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Abstract

This thesis investigates output-only dynamic identification for monitoring damage evo-
lution in full-scale, three-dimensional, single-bay, three-story reinforced-concrete (RC)
buildings subjected to shaking table tests, and evaluates the effectiveness of seismic
retrofitting. Two nominally identical RC frames, one as-built and one retrofitted,
were evaluated under controlled laboratory conditions. The frames were subjected to
repeated low-level white-noise excitations, alternating with earthquake records of in-
creasing intensity, using dense accelerometer instrumentation on both structures. The
data were then reoriented to a common frame, time-aligned, uniformly resampled,
and anti-alias filtered to make them suitable for modal analysis. Modal parameters
at each stage were estimated using Frequency-Domain Decomposition in combination
with covariance-driven Stochastic Subspace Identification as part of the operational
modal analysis. To evaluate robustness and reproducibility, the complete identification
workflow in Python (PyOMA2) and MATLAB (OoMA Toolbox) for cross-validation.
Reference properties for comparison were provided by a finite-element baseline imple-
mented in the Scientific Toolkit for OpenSees (STKO) software. The results reveal
clear, progressive stiffness degradation with increasing seismic excitation in both spec-
imens. In the case of the retrofitted building, a stiffer response was observed, which
highlights the effectiveness of the retrofit. Damping estimates continued to fall within
the ranges reported for similar RC frames, and agreement between experimental re-
sults and numerical models remained strong. Although mode-shape estimates did not
perfectly match the finite-element predictions, the Modal Assurance Criterion (MAC)
showed well-separated principal modes and stable consistency across tests. That sug-
gests the identification was physically meaningful even if some local differences were
present. Residual differences are possibly due to sensor layout, mild nonlinear effects
under stronger inputs, and modeling simplifications. The work presents a reproducible
workflow from sensing and preprocessing to identification and validation and provides
practical recommendations for monitoring cumulative earthquake damage in buildings,
including guidelines on sampling, decimation, and model stabilization choices for robust
OMA-based tracking.
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Chapter 1

Introduction

1.1 Background & Motivation

Earthquakes impose substantial human and economic losses, and reinforced concrete
(RC) frame buildings have a significant share of the at-risk stock in seismic regions [1].
In many countries, much of the RC inventory was built using older force requirements,
and these did not include clear performance goals; as a result, the true in service
behavior of these buildings, especially under sequences of mainshock—aftershock events,
may depart from design assumptions. Timely, non destructive assessment of their
dynamic properties, natural frequencies, damping ratios, and mode shapes is central to
performance based evaluation, rapid post event triage, and the prioritization of retrofit
actions [2].

Operational Modal Analysis (OMA) makes it possible to estimate modal parame-
ters by relying solely on response measurements obtained during naturally occurring,
random excitations such as ambient vibrations and everyday operational loads [1, 2]. In
contrast to Experimental Modal Analysis (EMA), which requires applying controlled
forces and often means taking a building out of service, OMA can be carried out while
the building is still being used as normal. This practical advantage is a key reason why
OMA has become so widely adopted in structural health monitoring (SHM) [2]. The
early detection of stiffness changes through frequency shifts is possible through track-
ing modal properties over time, which facilitates the identification of potential damage
progression, and informs updates to digital twins and finite-element (FE) models for
making decisions about retrofits and continued building use [3].

OMA has been transformed into an intelligent system through recent advancements
which is recognized as automated OMA (AOMA) system. These systems use pipelines
that continuously gather data, analyze it, remove the influence of environmental and
operational changes, and send alerts with clear confidence levels [4, 5].Essential factor
not only for efficiently expanding monitoring to cover buildings but also for reducing
false alarms caused by factors such as temperature, humidity, or building occupancy is

automation [4]. The integration of OMA with data-driven techniques, such as quality
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Introduction

control, advanced statistics, and machine learning, has influenced how we monitor and
manage civil infrastructure as a part of SHM [4, 5].

From a risk management point of view, OMA offers two main benefits. First,
before an event happens, OMA enables the creation of solid baseline measurements
and variability ranges for important modal parameters. After an event, it enables the
rapid detection of statistically significant changes from these baselines. This enables
more effective prioritization of inspection resources and supporting informed decisions
about whether buildings can be safely reoccupied or need to be cordoned off [2]. These
practical applications provide the motivation for the methodological and comparative

review that follows and shape the core objectives of this thesis.

1.2 State of the Art in Dynamic Identification & SHM

Stochastic subspace identification (SSI) and frequency-domain decomposition (FDD)
are the two primary methods that operational modal analysis (OMA) most frequently
employs when examining entire buildings.[2]. In FDD, the power spectral density ma-
trix Sy, (w) is examined at each frequency using singular value decomposition. Natural
frequencies appear as peaks in the leading singular value, while the corresponding singu-
lar vectors provide initial mode shape estimates. Enhanced Frequency-Domain Decom-
position (EFDD) can be used to estimate damping by inverse-transforming a narrow
frequency band and examining how the signal decays over time; however, these damp-
ing estimates are typically less consistent than frequency estimates. In the covariance-
driven stochastic subspace (SSI) method, outputs are mapped into block Toeplitz or
Hankel structures in order to estimate a state-space model. The discrete poles \; are
then transformed into continuous parameters via s; = Ait In(\;) = 0; + jw;. The cor-
responding natural frequency is f; = 5 and the damping ratio is ¢; = —0o;/ 02 + w?.
Stabilization diagrams are used to determine poles that are consistent in frequency,
damping, and mode shape over multiple model orders. [2, 5]

Practically, operational modal analysis (OMA) is frequently paired with finite-
element (FE) models. This approach allows to consider shifts in frequency as signs
of changes in stiffness, understand the roles and influences of different mode types and
assess how well retrofits are working in existing buildings [3]. Both lab and full-scale
experiments serve as a complement to field studies, supplying controlled conditions and
well-defined damage phases. Controlled setups enable researchers to monitor in detail
how a structure’s properties change with damage or successive earthquakes. To help
discriminate damage levels, earthquake excitations are often alternated with white-
noise segments. Accordingly, seismic records are interleaved with white-noise windows
to delineate damage states while keeping the stochastic-input assumption for OMA
valid in the identification windows [6, 7, §].

Automated OMA (AOMA) pipelines enable continuous tracking of the health of

structures over time. These systems automatically identify key modal properties, filter
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1.3 — Comparative Advantages and Limitations of Prevalent Techniques

out trends caused by changes in the environment or changes in how the building is
used, measure uncertainty, and send alerts when they detect significant changes [4,
5]. The systems generally verify incomplete data and, using robust procedures such as
Welch averaging, estimate the power spectral density (PSD). They follow how modal
properties change over time relative to previous measurements and adjust models to
capture slow shifts in frequency. In earthquake-prone regions, these systems adjust
their thresholds after an event to enable engineers to quickly assess building safety [4,
1].

For monitoring, using dense networks of low-cost MEMS accelerometers is essential.
This setup presents several challenges, including unsynchronized clocks, sensors that
are oriented in different directions, and suboptimal sampling. Preprocessing is an im-
portant step prior to analysis, including aligning sensor channels to the same reference
frame, applying anti-aliasing during resampling, and synchronizing to a single clock
to minimize errors [10, 11]. After these steps, frequency estimates tend to be robust;
nevertheless, damping ratios and mode shapes can still be impacted by noise, notably

at low signal-to-noise ratio [2, 11].

1.3 Comparative Advantages and Limitations of Preva-

lent Techniques

OMA is a non-intrusive technique that can be deployed on structures in service with-
out the need for controlled inputs. OMA is particularly effective for tracking frequency
changes that indicate variations in structural stiffness over time [1, 2]. However, es-
timates of damping and mode shapes using OMA are more sensitive to noise [2]. In
contrast, EMA (input—output testing) provides high-quality frequency-response func-
tions (FRFs) and generally yields more reliable damping and mode-shape estimates
when input conditions are well controlled. This level of reliability is obtained by uti-
lizing dedicated excitation equipment, careful test planning, and accepting operational
downtime, which is often impractical for buildings in operation [2].

FDD enables efficient peak picking and initial mode-shape identification, especially
for closely spaced modes, with straightforward implementation and interpretation [2].
Its main limitation is that damping estimation is indirect, depends on additional as-
sumptions, and is sensitive to band selection [2]. Covariance-driven SSI provides time-
domain damping estimates and robust pole validation with stabilization diagrams; how-
ever, the results are sensitive to analyst-selected settings (block-row count, model order,
window length, decimation). Hence, parameter robustness studies and multi-criteria
stability checks are recommended [5, 11].

For distributed Micro-Electro-Mechanical Systems (MEMS) sensor arrays, adap-
tive synchronisation together with high-accuracy resampling is needed to mitigate

interpolation-driven phase error and mode-shape bias. Synchronizing every sensor to
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Introduction

the same reference clock is necessary to maintain consistent causal ordering across
channels [10]. Despite these steps, preprocessing can bias damping and mode-shape
estimates more than frequency. Hence, it is important to incorporate redundancy (e.g.,
multiple channels per DOF), implement cross-checks via the Modal Assurance Criterion
(MAC), and report uncertainties. [11].

Table 1.1: Typical decision criteria for selecting among identification techniques.

Task Prif‘.ce}f(l)‘zd Why Caveats
Rapid screening / FDD Fast, simple peak | Indirect damping;
baseline update picking; good for sensitive to band
closely spaced selection [2]
modes
Defensible damp- SSI-cov Direct time- Parameter tuning
ing & mode domain damp- needed (orders,
shapes ing; stabilization rows, decimation)
checks [5, 11]
Lab campaigns / EMA / High-quality Requires shakers,
controlled inputs input—-output FRFs; strong downtime; less
damping identi- feasible in service
fiability 2]
Portfolio-scale AOMA Automation, trend | Requires QA, un-
o (FDD+SSI) . . .
monitoring de-seasoning, certainty handling,
alerting false-alarm control
[4, 5]

Modal-validation metrics help determine how consistent and reliable mode shapes

are in structural dynamics. One common tool is the Modal Assurance Criterion (MAC),
defined as .

87 ¢l?
(¢T0)(0To)
A MAC value close to 1 indicates that the mode shapes are very similar. Typical
stabilization criteria include MAC > 0.90 along with |Af|/f < 1% and |A(|/¢ < 5%
2, 5].

MAC(¢, ) = (1.1)

1.4 Research Gaps, Questions, and Objectives

Recent studies have demonstrated the feasibility of applying OMA to entire buildings;
however, several key details remain unclear. For example, we do not yet know exactly
how steps like orienting, syncing, or resampling data from MEMS sensors affect the
results for damping and mode shapes. It is also unclear what the best, most reliable
settings are for methods like FDD and SSI-cov, especially when it comes to reporting

uncertainty. Lastly, comparing experiments with models is challenging when their
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1.5 — Case Study and Dataset Overview

frequencies or the order of their modes do not match. These gaps complicate post-

event decision-making and portfolio-scale monitoring [2, 10, 11].

To tackle these issues, this thesis poses five research questions:

(RQ1)

(RQ2)

(RQ3)

(RQ4)

(RQ5)

Can we use changes in frequency to reliably track damage and relate it to the

intensity of shaking, both in as-built and retrofitted buildings?

Does adding a retrofit always make a building stiffer when shaking is not too

strong, and how does that benefit change as damage increases?

How much do the results for frequency, damping, and mode shapes change de-
pending on how we process the data such as which filters or resampling methods

we use, or how we set up SSI and which settings give the most reliable results?

How well can a simpler finite-element (FE) model explain what kinds of modes
we see and how much they contribute, even if the actual frequencies are different?

What is the best way to match up modes when their order changes?

How does the internal steel safety frame used in the laboratory influence appar-
ent global stiffness (baseline frequencies) and, in particular, mode shapes (e.g.,
bending—torsion mixing and MAC degradation), and how should this bias be

detected and accounted for during identification and interpretation? [2, 3, 11]

Based on these questions, the main goals are:

(O1)

(02)

(03)

(04)

(05)

1.5

Create a repeatable process for working with dense MEMS sensor data ensuring
correct sensor orientation, anti-alias filtering and uniform resampling, synchro-

nization to a master clock, and quality checks at each step.

Estimate modal properties (frequencies and damping) using FDD and SSI-cov,
report medians with 95% confidence intervals, and assess how sensitive these

properties are to damage and shaking intensity.

Compare toolchains (PyOMA2 and OoMA) under matched settings, and report
agreement metrics (Af, A¢, MAC).

Build a reduced-DOF FE baseline and use MAC-based pairing (even if mode
orders swap) to interpret mode types and stiffness changes between the as-built
and retrofitted buildings.

Quantify and control the influence of the internal steel safety frame by detecting

frequency, damping, and mode shape bias at all intensity levels [2, 3, 4, 11].

Case Study and Dataset Overview

This thesis analyzes a controlled dataset from two full-scale, three-storey, single-bay

reinforced-concrete (RC) buildings of nominally identical geometry and mass, both
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anchored to a common RC base and outfitted with internal infills. One specimen in-
corporates a patented retrofit expected to increase global stiffness at the system level.
The monitoring network comprises 40 MEMS sensing units (MonStr) that record tri-
axial accelerations; two units measure the input motion at the table and foundation,
and 19 units per specimen are distributed across key structural nodes to capture floor
and frame responses. White-noise windows alternate with scaled replicas of the 1980
Irpinia earthquake to bracket damage states and preserve the stochastic-input assump-
tions required for output-only identification. This design aligns with best practice in
the literature where laboratory or full-scale campaigns interleave broadband excita-
tions with earthquake records to support progressive-damage analysis and post-event
assessments [6, 8, 9].

An internal steel safety frame was installed to protect the specimens and equip-
ment during high-intensity runs. Comparing our measurements with an FE baseline
that does not include this frame, we observe that even though the frame was mechani-
cally decoupled as far as practically possible, local contacts and clearances modify the
effective boundary conditions, adding stiffness and mass. The influence is most visible
in the identified mode shapes, while baseline frequencies within white-noise windows
are comparatively less affected. Accordingly, we interpret shapes with caution and base
our primary SHM conclusions on frequency trends and cross-method consistency [1, 2].

The method used in this thesis centers on output-only operational modal analysis
(OMA), making use of frequency-domain decomposition (FDD) and covariance-driven
stochastic subspace identification (SSI-cov) methods. The analysis is carried out using
the open-source PyOMA2 toolchain. The study prioritizes settings that are robust to
parameter choices and provides clear reporting of uncertainty, while cross-validation is
carried out in MATLAB with the OOMA toolbox. Identified modal parameters are in-
terpreted against a finite-element (FE) baseline (OpenSees/STKO) to relate frequency
shifts to apparent stiffness loss and to classify mode types and participation. This
coupling of OMA and physics-based modeling reflects established practice for retrofit
evaluation and decision support in building-scale SHM [1, 2, 11].

The thesis has practical boundaries that focus the contribution. An internal steel
safety frame present in the laboratory setup may alter boundary conditions and mainly
affect mode shapes rather than baseline frequencies in identification windows; this auxil-
iary interaction is acknowledged throughout the interpretation and sensitivity analyses.
The retrofit is treated at the system level because proprietary details are unavailable,
and the expected lower reliability of mode shapes relative to frequencies is addressed
by redundant sensing, cross-method checks (FDD and SSI), MAC-based consistency
thresholds, and FE cross-validation. These choices are consistent with recommenda-
tions in the OMA /SHM literature and with constraints typical of MEMS-based moni-
toring [1, 2, 11].



Chapter 2
Operational Modal Analysis

Operational modal analysis (OMA) is a field of study that involves techniques for
dynamically identifying the modal properties of a structural system that is under am-
bient vibration, or, more generally, during its normal operating life. These methods rely
solely on vibration response data; therefore, they are classified as output-only methods
[12, 13]. The methods comprised by the dynamic identification process aim to identify
the key parameters of a mathematical model that describes the structural system’s
dynamical behavior, so as to best fit the measured vibration responses collected dur-
ing experimental campaigns [12]. Clearly, the observed vibration response reflects the
physical properties of the structure being investigated, functioning as its concrete fin-
gerprint. This aspect forms the cornerstone and motivation of OMA, i.e., searching for
suitable and trustworthy methods that use the structure’s vibration output to provide
the best estimates of its in-situ physical properties. Knowledge of these in-situ prop-
erties is significant, for instance, in assessing changes in material properties relative
to the nominal values stated at the construction era due to degradation processes and
long-term effects. A key consequence of OMA is the development of damage-detection
strategies to track the health state of a structure by periodically examining its dy-
namic behavior over time. Hence, for OMA, achieving sufficient understanding of the
structure’s dynamics and mechanics is key to capturing its real health state for SHM.
A range of interdisciplinary challenges usually arises, including random-vibration as-
pects under linear or nonlinear regimes; treatment of service conditions that may be
stationary or nonstationary; and expertise in analogue-to-digital acquisition and spe-
cialized signal-processing tools, often necessitating application-driven assumptions and
customized simplifications [12]. The current chapter is dedicated specifically to con-
ventional OMA approaches and the main goal is to deal with structural systems which
can be defined as linear time-invariant (LTI) systems [13]. The underlying assump-
tion concerns structures showing linear behavior (i.e., elastic), as is usually the case
in operational in-service life, and having time-invariant parameters, namely, stationary
conditions. In the SHM context of long-term continuous monitoring, material proper-

ties evolve so slowly over long periods that, within any single experimental dynamic
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Operational Modal Analysis

test, they may be considered essentially constant.

