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Abstract 

The increasing complexity and software centrality of modern vehicles have necessitated a shift 

from traditional monolithic software architectures to modular, scalable paradigms. This thesis 

explores the migration from Monolithic Algorithms to Service-Oriented Architectures (SOA) in 

Software-Defined Vehicles (SDVs), using a practical case study: the design and simulation of 

an Adaptive Light Beam Controller (ALBC) in Simulink. Both monolithic and SOA-based 

architectures are developed and evaluated, with a comparative analysis focusing on 

modularity, maintainability, over-the-air (OTA) update readiness, and cross-domain 

integration. 

To validate the practical feasibility of these architectures, Embedded Coder is used to generate 

C++ code from both Simulink models. The generated code is successfully integrated into an 

Android Studio environment and deployed on an automotive emulator, simulating real-time 

execution in an in-vehicle context. The results demonstrate that SOA not only enhances 

software modularity and service independence but also significantly improves deployment 

flexibility and future maintainability. This work provides a comprehensive methodology for 

transitioning automotive control systems to SOA using model-based design, automated code 

generation, and rapid prototyping on virtual platforms. 
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Chapter 1 

1. Introduction 

1.1 Background and Motivation 

• Software in modern vehicles has grown from basic control systems to complex, 

interconnected platforms enabling autonomous features, infotainment, connectivity, 

and adaptive behaviours. [4] 

• Software-Defined Vehicles (SDVs) represent a paradigm shift where vehicle functions 

are increasingly implemented, updated, and controlled via software. [4] 

• Traditionally, automotive software systems have been monolithic, where each 

functionality is deeply integrated and dependent on specific hardware (ECUs), making 

updates and scaling difficult. 

• The demand for flexible, modular, and update-ready architectures has led to the 

adoption of Service-Oriented Architecture (SOA) in the automotive domain.[4] 

• The motivation is to study the benefits of SOA in practice, specifically through 

modelling and implementation of an Adaptive Light Beam Controller (ALBC) system in 

both monolithic and SOA formats, using Simulink and Embedded Coder, and testing 

deployment feasibility using Android Studio on an automotive emulator.  

1.2 Problem Statement 

• Monolithic software architectures suffer from: 

o Lack of modularity and reuse 

o Difficulties in OTA (over-the-air) updates 

o Increased complexity in testing and validation 

o Long development cycles when modifying or extending systems 

• There is a lack of practical implementation studies showing the migration process to 

SOA in automotive systems using industry tools. 

• Key problem: How can we practically migrate a monolithic automotive function to a 

service-oriented model, and what are the measurable benefits in doing so? 

1.3 Research Objectives 

The main goals of the thesis are: 

• To design and simulate an Adaptive Light Beam Controller (ALBC) in both monolithic 

and SOA styles using Simulink. 
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• To generate C++ code using Embedded Coder from both architectural models. 

• To integrate and deploy this code in Android Studio on an automotive emulator for 

real-time execution testing. 

• To compare the architectures using criteria such as: 

o Modularity 

o Maintainability 

o OTA readiness 

o Code integration and reusability 

• To propose a reference workflow for migrating legacy monolithic automotive functions 

to a SOA-based implementation. 

1.4 Methodology Overview 

• Modelling: Develop the ALBC logic in Simulink under two architectural paradigms: 

o Tightly integrated monolithic 

o Loosely coupled service-oriented 

• Code Generation: Use Embedded Coder to export both designs into C++ code. 

• Integration: Import the generated code into Android Studio, wrap with JNI if needed, 

and simulate in an Android-based automotive emulator. 

• Evaluation: Measure performance, modularity, update complexity, and service 

isolation. 

1.5 Thesis Contributions 

This work contributes: 

• A side-by-side modelling and implementation of monolithic and SOA versions of a real-

world automotive function. 

• Demonstration of Embedded Coder's integration with Android-based environments. 

• A deployment workflow from Simulink → C++ → Android Studio → Emulator. 

• A comparison framework for evaluating monolithic vs SOA designs. 

• Insights into real-world challenges and benefits of SOA migration in SDVs. 
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Chapter 2 

2. Literature Review 

2.1 Software-Defined Vehicles (SDVs): A Paradigm Shift 

The automotive industry is transitioning from hardware-centric engineering to a software-

defined approach, where vehicle behaviour and capabilities are increasingly controlled by 

software. A Software-Defined Vehicle (SDV) decouples functionality from hardware through 

abstraction layers and centralized computing. This enables manufacturers to: 

• Roll out new features via over-the-air (OTA) updates 

• Reduce time-to-market 

• Adapt vehicle behaviour dynamically based on data and context 

Key industry players (e.g., Tesla, Volkswagen, Toyota, BMW) are investing in SDV platforms 

built around centralized electronic architectures and zonal computing units. This trend has 

driven the need for flexible, modular, and update-ready software architectures, such as SOA. 

[1][4] 

2.2 Monolithic Architectures in Automotive Systems 

Historically, vehicle functions have been developed in monolithic architectures: 

• Code is organized as tightly coupled modules 

• Functions are often embedded directly into hardware (ECUs) 

• Dependencies between modules are high 

• Updates typically require complete revalidation or hardware flashing 

While monolithic designs were effective for early embedded systems, they suffer from several 

limitations in the SDV era: 

Aspect Monolithic Limitation 

Modularity Difficult to isolate or reuse components 

Maintainability High impact of small changes 

OTA updates Rarely supported; complex and risky 

Scalability Hard to extend due to rigid structure 

Testing Time-consuming due to integration dependencies 

This has led to a growing consensus that legacy monolithic systems must evolve toward 

modular and service-oriented paradigms. 
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2.3 Service-Oriented Architecture (SOA) in Automotive 

SOA is a software architecture paradigm that structures applications as loosely coupled, 

independently deployable services. Each service performs a specific function and 

communicates through well-defined interfaces (e.g., APIs or middleware). [1][4] 

Benefits of SOA in SDVs: 

• Modularity: Services can be developed and tested independently. 

• Scalability: New features can be added without modifying the core system. 

• OTA Readiness: Individual services can be updated dynamically. 

• Cross-Domain Communication: Facilitates interaction between powertrain, 

infotainment, ADAS, and other domains. 

SOA Standards in Automotive: 

• AUTOSAR Adaptive Platform: An industry standard supporting POSIX-based OS, 

service discovery, and dynamic deployment. 

• DDS (Data Distribution Service) and SOME/IP: Common middleware protocols for 

real-time communication in SOA-based ECUs. 

• ISO 26262: Safety standard requiring traceable and testable modules, which SOA 

supports. 

Challenges: 

• Real-time constraints and communication latency 

• Migration of legacy monolithic code 

• Integration complexity and toolchain compatibility 

• Ensuring system safety and performance under distributed control 

2.4 Model-Based Design and Simulink in Embedded Systems 

Model-Based Design (MBD) is a design methodology where system functionality is captured 

in graphical models rather than textual code. Simulink, a widely adopted MBD tool by 

MathWorks, allows: 

• Rapid prototyping of control algorithms 

• Simulation of real-world systems and behaviour 

• Automatic code generation for embedded deployment 

In automotive engineering, Simulink enables system engineers to: 



Academic Year: 2024-25                                                                                                                       
12 
 

• Design functional blocks (sensors, controllers, actuators) 

• Simulate system response under various scenarios 

• Validate functional safety requirements before coding 

• Reuse validated models across platforms 

In thesis, Simulink is used to design the Adaptive Light Beam Controller (ALBC) in both 

monolithic and SOA styles. 

2.5 Embedded Coder and C++ Code Generation 

Embedded Coder is a MATLAB tool that extends Simulink to generate highly optimized and 

readable C/C++ code from models for embedded targets. Key features include:[16] 

• Code mapping for model elements (inputs, outputs, functions) 

• Integration with software-in-the-loop (SIL) and processor-in-the-loop (PIL) workflows. 

• Generation of reusable software components aligned with AUTOSAR, ISO 26262, and 

other standards. 

• Configuration of function interfaces for integration into target projects (e.g., Android, 

Linux-based ECUs).  

For my project, Embedded Coder is used to: 

• Export both monolithic and SOA-based ALBC models as C++ code 

• Integrate them into Android Studio 

• Deploy and run them on an automotive emulator 

2.6 Android-Based Automotive Emulators 

Android-based platforms are increasingly used for prototyping and simulating automotive 

applications. Tools like Android Automotive OS (AAOS) provide a real-time OS environment 

and UI for vehicle functions.[6] 

Why Use Android Emulators? 

• Safe, virtual testing environment for embedded software 

• Support for C++ libraries via JNI (Java Native Interface) 

• Integration with Android Studio for app development and deployment 

• Emulates user interaction and service behaviour in an SDV-like environment 

In this thesis, C++ code from Embedded Coder is compiled into Android-native code, deployed 

to the emulator, and validated against expected ALBC behaviour. 
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2.7 Summary and Research Gaps 

This chapter highlighted the evolution from monolithic to SOA in automotive systems and the 

importance of model-based design and code generation in this transition. 

