
Academic Year: 2024-25
1

POLITECNICO DI TORINO

Master’s Degree in Mechatronics engineering

Specialization in: Software Technologies for Automation

MASTER THESIS

Migration from Monolithic Algorithms to Service-Oriented Architectures in

Software-Defined Vehicles

Supervisor Candidate

Prof. Massimo Violante Dhanesh Kanwar

Prof. Jacopo Sini

Academic Year: 2024-25
2

Abstract

The increasing complexity and software centrality of modern vehicles have necessitated a shift

from traditional monolithic software architectures to modular, scalable paradigms. This thesis

explores the migration from Monolithic Algorithms to Service-Oriented Architectures (SOA) in

Software-Defined Vehicles (SDVs), using a practical case study: the design and simulation of

an Adaptive Light Beam Controller (ALBC) in Simulink. Both monolithic and SOA-based

architectures are developed and evaluated, with a comparative analysis focusing on

modularity, maintainability, over-the-air (OTA) update readiness, and cross-domain

integration.

To validate the practical feasibility of these architectures, Embedded Coder is used to generate

C++ code from both Simulink models. The generated code is successfully integrated into an

Android Studio environment and deployed on an automotive emulator, simulating real-time

execution in an in-vehicle context. The results demonstrate that SOA not only enhances

software modularity and service independence but also significantly improves deployment

flexibility and future maintainability. This work provides a comprehensive methodology for

transitioning automotive control systems to SOA using model-based design, automated code

generation, and rapid prototyping on virtual platforms.

Academic Year: 2024-25
3

Contents

Chapter 1 .. 8

1. Introduction ... 8

1.1 Background and Motivation ... 8

1.2 Problem Statement .. 8

1.3 Research Objectives ... 8

1.4 Methodology Overview ... 9

1.5 Thesis Contributions .. 9

Chapter 2 .. 10

2. Literature Review ... 10

2.1 Software-Defined Vehicles (SDVs): A Paradigm Shift ... 10

2.2 Monolithic Architectures in Automotive Systems ... 10

2.3 Service-Oriented Architecture (SOA) in Automotive ... 11

2.4 Model-Based Design and Simulink in Embedded Systems .. 11

2.5 Embedded Coder and C++ Code Generation ... 12

2.6 Android-Based Automotive Emulators .. 12

2.7 Summary and Research Gaps .. 13

Chapter 3 .. 14

3. Design of Adaptive Light Beam Controller – Monolithic Architecture 14

3.1 Functional Requirements and Test Case Description ... 14

FR1: High Beam Mode ... 14

FR2: Cornering Beam Mode ... 14

FR3: City Mode ... 15

FR4: Low Beam Mode .. 15

3.2 Modelling of Adaptive Light Beam Controller in Simulink ... 16

3.3 Discrete Controller Design Using the Diophantine Equation Approach 18

3.4 Limitations of the Monolithic Implementation .. 19

3.5 Challenges in Migrating Legacy Application to SOA ... 20

3.6 Summary .. 21

Chapter 4 .. 22

Academic Year: 2024-25
4

4. Design of Adaptive Light Beam Controller – Service-Oriented Architecture 22

4.1 Decomposition of Traditional Software components into services 22

4.1.1 Identify and Analyse Services .. 22

4.1.2 Define Services and Interfaces ... 22

4.1.3 Define Service Contracts ... 22

4.1.4 Implement and Deploy Services .. 22

4.2 Using Model-Based Design to Decompose Adaptive Light Beam Controller Monolithic

Application into Services .. 23

4.2.1. Identify and Analyse Services .. 23

4.2.2. Define Services and Interfaces ... 24

4.2.3. Define Service Contracts .. 24

4.2.4. Implement and Deploy Services .. 24

4.3 SOA Model Implementation in Simulink .. 24

4.4 Advantages Observed from SOA-Based Design ... 33

1. Modularity and Reusability .. 33

2. Improved Maintainability ... 34

3. Scalability ... 34

4. AUTOSAR Compliance .. 34

5. Event-Driven Execution .. 34

6. Enhanced Integration and Interoperability .. 34

Chapter 5 .. 35

5. Code Generation and Integration of the code into Android studio 35

5.1 C++ Code Generation using Embedded Coder from Simulink Models 35

5.1.1 Overview of Embedded Coder .. 35

5.1.2 Preparation of the Simulink Model ... 35

5.1.3 Set Configuration parameters for Code Generation .. 35

5.2 Structure of File Folder after code generation in both Monolithic and SOA Simulink

models .. 39

5.2.1 File structure and generated files for Monolithic Simulink model 39

5.2.2. File structure and generated files for SOA Simulink model 39

5.3 Code Integration in Android Studio of Monolithic Models.. 42

5.3.1 Project Setup and File Structure ... 43

Academic Year: 2024-25
5

5.3.2 Native C++ and JNI Bridge (native-lib.cpp).. 46

5.3.3 Native Build Configuration (CMakeLists.txt) ... 48

5.3.4 Android Application Controller (MainActivity.java) ... 48

5.3.5 User Interface Layout (main_activity.xml) .. 49

5.3.6 Build File Configuration (app/build.gradle.kts) ... 49

5.3.7 Android Manifest (AndroidManifest.xml) ... 50

5.3.8 Application Run and Verification .. 51

5.3.9 Whole workflow of the monolithic adaptive light controller application 52

5.4 Code Integration in Android Studio for SOA models ... 53

5.4.1 Project Setup in Android Studio .. 53

5.4.2. Project Folder Structure ... 56

5.4.3. File structure of Single Service ... 56

5.4.4. File structure of the Main Application (AdaptiveLightController) 57

5.4.5. Root-Level CMakeLists.txt .. 63

5.4.6. Java Application Files ... 64

5.4.7. User Interface Layout (activity_main.xml) ... 66

5.4.8. Gradle Build Files ... 67

5.4.9. Android Manifest ... 68

5.4.10 Whole Workflow ... 70

5.5 Configuration of Automotive Emulator ... 71

5.6 Testing Result on emulator of monolithic and SOA applications 75

Chapter 6 .. 81

6. How to shift the Android Studio project to AOSP .. 81

6.1 Shifting of MonolithicAdaptiveLightController .. 81

Method 1: Integrating Source Code (Detailed Steps) .. 81

6.1.1. Create a Sample Android Project: .. 81

6.1.2. Prepare a Folder in AOSP: .. 81

6.1.3. Copy App Code and Resources: ... 81

6.1.4. Modify Android.bp: .. 82

6.1.5 Replace UI-based input signal acquisition with retrieval from the Vehicle HAL, as is

done in real-world applications ... 84

Academic Year: 2024-25
6

6.1.6. Add the Project to the Build: ... 90

6.1.7. Build AOSP and Run the Emulator: .. 91

6.2. Shifting of SOAAdaptiveLightController to AOSP .. 91

6.2.1 Create a Sample Android Project .. 91

Before integrating the system into AOSP, a prototype of the SOA-based Adaptive Light

Controller was implemented in Android Studio. (Refer to Chapters 3 and 5 for the

implementation of the prototype.) .. 91

6.2.2 Prepare an application Folder in AOSP ... 91

6.2.3 Prepare folder structure associated with service implementation 92

6.2.4 Explanation of Important Files and Their Roles .. 95

6.2.5 Workflow Summary .. 98

6.2.6 Conclusion ... 98

Chapter 7 .. 99

7. OTA Implementation for SOAAdaptiveLightController .. 99

7.1 Introduction ... 99

7.2 Architecture Overview ... 99

7.3 Implementation Steps .. 100

7.4 OTA Update Example: AmbientLightService .. 102

7.5 Advantages of the OTA Mechanism ... 102

7.6 Summary .. 103

Chapter 8 .. 104

8. Mixed Criticality in Android Automotive Systems.. 104

8.1 Introduction ... 104

8.2 Concept of Mixed Criticality ... 104

8.2.1 Definition... 104

8.2.2 Challenges in Mixed-Criticality Integration ... 104

8.3 Mixed Criticality in Android Automotive Architecture .. 105

8.3.1 Overview of Android Automotive OS .. 105

8.3.2 Architectural Separation of Domains .. 105

8.3.3 Mechanisms Supporting Mixed Criticality .. 105

8.4 Case Study: SOA AdaptiveLight Controller Application ... 106

8.4.1 Model-Based Design Workflow .. 106

Academic Year: 2024-25
7

8.4.2 Role within Mixed Criticality Architecture .. 106

8.4.3 Interaction Boundaries.. 107

8.5 Safety, Security, and System Assurance Considerations .. 107

8.5.1 Freedom from Interference (FFI) .. 107

8.5.2 Compliance Context .. 107

8.5.3 Security and Update Management ... 107

8.6 Discussion ... 107

8.7 Conclusion .. 108

Chapter 9 .. 109

9. Vehicle Signal Integration in Android Automotive ... 109

9.1 Overview .. 109

9.2 Signal Flow: From CAN Bus to Android .. 109

9.2.1 Vehicle Sensors and CAN Bus .. 109

9.2.2 Vehicle Gateway ECU .. 110

9.3 Vehicle HAL (Hardware Abstraction Layer) .. 110

9.3.1 Purpose ... 110

9.3.2 Structure ... 110

9.4 Car Service and Car API .. 111

9.4.1 Car Service .. 111

9.4.2 Car API (Application Layer) .. 111

9.5 Integration Example: SOA Adaptive Light Beam Controller ... 112

9.6 Safety and Isolation Considerations ... 112

9.7 Summary .. 112

REFERENCES/BIBLIOGRAPHY ... 114

Academic Year: 2024-25
8

Chapter 1

1. Introduction

1.1 Background and Motivation

• Software in modern vehicles has grown from basic control systems to complex,

interconnected platforms enabling autonomous features, infotainment, connectivity,

and adaptive behaviours. [4]

• Software-Defined Vehicles (SDVs) represent a paradigm shift where vehicle functions

are increasingly implemented, updated, and controlled via software. [4]

• Traditionally, automotive software systems have been monolithic, where each

functionality is deeply integrated and dependent on specific hardware (ECUs), making

updates and scaling difficult.

• The demand for flexible, modular, and update-ready architectures has led to the

adoption of Service-Oriented Architecture (SOA) in the automotive domain.[4]

• The motivation is to study the benefits of SOA in practice, specifically through

modelling and implementation of an Adaptive Light Beam Controller (ALBC) system in

both monolithic and SOA formats, using Simulink and Embedded Coder, and testing

deployment feasibility using Android Studio on an automotive emulator.

1.2 Problem Statement

• Monolithic software architectures suffer from:

o Lack of modularity and reuse

o Difficulties in OTA (over-the-air) updates

o Increased complexity in testing and validation

o Long development cycles when modifying or extending systems

• There is a lack of practical implementation studies showing the migration process to

SOA in automotive systems using industry tools.

• Key problem: How can we practically migrate a monolithic automotive function to a

service-oriented model, and what are the measurable benefits in doing so?

1.3 Research Objectives

The main goals of the thesis are:

• To design and simulate an Adaptive Light Beam Controller (ALBC) in both monolithic

and SOA styles using Simulink.

Academic Year: 2024-25
9

• To generate C++ code using Embedded Coder from both architectural models.

• To integrate and deploy this code in Android Studio on an automotive emulator for

real-time execution testing.

• To compare the architectures using criteria such as:

o Modularity

o Maintainability

o OTA readiness

o Code integration and reusability

• To propose a reference workflow for migrating legacy monolithic automotive functions

to a SOA-based implementation.

1.4 Methodology Overview

• Modelling: Develop the ALBC logic in Simulink under two architectural paradigms:

o Tightly integrated monolithic

o Loosely coupled service-oriented

• Code Generation: Use Embedded Coder to export both designs into C++ code.

• Integration: Import the generated code into Android Studio, wrap with JNI if needed,

and simulate in an Android-based automotive emulator.

• Evaluation: Measure performance, modularity, update complexity, and service

isolation.

1.5 Thesis Contributions

This work contributes:

• A side-by-side modelling and implementation of monolithic and SOA versions of a real-

world automotive function.

• Demonstration of Embedded Coder's integration with Android-based environments.

• A deployment workflow from Simulink → C++ → Android Studio → Emulator.

• A comparison framework for evaluating monolithic vs SOA designs.

• Insights into real-world challenges and benefits of SOA migration in SDVs.

Academic Year: 2024-25
10

Chapter 2

2. Literature Review

2.1 Software-Defined Vehicles (SDVs): A Paradigm Shift

The automotive industry is transitioning from hardware-centric engineering to a software-

defined approach, where vehicle behaviour and capabilities are increasingly controlled by

software. A Software-Defined Vehicle (SDV) decouples functionality from hardware through

abstraction layers and centralized computing. This enables manufacturers to:

• Roll out new features via over-the-air (OTA) updates

• Reduce time-to-market

• Adapt vehicle behaviour dynamically based on data and context

Key industry players (e.g., Tesla, Volkswagen, Toyota, BMW) are investing in SDV platforms

built around centralized electronic architectures and zonal computing units. This trend has

driven the need for flexible, modular, and update-ready software architectures, such as SOA.

[1][4]

2.2 Monolithic Architectures in Automotive Systems

Historically, vehicle functions have been developed in monolithic architectures:

• Code is organized as tightly coupled modules

• Functions are often embedded directly into hardware (ECUs)

• Dependencies between modules are high

• Updates typically require complete revalidation or hardware flashing

While monolithic designs were effective for early embedded systems, they suffer from several

limitations in the SDV era:

Aspect Monolithic Limitation

Modularity Difficult to isolate or reuse components

Maintainability High impact of small changes

OTA updates Rarely supported; complex and risky

Scalability Hard to extend due to rigid structure

Testing Time-consuming due to integration dependencies

This has led to a growing consensus that legacy monolithic systems must evolve toward

modular and service-oriented paradigms.

Academic Year: 2024-25
11

2.3 Service-Oriented Architecture (SOA) in Automotive

SOA is a software architecture paradigm that structures applications as loosely coupled,

independently deployable services. Each service performs a specific function and

communicates through well-defined interfaces (e.g., APIs or middleware). [1][4]

Benefits of SOA in SDVs:

• Modularity: Services can be developed and tested independently.

• Scalability: New features can be added without modifying the core system.

• OTA Readiness: Individual services can be updated dynamically.

• Cross-Domain Communication: Facilitates interaction between powertrain,

infotainment, ADAS, and other domains.

SOA Standards in Automotive:

• AUTOSAR Adaptive Platform: An industry standard supporting POSIX-based OS,

service discovery, and dynamic deployment.

• DDS (Data Distribution Service) and SOME/IP: Common middleware protocols for

real-time communication in SOA-based ECUs.

• ISO 26262: Safety standard requiring traceable and testable modules, which SOA

supports.

Challenges:

• Real-time constraints and communication latency

• Migration of legacy monolithic code

• Integration complexity and toolchain compatibility

• Ensuring system safety and performance under distributed control

2.4 Model-Based Design and Simulink in Embedded Systems

Model-Based Design (MBD) is a design methodology where system functionality is captured

in graphical models rather than textual code. Simulink, a widely adopted MBD tool by

MathWorks, allows:

• Rapid prototyping of control algorithms

• Simulation of real-world systems and behaviour

• Automatic code generation for embedded deployment

In automotive engineering, Simulink enables system engineers to:

Academic Year: 2024-25
12

• Design functional blocks (sensors, controllers, actuators)

• Simulate system response under various scenarios

• Validate functional safety requirements before coding

• Reuse validated models across platforms

In thesis, Simulink is used to design the Adaptive Light Beam Controller (ALBC) in both

monolithic and SOA styles.

2.5 Embedded Coder and C++ Code Generation

Embedded Coder is a MATLAB tool that extends Simulink to generate highly optimized and

readable C/C++ code from models for embedded targets. Key features include:[16]

• Code mapping for model elements (inputs, outputs, functions)

• Integration with software-in-the-loop (SIL) and processor-in-the-loop (PIL) workflows.

• Generation of reusable software components aligned with AUTOSAR, ISO 26262, and

other standards.

• Configuration of function interfaces for integration into target projects (e.g., Android,

Linux-based ECUs).

For my project, Embedded Coder is used to:

• Export both monolithic and SOA-based ALBC models as C++ code

• Integrate them into Android Studio

• Deploy and run them on an automotive emulator

2.6 Android-Based Automotive Emulators

Android-based platforms are increasingly used for prototyping and simulating automotive

applications. Tools like Android Automotive OS (AAOS) provide a real-time OS environment

and UI for vehicle functions.[6]

Why Use Android Emulators?

• Safe, virtual testing environment for embedded software

• Support for C++ libraries via JNI (Java Native Interface)

• Integration with Android Studio for app development and deployment

• Emulates user interaction and service behaviour in an SDV-like environment

In this thesis, C++ code from Embedded Coder is compiled into Android-native code, deployed

to the emulator, and validated against expected ALBC behaviour.

Academic Year: 2024-25
13

2.7 Summary and Research Gaps

This chapter highlighted the evolution from monolithic to SOA in automotive systems and the

importance of model-based design and code generation in this transition.

