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Abstract

This thesis investigates output-only dynamic identification for monitoring damage evo-

lution in full-scale, three-dimensional, single-bay, three-story reinforced-concrete (RC)

buildings subjected to shaking table tests, and evaluates the effectiveness of seismic

retrofitting. Two nominally identical RC frames, one as-built and one retrofitted,

were evaluated under controlled laboratory conditions. The frames were subjected to

repeated low-level white-noise excitations, alternating with earthquake records of in-

creasing intensity, using dense accelerometer instrumentation on both structures. The

data were then reoriented to a common frame, time-aligned, uniformly resampled,

and anti-alias filtered to make them suitable for modal analysis. Modal parameters

at each stage were estimated using Frequency-Domain Decomposition in combination

with covariance-driven Stochastic Subspace Identification as part of the operational

modal analysis. To evaluate robustness and reproducibility, the complete identification

workflow in Python (PyOMA2) and MATLAB (OoMA Toolbox) for cross-validation.

Reference properties for comparison were provided by a finite-element baseline imple-

mented in the Scientific Toolkit for OpenSees (STKO) software. The results reveal

clear, progressive stiffness degradation with increasing seismic excitation in both spec-

imens. In the case of the retrofitted building, a stiffer response was observed, which

highlights the effectiveness of the retrofit. Damping estimates continued to fall within

the ranges reported for similar RC frames, and agreement between experimental re-

sults and numerical models remained strong. Although mode-shape estimates did not

perfectly match the finite-element predictions, the Modal Assurance Criterion (MAC)

showed well-separated principal modes and stable consistency across tests. That sug-

gests the identification was physically meaningful even if some local differences were

present. Residual differences are possibly due to sensor layout, mild nonlinear effects

under stronger inputs, and modeling simplifications. The work presents a reproducible

workflow from sensing and preprocessing to identification and validation and provides

practical recommendations for monitoring cumulative earthquake damage in buildings,

including guidelines on sampling, decimation, and model stabilization choices for robust

OMA-based tracking.

.
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Chapter 1

Introduction

1.1 Background & Motivation

Earthquakes impose substantial human and economic losses, and reinforced concrete

(RC) frame buildings have a significant share of the at-risk stock in seismic regions [1].

In many countries, much of the RC inventory was built using older force requirements,

and these did not include clear performance goals; as a result, the true in service

behavior of these buildings, especially under sequences of mainshock–aftershock events,

may depart from design assumptions. Timely, non destructive assessment of their

dynamic properties, natural frequencies, damping ratios, and mode shapes is central to

performance based evaluation, rapid post event triage, and the prioritization of retrofit

actions [2].

Operational Modal Analysis (OMA) makes it possible to estimate modal parame-

ters by relying solely on response measurements obtained during naturally occurring,

random excitations such as ambient vibrations and everyday operational loads [1, 2]. In

contrast to Experimental Modal Analysis (EMA), which requires applying controlled

forces and often means taking a building out of service, OMA can be carried out while

the building is still being used as normal. This practical advantage is a key reason why

OMA has become so widely adopted in structural health monitoring (SHM) [2]. The

early detection of stiffness changes through frequency shifts is possible through track-

ing modal properties over time, which facilitates the identification of potential damage

progression, and informs updates to digital twins and finite-element (FE) models for

making decisions about retrofits and continued building use [3].

OMA has been transformed into an intelligent system through recent advancements

which is recognized as automated OMA (AOMA) system. These systems use pipelines

that continuously gather data, analyze it, remove the influence of environmental and

operational changes, and send alerts with clear confidence levels [4, 5].Essential factor

not only for efficiently expanding monitoring to cover buildings but also for reducing

false alarms caused by factors such as temperature, humidity, or building occupancy is

automation [4]. The integration of OMA with data-driven techniques, such as quality
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Introduction

control, advanced statistics, and machine learning, has influenced how we monitor and

manage civil infrastructure as a part of SHM [4, 5].

From a risk management point of view, OMA offers two main benefits. First,

before an event happens, OMA enables the creation of solid baseline measurements

and variability ranges for important modal parameters. After an event, it enables the

rapid detection of statistically significant changes from these baselines. This enables

more effective prioritization of inspection resources and supporting informed decisions

about whether buildings can be safely reoccupied or need to be cordoned off [2]. These

practical applications provide the motivation for the methodological and comparative

review that follows and shape the core objectives of this thesis.

1.2 State of the Art in Dynamic Identification & SHM

Stochastic subspace identification (SSI) and frequency-domain decomposition (FDD)

are the two primary methods that operational modal analysis (OMA) most frequently

employs when examining entire buildings.[2]. In FDD, the power spectral density ma-

trix Syy(ω) is examined at each frequency using singular value decomposition. Natural

frequencies appear as peaks in the leading singular value, while the corresponding singu-

lar vectors provide initial mode shape estimates. Enhanced Frequency-Domain Decom-

position (EFDD) can be used to estimate damping by inverse-transforming a narrow

frequency band and examining how the signal decays over time; however, these damp-

ing estimates are typically less consistent than frequency estimates. In the covariance-

driven stochastic subspace (SSI) method, outputs are mapped into block Toeplitz or

Hankel structures in order to estimate a state-space model. The discrete poles λi are

then transformed into continuous parameters via si =
1
∆t ln(λi) = σi + jωi. The cor-

responding natural frequency is fi =
ωi
2π and the damping ratio is ζi = −σi/

√
σ2i + ω2

i .

Stabilization diagrams are used to determine poles that are consistent in frequency,

damping, and mode shape over multiple model orders. [2, 5]

Practically, operational modal analysis (OMA) is frequently paired with finite-

element (FE) models. This approach allows to consider shifts in frequency as signs

of changes in stiffness, understand the roles and influences of different mode types and

assess how well retrofits are working in existing buildings [3]. Both lab and full-scale

experiments serve as a complement to field studies, supplying controlled conditions and

well-defined damage phases. Controlled setups enable researchers to monitor in detail

how a structure’s properties change with damage or successive earthquakes. To help

discriminate damage levels, earthquake excitations are often alternated with white-

noise segments. Accordingly, seismic records are interleaved with white-noise windows

to delineate damage states while keeping the stochastic-input assumption for OMA

valid in the identification windows [6, 7, 8].

Automated OMA (AOMA) pipelines enable continuous tracking of the health of

structures over time. These systems automatically identify key modal properties, filter

2



1.3 – Comparative Advantages and Limitations of Prevalent Techniques

out trends caused by changes in the environment or changes in how the building is

used, measure uncertainty, and send alerts when they detect significant changes [4,

5]. The systems generally verify incomplete data and, using robust procedures such as

Welch averaging, estimate the power spectral density (PSD). They follow how modal

properties change over time relative to previous measurements and adjust models to

capture slow shifts in frequency. In earthquake-prone regions, these systems adjust

their thresholds after an event to enable engineers to quickly assess building safety [4,

1].

For monitoring, using dense networks of low-cost MEMS accelerometers is essential.

This setup presents several challenges, including unsynchronized clocks, sensors that

are oriented in different directions, and suboptimal sampling. Preprocessing is an im-

portant step prior to analysis, including aligning sensor channels to the same reference

frame, applying anti-aliasing during resampling, and synchronizing to a single clock

to minimize errors [10, 11]. After these steps, frequency estimates tend to be robust;

nevertheless, damping ratios and mode shapes can still be impacted by noise, notably

at low signal-to-noise ratio [2, 11].

1.3 Comparative Advantages and Limitations of Preva-

lent Techniques

OMA is a non-intrusive technique that can be deployed on structures in service with-

out the need for controlled inputs. OMA is particularly effective for tracking frequency

changes that indicate variations in structural stiffness over time [1, 2]. However, es-

timates of damping and mode shapes using OMA are more sensitive to noise [2]. In

contrast, EMA (input–output testing) provides high-quality frequency-response func-

tions (FRFs) and generally yields more reliable damping and mode-shape estimates

when input conditions are well controlled. This level of reliability is obtained by uti-

lizing dedicated excitation equipment, careful test planning, and accepting operational

downtime, which is often impractical for buildings in operation [2].

FDD enables efficient peak picking and initial mode-shape identification, especially

for closely spaced modes, with straightforward implementation and interpretation [2].

Its main limitation is that damping estimation is indirect, depends on additional as-

sumptions, and is sensitive to band selection [2]. Covariance-driven SSI provides time-

domain damping estimates and robust pole validation with stabilization diagrams; how-

ever, the results are sensitive to analyst-selected settings (block-row count, model order,

window length, decimation). Hence, parameter robustness studies and multi-criteria

stability checks are recommended [5, 11].

For distributed Micro-Electro-Mechanical Systems (MEMS) sensor arrays, adap-

tive synchronisation together with high-accuracy resampling is needed to mitigate

interpolation-driven phase error and mode-shape bias. Synchronizing every sensor to
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the same reference clock is necessary to maintain consistent causal ordering across

channels [10]. Despite these steps, preprocessing can bias damping and mode-shape

estimates more than frequency. Hence, it is important to incorporate redundancy (e.g.,

multiple channels per DOF), implement cross-checks via the Modal Assurance Criterion

(MAC), and report uncertainties. [11].

Table 1.1: Typical decision criteria for selecting among identification techniques.

Task
Preferred
method

Why Caveats

Rapid screening /
baseline update

FDD Fast, simple peak
picking; good for
closely spaced
modes

Indirect damping;
sensitive to band
selection [2]

Defensible damp-
ing & mode
shapes

SSI-cov Direct time-
domain damp-
ing; stabilization
checks

Parameter tuning
needed (orders,
rows, decimation)
[5, 11]

Lab campaigns /
controlled inputs

EMA /
input–output

High-quality
FRFs; strong
damping identi-
fiability

Requires shakers,
downtime; less
feasible in service
[2]

Portfolio-scale
monitoring

AOMA
(FDD+SSI)

Automation, trend
de-seasoning,
alerting

Requires QA, un-
certainty handling,
false-alarm control
[4, 5]

Modal-validation metrics help determine how consistent and reliable mode shapes

are in structural dynamics. One common tool is the Modal Assurance Criterion (MAC),

defined as

MAC(ϕ, ϕ̂) =
|ϕTϕ̂|2

(ϕTϕ)(ϕ̂Tϕ̂)
. (1.1)

A MAC value close to 1 indicates that the mode shapes are very similar. Typical

stabilization criteria include MAC > 0.90 along with |∆f |/f < 1% and |∆ζ|/ζ < 5%

[2, 5].

1.4 Research Gaps, Questions, and Objectives

Recent studies have demonstrated the feasibility of applying OMA to entire buildings;

however, several key details remain unclear. For example, we do not yet know exactly

how steps like orienting, syncing, or resampling data from MEMS sensors affect the

results for damping and mode shapes. It is also unclear what the best, most reliable

settings are for methods like FDD and SSI-cov, especially when it comes to reporting

uncertainty. Lastly, comparing experiments with models is challenging when their

4



1.5 – Case Study and Dataset Overview

frequencies or the order of their modes do not match. These gaps complicate post-

event decision-making and portfolio-scale monitoring [2, 10, 11].

To tackle these issues, this thesis poses five research questions:

(RQ1) Can we use changes in frequency to reliably track damage and relate it to the

intensity of shaking, both in as-built and retrofitted buildings?

(RQ2) Does adding a retrofit always make a building stiffer when shaking is not too

strong, and how does that benefit change as damage increases?

(RQ3) How much do the results for frequency, damping, and mode shapes change de-

pending on how we process the data such as which filters or resampling methods

we use, or how we set up SSI and which settings give the most reliable results?

(RQ4) How well can a simpler finite-element (FE) model explain what kinds of modes

we see and how much they contribute, even if the actual frequencies are different?

What is the best way to match up modes when their order changes?

(RQ5) How does the internal steel safety frame used in the laboratory influence appar-

ent global stiffness (baseline frequencies) and, in particular, mode shapes (e.g.,

bending–torsion mixing and MAC degradation), and how should this bias be

detected and accounted for during identification and interpretation? [2, 3, 11]

Based on these questions, the main goals are:

(O1) Create a repeatable process for working with dense MEMS sensor data ensuring

correct sensor orientation, anti-alias filtering and uniform resampling, synchro-

nization to a master clock, and quality checks at each step.

(O2) Estimate modal properties (frequencies and damping) using FDD and SSI-cov,

report medians with 95% confidence intervals, and assess how sensitive these

properties are to damage and shaking intensity.

(O3) Compare toolchains (PyOMA2 and OoMA) under matched settings, and report

agreement metrics (∆f, ∆ζ, MAC).

(O4) Build a reduced-DOF FE baseline and use MAC-based pairing (even if mode

orders swap) to interpret mode types and stiffness changes between the as-built

and retrofitted buildings.

(O5) Quantify and control the influence of the internal steel safety frame by detecting

frequency, damping, and mode shape bias at all intensity levels [2, 3, 4, 11].

1.5 Case Study and Dataset Overview

This thesis analyzes a controlled dataset from two full-scale, three-storey, single-bay

reinforced-concrete (RC) buildings of nominally identical geometry and mass, both
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anchored to a common RC base and outfitted with internal infills. One specimen in-

corporates a patented retrofit expected to increase global stiffness at the system level.

The monitoring network comprises 40 MEMS sensing units (MonStr) that record tri-

axial accelerations; two units measure the input motion at the table and foundation,

and 19 units per specimen are distributed across key structural nodes to capture floor

and frame responses. White-noise windows alternate with scaled replicas of the 1980

Irpinia earthquake to bracket damage states and preserve the stochastic-input assump-

tions required for output-only identification. This design aligns with best practice in

the literature where laboratory or full-scale campaigns interleave broadband excita-

tions with earthquake records to support progressive-damage analysis and post-event

assessments [6, 8, 9].

An internal steel safety frame was installed to protect the specimens and equip-

ment during high-intensity runs. Comparing our measurements with an FE baseline

that does not include this frame, we observe that even though the frame was mechani-

cally decoupled as far as practically possible, local contacts and clearances modify the

effective boundary conditions, adding stiffness and mass. The influence is most visible

in the identified mode shapes, while baseline frequencies within white-noise windows

are comparatively less affected. Accordingly, we interpret shapes with caution and base

our primary SHM conclusions on frequency trends and cross-method consistency [1, 2].

The method used in this thesis centers on output-only operational modal analysis

(OMA), making use of frequency-domain decomposition (FDD) and covariance-driven

stochastic subspace identification (SSI-cov) methods. The analysis is carried out using

the open-source PyOMA2 toolchain. The study prioritizes settings that are robust to

parameter choices and provides clear reporting of uncertainty, while cross-validation is

carried out in MATLAB with the OOMA toolbox. Identified modal parameters are in-

terpreted against a finite-element (FE) baseline (OpenSees/STKO) to relate frequency

shifts to apparent stiffness loss and to classify mode types and participation. This

coupling of OMA and physics-based modeling reflects established practice for retrofit

evaluation and decision support in building-scale SHM [1, 2, 11].

The thesis has practical boundaries that focus the contribution. An internal steel

safety frame present in the laboratory setup may alter boundary conditions and mainly

affect mode shapes rather than baseline frequencies in identification windows; this auxil-

iary interaction is acknowledged throughout the interpretation and sensitivity analyses.

The retrofit is treated at the system level because proprietary details are unavailable,

and the expected lower reliability of mode shapes relative to frequencies is addressed

by redundant sensing, cross-method checks (FDD and SSI), MAC-based consistency

thresholds, and FE cross-validation. These choices are consistent with recommenda-

tions in the OMA/SHM literature and with constraints typical of MEMS-based moni-

toring [1, 2, 11].
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Chapter 2

Operational Modal Analysis

Operational modal analysis (OMA) is a field of study that involves techniques for

dynamically identifying the modal properties of a structural system that is under am-

bient vibration, or, more generally, during its normal operating life. These methods rely

solely on vibration response data; therefore, they are classified as output-only methods

[12, 13]. The methods comprised by the dynamic identification process aim to identify

the key parameters of a mathematical model that describes the structural system’s

dynamical behavior, so as to best fit the measured vibration responses collected dur-

ing experimental campaigns [12]. Clearly, the observed vibration response reflects the

physical properties of the structure being investigated, functioning as its concrete fin-

gerprint. This aspect forms the cornerstone and motivation of OMA, i.e., searching for

suitable and trustworthy methods that use the structure’s vibration output to provide

the best estimates of its in-situ physical properties. Knowledge of these in-situ prop-

erties is significant, for instance, in assessing changes in material properties relative

to the nominal values stated at the construction era due to degradation processes and

long-term effects. A key consequence of OMA is the development of damage-detection

strategies to track the health state of a structure by periodically examining its dy-

namic behavior over time. Hence, for OMA, achieving sufficient understanding of the

structure’s dynamics and mechanics is key to capturing its real health state for SHM.

A range of interdisciplinary challenges usually arises, including random-vibration as-

pects under linear or nonlinear regimes; treatment of service conditions that may be

stationary or nonstationary; and expertise in analogue-to-digital acquisition and spe-

cialized signal-processing tools, often necessitating application-driven assumptions and

customized simplifications [12]. The current chapter is dedicated specifically to con-

ventional OMA approaches and the main goal is to deal with structural systems which

can be defined as linear time-invariant (LTI) systems [13]. The underlying assump-

tion concerns structures showing linear behavior (i.e., elastic), as is usually the case

in operational in-service life, and having time-invariant parameters, namely, stationary

conditions. In the SHM context of long-term continuous monitoring, material proper-

ties evolve so slowly over long periods that, within any single experimental dynamic
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test, they may be considered essentially constant.

2.1 Historical and Theoretical Development of OMA

2.1.1 History of OMA

The field regarding vibrations of bodies goes back to ancient history; for instance,

ancient Greek mathematicians and philosophers, most notably Pythagoras, studied

sounds from strings of differing lengths, setting the origin of music and defining notes

and octaves [12]. During the Renaissance, Galileo Galilei, in his celebrated Discourses

Concerning Two New Sciences (1638), treated the vibration of bodies and described

resonance in distant bodies with identical natural frequency, denoting it as sympathetic

vibration [12]. In 1755, D. Bernoulli of Switzerland set out the groundwork for the

modal superposition principle by observing that a vibrating string can be represented

as a superposition of simple harmonics, the principle of coexistence” [12]. Probably, in

the following centuries, every scientific and engineering field owe to Joseph Fourier, who

developed his theorem when analyzing heat transmission principles in 1822. Referring

to more recent eras, it is worth mentioning the British physicist J.W. Strutt, better

known as the 3rd Baron Rayleigh, whose contributions over the last two centuries

represent the basic framework of modern structural dynamics, including the definition

of damping that accounts for both mass and stiffness quantities [12].

Rudimentary OMA can be linked to 19th-century damage detection on railway lines

[14]; nevertheless, the principal pre-OMA discipline was experimental modal analysis

(EMA) [13]. Two main branches are thus recognised within dynamic identification

according to the monitored quantities: input–output and output-only [12]. EMA mea-

sures both the imposed input excitation and the resulting vibration response to char-

acterise how the structure acts as a filter from input to output. Input–output EMA

techniques are mainly associated with mechanical engineering and related vibration-

control studies, since the typical system scale permits capturing both the input signal

and the structural response. In mechanical engineering, early work centered on moni-

toring the condition of rotating machinery while it was running normally, rather than

during start-up or shut-down [14]. Engineers typically used accelerometers, as well as

velocity sensors and laser-based contactless displacement transducers, for this purpose.