2.1 Historical and Theoretical Development of OMA

2.1.1 History of OMA

The field regarding vibrations of bodies goes back to ancient history; for instance,
ancient Greek mathematicians and philosophers, most notably Pythagoras, studied
sounds from strings of differing lengths, setting the origin of music and defining notes
and octaves [12]. During the Renaissance, Galileo Galilei, in his celebrated Discourses
Concerning Two New Sciences (1638), treated the vibration of bodies and described
resonance in distant bodies with identical natural frequency, denoting it as sympathetic
vibration [12]. In 1755, D. Bernoulli of Switzerland set out the groundwork for the
modal superposition principle by observing that a vibrating string can be represented
as a superposition of simple harmonics, the principle of coexistence” [12]. Probably, in
the following centuries, every scientific and engineering field owe to Joseph Fourier, who
developed his theorem when analyzing heat transmission principles in 1822. Referring
to more recent eras, it is worth mentioning the British physicist J.W. Strutt, better
known as the 3rd Baron Rayleigh, whose contributions over the last two centuries
represent the basic framework of modern structural dynamics, including the definition
of damping that accounts for both mass and stiffness quantities [12].

Rudimentary OMA can be linked to 19th-century damage detection on railway lines
[14]; nevertheless, the principal pre-OMA discipline was experimental modal analysis
(EMA) [13]. Two main branches are thus recognised within dynamic identification
according to the monitored quantities: input—output and output-only [12]. EMA mea-
sures both the imposed input excitation and the resulting vibration response to char-
acterise how the structure acts as a filter from input to output. Input—output EMA
techniques are mainly associated with mechanical engineering and related vibration-
control studies, since the typical system scale permits capturing both the input signal
and the structural response. In mechanical engineering, early work centered on moni-
toring the condition of rotating machinery while it was running normally, rather than
during start-up or shut-down [14]. Engineers typically used accelerometers, as well as
velocity sensors and laser-based contactless displacement transducers, for this purpose.
On the other hand, although OMA shares much of its theory with EMA, OMA desig-
nates output-only approaches that attempt to characterise the system using only the
measured response. Hence, it is termed “operational,” since it addresses the unmea-
sured random loads present during in-service operation. This proved decisive for OMA
versus EMA in civil applications, as the large scale makes it infeasible to induce proper
artificial excitation for the full dynamics and impractical to measure random inputs
such as wind with precision.

As shown in Fig. 2.1, a standard basic assumption is formulated to describe the

8
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Measurement
Noige

Unknown —L

Loads Measured
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Combined System
identified by OMA

Figure 2.1: Combined system identified in the OMA framework.

nature of unknown inputs. One considers a white-noise input at the source, passed
through a loading-excitation filter to produce the actual unknown random forces act-
ing on the structure under operating conditions (e.g., wind, traffic), which yield the
measured vibration response. This motivates the OMA concept of identifying the
“whole system” (the combined system [13]), i.e., both the structural system and the
loading-excitation system [12]. In civil applications, because acceleration responses
are typically in the mg range, very sensitive, high-performance, low-noise piezoelec-
tric accelerometers are needed [13]; also common are force-balance accelerometers and,
thanks to micro-electronics advances, MEMS devices, along with electric-resistance
and vibrating-wire strain gauges [14]. Thus, the primary distinction between EMA and
OMA concerns the input. EMA uses a measured, known input, whereas in OMA the
input is completely unknown [13]. OMA’s widespread adoption over EMA can also be
ascribed to the relatively low cost and speed of experiments, together with advances in
computation [12]. For instance, one does not need to stop using the building, since it is
desirable to capture responses under typical service conditions. Modern OMA became
properly formalised at the beginning of the last century [13]; notable publications span
the 1930s-1960s, especially for earthquake loading and ambient tests on buildings [12],
with later growth supported by improved computing and the 1965 introduction of the
FFT [15]. Nonetheless, from about the 1980s onward the theoretical basis was ma-
ture enough to enable practical implementations of vibration-based damage assessment
systems in civil engineering [14]. In parallel national and international regulations in-
troduced mandatory provisions for periodic or continuous health monitoring of strategic

structures and infrastructures for public-safety purposes [14].

2.1.2 Signal processing basics for OMA

Generally, a signal is any function of several independent variables that has information
about a physical system. Considering time as an independent variable, it is possible to
distinguish between continuous-time signals, z(¢), and discrete-time ones, z(tx), being
tr a k-th time instant [15]. Another fundamental classification relies on the signal’s

amplitude (the dependent variable), which is that analog signals have both time and
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amplitude as continuous variables, whereas numerical or digital signals have time and
amplitude as discrete sequences. As noted earlier, the theory has roots in the 1600s,
major advances in the 17th—18th centuries, and a revolution in the 1940s-1960s due
to computing capabilities and new electronics and algorithms. Since then, physical
quantities have been discretely sampled and stored in finite-precision computers, shift-
ing the theoretical and mathematical background from continuous to discrete domains.
Signal processing comprises transforming signals to express their intrinsic information

in a more directly interpretable way [15].

Generally, a signal is any function of several independent variables that has infor-
mation about a physical system. Considering time as an independent variable, it is
possible to distinguish between continuous-time signals, x(t), and discrete-time ones,
x(tx), being ¢, a k-th time instant [15]. Another fundamental classification relies on
the signal’s amplitude (the dependent variable), which is that analog signals have both
time and amplitude as continuous variables, whereas numerical or digital signals have
time and amplitude as discrete sequences. As noted earlier, the theory has roots in the
1600s, major advances in the 17th—18th centuries, and a revolution in the 1940s—1960s
due to computing capabilities and new electronics/algorithms. Since then, physical
quantities have been discretely sampled and stored in finite-precision computers, shift-
ing the theoretical and mathematical background from continuous to discrete domains.
Signal processing involves transforming signals to express their intrinsic information in

a more directly interpretable way [15].

The Fourier theorem includes a fundamental starting point in signal processing,
which permits the decomposition of an arbitrary signal into a linear combination of
sinusoids at different frequencies (harmonics). Initially developed for periodic signals,
it was generalized to non-periodic signals by letting the period be infinite. In continuous

time, the direct and inverse Fourier transforms read [13]:

X = [ awea s a) = [ x(peray (2.1)

—o0
Here ¢ is the imaginary unit, f denotes continuous frequency, and ¢ indicates continuous
time. The Fourier transforms exhibit a variety of properties such as linearity, time
shift, integration and differentiation, and convolution properties [13]. The last one
states that a time-domain convolution corresponds to mere multiplication in the Fourier
frequency domain. Dealing with finite length T' = N At digital signals x,, = x(nAt) with
n=0,..,N — 1, sampled with a sampling frequency fs = 1/At, being At = t,4+1 — ty,
the sampling period, the discrete Fourier transform (DFT) and its inverse form have
been formalized, considering a discrete frequency domain described by fi = k/7T with
k=0,...,N—1:

N—
—i2wkn 1 i2mkn
Xp=X(fr) =Y ane N 5 o =~ ]; e N . (2.2)
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In accordance with the Shannon-Nyquist theorem [13, 14], the maximum repre-
sentable frequency in the discrete Fourier domain (the Nyquist frequency) is equal to

half the sampling frequency:

_fs
fmax - 5

In general, OMA measurements are viewed as a random (stochastic) process the set of

(2.3)

all realizations of random variables over time. Such processes are described via proba-
bility density functions, mean, variance, auto- and cross-correlation functions, auto- and
cross-spectral density functions, and coherence functions. Under the basic hypothesis of
conventional OMA, signals are usually treated as stationary, stochastic, ergodic random
processes. Stationarity implies that the properties that characterize the signals, e.g.,
mean px and autocorrelation Ryy do not vary with time [13]. Periodic finite-length
stationary stochastic process (finite-energy signals) implies the time-average statistic as
a finite constant and obtainable via a discrete estimator over arbitrary sample sequences
[14, 15], rather than by an ensemble-average expectation that presumes infinitely many
realizations over time (infinite-energy signals) [15]. Hence, although random variables
would in principle require a collection of signals covering all possible realizations at
each time instant, if the observation window is infinitely long, a single digital signal

suffices to estimate the characteristics of the entire random process:

1 N
px = Elz(ty)] = lm > at (2.4)
= N
Rxx(7) =Elz(tr)z(ty +7)] = lim — Z a(ty + 7). (2.5)
k:

Another key way to describe stationary stochastic processes over a set period T is
by using power spectral density (PSD) functions. The two main types are the auto-
PSD, which is a real-valued function, and the cross-PSD, which is a complex-valued
function.[13]

: 1, , 1

Sxx(f) = TIEI;OE TXka} = TlgI;oE [T \XkQI] ; (2.6)
R o

(1) = i B[ 70] = i 2 0
. 1,

Sxv () = Jim B | X0 (2.8

typically, the one-sided version is used, which is formed by doubling the amplitude, but

11



Operational Modal Analysis

preserving the phase:

Gxx(f) =2Sxx(f), (2.9)
Gyy(f) =2Syv(f), (2.10)
Gxy(f) = 2Sxy(f) (2.11)

It’s important to remember that power spectral density (PSD) and correlation functions
are actually related through the Fourier transform (known as the Wiener-Khinchin

relations [13]). This means the PSD found by the Fourier transform of the correlation

functions:
+o0 )
Sxx(f) = / Rxx(r)e *"7dr, (2.12)
oo |
Syy(f) = Ryy (r)e *"7dr, (2.13)
oo |
Sxy (f) = Rxy (r)e 27 dr. (2.14)

The function %y (f) (coherence) is given by the ratio between the squared cross-PSD
and the product of the auto-PSDs. It takes values in [0,1] and indicates the degree
of linear dependence of two signals, which assists in detecting nonlinearities, being

formally akin to the Pearson linear correlation coefficient [16]:

V2 (f) = Gxy (NP 18xv(H
X Gxx(f)Gyy(f)  Sxx(f)Syy(f)

(2.15)

Based on the Blackman-Tukey procedure [13], for finite and long enough stationary
ergodic processes, it is possible to calculate the correlation function from a direct com-

putation procedure.

N—r

. 1

RXX(TAt) = (N-T)O'Q Z(xn_,uX)(xn—H"—,uX)a r:(),l,...,m (216)
X

=1

3

According to the acknowledged Welch procedure, the introduction of the efficient Fast
Fourier Transform (FFT) algorithm enabled a direct computation of the PSD [13].
Accuracy is improved by computing a one-sided PSD estimator that splits the signal
into segments of duration 7" and averages the spectra from the Fourier transform of
each segment. Because the Fourier transform assumes periodicity, applying the FFT
to non-periodic segments introduces spectral inaccuracies. This leakage effect disperses
the energy of every frequency line over a wider bandwidth. While it cannot be fully

avoided, it can be mitigated by windowing, i.e., setting the signal to zero at the window’s
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boundaries.
1 if0<t, <T,
wrectangular(tk) = (217)
0 otherwise.
However it is preferred to adopt the Hanning or cosine window whanning(tx) which is
characterized by a greater side-lobe reduction of 32 dB, but with a broader bandwidth
dispersion

%[%—%005(%)] if0<t,<T,

whanning(tk) = (218)

0 otherwise.

Windowing sometimes needs the introduction of some correction factor to adjust fre-
quency spectra amplitude to maintain the signal’s energy equivalence, as demonstrated
by the \/g factor in Eq. (2.18) [13]. Beyond the Shannon-Nyquist theorem, a further
key issue is aliasing; undersampling of frequencies above the Nyquist frequency can
make them show up incorrectly within the measured band. The standard remedy is an
anti-aliasing filter, an analog low-pass filter used before acquisition, to suppress those
high-frequency components [13]. Owing to the finite transition band of real filters, the
usable Nyquist frequency is commonly reduced by about 20%.

2.2 Conventional OMA stationary methods

2.2.1 Frequency domain methods
2.2.1.1 Peak-peaking method

The peak-peaking method, also known as the basic frequency-domain method, is among
the earliest and simplest OMA algorithms developed, and is now mainly applied as a
stand-alone tool for quick in-situ assessment of the preliminary effectiveness of ambient
vibration testing [13]. It can be viewed as an SDOF method because it assumes each
mode is identified separately, an assumption that seldom holds in reality. Therefore, it
performs best for well-separated modes with low damping. In the spectral domain, an
r-th mode is well-separated if the minimum distance from any other mode is greater
than its bandwidth B, given by B = 2&,. f,, with £, the damping ratio and f, the natural
frequency [12]. The modal parameters are obtained locally, i.e., from the analysis of
each sensor channel independently. Note that this method returns only the ODS, not
the proper mode shapes. As its name suggests, it is based on identifying the peaks on
the PSD matrix graph, which is characterized also by a certain degree of subjectivity,
being the main drawback of this technique. When the r-th mode is dominant, the
modal decomposition is simplified by considering only the r-th modal coordinate p(t)
and mode shape ¢,, i.e.

y(t) = orp(t). (2.19)
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The correlation function matrix of the output signal Ryy (7) can be obtained by con-

sidering the autocorrelation of the modal coordinate R, (7), i.e.

Ryy(7) = Ely(t +7)y" ()] = Rp,p, (7)6r¢; - (2.20)

Using the Fourier transform, the one-side PSD matrix can be calculated by considering

the spectral density of the modal coordinate G), ,, (f), i.e.

GYY(f) = Gprpr-(f)@(f)ﬁ- (2~21)

From the latter equation, the PSD Gyy (f) = [g1, g2...] of the response y(t) is seen to
contain the modal information of interest, where g; denotes the generic PSD column
vector. In addition, at the resonance frequency the system may be approximated as an
SDOF system governed only by the r-th mode. Hence, the PSD matrix is rank 1, and

any column or row is proportional to ¢, and may be taken as an estimate of it as

br = gi- (2.22)

Commonly, for clearer discrimination of structural modes of real interest, the PSD
is examined alongside the coherence function (Eq. (2.15)); when it approaches 1,
it indicates a high SNR. Expressed typically in dB, the SNR quantifies how much
unwanted noise contaminates the desired signal and is defined as the base-10 logarithm

of the square ratio between A, and A,, i.e.
A\2
SNR = log;g <Ay> : (2.23)

Despite its simplicity, the peak-peaking method is not reliable if used stand-alone,

and more reliable and systematic procedures have been developed accordingly.

2.2.1.2 Frequency domain decomposition

The Frequency domain decomposition (FDD) method generalizes the peak-peaking
approach by overcoming the requirement of well-separated modes and by concentrating
the evaluation in a single plot based on the SVD of the PSD matrix. In this framework,
the response signal can be decomposed according to the modal decomposition, and the
correlation function matrix RY'Y (1) of the output signal is obtained by considering the

autocorrelation matrix of the modal coordinates RPP(7), i.e.

Ryy (1) = E[y(t + 1)y’ (t)] = ®Rpp(1)®T. (2.24)
14
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Using the Fourier transform pair property, the one-sided PSD matrix follows from the
spectral density of the modal coordinate GPP(f), i.e.

Gyy(f) = ®Gpp(f)d7. (2.25)

The response PSD matrix can then be decomposed via singular value decomposition,
a linear algebra tool that generalizes diagonalization [14]. The matrix Gyy (f) is de-
composed into a diagonal matrix ¥ = diag(oy, 09, ...) of singular values (SVs) sorted
in descending order and two orthogonal/unitary matrices U = [u1, ug,...] and V, with
UHU = UUM = I. Since the PSD is a positive definite Hermitian matrix, it holds that
U =V, therefore:

Gyy(f) =Uxvi =Uuxyu?, (2.26)

Comparing Egs. (2.25)—(2.26) shows that Gpp(f) is diagonal iff the modal coordinates
are uncorrelated, so the SVs can be read as the auto spectral densities of the modal
coordinates [12]. In that situation, one links the estimated output PSD to its SVD and

reduces it to rank 1 at a chosen frequency fi, i.e.

GYY(fr) = Urur(fr)uq{—[(fr)- (2‘27)

and determines the number of mode shapes from the rank of the SV matrix (non-zero

SVs), estimating each r-th mode shape from the left singular vectors U, i.e.

or = ur(fy)- (2.28)

If the modal coordinates are not uncorrelated, the mode-shape estimates are biased
and should not be used for physical interpretation [12]. In any case, FDD mode shapes
are inherently biased, since SVD enforces orthogonality of singular vectors; thus [12]
recommends using only the first singular vector at the dominant frequency line as
the best estimate, i.e. impose o7 in Eq. (2.27). Because noise affects the peak of
the first SV at a single fr, EFDD augments FDD by exploiting information around
peaks, extracting an SDOF “bell” from a band of SVs about the mode of interest.
The retained band is set by correlating nearby mode-shape estimates via the Modal

Assurance Criterion (MAC). For two mode shapes b and ¢y,

RS

MAC(Dw o) = 10 5. (00 n)

. 0 < MAC(¢a, ¢b) < 1. (2.29)

MAC equal 1 indicates perfect correlation, whereas 0 indicates none [18]. Hence, con-
sidering the peak estimate cZSr and nearby shapes, SVs are retained when MAC exceeds
a threshold, typically 80%. The SDOF bell in the PSD is then mapped back to the
time domain via the inverse transform; the resulting correlation function corresponds

to a free decay of an SDOF system. Consequently, beyond natural frequency and mode
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shape, EFDD permits estimating the damping ratio &, for the r-th mode [12], e.g., via
logarithmic decrement with a linear regression over zero-crossings or extremes of the

free-decay correlation function [13, 17]. The damped natural frequency is

fra=frv/1-¢& (2.30)

For assisted and automatic selection of structural modal peaks (rather than noise) on
the SVD of the PSD matrix, one may use the modal coherence indicator d;(fx) [18], a

correlation between the first singular vector at f; and neighboring f:

T
di(fr) = ui (f)ua(fr)- (2.31)
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Figure 2.2: SVD graph of the PSD within the FDD method

Note also that FDD benefits from an built-in noise-separation capability due to the
SVD tool. In the synthetic-data example, the SVD graph of the PSD matrix reveals
a sinusoidal excitation, visible as constant peaks on the SV lines; ignoring these, the
genuine peaks on the first SV correspond to the natural frequencies at 1.91 Hz, 3.57
Hz, and 6.63 Hz. Furthermore, without targeted noise at specific frequencies, the SV
graph exposes the structural-mode peaks of interest, which increase significantly in

amplitude, particularly in the first SV, above the noise floor.