Key Gaps Identified:

• A lack of end-to-end case studies demonstrating the full pipeline from model-based

design → code generation → integration → emulator deployment.

• Limited academic examples showing side-by-side comparisons between monolithic

and SOA implementations using industry-standard tools.

• Insufficient guidelines on how to structure SOA components in Simulink and deploy

them as real-time services.

This thesis addresses these gaps by designing, implementing, generating, and deploying both

monolithic and SOA versions of an automotive control function — the Adaptive Light Beam

Controller (ALBC) — and evaluating their comparative merits in a simulated real-time

environment.

Academic Year: 2024-25
14

Chapter 3

3. Design of Adaptive Light Beam Controller – Monolithic Architecture

3.1 Functional Requirements and Test Case Description

FR1: High Beam Mode

Requirement:

• The system shall activate High Beam mode when all the following conditions are met:

o No oncoming vehicles detected (VehicleOncoming == 0)

o Vehicle speed is greater than or equal to 50 km/h (VehicleSpeed >= 50)

o Ambient light level is below 20 lux (AmbientLight < 20)

• When activated, the system shall:

o Set beam range to 100 meters (BeamRange = 100)

o Set beam angle to 0 degrees (BeamAngle = 0)

Test Cases:

• TC1.1: Verify High Beam activates when no oncoming vehicle, speed = 60 km/h,

ambient light = 10 lux. Expect beam range = 100 m, beam angle = 0°

• TC1.2: Verify High Beam does NOT activate when an oncoming vehicle is detected,

even if speed and light conditions are met.

• TC1.3: Verify High Beam does NOT activate if speed < 50 km/h regardless of other

conditions.

• TC1.4: Verify High Beam does NOT activate if ambient light ≥ 20 lux regardless of

other conditions.

FR2: Cornering Beam Mode

Requirement:

• The system shall activate Cornering Beam mode when the steering angle is greater

than or equal to 10 degrees (SteeringAngle >= 10°)

• When activated, the system shall:

o Set beam range to 50 meters (BeamRange = 50)

o Adjust beam angle dynamically using a discrete controller based on road

curvature (BeamAngle = BeamPID(RoadCurvature))

Test Cases:

Academic Year: 2024-25
15

• TC2.1: Verify Cornering Beam activates when steering angle = 15°, beam range is set

to 50 m, and beam angle adjusts based on simulated road curvature input.

• TC2.2: Verify Cornering Beam does NOT activate when steering angle < 10°.

• TC2.3: Verify beam angle changes smoothly with varying road curvature inputs using

discrete controller behaviour.

FR3: City Mode

Requirement:

• The system shall activate City Mode when:

o Vehicle speed is less than or equal to 30 km/h (VehicleSpeed <= 30)

o Ambient light level is above 30 lux (AmbientLight > 30)

• When activated, the system shall:

o Set beam range to 30 meters (BeamRange = 30)

o Set beam angle to 0 degrees (BeamAngle = 0)

Test Cases:

• TC3.1: Verify City Mode activates when vehicle speed = 20 km/h and ambient light =

40 lux.

• TC3.2: Verify City Mode does NOT activate if speed > 30 km/h even if ambient light is

high.

• TC3.3: Verify City Mode does NOT activate if ambient light ≤ 30 lux even if speed is low.

FR4: Low Beam Mode

Requirement:

• The system shall activate Low Beam mode when an oncoming vehicle is detected

(VehicleOncoming == 1)

• When activated, the system shall:

o Set beam range to 50 meters (BeamRange = 50)

o Set beam angle to 0 degrees (BeamAngle = 0)

Test Cases:

• TC4.1: Verify Low Beam activates when an oncoming vehicle is detected regardless of

speed or ambient light.

• TC4.2: Verify Low Beam deactivates when no oncoming vehicle is detected.

• TC4.3: Verify beam range and angle remain at 50 meters and 0 degrees respectively

while Low Beam mode is active.

Academic Year: 2024-25
16

3.2 Modelling of Adaptive Light Beam Controller in Simulink

The Adaptive Light Beam controller is developed using a Model-Based Systems Design (MBSD)

approach within Simulink, leveraging Stateflow for state machine implementation. Each input

signal, along with its corresponding measurement unit, is fed into the Stateflow chart to

ensure clarity and proper handling of physical quantities (as illustrated in the accompanying

figure).

The Stateflow chart consists of four distinct states: LowBeam, HighBeam, CorneringBeam,

and CityMode. The system transitions between these states based on specific input

conditions, maintaining a single active state at any given time. Within each state, output

signals are generated and adjusted accordingly to control the adaptive lighting behaviour.

A key feature of the system is the CorneringBeam state, which goes beyond a simple state

transition condition. When the steering angle exceeds a threshold value of 10 degrees, the

beam angle dynamically adjusts to follow the road curvature. This adaptive behaviour is

implemented through a discrete controller designed to modulate the beam angle based on

the steering input, enabling enhanced visibility during cornering manoeuvres.

The design procedure of this discrete controller involves:

• Sampling the road curvature input at fixed intervals to compute the required beam

angle adjustment.

• Implementing a control algorithm that maps the road curvature to a corresponding

beam deflection angle, ensuring smooth and timely response.

• Incorporating saturation limits which is of +-60° and safety checks to prevent excessive

beam movement and maintain driver safety.

• Validating the controller performance within the Simulink environment through

simulation, confirming that the beam adjustment closely follows the vehicle’s steering

dynamics.

Academic Year: 2024-25
17

Figure 1: Monolithic ALBC Simulink design

Figure 2: State chart corresponding to ALBC

Figure 3: Beam discrete controller design

Academic Year: 2024-25
18

3.3 Discrete Controller Design Using the Diophantine Equation Approach

To achieve precise control of the beam angle in the Cornering Beam state, a discrete controller

was designed following a Diophantine equation-based methodology. This approach enables

the direct synthesis of a digital controller that meets specified dynamic performance criteria

by solving polynomial equations in the discrete domain.

The continuous-time plant model representing the beam angle dynamics was initially defined

as:

𝐺𝑐𝑜𝑛𝑡(𝑠) =
1

0.1 ∗ 𝑠2 + 0.5 ∗ 𝑠 + 11

This transfer function captures the relevant dynamics of the beam actuation system. The

system was converted into its state-space representation for detailed analysis and controller

synthesis.

Using a sampling time of Ts=0.01seconds, the system was discretized. Rather than relying

solely on standard discretization methods, the discrete transfer function was manually derived

and expressed as:

𝐺(𝑧) = 0.00049173(𝑧 + 0.9835)/(𝑧2 − 1.95𝑧 + 0.9512)

The poles and zeros of the discrete system were extracted and analysed to characterize the

system's behaviour in the z-domain.

Performance specifications were defined based on overshoot (sovr=20%), settling time

(tso=0.4t seconds), and rise time (tro=0.14t seconds). These parameters were used to

calculate the damping ratio ζ and natural frequency ωn necessary to meet the design criteria:

𝜁 = 𝑎𝑏𝑠 (
ln(𝑠𝑜𝑣𝑟)

𝑠𝑞𝑟𝑡(𝜋2 + ln(𝑠𝑜𝑣𝑟)2)
)

where ωn,ts and ωn,tr are derived from settling time(ts) and rise time(tr) constraints

respectively.

𝑤𝑛, 𝑡𝑠 =
4.6

(𝑡𝑠 ∗ 𝜁)

𝑤𝑛. 𝑡𝑟 =
(𝜋 − acos(𝜁))

𝑡𝑟 ∗ √(1 − 𝜁2)

The core of the controller design involved solving the Diophantine equation to determine

controller polynomials R(z) and S(z) such that the closed-loop characteristic polynomial

matched the desired dynamics. This was done by constructing Sylvester matrices from the

plant polynomials and solving for the unknown coefficients.

Academic Year: 2024-25
19

The resulting controller transfer function 𝐶(𝑧) =
𝑆(𝑧)

𝑅(𝑧)
 was simplified and converted to state-

space form for implementation and simulation within Simulink.

Key steps included:

• Extracting discrete system zeros and poles for polynomial formation.

• Constructing and solving the Sylvester matrix equation representing the Diophantine

condition.

• Designing the controller to place closed-loop poles inside a cardioid region defined by

the damping ratio ζ, ensuring system stability and desired transient response.

• Simulating the closed-loop response in Simulink to validate performance, with plots of

error, reference, and output signals confirming controller effectiveness.

This methodical approach provided a systematic framework to synthesize a discrete controller

capable of dynamically adjusting the beam angle based on steering inputs, thus enhancing

vehicle safety and driver visibility during cornering.

Obtained controller function after the computation is:

𝐶(𝑧) = 57.958
𝑧2 − 1.95𝑧 + 0.9512

(𝑧 − 1)(𝑧 − 0.7665)

3.4 Limitations of the Monolithic Implementation

While the monolithic implementation of the Adaptive Light Beam controller within a single

Stateflow chart offers straightforward integration and centralized logic management, it

presents several inherent limitations:

1. Scalability Issues

As the complexity of the system grows, the monolithic design becomes increasingly

difficult to maintain and extend. Adding new features or modifying existing behaviour

requires navigating and updating a large, intertwined state machine, which can be

error-prone and time-consuming.

2. Reduced Modularity and Reusability

The tightly coupled design limits the ability to reuse individual components or states

in other projects or contexts. Reusability is crucial in model-based design for efficient

development cycles, but the monolithic approach often forces duplication or

extensive refactoring.

3. Testing and Debugging Challenges

Debugging complex state transitions and signal interactions in a single, large

Stateflow chart can be cumbersome. Isolating faults or verifying specific functionality

Academic Year: 2024-25
20

requires significant effort due to the interdependencies between states and shared

variables.

4. Limited Team Collaboration

In a monolithic model, parallel development is hindered because multiple developers

working on the same Stateflow chart can cause merge conflicts or overwriting of

changes. Modular implementations facilitate better task distribution and integration.

5. Performance Constraints

Large state machines may introduce computational overhead and increase simulation

times, which is critical for real-time embedded systems. Optimizing and profiling

performance in a monolithic setup can be more difficult compared to modular designs.

6. Difficulty in Formal Verification and Validation

Formal methods for verifying system correctness are more challenging to apply on

large monolithic models due to state space explosion and the complexity of

interactions. Modular approaches can simplify verification by reducing state space

and isolating functionality.

Overall, while the monolithic implementation serves well for initial prototyping and small-

scale systems, transitioning to a modular or hierarchical design is recommended for

enhanced maintainability, scalability, and robustness in larger and more complex adaptive

lighting control systems.

3.5 Challenges in Migrating Legacy Application to SOA

Migrating legacy applications, such as the monolithic Adaptive Light Beam controller, to a

Service-Oriented Architecture (SOA) framework presents several key challenges:

1. Monolithic Design and Complexity of Decomposition

Legacy systems are often tightly coupled with no clear modular boundaries, making it

difficult to identify and extract discrete, reusable services. Decomposing intertwined

logic requires deep domain knowledge and thorough understanding of dependencies.

2. Sequential Order of Execution

Legacy applications usually follow a predefined sequential execution order. This rigid

sequence complicates converting the system into loosely coupled services that

support dynamic discovery and reconfiguration at runtime.

3. Data and Interface Standardization

Heterogeneous data formats and proprietary communication protocols are common

in legacy systems. Ensuring consistent data representation and defining standardized

service interfaces requires significant re-engineering for interoperability within SOA.

Academic Year: 2024-25
21

4. Performance Overhead

SOA introduces communication overhead through network calls and message

processing. Real-time control systems, such as adaptive lighting, have strict timing

requirements that may be compromised if service granularity and communication

mechanisms are not carefully optimized.

5. Ensuring Functional Equivalence

Maintaining exact legacy system behaviour during and after migration is challenging.

Reconstructed services must faithfully replicate original control logic, especially in

safety-critical automotive applications where deviations can cause hazards.

6. Integration with Existing Infrastructure

Legacy systems often rely on proprietary hardware and tightly integrated components.

Adapting these into a loosely coupled SOA may require additional middleware or

adapters, increasing system complexity.

7. Testing and Validation Complexity

Breaking the system into multiple interacting services complicates system-level

testing. Comprehensive validation must cover both individual services and their

interactions under diverse conditions to ensure reliability.

8. Change Management and Team Skillsets

Migrating to SOA requires organizational change, including retraining teams on new

paradigms, tools, and communication protocols. Resistance and learning curves can

slow the migration process.

9. Security Concerns

SOA exposes services over networks, increasing the attack surface. Legacy systems

need robust authentication, authorization, and encryption to ensure security in a

distributed environment.

3.6 Summary

While SOA migration offers benefits such as modularity, scalability, and easier maintenance,

addressing these challenges demands careful planning, iterative development, and thorough

testing. Utilizing Model-Based Design methodologies and domain expertise can help

facilitate a smooth and effective migration, preserving system performance, safety, and

reliability.

Academic Year: 2024-25
22

Chapter 4

4. Design of Adaptive Light Beam Controller – Service-Oriented Architecture

4.1 Decomposition of Traditional Software components into services

Decomposing traditional application software compositions into services is a critical step in

transitioning to a Service-Oriented Architecture (SOA). This process involves breaking down a

monolithic architecture into smaller, modular components, enabling greater flexibility,

scalability, and adaptability, particularly in the context of Software-Defined Vehicles

(SDVs).[1][4][10]

The decomposition process can be broadly divided into four sequential steps, each

represented as distinct phases in the transformation from monolithic applications to service-

oriented systems:

4.1.1 Identify and Analyse Services

The first and most challenging step is to identify the potential services, including key

components, functionalities, execution order, and dependencies within the existing

monolithic system. Engineers must carefully analyse these elements to determine

logical service boundaries and to decompose the monolithic application into smaller,

manageable components. [1][4]

4.1.2 Define Services and Interfaces

Once services are identified, the next step is to clearly define the interfaces between

them. This involves specifying communication protocols and data formats to ensure

seamless interaction. Well-defined interfaces are essential for enabling

interoperability and loose coupling between services. [1][4]

4.1.3 Define Service Contracts

Service contracts formalize the interaction rules between services. They specify terms

and conditions, including service versioning, error handling, and performance

expectations. In automotive systems, these concepts are embodied in standards like

the AUTOSAR 22-11 schema, which supports versioning to allow new service versions

without disrupting existing clients. [1][4]

4.1.4 Implement and Deploy Services

The final step involves implementing each service as an independent application. This

includes creating the necessary artifacts such as interface descriptions,

communication bindings, and deployment packages. Each service can then be

Academic Year: 2024-25
23

deployed, managed, and updated independently, supporting scalability and

maintainability. [1][4]

This structured approach ensures a systematic and controlled migration from traditional

monolithic software to a modern SOA, facilitating the development of modular, reusable, and

maintainable components suitable for complex automotive applications.

4.2 Using Model-Based Design to Decompose Adaptive Light Beam Controller Monolithic

Application into Services

Model-Based Design (MBD) has long been used to develop applications for both non-

AUTOSAR and AUTOSAR Classic frameworks. More recently, it has also been extended to

support Service-Oriented Architecture (SOA) based applications, including those developed

on the AUTOSAR Adaptive platform and generic SOA frameworks. In the context of Software-

Defined Vehicles (SDVs), the industry commonly leverages either a generic SOA or AUTOSAR

Adaptive-based SOA. Model-Based Design offers a unified development platform that

efficiently manages the entire development lifecycle across these diverse platforms—ensuring

consistency, reusability, and increased development efficiency. [1][4][9]

The process of using Model-Based Design to decompose monolithic application components

into modular services involves several key steps:

4.2.1. Identify and Analyse Services

The initial step is to thoroughly understand the components of the legacy monolithic
application, including their functionalities, execution order, and interdependencies. Typically,
monolithic applications are deployed as a single executable artifact containing all components
bundled together (Figure 4: Monolithic ALBC Simulink design).

For example, consider the Adaptive Light Beam Controller—a key automotive system

responsible for managing multiple lighting modes such as Low Beam, High Beam, Cornering

Beam, and City Mode. Initially, this functionality may exist as a monolithic Stateflow model.

To migrate such legacy monolithic designs toward a Service-Oriented Architecture (SOA),

Model-Based Design (MBD) principles are applied—specifically:

• Single Responsibility Principle: Each service should perform one well-defined

function. [1][4]

• Dependency Inversion Principle: High-level services should depend on abstract

contracts (e.g., APIs or events), rather than on the concrete implementations of lower-

level services. [1][4]

By applying these principles, the monolithic system can be systematically decomposed into

distinct, reusable services—such as the VehicleOncoming Service, AmbientLight Service,

VehicleSpeed Service, SteeringAngle Service, RoadCurvature Service, and

BeamAngleController Service.

Academic Year: 2024-25
24

This decomposition isolates functionality into loosely coupled services, allowing independent

development and easier maintenance. For instance, the cornering beam logic that adjusts

beam angle based on steering input can be encapsulated as a separate service, distinct from

the main Stateflow component.

4.2.2. Define Services and Interfaces

Once services are identified, the next step is to define clear interfaces for each service. These

interfaces form the boundaries through which services communicate with each other,

encapsulating functionality and enabling benefits such as reuse, maintainability, version

control, and orchestration.

