s 51w
AN
Y . 2V Politecnico

‘ ““'m!: B & &
| lnnim::-':é----::::'uun?imi': di Torino
\ 1859 j:'

=) -~ "#-‘-'

POLITECNICO DI TORINO

Master’s Degree in Mechatronics engineering

Specialization in: Software Technologies for Automation

MASTER THESIS

Migration from Monolithic Algorithms to Service-Oriented Architectures in
Software-Defined Vehicles

Supervisor Candidate
Prof. Massimo Violante Dhanesh Kanwar

Prof. Jacopo Sini

Academic Year: 2024-25
1

Abstract

The increasing complexity and software centrality of modern vehicles have necessitated a shift
from traditional monolithic software architectures to modular, scalable paradigms. This thesis
explores the migration from Monolithic Algorithms to Service-Oriented Architectures (SOA) in
Software-Defined Vehicles (SDVs), using a practical case study: the design and simulation of
an Adaptive Light Beam Controller (ALBC) in Simulink. Both monolithic and SOA-based
architectures are developed and evaluated, with a comparative analysis focusing on
modularity, maintainability, over-the-air (OTA) update readiness, and cross-domain
integration.

To validate the practical feasibility of these architectures, Embedded Coder is used to generate
C++ code from both Simulink models. The generated code is successfully integrated into an
Android Studio environment and deployed on an automotive emulator, simulating real-time
execution in an in-vehicle context. The results demonstrate that SOA not only enhances
software modularity and service independence but also significantly improves deployment
flexibility and future maintainability. This work provides a comprehensive methodology for
transitioning automotive control systems to SOA using model-based design, automated code
generation, and rapid prototyping on virtual platforms.

Academic Year: 2024-25
2

Contents

(00 F=T o1 T PSP 8
O [8o T [V Lot u o] o RO PO P RO P RO PROPRPPROt 8
1.1 Background and MOtIVAtiON.......ccuuiiii ittt st e e e e e e s e s 8
1.2 Problem Statementeo i 8
1.3 RESEAICN OBjJECHIVESvviiiieiiiiie ettt st e st e e e s abee e e s s sba e e e e s araeeeenaneees 8
1.4 MethOdOIOZY OVEIVIEWuuuviiiiieei ettt e e e ettt e e e e e e e ssterr e e e e e s e ssnanareeeeeeeesennnnennnens 9
1.5 Thesis CONTIDUTIONS ...cc.eeiiiiiiiiiic e e 9
(010 F=T o1 T PP PRRPPR 10
2. LIterature REVIEWcciiiiiiiiiiiiitc e s 10
2.1 Software-Defined Vehicles (SDVs): A Paradigm Shiftcccoeviviiiiiiiie e 10
2.2 Monolithic Architectures in AUtomOotive SYStEMSuveveeiiiiciieee e 10
2.3 Service-Oriented Architecture (SOA) in AUtOMOLIVEccuvveeiieciiieieeee e 11
2.4 Model-Based Design and Simulink in Embedded Systems.........ccccceeeieicciiieeeeee e, 11
2.5 Embedded Coder and C++ Code GENerationcccceerveenieereeeneenreeseeereesee e 12
2.6 Android-Based Automotive EMUIAtorsccceoviiiiiiiiiiiiiieceeeee e 12
2.7 SUMMary and RESEAICN GAPS .uvveeeeeeeiiiiiiiiirieeeeeeeeieiiirreeeeeeeesesintrrreeeeeeeessasssrseseeeeessensnns 13
(00T] = S TSR 14
3. Design of Adaptive Light Beam Controller — Monolithic Architecturecccccceevvveeeenneen. 14
3.1 Functional Requirements and Test Case Description.......ccccooeccciiiieeeeeeeeccciiieeee e 14
FRL: High BEAM IMOTE ..coeeeeiiteeeeee ettt ettt e e e e e st e e e e e e e e e e s anrreeeeeeeesnnnnnes 14

FR2: Cornering Beam IMOGE........uiiiiiiei ettt e e e eetrere e e e e e e e ssareae e e e e e e e eennnes 14

[T G 4V Y, o Yo [RO P UPPPRRNE 15

FRA: LOW BEAM IMOTE ...t s 15

3.2 Modelling of Adaptive Light Beam Controller in Simulink..........cccccceeeiiiiiiiienenes 16
3.3 Discrete Controller Design Using the Diophantine Equation Approachcccccccoeeuue. 18
3.4 Limitations of the Monolithic Implementation...........cccccee i, 19
3.5 Challenges in Migrating Legacy Application to SOA..........ccoiviiiiiieeeie e 20
3.0 SUNMIMIAIY ittitiiieie e et eetttiiie e e e ettt rre e e e e e et ettt e e e eeeetaesba s seeeeaeaessaaaaseeeeseasssannnsseeeeseeessnnn 21
(010 F=Y] (=T O SRR URURTRRROR 22

Academic Year: 2024-25
3

4. Design of Adaptive Light Beam Controller — Service-Oriented Architecture...........ceeeeee..... 22

4.1 Decomposition of Traditional Software components into Services.......ccccceevvcveeeernnnen. 22
41.1 Identify and ANalyse SEIVICESccoccuiieiiiiiiie et e e 22
4.1.2 Define Services and INterfaces.........ccveviiiiiieiiiieeeceee e 22
4.1.3 Define Service CONTraCtScccueriieriierieerieestee ettt 22
414 Implement and Deploy SEIVICESccuviiiiiiiieeiciiee et 22

4.2 Using Model-Based Design to Decompose Adaptive Light Beam Controller Monolithic

ApPPlICAtioN INTO SEIVICESueeiiiieeiee nnenereeas 23
4.2.1. Identify and ANAlYSE SEIVICES ...ccovcuiiiiiriiiieieiiiee e eritee e serre e e sree e e svee e e s aaaeeeeaes 23
4.2.2. Define Services and INterfaces.ccocueeieiieenienieeeeeeee e 24
4.2.3. Define Service CONTrACES ...cccuiiiiuiieiiiee ettt ettt s s 24
4.2.4. Implement and DePlOY SEIVICESuuiiiiii i e e 24

4.3 SOA Model Implementation in SIMUIINK.........ccoeiiiiiiiiiie e 24

4.4 Advantages Observed from SOA-Based DEeSIZNccccuveeeeiiiiieeeiiiee et 33
1. Modularity and ReUSADIlItYcoeeeciiiiiiiiie e e 33
2. Improved Maintainability........cccuurieeiie e 34
3. SCAIADIIIEY ettt st 34
4. AUTOSAR COMPIANCE ..uuiiiiiieiee ettt e e e e e e e crere e e e e e e e s nrtae e e e e e e e s e nnraenees 34
5. Event-Driven EXECUTIONccoiviiiiiiiiiiiiiiiicc e 34
6. Enhanced Integration and Interoperability......cccccccoeeeiiiveeeeie e, 34

(00T T o] (= S TSRS 35
5. Code Generation and Integration of the code into Android studio.........cccceevivveeeeeeeeniennn, 35

5.1 C++ Code Generation using Embedded Coder from Simulink Models...........ccccc.......... 35
5.1.1 Overview of Embedded Coder.........cccouiiiiiniiiiiieeeeeeeeee e 35
5.1.2 Preparation of the Simulink Model...........oooeiiiiiie e, 35
5.1.3 Set Configuration parameters for Code Generationccccccevvvveeeeeeeeieccnnnnenenn. 35

5.2 Structure of File Folder after code generation in both Monolithic and SOA Simulink

g Te 1= L PSSP PROPRTSO 39
5.2.1 File structure and generated files for Monolithic Simulink model 39
5.2.2. File structure and generated files for SOA Simulink modelcccccoeeeeivinennnnnnn. 39

5.3 Code Integration in Android Studio of Monolithic Models.........cccccveeeieiiiiiiveeeieeieiienns 42
5.3.1 Project Setup and File STtructurecc..euviiiieee e 43

Academic Year: 2024-25
4

5.3.2 Native C++ and JNI Bridge (Native-lib.CPP).....cceiurrrrreeiiiieeiirieeeee e 46

5.3.3 Native Build Configuration (CMakeListS.tXt)cceevvieeeiieeeiieeciee e 48
5.3.4 Android Application Controller (MainActivity.java)ccccceeeeciieeeecciieee e, 48
5.3.5 User Interface Layout (main_activity.Xml)cccceeviiriiiieiiiiececcee e 49
5.3.6 Build File Configuration (app/build.gradle.Kts).........cccoveeiireecieeeiieeciececee e 49
5.3.7 Android Manifest (AndroidManifest.Xml)ccccccvveeiieiiiieceece e 50
5.3.8 Application Run and Verificationcccceeeeciieii i 51
5.3.9 Whole workflow of the monolithic adaptive light controller application 52
5.4 Code Integration in Android Studio for SOA modelsccooeeciiiieiiiiiecccceeeee e, 53
5.4.1 Project Setup in AnNdroid StUAIO........cccuviiieieee e 53
5.4.2. Project FOIAer StrUCTUIE.......iii ittt e s e e e e e e 56
5.4.3. File structure of SiNgle SErVICe ..o 56
5.4.4. File structure of the Main Application (AdaptiveLightController)cccccvevennneen. 57
5.4.5. Root-Level CMaKeLIStS.tXTcccoviiiiiiiiiiie et 63
5.4.6. Java ApPlication FIlESccccveieeiiiiiee et e 64
5.4.7. User Interface Layout (activity_main.Xxml).......cccocoiiiiiiiiiiiiciiee e, 66
5.4.8. Gradle BUild FIlscoouiiiiiiieiiie ettt 67
5.4.9. ANdroid Manifestccocuiiiiiiiiiee e 68
5.4.10 Whole WOTKFIOWc..eiiiiiiieeeeee e 70
5.5 Configuration of Automotive EMUIGLOrceveiiiiiiieeee e 71
5.6 Testing Result on emulator of monolithic and SOA applications........ccccccevvveveeeeeeincnnns 75
(00T o] = - USRS 81
6. How to shift the Android Studio project t0 AOSPuvvveeviiiieiccieeeeee e eeanns 81
6.1 Shifting of MonolithicAdaptiveLightController..........cccvveeeiieciciieee e, 81
Method 1: Integrating Source Code (Detailed STEPS)eeveeeciiieeeciieee e 81
6.1.1. Create a Sample ANdroid ProjECE:ccccuvveriee et e et eee e 81
6.1.2. Prepare @ FOIAer in ADSP: ...ttt e e e e e e e rnrrare e e e e e e 81
6.1.3. Copy APP COde aNd RESOUICES:ceveurrrrerieeeeeieritreeeeeeeeeeeeeirrrereeeeeeeeennrrarereeeeeens 81
6.1.4. Modify ANAroid.Dp: ... a e 82

6.1.5 Replace Ul-based input signal acquisition with retrieval from the Vehicle HAL, as is
done in real-world appliCatioNsuviiiiieie e 84

Academic Year: 2024-25

5

6.1.6. Add the Project to the BUild:coooiiieeiiiiiii e 90

6.1.7. Build AOSP and Run the EMUIator:cooiiiiiiiiiee e 91
6.2. Shifting of SOAAdaptiveLightController to AOSP.........ccccuveeeieiiiiieeeeeee e 91
6.2.1 Create a Sample ANdroid ProjeCt.......cccuueeiiiciieiiiiiee et 91

Before integrating the system into AOSP, a prototype of the SOA-based Adaptive Light
Controller was implemented in Android Studio. (Refer to Chapters 3 and 5 for the

implementation of the PrototyPe.)...cco i 91
6.2.2 Prepare an application Folder in AOSP ... 91
6.2.3 Prepare folder structure associated with service implementationccccc....... 92
6.2.4 Explanation of Important Files and Their Roles...........ceevviivicciiiieieeiee e, 95
6.2.5 WOIrKfIOW SUMMAIY ...oviiiiiiiiee ettt e e e e e e e e s annes 98
5.2.6 CONCIUSION ...eiiiiiieiiete et sb e s s be e e sanee e 98
(@10 F=T o1 T PP PRRRPPR 99
7. OTA Implementation for SOAAdaptiveLightControllercceviveiieeieciieeeecee e 99
2% N L1 ¢ e Yo [V Tt u o] o RO PP U PP OPPTP 99
7.2 ArChiteCTUIE OVEIVIEW ...cuieiiiiiiiiiie ettt ettt ettt e st sane e s sabe e s eaneeseane 99
7.3 IMpPlementation StEPS ..cciii i e a e e e eean 100
7.4 OTA Update Example: AmbientLightServiceiiiveeeee e 102
7.5 Advantages of the OTA MechanisSmuuviieiiii e 102
2 ST 10 L] 0 =TSN 103
(00 =T o] =T < USSR 104
8. Mixed Criticality in Android AUtOmMOLiVe SYSTEMS......ccoccciiiieeeiee e 104
B.L INTFOTUCTION ettt e e s e st e e s abe e e saneeens 104
8.2 Concept of Mixed CritiCalitycccovvreeieiieeieiicieeeee e e e e e e e e e e 104
8.2. 1 DEIINITION. ..ciiiiiiiiit et 104
8.2.2 Challenges in Mixed-Criticality INtegrationccovvvevrveeeiiee e, 104

8.3 Mixed Criticality in Android Automotive Architecturecccccoeccciiiieeeiiiieccciieeeeeee, 105
8.3.1 Overview of Android AUTOMOTIVE OS.......cccceeriiriienienieerie e 105
8.3.2 Architectural Separation of DOMaiNS.........cceeeeeeiiieciiiiiieee e e 105
8.3.3 Mechanisms Supporting Mixed Criticalitycccceeeeeeiiiiiieiee e, 105

8.4 Case Study: SOA AdaptivelLight Controller Applicationccceeevvveeeeeeeiieiiciirreeeeeeenn, 106
8.4.1 Model-Based Design WOrKfIOWcooeieiiiiiiiee et 106

Academic Year: 2024-25

6

8.4.2 Role within Mixed Criticality Archit@CtUreccovvvviiveeeeiieeieiecieeeee e, 106

8.4.3 Interaction BOUNGAIIES......coouiiiiiiieiie ettt 107

8.5 Safety, Security, and System Assurance Considerationscccccccvveeeevciieeeeicieeee e, 107
8.5.1 Freedom from Interference (FF1) ..o 107
8.5.2 CompPliance CONLEXL....viieiiie it e e e e e e s e nraeeees 107
8.5.3 Security and Update Management.......c.uuveiiiiiieeiniiieee et eseeee e sieee e sveee e 107

8.6 DISCUSSION.....uiiiiiiiiiiic ittt s 107
8.7 CONCIUSION ...ttt ettt e s bt e st e e st e e et e e sane e e sabeeesaneeeans 108
(00 F=T o1 1T o PP PPPRRRRTRPPN 109
9. Vehicle Signal Integration in Android AUtOMOLIVEc.ceuiiiiiieiie e 109
9.0 OVEIVIBW .eeeiieieii ettt ettt e et e e e e e s e s r et e e e e e s se s r e et e e e e e s seasnnreneeeeeeeans 109
9.2 Signal Flow: From CAN Bus t0 ANdroideeeeiiiiiiiciiiieeee e e crrree e 109
9.2.1 Vehicle Sensors and CAN BUS.......cooiuiieiiiieiieeeiee ettt ettt 109
9.2.2 Vehicle GateWay ECUccooo ittt e e e e e e rvtre e e e e e e e aene s 110

9.3 Vehicle HAL (Hardware Abstraction Layer)cccuveviieiieeiiiieee e eeieee e 110

1S 2 TR A U o oo 1] =IO PP PP TPPPRRRPPPPPPPPRN 110
9.3 2 STTUCTUNE e 110

9.4 Car Service and Car APlcoo i 111
S O T G =T Vo PP 111
9.4.2 Car API (APPliCation LAYEI).....ueee ettt e et e e e ra e e e e 111

9.5 Integration Example: SOA Adaptive Light Beam Controller........cccovveeeeeeievicinveeennennnn. 112
9.6 Safety and Isolation Considerations.........cccvviiieiiii e 112

1S TR YU [2] 0 = YU 112
REFERENCES/BIBLIOGRAPHY ..ottt sttt ettt sttt sttt st st sbe st saeen 114

Academic Year: 2024-25
7

Chapter 1

1. Introduction

1.1 Background and Motivation

Software in modern vehicles has grown from basic control systems to complex,
interconnected platforms enabling autonomous features, infotainment, connectivity,
and adaptive behaviours. [4]

Software-Defined Vehicles (SDVs) represent a paradigm shift where vehicle functions
are increasingly implemented, updated, and controlled via software. [4]

Traditionally, automotive software systems have been monolithic, where each
functionality is deeply integrated and dependent on specific hardware (ECUs), making
updates and scaling difficult.

The demand for flexible, modular, and update-ready architectures has led to the
adoption of Service-Oriented Architecture (SOA) in the automotive domain.[4]

The motivation is to study the benefits of SOA in practice, specifically through
modelling and implementation of an Adaptive Light Beam Controller (ALBC) system in
both monolithic and SOA formats, using Simulink and Embedded Coder, and testing
deployment feasibility using Android Studio on an automotive emulator.

1.2 Problem Statement

Monolithic software architectures suffer from:
o Lack of modularity and reuse
o Difficulties in OTA (over-the-air) updates
o Increased complexity in testing and validation
o Long development cycles when modifying or extending systems

There is a lack of practical implementation studies showing the migration process to
SOA in automotive systems using industry tools.

Key problem: How can we practically migrate a monolithic automotive function to a
service-oriented model, and what are the measurable benefits in doing so?

1.3 Research Objectives

The main goals of the thesis are:

To design and simulate an Adaptive Light Beam Controller (ALBC) in both monolithic
and SOA styles using Simulink.

Academic Year: 2024-25

8

e To generate C++ code using Embedded Coder from both architectural models.

e To integrate and deploy this code in Android Studio on an automotive emulator for
real-time execution testing.

e To compare the architectures using criteria such as:
o Modularity
o Maintainability
o OTAreadiness
o Code integration and reusability

e To propose areference workflow for migrating legacy monolithic automotive functions
to a SOA-based implementation.

1.4 Methodology Overview

e Modelling: Develop the ALBC logic in Simulink under two architectural paradigms:
o Tightly integrated monolithic
o Loosely coupled service-oriented

e Code Generation: Use Embedded Coder to export both designs into C++ code.

e Integration: Import the generated code into Android Studio, wrap with JNI if needed,
and simulate in an Android-based automotive emulator.

e Evaluation: Measure performance, modularity, update complexity, and service
isolation.

1.5 Thesis Contributions

This work contributes:

e Aside-by-side modelling and implementation of monolithic and SOA versions of a real-
world automotive function.

¢ Demonstration of Embedded Coder's integration with Android-based environments.
e Adeployment workflow from Simulink - C++ = Android Studio - Emulator.
e A comparison framework for evaluating monolithic vs SOA designs.

¢ Insights into real-world challenges and benefits of SOA migration in SDVs.

Academic Year: 2024-25
9

Chapter 2

2. Literature Review

2.1 Software-Defined Vehicles (SDVs): A Paradigm Shift

The automotive industry is transitioning from hardware-centric engineering to a software-
defined approach, where vehicle behaviour and capabilities are increasingly controlled by
software. A Software-Defined Vehicle (SDV) decouples functionality from hardware through
abstraction layers and centralized computing. This enables manufacturers to:

e Roll out new features via over-the-air (OTA) updates
e Reduce time-to-market
¢ Adapt vehicle behaviour dynamically based on data and context

Key industry players (e.g., Tesla, Volkswagen, Toyota, BMW) are investing in SDV platforms
built around centralized electronic architectures and zonal computing units. This trend has
driven the need for flexible, modular, and update-ready software architectures, such as SOA.