On the other hand, although OMA shares much of its theory with EMA, OMA desig-

nates output-only approaches that attempt to characterise the system using only the

measured response. Hence, it is termed “operational,” since it addresses the unmea-

sured random loads present during in-service operation. This proved decisive for OMA

versus EMA in civil applications, as the large scale makes it infeasible to induce proper

artificial excitation for the full dynamics and impractical to measure random inputs

such as wind with precision.

As shown in Fig. 2.1, a standard basic assumption is formulated to describe the
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Figure 2.1: Combined system identified in the OMA framework.

nature of unknown inputs. One considers a white-noise input at the source, passed

through a loading-excitation filter to produce the actual unknown random forces act-

ing on the structure under operating conditions (e.g., wind, traffic), which yield the

measured vibration response. This motivates the OMA concept of identifying the

“whole system” (the combined system [13]), i.e., both the structural system and the

loading-excitation system [12]. In civil applications, because acceleration responses

are typically in the mg range, very sensitive, high-performance, low-noise piezoelec-

tric accelerometers are needed [13]; also common are force-balance accelerometers and,

thanks to micro-electronics advances, MEMS devices, along with electric-resistance

and vibrating-wire strain gauges [14]. Thus, the primary distinction between EMA and

OMA concerns the input. EMA uses a measured, known input, whereas in OMA the

input is completely unknown [13]. OMA’s widespread adoption over EMA can also be

ascribed to the relatively low cost and speed of experiments, together with advances in

computation [12]. For instance, one does not need to stop using the building, since it is

desirable to capture responses under typical service conditions. Modern OMA became

properly formalised at the beginning of the last century [13]; notable publications span

the 1930s–1960s, especially for earthquake loading and ambient tests on buildings [12],

with later growth supported by improved computing and the 1965 introduction of the

FFT [15]. Nonetheless, from about the 1980s onward the theoretical basis was ma-

ture enough to enable practical implementations of vibration-based damage assessment

systems in civil engineering [14]. In parallel national and international regulations in-

troduced mandatory provisions for periodic or continuous health monitoring of strategic

structures and infrastructures for public-safety purposes [14].

2.1.2 Signal processing basics for OMA

Generally, a signal is any function of several independent variables that has information

about a physical system. Considering time as an independent variable, it is possible to

distinguish between continuous-time signals, x(t), and discrete-time ones, x(tk), being

tk a k-th time instant [15]. Another fundamental classification relies on the signal’s

amplitude (the dependent variable), which is that analog signals have both time and
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amplitude as continuous variables, whereas numerical or digital signals have time and

amplitude as discrete sequences. As noted earlier, the theory has roots in the 1600s,

major advances in the 17th–18th centuries, and a revolution in the 1940s–1960s due

to computing capabilities and new electronics and algorithms. Since then, physical

quantities have been discretely sampled and stored in finite-precision computers, shift-

ing the theoretical and mathematical background from continuous to discrete domains.

Signal processing comprises transforming signals to express their intrinsic information

in a more directly interpretable way [15].

Generally, a signal is any function of several independent variables that has infor-

mation about a physical system. Considering time as an independent variable, it is

possible to distinguish between continuous-time signals, x(t), and discrete-time ones,

x(tk), being tk a k-th time instant [15]. Another fundamental classification relies on

the signal’s amplitude (the dependent variable), which is that analog signals have both

time and amplitude as continuous variables, whereas numerical or digital signals have

time and amplitude as discrete sequences. As noted earlier, the theory has roots in the

1600s, major advances in the 17th–18th centuries, and a revolution in the 1940s–1960s

due to computing capabilities and new electronics/algorithms. Since then, physical

quantities have been discretely sampled and stored in finite-precision computers, shift-

ing the theoretical and mathematical background from continuous to discrete domains.

Signal processing involves transforming signals to express their intrinsic information in

a more directly interpretable way [15].

The Fourier theorem includes a fundamental starting point in signal processing,

which permits the decomposition of an arbitrary signal into a linear combination of

sinusoids at different frequencies (harmonics). Initially developed for periodic signals,

it was generalized to non-periodic signals by letting the period be infinite. In continuous

time, the direct and inverse Fourier transforms read [13]:

X(f) =

∫ ∞

−∞
x(t)e−i2πftdt ; x(t) =

∫ ∞

−∞
X(f)ei2πftdf, (2.1)

Here i is the imaginary unit, f denotes continuous frequency, and t indicates continuous

time. The Fourier transforms exhibit a variety of properties such as linearity, time

shift, integration and differentiation, and convolution properties [13]. The last one

states that a time-domain convolution corresponds to mere multiplication in the Fourier

frequency domain. Dealing with finite length T = N∆t digital signals xn = x(n∆t) with

n = 0, ..., N − 1, sampled with a sampling frequency fs = 1/∆t, being ∆t = tn+1 − tn

the sampling period, the discrete Fourier transform (DFT) and its inverse form have

been formalized, considering a discrete frequency domain described by fk = k/T with

k = 0, ..., N − 1:

Xk = X(fk) =

N−1∑
n=0

xne
−i2πkn

N ; xn =
1

N

N−1∑
k=0

Xke
i2πkn

N . (2.2)

10
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In accordance with the Shannon-Nyquist theorem [13, 14], the maximum repre-

sentable frequency in the discrete Fourier domain (the Nyquist frequency) is equal to

half the sampling frequency:

fmax =
fs
2
. (2.3)

In general, OMA measurements are viewed as a random (stochastic) process the set of

all realizations of random variables over time. Such processes are described via proba-

bility density functions, mean, variance, auto- and cross-correlation functions, auto- and

cross-spectral density functions, and coherence functions. Under the basic hypothesis of

conventional OMA, signals are usually treated as stationary, stochastic, ergodic random

processes. Stationarity implies that the properties that characterize the signals, e.g.,

mean µX and autocorrelation RXX do not vary with time [13]. Periodic finite-length

stationary stochastic process (finite-energy signals) implies the time-average statistic as

a finite constant and obtainable via a discrete estimator over arbitrary sample sequences

[14, 15], rather than by an ensemble-average expectation that presumes infinitely many

realizations over time (infinite-energy signals) [15]. Hence, although random variables

would in principle require a collection of signals covering all possible realizations at

each time instant, if the observation window is infinitely long, a single digital signal

suffices to estimate the characteristics of the entire random process:

µX = E[x(tk)] = lim
N→∞

1

N

N∑
k=1

x(tk), (2.4)

RXX(τ) = E[x(tk)x(tk + τ)] = lim
N→∞

1

N

N∑
k=1

x(tk)x(tk + τ). (2.5)

Another key way to describe stationary stochastic processes over a set period T is

by using power spectral density (PSD) functions. The two main types are the auto-

PSD, which is a real-valued function, and the cross-PSD, which is a complex-valued

function.[13]

SXX(f) = lim
T→∞

E
[
1

T
X∗

kXk

]
= lim

T→∞
E
[
1

T
|Xk

2|
]
, (2.6)

SY Y (f) = lim
T→∞

E
[
1

T
Y ∗
k Yk

]
= lim

T→∞
E
[
1

T
|Yk|2

]
, (2.7)

SXY (f) = lim
T→∞

E
[
1

T
X∗

kYk

]
, (2.8)

typically, the one-sided version is used, which is formed by doubling the amplitude, but
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preserving the phase:

GXX(f) = 2SXX(f), (2.9)

GY Y (f) = 2SY Y (f), (2.10)

GXY (f) = 2SXY (f). (2.11)

It’s important to remember that power spectral density (PSD) and correlation functions

are actually related through the Fourier transform (known as the Wiener-Khinchin

relations [13]). This means the PSD found by the Fourier transform of the correlation

functions:

SXX(f) =

∫ +∞

−∞
RXX(τ)e−i2πfτdτ, (2.12)

SY Y (f) =

∫ +∞

−∞
RY Y (τ)e

−i2πfτdτ, (2.13)

SXY (f) =

∫ +∞

−∞
RXY (τ)e

−i2πfτdτ. (2.14)

The function γ2XY (f) (coherence) is given by the ratio between the squared cross-PSD

and the product of the auto-PSDs. It takes values in [0,1] and indicates the degree

of linear dependence of two signals, which assists in detecting nonlinearities, being

formally akin to the Pearson linear correlation coefficient [16]:

γ2XY (f) =
|GXY (f)|2

GXX(f)GY Y (f)
=

|SXY (f)|2

SXX(f)SY Y (f)
(2.15)

Based on the Blackman-Tukey procedure [13], for finite and long enough stationary

ergodic processes, it is possible to calculate the correlation function from a direct com-

putation procedure.

R̂XX(r∆t) =
1

(N − r)σ2X

N−r∑
n=1

(xn − µX)(xn+r − µX), r = 0,1, ...,m (2.16)

According to the acknowledged Welch procedure, the introduction of the efficient Fast

Fourier Transform (FFT) algorithm enabled a direct computation of the PSD [13].

Accuracy is improved by computing a one-sided PSD estimator that splits the signal

into segments of duration T and averages the spectra from the Fourier transform of

each segment. Because the Fourier transform assumes periodicity, applying the FFT

to non-periodic segments introduces spectral inaccuracies. This leakage effect disperses

the energy of every frequency line over a wider bandwidth. While it cannot be fully

avoided, it can be mitigated by windowing, i.e., setting the signal to zero at the window’s
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boundaries.

wrectangular(tk) =

 1 if 0 ≤ tk ≤ T,

0 otherwise.
(2.17)

However it is preferred to adopt the Hanning or cosine window whanning(tk) which is

characterized by a greater side-lobe reduction of 32 dB, but with a broader bandwidth

dispersion

whanning(tk) =


√

8
3

[
1
2 − 1

2 cos
(
2πt
T

)]
if 0 ≤ tk ≤ T,

0 otherwise.
(2.18)

Windowing sometimes needs the introduction of some correction factor to adjust fre-

quency spectra amplitude to maintain the signal’s energy equivalence, as demonstrated

by the
√

8
3 factor in Eq. (2.18) [13]. Beyond the Shannon-Nyquist theorem, a further

key issue is aliasing; undersampling of frequencies above the Nyquist frequency can

make them show up incorrectly within the measured band. The standard remedy is an

anti-aliasing filter, an analog low-pass filter used before acquisition, to suppress those

high-frequency components [13]. Owing to the finite transition band of real filters, the

usable Nyquist frequency is commonly reduced by about 20%.

2.2 Conventional OMA stationary methods

2.2.1 Frequency domain methods

2.2.1.1 Peak-peaking method

The peak-peaking method, also known as the basic frequency-domain method, is among

the earliest and simplest OMA algorithms developed, and is now mainly applied as a

stand-alone tool for quick in-situ assessment of the preliminary effectiveness of ambient

vibration testing [13]. It can be viewed as an SDOF method because it assumes each

mode is identified separately, an assumption that seldom holds in reality. Therefore, it

performs best for well-separated modes with low damping. In the spectral domain, an

r-th mode is well-separated if the minimum distance from any other mode is greater

than its bandwidth B, given by B = 2ξrfr, with ξr the damping ratio and fr the natural

frequency [12]. The modal parameters are obtained locally, i.e., from the analysis of

each sensor channel independently. Note that this method returns only the ODS, not

the proper mode shapes. As its name suggests, it is based on identifying the peaks on

the PSD matrix graph, which is characterized also by a certain degree of subjectivity,

being the main drawback of this technique. When the r-th mode is dominant, the

modal decomposition is simplified by considering only the r-th modal coordinate p(t)

and mode shape ϕr, i.e.

y(t) = ϕrp(t). (2.19)
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The correlation function matrix of the output signal RY Y (τ) can be obtained by con-

sidering the autocorrelation of the modal coordinate Rprpr(τ), i.e.

RY Y (τ) = E[y(t+ τ)yT (t)] = Rprpr(τ)ϕrϕ
T
r . (2.20)

Using the Fourier transform, the one-side PSD matrix can be calculated by considering

the spectral density of the modal coordinate Gprpr(f), i.e.

GY Y (f) = Gprpr(f)ϕrϕ
H
r . (2.21)

From the latter equation, the PSD GY Y (f) = [g1, g2...] of the response y(t) is seen to

contain the modal information of interest, where gi denotes the generic PSD column

vector. In addition, at the resonance frequency the system may be approximated as an

SDOF system governed only by the r-th mode. Hence, the PSD matrix is rank 1, and

any column or row is proportional to ϕr and may be taken as an estimate of it as

ϕ̂r = gi. (2.22)

Commonly, for clearer discrimination of structural modes of real interest, the PSD

is examined alongside the coherence function (Eq. (2.15)); when it approaches 1,

it indicates a high SNR. Expressed typically in dB, the SNR quantifies how much

unwanted noise contaminates the desired signal and is defined as the base-10 logarithm

of the square ratio between Ay and An, i.e.

SNR = log10

(
Ay

An

)2

. (2.23)

Despite its simplicity, the peak-peaking method is not reliable if used stand-alone,

and more reliable and systematic procedures have been developed accordingly.

2.2.1.2 Frequency domain decomposition

The Frequency domain decomposition (FDD) method generalizes the peak-peaking

approach by overcoming the requirement of well-separated modes and by concentrating

the evaluation in a single plot based on the SVD of the PSD matrix. In this framework,

the response signal can be decomposed according to the modal decomposition, and the

correlation function matrix RY Y (τ) of the output signal is obtained by considering the

autocorrelation matrix of the modal coordinates RPP (τ), i.e.

RY Y (τ) = E[y(t+ τ)yT (t)] = ΦRPP (τ)Φ
T . (2.24)
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Using the Fourier transform pair property, the one-sided PSD matrix follows from the

spectral density of the modal coordinate GPP (f), i.e.

GY Y (f) = ΦGPP (f)Φ
H . (2.25)

The response PSD matrix can then be decomposed via singular value decomposition,

a linear algebra tool that generalizes diagonalization [14]. The matrix GY Y (f) is de-

composed into a diagonal matrix Σ = diag(σ1, σ2, ...) of singular values (SVs) sorted

in descending order and two orthogonal/unitary matrices U = [u1, u2, ...] and V , with

UHU = UUH = I. Since the PSD is a positive definite Hermitian matrix, it holds that

U = V , therefore:

GY Y (f) = UΣV H = UΣUH . (2.26)

Comparing Eqs. (2.25)–(2.26) shows that GPP (f) is diagonal iff the modal coordinates

are uncorrelated, so the SVs can be read as the auto spectral densities of the modal

coordinates [12]. In that situation, one links the estimated output PSD to its SVD and

reduces it to rank 1 at a chosen frequency fk, i.e.

GY Y (fr) = σrur(fr)u
H
r (fr). (2.27)

and determines the number of mode shapes from the rank of the SV matrix (non-zero

SVs), estimating each r-th mode shape from the left singular vectors U , i.e.

ϕ̂r = ur(fr). (2.28)

If the modal coordinates are not uncorrelated, the mode-shape estimates are biased

and should not be used for physical interpretation [12]. In any case, FDD mode shapes

are inherently biased, since SVD enforces orthogonality of singular vectors; thus [12]

recommends using only the first singular vector at the dominant frequency line as

the best estimate, i.e. impose σ1 in Eq. (2.27). Because noise affects the peak of

the first SV at a single fk, EFDD augments FDD by exploiting information around

peaks, extracting an SDOF “bell” from a band of SVs about the mode of interest.

The retained band is set by correlating nearby mode-shape estimates via the Modal

Assurance Criterion (MAC). For two mode shapes ϕ⃗a and ϕ⃗b,

MAC(ϕa, ϕb) =
|ϕa|Hϕb

2(
ϕa

Hϕa
) (
ϕb

Hϕb
) , 0 ≤ MAC(ϕa, ϕb) ≤ 1. (2.29)

MAC equal 1 indicates perfect correlation, whereas 0 indicates none [18]. Hence, con-

sidering the peak estimate ϕ̂r and nearby shapes, SVs are retained when MAC exceeds

a threshold, typically 80%. The SDOF bell in the PSD is then mapped back to the

time domain via the inverse transform; the resulting correlation function corresponds

to a free decay of an SDOF system. Consequently, beyond natural frequency and mode
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shape, EFDD permits estimating the damping ratio ξr for the r-th mode [12], e.g., via

logarithmic decrement with a linear regression over zero-crossings or extremes of the

free-decay correlation function [13, 17]. The damped natural frequency is

fr,d = fr
√
1− ξ2r . (2.30)

For assisted and automatic selection of structural modal peaks (rather than noise) on

the SVD of the PSD matrix, one may use the modal coherence indicator d1(fk) [18], a

correlation between the first singular vector at fk and neighboring f :

d1(fk) = uT1 (f)u1(fk). (2.31)

Figure 2.2: SVD graph of the PSD within the FDD method

Note also that FDD benefits from an built-in noise-separation capability due to the

SVD tool. In the synthetic-data example, the SVD graph of the PSD matrix reveals

a sinusoidal excitation, visible as constant peaks on the SV lines; ignoring these, the

genuine peaks on the first SV correspond to the natural frequencies at 1.91 Hz, 3.57

Hz, and 6.63 Hz. Furthermore, without targeted noise at specific frequencies, the SV

graph exposes the structural-mode peaks of interest, which increase significantly in

amplitude, particularly in the first SV, above the noise floor.

2.2.2 Time domain methods

2.2.2.1 Stochastic state-space models

The time-domain dynamics of a structural system can be represented using a physically

based parametric model, namely a state-space model [13]. The core idea is to rewrite

the general second-order ODEs of motion, into two first-order ODEs denoted as state
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and observation, by introducing the state vector s(t):

s(t) =

y(t)
ẏ(t)

 . (2.32)

The state variables are often termed hidden variables since they describe an internal

(unmeasurable) model representation, while the real observed quantity for studying

the system dynamics is the structural response. First, focusing on the continuous-time

domain, where the drive vector is written as f(t) = Pu(t). Input position matrix

P ∈ Rn×Nin and a function u(t) have described the temporal change in the input

actions, that n is the number of DOFs and Nin is the number of inputs. The specific

form of these two terms P and u(t) depends on the intrinsic nature of the input actions,

i.e. on which DOFs the input is acting on. For instance, in earthquake engineering,

the input is commonly represented by an acceleration ground input indicated as üg(t)

acting only at the base DOFs of the structure. Nevertheless, it is reformulated as

Mÿ(t) + Cẏ(t) +Ky(t) = P u(t), (2.33)

The first derivatives of the state vector are

ṡ(t) =

ẏ(t)
ÿ(t)

 , (2.34)

The first component ṡ1(t) of Eq. (2.34) is directly given by

ṡ2(t) =
[
0 I

]
s(t) +

[
0
]
u(t), (2.35)

while the second component ṡ1(t) of Eq. (2.34) follows by making explicit the response

acceleration in Eq. (2.33):

ṡ2(t) =
[
−M−1K −M−1C

]
s(t) +

[
−M−1

]
Pu(t), (2.36)

which yields the state equation

ṡ(t) =

 0 I

−M−1K M−1C

 s(t) +
 0

−M−1

Pu(t) ⇔

ṡ(t) = Acs(t) +Bcu(t),

(2.37)

in which Ac ∈ R2n×2n is the state transition matrix, which transforms the current state

into the next state representation, and Bc ∈ R2n×n is the input influence matrix, the

subscript c denotes the continuous time domain. The observation equation depends on

the number l and the type of sensors, which used to monitor the physical quantities
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characterizing the response of the structure gathered in yl(t). Ideally, monitoring both

accelerations, velocities, and displacements at all n DOFs, the response vector yl(t)

belongs to R3n×1, gathering on the column dimensions the displacements y(t), velocities

ẏ(t), and accelerations ÿ(t). It could be theoretically expressed as a function of the state

vector, and decomposed through output location matrices Ca, Cv, and Cd belonging to

Rn×n, i.e.

yl(t) = Caÿ(t) + Cvẏ(t) + Cdy(t) (2.38)

and substituting ÿ(t) from Eq. (2.33), it becomes

ỹl(t) =
[
Cd − CaM

−1K Cv − CaM
−1C

] y(t)
ċy(t)

+ CaM
−1Bu(t) (2.39)

The last relation provides only the acceleration part of yl(t), hence ỹl(t). It also shows

that, in the state-space formulation, acceleration measurements in the observation equa-

tions depend explicitly on the state variables (displacements and velocities). Contrarily,

displacement and velocity measurements are directly provided by the state variables

and may be affected only by direct input. Therefore, considering a plausible and general

scenario in which, for every single DOF, both displacements, velocities, and accelera-

tions are measured, observation equations which express response vector yl(t) in Eq.