Using tools like System Composer, engineers can configure service ports and interfaces, ensure

data consistency and visually represent dependencies and interactions between services. (see

Figure 12) [1][4][9]

4.2.3. Define Service Contracts

Establishing explicit service contracts is critical to delineate each service’s inputs, outputs, and

expected behaviour. Well-defined contracts allow services to be developed, tested, and

deployed independently without tight coupling to other system components. Service

contracts also facilitate backward-compatible versioning, enabling new service versions to be

released without disrupting existing clients. (see figure 13, 14) [1][4][9]

4.2.4. Implement and Deploy Services

Finally, services are implemented using Model-Based Design’s client-server interfaces.

Applications like the Adaptive Light Beam controller’s discrete control modules are realized as

separate service components within Simulink. These modular services can then be

independently deployed within an SOA environment.

Additionally, Embedded Coder can be used to generate C++ code from these models for

deployment in generic SOA applications, facilitating integration with existing middleware and

runtime environments. [1][4][9]

This Model-Based Design workflow provides a systematic approach to transforming

monolithic automotive software, including complex controllers like the Adaptive Light Beam

system, into modular, service-oriented applications. This supports scalability, maintainability,

and efficient integration in modern SDVs.

4.3 SOA Model Implementation in Simulink

4.3.1 How to define service and interfaces in Simulink

In System Composer:

1)Create a software architecture model

Academic Year: 2024-25
25

Figure 5: System composer software architecture model

2) Create a software component box for our main application i.e. AdaptiveLightController

Figure 6: Simulink software component

3) Define all I/O in the main application and connect to Interface boundary of composition(as

in below figure 7). The I/O of the application are: VehicleSpeed_km_h, RoadCurvature_per_m,

SteeringAngle_degree, AmbientLight, VehicleOncoming, BeamAngle and BeamRange.

Figure 7: Simulink Adaptive Light Controller(*)

Academic Year: 2024-25
26

4) Create a software component box for all new service components. Where the services are:

VehicleOncomingService, VehicleSpeedService, AmbientLightService, SteeringAngleService,

BeamAngleController and RoadCurvatureService. AdaptiveLightController is the main

application.

Figure 8: Simulink Services software components(*)

5) Connect all service components to main application (AdaptiveLightController) with client

server connectors

Figure 9: Services connected to main application with client server connectors(*)

6) Defining the Client and Server Interfaces using the Interface Editor

Open the Interface Editor, and the Interfaces window will appear below. Select “Add data

interface”, then choose Service Interface from the options. This will create a new service

interface. You can now name it according to your application requirements (e.g.,

AmbientLight_servif).

Academic Year: 2024-25
27

Figure 10: Client server interface definition

Once the service interface is created, add elements that define the service behavior — such

as the input it receives, the function it executes, and the output it produces. To do this, select

“Add element to the selected interface” from the Interfaces window (located next to Add data

interface). This will generate a default function prototype in the form y = f(u), which you can

modify as needed.

For example, in AmbientLight_servif, I created a function called computeAmbientLight. It takes

AmbientLight as input and returns outAmbientLight as output. The final function looks like:

outAmbientLight = computeAmbientLight(AmbientLight)

In the same way, additional service interfaces can be created for other services, as illustrated

in the figure.

Figure 11: Client service interface function definition

Academic Year: 2024-25
28

Figure 12: Client service all functions definition

7) After having created the service interface, then link them to the client-server connector. For

example:

1. Select the service interface (e.g., AmbientLight_servif).

2. Right-click on the client and server ports.

3. Choose "Apply selected interface: AmbientLight_servif".

To verify that the service interface is correctly assigned to both ports, select the interface. If

the client and server ports are highlighted in purple, it confirms that the interface has been

successfully linked.

8) To create the Simulink behaviour model for a service component:

1. Right-click on the service software component.

2. Select "Create Simulink Behaviour", then click OK.

Repeat this process for each service component to generate their respective Simulink

behaviour models.

Academic Year: 2024-25
29

Figure 13: Simulink behaviour for a service(*)

8) Create the Simulink behavior model for the Main Application (i.e., AdaptiveLightController)

by following these steps:

1. Right-click on the AdaptiveLightController software component.

2. Select "Create Simulink Behavior" and click OK.

Ensure that all input/output (I/O) connections are properly attached to the Main Application

component, while the service components should already be connected via their respective

client-server interfaces.

Figure 14: Simulink behaviour for a main application(*)

9) Design of the Main Application (AdaptiveLightController)

In the previous step, Simulink automatically generated the input and output bus signals and

created a Function-Call Subsystem for each connected service interface. If the service function

is defined in a format such as outAmbientLight = computeAmbientLight(AmbientLight), the

Academic Year: 2024-25
30

corresponding input (AmbientLight) and output (outAmbientLight) signals are added to the

Function-Call Subsystem

.

Figure 15: Add input and output signal to Function call subsystem

Figure 16 illustrates the internal structure of the computeAmbientLight client function call. It

includes a Function Caller block that receives the input signal and invokes the server

counterpart. The server performs the necessary computation and returns the output signal,

which is then utilized by the main application. This setup exemplifies how the Service-Oriented

Architecture (SOA) promotes modularity by decoupling the server implementation from the

main application. This separation enables independent updates to the server logic over time

and supports use cases such as Over-the-Air (OTA) updates.

Figure 16: Inside the Function Call Subsystem

Academic Year: 2024-25
31

Figure 17 shows the server counterpart of a service call, which is triggered when the Function-

Call Subsystem in the main application invokes the corresponding function.

Figure 17: Server counterpart of the Function Call subsystem

Similar client-server service calls are defined for other functionalities, reinforcing the modular

and scalable nature of the SOA-based system design.

Figure 18: Inside of the Server counterpart of the Function Call Subsystem

The AdaptiveLightController is structured in a modular, service-oriented way:

• Each Function-Call Subsystem corresponds to a specific service (e.g., AmbientLight,

VehicleSpeed, etc.).

• These subsystems take their respective input bus signals—for example, the

AmbientLight Function-Call Subsystem receives the Ambient Light input, and so on for

the others.

Stateflow Integration in SOA-Based Design

In the previous Monolithic Design of the AdaptiveLightController, a single Stateflow chart was

used to implement the internal logic controlling Beam Range and Beam Angle.

In the SOA-based redesign, we continue to use a Stateflow-based approach, but with an

important architectural adjustment:

The Stateflow chart is now placed inside a Function-Call Subsystem.

Academic Year: 2024-25
32

This design decision is essential in the context of Service-Oriented Architecture (SOA) and

AUTOSAR compatibility:

• Enables event-driven execution of the control logic.

• Aligns with AUTOSAR runnable semantics, where function-call triggers map directly to

runnable.

• Promotes modularity, easier testing, and standards-compliant behaviour modelling.

Figure 19: Main Application with State chart inside Function call Subsystem

Final Architecture Overview

The resulting AdaptiveLightController is a modular, SOA-compliant system where:

• Each service input is handled by a dedicated Function-Call Subsystem.

• The core decision logic, implemented via Stateflow, is triggered through a function-

call, ensuring the system only reacts when relevant inputs or events occur.

• This setup defines the internal logic that determines Beam Range and Beam Angle,

based on service-provided environmental and vehicle data.

The figure 19 illustrates the final AdaptiveLightController architecture, showcasing the clean

separation of services and the centralized decision logic encapsulated in the Stateflow-driven

subsystem.

Academic Year: 2024-25
33

Figure 20: State Flow with input and output signals

Figure 21: Logic inside Stateflow which determine state of system

4.4 Advantages Observed from SOA-Based Design

The adoption of a Service-Oriented Architecture (SOA) in the design of the Adaptive Light

Beam Controller has introduced several key advantages compared to the traditional

monolithic approach:

 1. Modularity and Reusability

• Each function (e.g., ambient light sensing, vehicle speed handling) is encapsulated as

an independent service component.

• These services can be reused across different applications or systems without

redesign.

• Changes to one service do not impact others, as long as interfaces remain unchanged.

Academic Year: 2024-25
34

 2. Improved Maintainability

• The clear separation of logic into client-server components allows for easier

debugging, updates, and testing.

• Individual services can be tested in isolation, reducing system complexity during

validation.

 3. Scalability

• New services or features can be added without major rework.

• For example, adding a new weather or camera-based input only requires integrating

another service interface.

 4. AUTOSAR Compliance

• SOA aligns with AUTOSAR principles, enabling:

o Standardized runnables and interface definitions

o Compatibility with code generators and embedded platforms

o Easier deployment in AUTOSAR Classic or Adaptive platforms

5. Event-Driven Execution

• Function-Call Subsystems trigger logic (e.g., Stateflow) only when needed, saving

computational resources.

• This mirrors real-world embedded execution, where runnables execute based on

events or signals, not continuously.

 6. Enhanced Integration and Interoperability

• Clearly defined interfaces (ports and services) allow seamless integration with other

components or external systems.

• Encourages team-based parallel development, since service contracts are defined

upfront.

Academic Year: 2024-25
35

Chapter 5

5. Code Generation and Integration of the code into Android studio

5.1 C++ Code Generation using Embedded Coder from Simulink Models

The process of transforming a Simulink model into deployable C++ source code is a critical

step in embedding model-based designs into real-time and embedded systems. MATLAB

Embedded Coder provides specialized tools for generating high-quality, portable C and C++

code directly from Simulink models, which can then be integrated into target environments

such as Android Studio for further development and deployment.[16]

5.1.1 Overview of Embedded Coder

Embedded Coder is an add-on to MATLAB/Simulink that:

• Generates highly optimized C and C++ code from models and Stateflow charts.

• Supports hardware-specific optimizations and integration hooks.

• Offers configuration settings for data types, naming conventions, and file packaging.

• Produces traceable code with links back to Simulink blocks for debugging.

This capability is widely used in automotive, aerospace, and industrial control applications,

where real-time performance and deterministic behaviour are critical. [16]

5.1.2 Preparation of the Simulink Model

Before initiating code generation, the Simulink model must be:

1. Functionally validated – Ensure the simulation matches design requirements.

2. Configured for code generation – Use Configuration Parameters → Code Generation

to set:

o System target file: ert.tlc (Embedded Real-Time) for standalone code. [16]

o Language: C++ (instead of default C). [16]

o Toolchain: Select an available C++ compiler compatible with your host system.

[16]

3. I/O interfaces defined – External inputs/outputs must be represented using Inports

and Outports with clearly defined data types. [16]

4. Sample times fixed – Embedded code requires deterministic execution rates.

5.1.3 Set Configuration parameters for Code Generation

1. Open Model Settings

Academic Year: 2024-25
36

In the Modelling tab, select Model Settings (or press Ctrl+E) to open the Configuration

Parameters dialog. [16]

2. Configure Solver Options

o Navigate to the Solver pane.

o Set Solver Type to Fixed-step.

o Select discrete (no continuous states) as the solver.

o Specify the Fixed-step size as Ts(0.01s), where Ts is the model’s sampling time.

o This ensures a deterministic execution rate suitable for embedded code

deployment. [16]

3. Select System Target File

o Go to the Code Generation pane.

o Set System target file to ert.tlc (Embedded Real-Time) for high-quality

standalone code generation. [16]

4. Set the Target Language

o In the Language field, choose C++ to produce object-oriented, portable code.

[16]

5. Adjust Build Process Settings

o Under Build Process, enable Generate code only. [16]

o This option produces the source files without compiling them, allowing for

external integration in Android Studio.

6. Choose Toolchain

o In the Toolchain field, select MinGW64 | gmake (64-bit Windows). [16]

o This ensures compatibility with Windows-hosted builds targeting cross-

platform deployment.

7. Define Code Interface Packaging

o In the Interface section of the Code Generation pane:

▪ Set Code interface packaging to C++ Class. [16]

▪ Configure additional interface parameters (e.g., class naming

conventions, file packaging) according to project requirements.

8. Set Hardware Implementation

Academic Year: 2024-25
37

o Go to the Hardware Implementation pane.

o Set Hardware board to None.

o Configure Device vendor and Device type according to the intended

deployment hardware.

With these settings, the generated C++ code will be optimized for embedded integration,

modular in structure, and portable to Android Studio or other development environments.

Figure 22: Solver configuration

Academic Year: 2024-25
38

Figure 23: Hardware implementation configuration

Figure 24: Code generation configuration

Academic Year: 2024-25
39

5.2 Structure of File Folder after code generation in both Monolithic and SOA Simulink

models

5.2.1 File structure and generated files for Monolithic Simulink model

1. After the code has been generated using embedded coder. It has generated two folders

named slprj and MonolithicAdaptiveLightBeamController_ert_rtw.

Figure 25: Monolithic Application folder structure

2. Inside the folder MonolithicAdaptiveLightBeamController_ert_rtw it has generated all

the source code and header file which will be used while integrating the code into

Android Studio.

Figure 26: Files inside folder MonolithicAdaptiveLightBeamController_ert_rtw

3. While file under slprj folder are not relevant for code integration into Android Studio

5.2.2. File structure and generated files for SOA Simulink model

1) File structure before Simulink run.

Academic Year: 2024-25
40

Figure 27: Simulink files before code generation

2) File structure after building the Simulink model and generating the code. The Simulink has

created two folders: splrj and SOA_AdaptiveLightController_ert_rtw.

Figure 28: File structure after code generation

3) File inside folder slprj.

Academic Year: 2024-25
41

Figure 29: File inside folder slprj

All the relevant code files are under ert folder. The file structure of ert folder.

Figure 30: Files inside ert folder

Under the _sharedutils folder, you find code generated corresponding to the service interface.

Figure 31: Files inside _sharedutils folder

While in the folder corresponding to the service for instance AmbientLightService inside the

folder you find it’s header and c++ code files and all relevant source code files. Similarly, rest

of the services source code can be found in their respective folder.

Academic Year: 2024-25
42

Figure 32: Files inside service folder namely AmbientLightService

4) File inside folder SOA_AdaptiveLightController_ert_rtw.

Inside folder you find the source code files associated to the main architecture model.

Figure 33: Files inside folder SOA_AdaptiveLightController_ert_rtw

5.3 Code Integration in Android Studio of Monolithic Models

This section provides a complete, step-by-step guide on integrating a monolithic Simulink
model into an Android Automotive application. The process covers project setup, native code

Academic Year: 2024-25
43

integration, UI design, and build configuration, culminating in a runnable application on an
automotive emulator.

5.3.1 Project Setup and File Structure

First, an Android Studio project is created using the Automotive template with No Activity.
This provides a clean foundation without a default UI, allowing for a custom implementation.
After creation, the project's folder structure is modified to accommodate the C++ model files.

1. Open Android Studio, go to File > New > New Project, and select the Automotive
template. [10]

2. Choose No Activity when prompted and complete the remaining steps. [10]
3. Create a new folder named cpp under automotive/src/main.
4. Copy all the Simulink-generated C++ source files (.cpp and .h) and the native-lib.cpp

file into this new cpp folder.

Figure 34: Android Studio New Project

Academic Year: 2024-25
44

Figure 35: Android Studio New project setup

After Finish android studio generate the following folders

Academic Year: 2024-25
45

Figure 36: Android Studio folder structure

Academic Year: 2024-25
46

Figure 37: Monolithic ALBC File structure in Android Studio

5.3.2 Native C++ and JNI Bridge (native-lib.cpp)

The native-lib.cpp file acts as a JNI wrapper, bridging the Java application and the C++ model.
It exposes the model's core functions (initialize, step, and terminate) to the Java layer.
C++
#include <jni.h>
#include <string>
#include <sstream>
#include "MonolithicAdaptiveLightBeamController.h"

// Global model instance

Academic Year: 2024-25
47

static MonolithicAdaptiveLightBeamController model;

extern "C" JNIEXPORT void JNICALL
Java_com_example_monolithicadaptivelightbeamcontroller_MainActivity_initModel(
 JNIEnv* env, jobject /* this */) {
 model.initialize();
}

extern "C" JNIEXPORT jstring JNICALL
Java_com_example_monolithicadaptivelightbeamcontroller_MainActivity_stepModel(
 JNIEnv* env, jobject /* this */,
 jdouble ambientLight,
 jdouble roadCurvature,
 jdouble steeringAngle,
 jboolean vehicleOncoming,
 jdouble vehicleSpeed) {

 // Prepare and set model inputs
 MonolithicAdaptiveLightBeamController::ExtU_MonolithicAdaptiveLightB_T
input{};
 input.AmbientLight = static_cast<real_T>(ambientLight);
 input.RoadCurvature_permeter = static_cast<real_T>(roadCurvature);
 input.SteeringAngle_degree = static_cast<real_T>(steeringAngle);
 input.VehicleOncoming = static_cast<real_T>(vehicleOncoming);
 input.VehicleSpeed_km_h = static_cast<real_T>(vehicleSpeed);

 model.setExternalInputs(&input);
 model.step();

 // Retrieve model outputs
 const auto& output = model.getExternalOutputs();

 // Prepare JSON response
 std::ostringstream oss;
 oss << "{"
 << "\"beamAngle\":" << output.BeamAngle << ","
 << "\"beamRange\":" << output.BeamRange
 << "}";

 return env->NewStringUTF(oss.str().c_str());
}

extern "C" JNIEXPORT void JNICALL
Java_com_example_monolithicadaptivelightbeamcontroller_MainActivity_terminateModel
(
 JNIEnv* env, jobject /* this */) {
 model.terminate();
}

Key Functions:
• initModel(): Calls the model's initialize() method to set it up.
• stepModel(): Receives inputs from Java, converts them to C++ types, executes a single

step of the model's logic, and returns the outputs as a JSON string.
• terminateModel(): Calls the model's terminate() method to clean up resources when

the app closes.