[1][4]
2.2 Monolithic Architectures in Automotive Systems

Historically, vehicle functions have been developed in monolithic architectures:
e Code is organized as tightly coupled modules
e Functions are often embedded directly into hardware (ECUs)
e Dependencies between modules are high
e Updates typically require complete revalidation or hardware flashing

While monolithic designs were effective for early embedded systems, they suffer from several
limitations in the SDV era:

Aspect Monolithic Limitation

Modularity Difficult to isolate or reuse components

Maintainability High impact of small changes

OTA updates Rarely supported; complex and risky
Scalability Hard to extend due to rigid structure
Testing Time-consuming due to integration dependencies

This has led to a growing consensus that legacy monolithic systems must evolve toward
modular and service-oriented paradigms.

Academic Year: 2024-25
10

2.3 Service-Oriented Architecture (SOA) in Automotive

SOA is a software architecture paradigm that structures applications as loosely coupled,
independently deployable services. Each service performs a specific function and
communicates through well-defined interfaces (e.g., APls or middleware). [1][4]

Benefits of SOA in SDVs:
e Modularity: Services can be developed and tested independently.
e Scalability: New features can be added without modifying the core system.
e OTA Readiness: Individual services can be updated dynamically.

e Cross-Domain Communication: Facilitates interaction between powertrain,
infotainment, ADAS, and other domains.

SOA Standards in Automotive:

e AUTOSAR Adaptive Platform: An industry standard supporting POSIX-based OS,
service discovery, and dynamic deployment.

e DDS (Data Distribution Service) and SOME/IP: Common middleware protocols for
real-time communication in SOA-based ECUs.

e ISO 26262: Safety standard requiring traceable and testable modules, which SOA
supports.

Challenges:
e Real-time constraints and communication latency
e Migration of legacy monolithic code
e Integration complexity and toolchain compatibility
e Ensuring system safety and performance under distributed control

2.4 Model-Based Design and Simulink in Embedded Systems

Model-Based Design (MBD) is a design methodology where system functionality is captured
in graphical models rather than textual code. Simulink, a widely adopted MBD tool by
MathWorks, allows:

¢ Rapid prototyping of control algorithms
e Simulation of real-world systems and behaviour
e Automatic code generation for embedded deployment

In automotive engineering, Simulink enables system engineers to:

Academic Year: 2024-25
11

Design functional blocks (sensors, controllers, actuators)

Simulate system response under various scenarios

Validate functional safety requirements before coding

Reuse validated models across platforms

In thesis, Simulink is used to design the Adaptive Light Beam Controller (ALBC) in both
monolithic and SOA styles.

2.5 Embedded Coder and C++ Code Generation

Embedded Coder is a MATLAB tool that extends Simulink to generate highly optimized and
readable C/C++ code from models for embedded targets. Key features include:[16]

e Code mapping for model elements (inputs, outputs, functions)
e Integration with software-in-the-loop (SIL) and processor-in-the-loop (PIL) workflows.

e Generation of reusable software components aligned with AUTOSAR, 1SO 26262, and
other standards.

e Configuration of function interfaces for integration into target projects (e.g., Android,
Linux-based ECUs).

For my project, Embedded Coder is used to:
e Export both monolithic and SOA-based ALBC models as C++ code
e Integrate them into Android Studio
e Deploy and run them on an automotive emulator

2.6 Android-Based Automotive Emulators

Android-based platforms are increasingly used for prototyping and simulating automotive
applications. Tools like Android Automotive OS (AAOS) provide a real-time OS environment
and Ul for vehicle functions.[6]

Why Use Android Emulators?
o Safe, virtual testing environment for embedded software

Support for C++ libraries via JNI (Java Native Interface)

Integration with Android Studio for app development and deployment

« Emulates user interaction and service behaviour in an SDV-like environment

In this thesis, C++ code from Embedded Coder is compiled into Android-native code, deployed
to the emulator, and validated against expected ALBC behaviour.

Academic Year: 2024-25
12

2.7 Summary and Research Gaps

This chapter highlighted the evolution from monolithic to SOA in automotive systems and the
importance of model-based design and code generation in this transition.

Key Gaps Identified:

e A lack of end-to-end case studies demonstrating the full pipeline from model-based
design - code generation - integration - emulator deployment.

e Limited academic examples showing side-by-side comparisons between monolithic
and SOA implementations using industry-standard tools.

¢ Insufficient guidelines on how to structure SOA components in Simulink and deploy
them as real-time services.

This thesis addresses these gaps by designing, implementing, generating, and deploying both
monolithic and SOA versions of an automotive control function — the Adaptive Light Beam
Controller (ALBC) — and evaluating their comparative merits in a simulated real-time
environment.

Academic Year: 2024-25
13

Chapter 3

3. Design of Adaptive Light Beam Controller — Monolithic Architecture
3.1 Functional Requirements and Test Case Description

FR1: High Beam Mode

Requirement:
e The system shall activate High Beam mode when all the following conditions are met:
o No oncoming vehicles detected (VehicleOncoming == 0)
o Vehicle speed is greater than or equal to 50 km/h (VehicleSpeed >= 50)
o Ambient light level is below 20 lux (AmbientLight < 20)
¢ When activated, the system shall:
o Set beam range to 100 meters (BeamRange = 100)
o Set beam angle to 0 degrees (BeamAngle = 0)
Test Cases:

e TC1.1: Verify High Beam activates when no oncoming vehicle, speed = 60 km/h,
ambient light = 10 lux. Expect beam range = 100 m, beam angle = 0°

e TC1.2: Verify High Beam does NOT activate when an oncoming vehicle is detected,
even if speed and light conditions are met.

e TC1.3: Verify High Beam does NOT activate if speed < 50 km/h regardless of other
conditions.

e TC1.4: Verify High Beam does NOT activate if ambient light > 20 lux regardless of
other conditions.

FR2: Cornering Beam Mode

Requirement:

¢ The system shall activate Cornering Beam mode when the steering angle is greater
than or equal to 10 degrees (SteeringAngle >= 10°)
¢ When activated, the system shall:
o Set beam range to 50 meters (BeamRange = 50)
o Adjust beam angle dynamically using a discrete controller based on road
curvature (BeamAngle = BeamPID(RoadCurvature))

Test Cases:

Academic Year: 2024-25
14

e TC2.1: Verify Cornering Beam activates when steering angle = 15°, beam range is set
to 50 m, and beam angle adjusts based on simulated road curvature input.

e TC2.2: Verify Cornering Beam does NOT activate when steering angle < 10°.

e TC2.3: Verify beam angle changes smoothly with varying road curvature inputs using
discrete controller behaviour.

FR3: City Mode

Requirement:

e The system shall activate City Mode when:
o Vehicle speed is less than or equal to 30 km/h (VehicleSpeed <= 30)
o Ambient light level is above 30 lux (AmbientLight > 30)
¢ When activated, the system shall:
o Set beam range to 30 meters (BeamRange = 30)
o Set beam angle to 0 degrees (BeamAngle = 0)

Test Cases:

e TC3.1: Verify City Mode activates when vehicle speed = 20 km/h and ambient light =
40 lux.

e TC3.2: Verify City Mode does NOT activate if speed > 30 km/h even if ambient light is
high.

e TC3.3: Verify City Mode does NOT activate if ambient light < 30 lux even if speed is low.

FR4: Low Beam Mode

Requirement:

e The system shall activate Low Beam mode when an oncoming vehicle is detected
(VehicleOncoming == 1)
¢ When activated, the system shall:
o Set beam range to 50 meters (BeamRange = 50)
o Set beam angle to 0 degrees (BeamAngle = 0)

Test Cases:

e TCA.1: Verify Low Beam activates when an oncoming vehicle is detected regardless of
speed or ambient light.

e TCA.2: Verify Low Beam deactivates when no oncoming vehicle is detected.

e TCA4.3: Verify beam range and angle remain at 50 meters and 0 degrees respectively
while Low Beam mode is active.

Academic Year: 2024-25
15

3.2 Modelling of Adaptive Light Beam Controller in Simulink

The Adaptive Light Beam controller is developed using a Model-Based Systems Design (MBSD)
approach within Simulink, leveraging Stateflow for state machine implementation. Each input
signal, along with its corresponding measurement unit, is fed into the Stateflow chart to
ensure clarity and proper handling of physical quantities (as illustrated in the accompanying
figure).

The Stateflow chart consists of four distinct states: LowBeam, HighBeam, CorneringBeam,
and CityMode. The system transitions between these states based on specific input
conditions, maintaining a single active state at any given time. Within each state, output
signals are generated and adjusted accordingly to control the adaptive lighting behaviour.

A key feature of the system is the CorneringBeam state, which goes beyond a simple state
transition condition. When the steering angle exceeds a threshold value of 10 degrees, the
beam angle dynamically adjusts to follow the road curvature. This adaptive behaviour is
implemented through a discrete controller designed to modulate the beam angle based on
the steering input, enabling enhanced visibility during cornering manoeuvres.

The design procedure of this discrete controller involves:

e Sampling the road curvature input at fixed intervals to compute the required beam
angle adjustment.

e Implementing a control algorithm that maps the road curvature to a corresponding
beam deflection angle, ensuring smooth and timely response.

e Incorporating saturation limits which is of +-60° and safety checks to prevent excessive
beam movement and maintain driver safety.

¢ Validating the controller performance within the Simulink environment through
simulation, confirming that the beam adjustment closely follows the vehicle’s steering
dynamics.

Academic Year: 2024-25
16

— 1--‘-'--'--— T ™ ™ L L) S s L
BesraAnga
‘ []
e P
Nemireies_Jarvmte
o —
Hmarmrgm
‘wm
= | D)
[P
] e
kel ar | |
Figure 1: Monolithic ALBC Simulink design
i.ﬁmlm.ﬂuﬁ:m * Woun
e - ——— - '||ll-’_'"--ll'-'-"'r-'l Wi
> — 'l_FFE_
— T i
= T g e — —w U R Vo] y
W A—
S
e -_ il T S S——
——— - ——
S S _'-'—-—-

Figure 2: State chart corresponding to ALBC

| BN Mook ek amvresLgnBai i b B BessMD

Figure 3: Beam discrete controller design

Academic Year: 2024-25
17

3.3 Discrete Controller Design Using the Diophantine Equation Approach

To achieve precise control of the beam angle in the Cornering Beam state, a discrete controller
was designed following a Diophantine equation-based methodology. This approach enables
the direct synthesis of a digital controller that meets specified dynamic performance criteria
by solving polynomial equations in the discrete domain.

The continuous-time plant model representing the beam angle dynamics was initially defined
as:

1
0.1*s24+05*s+ 11

Gecont(s) =

This transfer function captures the relevant dynamics of the beam actuation system. The
system was converted into its state-space representation for detailed analysis and controller
synthesis.

Using a sampling time of Ts=0.01seconds, the system was discretized. Rather than relying
solely on standard discretization methods, the discrete transfer function was manually derived
and expressed as:

G(z) = 0.00049173(z + 0.9835) /(22 — 1.95z + 0.9512)

The poles and zeros of the discrete system were extracted and analysed to characterize the
system's behaviour in the z-domain.

Performance specifications were defined based on overshoot (sovr=20%), settling time
(tso=0.4t seconds), and rise time (tro=0.14t seconds). These parameters were used to
calculate the damping ratio { and natural frequency wn necessary to meet the design criteria:

¢ = abs < In(sovr))

sqrt(m? + In(sovr)?)

where wn,ts and wn,tr are derived from settling time(ts) and rise time(tr) constraints
respectively.

4.6
(ts =)

(m —acos({))
tr+ (1= ¢?)

wn, ts =

wn.tr =

The core of the controller design involved solving the Diophantine equation to determine
controller polynomials R(z) and S(z) such that the closed-loop characteristic polynomial
matched the desired dynamics. This was done by constructing Sylvester matrices from the
plant polynomials and solving for the unknown coefficients.

Academic Year: 2024-25
18

The resulting controller transfer function C(z) = % was simplified and converted to state-

space form for implementation and simulation within Simulink.
Key steps included:
e Extracting discrete system zeros and poles for polynomial formation.

e Constructing and solving the Sylvester matrix equation representing the Diophantine
condition.

e Designing the controller to place closed-loop poles inside a cardioid region defined by
the damping ratio {, ensuring system stability and desired transient response.

e Simulating the closed-loop response in Simulink to validate performance, with plots of
error, reference, and output signals confirming controller effectiveness.

This methodical approach provided a systematic framework to synthesize a discrete controller
capable of dynamically adjusting the beam angle based on steering inputs, thus enhancing
vehicle safety and driver visibility during cornering.

Obtained controller function after the computation is:

2 - 1.95z + 0.9512
(z—-1)(z—0.7665)

C(z) = 57.958°

3.4 Limitations of the Monolithic Implementation

While the monolithic implementation of the Adaptive Light Beam controller within a single
Stateflow chart offers straightforward integration and centralized logic management, it
presents several inherent limitations:

1. Scalability Issues
As the complexity of the system grows, the monolithic design becomes increasingly
difficult to maintain and extend. Adding new features or modifying existing behaviour
requires navigating and updating a large, intertwined state machine, which can be
error-prone and time-consuming.

2. Reduced Modularity and Reusability
The tightly coupled design limits the ability to reuse individual components or states
in other projects or contexts. Reusability is crucial in model-based design for efficient
development cycles, but the monolithic approach often forces duplication or
extensive refactoring.

3. Testing and Debugging Challenges
Debugging complex state transitions and signal interactions in a single, large
Stateflow chart can be cumbersome. Isolating faults or verifying specific functionality

Academic Year: 2024-25
19

requires significant effort due to the interdependencies between states and shared
variables.

Limited Team Collaboration

In a monolithic model, parallel development is hindered because multiple developers
working on the same Stateflow chart can cause merge conflicts or overwriting of
changes. Modular implementations facilitate better task distribution and integration.

Performance Constraints
Large state machines may introduce computational overhead and increase simulation
times, which is critical for real-time embedded systems. Optimizing and profiling
performance in a monolithic setup can be more difficult compared to modular designs.

Difficulty in Formal Verification and Validation

Formal methods for verifying system correctness are more challenging to apply on
large monolithic models due to state space explosion and the complexity of
interactions. Modular approaches can simplify verification by reducing state space
and isolating functionality.

Overall, while the monolithic implementation serves well for initial prototyping and small-

scale systems, transitioning to a modular or hierarchical design is recommended for

enhanced maintainability, scalability, and robustness in larger and more complex adaptive

lighting control systems.

3.5 Challenges in Migrating Legacy Application to SOA

Migrating legacy applications, such as the monolithic Adaptive Light Beam controller, to a

Service-Oriented Architecture (SOA) framework presents several key challenges:

1. Monolithic Design and Complexity of Decomposition

Legacy systems are often tightly coupled with no clear modular boundaries, making it
difficult to identify and extract discrete, reusable services. Decomposing intertwined
logic requires deep domain knowledge and thorough understanding of dependencies.

Sequential Order of Execution

Legacy applications usually follow a predefined sequential execution order. This rigid
sequence complicates converting the system into loosely coupled services that
support dynamic discovery and reconfiguration at runtime.

Data and Interface Standardization

Heterogeneous data formats and proprietary communication protocols are common
in legacy systems. Ensuring consistent data representation and defining standardized
service interfaces requires significant re-engineering for interoperability within SOA.

Academic Year: 2024-25

20

Performance Overhead

SOA introduces communication overhead through network calls and message
processing. Real-time control systems, such as adaptive lighting, have strict timing
requirements that may be compromised if service granularity and communication
mechanisms are not carefully optimized.

Ensuring Functional Equivalence

Maintaining exact legacy system behaviour during and after migration is challenging.
Reconstructed services must faithfully replicate original control logic, especially in
safety-critical automotive applications where deviations can cause hazards.

Integration with Existing Infrastructure

Legacy systems often rely on proprietary hardware and tightly integrated components.
Adapting these into a loosely coupled SOA may require additional middleware or
adapters, increasing system complexity.

Testing and Validation Complexity

Breaking the system into multiple interacting services complicates system-level
testing. Comprehensive validation must cover both individual services and their
interactions under diverse conditions to ensure reliability.

Change Management and Team Skillsets

Migrating to SOA requires organizational change, including retraining teams on new
paradigms, tools, and communication protocols. Resistance and learning curves can
slow the migration process.

Security Concerns

SOA exposes services over networks, increasing the attack surface. Legacy systems
need robust authentication, authorization, and encryption to ensure security in a
distributed environment.

3.6 Summary

While SOA migration offers benefits such as modularity, scalability, and easier maintenance,

addressing these challenges demands careful planning, iterative development, and thorough

testing. Utilizing Model-Based Design methodologies and domain expertise can help

facilitate a smooth and effective migration, preserving system performance, safety, and

reliability.

Academic Year: 2024-25

21

Chapter 4

4. Design of Adaptive Light Beam Controller — Service-Oriented Architecture

4.1 Decomposition of Traditional Software components into services

Decomposing traditional application software compositions into services is a critical step in
transitioning to a Service-Oriented Architecture (SOA). This process involves breaking down a
monolithic architecture into smaller, modular components, enabling greater flexibility,
scalability, and adaptability, particularly in the context of Software-Defined Vehicles
(SDVs).[1][4][10]

The decomposition process can be broadly divided into four sequential steps, each
represented as distinct phases in the transformation from monolithic applications to service-
oriented systems:

4.1.1 Identify and Analyse Services

The first and most challenging step is to identify the potential services, including key
components, functionalities, execution order, and dependencies within the existing
monolithic system. Engineers must carefully analyse these elements to determine
logical service boundaries and to decompose the monolithic application into smaller,
manageable components. [1][4]

4.1.2 Define Services and Interfaces

Once services are identified, the next step is to clearly define the interfaces between
them. This involves specifying communication protocols and data formats to ensure
seamless interaction. Well-defined interfaces are essential for enabling
interoperability and loose coupling between services. [1][4]

4.1.3 Define Service Contracts

Service contracts formalize the interaction rules between services. They specify terms
and conditions, including service versioning, error handling, and performance
expectations. In automotive systems, these concepts are embodied in standards like
the AUTOSAR 22-11 schema, which supports versioning to allow new service versions
without disrupting existing clients. [1][4]

4.1.4 Implement and Deploy Services
The final step involves implementing each service as an independent application. This
includes creating the necessary artifacts such as interface descriptions,
communication bindings, and deployment packages. Each service can then be

Academic Year: 2024-25
22

deployed, managed, and updated independently, supporting scalability and
maintainability. [1][4]

This structured approach ensures a systematic and controlled migration from traditional
monolithic software to a modern SOA, facilitating the development of modular, reusable, and
maintainable components suitable for complex automotive applications.

4.2 Using Model-Based Design to Decompose Adaptive Light Beam Controller Monolithic
Application into Services

Model-Based Design (MBD) has long been used to develop applications for both non-
AUTOSAR and AUTOSAR Classic frameworks. More recently, it has also been extended to
support Service-Oriented Architecture (SOA) based applications, including those developed
on the AUTOSAR Adaptive platform and generic SOA frameworks. In the context of Software-
Defined Vehicles (SDVs), the industry commonly leverages either a generic SOA or AUTOSAR
Adaptive-based SOA. Model-Based Design offers a unified development platform that
efficiently manages the entire development lifecycle across these diverse platforms—ensuring
consistency, reusability, and increased development efficiency. [1][4][9]

The process of using Model-Based Design to decompose monolithic application components
into modular services involves several key steps:

4.2.1. Identify and Analyse Services

The initial step is to thoroughly understand the components of the legacy monolithic
application, including their functionalities, execution order, and interdependencies. Typically,
monolithic applications are deployed as a single executable artifact containing all components
bundled together (Figure 4: Monolithic ALBC Simulink design).