(2.38) as a function of state variables s(t) becomes

yl(t) =


Cd 0

0 Cv

Cd − CaM
−1K Cv − CaM

−1C

 s(t) +


0

0

CaM
−1

Pu(t) ⇔

yl(t) = Ccs(t) +Dcu(t),

(2.40)

In last equation, Cc ∈ R3n×2n is called the output influence matrix. Dc ∈ R3n×2n is the

direct transmission matrix and explains how an input directly reflects in the output re-

sponse. Within the present structural-dynamics formulation, the input directly affects

acceleration measurements. Besides the general formulation, in a practical SHM con-

figuration where only accelerometer sensors are used on the structure, the observation

model is restricted to Eq. (2.39), with a consequent reformulation of Cc and Dc.

All the previous mathematical elaborations permitted to rewriting of the motion

equation according to the deterministic continuous-time state-space model according

to the state equation and observation equation respectively, i.e.

ṡ(t) = Acs(t) +Bcu(t) , (2.41)

yl(t) = Ccs(t) +Dcu(t). (2.42)

The model is called deterministic since the excitation is considered deterministic, and
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2.2 – Conventional OMA stationary methods

the modal information of the structural system resides in the eigenvalues of Ac. An

infinite family of equivalent state-space models (realizations) exists for the same sys-

tem. Applying a similarity transform with a non-singular square matrix T changes the

realization but preserves the eigenvalues, and thus the modal content. Accordingly, in

vibration experiments, the measured response is used to identify one realization among

the infinitely many. For the discrete time-domain, with tr = r · ∆t (sampling period

∆t), r ∈ N, discrete state sr(tr) = s(r · ∆t) of order n, under zero-order hold on the

input and with N samples of l channels yr ∈ Rl, the discrete deterministic state-space

form is obtained.

sr+1(tr+1) = Asr(tr) +Bur(tr) , (2.43)

yr(tr) = Csr(tr) +Dur(tr), (2.44)

in which the state space matrices are defined as

A = eAc∆t , (2.45)

B = (A− I)A−1
c Bc , (2.46)

C = Cc , (2.47)

D = Dc. (2.48)

To account for unmeasurable noise sequences, two random processes are introduced.

The process noise wr covers disturbances and modeling errors arising from inaccuracies

of the state-space model in capturing the true system dynamics. The measurement

noise vr instead stems from sensor electronics, which convert physical analogue signals

into finite-arithmetic, finite-memory digital data. These two noise processes are treated

as additive components, as already indicated by the measurement-noise process in Fig.

2.1, and are assumed zero-mean Gaussian white noise, hence fully specified by second-

order statistics. Therefore, for any pair of time instants p and q, the variance is given

by

E

wp

vp

(
wq vq

) =


 Qww Swv

(Swv)T Rvv

 if p = q

0 if p /= q,

(2.49)

The matrices Qww ∈ Rn×n, Swv ∈ Rn×l, and Rvv ∈ Rl×l are the covariance matrices

associated with the noise processes wr and vr [19]. Therefore, omitting the explicit

dependence on discrete-time instants, the discrete-time deterministic (input) stochastic

state-space model is given by

sr+1 = Asr +Bur + wr , (2.50)

yr = Csr +Dur + vr, (2.51)
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In the context of OMA, since the input excitation is unknown and modeled as Gaus-

sian white noise, a pure stochastic state space model can be defined by folding the

unmeasurable input into the process and measurement noise sequences, i.e.

sr+1 = Asr + wr , (2.52)

yr = Csr + vr, (2.53)

With this, the process noise directly plays the role of the unmeasurable input excitation,

whereas the measurement noise is a direct disturbance visible in the measured output.

Accordingly, the measured response separates into an observable system part and an

unobservable direct disturbance, consistent with the combined-system concept (see Fig.

2.1). This is likewise manifested in the eigenvalues of the state matrix, which include

poles from both the structural system and the input noise excitation process. Therefore,

using stochastic state space time-domain parametric models in OMA, the key task is

to find at least one realization of A ∈ Rn×n and C ∈ Rl×n to extract the modal

information of interest. The matrices A and C are taken to be observable, implying

all modes are observable in yr [19]. Moreover, the system order n is still unknown and

must be selected within the OMA procedure, with the requirement that the second-

order statistics of the model output and the measured output coincide [19].

2.2.2.2 Covariance-equivalent representation of stochastic state space model

In agreement with the OMA framework, the stochastic state space model system’s re-

sponse is represented by a zero-mean Gaussian process, and thus the output covariance

conveys all significant information to describe this random process. Hence, it is possible

to define a covariance equivalent model as an estimated state space model characterized

by an optimal unbiased estimator, i.e. the correct output covariance able to describe the

statistical properties of the output process [13]. Assuming an LTI stationary stochastic

process, the state vector is also a zero-mean Gaussian process characterized by the fol-

lowing state covariance matrix Σsr which is independent of the time and uncorrelated

with noise processes [19]:

Σsr = E
[
srs

T
r

]
, E

[
srw

T
r

]
= E

[
srv

T
r

]
= 0. (2.54)

The Lyapunov equation provides an alternative definition for the state covariance ma-

trix Σsr considering the next state sk+1 [19]

Σsr = E
[
sk+1s

T
k+1

]
= E

[
(Ask + wr) (Ask + wr)

T
]

= AE
[
srs

T
r

]
AT + E

[
wrw

T
r

]
= AΣsrA

T +Qww.

(2.55)
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The output covariance matrix, i.e. the cross-correlation matrix of the measured output

response from all sensors’ channels for sample r and with finite time lag i, is defined in

general as

Ri = E
[
yr+iy

T
r

]
(2.56)

from which it is possible to derive the initial output covariance matrix R0 for lag i = 0,

R0 = E
[
yry

T
r

]
= E

[
(Csk + vr) (Csk + vr)

T
]

= CE
[
srs

T
r

]
CT + E

[
vrv

T
r

]
= CΣsrC

T +Rvv.

(2.57)

It is possible to define the next state-output covariance matrix G which represents the

covariance between the response of the system yr and the updated state vector sr+1

G = E
[
sr+1y

T
r

]
= E

[
(Ask + wr) (Csk + vr)

T
]

= AE
[
srs

T
r

]
CT + E

[
wrv

T
r

]
= AΣsrC

T + Swv.

(2.58)

from which it is possible to obtain an alternative definition for the output covariance

matrix sequence Ri, so that

Ri = CAi−1G , R−i = GT
(
Ai−1

)T
CT . (2.59)

The Eq. (2.59) has fundamental consequences which are at the base of stochastic

subspace identification algorithms, being that output covariance can be considered as

Markov parameters of an LTI system defined by state space matrices A, C, G, and R0.

In general, Markov parameters describe the input-output relationship of a discrete-time

model with sampled response according to a pulse response function to a unit pulse

input [24]. Therefore, Ri is directly estimable from the data (via G), and decomposing

the sequence yields the state matrix A, whose poles constitute the solution sought in

covariance-driven, stochastic state-space, time-domain identification.

2.2.2.3 Covariance-based stochastic-subspace identification

Over the past decades, OMA has seen the development of several time-domain tech-

niques founded on correlation analysis of output vibration responses under natural

excitation, which gradually supplanted forced-vibration tests. These output-only ap-

proaches are termed Natural Excitation Techniques (NExT); three well-known methods

are the least squares complex exponential (LSCE), the Ibrahim time domain (ITD),

and the eigenvalue realization algorithm (ERA), the last being closely akin to subspace

identification. For LSCE, ITD, and ERA see [20, 21, 22]. Despite early popular-

ity, NExT procedures were progressively set aside due to various limitations [13], and
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stochastic subspace identification became preferred. The covariance-driven stochastic

subspace identification (SSI-cov) is a parametric, time-domain algorithm derived from

the Ho–Kalman realization scheme [23], producing state realizations from output-only

measurements. SSI-cov uses the stochastic state-space model in Eqs. (2.52)-(2.53),

with model order n, l measured DOFs, and Nd total output samples, where sr ∈ Rn,

yr ∈ Rl, A ∈ Rn×n, and C ∈ Rl×n, under the assumption that all system states are con-

trollable and observable. A state is controllable if reachable from any initial condition

by suitable control; observable if determined completely from the input and output at

a given time. In line with Eq. (2.16), the output correlation matrices R̂i ∈ Rl×l are

computed with a user-defined finite lag i ∈ N (time shift / number of block rows) [13],

i.e.

R̂i =
1

Nd − i
Y1:Nd−iY

T
i:Nd

, (2.60)

Matrices Y1:Nd−i =
[
y0 y1 . . . yNd−i

]T
∈ Rl×Nd and Yi:Nd

∈ RNd×l indicate the

output measurements’ time histories from l sensors, collected and rearranged. All

correlation estimates assuming the role of output covariance matrices in SSI-cov are

computed for lags i through 2i− 1 and assembled into a block Toeplitz matrix T1|i ∈
Ril×il (a matrix with constant diagonals) as follows:

T1|i =



Ri Ri−1 . . . R2 R1

Ri+1 Ri
. . .

. . . R2

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . Ri−1

R2i−1 R2i−2 . . . Ri+1 Ri


. (2.61)

The subscript in T1|i indicates the indices of the first column of the matrix [19]. Using

the Toeplitz matrix of output covariance matrices can reduce computational effort

during modal identification, thereby improving the efficiency of the elaboration. For a

system of order n, the choice of the block-rows parameter i must satisfy [13]

li ≥ n. (2.62)

The true order n of the state-space model is unknown. The Ho–Kalman algorithm is

based on minimal realization, so it seeks the smallest n that guarantees full control-

lability and observability. Still, at the beginning of SSI-cov one may obtain a rough

estimate of n by examining the rank of the output PSD or the SVD of the PSD (cf.

FDD). This preliminary estimate guides the selection of the time-shift parameter to

satisfy i ≥ n/l. When the system is fully controllable and observable, the Toeplitz

matrix admits the factorization into an observability matrix Oi ∈ Rli×n (depending

only on A and C) and a reversed controllability matrix Γi ∈ Rn×li (depending only on
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A and the next-state output covariance G), i.e.

T1|i =


C

CA
...

CAi−1


[
Ai−1G . . . AG G

]
= OiΓi. (2.63)

Accordingly, matrix C can be taken directly from the first l rows of Oi, while matrix

G is obtained from the last l columns of Γi. To obtain Oi and Γi separately, perform

the SVD of the Toeplitz matrix:

T1|i = UΣV T =
[
U1 U2

]Σ1 0

0 0

V1
V2

 ≈ U1Σ1V
T
1 (2.64)

where Σ is truncated to rank n (keeping Σ1 ∈ Rn×n) and U1 ∈ Rli×n, V 1T ∈ Rn×li.

Consequently,

T1|i = U1Σ1V
T
1 = U1

(
Σ
1/2
1 Σ

1/2
1

)
V T
1 =

(
U1Σ

1/2
1

)(
Σ
1/2
1 V T

1

)
= OiΓi , (2.65)

Oi = U1Σ
1/2
1 T , (2.66)

Γi = T−1Σ
1/2
1 V T

1 , (2.67)

including a non-singular similarity matrix T since only one realization is identified

among the equivalent ones; often one sets T = I. Having Oi and Γi, the next SSI-

cov step estimates A and, together with C, yields the modal parameters. Recall C is

read from the first l rows of Oi, and G from the last l columns of Γi. Two principal

procedures for A are reported [13]. The first (NExT–ERA) builds the one-lag Toeplitz

matrix T2|i+1 of output covariances and exploits its factorization:

T2|i+1 =



Ri+1 Ri . . . R3 R2

Ri+2 Ri+1
. . .

. . . R3

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . Ri−1

R2i R2i−1 . . . Ri+2 Ri+1


= OiAΓi. (2.68)

Thus, by taking into consideration equations (2.66)-(2.67) derived from SVD decom-

position of the original output covariance Toeplitz matrix Eq. (2.61), the state matrix

A estimate is given by

A = O†
iT2|i+1Γ

†
i =

(
Σ
−1/2
1 UT

1

)
T2|i+1

(
V1Σ

−1/2
1

)
. (2.69)
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where † denotes the Moore–Penrose pseudo-inverse [13]. The second approach to es-

timate A, due to Yi and Yun [25, 13], pre- and post-multiplies (2.61) by invertible

matrices W1 and W2 (i.e., W1T1|iW2) and, after SVD, yields an alternative observabil-

ity matrix:

Oi =W−1
1 U1Σ

1/2
1 T. (2.70)

Two weighting schemes are common: balanced realization (BR) and canonical variate

analysis (CVA) [26]. In BR, choosing W1 =W2 = I implies OT
i Oi = ΓiΓ

T
i = Σ1 (Gram

matrices); “balanced” indicates that input excitation transfers to the state and the

state to the output in a comparable manner [13]. Using the shift-invariance property

of Oi [27], further decompose Oi to make A explicit by defining O↑
i (remove the last l

rows of Oi) and O
↓
i (remove the first l rows) [28, 29], i.e.

Oi =


C

CA
...

CAi−1

 =

 O↑
i

CAi−1

 =

 C
O↓

i

 ⇒ O↑
i =


C

CA
...

CAi−2

 , O
↓
i =


CA

CA2

...

CAi−1

 (2.71)

⇒ O↑
iA = O↓

i ⇒ A = O↑
i

†
O↓

i (2.72)

On the other hand, the CVA weighting aims to balance the energy content across

all system modes and retrieves the weighting matrices via Cholesky decompositions

of two modified Toeplitz matrices [26]. W1 is defined as the inverse of the lower-

triangular factor [L+]−1 obtained from the Cholesky factorization of a reversed one-

time-lag Toeplitz matrix T+
0|i−1, where the upper triangle is transposed, i.e.

T0|i−1 =



R0 RT
1 . . . RT

i−2 RT
i−1

R1 R0
. . .

. . . RT
i−2

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . Ri−1
T

Ri−1 Ri−2 . . . R1 R0


= L+[L+]T ⇒ W1 = [L+]−1. (2.73)

Conversely, W2 is defined as the inverse of the lower-triangular factor [L−]−1 ob-

tained from the Cholesky factorization of the reversed one-time-lag Toeplitz matrix of
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output covariances T−
0|i−1, where the lower triangle is transposed, i.e.

T0|i−1 =



R0 R1 . . . Ri−2 Ri−1

RT
1 R0

. . .
. . . Ri−2

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . Ri−1

RT
i−1 RT

i−2 . . . RT
1 R0


= L−[L−]T ⇒ W2 = [L−]−1. (2.74)

Accordingly, the eigenvalues of the weighted Toeplitz matrix in Eq. (2.61), i.e. W1T1|iW2,

admit a geometric interpretation as canonical angles between two subspaces, ensuring

balanced energy levels among all system modes [13, 26]. The OMA identification out-

come is the desired modal parameter estimates (natural frequencies, damping ratios,

and mode shapes) is obtained once the state matrix A and the output influence matrix

C are identified. The eigenvalue decomposition (EVD) of matrix A leads to the diagonal

matrix Λ = diag([λ1, ..., λu, ...λm]) ∈ Rn×n of discrete-time complex conjugate system

poles pairs λu, λ
∗
u (two-quadrant symmetry) and corresponding right eigenvectors ψu:

A = ΨΛΨ−1 , Aψu = λuψu, (2.75)

where 1 ≤ u ≤ m, with m = n/2 the number of eigenvalues of actual interest. This

follows from retaining only modes with positive damping (positive imaginary parts)

among the n complex-conjugate poles, so physically the modes of interest amount to

half the system order [13, 30]. Undamped/damped natural frequencies and damping

ratios are then computed by mapping from the Z-domain (discrete time) back to the

Laplace domain (continuous time):

su =
ln(λu)

∆t
, fu =

|su|
2π

, ξu = −100
Re(su)

|su|
,

where su are the continuous-time poles, ∆t is the sampling interval, | · | denotes the

complex modulus, and Re(su) the real part. Finally, the real part of the eigenvectors

ψu provides the experimental mode shapes ϕu:

ϕu = Re(Cψu), (2.76)

with Φ = [ϕ1, ..., ϕu, ..., ϕm] ∈ Rl×m. It is worth noting that the entire SSI-cov proce-

dure can equivalently be carried out using a block-Hankel matrix (with constant anti-

diagonals) of the output-measurement covariance estimates in place of the Toeplitz

matrix in Eq. (2.61). Moreover, the whole theoretical framework rests on estimated

quantities (e.g., output covariances in Eq. (2.60)), since only a finite amount of data

is available. Together with additive noise due to state-space modeling inaccuracies,

sensor hardware noise, and computational noise from finite-precision arithmetic, the
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rank of the estimated Toeplitz matrix cannot exactly reveal the true theoretical system

order, also because the Toeplitz factorization is not mathematically exact in the pres-

ence of noise. In principle, the rank can be hinted at by the largest relative gap in the

singular values (SVs) sorted in descending order. Nevertheless, in OMA the practical

objective is reliable modal-parameter estimation rather than an exquisitely accurate

dynamical description via a state-space model; hence a conservative overestimation of

the system order is commonly adopted, leading to the well-known stabilization diagram

(SD) approach [13]. In practice, the order n is started small and progressively increased

to higher, over-specified values up to a user-defined limit. Accordingly, the Toeplitz

output-covariance matrix is first sized to low dimensions and, following SSI-cov, poles

are computed; the procedure is then repeated for successively larger matrix sizes. Re-

calling that in subspace identification only half the system order yields poles of interest

(those with positive imaginary part), the model order grows by twos. Over-specifying n

reveals spurious poles alongside the physical ones: “noise poles” when they are tied to

the excitation system identified together with the structural system (combined-system

concept, Fig. 2.1), and “mathematical modes” when they arise from the aforementioned

inaccuracies and noise sources. As illustrated in Fig. 2.3, the stabilization diagram is

a 2D plot showing, for each model order (ordinate), the poles versus natural frequency

(abscissa). The SD affords a clear separation between stable physical modes and unsta-

ble spurious ones by tracking alignments of stable poles as the order increases. Stability

checks discriminate stable from unstable poles in terms of frequency, damping ratio,

and mode shapes, and are grouped into two classes: hard validation criteria (HVC),

grounded in strict physical principles and applied to individual poles, and soft valida-

tion criteria (SVC), which set relative thresholds between pole pairs at two different

orders [31, 32]. Under HVC, spurious poles include those lacking complex-conjugate

pairing, modes with natural frequencies above the Nyquist frequency (accounting for

any decimation), and poles with negative or excessively large positive damping ratios

(typically limited to 10%) [31]:

ξu ≤ 0.1, (2.77)

fu ≤ fs
2
. (2.78)

Assume pole a is identified at model order n. The SVC classify spurious poles by

comparing a with any pole b at model orders 2, 4, . . . , n/2 using the following relative

stability checks [13]:

∆ξ =
ξa − ξb
ξa

≤ 0.05, (2.79)

∆f =
fa − fb
fa

≤ 0.01, (2.80)

1−MAC(ϕa, ϕb) ≤ 0.02. (2.81)
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In general, the stabilization diagram can be adapted to any parametric OMA method.

