01 10-16 0.0115 ABR YES 485 YES 27
FOR 95 07-13 08-17 0.0010 INC NO - - -
FOR 97 11-13 12-06 0.0046 ABR YES 175 YES 1

Table 6.2: Results of leak detection and localization across all districts of the Cav-
allermaggiore network. Columns “Det.” and “MAS” indicate whether the leak was
detected and which sensor was identified as the Most Affected Sensor, respectively.
Columns “Loc.” and “Rank” report whether the true leaking pipe appears in the
ranked candidate list and its corresponding position within the list (with lower val-
ues indicating more accurate localization).
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An additional consideration emerges when comparing abrupt (ABR) and incip-
ient (INC) leaks. The algorithm does not exhibit a clear differentiation in perfor-
mance between these two classes: both types are generally detected with similar
reliability, and the localization accuracy remains consistent across them. This in-
dicates that the hydraulic features extracted by the methodology are sufficiently
robust to capture leak signatures regardless of whether the event manifests as a
sudden burst or a gradually developing fault.

Finally, the analysis of the ranking outcomes shows that, for the correctly local-
ized cases, the predicted leaking pipe typically appears within a reasonably narrow
portion of the ranked list. The best possible outcome corresponds to Rank = 1,
while the worst among the successful cases is Rank = 35. This range reflects the
position of the true leaking pipe within the prioritized list generated by the algo-
rithm, where candidate pipes are ordered according to their likelihood of being the
leak location. Therefore, the rank list provides a practical measure of localization
precision: lower ranks indicate highly accurate predictions, while higher ranks still
denote meaningful hydraulic proximity even when not perfectly aligned with the
ground truth.

Table 6.3 summarizes the performance of the leakage localization per district.
It can be observed that the methodology achieves perfect localization on detected
leaks in some districts (e.g., CON, MDP, FOR), whereas in other districts (e.g.,
ROM, PRO), a smaller fraction of all leaks are successfully localized. This high-
lights both the strength of the approach in correctly identifying detected leaks
and the challenges remaining in achieving comprehensive coverage across all leak
events, particularly in more complex network configurations or under sparse sensor
deployments.

District Localized/Detected Localized/Total Leaks
CON 1.00 0.71
BRA 0.83 0.71
EUR 0.83 0.83
MDP 1.00 1.00
PRO 0.67 0.67
ROM 0.75 0.43
FOR 1.00 0.50

Table 6.3: Summary of leak localization per district. “Localized/Detected” shows
the fraction of detected leaks that were correctly localized, while “Localized/ Total
Leaks” shows the fraction of all leaks in the district that were correctly localized.

71



72



Chapter 7

Conclusion

This thesis has addressed the problem of leakage monitoring in urban water dis-
tribution networks by combining hydraulic modeling with data-driven and model-
based detection techniques, with a focus on the municipal systems of Cavallermag-
giore and Marene in the Province of Cuneo, Italy. The work has been developed in
close collaboration with Alpi Acque and supported by detailed GIS Master data,
SCADA measurements, and operational knowledge from the utility.

From a methodological perspective, Part I of the thesis has focused on the
construction and calibration of hydraulic models using EPANET. Starting from
GIS Master records, the network topology of Cavallermaggiore and Marene was
reconstructed, including pipes, nodes, valves, tanks, wells, and pumping stations.
Nodal demands were allocated by integrating yearly metered consumption data with
time patterns derived from SCADA flow measurements at district inlets. Particular
attention was devoted to tank geometry reconstruction, pump curve definition, and
the implementation of realistic control logic based on tank levels. The resulting
models were calibrated and validated against observed pressures, flows, and tank
levels, and subsequently used to support the definition of District Metered Areas
in Cavallermaggiore.

Part II has introduced two leakage monitoring strategies based on different
data and modeling assumptions. The flow-based approach relies exclusively on
SCADA flow sensor data and uses the DARTS framework to perform data-driven
anomaly detection at the district level. While this method is effective for identifying
abnormal conditions, it does not provide spatial localization of leakages within
the network. For this reason, a second, model-driven pressure-based detection
and localization approach was adopted. This approach builds on the calibrated
EPANET model developed in Part I, generates synthetic leakage scenarios following
the BattLeDIM framework, and applies the LILA algorithm for both pressure-based
detection and spatial localization.

The work concludes with a set of results for both methods. The flow-based
approach was evaluated using the historical data from the utility company. As
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the historical data was not entirely reliable, and issues with the sensor data were
identified, it was impossible to give a quantitative measure of the results. How-
ever, from a quantitative point of view, the method flow-based algorithm results
were satisfactory. The pressure-based approach was not tested on real data, as
pressure sensors with the required quantities are not present in the WDNs under
study. It was then decided to evaluate the method following the same approach
as BattleDIM, by simulating leakages in the Cavallermaggiore network using the
hydraulic model. The results were satisfactory, proving that with enough and well
placed pressure sensors, it is possible to reliably reduce the search area for leakages
in the network.

This thesis demonstrates that the adoption of simulation and machine learning
technologies by water utility companies has a positive impact in leakage monitoring,
even when data sources are scarce, and that these technologies, together with proper
instrumentation of the network can lead to a better management of our water
resources.
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