2.2.2 Time domain methods
2.2.2.1 Stochastic state-space models

The time-domain dynamics of a structural system can be represented using a physically
based parametric model, namely a state-space model [13]. The core idea is to rewrite

the general second-order ODEs of motion, into two first-order ODEs denoted as state
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and observation, by introducing the state vector s(t):
s(t) = . (2.32)

The state variables are often termed hidden variables since they describe an internal
(unmeasurable) model representation, while the real observed quantity for studying
the system dynamics is the structural response. First, focusing on the continuous-time
domain, where the drive vector is written as f(¢) = Pu(t). Input position matrix
P ¢ R™WNin and a function u(t) have described the temporal change in the input
actions, that n is the number of DOFs and Ny, is the number of inputs. The specific
form of these two terms P and u(t) depends on the intrinsic nature of the input actions,
i.e. on which DOFs the input is acting on. For instance, in earthquake engineering,
the input is commonly represented by an acceleration ground input indicated as ii4(t)

acting only at the base DOFs of the structure. Nevertheless, it is reformulated as
My(t) + Cy(t) + Ky(t) = P u(t), (2.33)

The first derivatives of the state vector are
5(t) = , (2.34)

The first component $1(¢) of Eq. (2.34) is directly given by

ao(t) = [o I] s(t) + M u(t), (2.35)

while the second component $(t) of Eq. (2.34) follows by making explicit the response
acceleration in Eq. (2.33):

5a(t) = [tk —Me] s + [~ Pug), (2.36)
which yields the state equation

= S R R T R
|-m'k mie ~Mt (2.37)

5(t) = Aes(t) + Beu(t),
in which A, € R?"%?" is the state transition matrix, which transforms the current state
into the next state representation, and B, € R?™*™ is the input influence matrix, the

subscript ¢ denotes the continuous time domain. The observation equation depends on

the number [ and the type of sensors, which used to monitor the physical quantities
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characterizing the response of the structure gathered in y;(¢). Ideally, monitoring both
accelerations, velocities, and displacements at all n DOFs, the response vector y;(t)
belongs to R3"*! gathering on the column dimensions the displacements y(t), velocities
y(t), and accelerations §j(t). It could be theoretically expressed as a function of the state
vector, and decomposed through output location matrices C,, C,, and Cy belonging to
R™ " e,

yi(t) = Caii(t) + Coy(t) + Cay(t) (2.38)

and substituting §j(t) from Eq. (2.33), it becomes

y(t)
cy(t)

i) = [co— MK ¢, - CMC + CuM ' Bu(t) (2.39)

The last relation provides only the acceleration part of y;(t), hence g;(t). It also shows
that, in the state-space formulation, acceleration measurements in the observation equa-
tions depend explicitly on the state variables (displacements and velocities). Contrarily,
displacement and velocity measurements are directly provided by the state variables
and may be affected only by direct input. Therefore, considering a plausible and general
scenario in which, for every single DOF, both displacements, velocities, and accelera-
tions are measured, observation equations which express response vector y;(t) in Eq.

(2.38) as a function of state variables s(t) becomes

Cy 0 0
yi(t) = 0 C, s(t) + 0 Pu(t) &
(2.40)
Cy—C,M~'K C,—C,M~'C C,M~!

yi(t) = Ces(t) + Deu(t),

In last equation, C. € R3"*27 ig called the output influence matrix. D, € R3"*?" is the
direct transmission matrix and explains how an input directly reflects in the output re-
sponse. Within the present structural-dynamics formulation, the input directly affects
acceleration measurements. Besides the general formulation, in a practical SHM con-
figuration where only accelerometer sensors are used on the structure, the observation

model is restricted to Eq. (2.39), with a consequent reformulation of C. and D..

All the previous mathematical elaborations permitted to rewriting of the motion
equation according to the deterministic continuous-time state-space model according

to the state equation and observation equation respectively, i.e.

5(t) = Acs(t) + Beu(t) , (2.41)
yi(t) = Ces(t) + Deul(t). (2.42)

The model is called deterministic since the excitation is considered deterministic, and
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the modal information of the structural system resides in the eigenvalues of A.. An
infinite family of equivalent state-space models (realizations) exists for the same sys-
tem. Applying a similarity transform with a non-singular square matrix 7' changes the
realization but preserves the eigenvalues, and thus the modal content. Accordingly, in
vibration experiments, the measured response is used to identify one realization among
the infinitely many. For the discrete time-domain, with ¢, = r - At (sampling period
At), r € N, discrete state s,(t,) = s(r - At) of order n, under zero-order hold on the
input and with N samples of | channels y, € R!, the discrete deterministic state-space

form is obtained.

Spa1(tre1) = Asy(ty) + Bun(t) (2.43)
yr(ty) = Csp(t) + Dup(ty), (2.44)

in which the state space matrices are defined as

A= ARt (2.45)
B=(A-1)A;'B., (2.46)
C=cC,, (2.47)
D = D.. (2.48)

To account for unmeasurable noise sequences, two random processes are introduced.
The process noise w; covers disturbances and modeling errors arising from inaccuracies
of the state-space model in capturing the true system dynamics. The measurement
noise v, instead stems from sensor electronics, which convert physical analogue signals
into finite-arithmetic, finite-memory digital data. These two noise processes are treated
as additive components, as already indicated by the measurement-noise process in Fig.
2.1, and are assumed zero-mean Gaussian white noise, hence fully specified by second-
order statistics. Therefore, for any pair of time instants p and ¢, the variance is given
by
QU s

ol _ o T e | TP

<wq Uq) = (S“")* R (2.49)
Up .
0 if p # g,

The matrices QWY € R™*", §¥v ¢ R"*! and R" € R are the covariance matrices
associated with the noise processes w, and v, [19]. Therefore, omitting the explicit
dependence on discrete-time instants, the discrete-time deterministic (input) stochastic

state-space model is given by

Sp41 = Asy + Bu, + w,, (2.50)
yr = Csp + Du, + v, (2.51)
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In the context of OMA, since the input excitation is unknown and modeled as Gaus-
sian white noise, a pure stochastic state space model can be defined by folding the

unmeasurable input into the process and measurement noise sequences, i.e.

Spar1 = Asp + wy (2.52)
yr = Csp + vy, (2.53)

With this, the process noise directly plays the role of the unmeasurable input excitation,
whereas the measurement noise is a direct disturbance visible in the measured output.
Accordingly, the measured response separates into an observable system part and an
unobservable direct disturbance, consistent with the combined-system concept (see Fig.
2.1). This is likewise manifested in the eigenvalues of the state matrix, which include
poles from both the structural system and the input noise excitation process. Therefore,
using stochastic state space time-domain parametric models in OMA, the key task is
to find at least one realization of A € R™™ and C' € R to extract the modal
information of interest. The matrices A and C are taken to be observable, implying
all modes are observable in y, [19]. Moreover, the system order n is still unknown and
must be selected within the OMA procedure, with the requirement that the second-

order statistics of the model output and the measured output coincide [19].

2.2.2.2 Covariance-equivalent representation of stochastic state space model

In agreement with the OMA framework, the stochastic state space model system’s re-
sponse is represented by a zero-mean Gaussian process, and thus the output covariance
conveys all significant information to describe this random process. Hence, it is possible
to define a covariance equivalent model as an estimated state space model characterized
by an optimal unbiased estimator, i.e. the correct output covariance able to describe the
statistical properties of the output process [13]. Assuming an LTI stationary stochastic
process, the state vector is also a zero-mean Gaussian process characterized by the fol-
lowing state covariance matrix ¥, which is independent of the time and uncorrelated

with noise processes [19]:

T T T

Y. =E [STST] , E [sTw,T] =FE [STUT] =0. (2.54)

The Lyapunov equation provides an alternative definition for the state covariance ma-

trix X5, considering the next state sy [19]
Y, =E [Sk-i-lsg-i-l] =E [(Ask =+ wr) (ASk + wr)T
= AE [srsﬂ AT +E [wrwﬂ (2.55)
= A%, AT + Q.
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The output covariance matrix, i.e. the cross-correlation matrix of the measured output
response from all sensors’ channels for sample r and with finite time lag 4, is defined in

general as
R; =E [yr4iy} | (2.56)

from which it is possible to derive the initial output covariance matrix Ry for lag i = 0,

Ry=E [y,«y;p] =K [(Csk +v,) (Csg + UT)T]
=CE [srsﬂ CT+E [vrvﬂ (2.57)
=%, CT + Rv.

It is possible to define the next state-output covariance matrix G which represents the

covariance between the response of the system y, and the updated state vector s,y

G=E[s5,4157] =E [(Ask +w,) (Csp + UT)T}
= AE [srsf] CT+E [wrvﬂ (2.58)
= A, CT + 5w,

from which it is possible to obtain an alternative definition for the output covariance

matrix sequence R;, so that
Ri=CA"'G | R,=G" (4 Y T (2.59)

The Eq. (2.59) has fundamental consequences which are at the base of stochastic
subspace identification algorithms, being that output covariance can be considered as
Markov parameters of an LTI system defined by state space matrices 4, C, GG, and Ry.
In general, Markov parameters describe the input-output relationship of a discrete-time
model with sampled response according to a pulse response function to a unit pulse
input [24]. Therefore, R; is directly estimable from the data (via G), and decomposing
the sequence yields the state matrix A, whose poles constitute the solution sought in

covariance-driven, stochastic state-space, time-domain identification.

2.2.2.3 Covariance-based stochastic-subspace identification

Over the past decades, OMA has seen the development of several time-domain tech-
niques founded on correlation analysis of output vibration responses under natural
excitation, which gradually supplanted forced-vibration tests. These output-only ap-
proaches are termed Natural Excitation Techniques (NExT); three well-known methods
are the least squares complex exponential (LSCE), the Ibrahim time domain (ITD),
and the eigenvalue realization algorithm (ERA), the last being closely akin to subspace
identification. For LSCE, ITD, and ERA see [20, 21, 22|. Despite early popular-

ity, NExT procedures were progressively set aside due to various limitations [13], and
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stochastic subspace identification became preferred. The covariance-driven stochastic
subspace identification (SSI-cov) is a parametric, time-domain algorithm derived from
the Ho—Kalman realization scheme [23], producing state realizations from output-only
measurements. SSI-cov uses the stochastic state-space model in Egs. (2.52)-(2.53),
with model order n, [ measured DOFs, and Ny total output samples, where s, € R”,
yr € Rl A € R™*" and C € RP>", under the assumption that all system states are con-
trollable and observable. A state is controllable if reachable from any initial condition
by suitable control; observable if determined completely from the input and output at
a given time. In line with Eq. (2.16), the output correlation matrices Ri € R are
computed with a user-defined finite lag i € N (time shift / number of block rows) [13],
ie.
1

R, = p@i__iiﬁ*A@‘”BQZQd’ (2.60)

Matrices Yi.n,—i = |yo y1 ... Yn,—i ! e R>*Na and Yin, € RNaxl indicate the
output measurements’ time histories from [ sensors, collected and rearranged. All
correlation estimates assuming the role of output covariance matrices in SSI-cov are
computed for lags i through 2i — 1 and assembled into a block Toeplitz matrix T'1]i €

Rl (3 matrix with constant diagonals) as follows:

[ R; R, Ry Ry ]
Rit1 R Ry
Tyi=| PRV Col. (2.61)
R
| Roi-1 Roi2 .. Riyn R |

The subscript in 7'); indicates the indices of the first column of the matrix [19]. Using
the Toeplitz matrix of output covariance matrices can reduce computational effort
during modal identification, thereby improving the efficiency of the elaboration. For a

system of order n, the choice of the block-rows parameter ¢ must satisfy [13]
li > n. (2.62)

The true order n of the state-space model is unknown. The Ho-Kalman algorithm is
based on minimal realization, so it seeks the smallest n that guarantees full control-
lability and observability. Still, at the beginning of SSI-cov one may obtain a rough
estimate of n by examining the rank of the output PSD or the SVD of the PSD (cf.
FDD). This preliminary estimate guides the selection of the time-shift parameter to
satisfy ¢ > n/l. When the system is fully controllable and observable, the Toeplitz
matrix admits the factorization into an observability matrix O; € R*¥*" (depending

only on A and C) and a reversed controllability matrix T'; € R"*¥ (depending only on
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A and the next-state output covariance G), i.e.

C

CA
Ty = . [Ai_lG ... AG G]ZOiFi. (2.63)

_CAZ_I_

Accordingly, matrix C' can be taken directly from the first [ rows of O;, while matrix
G is obtained from the last [ columns of I'i. To obtain O; and I'i separately, perform
the SVD of the Toeplitz matrix:

Y1 0 |\
0 0] [Va

Ty =USVT = [U1 UQ} ~ U S Vi (2.64)

where X is truncated to rank n (keeping ¥; € R™*") and U; € R V1T ¢ R?*E,

Consequently,

Ty = LSV = U (2}/ 22}/2) VI = (Ulzi/ 2) (z}/zvlT) — O;T;, (2.65)
0; = Uisy/°T, (2.66)
T =7 '52y7 (2.67)

including a non-singular similarity matrix T since only one realization is identified
among the equivalent ones; often one sets 7' = I. Having O; and I';, the next SSI-
cov step estimates A and, together with C, yields the modal parameters. Recall C' is
read from the first [ rows of O;, and G from the last ! columns of I';. Two principal
procedures for A are reported [13]. The first (NExT-ERA) builds the one-lag Toeplitz

matrix Ty; 41 of output covariances and exploits its factorization:

Riyyw Ry ... Rs3 Ry
Rivo Riyn - - Rs
Bajipr = | © | = O AL (2.68)
R4
| Roi Roic1 oo Riga Rig1

Thus, by taking into consideration equations (2.66)-(2.67) derived from SVD decom-
position of the original output covariance Toeplitz matrix Eq. (2.61), the state matrix

A estimate is given by

A=O0]Ty;T] = (21_1/2U1T) T3ji11 (‘/121_1/2> : (2.69)
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where T denotes the Moore—Penrose pseudo-inverse [13]. The second approach to es-
timate A, due to Yi and Yun [25, 13], pre- and post-multiplies (2.61) by invertible
matrices W1 and Wa (i.e., WiT1;W2) and, after SVD, yields an alternative observabil-
ity matrix:

0; = WU Si/*T. (2.70)

Two weighting schemes are common: balanced realization (BR) and canonical variate
analysis (CVA) [26]. In BR, choosing W; = Wy = [ implies O] O; = I'TT = %1 (Gram
matrices); “balanced” indicates that input excitation transfers to the state and the
state to the output in a comparable manner [13]. Using the shift-invariance property
of O; [27], further decompose O; to make A explicit by defining OiT (remove the last [
rows of O;) and Oii (remove the first [ rows) [28, 29], i.e.

[ o ] [ o ] oA ]
CA o] C . CcA . CA?
0; = - C = = 0] = , OF = (2.71)
: C A1 Oii : :
_CAifl_ _CAi72_ _CAifl_
= oOlA=0' = 4a=0l"o} (2.72)

On the other hand, the CVA weighting aims to balance the energy content across
all system modes and retrieves the weighting matrices via Cholesky decompositions
of two modified Toeplitz matrices [26]. W1 is defined as the inverse of the lower-
triangular factor [L*]~! obtained from the Cholesky factorization of a reversed one-

time-lag Toeplitz matrix T(;Ti_l, where the upper triangle is transposed, i.e.

'Ry R ... R', R,
R Ry . . RT,
Toj—r = | & o e | =LY = Wi =[LTh (2.73)
RiT
Ri1 Rio Ry Ry

Conversely, W2 is defined as the inverse of the lower-triangular factor [L~]~! ob-

tained from the Cholesky factorization of the reversed one-time-lag Toeplitz matrix of
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output covariances 7T ()Ti_l, where the lower triangle is transposed, i.e.