This graphical tool offers a clear separation between physical modes and spurious ones.

Moreover the SD is often combined with at least the first SV curve of the PSD matrix

to double-check that stable pole alignments coincide with the peaks of the PSD SV

lines identified via FDD.

Figure 2.3: Stabilization diagram. The colors of the poles, identified by the numbers
0.0 to 4.0 in the legend, indicate respectively: unstable, stable in frequency, stable
in frequency and mode shape, stable in frequency and damping, stable in frequency
damping and mode shape.

2.2.2.4 Data-driven-based stochastic-subspace identification

The Data-driven SSI (SSI-dat) relies on the Kalman filter formulation of stochastic

state-space modeling. SSI-dat begins by rearranging the measurements from l sensors

collected as vectors yr ∈ Rl at each time instant r = 0, 1, ..., Nt into a Hankel matrix

(with constant anti-diagonals) Y0|2i−1 with a predefined number of block-rows set by

the integer time-lag parameter i. Thus, the Hankel matrix has 2li block rows, and with
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Nd = Nt + 1 total samples, the number of columns is j = Nd − 2i+ 1:

Y0|2i−1 =
1√
j



y0 y1 y2 . . . . . . yNt−2i+1

y1 y2 y3
...

... yNt−2i+2

y2 y3
...

...
... yNt−2i+3

...
...

...
...

...
...

...
...

...
...

... yNt−i−1

yi−1 yi
...

...
... yNt−i

yi yi+1
...

...
... yNt−i+1

yi+1 yi+2
...

...
... yNt−i+2

...
...

...
...

...
...

y2i−2 y2i−1
...

...
... yNt−1

y2i−1 y2i . . . . . . yNt−1 yNt



=

 Yp

Yf

 . (2.82)

The Hankel matrix can be partitioned into two submatrices, the past data matrix

Yp and the future data matrix Yf , each of size li× j. Within the SSI-data framework,

the Kalman state vectors sr (obtained from output observations up to time r − 1) are

collected into the Kalman state-sequence matrix Si = [si, si+1, ..., si+j−1] [13, 19]. This

matrix is estimated as Ŝi by orthogonally projecting the row space of the future data

matrix Yf onto the row space of the past data matrix Yp, via the projection matrix Πi:

Πi = Yf/Yp = YfY
T
p

(
YpY

T
p

)†
Yp, (2.83)

where the underline Yp indicates that the projection result lies in the row space of

the past data matrix. Note that YfY
T
p contains the output autocorrelation used to

form the Toeplitz matrix in SSI-cov, revealing the tight link between this orthogonal

projection and output covariances. Assuming full controllability and observability [13],

and provided that i satisfies Eq. (2.62), the main theorem of stochastic subspace

identification states that Πi factors into the extended observability matrix Oi and the

Kalman-filter state sequence Ŝi [19], i.e.

Πi = OiŜi =


C

CA
...

CAi−1


[
ŝi ŝi+1 ... ŝi+j−1

]
. (2.84)

The Hankel matrix of output data can be factorized by the linear-algebra LQ

decomposition, yielding a lower triangular matrix L and an orthogonal matrix Q
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(QQT = QTQ = I). Owing to the block-row structure of the output-data Hankel

matrix, the lower triangular factor can be partitioned into blocks with L11 ∈ Rli×li,

L21 ∈ Rl×li, L22 ∈ Rl×l, L31 ∈ Rl(i−1)×li, L32 ∈ Rl(i−1)×l, and L33 ∈ Rl(i−1)×l(i−1).

Consequently, the orthogonal factor is likewise decomposed as Q1 ∈ Rj×li, Q2 ∈ Rj×l,

and Q3 ∈ Rj×l(i−1), so that

Y0|2i−1 = LQ =


L11 0 0

L21 L22 0

L31 L32 L33



QT

1

QT
2

QT
3

 . (2.85)

As a result, the projection matrix can be numerically obtained directly from the LQ

decomposition of the output data Hankel matrix as follows

Πi = Yf/Yp =

L21

L31

[
QT

1

]
. (2.86)

Using Eq. (2.84) it is possible to obtain the extended observability matrix Oi and

the Kalman filter state sequence matrix Ŝi using the SVD of the numerically estimated

projection matrix (2.86), which resembles in some way the decomposition of the SSI-cov

Toeplitz matrix (refer to Eq. (2.64)):

Πi = UΣV T =
[
U1 U2

]Σ1 0

0 0

V1
V2

 ≈ U1Σ1V
T
1 , (2.87)

so obtaining

Oi = U1Σ
1/2
1 T, (2.88)

Ŝi = O†
iΠi, (2.89)

where T is a transformation matrix which can be considered as an identity matrix.

Now it is feasible to calculate the state matrices A and C to get the modal parameter

of interest.

Alternatively, the output data Hankel matrix can be decomposed considering the

following rearrangement with past output matrix with a block row added Y +
p and future
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matrix with first block row removed Y −
f :

Y0|2i−1 =
1√
j



y0 y1 y2 . . . . . . yNt−2i+1

y1 y2 y3
...

... yNt−2i+2

y2 y3
...

...
... yNt−2i+3

...
...

...
...

...
...

...
...

...
...

... yNt−i−1

yi−1 yi
...

...
... yNt−i

yi yi+1
...

...
... yNt−i+1

yi+1 yi+2
...

...
... yNt−i+2

...
...

...
...

...
...

y2i−2 y2i−1
...

...
... yNt−1

y2i−1 y2i . . . . . . yNt−1 yNt



=


Y0|i−1

Yi|i

Yi+1|2i−1

 =

 Y +
p

Y −
f

 .

(2.90)

Therefore, considering the LQ decomposition in Eq. (2.85), the projection matrix

and the output matrix Yi|i can be obtained as follows:

Πi−1 = Y −
f /Y

+
p =

[
L31 L32

]QT
1

QT
2

 (2.91)

Yi|i =
[
L21 L22

]QT
1

QT
2

 (2.92)

Reversed controllability matrix Γi can be obtained from Eq. (2.63) as follows

Γi = O†
iT1|i, (2.93)

from which G matrix can be obtained extracting the last l columns. The initial output

covariance R0 can be obtained as

R0 =
1

j
Yi|iY

T
i|i , (2.94)

According to [13], three methods are available to estimate the state matrices A and C.

The first method solves a least-squares problem on an overdetermined set of equations

built from the Kalman state sequence Ŝi = [ŝi, ŝi+1, ..., ŝi+j−1] from time i to i+ j − 1

[13], where ρw and ρv are residuals uncorrelated with the regressor Ŝi.
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Ŝi+1

Yi|i

 =

A
C

 Ŝi +
ρw
ρv

 , (2.95)

A
C

 =

Ŝi+1

Yi|i

 Ŝ†
i . (2.96)

All terms in Eq. (2.96) are numerically obtained by LQ decomposition.

The second method to estimate state matrices leverages the shifting nature of the

observability matrix, identical to the SSI-cov method described in Eqs. (2.71)-(2.72).

Oi =


C

CA
...

CAi−1

 =

 O↑
i

CAi−1

 =

 C
O↓

i

 ⇒ O↑
i =


C

CA
...

CAi−2

 , O
↓
i =


CA

CA2

...

CAi−1


⇒ O↑

iA = O↓
i ⇒ A = O↑

i

†
O↓

i

Alternatively, it is possible to decompose with SVD the linear combination of O↑
i and

O↓
i matrices, i.e.

[
O↓

i −O↑
i

]
= UΣV T ⇒ V =

V11 V12

V21 V22

 , (2.97)

A = V22V
−1
12 (2.98)

with V11, V12, V21, V22 ∈ Rn×n.

It is worth recalling that the first two methods do not mathematically guarantee

positive realness of the state-sequence estimates; consequently, this also holds for the

SSI-cov algorithm, which is based on the second approach (Eqs. (2.71)-(2.72)) [13, 19].

Indeed, the noise covariance estimates, and the matrices G and R0, are unbiased under

the assumption of infinitely long data. However, with finite-duration vibration-response

records, these estimates may yield a state-space model whose states are neither real nor

positive. In the frequency domain, this manifests as a synthesized spectrum that is not

positive for every frequency line, which is mathematically meaningless. Theoretically, a

forward innovation model cannot be obtained in such cases [13, 19], although in OMA

the priority is typically robust modal-parameter estimation rather than an exquisitely

accurate state-space model [13]. Nevertheless, when positive realness is a strict re-

quirement, the third method for estimating the state matrices should be adopted. This

approach uses the same least-squares setup as in the first method, i.e. Eq. (2.95), but

leverages the residuals to estimate the nonsteady state covariance matrices of the noise
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process (the innovation) in the Kalman-filter state-space formulation, so that

1

j

ρw
ρv

[
ρTw ρTv

]
=

 Qww
i Swv

i

[Swv
i ]T Rvv

i

 Ŝ†
i . (2.99)

Since the Kalman filter converges unbiased with infinite data, the approximation for

finite data introduces a bias but still ensures the positive realness of the states be-

cause the noise process covariance matrix in Eq. (2.99) is a positive-definite matrix for

construction (all its eigenvalues are positive), i.e.

Qww = Qww
i , Swv = Swv

i , Rvv = Rvv
i . (2.100)

The steady-state approximation ensures the validity of Eqs. (2.55)-(2.59), thus permit-

ting to directly numerically solving the Riccati in order to obtain the forward innovation

model [13].

Once the state matrices A and C are available, the modal parameters are obtained as

in the SSI-cov method via Eq. (2.75), i.e., by solving the EVD of the state transition

matrix A to find the Z-domain eigenvalues; mapping these back to the continuous

Laplace domain yields natural frequencies, damped natural frequencies, and damping

ratios. Also in SSI-dat, although the true model order n could, in principle, be inferred

from the rank of the projection matrix, in practice it is unknown due to noise and often

obscured by the absence of large SV gaps. Hence, a conservative stabilization-diagram

approach is likewise employed here to identify stable pole alignments corresponding

to the structure’s physical modes. The stability checks are the same as in HVC Eqs.

(2.77)–(2.78) and SVC Eqs. (2.79)–(2.81). Several SSI-dat variants appear in the

literature, introducing weighting matrices W1 ∈ Rli×li and W2 ∈ Rj×j pre- and post-

multiplying the projection matrix, i.e., W1ΠiW2, before the LQ decomposition [13].

The unweighted principal components (UPC) variant corresponds to the discussion so

far, taking both W1 and W2 as identity; UPC SSI-dat is typically used when modes

are well and uniformly excited and the SNR is good [13]. Conversely, the canonical

variate analysis (CVA) SSI-dat is preferred for non-uniformly excited modes and noisier

responses [13]. It employs the following weighting matrices:

W1 =

(
1

j
YpY

T
p

)−1/2

, W2 = Ij×j . (2.101)

Similarly to CVA SSI-cov, the SV of the weighted projection matrix can be interpreted

as principal cosine angles between past output matrix row subspace and future output

matrix row subspace [13]. Eventually, the principal component (PC) SSI-dat shows a

compromise between CVA SSI-dat and UPC SSI-dat, so using the following weighting

matrices:

W1 = Ili×li , W2 = Y T
p

(
1

j
YpY

T
p

)−1/2

Yp. (2.102)
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Despite UPC, PC, and CVA having slightly different physical meanings, no significant

differences in modal parameter estimate accuracy have been evidenced in the literature

[13].

2.3 PyOMA and PyOMA2 for operational modal analysis

Within the field of SHM, operational modal analysis (OMA) is a well-established

method for determining the dynamic properties of civil structures from the records of

the ambient or output-only vibration. For many years, the majority of OMA implemen-

tations have been available only as MATLAB toolboxes, which can limit accessibility

and integration with modern, open-source data science workflows. To overcome these

limitations, a multi-institutional research effort involving the University of L’Aquila

(Italy), the Norsk Treteknisk Institute in Oslo (Norway), and Politecnico di Torino

(Italy) has led to the development of PyOMA, an open-source Python package dedi-

cated to OMA [33].

The overall structure and goals of the PyOMA research project are summarized

in Fig. 2.4. The project was conceived to provide a flexible and transparent environ-

ment for modal identification, fully based on the standard scientific Python ecosystem

(NumPy, SciPy, Matplotlib, etc.), and to bridge the gap between advanced research

algorithms and everyday engineering practice. The project focused especially on driv-

ing results reproducible, sharing open-source code, and ensuring that OMA tools could

easily integrate into larger Python workflows for structural health monitoring, model

updates, and data analysis.

Figure 2.4: Schematic overview of the PyOMA research project and its main compo-
nents.
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2.3.1 Implemented algorithms in PyOMA

In its released version 1.5, the PyOMA package implements six widely used OMA

algorithms, covering both frequency- and time-domain approaches [33]:

1. frequency domain decomposition (FDD) [34];

2. enhanced frequency domain decomposition (EFDD) [35];

3. frequency–spatial domain decomposition (FSDD) [36];

4. covariance-driven stochastic subspace identification (Cov-SSI) [37, 13];

5. data-driven stochastic subspace identification (DD-SSI) [19];

6. natural excitation technique – eigensystem realization algorithm (NExT–ERA)

[13, 22].

These methods provide complementary views on the same underlying stochas-

tic state-space model of the structure. Frequency-domain techniques (FDD, EFDD,

FSDD) are particularly useful for obtaining initial estimates of natural frequencies and

mode shapes, while time-domain methods (Cov-SSI, DD-SSI, NExT–ERA) enable more

rigorous estimation of damping ratios and provide tools such as stabilization diagrams

and clustering criteria. An overview of the algorithms implemented in PyOMA is shown

in Fig. 2.5.

Figure 2.5: Overview of the OMA algorithms implemented in the PyOMA toolbox.

In the context of the present thesis, this set of algorithms is particularly relevant

because it includes both the frequency-domain FDD method and the covariance-driven

SSI formulation, which constitute the core of the identification pipeline adopted to

track damage evolution in the tested reinforced-concrete buildings.
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2.3.2 Graphical user interface PyOMA GUI

While PyOMA can be used directly as a Python module, the project also provides a

dedicated graphical user interface, PyOMA GUI, intended for users who prefer a more

interactive workflow or who are less familiar with Python scripting. PyOMA GUI is

distributed as an open-source application and is built on top of the same underlying

Python routines that form the PyOMA package.

From a user perspective, PyOMA GUI guides the analyst through the complete

OMA workflow, including:

• import of measurement data from different file formats;

• definition of the structural geometry and assignment of measurement channels

and degrees of freedom (DOFs);

• basic preprocessing of the acquired time histories (detrending, resampling, deci-

mation, filtering);

• execution of the dynamic identification algorithms (FDD, EFDD, FSDD, Cov-

SSI, DD-SSI, NExT–ERA) with interactive visualization of spectra, singular value

plots, stabilization diagrams, and mode shapes;

• post-processing and export of the identified modal parameters for further analy-

ses, including model updating or long-term SHM.

A schematic representation of the main components and data flow within Py-

OMA GUI is reported in Fig. 2.6. Although the present thesis relies primarily on

Python scripts and Jupyter notebooks for batch processing of the large test dataset,

the design philosophy of PyOMA GUI is consistent with the needs of this work: en-

abling reproducible analyses while also supporting quick visual inspection and quality

control of the identified modes.

2.3.3 From PyOMA to PyOMA2

More recently, the original PyOMA implementation has evolved into a second-generation

toolbox, PyOMA2 1, which reorganizes and significantly extends the capabilities of the

package [11]. The new logo of PyOMA2 is shown in Fig. 2.7, emphasizing the continuity

with the original project while highlighting the modular and extensible architecture of

the new code.

PyOMA2 is structured into three main layers:

• Data and experiment layer: this level provides classes to store and manage

measurement data, metadata, sensor layouts, test configurations, and processing

1https://github.com/dagghe/PyOMA2
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Figure 2.6: General overview of the PyOMA GUI graphical user interface and its main
workflow steps.

Figure 2.7: Logo of the PyOMA2 toolbox, the second-generation implementation of
PyOMA.

parameters. It supports both single-setup and multi-setup experiments, including

tests with reference and roving sensors, which are common in civil engineering

applications [27].

• Algorithm layer: this level contains the implementations of the identification

algorithms. Each algorithm is encapsulated in a dedicated class, which receives

data objects as input and returns modal estimates, together with diagnostic plots

such as singular value spectra, stabilization diagrams, and mode-shape anima-

tions.

• Visualization and utilities layer: this level includes functions for animating

mode shapes, interacting with the generated plots, and performing auxiliary tasks

(e.g., selection of stable poles, computation of MAC values, or export of identified
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modes to external formats).

In addition to reorganizing the code structure, PyOMA2 extends the range of sup-

ported methods. Besides the frequency-domain approaches (FDD, EFDD, FSDD) and

the time-domain Cov-SSI and DD-SSI algorithms already present in PyOMA, PyOMA2

introduces the Polyreference Least Squares Complex Frequency (pLSCF) / Polymax

method [13]. This offers further flexibility for frequency-domain modal identification,

especially in cases where closely spaced modes or higher damping require more sophis-

ticated curve-fitting strategies.

2.3.4 Role of PyOMA2 in the present thesis

In this thesis, PyOMA2 is used as the main Python toolbox for processing the accelera-

tion time histories recorded on the two full-scale, three-dimensional reinforced-concrete

test buildings subjected to shaking table tests). The workflow implemented in PyOMA2

for this work can be summarized as follows:

1. import of the raw acceleration records from the dense sensor network installed on

both the as-built and retrofitted frames;

2. preprocessing steps consistent with the general data treatment adopted in this

thesis (orientation of sensor axes, time alignment across tests, interpolation, anti-

alias filtering, and optional decimation to the analysis sampling rate);

3. application of FDD to obtain initial estimates of natural frequencies and prelim-

inary mode shapes at each damage state for both structures;

4. application of covariance-driven SSI to refine the modal estimates, construct sta-

bilization diagrams, and extract stable poles across model orders, exploiting the

tools available in PyOMA2 for clustering and MAC-based mode selection;

5. export of the identified modal parameters and mode shapes for comparison with

the finite-element baseline model developed in the Scientific Toolkit for OpenSees

(STKO) and for tracking the evolution of modal properties with increasing seismic

excitation.