For example, consider the Adaptive Light Beam Controller—a key automotive system
responsible for managing multiple lighting modes such as Low Beam, High Beam, Cornering
Beam, and City Mode. Initially, this functionality may exist as a monolithic Stateflow model.

To migrate such legacy monolithic designs toward a Service-Oriented Architecture (SOA),
Model-Based Design (MBD) principles are applied—specifically:

¢ Single Responsibility Principle: Each service should perform one well-defined
function. [1][4]

o Dependency Inversion Principle: High-level services should depend on abstract
contracts (e.g., APIs or events), rather than on the concrete implementations of lower-
level services. [1][4]

By applying these principles, the monolithic system can be systematically decomposed into
distinct, reusable services—such as the VehicleOncoming Service, AmbientLight Service,
VehicleSpeed Service, SteeringAngle Service, RoadCurvature Service, and
BeamAngleController Service.

Academic Year: 2024-25
23

This decomposition isolates functionality into loosely coupled services, allowing independent
development and easier maintenance. For instance, the cornering beam logic that adjusts
beam angle based on steering input can be encapsulated as a separate service, distinct from
the main Stateflow component.

4.2.2. Define Services and Interfaces

Once services are identified, the next step is to define clear interfaces for each service. These
interfaces form the boundaries through which services communicate with each other,
encapsulating functionality and enabling benefits such as reuse, maintainability, version
control, and orchestration.
Using tools like System Composer, engineers can configure service ports and interfaces, ensure
data consistency and visually represent dependencies and interactions between services. (see
Figure 12) [1][4][9]

4.2.3. Define Service Contracts

Establishing explicit service contracts is critical to delineate each service’s inputs, outputs, and
expected behaviour. Well-defined contracts allow services to be developed, tested, and
deployed independently without tight coupling to other system components. Service
contracts also facilitate backward-compatible versioning, enabling new service versions to be
released without disrupting existing clients. (see figure 13, 14) [1]{4][9]

4.2.4. Implement and Deploy Services

Finally, services are implemented using Model-Based Design’s client-server interfaces.
Applications like the Adaptive Light Beam controller’s discrete control modules are realized as
separate service components within Simulink. These modular services can then be
independently deployed within an SOA environment.
Additionally, Embedded Coder can be used to generate C++ code from these models for
deployment in generic SOA applications, facilitating integration with existing middleware and
runtime environments. [1][4][9]

This Model-Based Design workflow provides a systematic approach to transforming
monolithic automotive software, including complex controllers like the Adaptive Light Beam
system, into modular, service-oriented applications. This supports scalability, maintainability,
and efficient integration in modern SDVs.

4.3 SOA Model Implementation in Simulink

4.3.1 How to define service and interfaces in Simulink
In System Composer:

1)Create a software architecture model

Academic Year: 2024-25
24

v System Composer

Architecture Mods| Software Architecture Mode! Actiiity Dlagram

Figure 5: System composer software architecture model

2) Create a software component box for our main application i.e. AdaptivelLightController

Figure 6: Simulink software component

3) Define all I/O in the main application and connect to Interface boundary of composition(as
in below figure 7). The I/0 of the application are: VehicleSpeed_km_h, RoadCurvature_per_m,
SteeringAngle_degree, AmbientLight, VehicleOncoming, BeamAngle and BeamRange.

T BOA_AduptiveLightCantenlier b

e

Figure 7: Simulink Adaptive Light Controller(*)

Academic Year: 2024-25
25

4) Create a software component box for all new service components. Where the services are:
VehicleOncomingService, VehicleSpeedService, AmbientLightService, SteeringAngleService,
BeamAngleController and RoadCurvatureService. AdaptiveLightController is the main
application.

-tia b

T BOA_AdapivnLighiConiralie e

i B Rt P rmpwyel phel sene

Arbariigris e

i

Figure 8: Simulink Services software components(*)

5) Connect all service components to main application (AdaptiveLightController) with client
server connectors

TP AL] G i
77 SDA_AdaptivelightCantrallerhew

Figure 9: Services connected to main application with client server connectors(*)
6) Defining the Client and Server Interfaces using the Interface Editor

Open the Interface Editor, and the Interfaces window will appear below. Select “Add data
interface”, then choose Service Interface from the options. This will create a new service
interface. You can now name it according to your application requirements (e.g.,
AmbientLight_servif).

Academic Year: 2024-25
26

Figure 10: Client server interface definition

Once the service interface is created, add elements that define the service behavior — such
as the input it receives, the function it executes, and the output it produces. To do this, select
“Add element to the selected interface” from the Interfaces window (located next to Add data
interface). This will generate a default function prototype in the form y = f(u), which you can
modify as needed.

For example, in AmbientLight_servif, | created a function called computeAmbientLight. It takes
AmbientLight as input and returns outAmbientLight as output. The final function looks like:

outAmbientLight = computeAmbientLight(AmbientLight)

In the same way, additional service interfaces can be created for other services, as illustrated
in the figure.

Figure 11: Client service interface function definition

Academic Year: 2024-25
27

i e Sk e e

Figure 12: Client service all functions definition

7) After having created the service interface, then link them to the client-server connector. For
example:

1. Select the service interface (e.g., AmbientLight_servif).
2. Right-click on the client and server ports.
3. Choose "Apply selected interface: AmbientLight_servif".

To verify that the service interface is correctly assigned to both ports, select the interface. If
the client and server ports are highlighted in purple, it confirms that the interface has been
successfully linked.

8) To create the Simulink behaviour model for a service component:
1. Right-click on the service software component.
2. Select "Create Simulink Behaviour", then click OK.

Repeat this process for each service component to generate their respective Simulink
behaviour models.

Academic Year: 2024-25
28

Rl e s L
ApapsveLightlorewie L e]

A A Ararusgaoris i

s dh

Figure 13: Simulink behaviour for a service(*)

8) Create the Simulink behavior model for the Main Application (i.e., AdaptivelLightController)
by following these steps:

1. Right-click on the AdaptivelightController software component.
2. Select "Create Simulink Behavior" and click OK.

Ensure that all input/output (1/0) connections are properly attached to the Main Application
component, while the service components should already be connected via their respective
client-server interfaces.

Sk AT | T

Y TT——

| Lk s s ar——

e

“alw

Figure 14: Simulink behaviour for a main application(*)
9) Design of the Main Application (AdaptivelLightController)

In the previous step, Simulink automatically generated the input and output bus signals and
created a Function-Call Subsystem for each connected service interface. If the service function
is defined in a format such as outAmbientLight = computeAmbientLight(AmbientLight), the

Academic Year: 2024-25
29

corresponding input (AmbientLight) and output (outAmbientLight) signals are added to the
Function-Call Subsystem

(34)

= II;_'l;:-l!lpuIi:.h.n'.l]il;:rl'.Ll_r;.HIF'url

¥y
funcion|

AmbhentLight i {1 AmbientLighl f——

callcompubesmibisnil g

Client! . computeAmbianiLight é

Figure 15: Add input and output signal to Function call subsystem

Figure 16 illustrates the internal structure of the computeAmbientLight client function call. It
includes a Function Caller block that receives the input signal and invokes the server
counterpart. The server performs the necessary computation and returns the output signal,
which is then utilized by the main application. This setup exemplifies how the Service-Oriented
Architecture (SOA) promotes modularity by decoupling the server implementation from the
main application. This separation enables independent updates to the server logic over time
and supports use cases such as Over-the-Air (OTA) updates.

mm{_mﬂm [:‘E.’h".—_‘lu-ll:."l' pevpsrler [Adaprree LigheConmroited ¥ B cafoompunebimienel gne

Figure 16: Inside the Function Call Subsystem

Academic Year: 2024-25
30

Figure 17 shows the server counterpart of a service call, which is triggered when the Function-
Call Subsystem in the main application invokes the corresponding function.

AT T

S0 AdsprrveiigbCoramiin [e gnitens [Arceneug s b

.) Server . computeAmbientLight

»

outAmbigntLight = computeAmbientLight{AmblentLight)

computeAmbientLight

Figure 17: Server counterpart of the Function Call subsystem

Similar client-server service calls are defined for other functionalities, reinforcing the modular

and scalable nature of the SOA-based system design.
fi()
computeAmbientLight

~AmbientLight > »<_outAmbientLight™__

Figure 18: Inside of the Server counterpart of the Function Call Subsystem

The AdaptiveLightController is structured in a modular, service-oriented way:

e Each Function-Call Subsystem corresponds to a specific service (e.g., AmbientLight,
VehicleSpeed, etc.).

e These subsystems take their respective input bus signals—for example, the
AmbientLight Function-Call Subsystem receives the Ambient Light input, and so on for
the others.

Stateflow Integration in SOA-Based Design

In the previous Monolithic Design of the AdaptivelLightController, a single Stateflow chart was
used to implement the internal logic controlling Beam Range and Beam Angle.

In the SOA-based redesign, we continue to use a Stateflow-based approach, but with an
important architectural adjustment:

The Stateflow chart is now placed inside a Function-Call Subsystem.

Academic Year: 2024-25
31

This design decision is essential in the context of Service-Oriented Architecture (SOA) and

AUTOSAR compatibility:
e Enables event-driven execution of the control logic.

e Aligns with AUTOSAR runnable semantics, where function-call triggers map directly to

runnable.

¢ Promotes modularity, easier testing, and standards-compliant behaviour modelling.

e s =1
: o= 11| I

.
i)
-

Figure 19: Main Application with State chart inside Function call Subsystem

Final Architecture Overview

The resulting AdaptiveLightController is a modular, SOA-compliant system where:
e Each service input is handled by a dedicated Function-Call Subsystem.

e The core decision logic, implemented via Stateflow, is triggered through a function-
call, ensuring the system only reacts when relevant inputs or events occur.

e This setup defines the internal logic that determines Beam Range and Beam Angle,
based on service-provided environmental and vehicle data.

The figure 19 illustrates the final AdaptiveLightController architecture, showcasing the clean
separation of services and the centralized decision logic encapsulated in the Stateflow-driven

subsystem.

Academic Year: 2024-25
32

Figure 20: State Flow with input and output signals

e # [l e e W gl rrried § S P Ll Satrpypives # T O
|-
[
{

Figure 21: Logic inside Stateflow which determine state of system

4.4 Advantages Observed from SOA-Based Design

The adoption of a Service-Oriented Architecture (SOA) in the design of the Adaptive Light
Beam Controller has introduced several key advantages compared to the traditional
monolithic approach:

1. Modularity and Reusability

e Each function (e.g., ambient light sensing, vehicle speed handling) is encapsulated as
an independent service component.

e These services can be reused across different applications or systems without
redesign.

e Changes to one service do not impact others, as long as interfaces remain unchanged.

Academic Year: 2024-25
33

2. Improved Maintainability

e The clear separation of logic into client-server components allows for easier
debugging, updates, and testing.

e Individual services can be tested in isolation, reducing system complexity during
validation.

3. Scalability
e New services or features can be added without major rework.

o For example, adding a new weather or camera-based input only requires integrating
another service interface.

4. AUTOSAR Compliance
e SOA aligns with AUTOSAR principles, enabling:
o Standardized runnables and interface definitions
o Compatibility with code generators and embedded platforms
o Easier deployment in AUTOSAR Classic or Adaptive platforms
5. Event-Driven Execution

¢ Function-Call Subsystems trigger logic (e.g., Stateflow) only when needed, saving
computational resources.

e This mirrors real-world embedded execution, where runnables execute based on
events or signals, not continuously.

6. Enhanced Integration and Interoperability

e Clearly defined interfaces (ports and services) allow seamless integration with other
components or external systems.

¢ Encourages team-based parallel development, since service contracts are defined
upfront.

Academic Year: 2024-25
34

Chapter 5

5. Code Generation and Integration of the code into Android studio

5.1 C++ Code Generation using Embedded Coder from Simulink Models

The process of transforming a Simulink model into deployable C++ source code is a critical
step in embedding model-based designs into real-time and embedded systems. MATLAB
Embedded Coder provides specialized tools for generating high-quality, portable C and C++
code directly from Simulink models, which can then be integrated into target environments
such as Android Studio for further development and deployment.[16]

5.1.1 Overview of Embedded Coder
Embedded Coder is an add-on to MATLAB/Simulink that:

¢ Generates highly optimized C and C++ code from models and Stateflow charts.

o Supports hardware-specific optimizations and integration hooks.

o Offers configuration settings for data types, naming conventions, and file packaging.
e Produces traceable code with links back to Simulink blocks for debugging.

This capability is widely used in automotive, aerospace, and industrial control applications,
where real-time performance and deterministic behaviour are critical. [16]

5.1.2 Preparation of the Simulink Model

Before initiating code generation, the Simulink model must be:
1. Functionally validated — Ensure the simulation matches design requirements.

2. Configured for code generation — Use Configuration Parameters - Code Generation
to set:

o System target file: ert.tlc (Embedded Real-Time) for standalone code. [16]
o Language: C++ (instead of default C). [16]

o Toolchain: Select an available C++ compiler compatible with your host system.
[16]

3. 1/0 interfaces defined — External inputs/outputs must be represented using Inports
and Outports with clearly defined data types. [16]

4. Sample times fixed — Embedded code requires deterministic execution rates.

5.1.3 Set Configuration parameters for Code Generation

1. Open Model Settings

Academic Year: 2024-25
35

In the Modelling tab, select Model Settings (or press Ctrl+E) to open the Configuration
Parameters dialog. [16]

2. Configure Solver Options
o Navigate to the Solver pane.
o Set Solver Type to Fixed-step.
o Select discrete (no continuous states) as the solver.
o Specify the Fixed-step size as Ts(0.01s), where Ts is the model’s sampling time.

o This ensures a deterministic execution rate suitable for embedded code
deployment. [16]

3. Select System Target File
o Goto the Code Generation pane.

o Set System target file to ert.tlc (Embedded Real-Time) for high-quality
standalone code generation. [16]

4. Set the Target Language

o Inthe Language field, choose C++ to produce object-oriented, portable code.
[16]

5. Adjust Build Process Settings
o Under Build Process, enable Generate code only. [16]

o This option produces the source files without compiling them, allowing for
external integration in Android Studio.

6. Choose Toolchain
o Inthe Toolchain field, select MinGW64 | gmake (64-bit Windows). [16]

o This ensures compatibility with Windows-hosted builds targeting cross-
platform deployment.

7. Define Code Interface Packaging
o Inthe Interface section of the Code Generation pane:
» Set Code interface packaging to C++ Class. [16]

= Configure additional interface parameters (e.g., class naming
conventions, file packaging) according to project requirements.

8. Set Hardware Implementation

Academic Year: 2024-25
36

o Go to the Hardware Implementation pane.
o Set Hardware board to None.

o Configure Device vendor and Device type according to the intended
deployment hardware.

With these settings, the generated C++ code will be optimized for embedded integration,
modular in structure, and portable to Android Studio or other development environments.

% Configuration Parameters: Light8eamControllen/C onfiguration (Active) - i} "
Qi
"
Solver Sumlafon limo

Ciada IrmporUExpor

- Shert e 01 Sinn e land .
Mash and Data Types Tt g (0.9 o kg Sl E
¥ [hagnostics
Soivar selechon
Hasdware implernentastion
9
Ty | Fixed.slap # Salvai discrete ind continuous slalss - a

Fixed.slep sze (fundamental sampia ime) Th

era-crossmg options

Enabls 2am-craasing dateclon Tor fxed-step saneiahon

Teesking and samplo timg oplicns

Tamplates Penodic semphs lame constmaint | Unoonsirainsd -
Code Placemsn Treat each discreds rale 85 & separate sk
i ST

ARow lBsks 10 eXaciRe Concurmamly o tangsal

Aoudomislically handin rala rensition foc Gala iranston

Al mulliple ta5ks 10 access inguts and oulpidls

LV P

Highes pranly value indicales hignar sk oty

K Cancal Halp APy

Figure 22: Solver configuration

Academic Year: 2024-25
37

& Configuration Farameters: Light8samCantmlies L onfigaration [Acive) - [} Xxon

|}, Seanch

S
Catn mpartEspon
Wath and Data Types

Hamware Doard | Nanm x
Codis Gampration sysiem taget e gritic 5

Dryice vendor, | Wlsl

[= | Dewice ype <B4 {Whndowsid| |=

¥ [Hagnosics

Wr T e ¥ Doy darlais
Model Rofemncng
Simuation Tergod

* Coie Gamstadon

il ates

Repir

Commanis

Idestifang

Custom Coda

Intarfaca

Gods Styia

Yanhcahon

Tampiatus

Coe Placmme

[aln Typa Rapiscernoent
* HDL Conde Generalion

Figure 23: Hardware implementation configuration

@ Configurancon Faramede: LighiBsamControday Tonfigurabon (A

Q Search
il Tampst saiacine
Dt importExport
Math and Diata Types Swalem tamgst e e
® [lngrosics Cesenpinn Emtemdded Coder
Hssthvsmre: mpismeniation Shared coder dchodary. Tl
Mo Rateranceg =
Simulalian Taigel Langumgs Ces
e Ganaralion B Langusgestnwa (Ces11 (EG)
Opimizalian
Rapori Buis procoss.
Comments =
identiben W Gemerate Coda only
Cusiom Godn ... Packnge code and arlifects
i Toichan MINGINEA | gk (4B Windows)
Coile Shle
Werdcahan o T
Temgpiatos Husikd configuraticay Fars U
Carde Placsmseni ¢ Tooichnin detuks
Ciats Type Feplacamsal

& WL Coca Ganaraton
Coda genemfion ahjgctius

Priantired ohipcives Linspacified
ek M Balois geneniling code | 0N

 Solup
| = |- Gearmmete GPU code
| =[] Germrse Haiide code

Lw, Ghack Wode

K

|| cancel || e || seoh |

Figure 24: Code generation configuration

Academic Year: 2024-25
38

5.2 Structure of File Folder after code generation in both Monolithic and SOA Simulink
models

5.2.1 File structure and generated files for Monolithic Simulink model

1. Afterthe code has been generated using embedded coder. It has generated two folders
named slprj and MonolithicAdaptiveLightBeamController_ert_rtw.

LsetilDor Ehisis_imafiah MonchihicAdaprrelighiBasmiCoatialler

MonchthicAdaptiveligheBeamContmller et m
<ion
& MonsiahicAdap iy elagheBesnControler

w MonchihicAdagtwlightBeamConsmallor

Figure 25: Monolithic Application folder structure

2. Inside the folder MonolithicAdaptiveLightBeamController_ert_rtw it has generated all

the source code and header file which will be used while integrating the code into
Android Studio.

Jmailab ¢ MoncliihicAcaptivelightBeamonirolisr ¢+ MonofthcAdaptiseligheBeamiontrolier_si rw

trranrviemal
bikdinln
nobsdeymmpio dmr
naeinits
comgdlelndo
£71_ManLpn
e A a i ewki B emonralle

WonoithichospielighiBas

WionpsthicAdapivelighthesmi

WonnithickdapineelgiibasmConinider_minp
WonnEie A in feelig oS smC o _ypech

Figure 26: Files inside folder MonolithicAdaptiveLightBeamController_ert rtw

3. While file under slprj folder are not relevant for code integration into Android Studio

5.2.2. File structure and generated files for SOA Simulink model

1) File structure before Simulink run.