Key Gaps Identified: 

• A lack of end-to-end case studies demonstrating the full pipeline from model-based 

design → code generation → integration → emulator deployment. 

• Limited academic examples showing side-by-side comparisons between monolithic 

and SOA implementations using industry-standard tools. 

• Insufficient guidelines on how to structure SOA components in Simulink and deploy 

them as real-time services. 

This thesis addresses these gaps by designing, implementing, generating, and deploying both 

monolithic and SOA versions of an automotive control function — the Adaptive Light Beam 

Controller (ALBC) — and evaluating their comparative merits in a simulated real-time 

environment. 
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Chapter 3 

3. Design of Adaptive Light Beam Controller – Monolithic Architecture 

3.1 Functional Requirements and Test Case Description 

FR1: High Beam Mode 

Requirement: 

• The system shall activate High Beam mode when all the following conditions are met: 

o No oncoming vehicles detected (VehicleOncoming == 0) 

o Vehicle speed is greater than or equal to 50 km/h (VehicleSpeed >= 50) 

o Ambient light level is below 20 lux (AmbientLight < 20) 

• When activated, the system shall: 

o Set beam range to 100 meters (BeamRange = 100) 

o Set beam angle to 0 degrees (BeamAngle = 0) 

Test Cases: 

• TC1.1: Verify High Beam activates when no oncoming vehicle, speed = 60 km/h, 

ambient light = 10 lux. Expect beam range = 100 m, beam angle = 0° 

• TC1.2: Verify High Beam does NOT activate when an oncoming vehicle is detected, 

even if speed and light conditions are met. 

• TC1.3: Verify High Beam does NOT activate if speed < 50 km/h regardless of other 

conditions. 

• TC1.4: Verify High Beam does NOT activate if ambient light ≥ 20 lux regardless of 

other conditions. 

FR2: Cornering Beam Mode 

Requirement: 

• The system shall activate Cornering Beam mode when the steering angle is greater 

than or equal to 10 degrees (SteeringAngle >= 10°) 

• When activated, the system shall: 

o Set beam range to 50 meters (BeamRange = 50) 

o Adjust beam angle dynamically using a discrete controller based on road 

curvature (BeamAngle = BeamPID(RoadCurvature)) 

Test Cases: 
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• TC2.1: Verify Cornering Beam activates when steering angle = 15°, beam range is set 

to 50 m, and beam angle adjusts based on simulated road curvature input. 

• TC2.2: Verify Cornering Beam does NOT activate when steering angle < 10°. 

• TC2.3: Verify beam angle changes smoothly with varying road curvature inputs using 

discrete controller behaviour. 

FR3: City Mode 

Requirement: 

• The system shall activate City Mode when: 

o Vehicle speed is less than or equal to 30 km/h (VehicleSpeed <= 30) 

o Ambient light level is above 30 lux (AmbientLight > 30) 

• When activated, the system shall: 

o Set beam range to 30 meters (BeamRange = 30) 

o Set beam angle to 0 degrees (BeamAngle = 0) 

Test Cases: 

• TC3.1: Verify City Mode activates when vehicle speed = 20 km/h and ambient light = 

40 lux. 

• TC3.2: Verify City Mode does NOT activate if speed > 30 km/h even if ambient light is 

high. 

• TC3.3: Verify City Mode does NOT activate if ambient light ≤ 30 lux even if speed is low. 

FR4: Low Beam Mode 

Requirement: 

• The system shall activate Low Beam mode when an oncoming vehicle is detected 

(VehicleOncoming == 1) 

• When activated, the system shall: 

o Set beam range to 50 meters (BeamRange = 50) 

o Set beam angle to 0 degrees (BeamAngle = 0) 

Test Cases: 

• TC4.1: Verify Low Beam activates when an oncoming vehicle is detected regardless of 

speed or ambient light. 

• TC4.2: Verify Low Beam deactivates when no oncoming vehicle is detected. 

• TC4.3: Verify beam range and angle remain at 50 meters and 0 degrees respectively 

while Low Beam mode is active. 
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3.2 Modelling of Adaptive Light Beam Controller in Simulink 

The Adaptive Light Beam controller is developed using a Model-Based Systems Design (MBSD) 

approach within Simulink, leveraging Stateflow for state machine implementation. Each input 

signal, along with its corresponding measurement unit, is fed into the Stateflow chart to 

ensure clarity and proper handling of physical quantities (as illustrated in the accompanying 

figure).  

The Stateflow chart consists of four distinct states: LowBeam, HighBeam, CorneringBeam, 

and CityMode. The system transitions between these states based on specific input 

conditions, maintaining a single active state at any given time. Within each state, output 

signals are generated and adjusted accordingly to control the adaptive lighting behaviour. 

A key feature of the system is the CorneringBeam state, which goes beyond a simple state 

transition condition. When the steering angle exceeds a threshold value of 10 degrees, the 

beam angle dynamically adjusts to follow the road curvature. This adaptive behaviour is 

implemented through a discrete controller designed to modulate the beam angle based on 

the steering input, enabling enhanced visibility during cornering manoeuvres. 

The design procedure of this discrete controller involves: 

• Sampling the road curvature input at fixed intervals to compute the required beam 

angle adjustment. 

• Implementing a control algorithm that maps the road curvature to a corresponding 

beam deflection angle, ensuring smooth and timely response. 

• Incorporating saturation limits which is of +-60° and safety checks to prevent excessive 

beam movement and maintain driver safety. 

• Validating the controller performance within the Simulink environment through 

simulation, confirming that the beam adjustment closely follows the vehicle’s steering 

dynamics.  
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Figure 1: Monolithic ALBC Simulink design 

 

Figure 2: State chart corresponding to ALBC 

 

Figure 3: Beam discrete controller design 
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3.3 Discrete Controller Design Using the Diophantine Equation Approach 

To achieve precise control of the beam angle in the Cornering Beam state, a discrete controller 

was designed following a Diophantine equation-based methodology. This approach enables 

the direct synthesis of a digital controller that meets specified dynamic performance criteria 

by solving polynomial equations in the discrete domain. 

The continuous-time plant model representing the beam angle dynamics was initially defined 

as: 

𝐺𝑐𝑜𝑛𝑡(𝑠) =
1

0.1 ∗ 𝑠2 + 0.5 ∗ 𝑠 + 11
 

This transfer function captures the relevant dynamics of the beam actuation system. The 

system was converted into its state-space representation for detailed analysis and controller 

synthesis. 

Using a sampling time of Ts=0.01seconds, the system was discretized. Rather than relying 

solely on standard discretization methods, the discrete transfer function was manually derived 

and expressed as: 

𝐺(𝑧) = 0.00049173(𝑧 + 0.9835)/(𝑧2 − 1.95𝑧 + 0.9512) 

The poles and zeros of the discrete system were extracted and analysed to characterize the 

system's behaviour in the z-domain. 

Performance specifications were defined based on overshoot (sovr=20%), settling time 

(tso=0.4t seconds), and rise time (tro=0.14t seconds). These parameters were used to 

calculate the damping ratio ζ and natural frequency ωn necessary to meet the design criteria: 

𝜁 = 𝑎𝑏𝑠 (
ln(𝑠𝑜𝑣𝑟)

𝑠𝑞𝑟𝑡(𝜋2 + ln(𝑠𝑜𝑣𝑟)2)
) 

where ωn,ts and ωn,tr  are derived from settling time(ts) and rise time(tr) constraints 

respectively. 

𝑤𝑛, 𝑡𝑠 =
4.6

(𝑡𝑠 ∗ 𝜁)
 

𝑤𝑛. 𝑡𝑟 =
(𝜋 − acos(𝜁))

𝑡𝑟 ∗ √(1 − 𝜁2)
 

 

The core of the controller design involved solving the Diophantine equation to determine 

controller polynomials R(z) and S(z) such that the closed-loop characteristic polynomial 

matched the desired dynamics. This was done by constructing Sylvester matrices from the 

plant polynomials and solving for the unknown coefficients. 
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The resulting controller transfer function 𝐶(𝑧) =
𝑆(𝑧)

𝑅(𝑧)
 was simplified and converted to state-

space form for implementation and simulation within Simulink. 

Key steps included: 

• Extracting discrete system zeros and poles for polynomial formation. 

• Constructing and solving the Sylvester matrix equation representing the Diophantine 

condition. 

• Designing the controller to place closed-loop poles inside a cardioid region defined by 

the damping ratio ζ, ensuring system stability and desired transient response. 

• Simulating the closed-loop response in Simulink to validate performance, with plots of 

error, reference, and output signals confirming controller effectiveness. 