Academic Year: 2024-25
48

5.3.3 Native Build Configuration (CMakeLists.txt)

A CMakeLists.txt file is created in the cpp folder to define how the native source files are
compiled and linked.
CMake
cmake_minimum_required(VERSION 3.22.1)

project("monolithicadaptivelightbeamcontroller")

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -static-libstdc++")
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

add_library(${CMAKE_PROJECT_NAME} SHARED
 native-lib.cpp
 MonolithicAdaptiveLightBeamController.cpp
)

find_library(log-lib log)

target_link_libraries(${CMAKE_PROJECT_NAME}
 android
 log
 c++
)

• add_library(): Combines native-lib.cpp and
MonolithicAdaptiveLightBeamController.cpp into a single shared library (.so).

• target_link_libraries(): Links the generated library with essential Android system
libraries, such as log for logging and c++ for the C++ standard library.

5.3.4 Android Application Controller (MainActivity.java)

The MainActivity.java file is the central controller for the application's UI and logic. It handles
the complete workflow, from user input to displaying the final output.
Code Excerpts and Explanation:

1. Load Native Library: The static block loads the compiled C++ shared library,
libmonolithicadaptivelightbeamcontroller.so.
Java

static {
 System.loadLibrary("monolithicadaptivelightbeamcontroller");
}

2. Declare Native Methods: These declarations inform the Java compiler that the
methods are implemented in native C++ code.
Java

public native void initModel();
public native String stepModel(double ambientLight, double roadCurvature, double
steeringAngle, boolean vehicleOncoming, double vehicleSpeed);
public native void terminateModel();

3. UI Initialization: In the onCreate method, the UI elements from the XML layout are
linked to Java variables.

Academic Year: 2024-25
49

4. Button Click Handler: An OnClickListener is set up on the analyzeBtn. When clicked, it
reads user inputs, calls the stepModel() native method, and processes the JSON
output.

o Input Validation: It checks if the input values are within valid ranges (e.g.,
ambient light from 0 to 100).

o JSON Parsing: The returned JSON string is parsed to extract the beamAngle
and beamRange.

o UI Update: The extracted values are used to update the TextViews on the
screen.

5. Lifecycle Management: The onDestroy() method ensures the native model is properly
shut down when the activity is destroyed.
Java

@Override
protected void onDestroy() {
 super.onDestroy();
 terminateModel();
}

5.3.5 User Interface Layout (main_activity.xml)

This XML file defines the user interface for the app. It includes input fields for various
parameters and displays for the calculated outputs.

XML
<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="24dp">
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:gravity="center_horizontal">
 <TextView ... android:text="Adaptive Light Beam Controller" />
 <EditText android:id="@+id/inputAmbientLight" ... />
 <EditText android:id="@+id/inputRoadCurvature" ... />
 <EditText android:id="@+id/inputVehicleSpeed" ... />
 <EditText android:id="@+id/inputSteeringAngle" ... />
 <Switch android:id="@+id/inputVehicleOncoming" ... />
 <Button android:id="@+id/analyzeBtn" ... android:text="Analyze Beam
Intensity and Angle" />
 <TextView android:id="@+id/intensityOutput" ... android:text="Beam
Intensity: --" />
 <TextView android:id="@+id/BeamAngleOutput" ... android:text="Beam Angle:
" />
 </LinearLayout>
</ScrollView>

5.3.6 Build File Configuration (app/build.gradle.kts)

This Gradle file orchestrates the entire build process, linking the Java and C++ components.

Academic Year: 2024-25
50

Gradle
plugins {
 alias(libs.plugins.android.application)
}

android {
 namespace = "com.example.monolithicadaptivelightbeamcontroller"
 compileSdk = 35

 defaultConfig {
 applicationId = "com.example.monolithicadaptivelightbeamcontroller"
 minSdk = 33
 targetSdk = 35
 versionCode = 1
 versionName = "1.0"
 externalNativeBuild {
 cmake {
 cppFlags += "-std=c++17"
 arguments += listOf("-DANDROID_STL=c++_shared")
 }
 }
 ndk {
 abiFilters += listOf("armeabi-v7a", "x86_64", "arm64-v8a")
 }
 }
 packaging {
 resources {
 pickFirsts.add("**/libc++_shared.so")
 }
 }
 buildTypes { ... }
 externalNativeBuild {
 cmake {
 path = file("src/main/cpp/CMakeLists.txt")
 version = "3.22.1"
 }
 }
 compileOptions {
 sourceCompatibility = JavaVersion.VERSION_11
 targetCompatibility = JavaVersion.VERSION_11
 }
}

dependencies { ... }
• externalNativeBuild: Points Gradle to the CMakeLists.txt file and configures the C++

build with c++17 standard and shared runtime.
• ndk: Specifies the target CPU architectures (abiFilters) to optimize the final APK size.
• packaging: The pickFirsts rule prevents file conflicts with libc++_shared.so.

5.3.7 Android Manifest (AndroidManifest.xml)

The manifest file defines the application's components and settings.

XML
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

Academic Year: 2024-25
51

 package="com.example.monolithicadaptivelightbeamcontroller">
 <application
 android:allowBackup="true"
 android:label="Adaptive Light Beam Controller"
 android:icon="@mipmap/ic_launcher"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.AppCompat.Light.NoActionBar">
 <activity
 android:name=".MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

• <application>: Defines global attributes like the app's name, icon, and theme.
• <activity>: Declares the MainActivity as the app's entry point

(android.intent.action.MAIN) and makes it visible in the app launcher
(android.intent.category.LAUNCHER).

5.3.8 Application Run and Verification

The final step is to build and run the application. After a successful build, the app can be
launched on an Android Automotive emulator, where the UI is displayed, and the native C++
model runs the adaptive light beam control logic.(see chapter 5.6 for test cases run result on
emulator)

Figure 38: UI of ALBC application on android emulator

Academic Year: 2024-25
52

5.3.9 Whole workflow of the monolithic adaptive light controller application

The workflow of the Android application for the monolithic model is a complete, end-to-end
process that starts with user interaction on the Android UI and concludes with the display of
the calculated results. This process is a continuous loop that runs each time the user requests
a new calculation.

Workflow

1. User Input on Android UI

The user enters various driving and environmental parameters—such as ambient light,
road curvature, vehicle speed, steering angle, and whether a vehicle is oncoming—
into the text fields and switches on the app's user interface, defined in
main_activity.xml.

2. Input Reading and Validation

When the user taps the Analyze Beam Intensity and Degree button, the
MainActivity.java file takes control. It reads all the values entered by the user and
performs a basic validation to ensure they are within a reasonable range (e.g., ambient
light is between 0 and 100). If the inputs are invalid, it displays an error message on
the screen.

3. JNI Call to the Native Model

After validation, MainActivity.java calls the native C++ method, stepModel(), passing
the user-provided inputs as arguments. This is the crucial step where the control and
data are passed from the Java layer to the native C++ layer.

4. C++ Model Execution

The native-lib.cpp file, acting as the JNI bridge, receives the call. It first converts the
Java data types (jdouble, jboolean) into C++-compatible types (real_T). It then uses
these inputs to set the external inputs of the global model instance. Finally, it executes
the model's core logic by calling model.step(). This is where the Simulink-generated
monolithic model performs all its calculations to determine the optimal beam angle
and range.

5. Output Generation and Return

Once the model has completed its step, the native-lib.cpp file retrieves the calculated
outputs (beam angle and beam range). It then packages these two values into a JSON-
formatted string and returns this string back to the Java layer. This is a robust way to
pass structured data across the JNI bridge.

6. JSON Parsing and UI Update

Academic Year: 2024-25
53

MainActivity.java receives the JSON string from the native code. It parses the string to
extract the beamAngle and beamRange values. It then formats these values and uses
them to update the TextViews on the UI, displaying the final results to the user.

7. Loop and Termination

The application remains in a loop, ready for the user to change the inputs and repeat
the process. When the app is closed, MainActivity.java's onDestroy() method is
triggered, which in turn calls the native terminateModel() function to safely shut down
the C++ model and free any allocated resources. This ensures a clean exit and prevents
memory leaks.

5.4 Code Integration in Android Studio for SOA models

This section outlines the step-by-step process of integrating the Service-Oriented Architecture
(SOA) models, generated from Simulink, into an Android Studio project. The methodology
ensures a robust, modular, and scalable system by separating the native C++ code from the
Java application layer and utilizing the Android Native Development Kit (NDK).

5.4.1 Project Setup in Android Studio

The integration process begins by creating a new Android Studio project.

1. Open Android Studio. [10]
2. Navigate to File → New → New Project. [10]
3. From the project templates, select the Automotive category. [10]
4. When prompted to select an activity, choose No Activity to create a foundational

project without a default user interface, which is ideal for a back-end service-
oriented application. [10]

5. Complete the remaining project setup options and click Finish. [10]

Academic Year: 2024-25
54

Figure 39: SOA Automotive new project

Academic Year: 2024-25
55

Figure 40: SOA ALBC project creation

After Finish android studio generate the following folders

Figure 41: SOA ALBC folders generated after finish

Academic Year: 2024-25
56

5.4.2. Project Folder Structure

After the project is generated, the file structure is modified to accommodate the SOA models.
A new folder named cpp is created under the automotive/src/main directory. This folder will
house all the native C++ source code. Inside the cpp folder, a dedicated subdirectory is created
for each service: AmbientLightService, BeamAngleController, RoadCurvatureService,
SteeringAngleService, VehicleOncomingService, and VehicleSpeedService.
AdaptiveLightController main application folder is created for the source code of main
application while shared folder is created for common utility files. A top-level CMakeLists.txt
file is placed directly in the cpp folder to manage the entire native build process.[2][3][5][7]
The final structure of the cpp folder is shown below.

Figure 42: SOA ALBC folders to create

5.4.3. File structure of Single Service

Within each service folder (e.g., AmbientLightService), the Simulink-generated source code
(.cpp and .h files) is placed. An additional CMakeLists.txt file is created in each service folder
to build a shared library for that service. [2][3][5][7]

An example of the CMakeLists.txt file for the AmbientLightService is as follows:
CMake
cmake_minimum_required(VERSION 3.22.1)

project("AmbientLightService")

add_library(AmbientLightService SHARED
 AmbientLightService.cpp
)

Include local headers + shared headers
target_include_directories(AmbientLightService PUBLIC
 ${CMAKE_CURRENT_SOURCE_DIR}

Academic Year: 2024-25
57

)

Link against shared utils + Android log
find_library(log-lib log)

target_link_libraries(AmbientLightService PRIVATE
 shared
 ${log-lib}
 c++_shared
)

Breakdown of AmbientLightService CMake file:
• cmake_minimum_required(VERSION 3.22.1): Ensures compatibility with the specified

CMake version.
• project("AmbientLightService"): Defines the name of the project.
• add_library(AmbientLightService SHARED ...): Creates a shared library (.so file) from

the source file.
• target_include_directories(...): Specifies the include paths for header files.
• find_library(log-lib log): Locates the Android system logging library.
• target_link_libraries(...): Links this library to its dependencies, including the shared

utility library and the Android log library.
This process is repeated for each service, placing its respective source code and a
CMakeLists.txt file in its dedicated folder.
The file structure of the AmbientLightService folder:

Figure 43: File structure of single service

5.4.4. File structure of the Main Application (AdaptiveLightController)

The main application folder contains all components required to compile and execute the

Simulink-generated Adaptive Light Controller within the Android NDK environment. This

folder serves as the integration point between the automatically generated C++ models, the

Academic Year: 2024-25
58

SOA service modules, and the Android application layer. The structure and purpose of the key

elements in this directory are described below. [2][3][5]

Figure 44: File structure of AdaptiveLightController

5.4.4.1. Integration of Simulink-Generated Source Code

The core functionality of the adaptive lighting system originates from the Simulink model. Two

source files are generated during the code generation process:

5.4.4.1.1. Top-Level Wrapper Model (e.g., SOA_AdaptiveLightController)

This file is the top-level wrapper model generated by Simulink. It serves as the integration

layer between the Android native runtime and the core adaptive-light controller. Its

responsibilities include:

• Receiving raw input signals from the Android system or JNI layer.

• Triggering the appropriate Function-Call Subsystems from the core model.

• Managing model initialization, step execution, and termination.

• Orchestrating communication with service-oriented architecture (SOA) client

interfaces.

• Providing the external API that is invoked from native-lib.cpp.

Academic Year: 2024-25
59

This file does not contain control logic itself; instead, it forwards sensor data to the core model

and retrieves algorithm outputs.

5.4.4.1.2. Core Control Logic Model (AdaptiveLightController)

This file contains the actual adaptive headlight control algorithm produced from the

referenced Simulink model. Its responsibilities include:

• Executing SOA service client calls (e.g., steering angle, ambient light, speed, road

curvature).

• Running the Stateflow state machine that governs headlight behaviour:

o Low Beam

o High Beam

o City Mode

o Cornering Beam

• Computing the final beam angle and beam range, which are returned to the wrapper

model.

• Maintaining intermediate block states and signals according to Simulink’s generated

structure.

This file acts as the “brain” of the system.

The wrapper model invokes the functions in this file during every control cycle.

5.4.4.2. Creation of the CMake Build Configuration

A dedicated CMakeLists.txt file is created in the main application folder.

Its purpose is to instruct Android Studio on how to compile the native Simulink-generated

code.

An example of CMakeFile.txt file :

cmake_minimum_required(VERSION 3.22.1)

project("AdaptiveLightController")

Create AdaptiveLightController shared library
add_library(AdaptiveLightController SHARED
 AdaptiveLightController.cpp
 soa_adaptivelightbeamcontroller.cpp
 native-lib.cpp
)

Include headers for this module + all dependent service modules
target_include_directories(AdaptiveLightController PUBLIC

Academic Year: 2024-25
60

 ${CMAKE_CURRENT_SOURCE_DIR} # AdaptiveLightController headers
 ${CMAKE_CURRENT_SOURCE_DIR}/../BeamAngleController
 ${CMAKE_CURRENT_SOURCE_DIR}/../RoadCurvatureService
 ${CMAKE_CURRENT_SOURCE_DIR}/../SteeringAngleService
 ${CMAKE_CURRENT_SOURCE_DIR}/../VehicleOncomingService
 ${CMAKE_CURRENT_SOURCE_DIR}/../VehicleSpeedService
 ${CMAKE_CURRENT_SOURCE_DIR}/../AmbientLightService
 ${CMAKE_CURRENT_SOURCE_DIR}/../shared
)

Find Android log library
find_library(log-lib log REQUIRED)

Link against Android system libs, C++ runtime, and all service libraries
target_link_libraries(AdaptiveLightController PRIVATE
 android
 ${log-lib}
 c++_shared
 BeamAngleController
 RoadCurvatureService
 SteeringAngleService
 VehicleOncomingService
 VehicleSpeedService
 AmbientLightService
 shared
)

Explanation of the CMake file:

(1) Defining the CMake and Project Version

cmake_minimum_required(VERSION 3.22.1)
project("AdaptiveLightController")

This sets the minimum version of CMake required by Android Studio and names the project.
It ensures compatibility with Android’s NDK toolchain.

(2) Creating the Shared Native Library

add_library(AdaptiveLightController SHARED
 AdaptiveLightController.cpp
 soa_adaptivelightbeamcontroller.cpp
 native-lib.cpp
)

• Creates a shared library named AdaptiveLightController.
• Includes:

o AdaptiveLightController.cpp → core control logic model

Academic Year: 2024-25
61

o soa_adaptivelightbeamcontroller.cpp → wrapper/top-level model
o native-lib.cpp → JNI interface connecting C++ to Android Java/Kotlin layer

CMake compiles these into libAdaptiveLightController.so, which is loaded by the Android
application at runtime.

(3) Including Header Files for All Modules

target_include_directories(AdaptiveLightController PUBLIC
 ${CMAKE_CURRENT_SOURCE_DIR}
 ${CMAKE_CURRENT_SOURCE_DIR}/../BeamAngleController
 ${CMAKE_CURRENT_SOURCE_DIR}/../RoadCurvatureService
 ${CMAKE_CURRENT_SOURCE_DIR}/../SteeringAngleService
 ${CMAKE_CURRENT_SOURCE_DIR}/../VehicleOncomingService
 ${CMAKE_CURRENT_SOURCE_DIR}/../VehicleSpeedService
 ${CMAKE_CURRENT_SOURCE_DIR}/../AmbientLightService
 ${CMAKE_CURRENT_SOURCE_DIR}/../shared
)

This section makes the header files available during compilation.
It includes:

• Headers for the main adaptive lighting model
• All SOA-dependent service modules (Beam Angle, Steering Angle, Road Curvature,

etc.)
• Shared utility headers

This is necessary because the wrapper model and core model both make calls to these service
modules.