Academic Year: 2024-25
39

thesis matlab ¢ AdapiivelighiBeamContraller

-
T VehickSpesd Sendoe
"8 YehiceOnoomingSemice
N SrEsringAnpieSevice
" 500 AdagbyalaghbControiier
& "4 Poadl urvatirebennce
TE MDComrodier
i NewSOsadagtvmlighsControdes 3
" hewiObAdepbvelightTontrode
"& ContraliersmDesdgn
" computeleamAngis
"k BeamingleCantroler 1
" BeamAngleCanbolier
" AmbientlightSenvice
W AdsptelighiContaoller
4 untitted dict

" MewSOAAdantveLighsCanbrodier dict

[hae mandifned

Figure 27: Simulink files before code generation

i Mot |
zimradienk Model
Girraink Model

..... ik Data Dict

Sirmiilers Clats Dhel..

2) File structure after building the Simulink model and generating the code. The Simulink has
created two folders: splrj and SOA_AdaptivelightController_ert_rtw.

Kame

S00_Ad apbivelig R cnboo ller_an_riw
shprj

"5 VehicleSgeadSerace

"W VehicleOncomingSenvics

"% SteenngingleSenvice

"a 500_AdaptivelightContralies

" RoadCurvanseSenice

"% PIDConirolisr

i NewSOAdoaptivelightController_1

" MewSOAMsdaptvelightControlles

"a ConbrallerSmDesion

"8 computeBeamangle

T& BeamangleiContralbee_1

" BeamingleControlles

"i AmnientiightSenace

"W AdaptiveLightControdiar

T entitled_dict

8 NewSOAAdaptivedighsController_dict

Figure 28: File structure after code generation

3) File inside folder slprj.

Academic Year: 2024-25
40

Ty

File Pl
Fle foldet
Sorrualink Mogsi
Sarridling Mo
il ik Mdke!

aemuilink Moddel

Soroilink Mpde|
Sl i Il e

ruilink Diari O

=5IE_matiab AdaptiveLighBesmiontrolier » sipr]

=_progimas

Figure 29: File inside folder slprj

All the relevant code files are under ert folder. The file structure of ert folder.

matlab » AdaptivelightBeamControfier » spg » et

SharEdinils
AdaptwelighComtrolle
Ambientlighthenios
Beamangielansraller
FeoadCurmtun=Senios
S0#_hdaptreLightControles
SreerinpingieSemice

WebndleOncoming Sernice

WehileSaemdServie

Figure 30: Files inside ert folder

Under the _sharedutils folder, you find code generated corresponding to the service interface.

wtlaly » AdaptivelightBeamController * shpr e _shareditils
AT

Ambientlight_serifT.h
BeamAngle_servifT.h
checsummap
RoacfCuryature_senalTh
riwtypesh

MwtyEaschksum

shared file.dmp

SteerinpAngle_servifTh

vehicieOncoming_sarafT.h

VehicleSpesd_semilT.h

Figure 31: Files inside _sharedutils folder

While in the folder corresponding to the service for instance AmbientLightService inside the
folder you find it’s header and c++ code files and all relevant source code files. Similarly, rest
of the services source code can be found in their respective folder.

Academic Year: 2024-25
41

m_matlab ¥ AdaptivelightBeamControlter » spg ot * Amberlighthervice

Mo Cigte modified T
terrvintemal TR0
=1 Amipeentiightienice o 6 S 23 Winclos Baich Fil ' KB
| AmpéentlightSendce cop
| AminsentLightheniceh
ArnbeentLightSenice mi 609 2025 2205 Makehie Kfl

| AmbéentLightSenmoersp

ArnbsentlightSenice_comp.rsp G0 20ES 220e RSP File 1 KH
#| AmbsentiightSenice_mr_codelnfo i F S 22K MATLAE Diata
| Amgsentlightiennce_privateh oIR8 2309 L4+ Header 1k
| AmbeeriLightSenace_refsp
| AmpsentLightSenice_typesh 6, [25 2200 M4 s Hepder | KB
* | baildingo Mo 0 RS 200 MATLAE Ciat
cogedesoriptor.dmr 00 S 2250 DIkAR: File 591 KR
t compileinfo WDl 00 S 2300 MATLAR Data ey
riw_prof A A0S 2200 1K
51 setup_mingw T WL R windows Basch Fie

Figure 32: Files inside service folder namely AmbientLightService
4) File inside folder SOA_AdaptiveLightController_ert_rtw.

Inside folder you find the source code files associated to the main architecture model.

thess_matlab + AcaptvelightBeamController » SD&_AdaptiveLightControder_erm_mw
Marme Dhate madified T Skze

tmwinternai DEMEFANFS 230 File Ioidey
miginfo O 0S,20ds 2 MAILAR Data
| codegescriplordmr D /DEU2NS 22132 AT [l

codelnfo
compéelnio Db 2025 220 MATLAB Diata
&il_Mancpp 0TS 2242 C++ Siniy
| rhw_per e
SRR _mengw
T S00_AdaptivelightCongnoiber
208 AdaptivelightCantrgBer.cpp ORI 2025 221 i TEes
| S0A_AdaprivelightControsarh 5 TE2025 2212 4+ Haa
| S0u_AdaptivelightCantnoiber mk
S04 _AdaptivelightCansroler.sp O 2005 200
S0 _AdaptiveighiContrailer_fomprig
S0, AdaptiveligihtConsroller_privateh MO ANES 2R C/C++ Heoader
| 508 _Adaprive LghitCantroiser_ref.rsp
| 50w_AdaptivelighiControber_lypes.h

Figure 33: Files inside folder SOA_AdaptivelLightController_ert _rtw

5.3 Code Integration in Android Studio of Monolithic Models

This section provides a complete, step-by-step guide on integrating a monolithic Simulink
model into an Android Automotive application. The process covers project setup, native code

Academic Year: 2024-25
42

integration, Ul design, and build configuration, culminating in a runnable application on an
automotive emulator.

5.3.1 Project Setup and File Structure

First, an Android Studio project is created using the Automotive template with No Activity.
This provides a clean foundation without a default Ul, allowing for a custom implementation.
After creation, the project's folder structure is modified to accommodate the C++ model files.
1. Open Android Studio, go to File > New > New Project, and select the Automotive
template. [10]
2. Choose No Activity when prompted and complete the remaining steps. [10]
3. Create a new folder named cpp under automotive/src/main.
4. Copy all the Simulink-generated C++ source files (.cpp and .h) and the native-lib.cpp
file into this new cpp folder.

Figure 34: Android Studio New Project

Academic Year: 2024-25
43

Erillcl.gradie X5y [Recommanded

Figure 35: Android Studio New project setup

After Finish android studio generate the following folders

Academic Year: 2024-25
44

Figure 36: Android Studio folder structure

Academic Year: 2024-25
45

[MonolithicAdaptiveLightBeamController
.gradle
[.idea
LD automotive
[.cxx
build
v B3 sre
LD androidTest
v [main
Clcpp

CMakelists. txt

(C MonolithicAdaptiveLightBeamController.cpp

MonolithicAdaptiveLightBeamController.h
il MonolithicAdaptivelLightBeamController_private.h

MonolithicAdaptiveLightBeamController_types.h

(Cf native-lib.cpp
rtwtypes.h

IEVE)

[e] com.example.monolithicadaptivelightbeamcontroller

MainActivity
[Z2res

[drawable

Figure 37: Monolithic ALBC File structure in Android Studio

5.3.2 Native C++ and JNI Bridge (native-lib.cpp)

The native-lib.cpp file acts as a JNI wrapper, bridging the Java application and the C++ model.
It exposes the model's core functions (initialize, step, and terminate) to the Java layer.
C++

#include <jni.h>

#include <string>

#include <sstream>

#tinclude "MonolithicAdaptivelLightBeamController.h"

// Global model instance

Academic Year: 2024-25
46

static MonolithicAdaptivelLightBeamController model;

extern "C" JINIEXPORT void JINICALL
Java_com_example_monolithicadaptivelightbeamcontroller_MainActivity initModel (
INIEnv* env, jobject /* this */) {
model.initialize();

}

extern "C" JINIEXPORT jstring INICALL
Java_com_example_monolithicadaptivelightbeamcontroller_ MainActivity stepModel(

INIEnv* env, jobject /* this */,

jdouble ambientLight,

jdouble roadCurvature,

jdouble steeringAngle,

jboolean vehicleOncoming,

jdouble vehicleSpeed) {

// Prepare and set model inputs

MonolithicAdaptivelLightBeamController: :ExtU_MonolithicAdaptivelLightB_T
input{};

input.AmbientLight = static_cast<real T>(ambientLight);

input.RoadCurvature_permeter = static_cast<real T>(roadCurvature);

input.SteeringAngle degree = static_cast<real T>(steeringAngle);

input.VehicleOncoming = static_cast<real T>(vehicleOncoming);

input.VehicleSpeed _km_h = static_cast<real_T>(vehicleSpeed);

model.setExternalInputs(&input);
model.step();

// Retrieve model outputs
const auto& output = model.getExternalOutputs();

// Prepare JSON response
std::ostringstream oss;

oss << "{"
<< "\"beamAngle\":" << output.BeamAngle << ","
<< "\"beamRange\":" << output.BeamRange
<< n ll;

return env->NewStringUTF(oss.str().c_str());

}

extern "C" JINIEXPORT void JNICALL
Java_com_example_monolithicadaptivelightbeamcontroller_MainActivity_terminateModel

(
INIEnv* env, jobject /* this */) {
model.terminate();

}

Key Functions:
e initModel(): Calls the model's initialize() method to set it up.
o stepModel(): Receives inputs from Java, converts them to C++ types, executes a single
step of the model's logic, and returns the outputs as a JSON string.
o terminateModel(): Calls the model's terminate() method to clean up resources when
the app closes.

Academic Year: 2024-25
47

5.3.3 Native Build Configuration (CMakeLists.txt)

A CMakelists.txt file is created in the cpp folder to define how the native source files are
compiled and linked.
CMake

cmake_minimum_required(VERSION 3.22.1)
project("monolithicadaptivelightbeamcontroller™)

set (CMAKE_CXX_FLAGS "${CMAKE_CXX_ FLAGS} -std=c++11 -static-libstdc++")
set (CMAKE_CXX_STANDARD 17)
set (CMAKE_CXX_STANDARD_REQUIRED ON)

add_library(${CMAKE_PROJECT_NAME} SHARED
native-1lib.cpp
MonolithicAdaptivelLightBeamController.cpp

)
find_library(log-1ib log)

target_link_libraries(${CMAKE_PROJECT_NAME}
android
log
C++

e add_library(): Combines native-lib.cpp and
MonolithicAdaptiveLightBeamController.cpp into a single shared library (.so).

e target_link libraries(): Links the generated library with essential Android system
libraries, such as log for logging and c++ for the C++ standard library.

5.3.4 Android Application Controller (MainActivity.java)

The MainActivity.java file is the central controller for the application's Ul and logic. It handles
the complete workflow, from user input to displaying the final output.
Code Excerpts and Explanation:
1. Load Native Library: The static block loads the compiled C++ shared library,
libmonolithicadaptivelightbeamcontroller.so.
Java

static {
System.loadLibrary("monolithicadaptivelightbeamcontroller");

}

2. Declare Native Methods: These declarations inform the Java compiler that the
methods are implemented in native C++ code.
Java

public native void initModel();

public native String stepModel(double ambientLight, double roadCurvature, double
steeringAngle, boolean vehicleOncoming, double vehicleSpeed);

public native void terminateModel();

3. Ul Initialization: In the onCreate method, the Ul elements from the XML layout are
linked to Java variables.

Academic Year: 2024-25
48

4. Button Click Handler: An OnClickListener is set up on the analyzeBtn. When clicked, it
reads user inputs, calls the stepModel() native method, and processes the JSON
output.

o Input Validation: It checks if the input values are within valid ranges (e.g.,
ambient light from 0 to 100).

o JSON Parsing: The returned JSON string is parsed to extract the beamAngle
and beamRange.

o Ul Update: The extracted values are used to update the TextViews on the
screen.

5. Lifecycle Management: The onDestroy() method ensures the native model is properly
shut down when the activity is destroyed.

Java

@Override

protected void onDestroy() {
super.onDestroy();
terminateModel();

5.3.5 User Interface Layout (main_activity.xml)

This XML file defines the user interface for the app. It includes input fields for various
parameters and displays for the calculated outputs.

XML

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="24dp">
<LinearlLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical"
android:gravity="center_horizontal">

<TextView ... android:text="Adaptive Light Beam Controller" />

<EditText android:id="@+id/inputAmbientLight" ... />

<EditText android:id="@+id/inputRoadCurvature" ... />

<EditText android:id="@+id/inputVehicleSpeed" ... />

<EditText android:id="@+id/inputSteeringAngle" ... />

<Switch android:id="@+id/inputVehicleOncoming" ... />

<Button android:id="@+id/analyzeBtn" ce android:text="Analyze Beam
Intensity and Angle" />

<TextView android:id="@+id/intensityOutput"” . android:text="Beam
Intensity: --" />

<TextView android:id="@+id/BeamAngleOutput"” ... android:text="Beam Angle:
N

</LinearlLayout>

</ScrollView>

5.3.6 Build File Configuration (app/build.gradle.kts)

This Gradle file orchestrates the entire build process, linking the Java and C++ components.

Academic Year: 2024-25
49

Gradle

plugins {
alias(libs.plugins.android.application)

}
android {
namespace = "com.example.monolithicadaptivelightbeamcontroller"
compileSdk = 35
defaultConfig {
applicationId = "com.example.monolithicadaptivelightbeamcontroller"
minSdk = 33
targetSdk = 35
versionCode = 1
versionName = "1.0"
externalNativeBuild {
cmake {
cppFlags += "-std=c++17"
arguments += listOf("-DANDROID STL=c++_shared")
}
}
ndk {
abiFilters += listOf("armeabi-v7a", "x86_64", "arme4-v8a")
}
}
packaging {
resources {
pickFirsts.add("**/libc++_shared.so")
}
}
buildTypes { ... }
externalNativeBuild {
cmake {
path = file("src/main/cpp/CMakeLists.txt")
version = "3.22.1"
}
}
compileOptions {
sourceCompatibility = JavaVersion.VERSION_11
targetCompatibility = JavaVersion.VERSION_11
}
¥

dependencies { ... }

o externalNativeBuild: Points Gradle to the CMakelLists.txt file and configures the C++

build with c++17 standard and shared runtime.

o ndk: Specifies the target CPU architectures (abiFilters) to optimize the final APK size.

e packaging: The pickFirsts rule prevents file conflicts with libc++_shared.so.

5.3.7 Android Manifest (AndroidManifest.xml)

The manifest file defines the application's components and settings.

XML

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

Academic Year: 2024-25
50

package="com.example.monolithicadaptivelightbeamcontroller">
<application
android:allowBackup="true"
android:label="Adaptive Light Beam Controller"
android:icon="@mipmap/ic_launcher"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.AppCompat.Light.NoActionBar">
<activity
android:name=".MainActivity"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

o <application>: Defines global attributes like the app's name, icon, and theme.

e <activity>: Declares the MainActivity as the app's entry point
(android.intent.action.MAIN) and makes it visible in the app launcher
(android.intent.category.LAUNCHER).

5.3.8 Application Run and Verification

The final step is to build and run the application. After a successful build, the app can be
launched on an Android Automotive emulator, where the Ul is displayed, and the native C++
model runs the adaptive light beam control logic.(see chapter 5.6 for test cases run result on
emulator)

b 3 L 4 - o & Driver

SOAAdagtivel mjhitBe s Githolles

ANALY] A STEWDIT Y AND DIGRLE

Figure 38: Ul of ALBC application on android emulator

Academic Year: 2024-25
51

5.3.9 Whole workflow of the monolithic adaptive light controller application

The workflow of the Android application for the monolithic model is a complete, end-to-end
process that starts with user interaction on the Android Ul and concludes with the display of
the calculated results. This process is a continuous loop that runs each time the user requests
a new calculation.

Workflow

1.

User Input on Android Ul

The user enters various driving and environmental parameters—such as ambient light,
road curvature, vehicle speed, steering angle, and whether a vehicle is oncoming—
into the text fields and switches on the app's user interface, defined in
main_activity.xml.

Input Reading and Validation

When the user taps the Analyze Beam Intensity and Degree button, the
MainActivity.java file takes control. It reads all the values entered by the user and
performs a basic validation to ensure they are within a reasonable range (e.g., ambient
light is between 0 and 100). If the inputs are invalid, it displays an error message on
the screen.

JNI Call to the Native Model

After validation, MainActivity.java calls the native C++ method, stepModel(), passing
the user-provided inputs as arguments. This is the crucial step where the control and
data are passed from the Java layer to the native C++ layer.

C++ Model Execution

The native-lib.cpp file, acting as the JNI bridge, receives the call. It first converts the
Java data types (jdouble, jboolean) into C++-compatible types (real_T). It then uses
these inputs to set the external inputs of the global model instance. Finally, it executes
the model's core logic by calling model.step(). This is where the Simulink-generated
monolithic model performs all its calculations to determine the optimal beam angle
and range.

Output Generation and Return

Once the model has completed its step, the native-lib.cpp file retrieves the calculated
outputs (beam angle and beam range). It then packages these two values into a JSON-
formatted string and returns this string back to the Java layer. This is a robust way to
pass structured data across the JNI bridge.

JSON Parsing and Ul Update

Academic Year: 2024-25

52

MainActivity.java receives the JSON string from the native code. It parses the string to
extract the beamAngle and beamRange values. It then formats these values and uses
them to update the TextViews on the Ul, displaying the final results to the user.

Loop and Termination

The application remains in a loop, ready for the user to change the inputs and repeat
the process. When the app is closed, MainActivity.java's onDestroy() method is
triggered, which in turn calls the native terminateModel() function to safely shut down
the C++ model and free any allocated resources. This ensures a clean exit and prevents
memory leaks.

5.4 Code Integration in Android Studio for SOA models

This section outlines the step-by-step process of integrating the Service-Oriented Architecture
(SOA) models, generated from Simulink, into an Android Studio project. The methodology
ensures a robust, modular, and scalable system by separating the native C++ code from the
Java application layer and utilizing the Android Native Development Kit (NDK).

5.4.1 Project Setup in Android Studio

The integration process begins by creating a new Android Studio project.

1.