This methodical approach provided a systematic framework to synthesize a discrete controller 

capable of dynamically adjusting the beam angle based on steering inputs, thus enhancing 

vehicle safety and driver visibility during cornering. 

Obtained controller function after the computation is: 

𝐶(𝑧) = 57.958
𝑧2 −  1.95𝑧 +  0.9512

(𝑧 − 1)(𝑧 − 0.7665)
 

3.4 Limitations of the Monolithic Implementation 

While the monolithic implementation of the Adaptive Light Beam controller within a single 

Stateflow chart offers straightforward integration and centralized logic management, it 

presents several inherent limitations: 

1. Scalability Issues 

As the complexity of the system grows, the monolithic design becomes increasingly 

difficult to maintain and extend. Adding new features or modifying existing behaviour 

requires navigating and updating a large, intertwined state machine, which can be 

error-prone and time-consuming. 

2. Reduced Modularity and Reusability 

The tightly coupled design limits the ability to reuse individual components or states 

in other projects or contexts. Reusability is crucial in model-based design for efficient 

development cycles, but the monolithic approach often forces duplication or 

extensive refactoring. 

3. Testing and Debugging Challenges 

Debugging complex state transitions and signal interactions in a single, large 

Stateflow chart can be cumbersome. Isolating faults or verifying specific functionality 
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requires significant effort due to the interdependencies between states and shared 

variables. 

4. Limited Team Collaboration 

In a monolithic model, parallel development is hindered because multiple developers 

working on the same Stateflow chart can cause merge conflicts or overwriting of 

changes. Modular implementations facilitate better task distribution and integration. 

5. Performance Constraints 

Large state machines may introduce computational overhead and increase simulation 

times, which is critical for real-time embedded systems. Optimizing and profiling 

performance in a monolithic setup can be more difficult compared to modular designs. 

6. Difficulty in Formal Verification and Validation 

Formal methods for verifying system correctness are more challenging to apply on 

large monolithic models due to state space explosion and the complexity of 

interactions. Modular approaches can simplify verification by reducing state space 

and isolating functionality. 

Overall, while the monolithic implementation serves well for initial prototyping and small-

scale systems, transitioning to a modular or hierarchical design is recommended for 

enhanced maintainability, scalability, and robustness in larger and more complex adaptive 

lighting control systems. 

3.5 Challenges in Migrating Legacy Application to SOA 

Migrating legacy applications, such as the monolithic Adaptive Light Beam controller, to a 

Service-Oriented Architecture (SOA) framework presents several key challenges: 

1. Monolithic Design and Complexity of Decomposition 

Legacy systems are often tightly coupled with no clear modular boundaries, making it 

difficult to identify and extract discrete, reusable services. Decomposing intertwined 

logic requires deep domain knowledge and thorough understanding of dependencies. 

2. Sequential Order of Execution 

Legacy applications usually follow a predefined sequential execution order. This rigid 

sequence complicates converting the system into loosely coupled services that 

support dynamic discovery and reconfiguration at runtime. 

3. Data and Interface Standardization 

Heterogeneous data formats and proprietary communication protocols are common 

in legacy systems. Ensuring consistent data representation and defining standardized 

service interfaces requires significant re-engineering for interoperability within SOA. 



Academic Year: 2024-25                                                                                                                       
21 
 

4. Performance Overhead 

SOA introduces communication overhead through network calls and message 

processing. Real-time control systems, such as adaptive lighting, have strict timing 

requirements that may be compromised if service granularity and communication 

mechanisms are not carefully optimized. 

5. Ensuring Functional Equivalence 

Maintaining exact legacy system behaviour during and after migration is challenging. 

Reconstructed services must faithfully replicate original control logic, especially in 

safety-critical automotive applications where deviations can cause hazards. 

6. Integration with Existing Infrastructure 

Legacy systems often rely on proprietary hardware and tightly integrated components. 

Adapting these into a loosely coupled SOA may require additional middleware or 

adapters, increasing system complexity. 

7. Testing and Validation Complexity 

Breaking the system into multiple interacting services complicates system-level 

testing. Comprehensive validation must cover both individual services and their 

interactions under diverse conditions to ensure reliability. 

8. Change Management and Team Skillsets 

Migrating to SOA requires organizational change, including retraining teams on new 

paradigms, tools, and communication protocols. Resistance and learning curves can 

slow the migration process. 

9. Security Concerns 

SOA exposes services over networks, increasing the attack surface. Legacy systems 

need robust authentication, authorization, and encryption to ensure security in a 

distributed environment. 

3.6 Summary 

While SOA migration offers benefits such as modularity, scalability, and easier maintenance, 

addressing these challenges demands careful planning, iterative development, and thorough 

testing. Utilizing Model-Based Design methodologies and domain expertise can help 

facilitate a smooth and effective migration, preserving system performance, safety, and 

reliability. 
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Chapter 4 

4. Design of Adaptive Light Beam Controller – Service-Oriented Architecture 

4.1 Decomposition of Traditional Software components into services 

Decomposing traditional application software compositions into services is a critical step in 

transitioning to a Service-Oriented Architecture (SOA). This process involves breaking down a 

monolithic architecture into smaller, modular components, enabling greater flexibility, 

scalability, and adaptability, particularly in the context of Software-Defined Vehicles 

(SDVs).[1][4][10] 

The decomposition process can be broadly divided into four sequential steps, each 

represented as distinct phases in the transformation from monolithic applications to service-

oriented systems: 

4.1.1 Identify and Analyse Services 

The first and most challenging step is to identify the potential services, including key 

components, functionalities, execution order, and dependencies within the existing 

monolithic system. Engineers must carefully analyse these elements to determine 

logical service boundaries and to decompose the monolithic application into smaller, 

manageable components. [1][4] 

4.1.2 Define Services and Interfaces 

Once services are identified, the next step is to clearly define the interfaces between 

them. This involves specifying communication protocols and data formats to ensure 

seamless interaction. Well-defined interfaces are essential for enabling 

interoperability and loose coupling between services. [1][4] 

4.1.3     Define Service Contracts 

Service contracts formalize the interaction rules between services. They specify terms 

and conditions, including service versioning, error handling, and performance 

expectations. In automotive systems, these concepts are embodied in standards like 

the AUTOSAR 22-11 schema, which supports versioning to allow new service versions 

without disrupting existing clients. [1][4] 

4.1.4 Implement and Deploy Services 

The final step involves implementing each service as an independent application. This 

includes creating the necessary artifacts such as interface descriptions, 

communication bindings, and deployment packages. Each service can then be 
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deployed, managed, and updated independently, supporting scalability and 

maintainability. [1][4] 

This structured approach ensures a systematic and controlled migration from traditional 

monolithic software to a modern SOA, facilitating the development of modular, reusable, and 

maintainable components suitable for complex automotive applications. 

4.2 Using Model-Based Design to Decompose Adaptive Light Beam Controller Monolithic 

Application into Services 

Model-Based Design (MBD) has long been used to develop applications for both non-

AUTOSAR and AUTOSAR Classic frameworks. More recently, it has also been extended to 

support Service-Oriented Architecture (SOA) based applications, including those developed 

on the AUTOSAR Adaptive platform and generic SOA frameworks. In the context of Software-

Defined Vehicles (SDVs), the industry commonly leverages either a generic SOA or AUTOSAR 

Adaptive-based SOA. Model-Based Design offers a unified development platform that 

efficiently manages the entire development lifecycle across these diverse platforms—ensuring 

consistency, reusability, and increased development efficiency. [1][4][9] 

The process of using Model-Based Design to decompose monolithic application components 

into modular services involves several key steps: 

4.2.1. Identify and Analyse Services 

The initial step is to thoroughly understand the components of the legacy monolithic 
application, including their functionalities, execution order, and interdependencies. Typically, 
monolithic applications are deployed as a single executable artifact containing all components 
bundled together (Figure 4: Monolithic ALBC Simulink design). 

For example, consider the Adaptive Light Beam Controller—a key automotive system 

responsible for managing multiple lighting modes such as Low Beam, High Beam, Cornering 

Beam, and City Mode. Initially, this functionality may exist as a monolithic Stateflow model. 

To migrate such legacy monolithic designs toward a Service-Oriented Architecture (SOA), 

Model-Based Design (MBD) principles are applied—specifically: 

• Single Responsibility Principle: Each service should perform one well-defined 

function. [1][4] 

• Dependency Inversion Principle: High-level services should depend on abstract 

contracts (e.g., APIs or events), rather than on the concrete implementations of lower-

level services. [1][4] 

By applying these principles, the monolithic system can be systematically decomposed into 

distinct, reusable services—such as the VehicleOncoming Service, AmbientLight Service, 

VehicleSpeed Service, SteeringAngle Service, RoadCurvature Service, and 

BeamAngleController Service. 
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This decomposition isolates functionality into loosely coupled services, allowing independent 

development and easier maintenance. For instance, the cornering beam logic that adjusts 

beam angle based on steering input can be encapsulated as a separate service, distinct from 

the main Stateflow component. 