Ry Ri ... Ris Ri]
R Ry "~ "~ Ris
Toji-1 = =L7[L7)7 = Wa=I[LT]7' (2.74)
R4
RT, R', ... RI' Ry

Accordingly, the eigenvalues of the weighted Toeplitz matrix in Eq. (2.61), i.e. W1T};Wa,
admit a geometric interpretation as canonical angles between two subspaces, ensuring
balanced energy levels among all system modes [13, 26]. The OMA identification out-
come is the desired modal parameter estimates (natural frequencies, damping ratios,
and mode shapes) is obtained once the state matrix A and the output influence matrix
C are identified. The eigenvalue decomposition (EVD) of matrix A leads to the diagonal
matrix A = diag([A1, ..., Ay, - Am]) € R™*™ of discrete-time complex conjugate system

poles pairs A\, A} (two-quadrant symmetry) and corresponding right eigenvectors v,
A=TAUY | A, = M\t (2.75)

where 1 < u < m, with m = n/2 the number of eigenvalues of actual interest. This
follows from retaining only modes with positive damping (positive imaginary parts)
among the n complex-conjugate poles, so physically the modes of interest amount to
half the system order [13, 30]. Undamped/damped natural frequencies and damping
ratios are then computed by mapping from the Z-domain (discrete time) back to the

Laplace domain (continuous time):

In(\y,) En Re(sy)
= = — = —100
SO VR s sl T
where s, are the continuous-time poles, At is the sampling interval, | - | denotes the

complex modulus, and fRe(s,) the real part. Finally, the real part of the eigenvectors

1, provides the experimental mode shapes ¢,:

by = Re(Cehy,), (2.76)

with ® = [¢1,..., Py, ..., dm] € RX™. It is worth noting that the entire SSI-cov proce-
dure can equivalently be carried out using a block-Hankel matrix (with constant anti-
diagonals) of the output-measurement covariance estimates in place of the Toeplitz
matrix in Eq. (2.61). Moreover, the whole theoretical framework rests on estimated
quantities (e.g., output covariances in Eq. (2.60)), since only a finite amount of data
is available. Together with additive noise due to state-space modeling inaccuracies,

sensor hardware noise, and computational noise from finite-precision arithmetic, the
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rank of the estimated Toeplitz matrix cannot exactly reveal the true theoretical system
order, also because the Toeplitz factorization is not mathematically exact in the pres-
ence of noise. In principle, the rank can be hinted at by the largest relative gap in the
singular values (SVs) sorted in descending order. Nevertheless, in OMA the practical
objective is reliable modal-parameter estimation rather than an exquisitely accurate
dynamical description via a state-space model; hence a conservative overestimation of
the system order is commonly adopted, leading to the well-known stabilization diagram
(SD) approach [13]. In practice, the order n is started small and progressively increased
to higher, over-specified values up to a user-defined limit. Accordingly, the Toeplitz
output-covariance matrix is first sized to low dimensions and, following SSI-cov, poles
are computed; the procedure is then repeated for successively larger matrix sizes. Re-
calling that in subspace identification only half the system order yields poles of interest
(those with positive imaginary part), the model order grows by twos. Over-specifying n
reveals spurious poles alongside the physical ones: “noise poles” when they are tied to
the excitation system identified together with the structural system (combined-system
concept, Fig. 2.1), and “mathematical modes” when they arise from the aforementioned
inaccuracies and noise sources. As illustrated in Fig. 2.3, the stabilization diagram is
a 2D plot showing, for each model order (ordinate), the poles versus natural frequency
(abscissa). The SD affords a clear separation between stable physical modes and unsta-
ble spurious ones by tracking alignments of stable poles as the order increases. Stability
checks discriminate stable from unstable poles in terms of frequency, damping ratio,
and mode shapes, and are grouped into two classes: hard validation criteria (HVC),
grounded in strict physical principles and applied to individual poles, and soft valida-
tion criteria (SVC), which set relative thresholds between pole pairs at two different
orders [31, 32]. Under HVC, spurious poles include those lacking complex-conjugate
pairing, modes with natural frequencies above the Nyquist frequency (accounting for
any decimation), and poles with negative or excessively large positive damping ratios
(typically limited to 10%) [31]:

&u < 0.1, (2.77)
fu < f? (2.78)

Assume pole a is identified at model order n. The SVC classify spurious poles by
comparing a with any pole b at model orders 2,4,...,n/2 using the following relative
stability checks [13]:

A¢ = 5“5_&’ < 0.05, (2.79)
Af = f“f_ To 0.01, (2.80)
1 — MAC(¢g, ) < 0.02. (2.81)
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In general, the stabilization diagram can be adapted to any parametric OMA method.
This graphical tool offers a clear separation between physical modes and spurious ones.
Moreover the SD is often combined with at least the first SV curve of the PSD matrix
to double-check that stable pole alignments coincide with the peaks of the PSD SV
lines identified via FDD.
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Figure 2.3: Stabilization diagram. The colors of the poles, identified by the numbers
0.0 to 4.0 in the legend, indicate respectively: unstable, stable in frequency, stable
in frequency and mode shape, stable in frequency and damping, stable in frequency
damping and mode shape.

2.2.2.4 Data-driven-based stochastic-subspace identification

The Data-driven SSI (SSI-dat) relies on the Kalman filter formulation of stochastic
state-space modeling. SSI-dat begins by rearranging the measurements from [ sensors
collected as vectors y, € R! at each time instant r = 0,1, ..., N; into a Hankel matrix
(with constant anti-diagonals) Yp|2i—1 with a predefined number of block-rows set by

the integer time-lag parameter . Thus, the Hankel matrix has 2i¢ block rows, and with
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Ng = Ny + 1 total samples, the number of columns is j = Ng — 2i + 1:

Yo Y1 Y2 oo e YN—2i41
Y1 Y2 ys - T YN—2i42
Y2 Y3 T YN—2i43
) YN —i—1 Y,
Yoj2i-1 = % Yio1 i i YN, —i = v, . (2.82)

Yi Yig1r - -7 - YNy —i+1

Yirl  Yiv2 - YNy —i+2

Yoi2 Y2i-1 - YN, -1

| Y2i-1 Y2 cee e UN—1 YN,

The Hankel matrix can be partitioned into two submatrices, the past data matrix
Y, and the future data matrix Yy, each of size [7 x j. Within the SSI-data framework,
the Kalman state vectors sr (obtained from output observations up to time r — 1) are
collected into the Kalman state-sequence matrix S; = [s;, Sit1, ..., Si+j—1) [13, 19]. This
matrix is estimated as S; by orthogonally projecting the row space of the future data

matrix Yy onto the row space of the past data matrix Y}, via the projection matrix II;:
L = Yy/Y, = VY7 (v, Y)Y, (2.83)

where the underline Y), indicates that the projection result lies in the row space of
the past data matrix. Note that YprT contains the output autocorrelation used to
form the Toeplitz matrix in SSI-cov, revealing the tight link between this orthogonal
projection and output covariances. Assuming full controllability and observability [13],
and provided that i satisfies Eq. (2.62), the main theorem of stochastic subspace
identification states that II; factors into the extended observability matrix O; and the

Kalman-filter state sequence S; [19], i.e.

C

N CA
Hz‘ = O,L i — . 31 §i+1 §i+jfl] . (284)

_C-AZ_l_

The Hankel matrix of output data can be factorized by the linear-algebra LQ

decomposition, yielding a lower triangular matrix L and an orthogonal matrix Q
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(QQT = QTQ = I). Owing to the block-row structure of the output-data Hankel
matrix, the lower triangular factor can be partitioned into blocks with L11 € RI#xH,
L21 € R*E 192 ¢ RXE 131 e RIG-Dxl 139 ¢ RIG-DXL and L33 e RIG-DxI-1),
Consequently, the orthogonal factor is likewise decomposed as Q1 € R7* Q2 € RI*!,
and Q3 € R7*=1) g0 that

Lin 0 0] |QF
Yopic1 =LQ = |Layy Ly 0 | |QF]- (2.85)
Ly L3 Lss| |QF

As a result, the projection matrix can be numerically obtained directly from the LQ

decomposition of the output data Hankel matrix as follows

I = Y7/Y, = Lan [Qﬂ. (2.86)
L3

Using Eq. (2.84) it is possible to obtain the extended observability matrix O; and
the Kalman filter state sequence matrix S; using the SVD of the numerically estimated
projection matrix (2.86), which resembles in some way the decomposition of the SSI-cov
Toeplitz matrix (refer to Eq. (2.64)):

0| |V
I =UsyT = [Ul UQ] ' Yoo vy, (2.87)
0 0| |w
so obtaining
0; = U, V/°T, (2.88)
S; = Ol11;, (2.89)

where T is a transformation matrix which can be considered as an identity matrix.
Now it is feasible to calculate the state matrices A and C to get the modal parameter

of interest.

Alternatively, the output data Hankel matrix can be decomposed considering the

following rearrangement with past output matrix with a block row added Y;r and future
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matrix with first block row removed YJT:

Yo Y1 Y2 ... e YNy —2i+1
Y1 Yo Y3 - YN—2i42
Y2 Y3 ol o YNy —2i+3
1 YN, —i—1 Yoji—1 v+
Yoj2i-1 = 7| v v YN, —i = Yy = |
J . . . I Yf_
Yi Yi+1 -7 - . YNy —i+1 Yz‘+1|2¢—1
Yi+1  Yiv2 - RS - YNy —i+2
Y2i—2 Yoi—1 - YN, —1
| Y2i-1 Y22 ... oo YNg—1 YNy |
(2.90)

Therefore, considering the L(Q decomposition in Eq. (2.85), the projection matrix

and the output matrix Yj; can be obtained as follows:

. Qf
i1 =Y, /Y, = [le L32] T (2.91)
o 2
Qf
Yii = [Lgl LQQ} . (2.92)
2
Reversed controllability matrix I'; can be obtained from Eq. (2.63) as follows
;= OlTy, (2.93)

from which G matrix can be obtained extracting the last [ columns. The initial output
covariance Ry can be obtained as

(2.94)

x

1
Ro = -Yy,Yi|;
J

According to [13], three methods are available to estimate the state matrices A and C.
The first method solves a least-squares problem on an overdetermined set of equations
built from the Kalman state sequence Si = (845 8i41, -y Si4j—1] from time ¢ to i+ j — 1

[13], where p,, and p, are residuals uncorrelated with the regressor S;.
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S; Al . w
i I e R L (2.95)
n\z C Pv
A Sit1]
= |7 & (2.96)
C Yii

All terms in Eq. (2.96) are numerically obtained by LQ decomposition.

The second method to estimate state matrices leverages the shifting nature of the
observability matrix, identical to the SSI-cov method described in Eqgs. (2.71)-(2.72).

C C CA
CA o} C R CA . CA?
: C A1 Oii :
_CAifl_ _CAif2_ _CAifl_

~ ola=0'} = A=0!"0}

Alternatively, it is possible to decompose with SVD the linear combination of OZT and
OZ.i matrices, i.e.

Vi W
o -ol]=usvT = v= " R (2.97)
Vo1 Vao

A= VoVt (2.98)
with Vi1, Vi, Va1, Vag € R,

It is worth recalling that the first two methods do not mathematically guarantee
positive realness of the state-sequence estimates; consequently, this also holds for the
SSI-cov algorithm, which is based on the second approach (Egs. (2.71)-(2.72)) [13, 19].
Indeed, the noise covariance estimates, and the matrices G and Ry, are unbiased under
the assumption of infinitely long data. However, with finite-duration vibration-response
records, these estimates may yield a state-space model whose states are neither real nor
positive. In the frequency domain, this manifests as a synthesized spectrum that is not
positive for every frequency line, which is mathematically meaningless. Theoretically, a
forward innovation model cannot be obtained in such cases [13, 19], although in OMA
the priority is typically robust modal-parameter estimation rather than an exquisitely
accurate state-space model [13]. Nevertheless, when positive realness is a strict re-
quirement, the third method for estimating the state matrices should be adopted. This
approach uses the same least-squares setup as in the first method, i.e. Eq. (2.95), but

leverages the residuals to estimate the nonsteady state covariance matrices of the noise
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process (the innovation) in the Kalman-filter state-space formulation, so that

Qv S|

oL o7 = st (2.99)

s s Ry
Since the Kalman filter converges unbiased with infinite data, the approximation for
finite data introduces a bias but still ensures the positive realness of the states be-
cause the noise process covariance matrix in Eq. (2.99) is a positive-definite matrix for

construction (all its eigenvalues are positive), i.e.
Q’LU’LU — Q;,U’LU , SU)’U — S;,U’U , RU’U — R;}’U (2.100)

The steady-state approximation ensures the validity of Egs. (2.55)-(2.59), thus permit-
ting to directly numerically solving the Riccati in order to obtain the forward innovation
model [13].

Once the state matrices A and C' are available, the modal parameters are obtained as
in the SSI-cov method via Eq. (2.75), i.e., by solving the EVD of the state transition
matrix A to find the Z-domain eigenvalues; mapping these back to the continuous
Laplace domain yields natural frequencies, damped natural frequencies, and damping
ratios. Also in SSI-dat, although the true model order n could, in principle, be inferred
from the rank of the projection matrix, in practice it is unknown due to noise and often
obscured by the absence of large SV gaps. Hence, a conservative stabilization-diagram
approach is likewise employed here to identify stable pole alignments corresponding
to the structure’s physical modes. The stability checks are the same as in HVC Egs.
(2.77)—(2.78) and SVC Eqgs. (2.79)—(2.81). Several SSI-dat variants appear in the
literature, introducing weighting matrices W; € R¥*% and Wy € R7*J pre- and post-
multiplying the projection matrix, i.e., W1II;Ws, before the LQ decomposition [13].
The unweighted principal components (UPC) variant corresponds to the discussion so
far, taking both W; and Ws as identity; UPC SSI-dat is typically used when modes
are well and uniformly excited and the SNR is good [13]. Conversely, the canonical
variate analysis (CVA) SSI-dat is preferred for non-uniformly excited modes and noisier

responses [13]. It employs the following weighting matrices:

1 —1/2
Wy = (jYprT> . Wa = Iy (2.101)

Similarly to CVA SSI-cov, the SV of the weighted projection matrix can be interpreted
as principal cosine angles between past output matrix row subspace and future output
matrix row subspace [13]. Eventually, the principal component (PC) SSI-dat shows a
compromise between CVA SSI-dat and UPC SSI-dat, so using the following weighting

matrices:

1 ~1/2
Wi =Ilixii , Wa=Y, <jY};YpT) Y,. (2.102)
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Despite UPC, PC, and CVA having slightly different physical meanings, no significant
differences in modal parameter estimate accuracy have been evidenced in the literature
[13].

2.3 PyOMA and PyOMA2 for operational modal analysis

Within the field of SHM, operational modal analysis (OMA) is a well-established
method for determining the dynamic properties of civil structures from the records of
the ambient or output-only vibration. For many years, the majority of OMA implemen-
tations have been available only as MATLAB toolboxes, which can limit accessibility
and integration with modern, open-source data science workflows. To overcome these
limitations, a multi-institutional research effort involving the University of L’Aquila
(Italy), the Norsk Treteknisk Institute in Oslo (Norway), and Politecnico di Torino
(Italy) has led to the development of PyOMA, an open-source Python package dedi-
cated to OMA [33].

The overall structure and goals of the PyOMA research project are summarized
in Fig. 2.4. The project was conceived to provide a flexible and transparent environ-
ment for modal identification, fully based on the standard scientific Python ecosystem
(NumPy, SciPy, Matplotlib, etc.), and to bridge the gap between advanced research
algorithms and everyday engineering practice. The project focused especially on driv-
ing results reproducible, sharing open-source code, and ensuring that OMA tools could

easily integrate into larger Python workflows for structural health monitoring, model

N N - ‘ ArtIStE team
/ @ research project

i . B
Collaboration UNIVERSITA OB " A% Politecnic
‘ . @ among 3 institutions @:ﬁff*ﬁ‘-ﬁf\ Treteknisk ) e Torino.
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Figure 2.4: Schematic overview of the PyOMA research project and its main compo-
nents.

updates, and data analysis.
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2.3.1 Implemented algorithms in PyOMA

In its released version 1.5, the PyOMA package implements six widely used OMA

algorithms, covering both frequency- and time-domain approaches [33]:
1. frequency domain decomposition (FDD) [34];
2. enhanced frequency domain decomposition (EFDD) [35];
3. frequency—spatial domain decomposition (FSDD) [36];
4. covariance-driven stochastic subspace identification (Cov-SSI) [37, 13];
5. data-driven stochastic subspace identification (DD-SSI) [19];

6. natural excitation technique — eigensystem realization algorithm (NExT-ERA)
13, 22].

These methods provide complementary views on the same underlying stochas-
tic state-space model of the structure. Frequency-domain techniques (FDD, EFDD,
FSDD) are particularly useful for obtaining initial estimates of natural frequencies and
mode shapes, while time-domain methods (Cov-SSI, DD-SSI, NExT-ERA) enable more
rigorous estimation of damping ratios and provide tools such as stabilization diagrams
and clustering criteria. An overview of the algorithms implemented in PyOMA is shown
in Fig. 2.5.

Frequency Domain Time Domain

Vibration

Dataset 1 1
run function: run function: run function: 1
FDDsvp() SSlcovStaDiag() SSldatStaDiag()

SV (PSD) diagram Stabilization Diagram

Modal parameter estimatel

|
|
|
|
|
|
|
|
|
Modal parameter estimate :

{ run function: run function: P run function: run function: W ( run function:
EFDDmodeEX EFDDmodeEX
FDDmodeEX() (method="ESDD") (method='FSDD')J SSImodeEX() ) | SSImodeEX()
Frequency Domain Enhanced Frequency Frequency Spatial Covar ia,nce driven Dat'a, driven
Decomposition Domain Decomposition Domain Decomposition StOChaStllC SubSPace StOChaSt!C SubSPace
Identification Identification

Figure 2.5: Overview of the OMA algorithms implemented in the PyOMA toolbox.

In the context of the present thesis, this set of algorithms is particularly relevant
because it includes both the frequency-domain FDD method and the covariance-driven
SSI formulation, which constitute the core of the identification pipeline adopted to

track damage evolution in the tested reinforced-concrete buildings.
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2.3.2 Graphical user interface PyOMA _GUI

While PyOMA can be used directly as a Python module, the project also provides a
dedicated graphical user interface, PyOMA _GUI, intended for users who prefer a more
interactive workflow or who are less familiar with Python scripting. PyOMA_GUI is
distributed as an open-source application and is built on top of the same underlying
Python routines that form the PyOMA package.

From a user perspective, PyOMA_GUI guides the analyst through the complete
OMA workflow, including;:

e import of measurement data from different file formats;

e definition of the structural geometry and assignment of measurement channels
and degrees of freedom (DOFs);

e basic preprocessing of the acquired time histories (detrending, resampling, deci-

mation, filtering);

e execution of the dynamic identification algorithms (FDD, EFDD, FSDD, Cov-
SSI, DD-SSI, NExT-ERA) with interactive visualization of spectra, singular value

plots, stabilization diagrams, and mode shapes;

e post-processing and export of the identified modal parameters for further analy-

ses, including model updating or long-term SHM.

A schematic representation of the main components and data flow within Py-
OMA _GUTI is reported in Fig. 2.6. Although the present thesis relies primarily on
Python scripts and Jupyter notebooks for batch processing of the large test dataset,
the design philosophy of PyOMA _GUI is consistent with the needs of this work: en-
abling reproducible analyses while also supporting quick visual inspection and quality

control of the identified modes.

2.3.3 From PyOMA to PyOMA2

More recently, the original PyOMA implementation has evolved into a second-generation
toolbox, PyOMA2"', which reorganizes and significantly extends the capabilities of the
package [11]. The new logo of PyOMAZ2 is shown in Fig. 2.7, emphasizing the continuity
with the original project while highlighting the modular and extensible architecture of
the new code.

PyOMAZ2 is structured into three main layers:

e Data and experiment layer: this level provides classes to store and manage

measurement data, metadata, sensor layouts, test configurations, and processing

"https://github. com/dagghe/PyOMA2
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Figure 2.6: General overview of the PyOMA_GUI graphical user interface and its main
workflow steps.