Although PyOMA2 also provides implementations of DD-SSI and additional identi-

fication techniques, the main results reported in this thesis are based on the combination

of FDD and Cov-SSI, which has proven robust and computationally efficient for the

large dataset considered. The use of an open-source, Python-based toolbox ensures

that the complete identification process is fully reproducible, facilitating future exten-

sions, such as automated monitoring, real-time damage tracking, or integration with

machine learning models for structural health monitoring.
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2.4 MATLAB OoMA toolbox

In addition to the Python-based workflows, a number of open toolboxes for operational

modal analysis (OMA) have been developed in the MATLAB environment over the last

decade. Among these, the OoMA (Output-Only / Operational Modal Analysis) tool-

box by Otto has become a widely used, freely available resource for output-only modal

identification in civil, mechanical, and aerospace applications [38]. The toolbox is dis-

tributed through the MATLAB Central File Exchange and provides a set of functions

specifically tailored to stochastic subspace identification (SSI) and frequency-domain

decomposition (FDD) of OMA, which can be easily integrated into existing MAT-

LAB workflows. The OoMA toolbox was conceived to offer a compact, script-oriented

implementation of output-only modal analysis algorithms that exposes intermediate

quantities such as block Hankel matrices, stabilization diagrams, and MAC values. In

contrast to large commercial packages, the code emphasizes transparency of the identifi-

cation procedure and the possibility of modifying or extending the routines for research

purposes. The theoretical background for the implemented methods follows standard

references on operational modal analysis and subspace-based system identification [13].

2.4.1 Implemented algorithms and core functions

The core of the OoMA toolbox consists of several identification routines centered on

stochastic subspace identification, complemented by a frequency-domain method for

initial estimation of modal properties [38]. The main algorithms documented in the

toolbox are:

• covariance-driven stochastic subspace identification (SSI-COV), based on auto-

and cross-covariance sequences of the outputs;

• data-driven stochastic subspace identification (SSI-DATA), operating directly on

Hankel matrices built from the measured time histories;

• covariance-driven SSI with reference channels (SSI-COV/REF), for multi-setup

or multi-reference experiments;

• a frequency-domain identification function compatible with the Frequency Do-

main Decomposition (FDD) method, which can also be used together with the

dedicated FDD implementation by Farshchin [39].

Alongside these high-level routines, OoMA provides helper functions to support the

complete OMA workflow, such as:

• construction of block Hankel matrices from multi-channel time series;

• generation and interactive inspection of stabilization diagrams;

• computation of the Modal Assurance Criterion (MAC) and MAC matrices;
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• organization and export of identified modal parameters (frequencies, damping

ratios, and mode shapes).

These tools allow the user to move from raw accelerations to stabilized modal estimates

and provide diagnostics for assessing the quality and physical meaning of the identified

modes.

The toolbox is distributed as a standard MATLAB toolbox file and a compressed

archive that can be downloaded from the File Exchange page [38], where example Live

Scripts are also provided to illustrate typical use cases. The distribution includes a

recommended “Cite As” entry so that users can properly acknowledge the toolbox in

scientific publications.

2.4.2 Use in recent research and applications

Since its release, the MATLAB OoMA toolbox has been adopted in several peer-

reviewed studies as the main implementation of SSI-based OMA or as a reference

method. Use SSI-COV as implemented in OoMA to track accelerated corrosion dam-

age in a steel beam via an ARMA-based damage index [40]. Hakim et al. employ

functions from the OoMA toolbox to construct stabilization diagrams and extract nat-

ural frequencies when studying the effect of corrosion damage on the dynamic proper-

ties of reinforced-concrete buildings [41]. Cardoni et al. refer to OoMA as one of the

OMA tools used when proposing a refined output-only modal identification technique

for structural health monitoring of civil infrastructures [42]. These examples illustrate

that OoMA is not only a teaching or demonstration toolbox, but a practical tool used

in real test campaigns and structural health monitoring research.

2.4.3 Role of OoMA in the present thesis

In the present thesis, the MATLAB OoMA toolbox is used in parallel with the Python-

based PyOMA2 framework (Section 2.3) to perform cross-validation of the identified

modal parameters. Specifically, the acceleration records from the shaking table tests

on the two full-scale reinforced-concrete buildings are processed in OoMA using:

1. covariance-driven SSI (SSI-COV) to construct stabilization diagrams and extract

stable poles across model orders;

2. data-driven SSI (SSI-DATA) and, where necessary, SSI-COV with reference chan-

nels (SSI-COV/REF) to verify the robustness of the identification under alterna-

tive formulations and multi-setup configurations;

3. a frequency-domain FDD-type analysis as an additional check on the natural

frequencies and qualitative mode shapes obtained for selected damage states,

optionally compared to the dedicated FDD toolbox [39].
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The modal estimates obtained with OoMA are compared to those produced by

PyOMA2 and to the finite-element baseline model developed in the Scientific Toolkit for

OpenSees (STKO). Consistency between the MATLAB- and Python-based workflows

in terms of natural frequencies, damping ratios, and MAC values for the principal

modes provides an important validation of the overall identification chain and increases

confidence in the trends used to monitor damage evolution and retrofit effectiveness.
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Chapter 3

Case study: full-scale RC

buildings on a shaking table

3.1 Overview of the experimental campaign

The case study considered in this thesis consists of two nominally identical, full-scale,

three-dimensional reinforced-concrete (RC) frame buildings tested on a unidirectional

shaking table at the University “G. d’Annunzio” of Chieti–Pescara. The buildings

are mounted side by side on a common RC foundation slab rigidly fixed to the shaking

table. The superstructures are not connected to each other and can therefore be studied

as two independent specimens subjected to the same base excitation.

One of the buildings is in an as-built configuration (Building 1), whereas the second

building (Building 2) is equipped with a proprietary seismic retrofitting system that

mainly targets an increase in lateral stiffness and a modification of the global dynamic

response. The retrofit details are covered by an ongoing patent process and cannot

be disclosed in this thesis, but the two specimens are otherwise identical in terms of

geometry, mass distribution, and material properties. A schematic view of the geometry

and reinforcement layout of the columns, slabs, and foundation is shown in Fig. 3.1. A

photograph of the two buildings installed on the shaking table is reported in Fig. 3.2.

3.2 Geometry, materials, and structural configuration

Each frame has a rectangular plan of 5.00m×2.00m. The three floor levels are located

at heights of 2.90 m, 5.80 m, and 8.84 m above the base plate, with a clear inter-

storey height of approximately 2.50 m. The vertical load-resisting system consists of

RC columns with square cross-section of 0.20m× 0.20m, reinforced with four φ16 mm

longitudinal bars (longitudinal reinforcement ratio of about 2%) and closed φ8 mm

stirrups. Transverse reinforcement is spaced at 100 mm along the column height, with

closer spacing (50 mm) in the plastic hinge regions near the base to improve ductility.

The floor system is a solid RC slab with a total thickness of approximately 0.40 m
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Figure 3.1: Geometric and reinforcement details of the RC columns, slabs and founda-
tion slab (dimensions in cm).

Figure 3.2: Twin full-scale RC buildings mounted on the unidirectional shaking table.
Building 1 (left) is as-built; Building 2 (right) is retrofitted.

and symmetric smeared bending reinforcement using φ16 mm bars. The perimeter

brick infills and internal partitions are installed on the upper storeys to reproduce

realistic mass and stiffness contributions of typical building envelopes. Both frames are

cast with concrete class C30/37 and B450C reinforcing steel, consistent with common

European design practice.
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3.2 – Geometry, materials, and structural configuration

The same buildings had already been used in previous shaking table tests investi-

gating a servo-hydraulic active mass damper (AMD) system, as documented in [8]. To

guarantee comparable mass conditions between the current and previous test configura-

tions, the weight of the removed device was compensated by increasing the thickness of

the top slab of both specimens. As a result, the two buildings share the same geometry,

material properties, and mass distribution, with the only substantial difference being

the presence of the retrofit system in one of them.

In addition to the RC structural system, the laboratory setup includes an internal

steel safety frame located in the central bay between the two buildings. The frame is

composed of a vertical steel column, and it is bolted to the foundation slab at the bottom

and to the slab of the third floor at the top, as shown in Fig. 3.3. Its primary function

is to prevent catastrophic collapse of the specimens in case of severe damage during

the high-intensity shaking-table tests, ensuring the safety of the laboratory and the

equipment. Under the moderate vibration levels used for the white-noise tests and the

lower-intensity Irpinia runs, the safety frame is not expected to carry significant load;

however, some interaction with the RC frames can occur at larger lateral displacements,

and its possible influence on the identified dynamic properties will be discussed in the

next chapters.

Figure 3.3: View of the two RC buildings on the shaking table with the internal steel
safety frame in the central bay. The frame is bolted to the foundation slab and to the
slab of the third floor and is used as a safety device during the shaking-table tests.
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Case study: full-scale RC buildings on a shaking table

3.3 Instrumentation and sensor layout

The structures are instrumented with 40 low-power triaxial sensors connected to Eth-

ernet switches. Each sensing unit is based on the ASDEA MonStr device, a MEMS-

technology unit equipped with a triaxial accelerometer, gyroscope, inclinometer, mag-

netometer and thermometer. The power consumption of each device is extremely low

(about 0.6 W), and the units are certified IP68 with full water and dust protection,

able to operate nominally in the temperature range from −20◦C to +70◦C.

Of the 40 sensors, two were mounted to measure the input motion from the shaking

table: one attached directly to the table and one attached to the RC foundation slab.

The remaining 38 sensors were distributed evenly between the two specimens, with 19

units on each building, installed on the RC frames as well as on the internal partitions

and infill walls.

For the purposes of the OMA performed in this thesis, only the accelerometers

installed at (or very close to) the RC frame nodes and aligned with the global shaking

direction are used. This choice focuses the analysis on the primary lateral degrees

of freedom and avoids the influence of possible local panel modes in the infills. The

selected channels correspond to three storey levels per building, with one sensor at the

top of each column line, giving six effective sensors per building. It is worth noting

that, due to installation constraints, the sensor at the third floor in each building is not

located exactly at the ideal beam–column node but is positioned a short distance away

along the slab edge. Given the small offset relative to the bay dimensions, the sensor is

nevertheless associated with the corresponding frame node in the modal analysis, and

its influence on the identified global modes is considered negligible.

The adopted OMA sensor layout is depicted in Fig. 3.4, where Building 1 (as-built)

and Building 2 (retrofitted) are shown separately together with the sensor identifiers

used in the dataset.

The coordinates of the twelve sensors used for OMA are reported in Table 3.1. They

are expressed in the global reference system adopted for the experimental setup, with

X along the shaking-table direction, Y in the transverse horizontal direction and Z

vertical.

All sensors record accelerations with a nominal sampling rate of 1 kHz. The acqui-

sition architecture is asynchronous: each unit relies on its own local clock and time-

stamps the measurements using an absolute time reference. This is a typical strategy

in wireless or distributed structural health monitoring systems and requires dedicated

post-processing to reconstruct a common uniform time axis for all channels [10].

3.4 Shaking table input protocol

The buildings were tested on a unidirectional shaking table, excited along the global

X direction. The input history was designed to reproduce an earthquake–sequence
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3.4 – Shaking table input protocol

Figure 3.4: Sensor layout used for OMA in the case study. Only the accelerometers
located at (or very close to) the RC frame nodes in the direction of shaking are consid-
ered in this thesis.

Table 3.1: Coordinates of the accelerometers used for OMA (global reference system,
units in mm).

Sensor X [mm] Y [mm] Z [mm]

MNAT0003 67698 2362 7825

MNAT0037 62698 2362 8840

MNAT0039 62698 2362 2900

MNAT0045 67698 2362 2900

MNAT0061 62698 2362 5800

MNAT0062 67698 2362 5800

MNAT0009 67698 2362 7825

MNAT0014 62698 2362 5800

MNAT0041 62698 2362 2900

MNAT0042 67698 2362 2900

MNAT0060 67698 2362 5800

MNAT0063 62698 2362 8840

-type loading, in which the structures experience a series of increasing seismic demands

interspersed with low-amplitude white-noise excitations suitable for operational modal

analysis.

The seismic component of the protocol is based on a real accelerogram recorded

during the 1980 Irpinia earthquake in southern Italy [9]. Let aIrp(t) denote this reference

acceleration time history. In the tests, scaled versions of aIrp(t) were applied to the
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Case study: full-scale RC buildings on a shaking table

shaking table so as to reach different peak ground acceleration (PGA) levels. The

sequence of Irpinia runs is as follows:

• Irpinia Ladder 25% (Day 1): three consecutive applications of the Irpinia

record, scaled such that the corresponding PGAs are 0.046 g, 0.083 g, and 0.086 g.

The three runs have an individual duration of 24 s, leading to a total ladder

duration of 72 s (24× 3);

• Irpinia 50% (Day 1): single application of the scaled Irpinia record with PGA

0.202 g and duration 24 s;

• Irpinia 75% (Day 2): single application with PGA 0.376 g and duration 24 s;

• Irpinia 100% (Day 2): single application with PGA 0.440 g and duration 24 s;

• Irpinia 125% (Day 2): single application with PGA 0.616 g and duration 24 s.

Between the Irpinia runs, the buildings were excited with stationary Gaussian white

noise. These white-noise tests were designed to satisfy the typical assumptions of

operational modal analysis broadband input, approximately flat power spectral density

in the frequency band of interest, and relatively low amplitude so as to remain in

the weakly nonlinear or quasi-linear regime. The white-noise motions have standard

deviations of approximately 0.01 g and a nearly constant power spectral density of

about −60 dB in the 0–50 Hz frequency range. For each test, the table controller also

reports an equivalent PGA, which is used here as a compact measure of input intensity.

Table 3.2 summarises the full shaking-table protocol over the two test days, in-

cluding PGAs, standard deviations and durations for both the Irpinia and white-noise

inputs. The white-noise tests numbered 2 and 3 provide the reference “initial-condition”

modal properties, while the subsequent white-noise records (4 to 7) are used to moni-

tor the evolution of modal parameters as damage accumulates due to the progressively

more severe Irpinia excitations.

3.5 Data acquisition and preprocessing

All acceleration time histories are recorded in an HDF5 database and exported for

offline processing. Due to the asynchronous acquisition scheme, the start times and

sampling instants of the different channels do not perfectly coincide, and small clock

drifts occur over the duration of the tests. In addition, the orientation of the sensor axes

differs from unit to unit, depending on how the devices are mounted on the structural

elements.

To obtain a consistent dataset for OMA, the following preprocessing steps are car-

ried out:
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Table 3.2: Excitation input protocol: sequence of scaled Irpinia waveform and white
noise shaking inputs.

Day of Test Shaking table test sequences PGA [g] Dev. Std. [g] Duration [s]

27/06/2022

Irpinia Ladder 25% (0.046; 0.083; 0.086) – 24 · 3 = 72

White Noise 2 0.070 0.011 160

White Noise 3 0.064 0.011 320

Irpinia 50% 0.202 – 24

White Noise 4 0.067 0.009 160

28/06/2022

Irpinia 75% 0.376 – 24

White Noise 5 0.076 0.011 160

Irpinia 100% 0.440 – 24

White Noise 6 0.068 0.012 160

Irpinia 125% 0.616 – 24

White Noise 7 0.079 0.011 160

1. Coordinate transformation: each triaxial accelerometer record is rotated from

the local sensor axes to the global structural axes using the known installation

orientations, so that all channels are expressed in a common (X,Y, Z) reference

system;

2. Time synchronisation: using the absolute time-stamps and following the strat-

egy proposed for asynchronous sensor networks in [10], all channels are numeri-

cally interpolated onto a common uniformly spaced time grid with effective sam-

pling frequency 1 kHz, aligning the data to the fastest clock;

3. Filtering and decimation: to reduce high-frequency noise and avoid aliasing,

the signals are first mapped to a finer grid, low-pass filtered using an anti-alias

finite impulse response (FIR) filter, and then decimated to the analysis sampling

rate adopted in the subsequent OMA (200 Hz);

4. Selection of stationary windows and channels: for each white-noise test,

the stationary portion of the records is extracted and the subset of channels

corresponding to the frame sensors shown in Fig. 3.4 is retained for modal iden-

tification.

The resulting synchronised and filtered acceleration time histories form the basis for

the frequency-domain and time-domain identification procedures described in section

2.2. In particular, the data are analyzed using the PyOMA2 toolbox (Section 2.3) and

the MATLAB OoMA toolbox (Section 2.4) in order to estimate and track the evolution

of modal parameters for both the as-built and the retrofitted buildings under increasing

levels of seismic demand.
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Chapter 4

Experimental data processing

and OMA pipeline

This chapter presents the operational modal analysis (OMA) procedure adopted in this

thesis to identify the dynamic properties of the two full-scale RC buildings described

in Chapter 3. The aim is to obtain robust estimates of natural frequencies, damp-

ing ratios and mode shapes at different damage states, starting from raw acceleration

measurements recorded during white-noise excitations.

The workflow consists of: (i) pre-processing of the acceleration signals (import,

time alignment, resampling, orientation, trimming, detrending and decimation); (ii)

frequency-domain identification based on Frequency Domain Decomposition (FDD,

specifically an EFDD/FSDD-type approach); and ((iii) time-domain identification using

covariance-driven stochastic subspace identification (SSI-COV). The same methodol-

ogy and parameter choices are applied consistently in both software environments used

in this work.

4.1 Data import, time alignment and resampling

Acceleration records are acquired by the MonStr sensor network (Section 3.3) and

stored in HDF5 files, one per test. For each white-noise test and each building, the

following quantities are imported for all relevant sensors:

• the three components of acceleration in the sensor-local reference system, ex-

pressed in raw counts;

• the associated time stamps, expressed in absolute time.

The raw counts are converted into physical units through a constant gain factor,

such that the accelerations are expressed directly in units of gravitational acceleration

g. For each device this yields three time series ax(ti), ay(ti), az(ti) defined on a (slightly

irregular) time grid ti.
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Since all MonStr units rely on independent clocks, the start times and sampling in-

stants of different devices do not coincide exactly. To obtain a common time origin, the

absolute time-stamp of the first sample is extracted for each sensor and the minimum

of these values is subtracted from all time vectors. In this way, all channels share a

consistent reference time, although small differences in sampling intervals remain.

To perform modal analysis it is convenient to work with a regular grid. A target

sampling frequency of ftarget = 2000 Hz is selected and a common time vector

t∗ = {0,∆t, 2∆t, . . . , Tmin}, ∆t = 1/ftarget,

is created, where Tmin is the minimum record length across all channels. For each sensor

and each component, the original time series is interpolated onto this grid using linear

interpolation,

ãk(t
∗) = interp

(
t∗, ti, ak(ti)

)
, k ∈ {x, y, z}, (4.1)

so that all channels are uniformly sampled on the same time vector.

The interpolation step has two main purposes: (i) to remove the small clock jit-

ters inherent to the asynchronous acquisition of the MonStr units, and (ii) to obtain

a single, uniformly sampled multi-channel record suitable for frequency-domain and

time-domain identification. Let t
(s)
i denote the shifted time stamps of sensor s (after

subtracting the minimum initial time across all channels) and a
(s)
k (t

(s)
i ) the correspond-

ing samples for component k ∈ {x, y, z}. Because each device runs on its own clock, the

grids {t(s)i } are only approximately uniform and differ slightly from sensor to sensor,

even though their mean sampling frequency is close to the nominal value.

A common regular grid t∗ is therefore introduced as above, with ftarget = 2000 Hz

and Tmin equal to the shortest record length among all channels. For each sensor and

each component, the original samples are projected onto this grid by linear interpola-

tion,

ã
(s)
k (t∗j ) = interp

(
t∗j ; t

(s)
i , a

(s)
k (t

(s)
i )

)
, j = 0, . . . , N∗ − 1,

so that all channels become uniformly sampled on the same time vector t∗.