4.2.2. Define Services and Interfaces 

Once services are identified, the next step is to define clear interfaces for each service. These 

interfaces form the boundaries through which services communicate with each other, 

encapsulating functionality and enabling benefits such as reuse, maintainability, version 

control, and orchestration. 

Using tools like System Composer, engineers can configure service ports and interfaces, ensure 

data consistency and visually represent dependencies and interactions between services.  (see 

Figure 12) [1][4][9] 

4.2.3. Define Service Contracts 

Establishing explicit service contracts is critical to delineate each service’s inputs, outputs, and 

expected behaviour. Well-defined contracts allow services to be developed, tested, and 

deployed independently without tight coupling to other system components. Service 

contracts also facilitate backward-compatible versioning, enabling new service versions to be 

released without disrupting existing clients. (see figure 13, 14) [1][4][9] 

4.2.4. Implement and Deploy Services 

Finally, services are implemented using Model-Based Design’s client-server interfaces. 

Applications like the Adaptive Light Beam controller’s discrete control modules are realized as 

separate service components within Simulink. These modular services can then be 

independently deployed within an SOA environment. 

Additionally, Embedded Coder can be used to generate C++ code from these models for 

deployment in generic SOA applications, facilitating integration with existing middleware and 

runtime environments. [1][4][9] 

This Model-Based Design workflow provides a systematic approach to transforming 

monolithic automotive software, including complex controllers like the Adaptive Light Beam 

system, into modular, service-oriented applications. This supports scalability, maintainability, 

and efficient integration in modern SDVs.  

4.3 SOA Model Implementation in Simulink 

4.3.1 How to define service and interfaces in Simulink 

In System Composer: 

1)Create a software architecture model  
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Figure 5: System composer software architecture model 

2) Create a software component box for our main application i.e. AdaptiveLightController  

 

Figure 6: Simulink software component 

3) Define all I/O in the main application and connect to Interface boundary of composition(as 

in below figure 7). The I/O of the application are: VehicleSpeed_km_h, RoadCurvature_per_m, 

SteeringAngle_degree, AmbientLight, VehicleOncoming, BeamAngle and BeamRange. 

 

Figure 7: Simulink Adaptive Light Controller(*) 
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4) Create a software component box for all new service components. Where the services are: 

VehicleOncomingService, VehicleSpeedService, AmbientLightService, SteeringAngleService, 

BeamAngleController and RoadCurvatureService. AdaptiveLightController is the main 

application.

 

Figure 8: Simulink Services software components(*) 

5) Connect all service components to main application (AdaptiveLightController)  with client 

server connectors 

 

Figure 9: Services connected to main application with client server connectors(*) 

6) Defining the Client and Server Interfaces using the Interface Editor 

Open the Interface Editor, and the Interfaces window will appear below. Select “Add data 

interface”, then choose Service Interface from the options. This will create a new service 

interface. You can now name it according to your application requirements (e.g., 

AmbientLight_servif). 
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Figure 10:  Client server interface definition 

Once the service interface is created, add elements that define the service behavior — such 

as the input it receives, the function it executes, and the output it produces. To do this, select 

“Add element to the selected interface” from the Interfaces window (located next to Add data 

interface). This will generate a default function prototype in the form y = f(u), which you can 

modify as needed. 

For example, in AmbientLight_servif, I created a function called computeAmbientLight. It takes 

AmbientLight as input and returns outAmbientLight as output. The final function looks like: 

outAmbientLight = computeAmbientLight(AmbientLight) 

In the same way, additional service interfaces can be created for other services, as illustrated 

in the figure. 

 

 

Figure 11: Client service interface function definition 
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Figure 12: Client service all functions definition 

7) After having created the service interface, then link them to the client-server connector. For 

example: 

1. Select the service interface (e.g., AmbientLight_servif). 

2. Right-click on the client and server ports. 

3. Choose "Apply selected interface: AmbientLight_servif". 

To verify that the service interface is correctly assigned to both ports, select the interface. If 

the client and server ports are highlighted in purple, it confirms that the interface has been 

successfully linked. 

8) To create the Simulink behaviour model for a service component: 

1. Right-click on the service software component. 

2. Select "Create Simulink Behaviour", then click OK. 

Repeat this process for each service component to generate their respective Simulink 

behaviour models. 
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Figure 13: Simulink behaviour for a service(*) 

8) Create the Simulink behavior model for the Main Application (i.e., AdaptiveLightController) 

by following these steps: 

1. Right-click on the AdaptiveLightController software component. 

2. Select "Create Simulink Behavior" and click OK. 

Ensure that all input/output (I/O) connections are properly attached to the Main Application 

component, while the service components should already be connected via their respective 

client-server interfaces. 

 

Figure 14: Simulink behaviour for a main application(*) 

9) Design of the Main Application (AdaptiveLightController) 

In the previous step, Simulink automatically generated the input and output bus signals and 

created a Function-Call Subsystem for each connected service interface. If the service function 

is defined in a format such as outAmbientLight = computeAmbientLight(AmbientLight), the 



Academic Year: 2024-25                                                                                                                       
30 
 

corresponding input (AmbientLight) and output (outAmbientLight) signals are added to the 

Function-Call Subsystem 

 

.  

Figure 15: Add input and output signal to Function call subsystem 

Figure 16 illustrates the internal structure of the computeAmbientLight client function call. It 

includes a Function Caller block that receives the input signal and invokes the server 

counterpart. The server performs the necessary computation and returns the output signal, 

which is then utilized by the main application. This setup exemplifies how the Service-Oriented 

Architecture (SOA) promotes modularity by decoupling the server implementation from the 

main application. This separation enables independent updates to the server logic over time 

and supports use cases such as Over-the-Air (OTA) updates.

 

Figure 16: Inside the Function Call Subsystem 
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Figure 17 shows the server counterpart of a service call, which is triggered when the Function-

Call Subsystem in the main application invokes the corresponding function.

 

Figure 17: Server counterpart of the Function Call subsystem 

Similar client-server service calls are defined for other functionalities, reinforcing the modular 

and scalable nature of the SOA-based system design.

 

Figure 18: Inside of the Server counterpart of the Function Call Subsystem 

The AdaptiveLightController is structured in a modular, service-oriented way: 

• Each Function-Call Subsystem corresponds to a specific service (e.g., AmbientLight, 

VehicleSpeed, etc.). 

• These subsystems take their respective input bus signals—for example, the 

AmbientLight Function-Call Subsystem receives the Ambient Light input, and so on for 

the others. 

Stateflow Integration in SOA-Based Design 

In the previous Monolithic Design of the AdaptiveLightController, a single Stateflow chart was 

used to implement the internal logic controlling Beam Range and Beam Angle. 

In the SOA-based redesign, we continue to use a Stateflow-based approach, but with an 

important architectural adjustment: 

The Stateflow chart is now placed inside a Function-Call Subsystem. 
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This design decision is essential in the context of Service-Oriented Architecture (SOA) and 

AUTOSAR compatibility: 

•  Enables event-driven execution of the control logic. 

• Aligns with AUTOSAR runnable semantics, where function-call triggers map directly to 

runnable. 

• Promotes modularity, easier testing, and standards-compliant behaviour modelling. 

 

Figure 19: Main Application with State chart inside Function call Subsystem 

Final Architecture Overview 

The resulting AdaptiveLightController is a modular, SOA-compliant system where: 

• Each service input is handled by a dedicated Function-Call Subsystem. 

• The core decision logic, implemented via Stateflow, is triggered through a function-

call, ensuring the system only reacts when relevant inputs or events occur. 

• This setup defines the internal logic that determines Beam Range and Beam Angle, 

based on service-provided environmental and vehicle data. 

The figure 19 illustrates the final AdaptiveLightController architecture, showcasing the clean 

separation of services and the centralized decision logic encapsulated in the Stateflow-driven 

subsystem. 
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Figure 20: State Flow with input and output signals 

 

Figure 21: Logic inside Stateflow which determine state of system 

 

4.4 Advantages Observed from SOA-Based Design 

The adoption of a Service-Oriented Architecture (SOA) in the design of the Adaptive Light 

Beam Controller has introduced several key advantages compared to the traditional 

monolithic approach: 

 1. Modularity and Reusability 

• Each function (e.g., ambient light sensing, vehicle speed handling) is encapsulated as 

an independent service component. 

• These services can be reused across different applications or systems without 

redesign. 

• Changes to one service do not impact others, as long as interfaces remain unchanged. 
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 2. Improved Maintainability 

• The clear separation of logic into client-server components allows for easier 

debugging, updates, and testing. 

• Individual services can be tested in isolation, reducing system complexity during 

validation. 

 3. Scalability 

• New services or features can be added without major rework. 