4

Figure 2.7: Logo of the PyOMA2 toolbox, the second-generation implementation of
PyOMA.

parameters. It supports both single-setup and multi-setup experiments, including
tests with reference and roving sensors, which are common in civil engineering

applications [27].

e Algorithm layer: this level contains the implementations of the identification
algorithms. Each algorithm is encapsulated in a dedicated class, which receives
data objects as input and returns modal estimates, together with diagnostic plots
such as singular value spectra, stabilization diagrams, and mode-shape anima-

tions.

e Visualization and utilities layer: this level includes functions for animating
mode shapes, interacting with the generated plots, and performing auxiliary tasks

(e.g., selection of stable poles, computation of MAC values, or export of identified
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modes to external formats).

In addition to reorganizing the code structure, PyOMA2 extends the range of sup-
ported methods. Besides the frequency-domain approaches (FDD, EFDD, FSDD) and
the time-domain Cov-SSI and DD-SSI algorithms already present in PyOMA, PyOMA?2
introduces the Polyreference Least Squares Complex Frequency (pLSCF) / Polymax
method [13]. This offers further flexibility for frequency-domain modal identification,
especially in cases where closely spaced modes or higher damping require more sophis-

ticated curve-fitting strategies.

2.3.4 Role of PyOMA2 in the present thesis

In this thesis, PyOMAZ2 is used as the main Python toolbox for processing the accelera-
tion time histories recorded on the two full-scale, three-dimensional reinforced-concrete
test buildings subjected to shaking table tests). The workflow implemented in PyOMA?2

for this work can be summarized as follows:

1. import of the raw acceleration records from the dense sensor network installed on
both the as-built and retrofitted frames;

2. preprocessing steps consistent with the general data treatment adopted in this
thesis (orientation of sensor axes, time alignment across tests, interpolation, anti-

alias filtering, and optional decimation to the analysis sampling rate);

3. application of FDD to obtain initial estimates of natural frequencies and prelim-

inary mode shapes at each damage state for both structures;

4. application of covariance-driven SSI to refine the modal estimates, construct sta-
bilization diagrams, and extract stable poles across model orders, exploiting the

tools available in PyOMA2 for clustering and MAC-based mode selection;

5. export of the identified modal parameters and mode shapes for comparison with
the finite-element baseline model developed in the Scientific Toolkit for OpenSees
(STKO) and for tracking the evolution of modal properties with increasing seismic

excitation.

Although PyOMA2 also provides implementations of DD-SSI and additional identi-
fication techniques, the main results reported in this thesis are based on the combination
of FDD and Cov-SSI, which has proven robust and computationally efficient for the
large dataset considered. The use of an open-source, Python-based toolbox ensures
that the complete identification process is fully reproducible, facilitating future exten-
sions, such as automated monitoring, real-time damage tracking, or integration with

machine learning models for structural health monitoring.
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2.4 MATLAB OoMA toolbox

In addition to the Python-based workflows, a number of open toolboxes for operational
modal analysis (OMA) have been developed in the MATLAB environment over the last
decade. Among these, the OoMA (Output-Only / Operational Modal Analysis) tool-
box by Otto has become a widely used, freely available resource for output-only modal
identification in civil, mechanical, and aerospace applications [38]. The toolbox is dis-
tributed through the MATLAB Central File Exchange and provides a set of functions
specifically tailored to stochastic subspace identification (SSI) and frequency-domain
decomposition (FDD) of OMA, which can be easily integrated into existing MAT-
LAB workflows. The OoMA toolbox was conceived to offer a compact, script-oriented
implementation of output-only modal analysis algorithms that exposes intermediate
quantities such as block Hankel matrices, stabilization diagrams, and MAC values. In
contrast to large commercial packages, the code emphasizes transparency of the identifi-
cation procedure and the possibility of modifying or extending the routines for research
purposes. The theoretical background for the implemented methods follows standard

references on operational modal analysis and subspace-based system identification [13].

2.4.1 Implemented algorithms and core functions

The core of the OoMA toolbox consists of several identification routines centered on
stochastic subspace identification, complemented by a frequency-domain method for
initial estimation of modal properties [38]. The main algorithms documented in the

toolbox are:

e covariance-driven stochastic subspace identification (SSI-COV), based on auto-

and cross-covariance sequences of the outputs;

e data-driven stochastic subspace identification (SSI-DATA), operating directly on

Hankel matrices built from the measured time histories;

e covariance-driven SSI with reference channels (SSI-COV/REF), for multi-setup

or multi-reference experiments;

e a frequency-domain identification function compatible with the Frequency Do-
main Decomposition (FDD) method, which can also be used together with the
dedicated FDD implementation by Farshchin [39].

Alongside these high-level routines, OoMA provides helper functions to support the
complete OMA workflow, such as:

e construction of block Hankel matrices from multi-channel time series;
e generation and interactive inspection of stabilization diagrams;

e computation of the Modal Assurance Criterion (MAC) and MAC matrices;
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e organization and export of identified modal parameters (frequencies, damping

ratios, and mode shapes).

These tools allow the user to move from raw accelerations to stabilized modal estimates
and provide diagnostics for assessing the quality and physical meaning of the identified
modes.

The toolbox is distributed as a standard MATLAB toolbox file and a compressed
archive that can be downloaded from the File Exchange page [38], where example Live
Scripts are also provided to illustrate typical use cases. The distribution includes a
recommended “Cite As” entry so that users can properly acknowledge the toolbox in

scientific publications.

2.4.2 Use in recent research and applications

Since its release, the MATLAB OoMA toolbox has been adopted in several peer-
reviewed studies as the main implementation of SSI-based OMA or as a reference
method. Use SSI-COV as implemented in OoMA to track accelerated corrosion dam-
age in a steel beam via an ARMA-based damage index [40]. Hakim et al. employ
functions from the OoMA toolbox to construct stabilization diagrams and extract nat-
ural frequencies when studying the effect of corrosion damage on the dynamic proper-
ties of reinforced-concrete buildings [41]. Cardoni et al. refer to OoMA as one of the
OMA tools used when proposing a refined output-only modal identification technique
for structural health monitoring of civil infrastructures [42]. These examples illustrate
that OoMA is not only a teaching or demonstration toolbox, but a practical tool used

in real test campaigns and structural health monitoring research.

2.4.3 Role of OoMA in the present thesis

In the present thesis, the MATLAB OoMA toolbox is used in parallel with the Python-
based PyOMA2 framework (Section 2.3) to perform cross-validation of the identified
modal parameters. Specifically, the acceleration records from the shaking table tests

on the two full-scale reinforced-concrete buildings are processed in OoMA using:

1. covariance-driven SSI (SSI-COV) to construct stabilization diagrams and extract

stable poles across model orders;

2. data-driven SSI (SSI-DATA) and, where necessary, SSI-COV with reference chan-
nels (SSI-COV/REF) to verify the robustness of the identification under alterna-

tive formulations and multi-setup configurations;

3. a frequency-domain FDD-type analysis as an additional check on the natural
frequencies and qualitative mode shapes obtained for selected damage states,
optionally compared to the dedicated FDD toolbox [39].
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The modal estimates obtained with OoMA are compared to those produced by
PyOMAZ2 and to the finite-element baseline model developed in the Scientific Toolkit for
OpenSees (STKO). Consistency between the MATLAB- and Python-based workflows
in terms of natural frequencies, damping ratios, and MAC values for the principal
modes provides an important validation of the overall identification chain and increases

confidence in the trends used to monitor damage evolution and retrofit effectiveness.
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Chapter 3

Case study: full-scale RC
buildings on a shaking table

3.1 Overview of the experimental campaign

The case study considered in this thesis consists of two nominally identical, full-scale,
three-dimensional reinforced-concrete (RC) frame buildings tested on a unidirectional
shaking table at the University “G. d’Annunzio” of Chieti—Pescara. The buildings
are mounted side by side on a common RC foundation slab rigidly fixed to the shaking
table. The superstructures are not connected to each other and can therefore be studied
as two independent specimens subjected to the same base excitation.

One of the buildings is in an as-built configuration (Building 1), whereas the second
building (Building 2) is equipped with a proprietary seismic retrofitting system that
mainly targets an increase in lateral stiffness and a modification of the global dynamic
response. The retrofit details are covered by an ongoing patent process and cannot
be disclosed in this thesis, but the two specimens are otherwise identical in terms of
geometry, mass distribution, and material properties. A schematic view of the geometry
and reinforcement layout of the columns, slabs, and foundation is shown in Fig. 3.1. A

photograph of the two buildings installed on the shaking table is reported in Fig. 3.2.

3.2 Geometry, materials, and structural configuration

Each frame has a rectangular plan of 5.00 m x 2.00 m. The three floor levels are located
at heights of 2.90 m, 5.80 m, and 8.84 m above the base plate, with a clear inter-
storey height of approximately 2.50 m. The vertical load-resisting system consists of
RC columns with square cross-section of 0.20m x 0.20 m, reinforced with four 16 mm
longitudinal bars (longitudinal reinforcement ratio of about 2%) and closed 8 mm
stirrups. Transverse reinforcement is spaced at 100 mm along the column height, with
closer spacing (50 mm) in the plastic hinge regions near the base to improve ductility.

The floor system is a solid RC slab with a total thickness of approximately 0.40 m
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Figure 3.1: Geometric and reinforcement details of the RC columns, slabs and founda-
tion slab (dimensions in cm).

Figure 3.2: Twin full-scale RC buildings mounted on the unidirectional shaking table.
Building 1 (left) is as-built; Building 2 (right) is retrofitted.

and symmetric smeared bending reinforcement using 16 mm bars. The perimeter
brick infills and internal partitions are installed on the upper storeys to reproduce
realistic mass and stiffness contributions of typical building envelopes. Both frames are
cast with concrete class C30/37 and B450C reinforcing steel, consistent with common

European design practice.
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3.2 — Geometry, materials, and structural configuration

The same buildings had already been used in previous shaking table tests investi-
gating a servo-hydraulic active mass damper (AMD) system, as documented in [8]. To
guarantee comparable mass conditions between the current and previous test configura-
tions, the weight of the removed device was compensated by increasing the thickness of
the top slab of both specimens. As a result, the two buildings share the same geometry,
material properties, and mass distribution, with the only substantial difference being

the presence of the retrofit system in one of them.

In addition to the RC structural system, the laboratory setup includes an internal
steel safety frame located in the central bay between the two buildings. The frame is
composed of a vertical steel column, and it is bolted to the foundation slab at the bottom
and to the slab of the third floor at the top, as shown in Fig. 3.3. Its primary function
is to prevent catastrophic collapse of the specimens in case of severe damage during
the high-intensity shaking-table tests, ensuring the safety of the laboratory and the
equipment. Under the moderate vibration levels used for the white-noise tests and the
lower-intensity Irpinia runs, the safety frame is not expected to carry significant load;
however, some interaction with the RC frames can occur at larger lateral displacements,
and its possible influence on the identified dynamic properties will be discussed in the

next chapters.

Figure 3.3: View of the two RC buildings on the shaking table with the internal steel
safety frame in the central bay. The frame is bolted to the foundation slab and to the
slab of the third floor and is used as a safety device during the shaking-table tests.
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3.3 Instrumentation and sensor layout

The structures are instrumented with 40 low-power triaxial sensors connected to Eth-
ernet switches. Each sensing unit is based on the ASDEA MonStr device, a MEMS-
technology unit equipped with a triaxial accelerometer, gyroscope, inclinometer, mag-
netometer and thermometer. The power consumption of each device is extremely low
(about 0.6 W), and the units are certified IP68 with full water and dust protection,
able to operate nominally in the temperature range from —20°C to +70°C.

Of the 40 sensors, two were mounted to measure the input motion from the shaking
table: one attached directly to the table and one attached to the RC foundation slab.
The remaining 38 sensors were distributed evenly between the two specimens, with 19
units on each building, installed on the RC frames as well as on the internal partitions
and infill walls.

For the purposes of the OMA performed in this thesis, only the accelerometers
installed at (or very close to) the RC frame nodes and aligned with the global shaking
direction are used. This choice focuses the analysis on the primary lateral degrees
of freedom and avoids the influence of possible local panel modes in the infills. The
selected channels correspond to three storey levels per building, with one sensor at the
top of each column line, giving six effective sensors per building. It is worth noting
that, due to installation constraints, the sensor at the third floor in each building is not
located exactly at the ideal beam—column node but is positioned a short distance away
along the slab edge. Given the small offset relative to the bay dimensions, the sensor is
nevertheless associated with the corresponding frame node in the modal analysis, and
its influence on the identified global modes is considered negligible.

The adopted OMA sensor layout is depicted in Fig. 3.4, where Building 1 (as-built)
and Building 2 (retrofitted) are shown separately together with the sensor identifiers
used in the dataset.

The coordinates of the twelve sensors used for OMA are reported in Table 3.1. They
are expressed in the global reference system adopted for the experimental setup, with
X along the shaking-table direction, Y in the transverse horizontal direction and Z
vertical.

All sensors record accelerations with a nominal sampling rate of 1 kHz. The acqui-
sition architecture is asynchronous: each unit relies on its own local clock and time-
stamps the measurements using an absolute time reference. This is a typical strategy
in wireless or distributed structural health monitoring systems and requires dedicated

post-processing to reconstruct a common uniform time axis for all channels [10].

3.4 Shaking table input protocol

The buildings were tested on a unidirectional shaking table, excited along the global

X direction. The input history was designed to reproduce an earthquake—sequence

44



3.4 — Shaking table input protocol

Building 1

Building 2
(Retrofitted)

[

ﬂ?ll— - [}
|
Shaking /=
Direction
’ %
- 5.00 m
Y \r/"’i 2.10 m

Figure 3.4: Sensor layout used for OMA in the case study. Only the accelerometers
located at (or very close to) the RC frame nodes in the direction of shaking are consid-
ered in this thesis.

Table 3.1: Coordinates of the accelerometers used for OMA (global reference system,
units in mm).

Sensor X [mm] Y [mm] Z [mm]
MNAT0003 67698 2362 7825
MNAT0037 62698 2362 8840
MNATO0039 62698 2362 2900
MNAT0045 67698 2362 2900
MNAT0061 62698 2362 5800
MNAT0062 67698 2362 5800
MNATO0009 67698 2362 7825
MNAT0014 62698 2362 5800
MNAT0041 62698 2362 2900
MNATO0042 67698 2362 2900
MNATO0060 67698 2362 5800
MNAT0063 62698 2362 8840

-type loading, in which the structures experience a series of increasing seismic demands
interspersed with low-amplitude white-noise excitations suitable for operational modal
analysis.

The seismic component of the protocol is based on a real accelerogram recorded
during the 1980 Irpinia earthquake in southern Italy [9]. Let arp,(¢) denote this reference

acceleration time history. In the tests, scaled versions of ayp(t) were applied to the
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shaking table so as to reach different peak ground acceleration (PGA) levels. The

sequence of Irpinia runs is as follows:

e Irpinia Ladder 25% (Day 1): three consecutive applications of the Irpinia
record, scaled such that the corresponding PGAs are 0.046 g, 0.083 g, and 0.086 g.
The three runs have an individual duration of 24 s, leading to a total ladder
duration of 72 s (24 x 3);

e Irpinia 50% (Day 1): single application of the scaled Irpinia record with PGA
0.202 g and duration 24 s;

e Irpinia 75% (Day 2): single application with PGA 0.376 g and duration 24 s;
e Irpinia 100% (Day 2): single application with PGA 0.440 g and duration 24 s;

e Irpinia 125% (Day 2): single application with PGA 0.616 g and duration 24 s.

Between the Irpinia runs, the buildings were excited with stationary Gaussian white
noise. These white-noise tests were designed to satisfy the typical assumptions of
operational modal analysis broadband input, approximately flat power spectral density
in the frequency band of interest, and relatively low amplitude so as to remain in
the weakly nonlinear or quasi-linear regime. The white-noise motions have standard
deviations of approximately 0.01 g and a nearly constant power spectral density of
about —60 dB in the 0-50 Hz frequency range. For each test, the table controller also
reports an equivalent PGA, which is used here as a compact measure of input intensity.

Table 3.2 summarises the full shaking-table protocol over the two test days, in-
cluding PGAs, standard deviations and durations for both the Irpinia and white-noise
inputs. The white-noise tests numbered 2 and 3 provide the reference “initial-condition”
modal properties, while the subsequent white-noise records (4 to 7) are used to moni-
tor the evolution of modal parameters as damage accumulates due to the progressively

more severe Irpinia excitations.

3.5 Data acquisition and preprocessing

All acceleration time histories are recorded in an HDF5 database and exported for
offline processing. Due to the asynchronous acquisition scheme, the start times and
sampling instants of the different channels do not perfectly coincide, and small clock
drifts occur over the duration of the tests. In addition, the orientation of the sensor axes
differs from unit to unit, depending on how the devices are mounted on the structural
elements.

To obtain a consistent dataset for OMA, the following preprocessing steps are car-

ried out:
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3.5 — Data acquisition and preprocessing

Table 3.2: Excitation input protocol: sequence of scaled Irpinia waveform and white
noise shaking inputs.

Day of Test Shaking table test sequences PGA [g] Dev. Std. [g] Duration [s]
Irpinia Ladder 25% (0.046; 0.083; 0.086) - 24.3 =172
White Noise 2 0.070 0.011 160
27/06/2022 White Noise 3 0.064 0.011 320
Irpinia 50% 0.202 - 24
White Noise 4 0.067 0.009 160
Irpinia 75% 0.376 - 24
White Noise 5 0.076 0.011 160
28,/06/2022 Irpinia 100% 0.440 - 24
White Noise 6 0.068 0.012 160
Irpinia 125% 0.616 - 24
White Noise 7 0.079 0.011 160

1. Coordinate transformation: each triaxial accelerometer record is rotated from
the local sensor axes to the global structural axes using the known installation
orientations, so that all channels are expressed in a common (X,Y, Z) reference

system;

2. Time synchronisation: using the absolute time-stamps and following the strat-
egy proposed for asynchronous sensor networks in [10], all channels are numeri-
cally interpolated onto a common uniformly spaced time grid with effective sam-

pling frequency 1 kHz, aligning the data to the fastest clock;

3. Filtering and decimation: to reduce high-frequency noise and avoid aliasing,
the signals are first mapped to a finer grid, low-pass filtered using an anti-alias
finite impulse response (FIR) filter, and then decimated to the analysis sampling
rate adopted in the subsequent OMA (200 Hz);

4. Selection of stationary windows and channels: for each white-noise test,
the stationary portion of the records is extracted and the subset of channels
corresponding to the frame sensors shown in Fig. 3.4 is retained for modal iden-

tification.