This interpolation-based synchronization follows typical strategies developed for

asynchronous structural-health-monitoring sensor networks, where absolute time stamps

are used to reconstruct the individual sampling instants and then all records are resam-

pled onto a common, finer grid before modal analysis [10, 1]. Provided that the local

clock jitter remains small with respect to ∆t, the induced amplitude and phase errors

are negligible in the frequency band of interest and do not bias the estimated modal

parameters.
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4.2 Channel selection and orientation into the global frame

The accelerometers are mounted on the RC frames, partitions and infill walls of both

buildings, with each MonStr unit having its own local reference axes. The test docu-

mentation provides, for each device:

• whether it is located on the RC frame, on partitions/infill, or used as an input

sensor (table and foundation slab);

• which local axes correspond to the global directions X, Y and Z, including the

sign convention (e.g. +X, -Y, +Z).

For OMA, only the sensors on the RC frames are retained and only the components

aligned with the global shaking plane are used. In particular:

• sensors on the RC frames are selected by means of a flag in the metadata; this

yields 19 devices per building;

• sensors on partitions and infills are ignored for OMA, as they mainly capture

local panel modes;

• for each frame sensor, two global directions are defined, associated with the global

X (shaking direction) and Y axes, respectively.

The orientation of each sensor is modeled by a simple orthogonal transformation

between the local and global axes. Since the devices are installed with their local axes

approximately aligned with the building axes, this transformation reduces to selecting,

for each sensor, the appropriate local component and applying the correct sign to

obtain the global X and Y responses. The mapping between local and global directions

(e.g. global X corresponding to local −Y for a given device) can differ from sensor to

sensor, and it is fully specified in the test documentation through axis labels and sign

conventions. In this way, two horizontal acceleration components are associated with

each frame sensor, representing the response along the global shaking direction and the

transverse horizontal direction.

The third, nominally vertical, component is retained during the basic pre-processing

but is not used in the subsequent modal identification. Since the shaking table applies

purely horizontal excitation and the buildings are much more flexible in the lateral

directions than in the vertical one, the vertical degrees of freedom are only weakly

excited and weakly coupled with the horizontal modes. Their natural frequencies are

expected to lie at much higher values (associated with local slab and floor vibrations),

outside the frequency band of interest for the global lateral modes. Neglecting the ver-

tical components therefore does not affect the identified lateral natural frequencies and

mode shapes, while it simplifies the data set and improves the numerical conditioning

of the OMA procedures.

51



Experimental data processing and OMA pipeline

Due to installation constraints, the sensor at the third floor of each building is

not located exactly at the theoretical beam–column node but a short distance away

along the slab. Given the relatively small offset compared to the bay dimensions, these

devices are still associated with the corresponding frame nodes in the modal analysis.

The input sensors on the shaking table and foundation slab are processed in the

same way, ensuring that positive acceleration corresponds to motion in the positive

global X direction.

The effect of the orientation step is illustrated in Fig. 4.1, which compares the three

acceleration components of one sensor in the original local axes and after rotation into

the global frame. After rotation, the static gravity component is almost entirely aligned

with the global vertical direction, while the horizontal components oscillate around zero,

confirming the correctness of the adopted convention.

Figure 4.1: Example of orientation correction for sensor MNAT0003. Top: accelerations
in the sensor-local axes. Bottom: accelerations after rotation into the global frame. The
gravity component is concentrated in the global vertical direction, while the horizontal
components oscillate around zero.

4.3 Selection of stationary windows, detrending and dec-

imation

Although the white-noise tests are nominally stationary, the start and end of each

record are affected by the ramp-up and ramp-down of the shaking-table controller.

To ensure that only stationary segments are used, each resampled record is inspected
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4.3 – Selection of stationary windows, detrending and decimation

and an inner time window is selected. For White Noise 2, used as a reference case in

this thesis, the interval [tstart, tend] = [12 s, 172 s] is chosen, leading to a duration of

TOMA = 160 s. Similar criteria are applied to the other white-noise tests.

The global acceleration components from all frame sensors are then assembled into

a data matrix

Y(tn) =
[
aglobX,1 (tn) aglobY,1 (tn) . . . aglobX,N (tn) aglobY,N (tn)

]
, (4.2)

where N = 6 is the number of frame sensors per building and tn are the discrete time

instants within the selected window.

Before identification, each column of Y is detrended to remove any constant offset

or linear drift. This is done by subtracting the least-squares linear fit of each time

series, yielding a zero-mean, trend-free dataset.

To reduce computational cost and eliminate unnecessary high-frequency content,

the detrended data are then decimated by an integer factor q = 10. The procedure

consists of a low-pass anti-alias FIR filter followed by downsampling, leading to an

effective sampling frequency

fs =
ftarget
q

=
2000

10
= 200 Hz.

The associated Nyquist frequency of 100 Hz is largely sufficient, since all modes of

interest lie below 25 Hz. The same decimation strategy and parameters are used in

both software implementations.

To verify that the preprocessed white-noise records satisfy the standard assumptions

of OMA (approximately stationary, zero-mean, nearly Gaussian response, broadband

excitation), diagnostic “info plots” are inspected for representative channels before and

after the preprocessing steps. Each info plot combines the time history, the normalised

auto-correlation, the probability density function (PDF), the power spectral density

(PSD) and a normal probability (Q–Q) plot, following common practice in OMA data

screening [1].

Figure 4.2 shows an example for one response channel after time alignment and

interpolation but before selection of the stationary window and decimation. The time

history still contains initial and final transients, and the PSD extends beyond the

frequency band of interest. The PDF is sharply peaked due to the presence of spikes,

and slight deviations from a straight line are visible in the normal probability plot.

After extracting the stationary portion of the record, removing the mean, and ap-

plying the anti-alias filtering and decimation to the analysis sampling rate, the cor-

responding info plot in Fig. 4.3 exhibits a much more stationary signal. The PSD

is approximately flat up to about 50 Hz and then decays rapidly, the auto-correlation

function quickly converges to zero, and both the PDF and Q–Q plot indicate a response

that is close to Gaussian. These checks support the validity of the OMA assumptions
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for the processed records used in the subsequent FDD and SSI analyses.

Figure 4.2: Example “info plot” before selection of the stationary window and deci-
mation. The subplots show the time history, normalized auto-correlation, probability
density function, power spectral density and normal probability plot.

Figure 4.3: Info plot of the same channel after extraction of the stationary white-noise
window, detrending and decimation to the analysis sampling rate. The response is
approximately stationary, the PSD is nearly flat in the 0–50 Hz band, and the marginal
distribution is close to Gaussian.
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4.4 Frequency-domain identification: FDD / FSDD

The first step of modal identification is carried out in the frequency domain using

Frequency Domain Decomposition (FDD) [34, 36]. The method operates on the cross-

power spectral density (PSD) matrix Syy(ω) of the output vector Y(t), estimated via

Welch’s method from the decimated data. At each discrete circular frequency ωk, a

singular value decomposition is performed,

Syy(ωk) = U(ωk)Σ(ωk)U
H(ωk), (4.3)

where Σ(ωk) is a diagonal matrix containing the singular values σ1(ωk) ≥ σ2(ωk) ≥ . . .

and U(ωk) contains the corresponding singular vectors.

The first singular value σ1(ω) is commonly referred to as the complex mode indicator

function (CMIF). Peaks of the CMIF indicate candidate natural frequencies, and the

first singular vector at those frequencies provides estimates of the associated mode

shapes. In this work an enhanced version of FDD, often termed EFDD or FSDD, is used:

around each CMIF peak, a narrow frequency band is selected and an inverse Fourier

transform of the corresponding single-degree-of-freedom spectral bell is computed to

obtain an approximate impulse response function, from which damping ratios can also

be estimated [36].

The CMIF plots obtained for each white-noise test are used primarily to identify

the approximate positions of the main modes and to support the interpretation of the

stabilization diagrams described in the next section.

4.5 Time-domain identification: covariance-driven SSI

The main modal identification is performed in the time domain using covariance-driven

stochastic subspace identification (SSI-COV) [37, 13, 19]. The structural response is

modeled as a discrete-time linear stochastic state-space system,

xk+1 = Axk +wk, (4.4)

yk = Cxk + vk, (4.5)

where xk is the state vector, yk is the output vector (accelerations), and wk, vk are

zero-mean white-noise processes. The matrices A and C contain the system dynamics

and the modal information to be identified. In the covariance-driven formulation, the

information required for identification is encoded in the output covariance matrices,

Ryy(ℓ) = E
[
yky

T
k+ℓ

]
, (4.6)

which are estimated empirically from the measured outputs for a range of time lags

ℓ. These covariance matrices are arranged into a block Toeplitz matrix from which an
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extended observability matrix is identified by means of singular value decomposition.

The system matrix A is then obtained via least-squares regression, and its eigenvalues

and eigenvectors are used to compute modal properties. The method is applied for a

range of model orders up to a maximum order nmax. In this thesis, the number of block

rows is taken as br = 80, providing a sufficient delay range to capture the dynamics of

interest, and the maximum model order is set to nmax = 2br = 160. A stabilization

diagram is then built by plotting the identified poles in the frequency–order plane and

assessing their stability as the model order increases. A pole is considered stable when

its natural frequency, damping ratio and mode shape change only slightly between

successive orders and when the mode shapes have a high Modal Assurance Criterion

(MAC) [12]. The stabilization diagram is examined in conjunction with the CMIF

peaks from FDD to select stable poles associated with the physical modes. For each

mode of interest, a representative model order is chosen and the corresponding natural

frequency fn, damping ratio ξn and normalized mode shape vector ϕn are extracted.

These modal triplets are then used in the next Chapter to track the evolution of the

dynamic properties with increasing seismic input and damage.

4.6 Mode shape visualization

To interpret the identified modes, the modal vectors are visualized on the three-

dimensional geometry of the buildings. Let x0
j denote the coordinates of the j-th sensor

location in the undeformed configuration and ϕn the complex mode shape associated

with mode n. A deformed configuration is obtained as

xdef
j = x0

j + αℜ{ϕn,j}, (4.7)

where α is a real scale factor chosen to improve visual clarity and ϕn,j is the sub-vector

of the modal shape associated with sensor j. The deformed frame is plotted together

with the undeformed geometry, allowing for a direct visualization of global bending

and torsional modes as well as the relative participation of the as-built and retrofitted

buildings.

The same identification and visualization procedure is applied consistently to all

white-noise tests considered in this thesis, providing a coherent basis for the comparison

of modal properties across damage states and between the as-built and retrofitted

specimens.
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Chapter 5

Results of operational modal

analysis

This chapter presents the results of the operational modal analysis (OMA) applied to

the two full-scale RC buildings introduced in Chapter 3 and processed according to

the methodology described in Chapter 4. The objectives are: (i) to illustrate how the

global modes are identified from the white-noise (WN) tests; (ii) to track the evolution

of natural frequencies and damping ratios with increasing seismic demand; and (iii) to

compare the dynamic behavior of the as-built Building 1 and the retrofitted Building 2,

as well as the experimental results with the STKO reference model.

Unless otherwise stated, all results refer to output-only identification from the white-

noise excitations interleaved with the scaled Irpinia records, as summarized in Table 3.2.

Modal parameters are estimated using both FDD/FSDD and SSI-COV, and a consis-

tent set of modes is selected according to the stabilization criteria of Section 4.5.

5.1 Analyzed tests and twin-building configuration

The analysis considers the sequence of white-noise records WN2–WN7 recorded on

27–28/06/2022. WN2 and WN3 are low-amplitude signals acquired before any severe

Irpinia excitation and are therefore representative of the initial, almost-undamaged

state. WN4–WN7 are recorded after progressively stronger Irpinia runs (50%, 75%,

100% and 125% scaling), and are used to monitor the evolution of modal parameters

as damage accumulates. For each white-noise record, OMA is carried out separately

for Building 1 and Building 2.

The two test structures were designed as nominally twin RC frames. To make a fair

comparison of their seismic performance, the additional mass of the energy-dissipation

system was compensated by casting an extra 14 cm RC slab at the top floor of the other

building, so that the total mass and gravity loads of the two specimens are practically

the same. Therefore, differences in the identified modal properties between Building 1

(as-built) and Building 2 (retrofitted) can be mainly attributed to the presence of the
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retrofit system and to the different damage evolution, rather than to mass asymmetries.

5.2 Identification of global modes

To illustrate the identification procedure, this section focuses on the white-noise record

WN2, taken as reference state for both buildings. The figures reported here refer to

Building 1; Building 2 shows the same pattern of modal peaks, shifted to slightly higher

frequencies, and is therefore not reproduced for brevity.

5.2.1 Singular values and stabilization diagram

Figure 5.1 shows the singular values of the output PSD matrix obtained from FD-

D/FSDD for Building 1 under WN2. The first singular value (CMIF) exhibits three

dominant peaks in the low-frequency range, corresponding to the first global lateral

modes of the structure. Higher-frequency peaks are associated with local floor and

panel deformations and are not further analyzed here.

Figure 5.1: Building 1, White Noise 2: singular values of the output PSD matrix
(FDD/FSDD). Peaks of the first singular value indicate candidate natural frequencies.

The corresponding SSI-COV stabilization diagram is reported in Fig. 5.2. Each

marker represents an identified pole for a given model order, and the blue line shows

again the first singular value from FDD/FSDD. Vertical alignments of stable poles (in

terms of frequency, damping and mode shape) form clear clusters around the CMIF

peaks. This combined inspection of singular values and stabilization diagrams follows

standard OMA practice for civil structures [1, 13] and provides a first, qualitative

identification of the natural frequencies.
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Figure 5.2: Building 1, White Noise 2: SSI-COV stabilization diagram with the first
singular value (blue line). Vertical clusters of stable poles form in correspondence of
the main CMIF peaks.

5.2.2 Frequency–damping clustering and reduced stabilization

A complementary view is provided by the frequency–damping plot in Fig. 5.3. Stable

poles are highlighted in green, while unstable ones are shown in red. Stable poles aggre-

gate into a limited number of frequency bands, with damping ratios typically between

about 1% and 6%, which is consistent with the ranges reported in the literature for RC

buildings under low-to-moderate vibration levels [1, 13]. Outliers with unrealistically

high or low damping are discarded.

Finally, Fig. 5.4 shows a reduced stabilization diagram in which poles have been

pre-filtered and color-coded according to automatic stability criteria (e.g. thresholds

on relative changes of frequency, damping and MAC between successive model orders).

This allows a more compact visualization of the frequency bands where stable poles

persist over a wide range of model orders, and is particularly useful when dealing with

a large number of poles, as in the present case [1].

By jointly inspecting the singular values (Fig. 5.1), the full and reduced stabiliza-

tion diagrams (Figs. 5.2 and 5.4) and the frequency–damping clustering (Fig. 5.3), the

natural frequencies retained for the subsequent analysis are selected as those: (i) corre-

sponding to clear CMIF peaks; (ii) associated with vertical families of stable poles across

several model orders; and (iii) lying in damping ranges compatible with RC building

behavior. For Building 1, three global lateral modes are retained; for Building 2, four

global modes are identified in the frequency range of interest.
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Figure 5.3: Building 1, White Noise 2: frequency–damping clustering of SSI-COV
poles. Green markers denote poles classified as stable; red markers denote unstable
poles. Stable clusters identify the frequency bands of the physical modes.

Figure 5.4: Building 1, White Noise 2: reduced stabilization diagram obtained from
SSI-COV after applying the automatic stability criteria. The color label (0–4) denotes
the stability class, with higher labels corresponding to poles that are stable in frequency,
damping and mode shape.
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5.3 Modal parameters from all white-noise tests

The modal parameters extracted according to the above criteria are summarized, for

all white-noise tests, in Tables 5.1–5.2. For Building 1, the table also reports the

relative frequency variation with respect to the STKO reference model, which represents

the undamaged numerical baseline. The values listed are obtained from the Python

implementation of the EFDD/FSDD and SSI-COV procedures described in Chapter 4;

the MATLAB implementation is used as an independent check, but only one set of

numerical values is reported here.

5.3.1 Building 1: frequency reduction and comparison with STKO

Table 5.1: OMA experimental results and comparison with the STKO reference model
for Building 1. For each mode and white-noise test, fn denotes the experimental natural
frequency, ξn the equivalent viscous damping ratio, and ∆fn the relative frequency
difference with respect to STKO, expressed in percent.

STKO fn [Hz]
White Noise 2 White Noise 3 White Noise 4

fn [Hz] ∆fn [%] ξn [%] fn [Hz] ∆fn [%] ξn [%] fn [Hz] ∆fn [%] ξn [%]

1.83 1.91 4.57 5.40 1.91 4.67 3.43 1.78 -2.57 3.55

5.84 6.63 13.59 1.21 6.68 14.45 1.10 6.46 10.66 2.11

8.31 8.98 8.02 5.26 8.96 7.86 5.01 8.53 2.59 4.16

STKO fn [Hz]
White Noise 5 White Noise 6 White Noise 7

fn [Hz] ∆fn [%] ξn [%] fn [Hz] ∆fn [%] ξn [%] fn [Hz] ∆fn [%] ξn [%]

1.83 1.63 -10.91 4.77 1.54 -15.57 2.93 1.51 -17.22 3.65

5.84 5.94 1.81 3.09 5.38 -7.74 4.16 5.1 -13.03 4.14

8.31 7.89 -5.02 3.32 7.15 -13.91 5.66 6.19 -25.51 3.79

At low excitation levels (WN2–WN3), the experimental frequencies are close to

the STKO values, with |∆fn| typically below about 15%. This indicates that the FE

model provides a reasonable representation of the elastic stiffness of the as-built frame

in the initial state. The differences are compatible with the modeling simplifications

and uncertainties in material properties usually encountered in full-scale tests [1, 3].

As the excitation level increases (WN4–WN7), all three modes show a clear, mono-

tonic reduction in frequency, with ∆fn becoming increasingly negative. The largest

drops occur after the 100% and 125% Irpinia runs, signaling significant stiffness degra-

dation in the as-built frame. The magnitude of the frequency reduction is in line

with values reported in the literature for RC buildings subjected to moderate-to-severe

damage [1, 13].

Damping ratios generally increase along the test sequence, especially for Modes 2

and 3, reflecting the growth of hysteretic dissipation in the cracked RC members and

joints. Estimated damping values remain within the broad interval typically observed

in experimental databases for RC buildings [13].
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5.3.2 Building 2: retrofitted configuration

For the retrofitted Building 2, no separate STKO model is considered, and the focus

is on the experimental evolution of modal properties. The results are summarized in

Table 5.2, which reports the identified natural frequencies and damping ratios for the

first four global modes across all white-noise tests.

Table 5.2: OMA experimental results for Building 2. For each white-noise test, the
table lists the identified natural frequencies fn and equivalent viscous damping ratios
ξn of the first four global modes.

White Noise 2 White Noise 3 White Noise 4

Mode fn [Hz] ξn [%] Mode fn [Hz] ξn [%] Mode fn [Hz] ξn [%]

1 2.37 2.41 1 2.37 1.36 1 2.19 2.21

2 - - 2 - - 2 4.33 5.47

3 7.62 2.38 3 7.63 1.66 3 6.94 3.25

4 11.81 5.51 4 - - 4 10.53 3.36

White Noise 5 White Noise 6 White Noise 7

Mode fn [Hz] ξn [%] Mode fn [Hz] ξn [%] Mode fn [Hz] ξn [%]

1 1.98 1.83 1 1.74 2.61 1 1.63 2.44

2 3.80 4.41 2 3.43 5.03 2 3.15 5.00

3 6.49 6.56 3 5.85 5.37 3 5.38 3.65

4 9.34 4.26 4 8.17 4.53 4 7.52 3.93

Similar to Building 1, the frequencies of Building 2 decrease with increasing exci-

tation, indicating stiffness degradation. However, the relative reductions are smaller,

especially for the first bending mode, and the frequencies remain consistently higher

than those of the as-built building for corresponding damage states. This behavior

confirms that the retrofit system effectively increases and preserves the lateral stiffness

under strong shaking.