2.
3.
4

Open Android Studio. [10]

Navigate to File > New - New Project. [10]

From the project templates, select the Automotive category. [10]

When prompted to select an activity, choose No Activity to create a foundational
project without a default user interface, which is ideal for a back-end service-
oriented application. [10]

Complete the remaining project setup options and click Finish. [10]

Academic Year: 2024-25

53

Figure 39: SOA Automotive new project

Academic Year: 2024-25
54

Mo Activity

Katikn DSL (build gradie kis] [Recommende

Figure 40: SOA ALBC project creation

After Finish android studio generate the following folders

Figure 41: SOA ALBC folders generated after finish

Academic Year: 2024-25
55

5.4.2. Project Folder Structure

After the project is generated, the file structure is modified to accommodate the SOA models.
A new folder named cpp is created under the automotive/src/main directory. This folder will
house all the native C++ source code. Inside the cpp folder, a dedicated subdirectory is created
for each service: AmbientLightService, BeamAngleController, RoadCurvatureService,
SteeringAngleService, VehicleOncomingService, and VehicleSpeedService.
AdaptivelLightController main application folder is created for the source code of main
application while shared folder is created for common utility files. A top-level CMakeLists.txt
file is placed directly in the cpp folder to manage the entire native build process.[2][3][5][7]

The fnaI structure of the cpp folder is shown below.
= a3 SDAsdaptiveligBaamCaniralk Verslnn cenin . Auinmaiee Distant T

Figure 42: SOA ALBC folders to create

5.4.3. File structure of Single Service

Within each service folder (e.g., AmbientLightService), the Simulink-generated source code
(.cpp and .h files) is placed. An additional CMakelLists.txt file is created in each service folder
to build a shared library for that service. [2][3][5][7]

An example of the CMakelLists.txt file for the AmbientLightService is as follows:
CMake

cmake_minimum_required(VERSION 3.22.1)
project("AmbientLightService")

add_library(AmbientLightService SHARED
AmbientLightService.cpp

)

Include local headers + shared headers

target_include_directories(AmbientLightService PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}

Academic Year: 2024-25

56

)

Link against shared utils + Android log
find_library(log-1lib log)

target_link_libraries(AmbientLightService PRIVATE
shared
${log-1lib}
c++_shared

)

Breakdown of AmbientLightService CMake file:
e cmake_minimum_required(VERSION 3.22.1): Ensures compatibility with the specified
CMake version.
e project("AmbientLightService"): Defines the name of the project.
e add_library(AmbientLightService SHARED ...): Creates a shared library (.so file) from
the source file.
e target_include_directories(...): Specifies the include paths for header files.
o find_library(log-lib log): Locates the Android system logging library.
o target_link_libraries(...): Links this library to its dependencies, including the shared
utility library and the Android log library.
This process is repeated for each service, placing its respective source code and a
CMakelists.txt file in its dedicated folder.
The file structure of the AmbientLightService folder:

andnold

Figure 43: File structure of single service

5.4.4. File structure of the Main Application (AdaptiveLightController)

The main application folder contains all components required to compile and execute the
Simulink-generated Adaptive Light Controller within the Android NDK environment. This
folder serves as the integration point between the automatically generated C++ models, the

Academic Year: 2024-25
57

SOA service modules, and the Android application layer. The structure and purpose of the key
elements in this directory are described below. [2][3][5]

v 7 SOAAdaptiveLightBeamController
] .gradle
> [.idea

v [3automotive

> [3androidTest
v [@ main

v Bcpp

v [AdaptiveLightController

(C: AdaptivelightController.cpp
AdaptivelightController.h

| AdaptiveLightController_types.h

- CMakelists.txt

[C: native-lib.cpp
rtwtypes.h

[} soa_adaptivelightbeamcontroller.cpp

| SOA_AdaptivelLightController.h
SOA_AdaptivelLightController_types.h

v [0 AmbientLightService

Figure 44: File structure of AdaptiveLightController

5.4.4.1. Integration of Simulink-Generated Source Code

The core functionality of the adaptive lighting system originates from the Simulink model. Two
source files are generated during the code generation process:

5.4.4.1.1. Top-Level Wrapper Model (e.g., SOA_AdaptiveLightController)

This file is the top-level wrapper model generated by Simulink. It serves as the integration
layer between the Android native runtime and the core adaptive-light controller. Its
responsibilities include:

e Receiving raw input signals from the Android system or JNI layer.
o Triggering the appropriate Function-Call Subsystems from the core model.
¢ Managing model initialization, step execution, and termination.

e Orchestrating communication with service-oriented architecture (SOA) client
interfaces.

¢ Providing the external API that is invoked from native-lib.cpp.

Academic Year: 2024-25
58

This file does not contain control logic itself; instead, it forwards sensor data to the core model
and retrieves algorithm outputs.

5.4.4.1.2. Core Control Logic Model (AdaptivelLightController)

This file contains the actual adaptive headlight control algorithm produced from the
referenced Simulink model. Its responsibilities include:

Executing SOA service client calls (e.g., steering angle, ambient light, speed, road
curvature).

Running the Stateflow state machine that governs headlight behaviour:
o LowBeam
o High Beam
o City Mode
o Cornering Beam

¢ Computing the final beam angle and beam range, which are returned to the wrapper
model.

e Maintaining intermediate block states and signals according to Simulink’s generated
structure.

This file acts as the “brain” of the system.
The wrapper model invokes the functions in this file during every control cycle.

5.4.4.2. Creation of the CMake Build Configuration

A dedicated CMakelLists.txt file is created in the main application folder.
Its purpose is to instruct Android Studio on how to compile the native Simulink-generated
code.

An example of CMakeFile.txt file :

cmake_minimum_required(VERSION

project("AdaptiveLightController")

add_library(AdaptiveLightController SHARED
AdaptivelightController.cpp
soa_adaptivelightbeamcontroller.cpp
native-lib.cpp

target_include_directories(AdaptivelightController PUBLIC

Academic Year: 2024-25
59

S{CMAKE_CURRENT_SOURCE_DIR}
S{CMAKE_CURRENT_SOURCE_DIR}/../BeamAngleController
S{CMAKE_CURRENT_SOURCE_DIR}/../RoadCurvatureService
S{CMAKE_CURRENT_SOURCE_DIR}/../SteeringAngleService
S{CMAKE_CURRENT_SOURCE_DIR}/../VehicleOncomingService
S{CMAKE_CURRENT_SOURCE_DIR}/../VehicleSpeedService
${CMAKE_CURRENT_SOURCE_DIR}/../AmbientLightService
S{CMAKE_CURRENT_SOURCE_DIR}/../shared

find_library(log-lib log REQUIRED)

target_link_libraries(AdaptivelLightController PRIVATE
android
S{log-lib}
c++_shared
BeamAngleController
RoadCurvatureService
SteeringAngleService
VehicleOncomingService
VehicleSpeedService
AmbientLightService
shared

Explanation of the CMake file:

(1) Defining the CMake and Project Version

cmake_minimum_required(VERSION 3.22.1)
project("AdaptivelLightController")

This sets the minimum version of CMake required by Android Studio and names the project.
It ensures compatibility with Android’s NDK toolchain.

(2) Creating the Shared Native Library

add_library(AdaptivelLightController SHARED
AdaptivelLightController.cpp
soa_adaptivelightbeamcontroller.cpp
native-1lib.cpp

¢ Creates a shared library named AdaptivelLightController.
e Includes:
o AdaptivelLightController.cpp = core control logic model

Academic Year: 2024-25
60

o soa_adaptivelightbeamcontroller.cpp - wrapper/top-level model
o native-lib.cpp = JNI interface connecting C++ to Android Java/Kotlin layer

CMake compiles these into libAdaptivelightController.so, which is loaded by the Android
application at runtime.

(3) Including Header Files for All Modules

target_include_directories(AdaptivelLightController PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}
${CMAKE_CURRENT_SOURCE_DIR}/../BeamAngleController
${CMAKE_CURRENT_SOURCE_DIR}/../RoadCurvatureService
${CMAKE_CURRENT_SOURCE_DIR}/../SteeringAngleService
${CMAKE_CURRENT_SOURCE_DIR}/../VehicleOncomingService
${CMAKE_CURRENT_SOURCE_DIR}/../VehicleSpeedService
${CMAKE_CURRENT_SOURCE_DIR}/../AmbientLightService
${CMAKE_CURRENT_SOURCE_DIR}/../shared

This section makes the header files available during compilation.
It includes:

e Headers for the main adaptive lighting model

e All SOA-dependent service modules (Beam Angle, Steering Angle, Road Curvature,
etc.)

e Shared utility headers

This is necessary because the wrapper model and core model both make calls to these service
modules.

(4) Locating Android Logging Library

find_library(log-lib log REQUIRED)
Android requires this to support native logging via __android_log_print().

(5) Linking All Required Libraries

target_link_libraries(AdaptivelLightController PRIVATE
android
${log-1ib}
c++_shared
BeamAngleController
RoadCurvatureService
SteeringAngleService
VehicleOncomingService

VehicleSpeedService
AmbientLightService
shared

)

This links:

Academic Year: 2024-25
61

Android system libraries

e android
e log
e c++_shared (C++ runtime)

All service module libraries

These are external libraries compiled elsewhere in the project:

e BeamAngleController

e RoadCurvatureService

e SteeringAngleService

e VehicleOncomingService
e VehicleSpeedService

e AmbientLightService

¢ shared (common utilities)

This ensures that the adaptive lighting controller can call all SOA service functions.

5.4.4.3 Implementation of the JNI Interface (native-lib.cpp)

The JNI bridge, implemented in the native-lib.cpp file, acts as the communication layer
between the Java application and the C++ SOA models. It exposes C++ functions that can be
called directly from Java and handles the data type conversion between the two languages.

C++

#include <jni.h>

#include <string>

#include <sstream>

#include "BeamAngleController.h"
#include "RoadCurvatureService.h"
#include "SteeringAngleService.h"
#tinclude "VehicleOncomingService.h"
#include "VehicleSpeedService.h"
#include "AdaptivelLightController.h"
#tinclude "SOA AdaptivelLightController.h"

// Instantiate global service objects

static BeamAngleController beamAngleController;

static RoadCurvatureService roadCurvatureService;
static SteeringAngleService steeringAngleService;
static VehicleOncomingService vehicleOncomingService;
static VehicleSpeedService vehicleSpeedService;

static AdaptivelightController adaptivelLightController;
static SOA_AdaptivelightController soaController;

// ... (INIEXPORT functions for individual services as provided in the prompt)
// === AdaptivelightController step ===

extern "C" JINIEXPORT jstring INICALL

Academic Year: 2024-25
62

Java_com_example_soa_ladaptivelightbeamcontroller_AdaptivelLightController_nativeSt
epAdaptivelLightController(

INIEnv* env, jobject /* this */,

jdouble ambientLight,

jdouble roadCurvature,

jdouble steeringAngle,

jboolean vehicleOncoming,

jdouble vehicleSpeed) {

// ... (code as provided in the prompt)

}

// === SOAAdaptivelLightController.initModel ===
extern "C" JINIEXPORT void IJINICALL
Java_com_example_soa_ladaptivelightbeamcontroller_SOAAdaptivelLightController_initM
odel(

INIEnv* env, jobject /* this */) {

soaController.initialize();

}

// === SOAAdaptivelLightController.stepModel ===
extern "C" JINIEXPORT jstring INICALL
Java_com_example_soa_ladaptivelightbeamcontroller_SOAAdaptivelLightController_stepM
odel(

IJNIEnv* env, jobject /* this */,

jdouble ambientLight,

jdouble roadCurvature,

jdouble steeringAngle,

jboolean vehicleOncoming,

jdouble vehicleSpeed) {

// ... (code as provided in the prompt)

}

// === SOAAdaptivelLightController.terminateModel ===
extern "C" INIEXPORT void JINICALL
Java_com_example_soa_ladaptivelightbeamcontroller_SOAAdaptivelLightController_termi
nateModel (

INIEnv* env, jobject /* this */) {

soaController.terminate();

}

Key Parts:

¢ Global Service Objects: static instances of each C++ service are created, ensuring they
persist across JNI calls.

¢ JNI-Exported Functions: Functions are declared with the JNIEXPORT macro, following
a specific naming convention to allow them to be called from the Java layer.

e Data Marshalling: The code demonstrates how to convert Java data types (jdouble,
jboolean) to their C++ equivalents (real_T).

e JSON String Output: The C++ code compiles the output values (e.g., beamAngle,
beamRange) into a JSON string, which is a flexible format for passing complex data
back to the Java layer.

5.4.5. Root-Level CMakelists.txt

The CMakelists.txt file placed at the root of the cpp folder is the primary build script for the
entire native component. It orchestrates the build process by including all service, shared and
main application subdirectories.

Academic Year: 2024-25
63

CMake

cmake_minimum_required(VERSION 3.22.1)
project("soaadaptivelightbeamcontroller")

set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

Android log library
find_library(log-1ib log REQUIRED)

Add subdirectories for each module
add_subdirectory(shared)
add_subdirectory(VehicleSpeedService)
add_subdirectory(VehicleOncomingService)
add_subdirectory(AmbientLightService)
add_subdirectory(SteeringAngleService)
add_subdirectory(RoadCurvatureService)
add_subdirectory(BeamAngleController)
add_subdirectory(AdaptivelLightController)

Explanation:
o set(CMAKE_CXX_STANDARD 17): Enforces the C++17 standard for all native code
compilation.

e add_subdirectory(...): This command is used to include and build all the subprojects
defined in the respective subfolders. This ensures all services are built and their
libraries are available for linking to the main application.

5.4.6. Java Application Files

The Android application is built around two primary Java files: MainActivity.java and
SOAAdaptivelLightController.java.

MainActivity.java
This file contains the Ul logic. It reads user input from the XML layout, calls the native C++
model via the Java wrapper, and updates the Ul with the results.

Java

package com.example.soaadaptivelightbeamcontroller;

import android.os.Bundle;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Switch;

import android.widget.TextView;

import androidx.appcompat.app.AppCompatActivity;
import org.json.JSONException;

import org.json.JSONObject;

public class MainActivity extends AppCompatActivity {
private SOAAdaptivelLightController soaController;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

Academic Year: 2024-25
64

}

soaController = new SOAAdaptivelLightController();
soaController.initModel();

// ... (UI element bindings as provided)
analyzeBtn.setOnClickListener(v -> {
try {

// ... (input reading and parsing logic as provided)

// Call native model
String jsonResult = soaController.stepModel(

ambientLight,
roadCurvature,
steeringAngle,
vehicleOncoming,
vehicleSpeed
)s
// Parse JSON result and update UI
// ... (parsing and UI update logic as provided)
} catch (NumberFormatException e) {
// ... (error handling)
} catch (JSONException e) {
// ... (error handling)
}
}s
}
@Override

protected void onDestroy() {

}

super.onDestroy();
soaController.terminateModel();

Explanation:

Initialization: An instance of SOAAdaptivelightController is created, and the native
initModel() function is called to prepare the C++ environment.

Event Handling: An OnClickListener is set up on the analyzeBtn to capture user inputs,
pass them to the native stepModel(), and parse the returned JSON string to update
the Ul.

Lifecycle Management: The native terminateModel() is called in the onDestroy()
lifecycle method to ensure proper cleanup of C++ resources when the activity is
closed.

SOAAdaptivelightController.java
This is a simple Java wrapper class that loads the native library and declares the native
methods.

Java
package com.example.soaadaptivelightbeamcontroller;

public class SOAAdaptivelLightController {
static {

System.loadLibrary("AdaptiveLightController");

Academic Year: 2024-25

65

}

public native void initModel();
public native String stepModel(
double ambientLight,
double roadCurvature,
double steeringAngle,
boolean vehicleOncoming,
double vehicleSpeed);
public native void terminateModel();

}

Explanation:

e System.loadLibrary(...): This static block loads the shared native library named
libAdaptiveLightController.so. This library is the final product of the CMake build
process, which links all the individual service libraries together.

¢ native keyword: Declares the methods that are implemented in the C++ native-lib.cpp
file.

5.4.7. User Interface Layout (activity_main.xml)

The XML layout file defines the visual components of the Android application's main screen.

XML

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="24dp">
<LinearlLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical”
android:gravity="center_horizontal">

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Adaptive Light Beam Controller'
android:textSize="24sp"
android:textStyle="bold"
android:layout_marginBottom="24dp"

/>

<EditText
android:id="@+id/inputAmbientLight"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="AmbientLight(0.0 to 100.0)"
android:inputType="numberDecimal”
android:layout_marginTop="8dp"

/>

<Button
android:id="@+id/analyzeBtn"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

Academic Year: 2024-25
66

android:text="Analyze Beam Intensity and degree"
android:layout_marginTop="20dp"
/>
</LinearlLayout>
</ScrollView>

Explanation:
e Thelayout uses a ScrollView and a LinearLayout to organize the Ul elements vertically.
o EditText and Switch: These components allow the user to input sensor values
manually for demonstration purposes.
e Button: The analyzeBtn is the trigger for the computation logic.
e TextView: Two text views display the final output values (intensityOutput and
BeamAngleOutput) returned from the native model.

5.4.8. Gradle Build Files

Gradle manages the build system for both the Java and native components.

Root-Level build.gradle.kts
This is the top-level build script for the project, where plugins are declared.

Gradle

plugins {
alias(libs.plugins.android.application) apply false
¥

Explanation:
e apply false: This ensures the Android plugin is available to all modules but is not
applied at the root level, which is a standard practice for multi-module projects.
Module-Level build.gradle.kts
This file contains the core build configuration for the application module.

Gradle

plugins {
alias(libs.plugins.android.application)
}

android {
namespace = "com.example.soaadaptivelightbeamcontroller”
compileSdk = 35

defaultConfig {
applicationId = "com.example.soaadaptivelightbeamcontroller”
minSdk = 33
targetSdk = 35
// ... (versioning and other configs)
externalNativeBuild {
cmake {
cppFlags += "-std=c++17"
arguments += 1istOf("-DANDROID STL=c++_shared")

}
}
ndk {

abiFilters += listOf("armeabi-v7a", "x86 64", "armé64-v8a")
}

Academic Year: 2024-25
67

}
packaging {
resources {
pickFirsts.add("**/libc++_shared.so")

}
¥
// ... (buildTypes and compileOptions)
externalNativeBuild {
cmake {
path = file("src/main/cpp/CMakelLists.txt")
version = "3.22.1"
}
}
}
dependencies {
// ... (dependencies)
¥

Explanation:
o externalNativeBuild: This block is crucial for the NDK integration. It points Gradle to
the top-level CMakelLists.txt file and sets the C++ standard and shared runtime library.
¢ ndk: The abiFilters are configured to specify the target CPU architectures, which helps
reduce the size of the final APK.
e packaging: The pickFirsts rule prevents conflicts when multiple libraries might include
the same shared C++ runtime library.

5.4.9. Android Manifest

Your provided AndroidManifest.xml file is a well-structured configuration for an Android
Automotive app. It declares the app's essential components and requirements for the Android
system.

Code Explanation

Here is the breakdown of your AndroidManifest.xml file, which is placed in the root of the
app/src/main/ directory.
XML

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">

<uses-feature
android:name="android.hardware.type.automotive"
android:required="true" />

<application
android:allowBackup="true"
android:appCategory="audio"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.SOAAdaptivelLightBeamController">

<activity
android:name=".MainActivity"
android:exported="true">

Academic Year: 2024-25
68

<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>

</manifest>

Manifest and Feature Declaration

<manifest ...>: This is the root tag of the manifest file. It defines the package name for
the application and holds all the app's components.

<uses-feature android:name="android.hardware.type.automotive"
android:required="true" />: This is a crucial line for Automotive apps. It declares that
the application is designed exclusively for in-car systems. The
android:required="true" attribute ensures that the Google Play Store and other
package managers will only allow this app to be installed on devices with the specified
automotive hardware. This prevents it from being installed on phones or tablets.

Application and Activity

<application ...>: This tag contains global settings that apply to all components within
the app.

o android:allowBackup="true": Permits the system to back up the app's data.

o android:appCategory="audio": Specifies that this app belongs to the "audio"
category, which helps the system understand its primary function.

o android:icon and android:label: These attributes set the app's main icon and
name as they will appear to the user.

o android:supportsRtl="true": Enables support for right-to-left languages like
Arabic and Hebrew.

o android:theme="@style/...": Defines the overall visual style for the app.
<activity android:name=".MainActivity" android:exported="true">: This tag declares
the app's main screen, or Activity.

o android:name=".MainActivity": Points to the MainActivity.java file as the class

that handles this activity.

o android:exported="true": Marks the activity as accessible to other apps. For a
launcher activity (an app that can be launched from the home screen), this is
mandatory on modern Android versions.

<intent-filter>: This block is what makes the MainActivity the entry point of the
application.

o <action android:name="android.intent.action.MAIN"/>: This action indicates
that the activity is the main entry point for the application, not just a
supporting screen.

o <category android:name="android.intent.category.LAUNCHER"/>: This
category tells the Android system to display an icon for this activity in the app
launcher, allowing the user to start the app from the home screen.