The resulting synchronised and filtered acceleration time histories form the basis for
the frequency-domain and time-domain identification procedures described in section
2.2. In particular, the data are analyzed using the PyOMAZ2 toolbox (Section 2.3) and
the MATLAB OoMA toolbox (Section 2.4) in order to estimate and track the evolution
of modal parameters for both the as-built and the retrofitted buildings under increasing

levels of seismic demand.
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Chapter 4

Experimental data processing
and OMA pipeline

This chapter presents the operational modal analysis (OMA) procedure adopted in this
thesis to identify the dynamic properties of the two full-scale RC buildings described
in Chapter 3. The aim is to obtain robust estimates of natural frequencies, damp-
ing ratios and mode shapes at different damage states, starting from raw acceleration
measurements recorded during white-noise excitations.

The workflow consists of: (i) pre-processing of the acceleration signals (import,
time alignment, resampling, orientation, trimming, detrending and decimation); (ii)
frequency-domain identification based on Frequency Domain Decomposition (FDD,
specifically an EFDD /FSDD-type approach); and ((iii) time-domain identification using
covariance-driven stochastic subspace identification (SSI-COV). The same methodol-
ogy and parameter choices are applied consistently in both software environments used

in this work.

4.1 Data import, time alignment and resampling

Acceleration records are acquired by the MonStr sensor network (Section 3.3) and
stored in HDF5 files, one per test. For each white-noise test and each building, the

following quantities are imported for all relevant sensors:

e the three components of acceleration in the sensor-local reference system, ex-

pressed in raw counts;

e the associated time stamps, expressed in absolute time.

The raw counts are converted into physical units through a constant gain factor,
such that the accelerations are expressed directly in units of gravitational acceleration
g. For each device this yields three time series a,(t;), ay(t;), a(t;) defined on a (slightly

irregular) time grid ¢;.
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Since all MonStr units rely on independent clocks, the start times and sampling in-
stants of different devices do not coincide exactly. To obtain a common time origin, the
absolute time-stamp of the first sample is extracted for each sensor and the minimum
of these values is subtracted from all time vectors. In this way, all channels share a

consistent reference time, although small differences in sampling intervals remain.

To perform modal analysis it is convenient to work with a regular grid. A target

sampling frequency of frarget = 2000 Hz is selected and a common time vector
t* = {07 At, 2At7 cee aTmin}a At = 1/ftargeta

is created, where T, is the minimum record length across all channels. For each sensor
and each component, the original time series is interpolated onto this grid using linear

interpolation,
ar(t*) = interp(t*, t;, ax(t;)), ke {x,y,z}, (4.1)

so that all channels are uniformly sampled on the same time vector.

The interpolation step has two main purposes: (i) to remove the small clock jit-
ters inherent to the asynchronous acquisition of the MonStr units, and (ii) to obtain
a single, uniformly sampled multi-channel record suitable for frequency-domain and

)

time-domain identification. Let tz(.s denote the shifted time stamps of sensor s (after

subtracting the minimum initial time across all channels) and agf) (tgs)) the correspond-
ing samples for component k € {x,y, z}. Because each device runs on its own clock, the
grids {tgs)} are only approximately uniform and differ slightly from sensor to sensor,

even though their mean sampling frequency is close to the nominal value.

A common regular grid ¢* is therefore introduced as above, with fiarges = 2000 Hz
and T, equal to the shortest record length among all channels. For each sensor and
each component, the original samples are projected onto this grid by linear interpola-
tion,

ay) (1) = interp(t; 1,0l (11)),  j=0,...,N* -1,

so that all channels become uniformly sampled on the same time vector t*.

This interpolation-based synchronization follows typical strategies developed for
asynchronous structural-health-monitoring sensor networks, where absolute time stamps
are used to reconstruct the individual sampling instants and then all records are resam-
pled onto a common, finer grid before modal analysis [10, 1]. Provided that the local
clock jitter remains small with respect to At, the induced amplitude and phase errors
are negligible in the frequency band of interest and do not bias the estimated modal

parameters.
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4.2 Channel selection and orientation into the global frame

The accelerometers are mounted on the RC frames, partitions and infill walls of both
buildings, with each MonStr unit having its own local reference axes. The test docu-

mentation provides, for each device:

e whether it is located on the RC frame, on partitions/infill, or used as an input

sensor (table and foundation slab);

e which local axes correspond to the global directions X, Y and Z, including the

sign convention (e.g. +X, -Y, +7Z).

For OMA, only the sensors on the RC frames are retained and only the components

aligned with the global shaking plane are used. In particular:

e sensors on the RC frames are selected by means of a flag in the metadata; this

yields 19 devices per building;

e sensors on partitions and infills are ignored for OMA, as they mainly capture

local panel modes;

e for each frame sensor, two global directions are defined, associated with the global

X (shaking direction) and Y axes, respectively.

The orientation of each sensor is modeled by a simple orthogonal transformation
between the local and global axes. Since the devices are installed with their local axes
approximately aligned with the building axes, this transformation reduces to selecting,
for each sensor, the appropriate local component and applying the correct sign to
obtain the global X and Y responses. The mapping between local and global directions
(e.g. global X corresponding to local —Y for a given device) can differ from sensor to
sensor, and it is fully specified in the test documentation through axis labels and sign
conventions. In this way, two horizontal acceleration components are associated with
each frame sensor, representing the response along the global shaking direction and the
transverse horizontal direction.

The third, nominally vertical, component is retained during the basic pre-processing
but is not used in the subsequent modal identification. Since the shaking table applies
purely horizontal excitation and the buildings are much more flexible in the lateral
directions than in the vertical one, the vertical degrees of freedom are only weakly
excited and weakly coupled with the horizontal modes. Their natural frequencies are
expected to lie at much higher values (associated with local slab and floor vibrations),
outside the frequency band of interest for the global lateral modes. Neglecting the ver-
tical components therefore does not affect the identified lateral natural frequencies and
mode shapes, while it simplifies the data set and improves the numerical conditioning
of the OMA procedures.

51



Experimental data processing and OMA pipeline

Due to installation constraints, the sensor at the third floor of each building is
not located exactly at the theoretical beam—column node but a short distance away
along the slab. Given the relatively small offset compared to the bay dimensions, these
devices are still associated with the corresponding frame nodes in the modal analysis.

The input sensors on the shaking table and foundation slab are processed in the
same way, ensuring that positive acceleration corresponds to motion in the positive
global X direction.

The effect of the orientation step is illustrated in Fig. 4.1, which compares the three
acceleration components of one sensor in the original local axes and after rotation into
the global frame. After rotation, the static gravity component is almost entirely aligned
with the global vertical direction, while the horizontal components oscillate around zero,

confirming the correctness of the adopted convention.
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Figure 4.1: Example of orientation correction for sensor MNATO0003. Top: accelerations
in the sensor-local axes. Bottom: accelerations after rotation into the global frame. The
gravity component is concentrated in the global vertical direction, while the horizontal
components oscillate around zero.

4.3 Selection of stationary windows, detrending and dec-
imation
Although the white-noise tests are nominally stationary, the start and end of each

record are affected by the ramp-up and ramp-down of the shaking-table controller.

To ensure that only stationary segments are used, each resampled record is inspected
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4.3 — Selection of stationary windows, detrending and decimation

and an inner time window is selected. For White Noise 2, used as a reference case in
this thesis, the interval [tstart,tend] = [12 8,172 s| is chosen, leading to a duration of
Toma = 160 s. Similar criteria are applied to the other white-noise tests.

The global acceleration components from all frame sensors are then assembled into

a data matrix

Y(tn) = [a80(t) a8P(t) ... % (t) aBR(t)] (4.2)

where N = 6 is the number of frame sensors per building and t, are the discrete time
instants within the selected window.

Before identification, each column of Y is detrended to remove any constant offset
or linear drift. This is done by subtracting the least-squares linear fit of each time
series, yielding a zero-mean, trend-free dataset.

To reduce computational cost and eliminate unnecessary high-frequency content,
the detrended data are then decimated by an integer factor ¢ = 10. The procedure
consists of a low-pass anti-alias FIR filter followed by downsampling, leading to an

effective sampling frequency

= —— =200 Hz.
. 10 00 Hz

f _ ftarget 2000
s =

The associated Nyquist frequency of 100 Hz is largely sufficient, since all modes of
interest lie below 25 Hz. The same decimation strategy and parameters are used in

both software implementations.

To verify that the preprocessed white-noise records satisfy the standard assumptions
of OMA (approximately stationary, zero-mean, nearly Gaussian response, broadband
excitation), diagnostic “info plots” are inspected for representative channels before and
after the preprocessing steps. Each info plot combines the time history, the normalised
auto-correlation, the probability density function (PDF), the power spectral density
(PSD) and a normal probability (Q-Q) plot, following common practice in OMA data

screening [1].

Figure 4.2 shows an example for one response channel after time alignment and
interpolation but before selection of the stationary window and decimation. The time
history still contains initial and final transients, and the PSD extends beyond the
frequency band of interest. The PDF is sharply peaked due to the presence of spikes,
and slight deviations from a straight line are visible in the normal probability plot.

After extracting the stationary portion of the record, removing the mean, and ap-
plying the anti-alias filtering and decimation to the analysis sampling rate, the cor-
responding info plot in Fig. 4.3 exhibits a much more stationary signal. The PSD
is approximately flat up to about 50 Hz and then decays rapidly, the auto-correlation
function quickly converges to zero, and both the PDF and Q—Q plot indicate a response
that is close to Gaussian. These checks support the validity of the OMA assumptions
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for the processed records used in the subsequent FDD and SSI analyses.
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Figure 4.2: Example “info plot” before selection of the stationary window and deci-
mation. The subplots show the time history, normalized auto-correlation, probability
density function, power spectral density and normal probability plot.
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Figure 4.3: Info plot of the same channel after extraction of the stationary white-noise

window, detrending and decimation to the analysis sampling rate.

The response is

approximately stationary, the PSD is nearly flat in the 0-50 Hz band, and the marginal
distribution is close to Gaussian.
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4.4 Frequency-domain identification: FDD / FSDD

The first step of modal identification is carried out in the frequency domain using
Frequency Domain Decomposition (FDD) [34, 36]. The method operates on the cross-
power spectral density (PSD) matrix S,,(w) of the output vector Y (t), estimated via
Welch’s method from the decimated data. At each discrete circular frequency wy, a

singular value decomposition is performed,
Syy(wk) = U(wk) Z(Wk) UH(wk), (4.3)

where 3(wy) is a diagonal matrix containing the singular values o (wy) > oa(wg) > ..
and U(wy) contains the corresponding singular vectors.

The first singular value o1 (w) is commonly referred to as the complex mode indicator
function (CMIF). Peaks of the CMIF indicate candidate natural frequencies, and the
first singular vector at those frequencies provides estimates of the associated mode
shapes. In this work an enhanced version of FDD, often termed EFDD or FSDD, is used:
around each CMIF peak, a narrow frequency band is selected and an inverse Fourier
transform of the corresponding single-degree-of-freedom spectral bell is computed to
obtain an approximate impulse response function, from which damping ratios can also
be estimated [36].

The CMIF plots obtained for each white-noise test are used primarily to identify
the approximate positions of the main modes and to support the interpretation of the

stabilization diagrams described in the next section.

4.5 Time-domain identification: covariance-driven SSI

The main modal identification is performed in the time domain using covariance-driven
stochastic subspace identification (SSI-COV) [37, 13, 19]. The structural response is

modeled as a discrete-time linear stochastic state-space system,

Xpr1 = AXp + Wy, (4.4)

yi = Cxy + Vi, (4.5)

where xj, is the state vector, yi is the output vector (accelerations), and wy, v are
zero-mean white-noise processes. The matrices A and C contain the system dynamics
and the modal information to be identified. In the covariance-driven formulation, the

information required for identification is encoded in the output covariance matrices,

Ryy(0) =E [yryiye » (4.6)

which are estimated empirically from the measured outputs for a range of time lags

£. These covariance matrices are arranged into a block Toeplitz matrix from which an
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extended observability matrix is identified by means of singular value decomposition.
The system matrix A is then obtained via least-squares regression, and its eigenvalues
and eigenvectors are used to compute modal properties. The method is applied for a
range of model orders up to a maximum order nyax. In this thesis, the number of block
rows is taken as b, = 80, providing a sufficient delay range to capture the dynamics of
interest, and the maximum model order is set to nmax = 2b, = 160. A stabilization
diagram is then built by plotting the identified poles in the frequency—order plane and
assessing their stability as the model order increases. A pole is considered stable when
its natural frequency, damping ratio and mode shape change only slightly between
successive orders and when the mode shapes have a high Modal Assurance Criterion
(MAC) [12]. The stabilization diagram is examined in conjunction with the CMIF
peaks from FDD to select stable poles associated with the physical modes. For each
mode of interest, a representative model order is chosen and the corresponding natural
frequency f,, damping ratio &, and normalized mode shape vector ¢, are extracted.
These modal triplets are then used in the next Chapter to track the evolution of the

dynamic properties with increasing seismic input and damage.

4.6 Mode shape visualization

To interpret the identified modes, the modal vectors are visualized on the three-
dimensional geometry of the buildings. Let x? denote the coordinates of the j-th sensor
location in the undeformed configuration and ¢,, the complex mode shape associated

with mode n. A deformed configuration is obtained as
X?ef = X(; +a §R{¢n,j}7 (47)

where a is a real scale factor chosen to improve visual clarity and ¢,, ; is the sub-vector
of the modal shape associated with sensor j. The deformed frame is plotted together
with the undeformed geometry, allowing for a direct visualization of global bending
and torsional modes as well as the relative participation of the as-built and retrofitted
buildings.

The same identification and visualization procedure is applied consistently to all
white-noise tests considered in this thesis, providing a coherent basis for the comparison
of modal properties across damage states and between the as-built and retrofitted

specimens.
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Chapter 5

Results of operational modal

analysis

This chapter presents the results of the operational modal analysis (OMA) applied to
the two full-scale RC buildings introduced in Chapter 3 and processed according to
the methodology described in Chapter 4. The objectives are: (i) to illustrate how the
global modes are identified from the white-noise (WN) tests; (ii) to track the evolution
of natural frequencies and damping ratios with increasing seismic demand; and (iii) to
compare the dynamic behavior of the as-built Building 1 and the retrofitted Building 2,
as well as the experimental results with the STKO reference model.

Unless otherwise stated, all results refer to output-only identification from the white-
noise excitations interleaved with the scaled Irpinia records, as summarized in Table 3.2.
Modal parameters are estimated using both FDD/FSDD and SSI-COV, and a consis-

tent set of modes is selected according to the stabilization criteria of Section 4.5.

5.1 Analyzed tests and twin-building configuration

The analysis considers the sequence of white-noise records WN2-WN7 recorded on
27-28/06/2022. WN2 and WN3 are low-amplitude signals acquired before any severe
Irpinia excitation and are therefore representative of the initial, almost-undamaged
state. WN4-WN7 are recorded after progressively stronger Irpinia runs (50%, 75%,
100% and 125% scaling), and are used to monitor the evolution of modal parameters
as damage accumulates. For each white-noise record, OMA is carried out separately
for Building 1 and Building 2.

The two test structures were designed as nominally twin RC frames. To make a fair
comparison of their seismic performance, the additional mass of the energy-dissipation
system was compensated by casting an extra 14 cm RC slab at the top floor of the other
building, so that the total mass and gravity loads of the two specimens are practically
the same. Therefore, differences in the identified modal properties between Building 1

(as-built) and Building 2 (retrofitted) can be mainly attributed to the presence of the
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retrofit system and to the different damage evolution, rather than to mass asymmetries.

5.2 Identification of global modes

To illustrate the identification procedure, this section focuses on the white-noise record
WN2, taken as reference state for both buildings. The figures reported here refer to
Building 1; Building 2 shows the same pattern of modal peaks, shifted to slightly higher

frequencies, and is therefore not reproduced for brevity.

5.2.1 Singular values and stabilization diagram

Figure 5.1 shows the singular values of the output PSD matrix obtained from FD-
D/FSDD for Building 1 under WN2. The first singular value (CMIF) exhibits three
dominant peaks in the low-frequency range, corresponding to the first global lateral
modes of the structure. Higher-frequency peaks are associated with local floor and

panel deformations and are not further analyzed here.
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Figure 5.1: Building 1, White Noise 2: singular values of the output PSD matrix
(FDD/FSDD). Peaks of the first singular value indicate candidate natural frequencies.

The corresponding SSI-COV stabilization diagram is reported in Fig. 5.2. Each
marker represents an identified pole for a given model order, and the blue line shows
again the first singular value from FDD/FSDD. Vertical alignments of stable poles (in
terms of frequency, damping and mode shape) form clear clusters around the CMIF
peaks. This combined inspection of singular values and stabilization diagrams follows
standard OMA practice for civil structures [1, 13] and provides a first, qualitative

identification of the natural frequencies.
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Figure 5.2: Building 1, White Noise 2: SSI-COV stabilization diagram with the first
singular value (blue line). Vertical clusters of stable poles form in correspondence of
the main CMIF peaks.

5.2.2 Frequency—damping clustering and reduced stabilization

A complementary view is provided by the frequency—damping plot in Fig. 5.3. Stable
poles are highlighted in green, while unstable ones are shown in red. Stable poles aggre-
gate into a limited number of frequency bands, with damping ratios typically between
about 1% and 6%, which is consistent with the ranges reported in the literature for RC
buildings under low-to-moderate vibration levels [1, 13]. Outliers with unrealistically

high or low damping are discarded.