• For example, adding a new weather or camera-based input only requires integrating 

another service interface. 

 4. AUTOSAR Compliance 

• SOA aligns with AUTOSAR principles, enabling: 

o Standardized runnables and interface definitions 

o Compatibility with code generators and embedded platforms 

o Easier deployment in AUTOSAR Classic or Adaptive platforms 

5. Event-Driven Execution 

• Function-Call Subsystems trigger logic (e.g., Stateflow) only when needed, saving 

computational resources. 

• This mirrors real-world embedded execution, where runnables execute based on 

events or signals, not continuously. 

 6. Enhanced Integration and Interoperability 

• Clearly defined interfaces (ports and services) allow seamless integration with other 

components or external systems. 

• Encourages team-based parallel development, since service contracts are defined 

upfront. 
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Chapter 5 

5. Code Generation and Integration of the code into Android studio 

5.1 C++ Code Generation using Embedded Coder from Simulink Models 

The process of transforming a Simulink model into deployable C++ source code is a critical 

step in embedding model-based designs into real-time and embedded systems. MATLAB 

Embedded Coder provides specialized tools for generating high-quality, portable C and C++ 

code directly from Simulink models, which can then be integrated into target environments 

such as Android Studio for further development and deployment.[16]  

5.1.1 Overview of Embedded Coder 

Embedded Coder is an add-on to MATLAB/Simulink that: 

• Generates highly optimized C and C++ code from models and Stateflow charts. 

• Supports hardware-specific optimizations and integration hooks. 

• Offers configuration settings for data types, naming conventions, and file packaging. 

• Produces traceable code with links back to Simulink blocks for debugging. 

This capability is widely used in automotive, aerospace, and industrial control applications, 

where real-time performance and deterministic behaviour are critical. [16] 

5.1.2 Preparation of the Simulink Model 

Before initiating code generation, the Simulink model must be: 

1. Functionally validated – Ensure the simulation matches design requirements. 

2. Configured for code generation – Use Configuration Parameters → Code Generation 

to set: 

o System target file: ert.tlc (Embedded Real-Time) for standalone code. [16] 

o Language: C++ (instead of default C). [16] 

o Toolchain: Select an available C++ compiler compatible with your host system. 

[16] 

3. I/O interfaces defined – External inputs/outputs must be represented using Inports 

and Outports with clearly defined data types. [16] 

4. Sample times fixed – Embedded code requires deterministic execution rates. 

5.1.3 Set Configuration parameters for Code Generation 

1. Open Model Settings 
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In the Modelling tab, select Model Settings (or press Ctrl+E) to open the Configuration 

Parameters dialog. [16] 

2. Configure Solver Options 

o Navigate to the Solver pane. 

o Set Solver Type to Fixed-step. 

o Select discrete (no continuous states) as the solver. 

o Specify the Fixed-step size as Ts(0.01s), where Ts is the model’s sampling time. 

o This ensures a deterministic execution rate suitable for embedded code 

deployment. [16] 

3. Select System Target File 

o Go to the Code Generation pane. 

o Set System target file to ert.tlc (Embedded Real-Time) for high-quality 

standalone code generation. [16] 

4. Set the Target Language 

o In the Language field, choose C++ to produce object-oriented, portable code. 

[16] 

5. Adjust Build Process Settings 

o Under Build Process, enable Generate code only. [16] 

o This option produces the source files without compiling them, allowing for 

external integration in Android Studio. 

6. Choose Toolchain 

o In the Toolchain field, select MinGW64 | gmake (64-bit Windows). [16] 

o This ensures compatibility with Windows-hosted builds targeting cross-

platform deployment. 

7. Define Code Interface Packaging 

o In the Interface section of the Code Generation pane: 

▪ Set Code interface packaging to C++ Class. [16] 

▪ Configure additional interface parameters (e.g., class naming 

conventions, file packaging) according to project requirements. 

8. Set Hardware Implementation 
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o Go to the Hardware Implementation pane. 

o Set Hardware board to None. 

o Configure Device vendor and Device type according to the intended 

deployment hardware. 

With these settings, the generated C++ code will be optimized for embedded integration, 

modular in structure, and portable to Android Studio or other development environments. 

 

 

Figure 22: Solver configuration 
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Figure 23: Hardware implementation configuration 

 

Figure 24: Code generation configuration 
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5.2 Structure of File Folder after code generation in both Monolithic and SOA Simulink 

models 

5.2.1 File structure and generated files for Monolithic Simulink model 

1. After the code has been generated using embedded coder. It has generated two folders 

named slprj and MonolithicAdaptiveLightBeamController_ert_rtw.

 

Figure 25: Monolithic Application folder structure 

 

2. Inside the folder MonolithicAdaptiveLightBeamController_ert_rtw it has generated all 

the source code and header file which will be used while integrating the code into 

Android Studio. 

 

Figure 26: Files inside folder MonolithicAdaptiveLightBeamController_ert_rtw 

3. While file under slprj folder are not relevant for code integration into Android Studio 

5.2.2. File structure and generated files for SOA Simulink model 

1) File structure before Simulink run. 
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Figure 27: Simulink  files before code generation 

2) File structure after building the Simulink model and generating the code. The Simulink has 

created two folders: splrj and SOA_AdaptiveLightController_ert_rtw. 

 

Figure 28: File structure after code generation 

3) File inside folder slprj. 
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Figure 29: File inside folder slprj 

All the relevant code files are under ert folder. The file structure of ert folder. 

 

Figure 30: Files inside ert  folder 

Under the _sharedutils folder, you find code generated corresponding to the service interface. 

 

Figure 31: Files inside _sharedutils folder 

While in the folder corresponding to the service for instance AmbientLightService inside the 

folder you find it’s header and c++ code files and all relevant source code files. Similarly, rest 

of the services source code can be found in their respective folder. 
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Figure 32: Files inside service folder namely AmbientLightService 

4) File inside folder SOA_AdaptiveLightController_ert_rtw. 

Inside folder you find the source code files associated to the main architecture model. 

 

Figure 33: Files inside folder SOA_AdaptiveLightController_ert_rtw 

5.3 Code Integration in Android Studio of Monolithic Models 

This section provides a complete, step-by-step guide on integrating a monolithic Simulink 
model into an Android Automotive application. The process covers project setup, native code 
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integration, UI design, and build configuration, culminating in a runnable application on an 
automotive emulator. 

5.3.1 Project Setup and File Structure 

First, an Android Studio project is created using the Automotive template with No Activity. 
This provides a clean foundation without a default UI, allowing for a custom implementation. 
After creation, the project's folder structure is modified to accommodate the C++ model files. 

1. Open Android Studio, go to File > New > New Project, and select the Automotive 
template. [10] 

2. Choose No Activity when prompted and complete the remaining steps. [10] 
3. Create a new folder named cpp under automotive/src/main. 
4. Copy all the Simulink-generated C++ source files (.cpp and .h) and the native-lib.cpp 

file into this new cpp folder. 

 

Figure 34: Android Studio New Project 
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Figure 35: Android Studio New project setup 

After Finish android studio generate the following folders  
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Figure 36: Android Studio folder structure 
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Figure 37: Monolithic ALBC File structure in Android Studio 

 

5.3.2 Native C++ and JNI Bridge (native-lib.cpp) 

The native-lib.cpp file acts as a JNI wrapper, bridging the Java application and the C++ model. 
It exposes the model's core functions (initialize, step, and terminate) to the Java layer. 
C++ 
#include <jni.h> 
#include <string> 
#include <sstream> 
#include "MonolithicAdaptiveLightBeamController.h" 
 
// Global model instance 
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static MonolithicAdaptiveLightBeamController model; 
 
extern "C" JNIEXPORT void JNICALL 
Java_com_example_monolithicadaptivelightbeamcontroller_MainActivity_initModel( 
    JNIEnv* env, jobject /* this */) { 
    model.initialize(); 
} 
 
extern "C" JNIEXPORT jstring JNICALL 
Java_com_example_monolithicadaptivelightbeamcontroller_MainActivity_stepModel( 
    JNIEnv* env, jobject /* this */, 
    jdouble ambientLight, 
    jdouble roadCurvature, 
    jdouble steeringAngle, 
    jboolean vehicleOncoming, 
    jdouble vehicleSpeed) { 
     
    // Prepare and set model inputs 
    MonolithicAdaptiveLightBeamController::ExtU_MonolithicAdaptiveLightB_T 
input{}; 
    input.AmbientLight = static_cast<real_T>(ambientLight); 
    input.RoadCurvature_permeter = static_cast<real_T>(roadCurvature); 
    input.SteeringAngle_degree = static_cast<real_T>(steeringAngle); 
    input.VehicleOncoming = static_cast<real_T>(vehicleOncoming); 
    input.VehicleSpeed_km_h = static_cast<real_T>(vehicleSpeed); 
     
    model.setExternalInputs(&input); 
    model.step(); 
 