(4) Locating Android Logging Library

find_library(log-lib log REQUIRED)

Android requires this to support native logging via __android_log_print().

(5) Linking All Required Libraries

target_link_libraries(AdaptiveLightController PRIVATE
 android
 ${log-lib}
 c++_shared
 BeamAngleController
 RoadCurvatureService
 SteeringAngleService
 VehicleOncomingService
 VehicleSpeedService
 AmbientLightService
 shared
)

This links:

Academic Year: 2024-25
62

Android system libraries

• android
• log
• c++_shared (C++ runtime)

All service module libraries

These are external libraries compiled elsewhere in the project:

• BeamAngleController
• RoadCurvatureService
• SteeringAngleService
• VehicleOncomingService
• VehicleSpeedService
• AmbientLightService
• shared (common utilities)

This ensures that the adaptive lighting controller can call all SOA service functions.

5.4.4.3 Implementation of the JNI Interface (native-lib.cpp)

The JNI bridge, implemented in the native-lib.cpp file, acts as the communication layer
between the Java application and the C++ SOA models. It exposes C++ functions that can be
called directly from Java and handles the data type conversion between the two languages.

C++
#include <jni.h>
#include <string>
#include <sstream>
#include "BeamAngleController.h"
#include "RoadCurvatureService.h"
#include "SteeringAngleService.h"
#include "VehicleOncomingService.h"
#include "VehicleSpeedService.h"
#include "AdaptiveLightController.h"
#include "SOA_AdaptiveLightController.h"

// Instantiate global service objects
static BeamAngleController beamAngleController;
static RoadCurvatureService roadCurvatureService;
static SteeringAngleService steeringAngleService;
static VehicleOncomingService vehicleOncomingService;
static VehicleSpeedService vehicleSpeedService;
static AdaptiveLightController adaptiveLightController;
static SOA_AdaptiveLightController soaController;

// ... (JNIEXPORT functions for individual services as provided in the prompt)

// === AdaptiveLightController step ===
extern "C" JNIEXPORT jstring JNICALL

Academic Year: 2024-25
63

Java_com_example_soa_1adaptivelightbeamcontroller_AdaptiveLightController_nativeSt
epAdaptiveLightController(
 JNIEnv* env, jobject /* this */,
 jdouble ambientLight,
 jdouble roadCurvature,
 jdouble steeringAngle,
 jboolean vehicleOncoming,
 jdouble vehicleSpeed) {
 // ... (code as provided in the prompt)
}

// === SOAAdaptiveLightController.initModel ===
extern "C" JNIEXPORT void JNICALL
Java_com_example_soa_1adaptivelightbeamcontroller_SOAAdaptiveLightController_initM
odel(
 JNIEnv* env, jobject /* this */) {
 soaController.initialize();
}

// === SOAAdaptiveLightController.stepModel ===
extern "C" JNIEXPORT jstring JNICALL
Java_com_example_soa_1adaptivelightbeamcontroller_SOAAdaptiveLightController_stepM
odel(
 JNIEnv* env, jobject /* this */,
 jdouble ambientLight,
 jdouble roadCurvature,
 jdouble steeringAngle,
 jboolean vehicleOncoming,
 jdouble vehicleSpeed) {
 // ... (code as provided in the prompt)
}

// === SOAAdaptiveLightController.terminateModel ===
extern "C" JNIEXPORT void JNICALL
Java_com_example_soa_1adaptivelightbeamcontroller_SOAAdaptiveLightController_termi
nateModel(
 JNIEnv* env, jobject /* this */) {
 soaController.terminate();
}

Key Parts:
• Global Service Objects: static instances of each C++ service are created, ensuring they

persist across JNI calls.
• JNI-Exported Functions: Functions are declared with the JNIEXPORT macro, following

a specific naming convention to allow them to be called from the Java layer.
• Data Marshalling: The code demonstrates how to convert Java data types (jdouble,

jboolean) to their C++ equivalents (real_T).
• JSON String Output: The C++ code compiles the output values (e.g., beamAngle,

beamRange) into a JSON string, which is a flexible format for passing complex data
back to the Java layer.

5.4.5. Root-Level CMakeLists.txt

The CMakeLists.txt file placed at the root of the cpp folder is the primary build script for the
entire native component. It orchestrates the build process by including all service, shared and
main application subdirectories.

Academic Year: 2024-25
64

CMake
cmake_minimum_required(VERSION 3.22.1)
project("soaadaptivelightbeamcontroller")

set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

Android log library
find_library(log-lib log REQUIRED)

Add subdirectories for each module
add_subdirectory(shared)
add_subdirectory(VehicleSpeedService)
add_subdirectory(VehicleOncomingService)
add_subdirectory(AmbientLightService)
add_subdirectory(SteeringAngleService)
add_subdirectory(RoadCurvatureService)
add_subdirectory(BeamAngleController)
add_subdirectory(AdaptiveLightController)

Explanation:
• set(CMAKE_CXX_STANDARD 17): Enforces the C++17 standard for all native code

compilation.
• add_subdirectory(...): This command is used to include and build all the subprojects

defined in the respective subfolders. This ensures all services are built and their
libraries are available for linking to the main application.

5.4.6. Java Application Files

The Android application is built around two primary Java files: MainActivity.java and
SOAAdaptiveLightController.java.

MainActivity.java
This file contains the UI logic. It reads user input from the XML layout, calls the native C++
model via the Java wrapper, and updates the UI with the results.

Java
package com.example.soaadaptivelightbeamcontroller;

import android.os.Bundle;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Switch;
import android.widget.TextView;
import androidx.appcompat.app.AppCompatActivity;
import org.json.JSONException;
import org.json.JSONObject;

public class MainActivity extends AppCompatActivity {
 private SOAAdaptiveLightController soaController;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

Academic Year: 2024-25
65

 soaController = new SOAAdaptiveLightController();
 soaController.initModel();

 // ... (UI element bindings as provided)

 analyzeBtn.setOnClickListener(v -> {
 try {
 // ... (input reading and parsing logic as provided)

 // Call native model
 String jsonResult = soaController.stepModel(
 ambientLight,
 roadCurvature,
 steeringAngle,
 vehicleOncoming,
 vehicleSpeed
);

 // Parse JSON result and update UI
 // ... (parsing and UI update logic as provided)

 } catch (NumberFormatException e) {
 // ... (error handling)
 } catch (JSONException e) {
 // ... (error handling)
 }
 });
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 soaController.terminateModel();
 }
}

Explanation:
• Initialization: An instance of SOAAdaptiveLightController is created, and the native

initModel() function is called to prepare the C++ environment.
• Event Handling: An OnClickListener is set up on the analyzeBtn to capture user inputs,

pass them to the native stepModel(), and parse the returned JSON string to update
the UI.

• Lifecycle Management: The native terminateModel() is called in the onDestroy()
lifecycle method to ensure proper cleanup of C++ resources when the activity is
closed.

SOAAdaptiveLightController.java
This is a simple Java wrapper class that loads the native library and declares the native
methods.

Java
package com.example.soaadaptivelightbeamcontroller;

public class SOAAdaptiveLightController {
 static {
 System.loadLibrary("AdaptiveLightController");

Academic Year: 2024-25
66

 }

 public native void initModel();
 public native String stepModel(
 double ambientLight,
 double roadCurvature,
 double steeringAngle,
 boolean vehicleOncoming,
 double vehicleSpeed);
 public native void terminateModel();
}

Explanation:
• System.loadLibrary(...): This static block loads the shared native library named

libAdaptiveLightController.so. This library is the final product of the CMake build
process, which links all the individual service libraries together.

• native keyword: Declares the methods that are implemented in the C++ native-lib.cpp
file.

5.4.7. User Interface Layout (activity_main.xml)

The XML layout file defines the visual components of the Android application's main screen.

XML
<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="24dp">
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:gravity="center_horizontal">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Adaptive Light Beam Controller"
 android:textSize="24sp"
 android:textStyle="bold"
 android:layout_marginBottom="24dp"
/>

 <EditText
 android:id="@+id/inputAmbientLight"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="AmbientLight(0.0 to 100.0)"
 android:inputType="numberDecimal"
 android:layout_marginTop="8dp"
/>
 <Button
 android:id="@+id/analyzeBtn"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Academic Year: 2024-25
67

 android:text="Analyze Beam Intensity and degree"
 android:layout_marginTop="20dp"
/>
 </LinearLayout>
</ScrollView>

Explanation:
• The layout uses a ScrollView and a LinearLayout to organize the UI elements vertically.
• EditText and Switch: These components allow the user to input sensor values

manually for demonstration purposes.
• Button: The analyzeBtn is the trigger for the computation logic.
• TextView: Two text views display the final output values (intensityOutput and

BeamAngleOutput) returned from the native model.

5.4.8. Gradle Build Files

Gradle manages the build system for both the Java and native components.

Root-Level build.gradle.kts
This is the top-level build script for the project, where plugins are declared.

Gradle
plugins {
 alias(libs.plugins.android.application) apply false
}

Explanation:
• apply false: This ensures the Android plugin is available to all modules but is not

applied at the root level, which is a standard practice for multi-module projects.
Module-Level build.gradle.kts
This file contains the core build configuration for the application module.

Gradle
plugins {
 alias(libs.plugins.android.application)
}

android {
 namespace = "com.example.soaadaptivelightbeamcontroller"
 compileSdk = 35

 defaultConfig {
 applicationId = "com.example.soaadaptivelightbeamcontroller"
 minSdk = 33
 targetSdk = 35
 // ... (versioning and other configs)
 externalNativeBuild {
 cmake {
 cppFlags += "-std=c++17"
 arguments += listOf("-DANDROID_STL=c++_shared")
 }
 }
 ndk {
 abiFilters += listOf("armeabi-v7a", "x86_64", "arm64-v8a")
 }

Academic Year: 2024-25
68

 }
 packaging {
 resources {
 pickFirsts.add("**/libc++_shared.so")
 }
 }
 // ... (buildTypes and compileOptions)
 externalNativeBuild {
 cmake {
 path = file("src/main/cpp/CMakeLists.txt")
 version = "3.22.1"
 }
 }
}
dependencies {
 // ... (dependencies)
}

Explanation:
• externalNativeBuild: This block is crucial for the NDK integration. It points Gradle to

the top-level CMakeLists.txt file and sets the C++ standard and shared runtime library.
• ndk: The abiFilters are configured to specify the target CPU architectures, which helps

reduce the size of the final APK.
• packaging: The pickFirsts rule prevents conflicts when multiple libraries might include

the same shared C++ runtime library.

5.4.9. Android Manifest

Your provided AndroidManifest.xml file is a well-structured configuration for an Android
Automotive app. It declares the app's essential components and requirements for the Android
system.
Code Explanation

Here is the breakdown of your AndroidManifest.xml file, which is placed in the root of the
app/src/main/ directory.
XML
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-feature
 android:name="android.hardware.type.automotive"
 android:required="true" />

 <application
 android:allowBackup="true"
 android:appCategory="audio"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.SOAAdaptiveLightBeamController">

 <activity
 android:name=".MainActivity"
 android:exported="true">

Academic Year: 2024-25
69

 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 </application>

</manifest>

Manifest and Feature Declaration

• <manifest ...>: This is the root tag of the manifest file. It defines the package name for
the application and holds all the app's components.

• <uses-feature android:name="android.hardware.type.automotive"
android:required="true" />: This is a crucial line for Automotive apps. It declares that
the application is designed exclusively for in-car systems. The
android:required="true" attribute ensures that the Google Play Store and other
package managers will only allow this app to be installed on devices with the specified
automotive hardware. This prevents it from being installed on phones or tablets.

Application and Activity

• <application ...>: This tag contains global settings that apply to all components within
the app.

o android:allowBackup="true": Permits the system to back up the app's data.
o android:appCategory="audio": Specifies that this app belongs to the "audio"

category, which helps the system understand its primary function.
o android:icon and android:label: These attributes set the app's main icon and

name as they will appear to the user.
o android:supportsRtl="true": Enables support for right-to-left languages like

Arabic and Hebrew.
o android:theme="@style/...": Defines the overall visual style for the app.

• <activity android:name=".MainActivity" android:exported="true">: This tag declares
the app's main screen, or Activity.

o android:name=".MainActivity": Points to the MainActivity.java file as the class
that handles this activity.

o android:exported="true": Marks the activity as accessible to other apps. For a
launcher activity (an app that can be launched from the home screen), this is
mandatory on modern Android versions.

• <intent-filter>: This block is what makes the MainActivity the entry point of the
application.

o <action android:name="android.intent.action.MAIN"/>: This action indicates
that the activity is the main entry point for the application, not just a
supporting screen.

o <category android:name="android.intent.category.LAUNCHER"/>: This
category tells the Android system to display an icon for this activity in the app
launcher, allowing the user to start the app from the home screen.

Academic Year: 2024-25
70

5.4.10 Whole Workflow

The complete workflow from user input to final output can be summarized as follows:

1. User Input on Android UI: The user enters values into the UI fields in
activity_main.xml.

2. MainActivity.java: Reads the input values and calls soaController.stepModel(...).
3. SOAAdaptiveLightController.java: This wrapper class loads the

libAdaptiveLightController.so library and routes the call to the native C++ method.
4. JNI Bridge (native-lib.cpp): Receives the Java call, converts the data types, and

orchestrates the C++ services. It calls the appropriate functions in each service to
compute the final beamAngle and beamRange.

5. Return to Java: The JNI bridge returns a JSON string containing the computed results.
6. MainActivity.java: The MainActivity receives the JSON string, parses it, and updates

the text views in the UI.
7. User Output: The user sees the calculated Beam Angle and Beam Range on the screen.

This comprehensive workflow ensures a clear separation of concerns, with the Android
application handling the UI and the native C++ code performing the complex model
computations. The JNI bridge serves as a robust and efficient connection between these two
distinct layers.

Flow Diagram:

 Android UI
 (MainActivity layout views)
 • Ambient Light (lux)
 • Road Curvature (1/m)
 • Steering Angle (deg)
 • Vehicle Speed (km/h)
 • Vehicle Oncoming (switch)

 │ Reads user input

 ▼

 MainActivity.java

 • Collects UI values from EditText/Switch
 • Calls:
 soaController.stepModel(…)

 | JNI call

 ▼

 SOAAdaptiveLightController.java
 --
 • Loads native library:
 System.loadLibrary("AdaptiveLightController")
 • Declares native methods:
 initModel()
 stepModel(...)
 terminateModel()
 • stepModel(...) → enters JNI
 Native bridge

Academic Year: 2024-25
71

 |

 ▼

 JNI Bridge (C++)

 • Converts Java → C++ types (double, bool → real_T)
 • Calls C++ services:
 - BeamAngleController
 - RoadCurvatureService
 - SteeringAngleService
 - VehicleOncomingService
 - VehicleSpeedService
 • Runs model logic:
 AdaptiveLightController /
 SOA_AdaptiveLightController
 • Produces outputs:
 beamAngle, beamRange
 • Returns JSON string:
 {"beamAngle":12.5,"beamRange":45.0}

 │ JSON result

 ▼

 Back in Java

• MainActivity receives JSON
 • Parses with JSONObject
 • Updates TextViews:
 Beam Angle → XX degrees
 Beam Range → YY meters

5.5 Configuration of Automotive Emulator

Step 1: Open AVD Manager

1. Open Android Studio.

2. Go to Tools → Device Manager (or AVD Manager in older versions).[6]

3. Click Create Device. [6]

Academic Year: 2024-25
72

Figure 45: Create new Automotive emulator

Step 2: Select Automotive Hardware Profile

1. In the Select Hardware window, scroll down and select Automotive. [6]

2. Choose a profile, e.g., Automotive 1024x600 (or other recommended screen size). [6]

3. Click Next. [6]

Academic Year: 2024-25
73

Figure 46: Selection of Automotive emulator from the list

Step 3: Choose a System Image

1. Switch to the "Recommended" or "Other Images" tab.

2. Look for Android Automotive OS images (for example, Android 12 or 13 Automotive).

[6]

3. If no image is installed:

o Click Download next to the desired image. [6]

o Wait for the download to complete. [6]

4. Once downloaded, select the image and click Next.

Academic Year: 2024-25
74

Figure 47: Selection of system image for Automotive emulator

Step 4: Configure AVD

1. Set a Name for your emulator, e.g., Automotive_Emulator_12. [6]

2. Adjust settings if needed:

o Orientation: Landscape (most automotive screens are landscape).

o Scale: Keep default or adjust to your monitor size.

3. Click Finish to create the AVD.

Step 5: Launch the Automotive Emulator

1. In the AVD Manager, click the Play button next to your new automotive emulator. [6]

2. Wait for it to boot—this may take a few minutes. [6]

3. Once running, you can deploy and test your automotive app just like a regular

Android app.