Finally, Fig. 5.4 shows a reduced stabilization diagram in which poles have been
pre-filtered and color-coded according to automatic stability criteria (e.g. thresholds
on relative changes of frequency, damping and MAC between successive model orders).
This allows a more compact visualization of the frequency bands where stable poles
persist over a wide range of model orders, and is particularly useful when dealing with

a large number of poles, as in the present case [1].

By jointly inspecting the singular values (Fig. 5.1), the full and reduced stabiliza-
tion diagrams (Figs. 5.2 and 5.4) and the frequency—damping clustering (Fig. 5.3), the
natural frequencies retained for the subsequent analysis are selected as those: (i) corre-
sponding to clear CMIF peaks; (ii) associated with vertical families of stable poles across
several model orders; and (iii) lying in damping ranges compatible with RC building
behavior. For Building 1, three global lateral modes are retained; for Building 2, four

global modes are identified in the frequency range of interest.

59



Results of operational modal analysis

Frequency-damping clustering
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Figure 5.3: Building 1, White Noise 2: frequency—damping clustering of SSI-COV
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Stabilization Diagram - shift: 30

120

R T R RN
" o TP ICR S & 1 Ex
| ool piEiiei BT g Beo 80
E ® 0 o e Bul " . T
oy B el g W
RS L i AR M I
80 . ig -% =a'-' :='-:_|}.-=?.§- .:;' .f 5 -
OO SR BT O PR :
E 60 ?-51 ;f lg'g :s-- L
g ?"Eggs_?é.j;,.&f- :
e 5 » 2 2% o. © °®
40 ?: "E-%g, 'E o * g Label
= - L} ® .
SR L B D
20 A . o~ 2.0
E L] 4‘." 3.0
E 5 s e 40
T s S o 0 w50

Frequency [Hz]

Figure 5.4: Building 1, White Noise 2: reduced stabilization diagram obtained from
SSI-COV after applying the automatic stability criteria. The color label (0—4) denotes
the stability class, with higher labels corresponding to poles that are stable in frequency,
damping and mode shape.
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5.3 Modal parameters from all white-noise tests

The modal parameters extracted according to the above criteria are summarized, for
all white-noise tests, in Tables 5.1-5.2. For Building 1, the table also reports the
relative frequency variation with respect to the STKO reference model, which represents
the undamaged numerical baseline. The values listed are obtained from the Python
implementation of the EFDD/FSDD and SSI-COV procedures described in Chapter 4;
the MATLAB implementation is used as an independent check, but only one set of

numerical values is reported here.

5.3.1 Building 1: frequency reduction and comparison with STKO

Table 5.1: OMA experimental results and comparison with the STKO reference model
for Building 1. For each mode and white-noise test, f,, denotes the experimental natural
frequency, &, the equivalent viscous damping ratio, and Af, the relative frequency
difference with respect to STKO, expressed in percent.

White Noise 2 White Noise 3 White Noise 4
STKO f,, [Hz]
fo Hz]  Afo (%] & (%] | fo [Hz]  Afy [%] & (%] | fn [Hz]  Afy (%] & [%)]
1.83 1.91 4.57 5.40 1.91 4.67 3.43 1.78 -2.57 3.55
5.84 6.63 13.59 1.21 6.68 14.45 1.10 6.46 10.66 2.11
8.31 8.98 8.02 5.26 8.96 7.86 5.01 8.53 2.59 4.16
STKO f,, [H7] White Noise 5 White Noise 6 White Noise 7
fo Hz]  Afy (%] & (%] | fo Hz]  Afy %] & (%] | fo Hz]  Afy (%] & [%)]
1.83 1.63 -10.91 4.77 1.54 -15.57 2.93 1.51 -17.22 3.65
5.84 5.94 1.81 3.09 5.38 -7.74 4.16 5.1 -13.03 4.14
8.31 7.89 -5.02 3.32 7.15 -13.91 5.66 6.19 -25.51 3.79

At low excitation levels (WN2-WN3), the experimental frequencies are close to

the STKO values, with |Af,| typically below about 15%. This indicates that the FE
model provides a reasonable representation of the elastic stiffness of the as-built frame
in the initial state. The differences are compatible with the modeling simplifications
and uncertainties in material properties usually encountered in full-scale tests [1, 3].

As the excitation level increases (WN4-WNT), all three modes show a clear, mono-
tonic reduction in frequency, with Af, becoming increasingly negative. The largest
drops occur after the 100% and 125% Irpinia runs, signaling significant stiffness degra-
dation in the as-built frame. The magnitude of the frequency reduction is in line
with values reported in the literature for RC buildings subjected to moderate-to-severe
damage [1, 13].

Damping ratios generally increase along the test sequence, especially for Modes 2
and 3, reflecting the growth of hysteretic dissipation in the cracked RC members and
joints. Estimated damping values remain within the broad interval typically observed

in experimental databases for RC buildings [13].
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5.3.2 Building 2: retrofitted configuration

For the retrofitted Building 2, no separate STKO model is considered, and the focus
is on the experimental evolution of modal properties. The results are summarized in
Table 5.2, which reports the identified natural frequencies and damping ratios for the

first four global modes across all white-noise tests.

Table 5.2: OMA experimental results for Building 2. For each white-noise test, the
table lists the identified natural frequencies f, and equivalent viscous damping ratios
&, of the first four global modes.

White Noise 2 White Noise 3 White Noise 4
Mode f, [Hz] &, [%) Mode f, [Hz] &, [%] Mode f, [Hz] &, [%]
1 2.37 2.41 1 2.37 1.36 1 2.19 2.21
2 - - 2 - - 2 4.33 5.47
3 7.62 2.38 3 7.63 1.66 3 6.94 3.25
4 11.81 5.51 4 - - 4 10.53 3.36
White Noise 5 White Noise 6 White Noise 7
Mode f, [Hz] &, [%] Mode f, [Hz] &, [%] Mode f, [Hz] &, [%]
1 1.98 1.83 1 1.74 2.61 1 1.63 2.44
2 3.80 4.41 2 3.43 5.03 2 3.15 5.00
3 6.49 6.56 3 5.85 5.37 3 5.38 3.65
4 9.34 4.26 4 8.17 4.53 4 7.52 3.93

Similar to Building 1, the frequencies of Building 2 decrease with increasing exci-
tation, indicating stiffness degradation. However, the relative reductions are smaller,
especially for the first bending mode, and the frequencies remain consistently higher
than those of the as-built building for corresponding damage states. This behavior
confirms that the retrofit system effectively increases and preserves the lateral stiffness
under strong shaking.

Damping ratios of Building 2 show a moderate increase with damage, with some-
what higher values for the higher modes in the most severe tests. The overall levels
are comparable with those of Building 1, suggesting that the retrofit primarily affects

stiffness rather than introducing significant additional damping.

5.4 Consistency between Python and MATLAB imple-

mentations

As described in Chapter 4, the OMA procedure was implemented in two independent
environments: a Python-based pipeline relying on PyOMA2 and a MATLAB-based
pipeline using the original PyOMA /SSI functions. Both follow the same sequence of
pre-processing, FDD /FSDD and SSI-COV identification.

For a representative subset of tests (including WN2, WN4 and WN5), the modal

parameters obtained from the two implementations were compared. The identified

62



5.5 — Experimental mode shapes and comparison with the STKO model

natural frequencies and damping ratios for the first global modes differ by only a few
percent, and the corresponding mode shapes are visually very similar. This cross-check
provides additional confidence in the robustness of the identification: in the remainder
of this chapter, numerical values are reported from the Python implementation, while

the MATLAB results are mainly used for mode-shape animations and MAC analysis.

5.5 Experimental mode shapes and comparison with the
STKO model

5.5.1 White noise 2 mode shapes for Building 1

Figure 5.5 shows the first three experimental mode shapes of Building 1 identified from
WN2 using the MATLAB-based SSI-COV analysis. The deformations are plotted on
a simplified wire-frame representation of the structure, with the displacements scaled
for clarity.

The first experimental mode at about 1.9 Hz is characterized by a global sway
of the twin-frame system, but the predominant motion is oriented opposite to the
nominal excitation direction. This apparently “reversed” behavior is consistent with
the adopted sign convention and with the presence of the internal steel safety frame,
which is bolted to the intermediate and top slabs and provides an additional, stiffer load
path on the side opposite to the shaking direction. As a result, the coupled deformation
of the RC frame and the steel frame leads to a stiffer response of the intermediate floor
and a net lateral sway that appears oriented against the input direction. The second
mode, around 6-7 Hz, shows a predominantly bending and torsional deformation about
the vertical axis, while the third mode is a higher-order bending mode in the global
X (shaking) direction, with increased deformation of the upper storeys. Despite the
limited number of sensors per floor, these figures clearly confirm that WN2 excites the

global lateral response of the twin-frame system.

5.5.2 Comparison with STKO reference modes

The STKO FEM reference model for Building 1 provides the undamaged numerical
baseline. Its first modes, reported in Fig. 5.6, consist of a fundamental bending mode in
the shaking direction, followed by a torsional mode and higher-order bending/torsional
combinations.

A qualitative comparison between Figs. 5.5 and 5.6 shows that the experimental
Modes 2 and 3 are in good agreement with the numerical torsional-bending and higher-
order bending modes, in terms of both deformation pattern and relative storey par-
ticipation. The fundamental experimental mode, however, deviates more significantly
from the idealized first bending shape of the STKO model.

This discrepancy is attributed mainly to the presence of the internal steel safety
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Figure 5.5: Building 1, White Noise 2: experimental mode shapes identified with SSI-
COV. The undeformed geometry is shown by dashed grey lines, while the colored slabs
represent the deformed floors (displacements scaled for visualization).

frame used in the laboratory, which is bolted to the foundation slab and to the inter-
mediate and top slabs (see chapter 3). The safety frame provides an additional load
path and increases the lateral stiffness locally, especially at the mid-height of the spec-
imen, but it is not explicitly represented in the STKO model. As a result, the first
experimental mode from WN2 corresponds to a coupled deformation of the RC frame
and the steel safety frame, whereas the STKO mode describes the bare RC frame only.
Furthermore, the experimental mode shapes are reconstructed from a limited set of ac-
celerometers, so they represent a spatially filtered approximation of the true continuous

deformation.
A qualitative comparison between Figs. 5.5 and 5.6 shows that the experimental
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Figure 5.6: STKO FEM reference model for Building 1: visualization of the first four
global mode shapes.

Table 5.3: STKO FEM reference modal analysis results for Building 1: natural fre-
quencies and mass participation ratios.

Mass participation [%] Rot. mass participation [%]

Mode f, [Hz] Mode description

Mass-X Mass-Y Mass-Z Rot. X Rot. Y Rot. Z

1 1.83 0.00 83.73 0.00 14.83 0.00 0.00 1%t bending, Y direction

2 5.43 0.00 0.00 0.00 0.00 0.00 85.59 15t torsion

3 5.84 0.00 11.33 0.00 60.30 0.00 0.00 2" torsion + bending Y

4 7.68 86.50 0.00 0.00 0.00 10.66 0.00 1%t bending, X direction

5 8.31 0.00 1.65 0.00 6.02 0.00 0.00 Local 1% storey in phase

6 8.35 0.00 0.00 0.00 0.000015 0.00 0.00 Local 1% storey in counter-phase
Total 86.5 96.7 0.0 81.1 10.7 85.6

Modes 2 and 3 are in good agreement with the numerical torsional-bending and higher-
order bending modes, in terms of both deformation pattern and relative storey par-
ticipation. The fundamental experimental mode, however, deviates more significantly
from the idealized first bending shape of the STKO model.

This discrepancy is attributed mainly to the presence of the internal steel safety
frame used in the laboratory, which is bolted to the foundation slab and to the in-
termediate and top slabs (see Chapter 3). The safety frame provides an additional
load path and increases the lateral stiffness locally, especially at the mid-height of the
specimen, but it is not explicitly represented in the STKO model. As a result, the first
experimental mode from WN2 corresponds to a coupled deformation of the RC frame
and the steel safety frame, whereas the STKO mode describes the bare RC frame only.

In addition, the numerical model idealizes the slabs as perfectly rigid diaphragms
and neglects several secondary elements (e.g. non-structural components, connection

details, added mass from cables and sensors), while the real structure exhibits finite
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in-plane slab flexibility and local nonlinearities. These simplifications may lead to a
different distribution of stiffness and mass and favor a stronger participation of the Y
direction in the numerical first mode. Small differences in boundary conditions between
the model and the test set-up (e.g. foundation restraint, interaction with the shaking
table) can also influence the orientation and relative participation of the lowest modes.

Furthermore, the experimental mode shapes are reconstructed from a limited set
of accelerometers, so they represent a spatially filtered approximation of the true con-
tinuous deformation. This spatial under-sampling, combined with measurement noise
and the numerical noise inherent in the OMA algorithms, can mask local deformation
patterns and slightly bias the apparent orientation of the experimental mode compared
with the finely discretised FEM mode shape.

Despite these differences, the WN2 mode shapes confirm that the first three exper-
imental modes are global lateral modes of the structure, and the frequencies reported
in Table 5.1 remain reasonably close to the STKO predictions for the initial state.
The more refined comparison of mode shapes, including quantitative MAC values, is
therefore concentrated on those white-noise tests that provide the cleanest and most

repeatable modal estimates, namely WN4 and WN35.

5.6 MAC-based assessment of mode separation and re-

peatability

5.6.1 Self~-MAC: separation of experimental modes

To assess the degree of separation between the identified modes within a given test,
the Modal Assurance Criterion (MAC) is computed between all pairs of normalized
mode-shape vectors,

i’
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A value of MAC = 1.0 corresponds to a 100% match between two mode shapes (they are

MAC(%’, ¢j) =

identical up to a scale factor), whereas MAC = 0.9 means a 90% correlation, typically
considered an excellent match in OMA practice. Values around 0.0 indicate that the
corresponding mode shapes are essentially orthogonal and therefore well separated.

Figures 5.7 shows the self-MAC matrices for Building 1 for White Noise tests WN2
to WN7 (MATLAB-based SSI-COV identification). Each matrix reports the MAC
between the first three global modes of the same test.

For the lower-to-moderate excitation levels (WN2-WN5), the diagonal entries are
equal to 1.00 and the off-diagonal terms remain very small (typically below 0.1). This
corresponds to 100% self-correlation on the diagonal and less than 10% correlation
between different modes, indicating that the three global modes are very well separated
and that there is almost no mixing between their modal vectors.

As the excitation level increases (WNG6) a slight degradation of the separation can
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Figure 5.7: Building 1: self-MAC matrices of the identified mode shapes for White
Noise tests WN2-WN7 (MATLAB implementation).
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be observed that the diagonal MAC values remain equal to 1.00, but some off-diagonal
terms grow to around 0.10, i.e. about 10% correlation between distinct modes. This
suggests that the modes are still clearly distinguishable, but the increased response
amplitude starts to enhance coupling effects and sensitivity to non-ideal boundary
conditions.

For the highest excitation level (WNT), the loss of separation becomes more evi-
dent. While the diagonal elements are still equal to 1.00 (100% self-correlation), some
off-diagonal entries reach values around 0.23-0.39, corresponding to 23-39% correlation
between different modes. In other words, the modes are no longer perfectly orthogo-
nal: their shapes are partially mixed, which is consistent with the structure having
undergone significant cracking and stiffness degradation.

Overall, the sequence from WN2 to WN7 shows a gradual evolution: at low exci-
tation the modes are almost perfectly separated, whereas at the highest excitation the
separation is clearly less perfect. This behaviour supports the interpretation that the
strongest excitations have modified the dynamic properties of the structure, and that
the changes observed in the modal vectors at WN7 are a genuine signature of damage

rather than purely an identification artefact.

5.6.2 Inter-test MAC: repeatability across excitation levels

To quantify the repeatability of the identified modal vectors across different white-
noise levels, an inter-test MAC is computed between modes extracted from pairs of
tests. Since WN4 and WNb5 provide the cleanest stabilization diagrams and self-MAC
matrices, they are used as the main reference for this comparison.

Figure 5.8 reports the MAC values between the mode shapes of Building 1 identified
from WN4 and WN5 for the first three global modes. Values remain high (typically
above about 0.9) for all three modes, indicating that the shapes are very similar despite
the different excitation levels and damage states.

The cross-MAC matrix in Figure 5.8 shows very high diagonal values (0.99, 0.98
and 0.91) and negligible off-diagonal terms. A MAC value of 0.9 corresponds to a 90%
correlation between two mode shapes and is typically regarded as an excellent match in
operational modal analysis. Therefore, the diagonal values confirm that the three global
modes are consistently identified between White Noise 4 and White Noise 5, while the
near-zero off-diagonal entries indicate good separation between different modes.

An analogous cross-MAC matrix can be constructed for Building 2, again show-
ing high inter-test MAC values for the first few modes. These results confirm that,
within the range of moderate excitations represented by WN4 and WN5, the global
mode shapes are robust and repeatable, and that the observed trends in frequency and
damping in Tables 5.1 and 5.2 are not an artefact of inconsistent identification.

For combinations involving the lowest (WN2) and highest (WNT7) excitation levels,
the inter-test MAC values decrease, especially for the higher modes. This behavior
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Figure 5.8: Cross-MAC matrix between mode shapes identified from White Noise 4
and White Noise 5, MATLAB implementation.

is consistent with physical expectations which at very low amplitudes, measurement
noise and boundary-condition effects play a larger role, while at very high amplitudes
the progressive cracking and stiffness degradation lead to genuine changes in the modal
vectors. The high MAC values observed between WN4 and WN5 therefore represent
a favorable “window” where the structure is sufficiently excited but still behaves close
to linear, and are used as the main reference for the subsequent qualitative discussion

of mode shapes and retrofit effectiveness.
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Chapter 6

Discussion, conclusions and

future developments

This chapter synthesizes the main findings of the work, answers the research questions
posed in Chapter 1 and discusses the implications for operational modal analysis (OMA)
and structural health monitoring (SHM) of reinforced concrete (RC) buildings. The
results are interpreted in the broader context of OMA-based seismic protection, with
particular reference to the framework proposed by Rainieri for combining OMA finite
element (FE) modelling and SHM in earthquake-prone regions [1, 13].