    // Retrieve model outputs 
    const auto& output = model.getExternalOutputs(); 
 
    // Prepare JSON response 
    std::ostringstream oss; 
    oss << "{" 
        << "\"beamAngle\":" << output.BeamAngle << "," 
        << "\"beamRange\":" << output.BeamRange 
        << "}"; 
     
    return env->NewStringUTF(oss.str().c_str()); 
} 
 
extern "C" JNIEXPORT void JNICALL 
Java_com_example_monolithicadaptivelightbeamcontroller_MainActivity_terminateModel
( 
    JNIEnv* env, jobject /* this */) { 
    model.terminate(); 
} 

Key Functions: 
• initModel(): Calls the model's initialize() method to set it up. 
• stepModel(): Receives inputs from Java, converts them to C++ types, executes a single 

step of the model's logic, and returns the outputs as a JSON string. 
• terminateModel(): Calls the model's terminate() method to clean up resources when 

the app closes. 
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5.3.3 Native Build Configuration (CMakeLists.txt) 

A CMakeLists.txt file is created in the cpp folder to define how the native source files are 
compiled and linked. 
CMake 
cmake_minimum_required(VERSION 3.22.1) 
 
project("monolithicadaptivelightbeamcontroller") 
 
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -static-libstdc++") 
set(CMAKE_CXX_STANDARD 17) 
set(CMAKE_CXX_STANDARD_REQUIRED ON) 
 
add_library(${CMAKE_PROJECT_NAME} SHARED 
    native-lib.cpp 
    MonolithicAdaptiveLightBeamController.cpp 
) 
 
find_library(log-lib log) 
 
target_link_libraries(${CMAKE_PROJECT_NAME} 
    android 
    log 
    c++ 
) 

• add_library(): Combines native-lib.cpp and 
MonolithicAdaptiveLightBeamController.cpp into a single shared library (.so). 

• target_link_libraries(): Links the generated library with essential Android system 
libraries, such as log for logging and c++ for the C++ standard library. 

 

5.3.4  Android Application Controller (MainActivity.java) 

The MainActivity.java file is the central controller for the application's UI and logic. It handles 
the complete workflow, from user input to displaying the final output. 
Code Excerpts and Explanation: 

1. Load Native Library: The static block loads the compiled C++ shared library, 
libmonolithicadaptivelightbeamcontroller.so. 
Java 

static { 
    System.loadLibrary("monolithicadaptivelightbeamcontroller"); 
} 

2. Declare Native Methods: These declarations inform the Java compiler that the 
methods are implemented in native C++ code. 
Java 

public native void initModel(); 
public native String stepModel(double ambientLight, double roadCurvature, double 
steeringAngle, boolean vehicleOncoming, double vehicleSpeed); 
public native void terminateModel(); 

3. UI Initialization: In the onCreate method, the UI elements from the XML layout are 
linked to Java variables. 
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4. Button Click Handler: An OnClickListener is set up on the analyzeBtn. When clicked, it 
reads user inputs, calls the stepModel() native method, and processes the JSON 
output. 

o Input Validation: It checks if the input values are within valid ranges (e.g., 
ambient light from 0 to 100). 

o JSON Parsing: The returned JSON string is parsed to extract the beamAngle 
and beamRange. 

o UI Update: The extracted values are used to update the TextViews on the 
screen. 

5. Lifecycle Management: The onDestroy() method ensures the native model is properly 
shut down when the activity is destroyed. 
Java 

@Override 
protected void onDestroy() { 
    super.onDestroy(); 
    terminateModel(); 
} 

 

5.3.5 User Interface Layout (main_activity.xml) 

This XML file defines the user interface for the app. It includes input fields for various 
parameters and displays for the calculated outputs. 

XML 
<?xml version="1.0" encoding="utf-8"?> 
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
    android:padding="24dp"> 
    <LinearLayout 
        android:layout_width="match_parent" 
        android:layout_height="wrap_content" 
        android:orientation="vertical" 
        android:gravity="center_horizontal"> 
        <TextView ... android:text="Adaptive Light Beam Controller" /> 
        <EditText android:id="@+id/inputAmbientLight" ... /> 
        <EditText android:id="@+id/inputRoadCurvature" ... /> 
        <EditText android:id="@+id/inputVehicleSpeed" ... /> 
        <EditText android:id="@+id/inputSteeringAngle" ... /> 
        <Switch android:id="@+id/inputVehicleOncoming" ... /> 
        <Button android:id="@+id/analyzeBtn" ... android:text="Analyze Beam 
Intensity and Angle" /> 
        <TextView android:id="@+id/intensityOutput" ... android:text="Beam 
Intensity: --" /> 
        <TextView android:id="@+id/BeamAngleOutput" ... android:text="Beam Angle: 
" /> 
    </LinearLayout> 
</ScrollView> 

 

5.3.6 Build File Configuration (app/build.gradle.kts) 

This Gradle file orchestrates the entire build process, linking the Java and C++ components. 
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Gradle 
plugins { 
    alias(libs.plugins.android.application) 
} 
 
android { 
    namespace = "com.example.monolithicadaptivelightbeamcontroller" 
    compileSdk = 35 
 
    defaultConfig { 
        applicationId = "com.example.monolithicadaptivelightbeamcontroller" 
        minSdk = 33 
        targetSdk = 35 
        versionCode = 1 
        versionName = "1.0" 
        externalNativeBuild { 
            cmake { 
                cppFlags += "-std=c++17" 
                arguments += listOf("-DANDROID_STL=c++_shared") 
            } 
        } 
        ndk { 
            abiFilters += listOf("armeabi-v7a", "x86_64", "arm64-v8a") 
        } 
    } 
    packaging { 
        resources { 
            pickFirsts.add("**/libc++_shared.so") 
        } 
    } 
    buildTypes { ... } 
    externalNativeBuild { 
        cmake { 
            path = file("src/main/cpp/CMakeLists.txt") 
            version = "3.22.1" 
        } 
    } 
    compileOptions { 
        sourceCompatibility = JavaVersion.VERSION_11 
        targetCompatibility = JavaVersion.VERSION_11 
    } 
} 

dependencies { ... } 
• externalNativeBuild: Points Gradle to the CMakeLists.txt file and configures the C++ 

build with c++17 standard and shared runtime. 
• ndk: Specifies the target CPU architectures (abiFilters) to optimize the final APK size. 
• packaging: The pickFirsts rule prevents file conflicts with libc++_shared.so. 

 

5.3.7 Android Manifest (AndroidManifest.xml) 

The manifest file defines the application's components and settings. 

XML 
<?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:android="http://schemas.android.com/apk/res/android" 
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    package="com.example.monolithicadaptivelightbeamcontroller"> 
    <application 
        android:allowBackup="true" 
        android:label="Adaptive Light Beam Controller" 
        android:icon="@mipmap/ic_launcher" 
        android:roundIcon="@mipmap/ic_launcher_round" 
        android:supportsRtl="true" 
        android:theme="@style/Theme.AppCompat.Light.NoActionBar"> 
        <activity 
            android:name=".MainActivity" 
            android:exported="true"> 
            <intent-filter> 
                <action android:name="android.intent.action.MAIN" /> 
                <category android:name="android.intent.category.LAUNCHER" /> 
            </intent-filter> 
        </activity> 
    </application> 
</manifest> 

• <application>: Defines global attributes like the app's name, icon, and theme. 
• <activity>: Declares the MainActivity as the app's entry point 

(android.intent.action.MAIN) and makes it visible in the app launcher 
(android.intent.category.LAUNCHER). 

 

5.3.8 Application Run and Verification 

The final step is to build and run the application. After a successful build, the app can be 
launched on an Android Automotive emulator, where the UI is displayed, and the native C++ 
model runs the adaptive light beam control logic.(see chapter 5.6 for test cases run result on 
emulator) 

 

Figure 38: UI of ALBC application on android emulator 
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5.3.9 Whole workflow of the monolithic adaptive light controller application 

The workflow of the Android application for the monolithic model is a complete, end-to-end 
process that starts with user interaction on the Android UI and concludes with the display of 
the calculated results. This process is a continuous loop that runs each time the user requests 
a new calculation. 
 

Workflow 

1. User Input on Android UI 

The user enters various driving and environmental parameters—such as ambient light, 
road curvature, vehicle speed, steering angle, and whether a vehicle is oncoming—
into the text fields and switches on the app's user interface, defined in 
main_activity.xml. 

2. Input Reading and Validation 

When the user taps the Analyze Beam Intensity and Degree button, the 
MainActivity.java file takes control. It reads all the values entered by the user and 
performs a basic validation to ensure they are within a reasonable range (e.g., ambient 
light is between 0 and 100). If the inputs are invalid, it displays an error message on 
the screen. 