Damping ratios of Building 2 show a moderate increase with damage, with some-

what higher values for the higher modes in the most severe tests. The overall levels

are comparable with those of Building 1, suggesting that the retrofit primarily affects

stiffness rather than introducing significant additional damping.

5.4 Consistency between Python and MATLAB imple-

mentations

As described in Chapter 4, the OMA procedure was implemented in two independent

environments: a Python-based pipeline relying on PyOMA2 and a MATLAB-based

pipeline using the original PyOMA/SSI functions. Both follow the same sequence of

pre-processing, FDD/FSDD and SSI-COV identification.

For a representative subset of tests (including WN2, WN4 and WN5), the modal

parameters obtained from the two implementations were compared. The identified
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natural frequencies and damping ratios for the first global modes differ by only a few

percent, and the corresponding mode shapes are visually very similar. This cross-check

provides additional confidence in the robustness of the identification: in the remainder

of this chapter, numerical values are reported from the Python implementation, while

the MATLAB results are mainly used for mode-shape animations and MAC analysis.

5.5 Experimental mode shapes and comparison with the

STKO model

5.5.1 White noise 2 mode shapes for Building 1

Figure 5.5 shows the first three experimental mode shapes of Building 1 identified from

WN2 using the MATLAB-based SSI-COV analysis. The deformations are plotted on

a simplified wire-frame representation of the structure, with the displacements scaled

for clarity.

The first experimental mode at about 1.9 Hz is characterized by a global sway

of the twin-frame system, but the predominant motion is oriented opposite to the

nominal excitation direction. This apparently “reversed” behavior is consistent with

the adopted sign convention and with the presence of the internal steel safety frame,

which is bolted to the intermediate and top slabs and provides an additional, stiffer load

path on the side opposite to the shaking direction. As a result, the coupled deformation

of the RC frame and the steel frame leads to a stiffer response of the intermediate floor

and a net lateral sway that appears oriented against the input direction. The second

mode, around 6–7 Hz, shows a predominantly bending and torsional deformation about

the vertical axis, while the third mode is a higher-order bending mode in the global

X (shaking) direction, with increased deformation of the upper storeys. Despite the

limited number of sensors per floor, these figures clearly confirm that WN2 excites the

global lateral response of the twin-frame system.

5.5.2 Comparison with STKO reference modes

The STKO FEM reference model for Building 1 provides the undamaged numerical

baseline. Its first modes, reported in Fig. 5.6, consist of a fundamental bending mode in

the shaking direction, followed by a torsional mode and higher-order bending/torsional

combinations.

A qualitative comparison between Figs. 5.5 and 5.6 shows that the experimental

Modes 2 and 3 are in good agreement with the numerical torsional-bending and higher-

order bending modes, in terms of both deformation pattern and relative storey par-

ticipation. The fundamental experimental mode, however, deviates more significantly

from the idealized first bending shape of the STKO model.

This discrepancy is attributed mainly to the presence of the internal steel safety
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(a) Mode 1 – 1.90 Hz (b) Mode 2 – 6.60 Hz

(c) Mode 3 – 8.98 Hz

Figure 5.5: Building 1, White Noise 2: experimental mode shapes identified with SSI–
COV. The undeformed geometry is shown by dashed grey lines, while the colored slabs
represent the deformed floors (displacements scaled for visualization).

frame used in the laboratory, which is bolted to the foundation slab and to the inter-

mediate and top slabs (see chapter 3). The safety frame provides an additional load

path and increases the lateral stiffness locally, especially at the mid-height of the spec-

imen, but it is not explicitly represented in the STKO model. As a result, the first

experimental mode from WN2 corresponds to a coupled deformation of the RC frame

and the steel safety frame, whereas the STKO mode describes the bare RC frame only.

Furthermore, the experimental mode shapes are reconstructed from a limited set of ac-

celerometers, so they represent a spatially filtered approximation of the true continuous

deformation.

A qualitative comparison between Figs. 5.5 and 5.6 shows that the experimental
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Figure 5.6: STKO FEM reference model for Building 1: visualization of the first four
global mode shapes.

Table 5.3: STKO FEM reference modal analysis results for Building 1: natural fre-
quencies and mass participation ratios.

Mode fn [Hz]
Mass participation [%] Rot. mass participation [%]

Mode description

Mass-X Mass-Y Mass-Z Rot. X Rot. Y Rot. Z

1 1.83 0.00 83.73 0.00 14.83 0.00 0.00 1st bending, Y direction

2 5.43 0.00 0.00 0.00 0.00 0.00 85.59 1st torsion

3 5.84 0.00 11.33 0.00 60.30 0.00 0.00 2nd torsion + bending Y

4 7.68 86.50 0.00 0.00 0.00 10.66 0.00 1st bending, X direction

5 8.31 0.00 1.65 0.00 6.02 0.00 0.00 Local 1st storey in phase

6 8.35 0.00 0.00 0.00 0.000015 0.00 0.00 Local 1st storey in counter-phase

Total 86.5 96.7 0.0 81.1 10.7 85.6

Modes 2 and 3 are in good agreement with the numerical torsional-bending and higher-

order bending modes, in terms of both deformation pattern and relative storey par-

ticipation. The fundamental experimental mode, however, deviates more significantly

from the idealized first bending shape of the STKO model.

This discrepancy is attributed mainly to the presence of the internal steel safety

frame used in the laboratory, which is bolted to the foundation slab and to the in-

termediate and top slabs (see Chapter 3). The safety frame provides an additional

load path and increases the lateral stiffness locally, especially at the mid-height of the

specimen, but it is not explicitly represented in the STKO model. As a result, the first

experimental mode from WN2 corresponds to a coupled deformation of the RC frame

and the steel safety frame, whereas the STKO mode describes the bare RC frame only.

In addition, the numerical model idealizes the slabs as perfectly rigid diaphragms

and neglects several secondary elements (e.g. non-structural components, connection

details, added mass from cables and sensors), while the real structure exhibits finite
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in-plane slab flexibility and local nonlinearities. These simplifications may lead to a

different distribution of stiffness and mass and favor a stronger participation of the Y

direction in the numerical first mode. Small differences in boundary conditions between

the model and the test set-up (e.g. foundation restraint, interaction with the shaking

table) can also influence the orientation and relative participation of the lowest modes.

Furthermore, the experimental mode shapes are reconstructed from a limited set

of accelerometers, so they represent a spatially filtered approximation of the true con-

tinuous deformation. This spatial under-sampling, combined with measurement noise

and the numerical noise inherent in the OMA algorithms, can mask local deformation

patterns and slightly bias the apparent orientation of the experimental mode compared

with the finely discretised FEM mode shape.

Despite these differences, the WN2 mode shapes confirm that the first three exper-

imental modes are global lateral modes of the structure, and the frequencies reported

in Table 5.1 remain reasonably close to the STKO predictions for the initial state.

The more refined comparison of mode shapes, including quantitative MAC values, is

therefore concentrated on those white-noise tests that provide the cleanest and most

repeatable modal estimates, namely WN4 and WN5.

5.6 MAC-based assessment of mode separation and re-

peatability

5.6.1 Self-MAC: separation of experimental modes

To assess the degree of separation between the identified modes within a given test,

the Modal Assurance Criterion (MAC) is computed between all pairs of normalized

mode-shape vectors,

MAC(ϕi,ϕj) =

∣∣ϕH
i ϕj

∣∣2(
ϕH
i ϕi

)(
ϕH
j ϕj

) .
A value of MAC = 1.0 corresponds to a 100% match between two mode shapes (they are

identical up to a scale factor), whereas MAC = 0.9 means a 90% correlation, typically

considered an excellent match in OMA practice. Values around 0.0 indicate that the

corresponding mode shapes are essentially orthogonal and therefore well separated.

Figures 5.7 shows the self-MAC matrices for Building 1 for White Noise tests WN2

to WN7 (MATLAB-based SSI-COV identification). Each matrix reports the MAC

between the first three global modes of the same test.

For the lower-to-moderate excitation levels (WN2–WN5), the diagonal entries are

equal to 1.00 and the off-diagonal terms remain very small (typically below 0.1). This

corresponds to 100% self-correlation on the diagonal and less than 10% correlation

between different modes, indicating that the three global modes are very well separated

and that there is almost no mixing between their modal vectors.

As the excitation level increases (WN6) a slight degradation of the separation can
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Figure 5.7: Building 1: self-MAC matrices of the identified mode shapes for White
Noise tests WN2–WN7 (MATLAB implementation).
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be observed that the diagonal MAC values remain equal to 1.00, but some off-diagonal

terms grow to around 0.10, i.e. about 10% correlation between distinct modes. This

suggests that the modes are still clearly distinguishable, but the increased response

amplitude starts to enhance coupling effects and sensitivity to non-ideal boundary

conditions.

For the highest excitation level (WN7), the loss of separation becomes more evi-

dent. While the diagonal elements are still equal to 1.00 (100% self-correlation), some

off-diagonal entries reach values around 0.23–0.39, corresponding to 23–39% correlation

between different modes. In other words, the modes are no longer perfectly orthogo-

nal: their shapes are partially mixed, which is consistent with the structure having

undergone significant cracking and stiffness degradation.

Overall, the sequence from WN2 to WN7 shows a gradual evolution: at low exci-

tation the modes are almost perfectly separated, whereas at the highest excitation the

separation is clearly less perfect. This behaviour supports the interpretation that the

strongest excitations have modified the dynamic properties of the structure, and that

the changes observed in the modal vectors at WN7 are a genuine signature of damage

rather than purely an identification artefact.

5.6.2 Inter-test MAC: repeatability across excitation levels

To quantify the repeatability of the identified modal vectors across different white-

noise levels, an inter-test MAC is computed between modes extracted from pairs of

tests. Since WN4 and WN5 provide the cleanest stabilization diagrams and self-MAC

matrices, they are used as the main reference for this comparison.

Figure 5.8 reports the MAC values between the mode shapes of Building 1 identified

from WN4 and WN5 for the first three global modes. Values remain high (typically

above about 0.9) for all three modes, indicating that the shapes are very similar despite

the different excitation levels and damage states.

The cross-MAC matrix in Figure 5.8 shows very high diagonal values (0.99, 0.98

and 0.91) and negligible off-diagonal terms. A MAC value of 0.9 corresponds to a 90%

correlation between two mode shapes and is typically regarded as an excellent match in

operational modal analysis. Therefore, the diagonal values confirm that the three global

modes are consistently identified between White Noise 4 and White Noise 5, while the

near-zero off-diagonal entries indicate good separation between different modes.

An analogous cross-MAC matrix can be constructed for Building 2, again show-

ing high inter-test MAC values for the first few modes. These results confirm that,

within the range of moderate excitations represented by WN4 and WN5, the global

mode shapes are robust and repeatable, and that the observed trends in frequency and

damping in Tables 5.1 and 5.2 are not an artefact of inconsistent identification.

For combinations involving the lowest (WN2) and highest (WN7) excitation levels,

the inter-test MAC values decrease, especially for the higher modes. This behavior
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Figure 5.8: Cross-MAC matrix between mode shapes identified from White Noise 4
and White Noise 5, MATLAB implementation.

is consistent with physical expectations which at very low amplitudes, measurement

noise and boundary-condition effects play a larger role, while at very high amplitudes

the progressive cracking and stiffness degradation lead to genuine changes in the modal

vectors. The high MAC values observed between WN4 and WN5 therefore represent

a favorable “window” where the structure is sufficiently excited but still behaves close

to linear, and are used as the main reference for the subsequent qualitative discussion

of mode shapes and retrofit effectiveness.
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Chapter 6

Discussion, conclusions and

future developments

This chapter synthesizes the main findings of the work, answers the research questions

posed in Chapter 1 and discusses the implications for operational modal analysis (OMA)

and structural health monitoring (SHM) of reinforced concrete (RC) buildings. The

results are interpreted in the broader context of OMA-based seismic protection, with

particular reference to the framework proposed by Rainieri for combining OMA, finite

element (FE) modelling and SHM in earthquake-prone regions [1, 13].

The chapter is organised as follows. Section 6.1 summarises the answers to the re-

search questions (RQ1–RQ5) and evaluates the extent to which the objectives (O1–O5)

have been met. Section 6.2 positions the case study within the existing OMA/SHM

landscape, including links to automated OMA (AOMA). Section 6.3 formulates prac-

tical recommendations for OMA-based damage tracking in building-scale applications.

Section 6.4 discusses limitations of the present work. Section 6.5 outlines directions for

future research.

6.1 Synthesis of findings with respect to the research ques-

tions

6.1.1 RQ1 – Evolution of natural frequencies and damping with seis-

mic demand and damage

RQ1 asked how the natural frequencies and damping ratios of the two buildings evolve

under increasing seismic demand and accumulated damage, and to what extent these

trends are robust indicators of stiffness degradation.

The OMA results from the white-noise tests WN2–WN7 show a clear and physically

consistent evolution of the modal properties. For Building 1 (as-built configuration), the

first three global modes identified at low excitation (WN2–WN3) have frequencies close

to the STKO reference values, with deviations mostly within about 5–15%, indicating a
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reasonable undamaged baseline. As the Irpinia 1980 record [9] is applied at increasing

scaling levels, all three modes undergo a monotonic reduction in frequency. The first

bending mode decreases from approximately 1.9 Hz in the initial state to about 1.5 Hz

at WN7, corresponding to a relative reduction greater than 15% with respect to the

numerical baseline. Higher modes show comparable or even larger relative drops. These

trends are consistent with cumulative stiffness loss in the cracked RC members and

connections and fall within the broad ranges reported in the OMA literature for RC

buildings subjected to moderate-to-severe damage [3, 6, 7, 8].

The damping ratios of Building 1 generally increase along the test sequence, par-

ticularly for the second and third modes, reflecting growing hysteretic dissipation as

damage accrues. Nevertheless, the identified damping values remain within the wide

interval (roughly 1–7%) commonly observed in experimental databases for RC build-

ings and other civil structures [12, 37, 35, 29]. This confirms the well-known difficulty

of using damping as a precise quantitative damage proxy.

For Building 2 (retrofitted configuration), the same qualitative pattern is observed:

frequencies decrease with increasing excitation and damage, and damping ratios tend

to grow slightly. However, the frequency reductions are smaller than in Building 1, and

at matched damage states the frequencies remain consistently higher than those of the

as-built building. This confirms that natural-frequency tracking is a robust indicator of

stiffness degradation and retrofit effectiveness, whereas damping should be used more

cautiously, primarily as a supporting measure rather than a primary damage index.

Overall, RQ1 can be answered positively: OMA-based frequency trends, evaluated

over a carefully designed test sequence, provide a clear and interpretable picture of

stiffness loss in full-scale RC buildings.

6.1.2 RQ2 – Effectiveness of the retrofit system in terms of global

stiffness and its degradation

RQ2 focused on the comparative performance of the as-built Building 1 and the retrofitted

Building 2, asking whether the retrofit system increases global lateral stiffness and slows

down stiffness degradation under strong shaking.

At the initial state (WN2–WN3), the first bending frequency of Building 2 is around

2.37 Hz, compared to about 1.91 Hz for Building 1, i.e. roughly 20–25% higher. This

difference cannot be attributed to mass asymmetries, which were compensated by the

additional top slab on the as-built frame; it therefore reflects a genuine increase in

lateral stiffness due to the retrofit system. As the excitations become more severe,

Building 2 also exhibits frequency reductions, signalling damage and stiffness loss, but

the relative drops are smaller than for Building 1 and the absolute frequencies remain

higher at all observed damage states.

In terms of damping, Building 2 shows modest increases with damage, especially

for higher modes in the most severe tests. The overall damping levels are comparable
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to those of Building 1, suggesting that the retrofit primarily acts on stiffness rather

than introducing large additional energy dissipation. This is consistent with the design

philosophy of many stiffness-increasing retrofit systems and with previous OMA-based

retrofit assessments in RC buildings [3, 13]. Taken together, these observations support

a positive answer to RQ2: the retrofit system increases and better preserves the global

lateral stiffness of the frame under strong shaking, as evidenced by the higher and more

stable natural frequencies across the test sequence.

6.1.3 RQ3 – Consistency between Python and MATLAB implemen-

tations

RQ3 investigated whether two independent OMA toolchains, a Python-based pipeline

using PyOMA2 and related tools [11, 33] and a MATLAB-based pipeline using the

OoMA and FDD toolboxes [38, 39], yield consistent modal parameters when applied

to the same dataset and identification settings.

For representative tests (e.g. WN2, WN4, WN5), the natural frequencies and damp-

ing ratios identified with the Python and MATLAB implementations differ by only a few

percent. The small numerical discrepancies are within the typical variability expected

from different numerical implementations, windowing choices and post-processing de-

tails [25, 26, 30].

This cross-validation directly addresses O3 and gives confidence that the main con-

clusions of the thesis do not depend on a particular software environment. It also

reinforces the view, emphasised by Rainieri and co-workers, that independent checks

and consistent parameter settings are important for assessing the robustness of OMA

results in SHM applications [1, 2, 13].

6.1.4 RQ4 – Ability of a reduced FE model to support interpretation

of modes and stiffness changes

RQ4 asked how well a simplified FE model (STKO/OpenSees) can explain the observed

modal characteristics and their evolution, and how modes should be paired when their

order changes or when experimental modes are influenced by auxiliary elements such

as the safety frame.

The comparison between STKO and experimental results shows that at low excita-

tion levels the FE frequencies provide a reasonable baseline: deviations of the order of

5–15% are consistent with common modeling uncertainties in full-scale tests. Modes 2

and 3 of Building 1 at WN2 match well the numerical torsional and higher-order bend-

ing modes in terms of deformation pattern and storey participation, while the first

mode exhibits a more pronounced discrepancy, mainly due to the unmodeled steel

safety frame and idealized boundary conditions.

Despite these limitations, the FE model remains a valuable interpretative tool.

It helps classify experimental modes (bending vs. torsion, global vs. local) and link
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measured frequency reductions to approximate stiffness loss in the main lateral system.

This role, using OMA and FE model updating in a complementary way, with the

methodology applied to real structures. In this thesis, mode pairing is carried out using

MAC-based criteria and qualitative inspection of mode shapes, allowing consistent

tracking of mode families even when the order shifts with damage. RQ4 is therefore

answered in a qualified way which a reduced FE model, suitably interpreted, is sufficient

to support mode classification and stiffness trends, but care is required in the presence

of auxiliary structural elements and modeling simplifications.

6.1.5 RQ5 – Influence of the internal steel safety frame and implica-

tions for SHM

RQ5 examined the influence of the internal steel safety frame on the identified modal

properties and asked how this bias can be detected, quantified and accounted for when

drawing SHM conclusions.

The analyses clearly show that the safety frame affects both mode shapes and,

to a lesser extent, baseline frequencies. The first experimental mode at WN2, for

example, exhibits a global sway with an apparent lateral deformation opposite to the

nominal shaking direction, consistent with the presence of a stiff load path provided

by the steel frame on the opposite side. The safety frame is not modelled in STKO,

which contributes to the mismatch between the numerical first bending mode and the

experimental fundamental mode.