Academic Year: 2024-25
75

5.6 Testing Result on emulator of monolithic and SOA applications

Test Cases:

Tes
t
cas
es

Vehicl
e
Onco
ming)

Vehiclespee
d(km/h)

Ambi
ent
light

Steering
Angle(de
gree)

Road
curvature(
degree)

Beam
Range
(m)

Beam
Angle(de
gree)

Active
mode

1.1 0 60 10 0 - 100 0 High
Beam

1.2 1 60 10 0 - 50 0 Low
Beam

1.3 0 40 10 0 - 50 0 Low
Beam

1.4 0 60 25 0 - 50 0 Low
Beam

2.1 0 60 10 15 4 60 Close to
4

Corne
ring
Beam

2.2 0 60 10 5 4 100 0 High
Beam

2.3 0 60 10 20 10 60 Close to
10

Corne
ring
Beam

3.1 0 20 40 0 5 30 0 City
Beam

3.2 0 60 10 0 5 100 0 High
Beam

4.1 1 60 10 0 5 50 0 Low
Beam

Result of Run of test cases on automotive emulator:

Academic Year: 2024-25
76

Figure 48: Result of Test Case 1.1

Figure 49: Result of Test Case 1.2

Academic Year: 2024-25
77

Figure 50: Result of Test Case 1.3

Figure 51: Result of Test Case 1.4

Academic Year: 2024-25
78

Figure 52: Result of Test Case 2.1

Figure 53: Result of Test Case 2.2

Academic Year: 2024-25
79

Figure 54: Result of Test Case 2.3

Figure 55: Result of Test Case 3.1

Academic Year: 2024-25
80

Figure 56: Result of Test Case 3.2

Figure 57: Result of Test Case 4.1

Academic Year: 2024-25
81

Chapter 6

6. How to shift the Android Studio project to AOSP

6.1 Shifting of MonolithicAdaptiveLightController

Integration Methods

There are two main ways to integrate an app with Android Automotive:

• Adding the Complete Source Code: Embed your app’s code directly into the AOSP build

system. [17]

• Adding the Compiled APK File: Build your app separately, create an APK, and integrate

it into the AOSP folder. [17]

Method 1: Integrating Source Code (Detailed Steps)

6.1.1. Create a Sample Android Project:

• See chapter 3 and 5. In which I created the application named

“MonolithicAdaptiveLightController” and integrated into the Android Studio.

6.1.2. Prepare a Folder in AOSP:

• In the AOSP source code, navigate to /packages/apps/Car. [17]

• Duplicate an existing app folder (e.g calendar app) and rename it to

“MonolithicAdaptiveLightController”.

• Delete all files and folders except src, res and Android.bp. Delete the existing contents

inside src and res folders and keep it empty. [17]

6.1.3. Copy App Code and Resources:

• Copy the source code from the android studio folder automotive/src/main/cpp to

MonolithicAdaptiveLightController/src/main/cpp folder. Remove the CMakeLists.txt

file from the cpp, c++ source code will be built using Android.bp file. [17]

• Copy the java file from the android studio folder automotive/src/main/java to

MonolithicAdaptiveLightController/src/main/java folder. [17]

• Do the same for the res folder shift it from automotive/src/main/res to

MonolithicAdaptiveLightController /res. [17]

Academic Year: 2024-25
82

• Finally, copy AndroidManifest.xml to the AOSP

project’s MonolithicAdaptiveLightController folder.

Figure 58: AOSP MonolithicAdaptiveLight Controller folder structure

6.1.4. Modify Android.bp:

The Android Studio project uses gradle as build system and the build configurations are

defined in the build.gradle file. The AOSP project uses the Soong build system and the build

configurations are defined using blueprint file(.bp). [17]

• Open Android.bp in the AOSP project’s MonolithicAdaptiveLightController folder.

Academic Year: 2024-25
83

• Update the project name, remove unnecessary dependencies, and add required ones

from your build.gradle file, ensuring syntax compatibility.

• In order to build the C++ source code use cc_library_shared inside the android.bp file

it tells Soong to build a shared library .so from C++ sources and then using shared_libs

inside android_app you can link your native library to the android app APK.

Here is an example of Android.bp file

cc_library_shared {
 name: "monolithicadaptivelightbeamcontroller",
 srcs: [
 "src/main/cpp/native-lib.cpp",
 "src/main/cpp/MonolithicAdaptiveLightBeamController.cpp",
],
 shared_libs: [
 "android",
 "log",
],
 stl: "libc++",
 cppflags: ["-std=c++17"],
 cflags: ["-std=c++17"],
 export_include_dirs: [
 "src/main/cpp",
],
 sdk_version: "current",
}

android_app {
 name: " monolithicadaptivelightbeamcontroller ",

 srcs: [
 "src/main/java//*.java",
],

 manifest: "AndroidManifest.xml",

 static_libs: [
 "androidx_appcompat",
 "androidx_core",
],

 jni_libs: [
 " monolithicadaptivelightbeamcontroller ",
],

 sdk_version: "current",

 aaptflags: ["--auto-add-overlay"],
}

Academic Year: 2024-25
84

6.1.5 Replace UI-based input signal acquisition with retrieval from the Vehicle HAL, as is

done in real-world applications

Here’s a fully integrated summary of all required changes, combining the project-level
notes with the MainActivity.java, activity_main.xml, and AndroidManifest.xml changes: [17]

6.1.5.1 Change summary

Here’s a concise before vs after comparison:

Component UI-based
Project
(Before)

HAL-based Project (Now)

UI
(activity_main.xml)

Input fields
(EditText,
Switch,
Button) for
manual user
input

Only shows results & logs. All inputs come
from HAL/mocks

MainActivity.java Reads values
from UI,
validates
them, passes
to stepModel()

Subscribes to Vehicle HAL via
CarPropertyManager, mocks missing
signals (roadCurvature, vehicleOncoming),
sends values automatically to stepModel()

JNI Bridge (C++ file)

Method

Data passed
from UI

Unchanged. Still gets 5 parameters, now
from HAL

AndroidManifest.xml Standard
Android app
permissions

Needs Automotive HAL permissions (e.g.,
android.permission.CAR_SPEED,
CAR_STEERING)

Gradle Config Standard
Android app
settings

Ensure minSdk ≥ 29, targetSdk matches
Automotive; no major changes

Testing User types
input manually

Signals auto-updated from HAL; non-
standard signals mocked (e.g.,
roadCurvature)

 6.1.5.2 MainActivity.java (HAL-based)

package com.example.monolithicadaptivelightbeamcontroller;

import android.car.Car;
import android.car.hardware.CarPropertyValue;
import android.car.hardware.property.CarPropertyManager;
import android.car.hardware.property.VehiclePropertyIds;
import android.os.Bundle;
import android.util.Log;

Academic Year: 2024-25
85

import android.widget.TextView;
import androidx.appcompat.app.AppCompatActivity;

import org.json.JSONException;
import org.json.JSONObject;

public class MainActivity extends AppCompatActivity {
 static {
 System.loadLibrary("monolithicadaptivelightbeamcontroller");
 }

 // Native methods
 public native void initModel();
 public native String stepModel(double ambientLight, double roadCurvature,
 double steeringAngle, boolean vehicleOncoming,
 double vehicleSpeed);
 public native void terminateModel();

 // Vehicle-related
 private Car car;
 private CarPropertyManager carPropertyManager;

 // Latest signal values
 private double vehicleSpeed = 0.0;
 private double steeringAngle = 0.0;
 private double ambientLight = 50.0;
 private boolean vehicleOncoming = false; // MOCKED
 private double roadCurvature = 0.0; // MOCKED (degrees)

 private TextView intensityOutput;
 private TextView logOutput;

 private volatile boolean isRunning = true;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 initModel();

 intensityOutput = findViewById(R.id.intensityOutput);
 logOutput = findViewById(R.id.BeamAngleOutput);

 // Connect to CarService
 try {
 car = Car.createCar(this);
 carPropertyManager = (CarPropertyManager)
car.getCarManager(Car.PROPERTY_SERVICE);

 // Subscribe to standard HAL signals
 registerCarSignal(VehiclePropertyIds.PERF_VEHICLE_SPEED);
 registerCarSignal(VehiclePropertyIds.STEERING_ANGLE);
 registerCarSignal(VehiclePropertyIds.AMBIENT_LIGHT_LEVEL);

 } catch (Exception e) {
 Log.e("MainActivity", "CarService init failed: " + e.getMessage());
 }

Academic Year: 2024-25
86

 // Mock road curvature (in degrees) & vehicle oncoming
 new Thread(() -> {
 int counter = 0;
 while (isRunning) {
 // Fake curvature between -60° and +60°
 roadCurvature = -60.0 + Math.random() * 120.0;

 // Toggle oncoming vehicle every 5 updates (~10 sec)
 if (counter % 5 == 0) {
 vehicleOncoming = !vehicleOncoming;
 }
 counter++;

 runModelAndUpdateUI();

 try {
 Thread.sleep(2000); // update every 2s
 } catch (InterruptedException ignored) {}
 }
 }).start();
 }

 private void registerCarSignal(int propertyId) {
 carPropertyManager.registerCallback(callback, propertyId,
 CarPropertyManager.SENSOR_RATE_ONCHANGE);
 }

 private final CarPropertyManager.CarPropertyEventCallback callback =
 new CarPropertyManager.CarPropertyEventCallback() {
 @Override
 public void onChangeEvent(CarPropertyValue value) {
 try {
 switch (value.getPropertyId()) {
 case VehiclePropertyIds.PERF_VEHICLE_SPEED:
 vehicleSpeed = ((Float) value.getValue()).doubleValue();
 break;
 case VehiclePropertyIds.STEERING_ANGLE:
 steeringAngle = ((Float) value.getValue()).doubleValue();
 break;
 case VehiclePropertyIds.AMBIENT_LIGHT_LEVEL:
 ambientLight = ((Float) value.getValue()).doubleValue();
 break;
 }
 runModelAndUpdateUI();
 } catch (Exception e) {
 Log.e("MainActivity", "Signal parse error: " + e.getMessage());
 }
 }

 @Override
 public void onErrorEvent(int propId, int zone) {
 Log.e("MainActivity", "CarProperty error for " + propId);
 }
 };

 private void runModelAndUpdateUI() {
 try {

Academic Year: 2024-25
87

 String resultJson = stepModel(
 ambientLight,
 roadCurvature,
 steeringAngle,
 vehicleOncoming,
 vehicleSpeed
);

 JSONObject output = new JSONObject(resultJson);
 double beamRange = output.getDouble("beamRange");
 double beamAngle = output.getDouble("beamAngle");

 runOnUiThread(() -> {
 intensityOutput.setText(String.format("Beam Range: %.1fm | Angle:
%.1f°",
 beamRange, beamAngle));

 logOutput.append(String.format(
 "\nSpeed: %.1f km/h | Ambient: %.1f lx | Curve: %.1f° |
Angle: %.1f° | Oncoming: %b",
 vehicleSpeed, ambientLight, roadCurvature, steeringAngle,
vehicleOncoming));
 });

 } catch (JSONException e) {
 Log.e("MainActivity", "Model output parse error: " + e.getMessage());
 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 isRunning = false;
 try {
 if (carPropertyManager != null) {
 carPropertyManager.unregisterCallback(callback);
 }
 if (car != null) car.disconnect();
 } catch (Exception ignored) {}
 terminateModel();
 }
}

Explanation

6.1.5.2.1. Native Model Integration

• initModel() initializes the C++ model.
• stepModel(...) runs the adaptive light beam algorithm with five inputs:

o ambientLight, roadCurvature, steeringAngle, vehicleOncoming, vehicleSpeed.
• terminateModel() shuts down the model safely.

6.1.5.2.2. Vehicle HAL Integration

• Car and CarPropertyManager connect to the vehicle’s HAL.
• Subscribed signals:

Academic Year: 2024-25
88

o PERF_VEHICLE_SPEED
o STEERING_ANGLE
o AMBIENT_LIGHT_LEVEL

• Callback (CarPropertyEventCallback) automatically updates local variables and
triggers the model whenever a property changes.

6.1.5.2.3. Mocked Signals

• roadCurvature:
o Randomly varies between −60° to +60° to simulate curved roads.

• vehicleOncoming:
o Boolean toggled every 5 updates (~10 seconds) to simulate oncoming traffic.

6.1.5.2.4. Periodic Updates

• A background thread updates mocked signals every 2 seconds.
• Calls runModelAndUpdateUI() to combine HAL and mocked signals for processing.

6.1.5.2.5. UI Updates

• intensityOutput shows beam range and angle.
• logOutput appends detailed logs: speed, ambient light, road curvature, steering angle,

and oncoming vehicle status.
• runOnUiThread() ensures UI updates are thread-safe.

6.1.5.2.6. Lifecycle Management

• onDestroy() stops the background thread (isRunning = false), unregisters HAL
callbacks, disconnects from CarService, and terminates the model.

• Ensures clean shutdown and prevents resource leaks.

Summary

This implementation automates input signal acquisition using the Vehicle HAL, while
mocking missing signals. It continuously feeds all signals into the native model, producing live
outputs in the UI, making it a realistic simulation of adaptive light beam control in real
automotive systems.

6.1.5.3 activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="24dp">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

Academic Year: 2024-25
89

 android:orientation="vertical"
 android:gravity="center_horizontal">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Adaptive Light Beam Controller"
 android:textSize="24sp"
 android:textStyle="bold"
 android:layout_marginBottom="24dp" />

 <!-- Output for final computed values -->
 <TextView
 android:id="@+id/intensityOutput"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Beam Range: -- m | Beam Angle: -- °"
 android:textSize="18sp"
 android:textStyle="bold"
 android:layout_marginTop="20dp" />

 <!-- Log/debug area -->
 <TextView
 android:id="@+id/BeamAngleOutput"
 android:layout_width="match_parent"
 android:layout_height="200dp"
 android:text="Logs will appear here..."
 android:background="#f0f0f0"
 android:padding="8dp"
 android:layout_marginTop="12dp"
 android:scrollbars="vertical" />

 </LinearLayout>
</ScrollView>

Explanation:

• Removed all manual input widgets.
• Added TextViews for live beam output (intensityOutput) and logs

(BeamAngleOutput).
• UI now reflects automatic updates from HAL signals

6.1.5.4 AndroidManifest.xml (HAL Permissions)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.monolithicadaptivelightbeamcontroller">

 <uses-permission android:name="android.permission.CAR_SPEED"/>
 <uses-permission android:name="android.permission.CAR_STEERING"/>
 <uses-permission android:name="android.permission.CAR_AMBIENT_LIGHT"/>

 <application
 android:allowBackup="true"
 android:label="Adaptive Light Beam Controller"
 android:icon="@mipmap/ic_launcher"
 android:roundIcon="@mipmap/ic_launcher_round"

Academic Year: 2024-25
90

 android:supportsRtl="true"
 android:theme="@style/Theme.AppCompat.Light.NoActionBar">

 <activity android:name=".MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 </application>

</manifest>

Explanation:

• Added permissions for accessing automotive vehicle signals like speed, steering, and
ambient light.

• Keeps standard activity declaration unchanged.

This gives a complete view of all changes: project-level, UI, activity code, manifest, and
testing considerations.

6.1.6. Add the Project to the Build:

• Navigate to the appropriate file based on your Android version. [17]

• Android 14: packages/services/Car/car_product/build/car_system.mk. [17]

• Android13 or Android 12: packages/services/Car/car_product/build/car.mk. [17]

• Add your new app to the list. [17]
PRODUCT_PACKAGES += \
 CarFrameworkPackageStubs \
 CarService \
 CarShell \
 CarDialerApp \
 CarRadioApp \
 OverviewApp \
 CarLauncher \
 CarSystemUI \
 LocalMediaPlayer \
 CarMediaApp \
 CarMessengerApp \
 CarHTMLViewer \
 CarHvacApp \
 CarMapsPlaceholder \
 CarLatinIME \
 CarSettings \
 CarUsbHandler \
 android.car \
 car-frameworks-service \
 com.android.car.procfsinspector \
 libcar-framework-service-jni \
 ScriptExecutor \
 MonolithicAdaptiveLightBeamController \

Academic Year: 2024-25
91

6.1.7. Build AOSP and Run the Emulator:

• Source the environment using . build/envsetup.sh . [17]

• Choose your target using lunch sdk_car_x86_64-userdebug.

• Build the source code with make -j$(nproc).

• Launch the emulator with emulator & to see your integrated app.

6.2. Shifting of SOAAdaptiveLightController to AOSP

6.2.1 Create a Sample Android Project

Before integrating the system into AOSP, a prototype of the SOA-based Adaptive Light

Controller was implemented in Android Studio. (Refer to Chapters 3 and 5 for the

implementation of the prototype.)