3. JNI Call to the Native Model 

After validation, MainActivity.java calls the native C++ method, stepModel(), passing 
the user-provided inputs as arguments. This is the crucial step where the control and 
data are passed from the Java layer to the native C++ layer. 

4. C++ Model Execution 

The native-lib.cpp file, acting as the JNI bridge, receives the call. It first converts the 
Java data types (jdouble, jboolean) into C++-compatible types (real_T). It then uses 
these inputs to set the external inputs of the global model instance. Finally, it executes 
the model's core logic by calling model.step(). This is where the Simulink-generated 
monolithic model performs all its calculations to determine the optimal beam angle 
and range. 

5. Output Generation and Return 

Once the model has completed its step, the native-lib.cpp file retrieves the calculated 
outputs (beam angle and beam range). It then packages these two values into a JSON-
formatted string and returns this string back to the Java layer. This is a robust way to 
pass structured data across the JNI bridge. 

6. JSON Parsing and UI Update 
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MainActivity.java receives the JSON string from the native code. It parses the string to 
extract the beamAngle and beamRange values. It then formats these values and uses 
them to update the TextViews on the UI, displaying the final results to the user. 

7. Loop and Termination 

The application remains in a loop, ready for the user to change the inputs and repeat 
the process. When the app is closed, MainActivity.java's onDestroy() method is 
triggered, which in turn calls the native terminateModel() function to safely shut down 
the C++ model and free any allocated resources. This ensures a clean exit and prevents 
memory leaks. 

5.4 Code Integration in Android Studio for SOA models 

This section outlines the step-by-step process of integrating the Service-Oriented Architecture 
(SOA) models, generated from Simulink, into an Android Studio project. The methodology 
ensures a robust, modular, and scalable system by separating the native C++ code from the 
Java application layer and utilizing the Android Native Development Kit (NDK). 

5.4.1 Project Setup in Android Studio 

The integration process begins by creating a new Android Studio project. 

1. Open Android Studio. [10] 
2. Navigate to File → New → New Project. [10] 
3. From the project templates, select the Automotive category. [10] 
4. When prompted to select an activity, choose No Activity to create a foundational 

project without a default user interface, which is ideal for a back-end service-
oriented application. [10] 

5. Complete the remaining project setup options and click Finish. [10] 
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Figure 39: SOA Automotive new project  
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Figure 40: SOA ALBC project creation 

After Finish android studio generate the following folders  

 
Figure 41: SOA ALBC folders generated after finish 
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5.4.2. Project Folder Structure 

After the project is generated, the file structure is modified to accommodate the SOA models. 
A new folder named cpp is created under the automotive/src/main directory. This folder will 
house all the native C++ source code. Inside the cpp folder, a dedicated subdirectory is created 
for each service: AmbientLightService, BeamAngleController, RoadCurvatureService, 
SteeringAngleService, VehicleOncomingService, and VehicleSpeedService. 
AdaptiveLightController main application folder is created for the source code of main 
application while shared folder is created for common utility files. A top-level CMakeLists.txt 
file is placed directly in the cpp folder to manage the entire native build process.[2][3][5][7] 
The final structure of the cpp folder is shown below. 

 
Figure 42: SOA ALBC folders to create 

5.4.3. File structure of Single Service 

Within each service folder (e.g., AmbientLightService), the Simulink-generated source code 
(.cpp and .h files) is placed. An additional CMakeLists.txt file is created in each service folder 
to build a shared library for that service. [2][3][5][7] 
 
An example of the CMakeLists.txt file for the AmbientLightService is as follows: 
CMake 
cmake_minimum_required(VERSION 3.22.1) 
 
project("AmbientLightService") 
 
add_library(AmbientLightService SHARED 
      AmbientLightService.cpp 
) 
 
# Include local headers + shared headers 
target_include_directories(AmbientLightService PUBLIC 
      ${CMAKE_CURRENT_SOURCE_DIR} 
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) 
 
# Link against shared utils + Android log 
find_library(log-lib log) 
 
target_link_libraries(AmbientLightService PRIVATE 
      shared 
      ${log-lib} 
      c++_shared 
) 

Breakdown of AmbientLightService CMake file: 
• cmake_minimum_required(VERSION 3.22.1): Ensures compatibility with the specified 

CMake version. 
• project("AmbientLightService"): Defines the name of the project. 
• add_library(AmbientLightService SHARED ...): Creates a shared library (.so file) from 

the source file. 
• target_include_directories(...): Specifies the include paths for header files. 
• find_library(log-lib log): Locates the Android system logging library. 
• target_link_libraries(...): Links this library to its dependencies, including the shared 

utility library and the Android log library. 
This process is repeated for each service, placing its respective source code and a 
CMakeLists.txt file in its dedicated folder. 
The file structure of the AmbientLightService folder: 

 
Figure 43: File structure of single service 

5.4.4. File structure of the Main Application (AdaptiveLightController) 

The main application folder contains all components required to compile and execute the 

Simulink-generated Adaptive Light Controller within the Android NDK environment. This 

folder serves as the integration point between the automatically generated C++ models, the 
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SOA service modules, and the Android application layer. The structure and purpose of the key 

elements in this directory are described below. [2][3][5] 

 

Figure 44: File structure of AdaptiveLightController 

5.4.4.1. Integration of Simulink-Generated Source Code 

The core functionality of the adaptive lighting system originates from the Simulink model. Two 

source files are generated during the code generation process: 

5.4.4.1.1. Top-Level Wrapper Model (e.g., SOA_AdaptiveLightController) 

This file is the top-level wrapper model generated by Simulink. It serves as the integration 

layer between the Android native runtime and the core adaptive-light controller. Its 

responsibilities include: 

• Receiving raw input signals from the Android system or JNI layer. 

• Triggering the appropriate Function-Call Subsystems from the core model. 

• Managing model initialization, step execution, and termination. 

• Orchestrating communication with service-oriented architecture (SOA) client 

interfaces. 

• Providing the external API that is invoked from native-lib.cpp. 



Academic Year: 2024-25                                                                                                                       
59 
 

This file does not contain control logic itself; instead, it forwards sensor data to the core model 

and retrieves algorithm outputs. 

5.4.4.1.2.  Core Control Logic Model (AdaptiveLightController) 

This file contains the actual adaptive headlight control algorithm produced from the 

referenced Simulink model. Its responsibilities include: 

• Executing SOA service client calls (e.g., steering angle, ambient light, speed, road 

curvature). 

• Running the Stateflow state machine that governs headlight behaviour: 

o Low Beam 

o High Beam 

o City Mode 

o Cornering Beam 

• Computing the final beam angle and beam range, which are returned to the wrapper 

model. 

• Maintaining intermediate block states and signals according to Simulink’s generated 

structure. 

This file acts as the “brain” of the system. 

The wrapper model invokes the functions in this file during every control cycle. 

5.4.4.2. Creation of the CMake Build Configuration 

A dedicated CMakeLists.txt file is created in the main application folder. 

Its purpose is to instruct Android Studio on how to compile the native Simulink-generated 

code. 

An example of CMakeFile.txt file : 

cmake_minimum_required(VERSION 3.22.1) 
 
project("AdaptiveLightController") 
 
# Create AdaptiveLightController shared library 
add_library(AdaptiveLightController SHARED 
        AdaptiveLightController.cpp 
        soa_adaptivelightbeamcontroller.cpp 
        native-lib.cpp 
) 
 
# Include headers for this module + all dependent service modules 
target_include_directories(AdaptiveLightController PUBLIC 
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        ${CMAKE_CURRENT_SOURCE_DIR}                      # AdaptiveLightController headers 
        ${CMAKE_CURRENT_SOURCE_DIR}/../BeamAngleController 
        ${CMAKE_CURRENT_SOURCE_DIR}/../RoadCurvatureService 
        ${CMAKE_CURRENT_SOURCE_DIR}/../SteeringAngleService 
        ${CMAKE_CURRENT_SOURCE_DIR}/../VehicleOncomingService 
        ${CMAKE_CURRENT_SOURCE_DIR}/../VehicleSpeedService 
        ${CMAKE_CURRENT_SOURCE_DIR}/../AmbientLightService 
        ${CMAKE_CURRENT_SOURCE_DIR}/../shared 
) 
 
# Find Android log library 
find_library(log-lib log REQUIRED) 
 
# Link against Android system libs, C++ runtime, and all service libraries 
target_link_libraries(AdaptiveLightController PRIVATE 
        android 
        ${log-lib} 
        c++_shared 
        BeamAngleController 
        RoadCurvatureService 
        SteeringAngleService 
        VehicleOncomingService 
        VehicleSpeedService 
        AmbientLightService 
        shared 
) 
 

Explanation of the CMake file: 

(1) Defining the CMake and Project Version 

cmake_minimum_required(VERSION 3.22.1) 
project("AdaptiveLightController") 

This sets the minimum version of CMake required by Android Studio and names the project. 
It ensures compatibility with Android’s NDK toolchain. 