Self-MAC and inter-test MAC analyses provide a quantitative way to assess the

separation and repeatability of mode shapes across tests. For intermediate excitation

levels (WN4–WN5), MAC values remain high (around ≈ 0.9) for the first three global

modes, indicating well-separated and repeatable mode shapes, whereas at the lowest

and highest excitation levels the MAC values degrade, reflecting larger sensitivity to

boundary conditions and damage-induced nonlinearities [12, 37, 29].

From an SHM standpoint, the safety frame acts as a systematic bias that primarily

affects mode shapes and boundary conditions, while the inter-test frequency trends be-

tween white-noise windows remain relatively robust. This justifies the decision to base

the primary damage indicators on global frequency changes and cross-method consis-

tency, treating shapes mainly as qualitative support. The findings provide a concrete

answer to RQ5 and highlight the importance of explicitly documenting and, where

possible, modelling auxiliary elements in laboratory campaigns and real structures [1,

13].

6.1.6 Summary with respect to the objectives O1–O5

The above findings can be summarised in terms of the specific objectives:

• O1 (data pipeline and quality checks) has been met through the develop-

ment of a reproducible workflow for handling dense MEMS sensor data, including
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orientation to the global frame, time synchronisation, anti-alias filtering, resam-

pling and stationarity checks, following best practices in digital signal processing

and OMA [15, 13, 12].

• O2 (estimation of frequencies and damping via FDD and covariance-

driven SSI) is achieved by applying these methods consistently across WN2–

WN7 and reporting trends via stable clusters and clustering criteria. The use

of FDD/FSDD [34, 36] and covariance-driven SSI-COV [21, 22, 19, 27] is in line

with the state of the art.

• O3 (toolchain comparison) is satisfied by the close agreement between Py-

OMA2 and MATLAB/OoMA results, thereby validating the open-source Python

pipeline [33, 11, 38, 39].

• O4 (reduced FE baseline and MAC-based mode pairing) is fulfilled by

using the STKO model to interpret mode types and mode participation and by

pairing experimental and numerical modes through qualitative patterns and MAC

information, consistent with model-based OMA studies on real structures [13, 3].

• O5 (quantifying and controlling the influence of the steel safety frame)

is addressed by systematically discussing its role in shape distortions and boundary-

condition effects, and by focusing primary conclusions on robust frequency trends.

6.2 Positioning within the OMA and SHM landscape

Rainieri’s work [1, 2, 13] systematically demonstrates the reliability and versatility

of OMA techniques across a range of structures and emphasises their role in seismic

protection when combined with FE modelling and SHM systems. The present work

can be viewed as a focused contribution within this broader framework, centred on a

particularly well-instrumented, full-scale RC twin-building test under controlled seismic

and white-noise excitations.

Several elements directly mirror the methodology and philosophy advocated in [1,

13]:

• Integration of OMA and FE models. In both this thesis and [1, 13, 3],

OMA is used not only to identify modal parameters but also to support FE model

assessment and interpretation. While [1] exploits OMA for both test design and

model refinement of complex existing structures, this thesis uses a reduced STKO

model as an interpretative baseline for stiffness and mode-type classification in a

controlled laboratory setting.

• Emphasis on data quality and processing choices. The importance of

record length, noise levels, hardware selection and processing parameters (e.g.

block rows in SSI) for obtaining reliable estimates, particularly of damping, is
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highlighted in [13, 12, 30, 28]. The present work explicitly designs the white-

noise windows, applies careful preprocessing and fixes SSI parameters to ensure

stability and comparability of the results.

• Towards automated OMA and SHM. Fully automated identification and

tracking algorithms have been proposed and validated in the recent AOMA lit-

erature [4, 32, 31, 42]. In a complementary way, this thesis applies a structured,

script-based pipeline in PyOMA2 to a large dataset, moves towards reproducible

batch processing, and employs automatic stability criteria and clustering strate-

gies that are compatible with automated OMA concepts.

From this perspective, the twin-building campaign and its analysis provide a high-

quality dataset and a transparent pipeline that could serve as a benchmark or testbed

for future automated OMA procedures, especially in the context of RC frame structures

and retrofit evaluation.

6.3 Practical recommendations for OMA-based seismic

damage tracking

Based on the case study and insights from the OMA/SHM literature, several practical

recommendations can be formulated for applying OMA to seismic damage tracking in

RC buildings:

1. Design the excitation protocol to bracket damage states. Interleaving

broadband white-noise windows with scaled earthquake records, as done in the

Irpinia–WN sequence, allows modal properties to be sampled at multiple damage

states while approximately satisfying the stochastic-input assumptions of OMA

[20, 13].

2. Invest in data quality and preprocessing. Dense MEMS sensor networks

require careful attention to sensor orientation, time synchronisation and anti-

alias filtering. Record length and signal-to-noise ratio are critical, particularly for

damping estimation [10, 15, 12, 28].

3. Combine frequency- and time-domain methods. Using FDD/FSDD for

initial frequency and mode-shape estimates and covariance-driven SSI for refined

modal parameters and stabilisation diagrams provides complementary views on

the same underlying dynamics [34, 36, 21, 19]. Joint inspection of CMIF peaks,

stabilisation diagrams and frequency–damping clusters improves the robustness

of mode selection.

4. Prioritise frequencies as primary damage indicators. For RC frames,

global frequency shifts across repeated tests are generally more robust and easier
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to interpret than damping changes or fine details of mode shapes, especially when

boundary conditions and auxiliary elements (e.g. safety frames) are imperfectly

known [6, 7, 40, 41].

5. Use mode shapes and MAC as qualitative and consistency checks.

Mode shapes are valuable for distinguishing bending and torsional modes, de-

tecting coupling effects and identifying bias from secondary structures, but their

quantitative use should rely on self-MAC and inter-test MAC analyses to avoid

over-interpreting noisy or under-sampled shapes [37, 29, 13].

6. Maintain a simple but representative FE model. Even a reduced-order FE

model can significantly aid interpretation of experimental results, support mode

pairing and inform stiffness-loss estimates, provided that key structural features

and boundary conditions are captured [13, 3, 41]. FE models should be used

iteratively, in the spirit of model updating for seismic assessment.

6.4 Limitations of the present work

The conclusions of this thesis should be interpreted in light of several limitations:

• Single structural typology and loading protocol. The study focuses on

two nominally identical, single-bay, three-storey RC frames subjected to a specific

earthquake record (Irpinia 1980) at scaled intensities [9]. The findings may not

directly generalise to other structural typologies, irregular geometries or different

ground motions.

• Presence of the steel safety frame. The internal steel frame, while essen-

tial for protecting the specimens and equipment, introduces boundary-condition

complexity and mode-shape distortions that are only partially controlled. It is

absent from the FE model and cannot be fully separated from the RC response

in the experimental modes.

• Limited exploration of damping and higher modes. Although damping

ratios are estimated and broadly interpreted, no detailed sensitivity study is per-

formed on damping estimation settings (e.g. record length, block rows, window-

ing), which several authors identify as a key step towards more reliable damping

use in SHM [13, 12, 28]. Moreover, the analysis concentrates on the first few

global modes, leaving local and higher-frequency modes largely unexplored.

• Finite dataset and laboratory conditions. The results are based on a finite

number of white-noise windows over a limited number of test days in a labora-

tory environment. Long-term environmental variability, aftershock sequences and

operational conditions typical of real buildings are not captured [2, 37].
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• Toolchain scope. The identification uses FDD/FSDD and covariance-driven

SSI within PyOMA2 and OoMA. Other potentially informative algorithms avail-

able in the OMA toolbox—including refined parametric or automated procedures

[25, 4, 32, 31, 42]—are not exploited here, in order to maintain focus and compa-

rability.

These limitations suggest caution in extrapolating the numerical values beyond the

present setup, while not undermining the qualitative lessons for OMA-based damage

tracking.

6.5 Future research directions

The work opens several avenues for further research, many of which resonate with the

open issues and future research topics discussed in [1, 13, 12, 14, 16]:

1. Towards standard procedures for damping estimation. Building on the

current dataset, a systematic study could investigate the sensitivity of damping

estimates to record length, number of block rows, windowing and noise levels,

using multiple identification methods and uncertainty quantification frameworks

[28, 30, 29]. This would directly address the need, highlighted in [13, 12], for

standardised protocols and better understanding of damping mechanisms and

uncertainties.

2. Extension to continuous and long-term monitoring. The hardware and

the PyOMA2-based pipeline could be extended to continuous or near real-time

monitoring of real buildings, integrating automated identification and tracking

procedures similar in spirit to those proposed in [2, 4, 31, 32, 42]. This would

provide a natural testbed for AOMA and for studying the interplay of environ-

mental variability, operational loads and seismic events.

3. Building and sharing modal property databases. The present results could

be incorporated into a larger database of modal parameters (frequencies, damp-

ing ratios, mode shapes) for RC structures under different excitation levels and

damage states. Such databases, as suggested in [13, 14, 37], are essential for

defining typical ranges, detecting anomalous values and refining SHM strategies

and design criteria.

4. Refined FE modelling and model updating. Future work could develop

more detailed FE models that explicitly include the steel safety frame, slab flex-

ibility, non-structural components and non-linear behaviour [3, 41]. Model up-

dating based on the full suite of experimental modes, possibly including higher

modes and local deformations, would bring the analysis closer to the advanced

seismic assessment strategies applied in complex, existing structures [1, 13].
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5. From frequency trends to quantitative damage indices. While this thesis

focuses on qualitative stiffness loss inferred from frequency reductions, future

research could explicitly link modal changes to damage indices, residual capacity

and performance-based assessment metrics, possibly leveraging probabilistic or

machine-learning approaches [14, 16, 40, 42].

6. Automation and user-independent decision steps. Several decision points

in the current workflow—such as the selection of stable poles, clustering thresh-

olds and mode pairing—still require expert judgment. Extending PyOMA2 with

robust, validated criteria for these steps would contribute to fully automated

pipelines, addressing one of the main drawbacks identified for the widespread use

of OMA in SHM: the need for extensive user interaction [13, 4, 32, 31].

In summary, this thesis has demonstrated that carefully designed OMA campaigns,

combined with transparent data processing and simple but informative FE models,

can provide rich insight into the seismic response, damage evolution and retrofit per-

formance of RC buildings. The case study of the twin-building shake-table tests, in-

terpreted within the broader framework established by Rainieri and others [1, 13, 14,

12], suggests that OMA will continue to play a central role in the development of

SHM strategies for seismic risk reduction, especially as automated identification and

monitoring tools mature and are deployed at scale.
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[31] Y. V. Ardila, I. D. Gómez-Araújo, and J. D. Villalba-Morales. “An Automated

Procedure for Continuous Dynamic Monitoring of Structures: Theory and Valida-

tion”. In: Journal of Vibration Engineering & Technologies 12.3 (2023), pp. 4463–

4482. doi: 10.1007/s42417-023-01121-1 (cit. on pp. 26, 76, 78, 79).

[32] G. Zini, M. Betti, and G. Bartoli. “A quality-based automated procedure for

operational modal analysis”. In: Mechanical Systems and Signal Processing 164

(2022), p. 108173. doi: 10.1016/j.ymssp.2021.108173 (cit. on pp. 26, 76, 78,

79).

[33] Danilo P. Pasca, Alessandro Aloisio, Mario M. Rosso, and Sotirios Sotiropoulos.

“PyOMA and PyOMA GUI: A Python module and software for Operational

Modal Analysis”. In: SoftwareX 20 (2022), p. 101216. doi: 10.1016/j.softx.

2022.101216 (cit. on pp. 33, 34, 73, 75).

[34] Rune Brincker, Lingmi Zhang, and Palle Andersen. “Modal identification of

output-only systems using frequency domain decomposition”. In: Smart Mate-

rials and Structures 10.3 (2001). doi: 10.1088/0964-1726/10/3/303 (cit. on

pp. 34, 55, 75, 76).

84

https://doi.org/10.1007/978-3-319-54777-0_14
https://doi.org/10.1109/TAC.2012.2193711
https://doi.org/10.1590/1679-78256725
https://doi.org/10.1051/matecconf/20152001002
https://doi.org/10.1016/j.soildyn.2019.105929
https://doi.org/10.1016/j.soildyn.2019.105929
https://doi.org/10.1007/s42417-023-01121-1
https://doi.org/10.1016/j.ymssp.2021.108173
https://doi.org/10.1016/j.softx.2022.101216
https://doi.org/10.1016/j.softx.2022.101216
https://doi.org/10.1088/0964-1726/10/3/303


BIBLIOGRAPHY

[35] Rune Brincker, Claudio E. Ventura, and Palle Andersen. “Damping estimation

by frequency domain decomposition”. In: Proceedings of IMAC 19: A Conference

on Structural Dynamics. Hyatt Orlando, Kissimmee, Florida: Society for Exper-

imental Mechanics, Feb. 2001. url: https://vbn.aau.dk/en/publications/

2bcee690-9c2e-11db-8ed6-000ea68e967b (cit. on pp. 34, 72).

[36] L. Zhang, T. Wang, and Y. Tamura. “A frequency–spatial domain decomposition

(FSDD) method for operational modal analysis”. In: Mechanical Systems and

Signal Processing 24.5 (2010). doi: 10.1016/j.ymssp.2009.10.024 (cit. on

pp. 34, 55, 75, 76).

[37] Bart Peeters. “System Identification and Damage Detection in Civil Engineering”.

PhD thesis. Katholieke Universiteit te Leuven, 2000. url: https://lirias.

kuleuven.be/1725571&lang=en (cit. on pp. 34, 55, 72, 74, 77, 78).

[38] Andrew Otto. OoMA Toolbox. https://www.mathworks.com/matlabcentral/

fileexchange / 68657 - ooma - toolbox. MATLAB Central File Exchange, re-

trieved 16 November 2025. 2025 (cit. on pp. 38, 39, 73, 75).

[39] Mohammad Farshchin. Frequency Domain Decomposition (FDD). https://www.

mathworks.com/matlabcentral/fileexchange/50988-frequency-domain-

decomposition-fdd. MATLAB Central File Exchange, retrieved 16 November

2025. 2015 (cit. on pp. 38, 39, 73, 75).

[40] Sina Zolfagharysaravi, Denis Bogomolov, Camilla Bahia Larocca, Federica Zonzini,

Lorenzo Mistral Peppi, Marco Lovecchio, Luca De Marchi, and Alessandro Marzani.

“ARMA Model for Tracking Accelerated Corrosion Damage in a Steel Beam”.

In: Sensors 25.8 (2025). doi: 10.3390/s25082384. url: https://doi.org/10.

3390/s25082384 (cit. on pp. 39, 77, 79).

[41] Amthal Hakim, Wael Slika, Rawan Machmouchi, and Adel Elkordi. “Numerical

Approach to Simulate the Effect of Corrosion Damage on the Natural Frequency

of Reinforced Concrete Structures”. In: Structural Durability & Health Moni-

toring 17.3 (2023). doi: 10.32604/sdhm.2022.023027. url: https://www.

techscience.com/sdhm/v17n3/53293 (cit. on pp. 39, 77, 78).

[42] Alessandro Cardoni, Amir Reza Elahi, and Gian Paolo Cimellaro. “A Refined

Output-Only Modal Identification Technique for Structural Health Monitoring

of Civil Infrastructures”. In: Engineering Structures 323 (2025). doi: 10.1016/

j.engstruct.2024.119210. url: https://doi.org/10.1016/j.engstruct.

2024.119210 (cit. on pp. 39, 76, 78, 79).

85

https://vbn.aau.dk/en/publications/2bcee690-9c2e-11db-8ed6-000ea68e967b
https://vbn.aau.dk/en/publications/2bcee690-9c2e-11db-8ed6-000ea68e967b
https://doi.org/10.1016/j.ymssp.2009.10.024
https://lirias.kuleuven.be/1725571&lang=en
https://lirias.kuleuven.be/1725571&lang=en
https://www.mathworks.com/matlabcentral/fileexchange/68657-ooma-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/68657-ooma-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/50988-frequency-domain-decomposition-fdd
https://www.mathworks.com/matlabcentral/fileexchange/50988-frequency-domain-decomposition-fdd
https://www.mathworks.com/matlabcentral/fileexchange/50988-frequency-domain-decomposition-fdd
https://doi.org/10.3390/s25082384
https://doi.org/10.3390/s25082384
https://doi.org/10.3390/s25082384
https://doi.org/10.32604/sdhm.2022.023027
https://www.techscience.com/sdhm/v17n3/53293
https://www.techscience.com/sdhm/v17n3/53293
https://doi.org/10.1016/j.engstruct.2024.119210
https://doi.org/10.1016/j.engstruct.2024.119210
https://doi.org/10.1016/j.engstruct.2024.119210
https://doi.org/10.1016/j.engstruct.2024.119210

	List of Figures
	List of Tables
	Introduction
	Background & Motivation
	State of the Art in Dynamic Identification & SHM
	Comparative Advantages and Limitations of Prevalent Techniques
	Research Gaps, Questions, and Objectives
	Case Study and Dataset Overview

	Operational Modal Analysis
	Historical and Theoretical Development of OMA
	History of OMA
	Signal processing basics for OMA

	Conventional OMA stationary methods
	Frequency domain methods
	Peak-peaking method
	Frequency domain decomposition

	Time domain methods
	Stochastic state-space models
	Covariance-equivalent representation of stochastic state space model
	Covariance-based stochastic-subspace identification
	Data-driven-based stochastic-subspace identification


	PyOMA and PyOMA2 for operational modal analysis
	Implemented algorithms in PyOMA
	Graphical user interface PyOMA_GUI
	From PyOMA to PyOMA2
	Role of PyOMA2 in the present thesis

	MATLAB OoMA toolbox
	Implemented algorithms and core functions
	Use in recent research and applications
	Role of OoMA in the present thesis


	Case study: full-scale RC buildings on a shaking table
	Overview of the experimental campaign
	Geometry, materials, and structural configuration
	Instrumentation and sensor layout
	Shaking table input protocol
	Data acquisition and preprocessing

	Experimental data processing and OMA pipeline
	Data import, time alignment and resampling
	Channel selection and orientation into the global frame
	Selection of stationary windows, detrending and decimation
	Frequency-domain identification: FDD / FSDD
	Time-domain identification: covariance-driven SSI
	Mode shape visualization

	Results of operational modal analysis
	Analyzed tests and twin-building configuration
	Identification of global modes
	Singular values and stabilization diagram
	Frequency–damping clustering and reduced stabilization

	Modal parameters from all white-noise tests
	Building 1: frequency reduction and comparison with STKO
	Building 2: retrofitted configuration

	Consistency between Python and MATLAB implementations
	Experimental mode shapes and comparison with the STKO model
	White noise 2 mode shapes for Building 1
	Comparison with STKO reference modes

	MAC-based assessment of mode separation and repeatability
	Self-MAC: separation of experimental modes
	Inter-test MAC: repeatability across excitation levels


	Discussion, conclusions and future developments
	Synthesis of findings with respect to the research questions
	RQ1 – Evolution of natural frequencies and damping with seismic demand and damage
	RQ2 – Effectiveness of the retrofit system in terms of global stiffness and its degradation
	RQ3 – Consistency between Python and MATLAB implementations
	RQ4 – Ability of a reduced FE model to support interpretation of modes and stiffness changes
	RQ5 – Influence of the internal steel safety frame and implications for SHM
	Summary with respect to the objectives O1–O5

	Positioning within the OMA and SHM landscape
	Practical recommendations for OMA-based seismic damage tracking
	Limitations of the present work
	Future research directions

	Bibliography