6.2.2 Prepare an application Folder in AOSP

To integrate the application within the AOSP environment:

6.2.2.1 Navigate to:

/packages/apps/Car

6.6.2.2 Duplicate any existing application folder (e.g., Calendar) and rename it to:

SOAAdaptiveLightController

6.6.2.3 Clean the folder by removing unnecessary subfolders. Keep:

src/
res/
Android.bp

6.6.2.4 Inside src :

 Inside src folder place all Java, JNI (C++) source files from the original Android Studio
project. [17]

6.6.2.5 Create an aidl directory

 Create AIDL files for the AIDL interface files corresponding to each car service. (see
figure 59)

6.6.2.6 Add AndroidManifest.xml

Add the application’s AndroidManifest.xml to define permissions, package, and
activities. [17]

The final file structure of the application:

Academic Year: 2024-25
92

Figure 59: SOAAdaptiveLightController application file structure

6.2.3 Prepare folder structure associated with service implementation

6.2.3.1 Navigate to:

packages/services/car/service/

6.2.3.2 Create folders for each service:

ambientlight/
beamanglecontroller/
roadcurvature/
vehicleoncoming/
vehiclespeed/

6.2.3.3 For each service:

• Place the Simulink-generated .cpp and .h files.

Academic Year: 2024-25
93

• Add a corresponding Binder wrapper file (e.g., AmbientLightServiceBinder.cpp &
AmbientLightServiceBinder.h).

• Create a minimal Android.bp file to compile each service as a static/shared library.

6.2.3.4 Create an aidl folder for service-side AIDL interfaces:

services/car/aidl/

6.2.3.5 Create a shared folder for reusable Simulink or utility code.

services/shared

6.2.3.6 Implement a CarServiceMain.cpp file which registers all services to CarService at

startup.

6.2.3.7 Finally, create a top-level Android.bp to include and link all service libraries.

Final structure of the service folder in AOSP looks like:

Academic Year: 2024-25
94

Figure 60: File structure of the service implementation in AOSP

Academic Year: 2024-25
95

6.2.4 Explanation of Important Files and Their Roles

6.2.4.1 AIDL Files

Each AIDL file defines a Binder interface through which the Java or C++ client (the app)
communicates with the native services.

Example:
package com.android.car;

interface IAmbientLightService {
 double computeAmbientLight(double inputAmbientLight);
}

When compiled, AOSP generates Binder stub and proxy classes (using NDK AIDL), enabling
inter-process communication between the app (client) and car service (server).

6.2.4.2 Service Implementation (e.g., AmbientLightService.cpp)

This file contains the core computation logic (auto-generated from Simulink).
For instance, AmbientLightService::computeAmbientLight() computes or simulates an
environmental light response value.

6.2.4.3 Binder Wrapper (AmbientLightServiceBinder.h / .cpp)

These files act as the bridge between Android’s Binder system and the native C++ service
logic.

Header:

#pragma once
#include <aidl/com/android/car/BnAmbientLightService.h>
#include "AmbientLightService.h"

// Binder wrapper around AmbientLightService
class AmbientLightServiceBinder : public
aidl::com::android::car::BnAmbientLightService {
public:
 AmbientLightServiceBinder();
 ndk::ScopedAStatus computeAmbientLight(double ambientLight, double*
_aidl_return) override;

private:
 AmbientLightService mService; // Simulink-generated implementation
};

Implementation:

#include "AmbientLightServiceBinder.h"

Academic Year: 2024-25
96

AmbientLightServiceBinder::AmbientLightServiceBinder() : mService() {}

ndk::ScopedAStatus AmbientLightServiceBinder::computeAmbientLight(
 double ambientLight, double* _aidl_return) {
 double result = 0.0;
 mService.computeAmbientLight(ambientLight, &result);
 *_aidl_return = result;
 return ndk::ScopedAStatus::ok();
}

Explanation:

• The class inherits from the NDK Binder Stub (BnAmbientLightService).
• It overrides the AIDL-defined method (computeAmbientLight).
• Internally, it calls the real algorithm implemented in AmbientLightService.cpp.
• It returns the result to the caller through the Binder IPC channel.

6.2.4.4 Per-Service Build File (Android.bp)

Each service has its own Android.bp file that defines how it is compiled.

cc_library {
 name: "ambientlight",
 srcs: [
 "AmbientLightService.cpp",
 "AmbientLightServiceBinder.cpp",
],
 cflags: ["-std=c++17"],
 include_dirs: [".", "../../shared"],
 stl: "c++_shared",
 visibility: ["//visibility:public"],
 ndk: { enabled: true },
}

Explanation:

• Builds the service as a shared C++ library.
• Includes headers from both its folder and the shared Simulink headers.
• Makes the service publicly visible to other AOSP modules.
• Enables use in the NDK environment, which allows Binder IPC with Java apps.

6.2.4.5 CarServiceMain.cpp (Service Registration)

This is the entry point of the Car Service process.
It registers all service binders into Android’s Service Manager, making them discoverable by
clients.

#include <android/binder_manager.h>
#include <android/binder_process.h>
#include <android/log.h>
#include "ambientlight/AmbientLightServiceBinder.h"
#include "vehiclespeed/VehicleSpeedServiceBinder.h"

Academic Year: 2024-25
97

#include "roadcurvature/RoadCurvatureServiceBinder.h"
#include "steeringangle/SteeringAngleServiceBinder.h"
#include "vehicleoncoming/VehicleOncomingServiceBinder.h"
#include "beamangle/BeamAngleControllerBinder.h"

int main() {
 ABinderProcess_setThreadPoolMaxThreadCount(0);
 ALOGI("CarServiceMain starting...");

 auto ambientLightService =
ndk::SharedRefBase::make<AmbientLightServiceBinder>();
 AServiceManager_addService(ambientLightService->asBinder().get(),
 "com.android.car.IAmbientLightService/default");

 // ... repeat for all other services

 ALOGI("All services registered successfully.");
 ABinderProcess_joinThreadPool();
 return 0;
}

Explanation of Flow:

1. The Binder thread pool is initialized to handle IPC requests.
2. Each service Binder object (e.g., AmbientLightServiceBinder) is instantiated.
3. Each service is registered with a unique name in the Android Service Manager (e.g.,

"com.android.car.IAmbientLightService/default").
4. The process joins the Binder thread pool to continuously listen for incoming IPC calls

from applications.
5. When the app calls the corresponding AIDL interface, the request is routed to this

process and handled by the corresponding Binder wrapper.

6.2.4.6 Master Build Script (Android.bp)

At the controller/ or car/ level, a main Android.bp file builds the executable carservice that
includes all service modules.

cc_binary {
 name: "carservice",
 srcs: ["CarServiceMain.cpp"],
 cflags: ["-std=c++17"],
 stl: "c++_shared",
 shared_libs: [
 "ambientlight",
 "vehiclespeed",
 "beamanglecontroller",
 "roadcurvature",
 "steeringangle",
 "vehicleoncoming",
],
 visibility: ["//visibility:public"],
 ndk: { enabled: true },
}

Academic Year: 2024-25
98

Explanation:

• cc_binary defines a native binary executable called carservice.
• Links all per-service libraries into one running process.
• Registers all services automatically during boot.

6.2.5 Workflow Summary

1. App side calls the service method via AIDL (e.g., computeAmbientLight()).
2. Binder IPC transmits the request to the corresponding native service process

(carservice).
3. The Binder wrapper (AmbientLightServiceBinder) receives the IPC call.
4. It delegates computation to the Simulink-generated C++ logic

(AmbientLightService.cpp).
5. The computed result is returned through Binder IPC to the application.
6. The UI updates accordingly to display the processed data.

6.2.6 Conclusion

Integrating the SOAAdaptiveLightController directly into AOSP transforms it from a

standalone Android app into a system-level automotive service framework.

This design leverages the AOSP Binder IPC mechanism to achieve modularity, fault isolation,

and scalability — all key characteristics of a Service-Oriented Architecture (SOA) within

embedded automotive platforms.

Academic Year: 2024-25
99

Chapter 7

7. OTA Implementation for SOAAdaptiveLightController

7.1 Introduction

The Over-The-Air (OTA) update mechanism is an essential feature in modern automotive
software architectures. It allows the vehicle’s software components to be updated remotely,
improving maintainability, safety, and feature expansion over time.[1][4][11][15]

In the context of the SOAAdaptiveLightController developed in this research, the OTA
mechanism leverages the Service-Oriented Architecture (SOA) design to enable individual
services, such as AmbientLightService, VehicleSpeedService, or BeamAngleController, to be
independently updated without requiring a complete system rebuild or reflashing of the
Android image.

This approach aligns with the SOA principle of “loose coupling and dynamic service
management”, making the system modular, upgradeable, and more resilient.

7.2 Architecture Overview

In the implemented AOSP structure, each vehicle-related functionality—ambient light
detection, road curvature, vehicle speed, etc.—is developed as an independent Binder-based
service module.
These services are dynamically registered through the main orchestrator
(CarServiceMain.cpp), and their compiled outputs (.so shared objects) are linked within the
car service binary.[2][3][12]

The OTA update mechanism introduces a new Binder service called OTAUpdateService, which
handles downloading, verifying, and updating these service modules.[8]

The following diagram illustrates the OTA workflow within the AOSP-based SOA
architecture:[8][2][3][12]

 SOAAdaptiveLightController (Android App - UI)
 User triggers OTA update for a specific service
 Calls IOTAUpdateService via AIDL

 │ Binder IPC
 ▼

 OTAUpdateService (C++ Binder Service)
 Downloads new module (.so) via HTTPS
 Verifies checksum / signature
 Replaces old service binary in /data/vendor/carservices/
 Signals CarServiceMain to reload updated module

 │

Academic Year: 2024-25
100

 ▼

CarServiceMain.cpp
Dynamically loads service libraries via dlopen()
Registers each updated service to AServiceManager
 Provides runtime modularity and dynamic service loading

7.3 Implementation Steps

Step 1 – OTAUpdateService AIDL Definition

The IOTAUpdateService.aidl interface is defined to expose OTA update functionalities to the
client layer. [8][2][3][12]

package com.android.car;

interface IOTAUpdateService {
 boolean downloadAndUpdateModule(String moduleName, String downloadUrl);
 String getUpdateStatus(String moduleName);
}

This interface allows the Android application to trigger OTA updates for specific modules (e.g.,
“ambientlight”) and to query their update status.

Step 2 – C++ Implementation of OTAUpdateService

The OTA service is implemented as a Binder-based C++ class that downloads and replaces
service modules: [8][2][3][12]

#include "IOTAUpdateService.h"
#include <curl/curl.h>
#include <android/binder_manager.h>
#include <android/log.h>

#define MODULE_PATH "/data/vendor/carservices/modules/"
#define LOG_TAG "OTAUpdateService"

bool downloadFile(const std::string& url, const std::string& outPath);

class OTAUpdateService : public aidl::com::android::car::BnOTAUpdateService {
public:
 ndk::ScopedAStatus downloadAndUpdateModule(
 const std::string& moduleName,
 const std::string& downloadUrl,
 bool* _aidl_return) override {

 std::string tempPath = std::string(MODULE_PATH) + moduleName + "_new.so";
 std::string finalPath = std::string(MODULE_PATH) + moduleName + ".so";

 if (!downloadFile(downloadUrl, tempPath)) {
 ALOGE("Download failed for %s", moduleName.c_str());
 *_aidl_return = false;
 return ndk::ScopedAStatus::ok();

Academic Year: 2024-25
101

 }

 // Replace old module
 rename(tempPath.c_str(), finalPath.c_str());

 // Restart carservice to reload updated module
 system("stop carservice && start carservice");

 ALOGI("Updated module %s successfully", moduleName.c_str());
 *_aidl_return = true;
 return ndk::ScopedAStatus::ok();
 }
};

The service downloads a new .so binary, replaces the existing one, and triggers a lightweight
restart of the carservice process, which then reloads all services including the updated one.

Step 3 – Dynamic Service Loading in CarServiceMain.cpp

To support OTA-updatable modules, CarServiceMain.cpp is modified to dynamically load
service libraries using dlopen() and dlsym() instead of static linking. [8][2][3][12]

#include <dlfcn.h>
#include <android/binder_manager.h>

void loadAndRegisterService(const std::string& libPath, const std::string&
serviceName) {
 void* handle = dlopen(libPath.c_str(), RTLD_NOW);
 if (!handle) {
 ALOGE("Failed to load %s: %s", serviceName.c_str(), dlerror());
 return;
 }

 using CreateBinderFn = ndk::SpAIBinder (*)();
 auto createFn = (CreateBinderFn)dlsym(handle, "createBinder");
 if (!createFn) {
 ALOGE("Symbol not found in %s", serviceName.c_str());
 return;
 }

 auto binder = createFn();
 AServiceManager_addService(binder->asBinder().get(), serviceName.c_str());
}
Each service (such as AmbientLightService) exports a createBinder() method that
returns a Binder instance of the service.
extern "C" ndk::SpAIBinder createBinder() {
 return ndk::SharedRefBase::make<AmbientLightServiceBinder>()->asBinder();
}

This mechanism allows the carservice process to load a newly updated module without
requiring recompilation or flashing.

Academic Year: 2024-25
102

7.4 OTA Update Example: AmbientLightService

To demonstrate the OTA functionality, the AmbientLightService was selected as a use case.

Initial Setup:

• Original library: /data/vendor/carservices/modules/ambientlight.so
• Registered Binder service: com.android.car.IAmbientLightService/default

Update Scenario:

Suppose an improvement is made in the Simulink model of the ambient light computation
(for example, enhanced filtering of sensor noise). A new version of the service is built and
published on a remote server as ambientlight_v2.so. [8][2][3][12]

Update Procedure:

1. Trigger Update from App:
o The user (or system) calls:
o otaService.downloadAndUpdateModule("ambientlight",

"https://server.com/updates/ambientlight_v2.so");
2. Download & Replacement:

o OTAUpdateService downloads the new binary and stores it as
/data/vendor/carservices/modules/ambientlight_new.so.

o It verifies integrity and replaces the old module:
o mv ambientlight_new.so ambientlight.so

3. Reload Service:
o The carservice process is restarted or signalled to reload.
o CarServiceMain dynamically loads the new ambientlight.so.
o The updated AmbientLightService is re-registered with the same AIDL

interface.
4. Result:

o Clients (like the Adaptive Light Controller app) continue to use
IAmbientLightService seamlessly.

o The updated logic is now active without reflashing the firmware or rebuilding
the AOSP image.

7.5 Advantages of the OTA Mechanism

Feature Description

Service-Level Modularity Each vehicle function can be updated independently.

Reduced Downtime No need for full system reflashing or reboots.

Improved Maintainability Easier integration of new features or bug fixes.

Security Update packages can be signed and verified.

Demonstrates SOA Principles Dynamic service binding and independent deployment.

Academic Year: 2024-25
103

7.6 Summary

The integration of OTA update functionality into the SOAAdaptiveLightController project
transforms it into a truly service-oriented automotive software platform.
By enabling independent updates for services such as AmbientLightService, the system
achieves:

• runtime flexibility,
• reduced maintenance overhead, and
• enhanced scalability.

This approach demonstrates how modern automotive systems can adopt cloud-driven service
delivery models while remaining compliant with the modularity principles defined by SOA.

Academic Year: 2024-25
104

Chapter 8

8. Mixed Criticality in Android Automotive Systems

8.1 Introduction

Modern vehicles integrate a wide range of software functionalities with differing reliability,
timing, and safety requirements. This coexistence of components with diverse assurance
levels defines a mixed-criticality system, a core characteristic of today’s automotive software
architecture.

While traditional Electronic Control Units (ECUs) were designed for single-purpose, safety-
critical tasks, recent technological trends—such as domain controllers and centralized
computing—allow both safety-critical and non-critical software to share the same hardware
resources. Managing these workloads safely and predictably is one of the central challenges
of Android Automotive OS (AAOS) integration in modern vehicles. [11][13][14][15]

This chapter explores how mixed criticality is addressed in Android Automotive systems, the
mechanisms used to achieve freedom from interference, and how the developed Service-
Oriented AdaptiveLight Controller (SOA-ALBC) fits within this context as a representative
infotainment-level application designed using Model-Based Software Design (MBSD) and
integrated through Android Studio.

8.2 Concept of Mixed Criticality

8.2.1 Definition

Mixed criticality refers to the coexistence of software components with different levels of
functional safety, real-time behaviour, and assurance requirements on a shared platform.
According to ISO 26262, each function in a vehicle can be assigned an Automotive Safety
Integrity Level (ASIL), ranging from ASIL D (highest safety requirement) to QM (quality-
managed, non-safety).[11]

Mixed criticality arises when both ASIL-classified and QM components execute on the same
processor or within the same system. This situation demands careful system partitioning and
resource management to prevent interference between components of different criticalities.

8.2.2 Challenges in Mixed-Criticality Integration

The coexistence of multiple criticality levels introduces several challenges:[11][13][14]

• Freedom from Interference (FFI): Lower-criticality software (e.g., Android
applications) must not affect the timing, memory, or data integrity of higher-criticality
components.

• Timing Predictability: Real-time control systems require deterministic response,
which general-purpose systems like Android do not natively guarantee.

Academic Year: 2024-25
105

• Resource Contention: Shared use of CPUs, GPUs, and memory can lead to
unpredictable performance if not controlled.

• Security and Safety Assurance: Non-safety domains must not compromise the
operation or integrity of safety-critical subsystems.

• Certification Complexity: Demonstrating that the overall system meets safety
standards becomes more demanding when criticality levels are mixed.