Academic Year: 2024-25

69

5.4.10 Whole Workflow

The complete workflow from user input to final output can be summarized as follows:

1. User Input on Android Ul: The user enters values into the Ul fields in
activity_main.xml.

2. MainActivity.java: Reads the input values and calls soaController.stepModelf...).

3. SOAAdaptivelLightController.java: This wrapper class loads the
libAdaptiveLightController.so library and routes the call to the native C++ method.

4. JNI Bridge (native-lib.cpp): Receives the Java call, converts the data types, and
orchestrates the C++ services. It calls the appropriate functions in each service to
compute the final beamAngle and beamRange.

5. Return to Java: The JNI bridge returns a JSON string containing the computed results.

6. MainActivity.java: The MainActivity receives the JSON string, parses it, and updates
the text views in the Ul.

7. User Output: The user sees the calculated Beam Angle and Beam Range on the screen.

This comprehensive workflow ensures a clear separation of concerns, with the Android
application handling the Ul and the native C++ code performing the complex model
computations. The JNI bridge serves as a robust and efficient connection between these two
distinct layers.

Flow Diagram:

Android UI

(MainActivity layout views)

e Ambient Light (lux)

e Road Curvature (1/m)

e Steering Angle (deg)

e Vehicle Speed (km/h)

e Vehicle Oncoming (switch)

| Reads user input

\4

MainActivity.java

e Collects UI values from EditText/Switch
e Calls:

soaController.stepModel(..)

| JNI call

\4

SOAAdaptivelLightController.java

e Loads native library:

System.loadLibrary("AdaptiveLightController")

e Declares native methods:

initModel()
stepModel(...)
terminateModel()

e stepModel(...) » enters INI

Native bridge

Academic Year: 2024-25

70

INI Bridge (C++)
e Converts Java -» C++ types (double, bool » real T)
e Calls C++ services:
- BeamAngleController
RoadCurvatureService
SteeringAngleService
VehicleOncomingService
VehicleSpeedService
¢ Runs model logic:
AdaptivelLightController /
SOA_AdaptivelightController

e Produces outputs:
beamAngle, beamRange

e Returns JSON string:
{"beamAngle":12.5,"beamRange":45.0}

| JSON result

v

Back in Java
e MainActivity receives JSON
e Parses with JSONObject
e Updates TextViews:
Beam Angle - XX degrees
Beam Range - YY meters

5.5 Configuration of Automotive Emulator

Step 1: Open AVD Manager
1. Open Android Studio.
2. Go to Tools - Device Manager (or AVD Manager in older versions).[6]

3. Click Create Device. [6]

Academic Year: 2024-25
71

rea \ir \ic
Create Virtual Device API Type

Select Remote Devices
33 Virtual

vith Google Play

= Automotive Portrai 2 :
o Automotive Portrait 34-ext9 Virtual

Figure 45: Create new Automotive emulator

Step 2: Select Automotive Hardware Profile
1. Inthe Select Hardware window, scroll down and select Automotive. [6]
2. Choose a profile, e.g., Automotive 1024x600 (or other recommended screen size). [6]

3. Click Next. [6]

Academic Year: 2024-25
72

Form Factor

Phona Mame

Tatlet 2 Automative Uitrawide

Autormolive L
Autormol

I i
8 Aulomotive Autormal

w obsolale dovice
s

Figure 46: Selection of Automotive emulator from the list
Step 3: Choose a System Image
1. Switch to the "Recommended" or "Other Images" tab.

2. Look for Android Automotive OS images (for example, Android 12 or 13 Automotive).

[6]
3. If noimage is installed:
o Click Download next to the desired image. [6]
o Wait for the download to complete. [6]

4. Once downloaded, select the image and click Next.

Academic Year: 2024-25
73

Configure virtual device Automotive Large Portratt
1280 pu

Dievice Additional setlings f

tiva Larga Portrait

Salact system imaga

1
AP
APl 34 “UpssdaDownCake™: Androad 14.0 i) 'k] [B] Device
Gaogle
System Image 33+

W Andrald Automaotlve with Google AFe g8 84 System Image
System image

Screen
1280 » 1606
W50 dpi

Cancel Provious

Figure 47: Selection of system image for Automotive emulator
Step 4: Configure AVD
1. Set a Name for your emulator, e.g., Automotive_Emulator_12. [6]
2. Adjust settings if needed:
o Orientation: Landscape (most automotive screens are landscape).
o Scale: Keep default or adjust to your monitor size.
3. Click Finish to create the AVD.
Step 5: Launch the Automotive Emulator
1. Inthe AVD Manager, click the Play button next to your new automotive emulator. [6]
2. Wait for it to boot—this may take a few minutes. [6]

3. Once running, you can deploy and test your automotive app just like a regular
Android app.

Academic Year: 2024-25
74

5.6 Testing Result on emulator of monolithic and SOA applications

Test Cases:
Tes | Vehicl | Vehiclespee | Ambi | Steering | Road Beam | Beam Active
t e d(km/h) ent Angle(de | curvature(| Range | Angle(de | mode
cas | Onco light | gree) degree) (m) gree)
es | ming)
11 |0 60 10 0 - 100 0 High
Beam
1.2 |1 60 10 0 - 50 0 Low
Beam
13 |0 40 10 0 - 50 0 Low
Beam
14 |0 60 25 0 - 50 0 Low
Beam
21 (0 60 10 15 4 60 Close to | Corne
4 ring
Beam
22 (0 60 10 5 4 100 0 High
Beam
23 |0 60 10 20 10 60 Close to | Corne
10 ring
Beam
31 |0 20 40 0 5 30 0 City
Beam
32 |0 60 10 0 5 100 0 High
Beam
41 |1 60 10 0 5 50 0 Low
Beam

Result of Run of test cases on automotive emulator:

Academic Year: 2024-25

75

b 1 v ¥ a: o= Driver

S0AAdagtivelight BeamContralier

AMALYTE BEAM INTENSIT ¥ AND DEGREE

Figure 48: Result of Test Case 1.1

3 v - ; 22 Driver

S0AAdaptivel ightBeamControlier

ANMVTE BEAMN INTERSITY AND DEGHEE

Figure 49: Result of Test Case 1.2

Academic Year: 2024-25
76

| v - ; 2% Driver

S04Adaptivelsght BeamComrofler

Apa Y 2 ALAR INTEMSTT ¢ Ak BLGSEE

Figure 50: Result of Test Case 1.3

3 v . § as Driver

S04daptivel ightBeamC omrolker

&l

ARALYEL BEAL IMTINZIT Y AMD0 DEGHEE

Figure 51: Result of Test Case 1.4

Academic Year: 2024-25
77

3 v .

aa Driver

SOuhdaglivel ightBearmCamrolles

AHALYZE BEAM INTENSITY AND EGHER

Figure 52: Result of Test Case 2.1

S0AAdaptivel ightBsamControliar

ANALYIT REAM INTENSIT Y ARD DIGRLT

Figure 53: Result of Test Case 2.2

Academic Year: 2024-25
78

b 4 v £ 3 Q: == Driver

S0AAdaptivelightBeamCantroller

&l

ANALYIE BESM WTERST ¥ SND CEIRED

Figure 54: Result of Test Case 2.3

S0aAdaplveligmMBeamController

ANALTTE AEAM IRTENSTTY &80 DEGRIT

Figure 55: Result of Test Case 3.1

Academic Year: 2024-25
79

X v . * =2 Driver

S0AAdaptiveLightBeamController

3]

ARALYTE BEAKY IHTENEST ¥ A0 DEGREE

Figure 56: Result of Test Case 3.2

3 s 4 3 g &5 Driver

S0AAdaptivelightBeamController

il

AHALY U REALL IMTINET Y AND DEGAET

Figure 57: Result of Test Case 4.1

Academic Year: 2024-25
80

Chapter 6

6. How to shift the Android Studio project to AOSP

6.1 Shifting of MonolithicAdaptiveLightController
Integration Methods

There are two main ways to integrate an app with Android Automotive:

e Adding the Complete Source Code: Embed your app’s code directly into the AOSP build
system. [17]

e Adding the Compiled APK File: Build your app separately, create an APK, and integrate
it into the AOSP folder. [17]

Method 1: Integrating Source Code (Detailed Steps)

6.1.1. Create a Sample Android Project:
e See chapter 3 and 5. In which | created the application named
“MonolithicAdaptivelLightController” and integrated into the Android Studio.
6.1.2. Prepare a Folder in AOSP:
e Inthe AOSP source code, navigate to /packages/apps/Car. [17]

e Duplicate an existing app folder (e.g calendar app) and rename it to
“MonolithicAdaptiveLightController”.

o Delete all files and folders except src, res and Android.bp. Delete the existing contents
inside src and res folders and keep it empty. [17]

6.1.3. Copy App Code and Resources:

e Copy the source code from the android studio folder automotive/src/main/cpp to
MonolithicAdaptivelLightController/src/main/cpp folder. Remove the CMakelLists.txt
file from the cpp, c++ source code will be built using Android.bp file. [17]

e Copy the java file from the android studio folder automotive/src/main/java to
MonolithicAdaptivelLightController/src/main/java folder. [17]

e Do the same for the resfolder shift it from automotive/src/main/res to
MonolithicAdaptivelLightController /res. [17]

Academic Year: 2024-25
81

e Finally, copy AndroidManifest.xml to the AOSP
project’s MonolithicAdaptiveLightController folder.

v [MonolithicAdaptiveLightController

- [0 MonolithicAdaptiveLightController

ct MonolithicAdaptiveLightBeamController.cpp

Hl MonolithicAdaptivelightBeamController.h
Hl MonolithicAdaptiveLightBeamController_private.h
MonolithicAdaptiveLightBeamController_types.h
€I native-lib.cpp
{| riwtypes.h
IEVE
v [com.example.monolithicadaptivelightbeamcontroller
MainActivity
project
Android.bp
M AndroidManifest.xml

-] MonolithicAdaptiveLightController.imi

Figure 58: AOSP MonolithicAdaptivelight Controller folder structure

6.1.4. Modify Android.bp:

The Android Studio project uses gradle as build system and the build configurations are
defined in the build.gradle file. The AOSP project uses the Soong build system and the build
configurations are defined using blueprint file(.bp). [17]

e Open Android.bp in the AOSP project’s MonolithicAdaptivelightController folder.

Academic Year: 2024-25
82

Update the project name, remove unnecessary dependencies, and add required ones
from your build.gradle file, ensuring syntax compatibility.

In order to build the C++ source code use cc_library_shared inside the android.bp file
it tells Soong to build a shared library .so from C++ sources and then using shared_libs
inside android_app you can link your native library to the android app APK.

Here is an example of Android.bp file

cc_library_shared {

}

name: "monolithicadaptivelightbeamcontroller”,
srcs: [
"src/main/cpp/native-1lib.cpp",
"src/main/cpp/MonolithicAdaptivelLightBeamController.cpp”,
1,
shared_libs: [
"android",
"log",
1,
stl: "libc++",
cppflags: ["-std=c++17"],
cflags: ["-std=c++17"],
export_include_dirs: [
"src/main/cpp”,
1,

sdk_version: "current",

android_app {

name: monolithicadaptivelightbeamcontroller ",

srcs: [
"src/main/java//*.java",

I,

manifest: "AndroidManifest.xml",

static_libs: [
"androidx_appcompat”,
"androidx_core",

1,
jni_libs: [

" monolithicadaptivelightbeamcontroller ",
1,

sdk_version: "current”,

aaptflags: ["--auto-add-overlay"],

Academic Year: 2024-25

83

6.1.5 Replace Ul-based input signal acquisition with retrieval from the Vehicle HAL, as is
done in real-world applications

Here’s a fully integrated summary of all required changes, combining the project-level
notes with the MainActivity.java, activity_main.xml, and AndroidManifest.xml changes: [17]

6.1.5.1 Change summary

Here’s a concise before vs after comparison:

Component Ul-based HAL-based Project (Now)
Project
(Before)
Ul Input fields Only shows results & logs. All inputs come
(activity_main.xml) (EditText, from HAL/mocks
Switch,
Button) for
manual user
input
MainActivity.java Reads values Subscribes to Vehicle HAL via
from Ul, CarPropertyManager, mocks missing
validates signals (roadCurvature, vehicleOncoming),

them, passes sends values automatically to stepModel()
to stepModel()

Method Unchanged. Still gets 5 parameters, now
JNI Bridge (C++ file) from HAL

Data passed

from Ul
AndroidManifest.xml Standard Needs Automotive HAL permissions (e.g.,

Android app android.permission.CAR_SPEED,
permissions CAR_STEERING)

Gradle Config Standard Ensure minSdk > 29, targetSdk matches
Android app Automotive; no major changes
settings
Testing User types Signals auto-updated from HAL; non-
input manually standard signals mocked (e.g.,
roadCurvature)

6.1.5.2 MainActivity.java (HAL-based)

package com.example.monolithicadaptivelightbeamcontroller;

import android.car.Car;

import android.car.hardware.CarPropertyValue;

import android.car.hardware.property.CarPropertyManager;
import android.car.hardware.property.VehiclePropertylIds;
import android.os.Bundle;

import android.util.log;

Academic Year: 2024-25
84

import android.widget.TextView;
import androidx.appcompat.app.AppCompatActivity;

import org.json.JSONException;
import org.json.JSONObject;

public class MainActivity extends AppCompatActivity {
static {
System.loadLibrary("monolithicadaptivelightbeamcontroller");

}

// Native methods

public native void initModel();

public native String stepModel(double ambientLight, double roadCurvature,
double steeringAngle, boolean vehicleOncoming,
double vehicleSpeed);

public native void terminateModel();

// Vehicle-related
private Car car;
private CarPropertyManager carPropertyManager;

// Latest signal values

private double vehicleSpeed = 0.9;
private double steeringAngle = 0.0;
private double ambientLight = 50.0;

private boolean vehicleOncoming = false; // MOCKED

private double roadCurvature = 0.0; // MOCKED (degrees)

Q.
Q.

private TextView intensityOutput;
private TextView logOutput;

private volatile boolean isRunning = true;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

initModel();

intensityOutput = findViewById(R.id.intensityOutput);
logOutput = findvViewById(R.id.BeamAngleOutput);

// Connect to CarService

try {
car = Car.createCar(this);
carPropertyManager = (CarPropertyManager)

car.getCarManager(Car.PROPERTY_SERVICE);

// Subscribe to standard HAL signals
registerCarSignal(VehiclePropertyIds.PERF_VEHICLE_SPEED);
registerCarSignal(VehiclePropertyIds.STEERING_ANGLE);
registerCarSignal(VehiclePropertyIds.AMBIENT_LIGHT_LEVEL);

} catch (Exception e) {
Log.e("MainActivity", "CarService init failed:

+ e.getMessage());
}

Academic Year: 2024-25
85

// ¢ Mock road curvature (in degrees) & vehicle oncoming
new Thread(() -> {
int counter = 9;
while (isRunning) {
// Fake curvature between -60° and +60°
roadCurvature = -60.0 + Math.random() * 120.0;

// Toggle oncoming vehicle every 5 updates (~10 sec)
if (counter % 5 == 0) {
vehicleOncoming = !vehicleOncoming;

}

counter++;

runModelAndUpdateUI();

try {
Thread.sleep(2000); // update every 2s
} catch (InterruptedException ignored) {}

}).start();

private void registerCarSignal(int propertyId) {
carPropertyManager.registerCallback(callback, propertyld,
CarPropertyManager.SENSOR_RATE_ONCHANGE);
}

private final CarPropertyManager.CarPropertyEventCallback callback =
new CarPropertyManager.CarPropertyEventCallback() {
@Override
public void onChangeEvent(CarPropertyValue value) {
try {
switch (value.getPropertyId()) {
case VehiclePropertyIds.PERF_VEHICLE_SPEED:
vehicleSpeed = ((Float) value.getValue()).doubleValue();
break;
case VehiclePropertyIds.STEERING_ANGLE:

steeringAngle = ((Float) value.getValue()).doubleValue();
break;

case VehiclePropertyIds.AMBIENT_LIGHT_LEVEL:
ambientLight = ((Float) value.getValue()).doubleValue();
break;

}
runModelAndUpdateUI();

} catch (Exception e) {
Log.e("MainActivity", "Signal parse error: " + e.getMessage());
}

}

@Override
public void onErrorEvent(int propId, int zone) {
Log.e("MainActivity", "CarProperty error for " + propld);
}
}s

private void runModelAndUpdateUI() {
try {

Academic Year: 2024-25
86

String resultJson = stepModel(
ambientlLight,
roadCurvature,
steeringAngle,
vehicleOncoming,
vehicleSpeed

)5

JSONObject output = new JSONObject(resultJson);
double beamRange = output.getDouble("beamRange");
double beamAngle = output.getDouble("beamAngle");

runOnUiThread(() -> {
intensityOutput.setText(String.format("Beam Range: %.1fm | Angle:
%.1f°",
beamRange, beamAngle));

logOutput.append(String.format(
"\nSpeed: %.1f km/h | Ambient: %.1f 1x | Curve: %.1f° |
Angle: %.1f° | Oncoming: %b",
vehicleSpeed, ambientlLight, roadCurvature, steeringAngle,
vehicleOncoming));

)

} catch (JSONException e) {
Log.e("MainActivity", "Model output parse error:

+ e.getMessage());

}
}

@Override
protected void onDestroy() {
super.onDestroy();
isRunning = false;
try {
if (carPropertyManager != null) {
carPropertyManager.unregisterCallback(callback);
}
if (car != null) car.disconnect();
} catch (Exception ignored) {}
terminateModel();

}
}

Explanation

6.1.5.2.1. Native Model Integration

¢ initModel() initializes the C++ model.
o stepModel(...) runs the adaptive light beam algorithm with five inputs:

o ambientLight, roadCurvature, steeringAngle, vehicleOncoming, vehicleSpeed.
¢ terminateModel() shuts down the model safely.

6.1.5.2.2. Vehicle HAL Integration
e Car and CarPropertyManager connect to the vehicle’s HAL.
e Subscribed signals:

Academic Year: 2024-25
87

o PERF_VEHICLE_SPEED
o STEERING_ANGLE
o AMBIENT_LIGHT_LEVEL
e Callback (CarPropertyEventCallback) automatically updates local variables and
triggers the model whenever a property changes.

6.1.5.2.3. Mocked Signals

e roadCurvature:
o Randomly varies between -60° to +60° to simulate curved roads.
e vehicleOncoming:
o Boolean toggled every 5 updates (~10 seconds) to simulate oncoming traffic.

6.1.5.2.4. Periodic Updates

e A background thread updates mocked signals every 2 seconds.
e Calls runModelAndUpdateUl() to combine HAL and mocked signals for processing.

6.1.5.2.5. Ul Updates

e intensityOutput shows beam range and angle.

¢ logOutput appends detailed logs: speed, ambient light, road curvature, steering angle,
and oncoming vehicle status.

¢ runOnUiThread() ensures Ul updates are thread-safe.

6.1.5.2.6. Lifecycle Management

e onDestroy() stops the background thread (isRunning = false), unregisters HAL
callbacks, disconnects from CarService, and terminates the model.
e Ensures clean shutdown and prevents resource leaks.

Summary

This implementation automates input signal acquisition using the Vehicle HAL, while
mocking missing signals. It continuously feeds all signals into the native model, producing live
outputs in the Ul, making it a realistic simulation of adaptive light beam control in real
automotive systems.