The chapter is organised as follows. Section 6.1 summarises the answers to the re-
search questions (RQ1-RQ5) and evaluates the extent to which the objectives (O1-O5)
have been met. Section 6.2 positions the case study within the existing OMA /SHM
landscape, including links to automated OMA (AOMA). Section 6.3 formulates prac-
tical recommendations for OMA-based damage tracking in building-scale applications.
Section 6.4 discusses limitations of the present work. Section 6.5 outlines directions for

future research.

6.1 Synthesis of findings with respect to the research ques-

tions

6.1.1 RQ1 — Evolution of natural frequencies and damping with seis-
mic demand and damage

RQ1 asked how the natural frequencies and damping ratios of the two buildings evolve
under increasing seismic demand and accumulated damage, and to what extent these
trends are robust indicators of stiffness degradation.

The OMA results from the white-noise tests WN2-WN7 show a clear and physically
consistent evolution of the modal properties. For Building 1 (as-built configuration), the
first three global modes identified at low excitation (WN2-WN3) have frequencies close

to the STKO reference values, with deviations mostly within about 5-15%, indicating a
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reasonable undamaged baseline. As the Irpinia 1980 record [9] is applied at increasing
scaling levels, all three modes undergo a monotonic reduction in frequency. The first
bending mode decreases from approximately 1.9 Hz in the initial state to about 1.5 Hz
at WN7, corresponding to a relative reduction greater than 15% with respect to the
numerical baseline. Higher modes show comparable or even larger relative drops. These
trends are consistent with cumulative stiffness loss in the cracked RC members and
connections and fall within the broad ranges reported in the OMA literature for RC
buildings subjected to moderate-to-severe damage [3, 6, 7, 8].

The damping ratios of Building 1 generally increase along the test sequence, par-
ticularly for the second and third modes, reflecting growing hysteretic dissipation as
damage accrues. Nevertheless, the identified damping values remain within the wide
interval (roughly 1-7%) commonly observed in experimental databases for RC build-
ings and other civil structures [12, 37, 35, 29]. This confirms the well-known difficulty
of using damping as a precise quantitative damage proxy.

For Building 2 (retrofitted configuration), the same qualitative pattern is observed:
frequencies decrease with increasing excitation and damage, and damping ratios tend
to grow slightly. However, the frequency reductions are smaller than in Building 1, and
at matched damage states the frequencies remain consistently higher than those of the
as-built building. This confirms that natural-frequency tracking is a robust indicator of
stiffness degradation and retrofit effectiveness, whereas damping should be used more
cautiously, primarily as a supporting measure rather than a primary damage index.
Overall, RQ1 can be answered positively: OMA-based frequency trends, evaluated
over a carefully designed test sequence, provide a clear and interpretable picture of

stiffness loss in full-scale RC buildings.

6.1.2 RQ2 — Effectiveness of the retrofit system in terms of global
stiffness and its degradation

RQ2 focused on the comparative performance of the as-built Building 1 and the retrofitted
Building 2, asking whether the retrofit system increases global lateral stiffness and slows
down stiffness degradation under strong shaking.

At the initial state (WN2-WN3), the first bending frequency of Building 2 is around
2.37 Hz, compared to about 1.91 Hz for Building 1, i.e. roughly 20-25% higher. This
difference cannot be attributed to mass asymmetries, which were compensated by the
additional top slab on the as-built frame; it therefore reflects a genuine increase in
lateral stiffness due to the retrofit system. As the excitations become more severe,
Building 2 also exhibits frequency reductions, signalling damage and stiffness loss, but
the relative drops are smaller than for Building 1 and the absolute frequencies remain
higher at all observed damage states.

In terms of damping, Building 2 shows modest increases with damage, especially

for higher modes in the most severe tests. The overall damping levels are comparable
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to those of Building 1, suggesting that the retrofit primarily acts on stiffness rather
than introducing large additional energy dissipation. This is consistent with the design
philosophy of many stiffness-increasing retrofit systems and with previous OMA-based
retrofit assessments in RC buildings [3, 13]. Taken together, these observations support
a positive answer to RQ2: the retrofit system increases and better preserves the global
lateral stiffness of the frame under strong shaking, as evidenced by the higher and more

stable natural frequencies across the test sequence.

6.1.3 RQ3 — Consistency between Python and MATLAB implemen-

tations

RQ3 investigated whether two independent OMA toolchains, a Python-based pipeline
using PyOMA2 and related tools [11, 33] and a MATLAB-based pipeline using the
OoMA and FDD toolboxes [38, 39], yield consistent modal parameters when applied
to the same dataset and identification settings.

For representative tests (e.g. WN2, WN4, WN5), the natural frequencies and damp-
ing ratios identified with the Python and MATLAB implementations differ by only a few
percent. The small numerical discrepancies are within the typical variability expected
from different numerical implementations, windowing choices and post-processing de-
tails [25, 26, 30].

This cross-validation directly addresses O3 and gives confidence that the main con-
clusions of the thesis do not depend on a particular software environment. It also
reinforces the view, emphasised by Rainieri and co-workers, that independent checks
and consistent parameter settings are important for assessing the robustness of OMA
results in SHM applications [1, 2, 13].

6.1.4 RQ4 — Ability of a reduced FE model to support interpretation
of modes and stiffness changes

RQ4 asked how well a simplified FE model (STKO/OpenSees) can explain the observed
modal characteristics and their evolution, and how modes should be paired when their
order changes or when experimental modes are influenced by auxiliary elements such
as the safety frame.

The comparison between STKO and experimental results shows that at low excita-
tion levels the FE frequencies provide a reasonable baseline: deviations of the order of
5-15% are consistent with common modeling uncertainties in full-scale tests. Modes 2
and 3 of Building 1 at WN2 match well the numerical torsional and higher-order bend-
ing modes in terms of deformation pattern and storey participation, while the first
mode exhibits a more pronounced discrepancy, mainly due to the unmodeled steel
safety frame and idealized boundary conditions.

Despite these limitations, the FE model remains a valuable interpretative tool.

It helps classify experimental modes (bending vs. torsion, global vs. local) and link
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measured frequency reductions to approximate stiffness loss in the main lateral system.
This role, using OMA and FE model updating in a complementary way, with the
methodology applied to real structures. In this thesis, mode pairing is carried out using
MAC-based criteria and qualitative inspection of mode shapes, allowing consistent
tracking of mode families even when the order shifts with damage. RQ4 is therefore
answered in a qualified way which a reduced FE model, suitably interpreted, is sufficient
to support mode classification and stiffness trends, but care is required in the presence

of auxiliary structural elements and modeling simplifications.

6.1.5 RQ5 — Influence of the internal steel safety frame and implica-
tions for SHM

RQ5 examined the influence of the internal steel safety frame on the identified modal
properties and asked how this bias can be detected, quantified and accounted for when
drawing SHM conclusions.

The analyses clearly show that the safety frame affects both mode shapes and,
to a lesser extent, baseline frequencies. The first experimental mode at WN2, for
example, exhibits a global sway with an apparent lateral deformation opposite to the
nominal shaking direction, consistent with the presence of a stiff load path provided
by the steel frame on the opposite side. The safety frame is not modelled in STKO,
which contributes to the mismatch between the numerical first bending mode and the
experimental fundamental mode.

Self-MAC and inter-test MAC analyses provide a quantitative way to assess the
separation and repeatability of mode shapes across tests. For intermediate excitation
levels (WN4-WN5), MAC values remain high (around = 0.9) for the first three global
modes, indicating well-separated and repeatable mode shapes, whereas at the lowest
and highest excitation levels the MAC values degrade, reflecting larger sensitivity to
boundary conditions and damage-induced nonlinearities [12, 37, 29].

From an SHM standpoint, the safety frame acts as a systematic bias that primarily
affects mode shapes and boundary conditions, while the inter-test frequency trends be-
tween white-noise windows remain relatively robust. This justifies the decision to base
the primary damage indicators on global frequency changes and cross-method consis-
tency, treating shapes mainly as qualitative support. The findings provide a concrete
answer to RQb and highlight the importance of explicitly documenting and, where
possible, modelling auxiliary elements in laboratory campaigns and real structures [1,
13].

6.1.6 Summary with respect to the objectives O1-0O5

The above findings can be summarised in terms of the specific objectives:

e O1 (data pipeline and quality checks) has been met through the develop-

ment of a reproducible workflow for handling dense MEMS sensor data, including

74



6.2 — Positioning within the OMA and SHM landscape

orientation to the global frame, time synchronisation, anti-alias filtering, resam-
pling and stationarity checks, following best practices in digital signal processing
and OMA [15, 13, 12].

e O2 (estimation of frequencies and damping via FDD and covariance-
driven SSI) is achieved by applying these methods consistently across WN2-
WN7 and reporting trends via stable clusters and clustering criteria. The use
of FDD/FSDD [34, 36] and covariance-driven SSI-COV [21, 22, 19, 27] is in line
with the state of the art.

e O3 (toolchain comparison) is satisfied by the close agreement between Py-
OMA2 and MATLAB/OoMA results, thereby validating the open-source Python
pipeline [33, 11, 38, 39].

e O4 (reduced FE baseline and M AC-based mode pairing) is fulfilled by
using the STKO model to interpret mode types and mode participation and by
pairing experimental and numerical modes through qualitative patterns and MAC

information, consistent with model-based OMA studies on real structures [13, 3].

e 05 (quantifying and controlling the influence of the steel safety frame)
is addressed by systematically discussing its role in shape distortions and boundary-

condition effects, and by focusing primary conclusions on robust frequency trends.

6.2 Positioning within the OMA and SHM landscape

Rainieri’s work [1, 2, 13] systematically demonstrates the reliability and versatility
of OMA techniques across a range of structures and emphasises their role in seismic
protection when combined with FE modelling and SHM systems. The present work
can be viewed as a focused contribution within this broader framework, centred on a
particularly well-instrumented, full-scale RC twin-building test under controlled seismic
and white-noise excitations.

Several elements directly mirror the methodology and philosophy advocated in [1,
13]:

e Integration of OMA and FE models. In both this thesis and [1, 13, 3],
OMA is used not only to identify modal parameters but also to support FE model
assessment and interpretation. While [1] exploits OMA for both test design and
model refinement of complex existing structures, this thesis uses a reduced STKO
model as an interpretative baseline for stiffness and mode-type classification in a

controlled laboratory setting.

¢ Emphasis on data quality and processing choices. The importance of
record length, noise levels, hardware selection and processing parameters (e.g.

block rows in SSI) for obtaining reliable estimates, particularly of damping, is
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highlighted in [13, 12, 30, 28]. The present work explicitly designs the white-
noise windows, applies careful preprocessing and fixes SSI parameters to ensure

stability and comparability of the results.

e Towards automated OMA and SHM. Fully automated identification and
tracking algorithms have been proposed and validated in the recent AOMA lit-
erature [4, 32, 31, 42]. In a complementary way, this thesis applies a structured,
script-based pipeline in PyOMA2 to a large dataset, moves towards reproducible
batch processing, and employs automatic stability criteria and clustering strate-

gies that are compatible with automated OMA concepts.

From this perspective, the twin-building campaign and its analysis provide a high-
quality dataset and a transparent pipeline that could serve as a benchmark or testbed
for future automated OMA procedures, especially in the context of RC frame structures

and retrofit evaluation.

6.3 Practical recommendations for OMA-based seismic

damage tracking

Based on the case study and insights from the OMA /SHM literature, several practical
recommendations can be formulated for applying OMA to seismic damage tracking in
RC buildings:

1. Design the excitation protocol to bracket damage states. Interleaving
broadband white-noise windows with scaled earthquake records, as done in the
Irpinia—WN sequence, allows modal properties to be sampled at multiple damage
states while approximately satisfying the stochastic-input assumptions of OMA
[20, 13].

2. Invest in data quality and preprocessing. Dense MEMS sensor networks
require careful attention to sensor orientation, time synchronisation and anti-
alias filtering. Record length and signal-to-noise ratio are critical, particularly for

damping estimation [10, 15, 12, 28].

3. Combine frequency- and time-domain methods. Using FDD/FSDD for
initial frequency and mode-shape estimates and covariance-driven SSI for refined
modal parameters and stabilisation diagrams provides complementary views on
the same underlying dynamics [34, 36, 21, 19]. Joint inspection of CMIF peaks,
stabilisation diagrams and frequency—damping clusters improves the robustness

of mode selection.

4. Prioritise frequencies as primary damage indicators. For RC frames,

global frequency shifts across repeated tests are generally more robust and easier
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to interpret than damping changes or fine details of mode shapes, especially when
boundary conditions and auxiliary elements (e.g. safety frames) are imperfectly
known [6, 7, 40, 41].

5. Use mode shapes and MAC as qualitative and consistency checks.
Mode shapes are valuable for distinguishing bending and torsional modes, de-
tecting coupling effects and identifying bias from secondary structures, but their
quantitative use should rely on selt-MAC and inter-test MAC analyses to avoid

over-interpreting noisy or under-sampled shapes [37, 29, 13].

6. Maintain a simple but representative FE model. Even a reduced-order FE
model can significantly aid interpretation of experimental results, support mode
pairing and inform stiffness-loss estimates, provided that key structural features
and boundary conditions are captured [13, 3, 41]. FE models should be used

iteratively, in the spirit of model updating for seismic assessment.

6.4 Limitations of the present work

The conclusions of this thesis should be interpreted in light of several limitations:

e Single structural typology and loading protocol. The study focuses on
two nominally identical, single-bay, three-storey RC frames subjected to a specific
earthquake record (Irpinia 1980) at scaled intensities [9]. The findings may not
directly generalise to other structural typologies, irregular geometries or different

ground motions.

e Presence of the steel safety frame. The internal steel frame, while essen-
tial for protecting the specimens and equipment, introduces boundary-condition
complexity and mode-shape distortions that are only partially controlled. It is
absent from the FE model and cannot be fully separated from the RC response

in the experimental modes.

e Limited exploration of damping and higher modes. Although damping
ratios are estimated and broadly interpreted, no detailed sensitivity study is per-
formed on damping estimation settings (e.g. record length, block rows, window-
ing), which several authors identify as a key step towards more reliable damping
use in SHM [13, 12, 28]. Moreover, the analysis concentrates on the first few

global modes, leaving local and higher-frequency modes largely unexplored.

e Finite dataset and laboratory conditions. The results are based on a finite
number of white-noise windows over a limited number of test days in a labora-
tory environment. Long-term environmental variability, aftershock sequences and

operational conditions typical of real buildings are not captured [2, 37].

77



Discussion, conclusions and future developments

e Toolchain scope. The identification uses FDD/FSDD and covariance-driven
SSI within PyOMA2 and OoMA. Other potentially informative algorithms avail-
able in the OMA toolbox—including refined parametric or automated procedures
[25, 4, 32, 31, 42]—are not exploited here, in order to maintain focus and compa-

rability.

These limitations suggest caution in extrapolating the numerical values beyond the
present setup, while not undermining the qualitative lessons for OMA-based damage

tracking.

6.5 Future research directions

The work opens several avenues for further research, many of which resonate with the

open issues and future research topics discussed in [1, 13, 12, 14, 16]:

1. Towards standard procedures for damping estimation. Building on the
current dataset, a systematic study could investigate the sensitivity of damping
estimates to record length, number of block rows, windowing and noise levels,
using multiple identification methods and uncertainty quantification frameworks
[28, 30, 29]. This would directly address the need, highlighted in [13, 12|, for
standardised protocols and better understanding of damping mechanisms and

uncertainties.

2. Extension to continuous and long-term monitoring. The hardware and
the PyOMA2-based pipeline could be extended to continuous or near real-time
monitoring of real buildings, integrating automated identification and tracking
procedures similar in spirit to those proposed in [2, 4, 31, 32, 42]. This would
provide a natural testbed for AOMA and for studying the interplay of environ-

mental variability, operational loads and seismic events.

3. Building and sharing modal property databases. The present results could
be incorporated into a larger database of modal parameters (frequencies, damp-
ing ratios, mode shapes) for RC structures under different excitation levels and
damage states. Such databases, as suggested in [13, 14, 37|, are essential for
defining typical ranges, detecting anomalous values and refining SHM strategies

and design criteria.

4. Refined FE modelling and model updating. Future work could develop
more detailed FE models that explicitly include the steel safety frame, slab flex-
ibility, non-structural components and non-linear behaviour [3, 41]. Model up-
dating based on the full suite of experimental modes, possibly including higher
modes and local deformations, would bring the analysis closer to the advanced

seismic assessment strategies applied in complex, existing structures [1, 13].
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5. From frequency trends to quantitative damage indices. While this thesis
focuses on qualitative stiffness loss inferred from frequency reductions, future
research could explicitly link modal changes to damage indices, residual capacity
and performance-based assessment metrics, possibly leveraging probabilistic or

machine-learning approaches [14, 16, 40, 42].

6. Automation and user-independent decision steps. Several decision points
in the current workflow—such as the selection of stable poles, clustering thresh-
olds and mode pairing—still require expert judgment. Extending PyOMA?2 with
robust, validated criteria for these steps would contribute to fully automated
pipelines, addressing one of the main drawbacks identified for the widespread use
of OMA in SHM: the need for extensive user interaction [13, 4, 32, 31].

In summary, this thesis has demonstrated that carefully designed OMA campaigns,
combined with transparent data processing and simple but informative FE models,
can provide rich insight into the seismic response, damage evolution and retrofit per-
formance of RC buildings. The case study of the twin-building shake-table tests, in-
terpreted within the broader framework established by Rainieri and others [1, 13, 14,
12], suggests that OMA will continue to play a central role in the development of
SHM strategies for seismic risk reduction, especially as automated identification and

monitoring tools mature and are deployed at scale.
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