8.3 Mixed Criticality in Android Automotive Architecture

8.3.1 Overview of Android Automotive OS

Android Automotive OS (AAOS) is a Google-supported, embedded variant of the Android
operating system specifically adapted for in-vehicle infotainment (IVI) systems. It manages
tasks such as media playback, navigation, user interaction, and integration with vehicle
sensors via the Vehicle Hardware Abstraction Layer (VHAL).[2][3]

From a safety perspective, Android Automotive is considered a non-safety (QM)
environment. However, it often operates in close proximity to safety-critical ECUs, forming
part of a larger, mixed-criticality vehicle architecture.

8.3.2 Architectural Separation of Domains

To manage mixed criticality, automotive platforms employ domain separation through
hardware and software partitioning. There is a conceptual separation between:

• Safety/Real-Time Domain — Executes safety-critical control functions (e.g., braking,
steering, lighting logic) under a safety-certified Real-Time Operating System (RTOS)
such as QNX, PikeOS, or AUTOSAR Classic. [11][13][14]

• Infotainment Domain — Hosts Android Automotive and its applications, including
non-critical user-interface services such as the SOA AdaptiveLight Controller
developed in this work.

Although Android Automotive applications may visualize or influence parameters related to
safety systems, they are not responsible for the real-time actuation or control logic. Instead,
Android acts as a supervisory or monitoring layer interfacing through standardized APIs.

8.3.3 Mechanisms Supporting Mixed Criticality

Android Automotive achieves coexistence with safety-critical systems through several key
mechanisms:

1. Hardware Virtualization and Hypervisors:
Modern SoCs (e.g., Qualcomm Snapdragon Ride, Renesas R-Car, NXP S32G) use
hypervisors to host multiple isolated guest operating systems. Safety functions
execute in a certified RTOS partition, while Android runs in a separate virtualized
domain. This enforces spatial and temporal isolation. [13][14][15]

Academic Year: 2024-25
106

2. Safety Islands and Secure Execution Environments:
Dedicated hardware cores, often called “safety islands,” execute essential safety
software independently from Android. Even if Android crashes, these cores maintain
the system in a safe state. [14][15]

3. Linux Kernel Isolation (Cgroups, Cpuset, and Namespaces):
Within Android, process isolation and resource control are achieved using Linux kernel
features such as control groups (cgroups) and cpusets, which prevent resource
starvation and enforce CPU scheduling boundaries. [12]

4. SELinux and Permission Enforcement:
Android Automotive enforces Security-Enhanced Linux (SELinux) in enforcing mode,
defining policies that tightly restrict access to devices, I/O, and vehicle interfaces.
Applications can only access vehicle data through the Car Service and Vehicle HAL
layers, not through direct hardware interfaces. [2][3][12]

5. Vehicle HAL Mediation:
The Vehicle HAL acts as a secure communication bridge between Android and
underlying ECUs. Safety-critical ECUs expose limited, read-only or verified interfaces,
ensuring that infotainment apps cannot issue unsafe commands. [2][3][12]

6. Safe Communication Channels:
When cross-domain communication is necessary, it is implemented via authenticated,
rate-limited IPC mechanisms or hypervisor-mediated shared memory channels to
avoid overloading safety partitions.[13][14]

8.4 Case Study: SOA AdaptiveLight Controller Application

8.4.1 Model-Based Design Workflow

The SOA AdaptiveLight Controller (SOA-ALC) application developed in this thesis
demonstrates the use of Model-Based Software Design (MBSD) for automotive use cases
within Android Automotive.

The control logic was first designed in MATLAB/Simulink, modelled as a service-oriented
component. Using Embedded Coder, the model was automatically converted into C++ source
code, ensuring consistency between design and implementation. The generated code was
then integrated into Android Studio as part of an AAOS application module.

8.4.2 Role within Mixed Criticality Architecture

Although adaptive lighting behaviour in production vehicles is safety-critical, in this thesis the
SOA-ALBC serves as a non-critical infotainment demonstration. It visualizes and simulates
adaptive lighting responses rather than directly controlling hardware.

Thus, the application resides entirely within the Android (QM) domain, utilizing AAOS APIs to
demonstrate vehicle service interaction without influencing real-time actuation. This
approach makes it an ideal research use case to analyse how complex control algorithms can
be safely hosted in a mixed-criticality environment.[1][5][16]

Academic Year: 2024-25
107

8.4.3 Interaction Boundaries

The integration ensures clear separation between:

• Application Layer: Android application hosting user interface and service logic.
• System Services: Car Service and VHAL layers mediating any communication with

vehicle subsystems.
• External ECUs (if connected): Access limited to simulated or read-only channels.

This architecture maintains freedom from interference by ensuring that any misbehaviour in
the SOA-ALC app (e.g., CPU spikes, software errors) does not affect the functioning of safety
ECUs or other domains.[2][11][12]

8.5 Safety, Security, and System Assurance Considerations

8.5.1 Freedom from Interference (FFI)

AAOS ensures FFI between infotainment applications and safety-critical components through:

• Process sandboxing and SELinux policy enforcement.[2][12]
• Controlled access via Car Service and Vehicle HAL.[2][3]
• Resource quotas using Linux kernel control groups.
• Strict application signing and permission management.

8.5.2 Compliance Context

While AAOS itself is not ISO 26262-certified, it is designed to coexist with certified safety
platforms. In such setups, the Android environment operates at the QM level, and its
functions are excluded from the vehicle’s safety case.[11]

The SOA-ALBC application, implemented in this work, thus aligns with the non-safety (QM)
classification, illustrating a safe and structured integration of complex MBSD-generated
software in the Android domain.

8.5.3 Security and Update Management

Android Automotive employs secure boot, verified updates, and application signing to ensure
system integrity. These mechanisms are critical in mixed-criticality systems, as untrusted
updates in non-critical domains must not jeopardize the safe operation of the overall vehicle
architecture.[12]

8.6 Discussion

The study highlights that Android Automotive provides a flexible and robust platform for
developing advanced, service-oriented automotive applications while maintaining strict
boundaries between safety and non-safety domains.

Academic Year: 2024-25
108

From the perspective of system design:

• Safety-critical control should reside outside Android, in RTOS or safety partitions.
[11][13][14]

• Infotainment and visualization functions, such as the SOA-ALC, can be implemented
safely within Android, benefiting from its development ecosystem, connectivity, and
user interface capabilities.

• Proper use of the VHAL, SELinux, and virtualization ensures compliance with mixed-
criticality principles. [2][12]

This separation allows research and development teams to explore advanced automotive
functionalities (like adaptive lighting logic) at the application level without endangering safety
or violating functional safety constraints.

8.7 Conclusion

Mixed-criticality management in Android Automotive is achieved through a combination of
architectural isolation, hardware support, and robust software mechanisms. Android, as a
non-safety environment, complements safety-certified domains by enabling high-level, user-
facing applications and services.

The SOA Adaptive Light Beam Controller developed in this thesis exemplifies how a model-
based, service-oriented application can be deployed within AAOS, respecting mixed-criticality
boundaries and demonstrating safe integration of advanced functionalities in the
infotainment layer.

This approach reinforces the potential of combining Model-Based Software Design with
Android Automotive to accelerate innovation, maintain software quality, and preserve
system integrity in future vehicle architectures.

Academic Year: 2024-25
109

Chapter 9

9. Vehicle Signal Integration in Android Automotive

9.1 Overview

In a vehicle equipped with Android Automotive OS (AAOS), input signals from physical sensors
and actuators—such as steering angle, speed, ambient light, or headlamp status—are
typically transmitted over a Controller Area Network (CAN) bus. However, Android does not
directly access the CAN bus for both safety and architectural reasons. [2][3][12]

Instead, signal acquisition and distribution occur through a layered integration architecture,
where the Vehicle HAL (Hardware Abstraction Layer) acts as the interface between Android
and the vehicle’s underlying ECUs or middleware.[2]

This section describes how CAN signals flow through the system, the role of intermediate
components, and how Android applications like the SOA Adaptive Light Beam Controller can
consume those signals safely.[11]

9.2 Signal Flow: From CAN Bus to Android

The typical signal path can be described in the following stages:

[Vehicle Sensors/Actuators]
 ↓
[CAN Bus]
 ↓
[Vehicle Gateway ECU / Vehicle Interface Processor]
 ↓
[Vehicle HAL]
 ↓
[Car Service / Car API]
 ↓
[Android Application Layer (e.g., SOA Adaptive Light Beam Controller)]

9.2.1 Vehicle Sensors and CAN Bus

At the hardware level, vehicle sensors and actuators communicate through one or more CAN
networks (e.g., Powertrain CAN, Body CAN, Chassis CAN). Each signal is encoded as a CAN
frame identified by a unique CAN ID, and contains payload data such as:

• Vehicle speed
• Steering angle
• Ambient light intensity
• Headlamp status

These messages are broadcast periodically, typically every 10–100 ms, depending on their
criticality.[12]

Academic Year: 2024-25
110

9.2.2 Vehicle Gateway ECU

The Vehicle Gateway ECU (or Body Control Module, or dedicated middleware gateway) acts
as a bridge between the CAN bus and higher-level systems such as Android Automotive. Its
main responsibilities include:

• Receiving and decoding CAN messages.
• Converting raw CAN data into abstracted vehicle signals (e.g., VehicleSpeed = 45

km/h).
• Filtering, scaling, or rate-limiting the signals.
• Providing these processed signals to higher-level software components through

standard interfaces, often via Ethernet or shared memory.

This gateway may run:

• A real-time OS (RTOS) or AUTOSAR stack for safety and timing.
• A communication middleware such as Some/IP, DDS, or gRPC over IPC for higher-level

communication.

It isolates Android from direct bus access, enforcing the freedom from interference
principle.[2][3][12]

9.3 Vehicle HAL (Hardware Abstraction Layer)

9.3.1 Purpose

The Vehicle HAL (VHAL) is the Android Automotive system component that provides a
standard interface for vehicle-related data to the Android framework. It abstracts away the
details of how vehicle signals are obtained, presenting a unified API to Android services and
applications.

VHAL defines a set of Vehicle Properties, each identified by an integer constant (e.g.,
VEHICLE_PROPERTY_SPEED, VEHICLE_PROPERTY_STEERING_ANGLE). These are standardized
in the Android Open Source Project (AOSP).[2][3]

9.3.2 Structure

VHAL is implemented in C++ and runs in native space (under /vendor partition). It typically
communicates with the vehicle gateway or middleware via:

• Socket-based IPC
• Binder interface
• Shared memory
• Some/IP or gRPC interface

It translates external data into standardized property structures (VehiclePropValue), which
are published to the Android Car Service.

Academic Year: 2024-25
111

Example (simplified flow):

VehiclePropValue value;
value.prop = VEHICLE_PROPERTY_SPEED;
value.value.floatValues[0] = decodedSpeed;
mVehicleHal->setProperty(value);

This data is then pushed to the Car Service in the Android framework layer.[2][3][12]

9.4 Car Service and Car API

9.4.1 Car Service

The Car Service runs in the Android System Server process. It communicates with the Vehicle
HAL via Binder IPC and provides higher-level access to vehicle data through a managed API
layer.

It defines the permission model and ensures that only authorized components can read or
modify certain vehicle properties.
For example:

• Speed or fuel level may be read by any system UI component.
• Door lock status or ignition control is restricted to system-only components.

9.4.2 Car API (Application Layer)

Applications in the Android domain use the Car API, part of the android.car package, to read
or subscribe to vehicle signals.

Example Java/Kotlin usage:

val car = Car.createCar(context)
val carPropertyManager = car.getCarManager(Car.PROPERTY_SERVICE) as
CarPropertyManager

carPropertyManager.registerCallback(object :
CarPropertyManager.CarPropertyEventCallback {
 override fun onChangeEvent(value: CarPropertyValue<*>) {
 if (value.propertyId == VehiclePropertyIds.PERF_VEHICLE_SPEED) {
 val speed = value.value as Float
 // Use vehicle speed as input for adaptive lighting visualization
 }
 }
 override fun onErrorEvent(propId: Int, zone: Int) {}
}, VehiclePropertyIds.PERF_VEHICLE_SPEED, CarPropertyManager.SENSOR_RATE_ONCHANGE)

This abstraction ensures that the app never directly interacts with CAN data; instead, it
receives high-level vehicle properties published by the VHAL. [2][3][12]

Academic Year: 2024-25
112

9.5 Integration Example: SOA Adaptive Light Beam Controller

In the context of the thesis:

1. Signal Origin:
o Real-world: Vehicle’s ambient light sensor and steering angle sensor transmit

data over the CAN bus.
o Simulated case: The system emulates these signals (e.g., through test datasets

or synthetic generators in Simulink).
2. Gateway Translation:

o The vehicle gateway decodes CAN frames and exposes standardized properties
such as:

▪ VehiclePropertyIds.STEERING_ANGLE
▪ VehiclePropertyIds.AMBIENT_LIGHT_LEVEL

3. Vehicle HAL Integration:
o The HAL receives these signals through IPC (e.g., Some/IP or shared memory)

and converts them into VehiclePropValue objects.
4. Android Framework:

o The Car Service receives updates and broadcasts them through the
CarPropertyManager interface.

5. Application Consumption:
o The SOA Adaptive Light Beam Controller (Android app) subscribes to relevant

properties and uses them to drive adaptive-lighting logic (simulated or
visualized).

In a real automotive deployment, the adaptive lighting actuation would occur in a separate,
safety-certified ECU (e.g., Body Controller), while Android handles visualization, settings, or
simulation only.

9.6 Safety and Isolation Considerations

Even though vehicle signals from CAN reach Android, the data path is strictly one-way for
most properties. Android applications are:

• Read-only for safety-critical properties.
• Rate-limited to prevent flooding the HAL or gateway.
• Permission-restricted using Android’s automotive permission model

(android.car.permission.CAR_SPEED, etc.).

This ensures freedom from interference, where failures in the Android domain cannot
compromise the safety-critical vehicle control logic.[2][3][12]

9.7 Summary

Layer Function Example Technology

Sensors/ECUs Generate raw signals CAN, LIN, FlexRay

Academic Year: 2024-25
113

Vehicle
Gateway

Decode & abstract data AUTOSAR, RTOS, Some/IP

Vehicle HAL Standardize vehicle properties C++ HAL module

Car Service Manage access & publish data Android system server

Application Consume vehicle data SOA Adaptive Light Beam
Controller

Academic Year: 2024-25
114

REFERENCES/BIBLIOGRAPHY

[1] Migrating Traditional Automotive Applications to SOA for Software-Defined Vehicles -

MATLAB & Simulink

[2] Automotive | Android Open Source Project

[3] Android Automotive OS overview | Android for Cars | Android Developers

[4] software defined vehicles - Video e Webinar - MATLAB & Simulink

[5] SDV: Integrating Simulink C++ Generated Code in Android Automotive Environment -

MATLAB & Simulink

[6] Run apps on the Android Emulator | Android Studio | Android Developers

[7] https://it.mathworks.com/videos/sdv-integrating-simulink-c-generated-code-in-

android-automotive-environment-1691429159219.html

[8] OTA update in Android Automotive

[9] System Composer - MATLAB

[10] https://medium.com/androiddevelopers/getting-started-with-c-and-android-native-

activities-2213b402ffff

[11] ISO 26262: Road Vehicles – Functional Safety.

[12] Android Open Source Project: Vehicle System Isolation in Android Automotive

[13] SYSGO: Mixed-Criticality Partitioning in PikeOS

[14] QNX: QNX Hypervisor for Safety – Product Brief

[15] Qualcomm Technologies: Snapdragon Ride Flex – Mixed-Criticality SoC Architecture

[16] MathWorks: Embedded Coder for Automotive Applications

[17] Android Automotive build your first app

https://it.mathworks.com/company/technical-articles/migrating-traditional-automotive-applications-to-soa-for-software-defined-vehicles.html
https://it.mathworks.com/company/technical-articles/migrating-traditional-automotive-applications-to-soa-for-software-defined-vehicles.html
https://source.android.com/docs/automotive
https://developer.android.com/training/cars/platforms/automotive-os
https://it.mathworks.com/videos/search.html?q=software%20defined%20vehicles&page=1
https://it.mathworks.com/videos/sdv-integrating-simulink-c-generated-code-in-android-automotive-environment-1691429159219.html
https://it.mathworks.com/videos/sdv-integrating-simulink-c-generated-code-in-android-automotive-environment-1691429159219.html
https://developer.android.com/studio/run/emulator
https://it.mathworks.com/videos/sdv-integrating-simulink-c-generated-code-in-android-automotive-environment-1691429159219.html
https://it.mathworks.com/videos/sdv-integrating-simulink-c-generated-code-in-android-automotive-environment-1691429159219.html
https://source.android.com/docs/core/ota
https://it.mathworks.com/products/system-composer.html
https://medium.com/androiddevelopers/getting-started-with-c-and-android-native-activities-2213b402ffff
https://medium.com/androiddevelopers/getting-started-with-c-and-android-native-activities-2213b402ffff
https://medium.com/@sreelakshmis.dilip/android-automotive-build-your-first-app-f4b882eb01e5