6.1.5.3 activity_main.xm/

<?xml version="1.0" encoding="utf-8"?>

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent”
android:layout_height="match_parent”
android:padding="24dp">

<LinearlLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
Academic Year: 2024-25
88

android:orientation="vertical"
android:gravity="center_horizontal">

<TextView
android:layout_width="wrap_content”
android:layout_height="wrap_content™
android:text="Adaptive Light Beam Controller"
android:textSize="24sp"
android:textStyle="bold"
android:layout_marginBottom="24dp" />

<!-- Output for final computed values -->

<TextView
android:id="@+id/intensityOutput”
android:layout_width="match_parent”
android:layout_height="wrap_content™
android:text="Beam Range: -- m | Beam Angle: -- °
android:textSize="18sp"
android:textStyle="bold"
android:layout_marginTop="2@dp" />

<!-- Log/debug area -->

<TextView
android:id="@+id/BeamAngleOutput"”
android:layout_width="match_parent"
android:layout_height="200dp"
android:text="Logs will appear here..."
android:background="#fofoefe"
android:padding="8dp"
android:layout_marginTop="12dp"
android:scrollbars="vertical"” />

</LinearlLayout>
</ScrollView>

Explanation:

¢ Removed all manual input widgets.

e Added TextViews for live beam output (intensityOutput) and logs
(BeamAngleOutput).

e Ul now reflects automatic updates from HAL signals

6.1.5.4 AndroidManifest.xml (HAL Permissions)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.monolithicadaptivelightbeamcontroller">

<uses-permission android:name="android.permission.CAR_SPEED"/>
<uses-permission android:name="android.permission.CAR_STEERING"/>
<uses-permission android:name="android.permission.CAR_AMBIENT_LIGHT"/>

<application
android:allowBackup="true"
android:label="Adaptive Light Beam Controller"
android:icon="@mipmap/ic_launcher"
android:roundIcon="@mipmap/ic_launcher_round"

Academic Year: 2024-25
89

android:supportsRtl="true"
android:theme="@style/Theme.AppCompat.Light.NoActionBar">

<activity android:name=".MainActivity"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>
<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>

</application>

</manifest>

Explanation:

Added permissions for accessing automotive vehicle signals like speed, steering, and

ambient light.
Keeps standard activity declaration unchanged.

This gives a complete view of all changes: project-level, Ul, activity code, manifest, and
testing considerations.

6.1.6. Add the Project to the Build:

Navigate to the appropriate file based on your Android version. [17]

Android 14: packages/services/Car/car_product/build/car_system.mk. [17]
Android13 or Android 12: packages/services/Car/car_product/build/car.mk. [17]
Add your new app to the list. [17]

PRODUCT_PACKAGES +=
CarFrameworkPackageStubs
CarService
CarShell
CarDialerApp
CarRadioApp
OverviewApp
CarLauncher
CarSystemUI
LocalMediaPlayer
CarMediaApp
CarMessengerApp
CarHTMLViewer
CarHvacApp
CarMapsPlaceholder
CarLatinIME
CarSettings
CarUsbHandler
android.car
car-frameworks-service
com.android.car.procfsinspector
libcar-framework-service-jni
ScriptExecutor
MonolithicAdaptivelLightBeamController \

P i i L g A

Academic Year: 2024-25

90

6.1.7. Build AOSP and Run the Emulator:

e Source the environment using . build/envsetup.sh . [17]

e Choose your target using lunch sdk_car_x86_64-userdebug.

e Build the source code with make -jS(nproc).

e Launch the emulator with emulator & to see your integrated app.

6.2. Shifting of SOAAdaptiveLightController to AOSP
6.2.1 Create a Sample Android Project

Before integrating the system into AOSP, a prototype of the SOA-based Adaptive Light
Controller was implemented in Android Studio. (Refer to Chapters 3 and 5 for the
implementation of the prototype.)

6.2.2 Prepare an application Folder in AOSP

To integrate the application within the AOSP environment:

6.2.2.1 Navigate to:
/packages/apps/Car

6.6.2.2 Duplicate any existing application folder (e.g., Calendar) and rename it to:
SOAAdaptiveLightController

6.6.2.3 Clean the folder by removing unnecessary subfolders. Keep:

src/
res/
Android.bp

6.6.2.4 Inside src :

Inside src folder place all Java, JNI (C++) source files from the original Android Studio
project. [17]

6.6.2.5 Create an aidl directory

Create AIDL files for the AIDL interface files corresponding to each car service. (see
figure 59)

6.6.2.6 Add AndroidManifest.xml|

Add the application’s AndroidManifest.xml to define permissions, package, and
activities. [17]

The final file structure of the application:

Academic Year: 2024-25
91

v [SOAAdaptiveLightBeamController

+ [SOAAdaptivelLightBeamController
v [aidl
D com
+ [android
v [Decar
4 |[AmbientLightService.aidl
&4 |IBeamAngleController.aidl
&4 IRoadCurvatureService.aidl
&4 ISteeringAngleService.aidl
&4 [VehicleOncomingService.aidl

&4 IVehicleSpeedService.aidl

[main
» (D epp
[AdaptivelightController

shared

-

=] com.example.soaadaptivelightbeamcontroller

MainActivity
SOAAdaptiveLightController

= Android.bp

M| AndroidManifest.xml

Figure 59: SOAAdaptiveLightController application file structure

6.2.3 Prepare folder structure associated with service implementation

6.2.3.1 Navigate to:
packages/services/car/service/
6.2.3.2 Create folders for each service:

ambientlight/
beamanglecontroller/
roadcurvature/
vehicleoncoming/
vehiclespeed/

6.2.3.3 For each service:

¢ Place the Simulink-generated .cpp and .h files.

Academic Year: 2024-25
92

e Add a corresponding Binder wrapper file (e.g., AmbientLightServiceBinder.cpp &
AmbientLightServiceBinder.h).
e Create a minimal Android.bp file to compile each service as a static/shared library.

6.2.3.4 Create an aidl folder for service-side AIDL interfaces:
services/car/aidl/
6.2.3.5 Create a shared folder for reusable Simulink or utility code.

services/shared

6.2.3.6 Implement a CarServiceMain.cpp file which registers all services to CarService at
startup.

6.2.3.7 Finally, create a top-level Android.bp to include and link all service libraries.

Final structure of the service folder in AOSP looks like:

Academic Year: 2024-25
93

(3 aidl
(O com
[android
[car

= |AmbientLightService.aidl

& |IBeamAngleController.aidl

¢4 |RoadCurvatureService.aidl

& |SteeringAngleService.aidl

&4 J‘-JehicIeDncm'ning:i‘.er'a.-'ir:e.aidl

% |VehicleSpeedServ

[ambientlight
(CZ AmbientLightService.cpp
i AmbientLightService.h
AmbientLightService_types.h
c: AmbientLightServiceBinder.cpp
i AmbientLightServiceBinder.h
= Android.bp
[beamanglecontroller
(3 roadcurvature

[shared

[0 steeringangle

(2 vehicleoncoming
[vehiclespeed
(I CarServiceMain.cpp

= Android.bp

Figure 60: File structure of the service implementation in AOSP

Academic Year: 2024-25
94

6.2.4 Explanation of Important Files and Their Roles

6.2.4.1 AIDL Files

Each AIDL file defines a Binder interface through which the Java or C++ client (the app)
communicates with the native services.

Example:
package com.android.car;

interface IAmbientLightService {
double computeAmbientLight(double inputAmbientLight);

}

When compiled, AOSP generates Binder stub and proxy classes (using NDK AIDL), enabling
inter-process communication between the app (client) and car service (server).

6.2.4.2 Service Implementation (e.g., AmbientLightService.cpp)

This file contains the core computation logic (auto-generated from Simulink).
For instance, AmbientLightService::computeAmbientLight() computes or simulates an
environmental light response value.

6.2.4.3 Binder Wrapper (AmbientLightServiceBinder.h / .cpp)

These files act as the bridge between Android’s Binder system and the native C++ service
logic.

Header:

#pragma once
#include <aidl/com/android/car/BnAmbientLightService.h>
#include "AmbientLightService.h"

// Binder wrapper around AmbientLightService

class AmbientLightServiceBinder : public
aidl::com::android::car::BnAmbientLightService {
public:

AmbientLightServiceBinder();

ndk: :ScopedAStatus computeAmbientLight(double ambientlLight, double*

_aidl_return) override;

private:
AmbientLightService mService; // Simulink-generated implementation

}s

Implementation:

#include "AmbientLightServiceBinder.h"

Academic Year: 2024-25
95

AmbientLightServiceBinder: :AmbientLightServiceBinder() : mService() {}

ndk: :ScopedAStatus AmbientLightServiceBinder::computeAmbientLight (
double ambientLight, double* _aidl return) {
double result = 0.0;
mService.computeAmbientLight(ambientLight, &result);
* aidl_return = result;
return ndk::ScopedAStatus::ok();

Explanation:

e The class inherits from the NDK Binder Stub (BnAmbientLightService).

e It overrides the AIDL-defined method (computeAmbientLight).

e Internally, it calls the real algorithm implemented in AmbientLightService.cpp.
e It returns the result to the caller through the Binder IPC channel.

6.2.4.4 Per-Service Build File (Android.bp)

Each service has its own Android.bp file that defines how it is compiled.

cc_library {
name: "ambientlight",
srcs: [
"AmbientLightService.cpp",
"AmbientLightServiceBinder.cpp",

1,
cflags: ["-std=c++17"],
include_dirs: [".", "../../shared"],

stl: "c++_shared”,
visibility: ["//visibility:public"],
ndk: { enabled: true },

Explanation:

e Builds the service as a shared C++ library.

¢ Includes headers from both its folder and the shared Simulink headers.

e Makes the service publicly visible to other AOSP modules.

¢ Enables use in the NDK environment, which allows Binder IPC with Java apps.

6.2.4.5 CarServiceMain.cpp (Service Registration)

This is the entry point of the Car Service process.
It registers all service binders into Android’s Service Manager, making them discoverable by
clients.

#include <android/binder_manager.h>

#include <android/binder_process.h>

#include <android/log.h>

#include "ambientlight/AmbientLightServiceBinder.h"
#include "vehiclespeed/VehicleSpeedServiceBinder.h"

Academic Year: 2024-25
96

#include "roadcurvature/RoadCurvatureServiceBinder.h"
#include "steeringangle/SteeringAngleServiceBinder.h"
#include "vehicleoncoming/VehicleOncomingServiceBinder.h"
#include "beamangle/BeamAngleControllerBinder.h"

int main() {
ABinderProcess_setThreadPoolMaxThreadCount(9);
ALOGI("CarServiceMain starting...");

auto ambientLightService =
ndk: :SharedRefBase: :make<AmbientLightServiceBinder>();
AServiceManager_addService(ambientLightService->asBinder().get(),
"com.android.car.IAmbientLightService/default");

// ... repeat for all other services
ALOGI("All services registered successfully.");

ABinderProcess_joinThreadPool();
return 0;

Explanation of Flow:

1. The Binder thread pool is initialized to handle IPC requests.

2. Each service Binder object (e.g., AmbientLightServiceBinder) is instantiated.

3. Each service is registered with a unique name in the Android Service Manager (e.g.,
"com.android.car.lAmbientLightService/default").

4. The process joins the Binder thread pool to continuously listen for incoming IPC calls
from applications.

5. When the app calls the corresponding AIDL interface, the request is routed to this
process and handled by the corresponding Binder wrapper.

6.2.4.6 Master Build Script (Android.bp)

At the controller/ or car/ level, a main Android.bp file builds the executable carservice that
includes all service modules.

cc_binary {

name: "carservice",

srcs: ["CarServiceMain.cpp"],

cflags: ["-std=c++17"],

stl: "c++_shared",

shared_libs: [
"ambientlight",
"vehiclespeed",
"beamanglecontroller”,
"roadcurvature",
"steeringangle"”,
"vehicleoncoming",

1,

visibility: ["//visibility:public"],

ndk: { enabled: true },

Academic Year: 2024-25
97

Explanation:

e cc_binary defines a native binary executable called carservice.
o Links all per-service libraries into one running process.
o Registers all services automatically during boot.

6.2.5 Workflow Summary

1. App side calls the service method via AIDL (e.g., computeAmbientLight()).

2. Binder IPC transmits the request to the corresponding native service process
(carservice).

3. The Binder wrapper (AmbientLightServiceBinder) receives the IPC call.

4. It delegates computation to the Simulink-generated C++ logic
(AmbientLightService.cpp).

5. The computed result is returned through Binder IPC to the application.

6. The Ul updates accordingly to display the processed data.

6.2.6 Conclusion

Integrating the SOAAdaptiveLightController directly into AOSP transforms it from a
standalone Android app into a system-level automotive service framework.
This design leverages the AOSP Binder IPC mechanism to achieve modularity, fault isolation,
and scalability — all key characteristics of a Service-Oriented Architecture (SOA) within
embedded automotive platforms.

Academic Year: 2024-25
98

Chapter 7

7. OTA Implementation for SOAAdaptivelLightController

7.1 Introduction

The Over-The-Air (OTA) update mechanism is an essential feature in modern automotive
software architectures. It allows the vehicle’s software components to be updated remotely,
improving maintainability, safety, and feature expansion over time.[1][4][11][15]

In the context of the SOAAdaptiveLightController developed in this research, the OTA
mechanism leverages the Service-Oriented Architecture (SOA) design to enable individual
services, such as AmbientLightService, VehicleSpeedService, or BeamAngleController, to be
independently updated without requiring a complete system rebuild or reflashing of the
Android image.

This approach aligns with the SOA principle of “loose coupling and dynamic service
management”, making the system modular, upgradeable, and more resilient.

7.2 Architecture Overview

In the implemented AOSP structure, each vehicle-related functionality—ambient light
detection, road curvature, vehicle speed, etc.—is developed as an independent Binder-based
service module.
These services are dynamically registered through the main orchestrator
(CarServiceMain.cpp), and their compiled outputs (.so shared objects) are linked within the
car service binary.[2][3][12]

The OTA update mechanism introduces a new Binder service called OTAUpdateService, which
handles downloading, verifying, and updating these service modules.[8]

The following diagram illustrates the OTA workflow within the AOSP-based SOA
architecture:[8][2][3][12]

SOAAdaptivelLightController (Android App - Ul)
User triggers OTA update for a specific service
Calls IOTAUpdateService via AIDL

| Binder IPC
v

OTAUpdateService (C++ Binder Service)

Downloads new module (.so) via HTTPS

Verifies checksum / signature

Replaces old service binary in /data/vendor/carservices/
Signals CarServiceMain to reload updated module

Academic Year: 2024-25
99

\

CarServiceMain.cpp

Dynamically loads service libraries via dlopen()

Registers each updated service to AServiceManager
Provides runtime modularity and dynamic service loading

7.3 Implementation Steps

Step 1 - OTAUpdateService AIDL Definition

The IOTAUpdateService.aidl interface is defined to expose OTA update functionalities to the
client layer. [8][2][3][12]

package com.android.car;

interface IOTAUpdateService {
boolean downloadAndUpdateModule(String moduleName, String downloadUrl);
String getUpdateStatus(String moduleName);

This interface allows the Android application to trigger OTA updates for specific modules (e.g.,
“ambientlight”) and to query their update status.

Step 2 — C++ Implementation of OTAUpdateService

The OTA service is implemented as a Binder-based C++ class that downloads and replaces
service modules: [8][2][3][12]

#include "IOTAUpdateService.h"
#include <curl/curl.h>

#include <android/binder_manager.h>
#include <android/log.h>

#define MODULE_PATH "/data/vendor/carservices/modules/"
#define LOG_TAG "OTAUpdateService"

bool downloadFile(const std::string& url, const std::string& outPath);

class OTAUpdateService : public aidl::com::android::car::BnOTAUpdateService {
public:
ndk: :ScopedAStatus downloadAndUpdateModule(
const std::string& moduleName,
const std::string& downloadUrl,
bool* _aidl return) override {

std::string tempPath = std::string(MODULE_PATH) + moduleName + "_new.so";
std::string finalPath = std::string(MODULE_PATH) + moduleName + ".so";

if (!downloadFile(downloadUrl, tempPath)) {
ALOGE ("Download failed for %s", moduleName.c_str());
*_aidl_return = false;
return ndk::ScopedAStatus::ok();

Academic Year: 2024-25
100

}

// Replace old module
rename(tempPath.c_str(), finalPath.c_str());

// Restart carservice to reload updated module
system("stop carservice && start carservice");

ALOGI("Updated module %s successfully"”, moduleName.c_str());

* aidl_return = true;
return ndk::ScopedAStatus::ok();

s

The service downloads a new .so binary, replaces the existing one, and triggers a lightweight
restart of the carservice process, which then reloads all services including the updated one.

Step 3 — Dynamic Service Loading in CarServiceMain.cpp

To support OTA-updatable modules, CarServiceMain.cpp is modified to dynamically load
service libraries using dlopen() and dlsym() instead of static linking. [8][2][3][12]

#include <dlfcn.h>
#include <android/binder_manager.h>

void loadAndRegisterService(const std::string& 1libPath, <const std::string&
serviceName) {
void* handle = dlopen(libPath.c_str(), RTLD_NOW);
if (!'handle) {
ALOGE("Failed to load %s: %s", serviceName.c_str(), dlerror());
return;

}

using CreateBinderFn = ndk::SpAIBinder (*)();
auto createFn = (CreateBinderFn)dlsym(handle, "createBinder");
if (!createfFn) {
ALOGE ("Symbol not found in %s", serviceName.c_str());
return;

}

auto binder = createFn();
AServiceManager_addService(binder->asBinder().get(), serviceName.c_str());
}
Each service (such as AmbientLightService) exports a createBinder() method that
returns a Binder instance of the service.
extern "C" ndk::SpAIBinder createBinder() {
return ndk::SharedRefBase: :make<AmbientLightServiceBinder>()->asBinder();

}

This mechanism allows the carservice process to load a newly updated module without
requiring recompilation or flashing.

Academic Year: 2024-25
101

7.4 OTA Update Example: AmbientLightService

To demonstrate the OTA functionality, the AmbientLightService was selected as a use case.
Initial Setup:

e Original library: /data/vendor/carservices/modules/ambientlight.so
e Registered Binder service: com.android.car.lAmbientLightService/default

Update Scenario:

Suppose an improvement is made in the Simulink model of the ambient light computation
(for example, enhanced filtering of sensor noise). A new version of the service is built and
published on a remote server as ambientlight_v2.so. [8][2][3][12]

Update Procedure:

1. Trigger Update from App:
o The user (or system) calls:
o otaService.downloadAndUpdateModule("ambientlight",
"https://server.com/updates/ambientlight_v2.s0");
2. Download & Replacement:
o OTAUpdateService downloads the new binary and stores it as
/data/vendor/carservices/modules/ambientlight_new.so.
o It verifies integrity and replaces the old module:
o mv ambientlight_new.so ambientlight.so
3. Reload Service:
o The carservice process is restarted or signalled to reload.
o CarServiceMain dynamically loads the new ambientlight.so.
o The updated AmbientLightService is re-registered with the same AIDL
interface.
4. Result:
o Clients (like the Adaptive Light Controller app) continue to use
IAmbientLightService seamlessly.
o The updated logic is now active without reflashing the firmware or rebuilding
the AOSP image.

7.5 Advantages of the OTA Mechanism

Feature Description

Service-Level Modularity Each vehicle function can be updated independently.
Reduced Downtime No need for full system reflashing or reboots.
Improved Maintainability Easier integration of new features or bug fixes.
Security Update packages can be signed and verified.
Demonstrates SOA Principles | Dynamic service binding and independent deployment.

Academic Year: 2024-25
102

7.6 Summary

The integration of OTA update functionality into the SOAAdaptiveLightController project
transforms it into a truly service-oriented automotive software platform.
By enabling independent updates for services such as AmbientLightService, the system
achieves:

e runtime flexibility,
e reduced maintenance overhead, and
e enhanced scalability.

This approach demonstrates how modern automotive systems can adopt cloud-driven service
delivery models while remaining compliant with the modularity principles defined by SOA.

Academic Year: 2024-25
103

Chapter 8

8. Mixed Criticality in Android Automotive Systems

8.1 Introduction

Modern vehicles integrate a wide range of software functionalities with differing reliability,
timing, and safety requirements. This coexistence of components with diverse assurance
levels defines a mixed-criticality system, a core characteristic of today’s automotive software
architecture.

While traditional Electronic Control Units (ECUs) were designed for single-purpose, safety-
critical tasks, recent technological trends—such as domain controllers and centralized
computing—allow both safety-critical and non-critical software to share the same hardware
resources. Managing these workloads safely and predictably is one of the central challenges
of Android Automotive OS (AAOS) integration in modern vehicles. [11][13][14][15]

This chapter explores how mixed criticality is addressed in Android Automotive systems, the
mechanisms used to achieve freedom from interference, and how the developed Service-
Oriented AdaptivelLight Controller (SOA-ALBC) fits within this context as a representative
infotainment-level application designed using Model-Based Software Design (MBSD) and
integrated through Android Studio.

8.2 Concept of Mixed Criticality

8.2.1 Definition

Mixed criticality refers to the coexistence of software components with different levels of
functional safety, real-time behaviour, and assurance requirements on a shared platform.
According to ISO 26262, each function in a vehicle can be assigned an Automotive Safety
Integrity Level (ASIL), ranging from ASIL D (highest safety requirement) to QM (quality-
managed, non-safety).[11]

Mixed criticality arises when both ASIL-classified and QM components execute on the same
processor or within the same system. This situation demands careful system partitioning and
resource management to prevent interference between components of different criticalities.

8.2.2 Challenges in Mixed-Criticality Integration

The coexistence of multiple criticality levels introduces several challenges:[11][13][14]

e Freedom from Interference (FFl): Lower-criticality software (e.g., Android
applications) must not affect the timing, memory, or data integrity of higher-criticality
components.

o Timing Predictability: Real-time control systems require deterministic response,
which general-purpose systems like Android do not natively guarantee.

Academic Year: 2024-25
104

e Resource Contention: Shared use of CPUs, GPUs, and memory can lead to
unpredictable performance if not controlled.

e Security and Safety Assurance: Non-safety domains must not compromise the
operation or integrity of safety-critical subsystems.

o Certification Complexity: Demonstrating that the overall system meets safety
standards becomes more demanding when criticality levels are mixed.

8.3 Mixed Criticality in Android Automotive Architecture

8.3.1 Overview of Android Automotive OS

Android Automotive OS (AAOS) is a Google-supported, embedded variant of the Android
operating system specifically adapted for in-vehicle infotainment (IVI) systems. It manages
tasks such as media playback, navigation, user interaction, and integration with vehicle
sensors via the Vehicle Hardware Abstraction Layer (VHAL).[2][3]

From a safety perspective, Android Automotive is considered a non-safety (QM)
environment. However, it often operates in close proximity to safety-critical ECUs, forming
part of a larger, mixed-criticality vehicle architecture.

8.3.2 Architectural Separation of Domains

To manage mixed criticality, automotive platforms employ domain separation through
hardware and software partitioning. There is a conceptual separation between:

o Safety/Real-Time Domain — Executes safety-critical control functions (e.g., braking,
steering, lighting logic) under a safety-certified Real-Time Operating System (RTOS)
such as QNX, PikeOS, or AUTOSAR Classic. [11][13][14]

¢ Infotainment Domain — Hosts Android Automotive and its applications, including
non-critical user-interface services such as the SOA Adaptivelight Controller
developed in this work.

Although Android Automotive applications may visualize or influence parameters related to
safety systems, they are not responsible for the real-time actuation or control logic. Instead,
Android acts as a supervisory or monitoring layer interfacing through standardized APIs.

8.3.3 Mechanisms Supporting Mixed Criticality

Android Automotive achieves coexistence with safety-critical systems through several key
mechanisms:

1. Hardware Virtualization and Hypervisors:
Modern SoCs (e.g., Qualcomm Snapdragon Ride, Renesas R-Car, NXP S32G) use
hypervisors to host multiple isolated guest operating systems. Safety functions
execute in a certified RTOS partition, while Android runs in a separate virtualized
domain. This enforces spatial and temporal isolation. [13][14][15]

Academic Year: 2024-25
105

2. Safety Islands and Secure Execution Environments:
Dedicated hardware cores, often called “safety islands,” execute essential safety
software independently from Android. Even if Android crashes, these cores maintain
the system in a safe state. [14][15]

3. Linux Kernel Isolation (Cgroups, Cpuset, and Namespaces):
Within Android, process isolation and resource control are achieved using Linux kernel
features such as control groups (cgroups) and cpusets, which prevent resource
starvation and enforce CPU scheduling boundaries. [12]

4. SELinux and Permission Enforcement:
Android Automotive enforces Security-Enhanced Linux (SELinux) in enforcing mode,
defining policies that tightly restrict access to devices, 1/0, and vehicle interfaces.
Applications can only access vehicle data through the Car Service and Vehicle HAL
layers, not through direct hardware interfaces. [2][3][12]

5. Vehicle HAL Mediation:
The Vehicle HAL acts as a secure communication bridge between Android and
underlying ECUs. Safety-critical ECUs expose limited, read-only or verified interfaces,
ensuring that infotainment apps cannot issue unsafe commands. [2][3][12]

6. Safe Communication Channels:
When cross-domain communication is necessary, it is implemented via authenticated,
rate-limited IPC mechanisms or hypervisor-mediated shared memory channels to
avoid overloading safety partitions.[13][14]

8.4 Case Study: SOA Adaptivelight Controller Application

8.4.1 Model-Based Design Workflow

The SOA Adaptivelight Controller (SOA-ALC) application developed in this thesis
demonstrates the use of Model-Based Software Design (MBSD) for automotive use cases
within Android Automotive.

The control logic was first designed in MATLAB/Simulink, modelled as a service-oriented
component. Using Embedded Coder, the model was automatically converted into C++ source
code, ensuring consistency between design and implementation. The generated code was
then integrated into Android Studio as part of an AAQOS application module.

8.4.2 Role within Mixed Criticality Architecture

Although adaptive lighting behaviour in production vehicles is safety-critical, in this thesis the
SOA-ALBC serves as a non-critical infotainment demonstration. It visualizes and simulates
adaptive lighting responses rather than directly controlling hardware.

Thus, the application resides entirely within the Android (QM) domain, utilizing AAOS APIs to
demonstrate vehicle service interaction without influencing real-time actuation. This
approach makes it an ideal research use case to analyse how complex control algorithms can
be safely hosted in a mixed-criticality environment.[1][5][16]

Academic Year: 2024-25
106

8.4.3 Interaction Boundaries

The integration ensures clear separation between:

¢ Application Layer: Android application hosting user interface and service logic.

e System Services: Car Service and VHAL layers mediating any communication with
vehicle subsystems.

o External ECUs (if connected): Access limited to simulated or read-only channels.

This architecture maintains freedom from interference by ensuring that any misbehaviour in
the SOA-ALC app (e.g., CPU spikes, software errors) does not affect the functioning of safety
ECUs or other domains.[2][11][12]

8.5 Safety, Security, and System Assurance Considerations

8.5.1 Freedom from Interference (FFI)

AAOS ensures FFl between infotainment applications and safety-critical components through:

e Process sandboxing and SELinux policy enforcement.[2][12]
e Controlled access via Car Service and Vehicle HAL.[2][3]

e Resource quotas using Linux kernel control groups.

e Strict application signing and permission management.

8.5.2 Compliance Context

While AAOS itself is not ISO 26262-certified, it is designed to coexist with certified safety
platforms. In such setups, the Android environment operates at the QM level, and its
functions are excluded from the vehicle’s safety case.[11]

The SOA-ALBC application, implemented in this work, thus aligns with the non-safety (QM)
classification, illustrating a safe and structured integration of complex MBSD-generated
software in the Android domain.

8.5.3 Security and Update Management

Android Automotive employs secure boot, verified updates, and application signing to ensure
system integrity. These mechanisms are critical in mixed-criticality systems, as untrusted
updates in non-critical domains must not jeopardize the safe operation of the overall vehicle
architecture.[12]

8.6 Discussion

The study highlights that Android Automotive provides a flexible and robust platform for
developing advanced, service-oriented automotive applications while maintaining strict
boundaries between safety and non-safety domains.

Academic Year: 2024-25
107

From the perspective of system design:

o Safety-critical control should reside outside Android, in RTOS or safety partitions.
[11][13][14]

¢ Infotainment and visualization functions, such as the SOA-ALC, can be implemented
safely within Android, benefiting from its development ecosystem, connectivity, and
user interface capabilities.

e Proper use of the VHAL, SELinux, and virtualization ensures compliance with mixed-
criticality principles. [2][12]

This separation allows research and development teams to explore advanced automotive
functionalities (like adaptive lighting logic) at the application level without endangering safety
or violating functional safety constraints.

8.7 Conclusion

Mixed-criticality management in Android Automotive is achieved through a combination of
architectural isolation, hardware support, and robust software mechanisms. Android, as a
non-safety environment, complements safety-certified domains by enabling high-level, user-
facing applications and services.

The SOA Adaptive Light Beam Controller developed in this thesis exemplifies how a model-
based, service-oriented application can be deployed within AAOS, respecting mixed-criticality
boundaries and demonstrating safe integration of advanced functionalities in the
infotainment layer.

This approach reinforces the potential of combining Model-Based Software Design with
Android Automotive to accelerate innovation, maintain software quality, and preserve
system integrity in future vehicle architectures.

Academic Year: 2024-25
108

Chapter 9

9. Vehicle Signal Integration in Android Automotive

9.1 Overview

In a vehicle equipped with Android Automotive OS (AAQS), input signals from physical sensors
and actuators—such as steering angle, speed, ambient light, or headlamp status—are
typically transmitted over a Controller Area Network (CAN) bus. However, Android does not
directly access the CAN bus for both safety and architectural reasons. [2][3][12]

Instead, signal acquisition and distribution occur through a layered integration architecture,
where the Vehicle HAL (Hardware Abstraction Layer) acts as the interface between Android
and the vehicle’s underlying ECUs or middleware.[2]

This section describes how CAN signals flow through the system, the role of intermediate
components, and how Android applications like the SOA Adaptive Light Beam Controller can

consume those signals safely.[11]

9.2 Signal Flow: From CAN Bus to Android

The typical signal path can be described in the following stages:

[Vehicle Sensors/Actuators]
)
[CAN Bus]
2
[Vehicle Gateway ECU / Vehicle Interface Processor]
)
[Vehicle HAL]
)
[Car Service / Car API]
)
[Android Application Layer (e.g., SOA Adaptive Light Beam Controller)]

9.2.1 Vehicle Sensors and CAN Bus

At the hardware level, vehicle sensors and actuators communicate through one or more CAN
networks (e.g., Powertrain CAN, Body CAN, Chassis CAN). Each signal is encoded as a CAN
frame identified by a unique CAN ID, and contains payload data such as:

¢ Vehicle speed

e Steering angle

¢ Ambient light intensity
¢ Headlamp status

These messages are broadcast periodically, typically every 10—100 ms, depending on their
criticality.[12]

Academic Year: 2024-25
109

9.2.2 Vehicle Gateway ECU

The Vehicle Gateway ECU (or Body Control Module, or dedicated middleware gateway) acts
as a bridge between the CAN bus and higher-level systems such as Android Automotive. Its
main responsibilities include:

¢ Receiving and decoding CAN messages.

e Converting raw CAN data into abstracted vehicle signals (e.g., VehicleSpeed = 45
km/h).

o Filtering, scaling, or rate-limiting the signals.

e Providing these processed signals to higher-level software components through
standard interfaces, often via Ethernet or shared memory.

This gateway may run:

e Areal-time OS (RTOS) or AUTOSAR stack for safety and timing.
e A communication middleware such as Some/IP, DDS, or gRPC over IPC for higher-level
communication.

It isolates Android from direct bus access, enforcing the freedom from interference
principle.[2][3][12]

9.3 Vehicle HAL (Hardware Abstraction Layer)

9.3.1 Purpose

The Vehicle HAL (VHAL) is the Android Automotive system component that provides a
standard interface for vehicle-related data to the Android framework. It abstracts away the
details of how vehicle signals are obtained, presenting a unified API to Android services and
applications.

VHAL defines a set of Vehicle Properties, each identified by an integer constant (e.g.,
VEHICLE_PROPERTY_SPEED, VEHICLE_PROPERTY_STEERING_ANGLE). These are standardized
in the Android Open Source Project (AOSP).[2][3]

9.3.2 Structure

VHAL is implemented in C++ and runs in native space (under /vendor partition). It typically
communicates with the vehicle gateway or middleware via:

¢ Socket-based IPC

¢ Binder interface

¢ Shared memory

e Some/IP or gRPC interface

It translates external data into standardized property structures (VehiclePropValue), which
are published to the Android Car Service.

Academic Year: 2024-25
110

Example (simplified flow):

VehiclePropValue value;

value.prop = VEHICLE_PROPERTY_SPEED;
value.value.floatValues[@] = decodedSpeed;
mVehicleHal->setProperty(value);

This data is then pushed to the Car Service in the Android framework layer.[2][3][12]
9.4 Car Service and Car API

9.4.1 Car Service

The Car Service runs in the Android System Server process. It communicates with the Vehicle
HAL via Binder IPC and provides higher-level access to vehicle data through a managed API
layer.

It defines the permission model and ensures that only authorized components can read or
modify certain vehicle properties.

For example:

¢ Speed or fuel level may be read by any system Ul component.
e Door lock status or ignition control is restricted to system-only components.

9.4.2 Car API (Application Layer)

Applications in the Android domain use the Car API, part of the android.car package, to read
or subscribe to vehicle signals.

Example Java/Kotlin usage:

val car = Car.createCar(context)
val carPropertyManager = car.getCarManager (Car.PROPERTY_SERVICE) as
CarPropertyManager

carPropertyManager.registerCallback(object
CarPropertyManager.CarPropertyEventCallback {
override fun onChangeEvent(value: CarPropertyValue<*>) {
if (value.propertyId == VehiclePropertyIds.PERF_VEHICLE_SPEED) {
val speed = value.value as Float
// Use vehicle speed as input for adaptive lighting visualization

}
}

override fun onErrorEvent(propId: Int, zone: Int) {}
}, VehiclePropertyIds.PERF_VEHICLE_SPEED, CarPropertyManager.SENSOR_RATE_ONCHANGE)

This abstraction ensures that the app never directly interacts with CAN data; instead, it
receives high-level vehicle properties published by the VHAL. [2][3][12]

Academic Year: 2024-25
111

9.5 Integration Example: SOA Adaptive Light Beam Controller

In the context of the thesis:

1. Signal Origin:
o Real-world: Vehicle’s ambient light sensor and steering angle sensor transmit
data over the CAN bus.
o Simulated case: The system emulates these signals (e.g., through test datasets
or synthetic generators in Simulink).
2. Gateway Translation:
o Thevehicle gateway decodes CAN frames and exposes standardized properties
such as:
= VehiclePropertylds.STEERING_ANGLE
= VehiclePropertylds.AMBIENT_LIGHT_LEVEL
3. Vehicle HAL Integration:
o The HAL receives these signals through IPC (e.g., Some/IP or shared memory)
and converts them into VehiclePropValue objects.
4. Android Framework:
o The Car Service receives updates and broadcasts them through the
CarPropertyManager interface.
5. Application Consumption:
o The SOA Adaptive Light Beam Controller (Android app) subscribes to relevant
properties and uses them to drive adaptive-lighting logic (simulated or
visualized).

In a real automotive deployment, the adaptive lighting actuation would occur in a separate,
safety-certified ECU (e.g., Body Controller), while Android handles visualization, settings, or
simulation only.

9.6 Safety and Isolation Considerations

Even though vehicle signals from CAN reach Android, the data path is strictly one-way for
most properties. Android applications are:

¢ Read-only for safety-critical properties.

¢ Rate-limited to prevent flooding the HAL or gateway.

e Permission-restricted using Android’s automotive permission model
(android.car.permission.CAR_SPEED, etc.).

This ensures freedom from interference, where failures in the Android domain cannot
compromise the safety-critical vehicle control logic.[2][3][12]

9.7 Summary

Layer Function Example Technology
Sensors/ECUs Generate raw signals CAN, LIN, FlexRay

Academic Year: 2024-25
112

Vehicle Decode & abstract data AUTOSAR, RTOS, Some/IP

Gateway

Vehicle HAL Standardize vehicle properties C++ HAL module

Car Service Manage access & publish data Android system server

Application Consume vehicle data SOA Adaptive Light Beam
Controller

Academic Year: 2024-25

113

REFERENCES/BIBLIOGRAPHY

[1] Migrating Traditional Automotive Applications to SOA for Software-Defined Vehicles -
MATLAB & Simulink

[2] Automotive | Android Open Source Project

[3] Android Automotive OS overview | Android for Cars | Android Developers

[4] software defined vehicles - Video e Webinar - MATLAB & Simulink

[5] SDV: Integrating Simulink C++ Generated Code in Android Automotive Environment -
MATLAB & Simulink

[6] Run apps on the Android Emulator | Android Studio | Android Developers

[71 https://it.mathworks.com/videos/sdv-integrating-simulink-c-generated-code-in-
android-automotive-environment-1691429159219.html

[8] OTA update in Android Automotive

[9] System Composer - MATLAB

[10] https://medium.com/androiddevelopers/getting-started-with-c-and-android-native-
activities-2213b402ffff

[11] 1SO 26262: Road Vehicles — Functional Safety.

[12] Android Open Source Project: Vehicle System Isolation in Android Automotive

[13] SYSGO: Mixed-Criticality Partitioning in PikeOS

[14] QNX: QNX Hypervisor for Safety — Product Brief

[15] Qualcomm Technologies: Snapdragon Ride Flex — Mixed-Criticality SoC Architecture
[16] MathWorks: Embedded Coder for Automotive Applications

[17] Android Automotive build your first app

Academic Year: 2024-25
114

https://it.mathworks.com/company/technical-articles/migrating-traditional-automotive-applications-to-soa-for-software-defined-vehicles.html
https://it.mathworks.com/company/technical-articles/migrating-traditional-automotive-applications-to-soa-for-software-defined-vehicles.html
https://source.android.com/docs/automotive
https://developer.android.com/training/cars/platforms/automotive-os
https://it.mathworks.com/videos/search.html?q=software%20defined%20vehicles&page=1
https://it.mathworks.com/videos/sdv-integrating-simulink-c-generated-code-in-android-automotive-environment-1691429159219.html
https://it.mathworks.com/videos/sdv-integrating-simulink-c-generated-code-in-android-automotive-environment-1691429159219.html
https://developer.android.com/studio/run/emulator
https://it.mathworks.com/videos/sdv-integrating-simulink-c-generated-code-in-android-automotive-environment-1691429159219.html
https://it.mathworks.com/videos/sdv-integrating-simulink-c-generated-code-in-android-automotive-environment-1691429159219.html
https://source.android.com/docs/core/ota
https://it.mathworks.com/products/system-composer.html
https://medium.com/androiddevelopers/getting-started-with-c-and-android-native-activities-2213b402ffff
https://medium.com/androiddevelopers/getting-started-with-c-and-android-native-activities-2213b402ffff
https://medium.com/@sreelakshmis.dilip/android-automotive-build-your-first-app-f4b882eb01e5