(2) Creating the Shared Native Library 

add_library(AdaptiveLightController SHARED 
        AdaptiveLightController.cpp 
        soa_adaptivelightbeamcontroller.cpp 
        native-lib.cpp 
) 

• Creates a shared library named AdaptiveLightController. 
• Includes: 

o AdaptiveLightController.cpp → core control logic model 
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o soa_adaptivelightbeamcontroller.cpp → wrapper/top-level model 
o native-lib.cpp → JNI interface connecting C++ to Android Java/Kotlin layer 

CMake compiles these into libAdaptiveLightController.so, which is loaded by the Android 
application at runtime. 

(3) Including Header Files for All Modules 

target_include_directories(AdaptiveLightController PUBLIC 
        ${CMAKE_CURRENT_SOURCE_DIR} 
        ${CMAKE_CURRENT_SOURCE_DIR}/../BeamAngleController 
        ${CMAKE_CURRENT_SOURCE_DIR}/../RoadCurvatureService 
        ${CMAKE_CURRENT_SOURCE_DIR}/../SteeringAngleService 
        ${CMAKE_CURRENT_SOURCE_DIR}/../VehicleOncomingService 
        ${CMAKE_CURRENT_SOURCE_DIR}/../VehicleSpeedService 
        ${CMAKE_CURRENT_SOURCE_DIR}/../AmbientLightService 
        ${CMAKE_CURRENT_SOURCE_DIR}/../shared 
) 

This section makes the header files available during compilation. 
It includes: 

• Headers for the main adaptive lighting model 
• All SOA-dependent service modules (Beam Angle, Steering Angle, Road Curvature, 

etc.) 
• Shared utility headers 

This is necessary because the wrapper model and core model both make calls to these service 
modules. 

(4) Locating Android Logging Library 

find_library(log-lib log REQUIRED) 

Android requires this to support native logging via __android_log_print(). 

(5) Linking All Required Libraries 

target_link_libraries(AdaptiveLightController PRIVATE 
        android 
        ${log-lib} 
        c++_shared 
        BeamAngleController 
        RoadCurvatureService 
        SteeringAngleService 
        VehicleOncomingService 
        VehicleSpeedService 
        AmbientLightService 
        shared 
) 

This links: 
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Android system libraries 

• android 
• log 
• c++_shared (C++ runtime) 

All service module libraries 

These are external libraries compiled elsewhere in the project: 

• BeamAngleController 
• RoadCurvatureService 
• SteeringAngleService 
• VehicleOncomingService 
• VehicleSpeedService 
• AmbientLightService 
• shared (common utilities) 

This ensures that the adaptive lighting controller can call all SOA service functions. 

5.4.4.3 Implementation of the JNI Interface (native-lib.cpp) 

The JNI bridge, implemented in the native-lib.cpp file, acts as the communication layer 
between the Java application and the C++ SOA models. It exposes C++ functions that can be 
called directly from Java and handles the data type conversion between the two languages.  
 
C++ 
#include <jni.h> 
#include <string> 
#include <sstream> 
#include "BeamAngleController.h" 
#include "RoadCurvatureService.h" 
#include "SteeringAngleService.h" 
#include "VehicleOncomingService.h" 
#include "VehicleSpeedService.h" 
#include "AdaptiveLightController.h" 
#include "SOA_AdaptiveLightController.h" 
 
// Instantiate global service objects 
static BeamAngleController beamAngleController; 
static RoadCurvatureService roadCurvatureService; 
static SteeringAngleService steeringAngleService; 
static VehicleOncomingService vehicleOncomingService; 
static VehicleSpeedService vehicleSpeedService; 
static AdaptiveLightController adaptiveLightController; 
static SOA_AdaptiveLightController soaController; 
 
// ... (JNIEXPORT functions for individual services as provided in the prompt) 
 
// === AdaptiveLightController step === 
extern "C" JNIEXPORT jstring JNICALL 
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Java_com_example_soa_1adaptivelightbeamcontroller_AdaptiveLightController_nativeSt
epAdaptiveLightController( 
    JNIEnv* env, jobject /* this */, 
    jdouble ambientLight, 
    jdouble roadCurvature, 
    jdouble steeringAngle, 
    jboolean vehicleOncoming, 
    jdouble vehicleSpeed) { 
    // ... (code as provided in the prompt) 
} 
 
// === SOAAdaptiveLightController.initModel === 
extern "C" JNIEXPORT void JNICALL 
Java_com_example_soa_1adaptivelightbeamcontroller_SOAAdaptiveLightController_initM
odel( 
    JNIEnv* env, jobject /* this */) { 
    soaController.initialize(); 
} 
 
// === SOAAdaptiveLightController.stepModel === 
extern "C" JNIEXPORT jstring JNICALL 
Java_com_example_soa_1adaptivelightbeamcontroller_SOAAdaptiveLightController_stepM
odel( 
    JNIEnv* env, jobject /* this */, 
    jdouble ambientLight, 
    jdouble roadCurvature, 
    jdouble steeringAngle, 
    jboolean vehicleOncoming, 
    jdouble vehicleSpeed) { 
    // ... (code as provided in the prompt) 
} 
 
// === SOAAdaptiveLightController.terminateModel === 
extern "C" JNIEXPORT void JNICALL 
Java_com_example_soa_1adaptivelightbeamcontroller_SOAAdaptiveLightController_termi
nateModel( 
    JNIEnv* env, jobject /* this */) { 
    soaController.terminate(); 
} 

Key Parts: 
• Global Service Objects: static instances of each C++ service are created, ensuring they 

persist across JNI calls. 
• JNI-Exported Functions: Functions are declared with the JNIEXPORT macro, following 

a specific naming convention to allow them to be called from the Java layer. 
• Data Marshalling: The code demonstrates how to convert Java data types (jdouble, 

jboolean) to their C++ equivalents (real_T). 
• JSON String Output: The C++ code compiles the output values (e.g., beamAngle, 

beamRange) into a JSON string, which is a flexible format for passing complex data 
back to the Java layer. 

5.4.5. Root-Level CMakeLists.txt 

The CMakeLists.txt file placed at the root of the cpp folder is the primary build script for the 
entire native component. It orchestrates the build process by including all service, shared and 
main application subdirectories.  
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CMake 
cmake_minimum_required(VERSION 3.22.1) 
project("soaadaptivelightbeamcontroller") 
 
set(CMAKE_CXX_STANDARD 17) 
set(CMAKE_CXX_STANDARD_REQUIRED ON) 
 
# Android log library 
find_library(log-lib log REQUIRED) 
 
# Add subdirectories for each module 
add_subdirectory(shared) 
add_subdirectory(VehicleSpeedService) 
add_subdirectory(VehicleOncomingService) 
add_subdirectory(AmbientLightService) 
add_subdirectory(SteeringAngleService) 
add_subdirectory(RoadCurvatureService) 
add_subdirectory(BeamAngleController) 
add_subdirectory(AdaptiveLightController) 

Explanation: 
• set(CMAKE_CXX_STANDARD 17): Enforces the C++17 standard for all native code 

compilation. 
• add_subdirectory(...): This command is used to include and build all the subprojects 

defined in the respective subfolders. This ensures all services are built and their 
libraries are available for linking to the main application. 

5.4.6. Java Application Files 

The Android application is built around two primary Java files: MainActivity.java and 
SOAAdaptiveLightController.java. 
 
MainActivity.java 
This file contains the UI logic. It reads user input from the XML layout, calls the native C++ 
model via the Java wrapper, and updates the UI with the results.  

Java 
package com.example.soaadaptivelightbeamcontroller; 
 
import android.os.Bundle; 
import android.widget.Button; 
import android.widget.EditText; 
import android.widget.Switch; 
import android.widget.TextView; 
import androidx.appcompat.app.AppCompatActivity; 
import org.json.JSONException; 
import org.json.JSONObject; 
 
public class MainActivity extends AppCompatActivity { 
    private SOAAdaptiveLightController soaController; 
 
    @Override 
    protected void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_main); 
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        soaController = new SOAAdaptiveLightController(); 
        soaController.initModel(); 
 
        // ... (UI element bindings as provided) 
 
        analyzeBtn.setOnClickListener(v -> { 
            try { 
                // ... (input reading and parsing logic as provided) 
 
                // Call native model 
                String jsonResult = soaController.stepModel( 
                    ambientLight, 
                    roadCurvature, 
                    steeringAngle, 
                    vehicleOncoming, 
                    vehicleSpeed 
                ); 
 
                // Parse JSON result and update UI 
                // ... (parsing and UI update logic as provided) 
 
            } catch (NumberFormatException e) { 
                // ... (error handling) 
            } catch (JSONException e) { 
                // ... (error handling) 
            } 
        }); 
    } 
 
    @Override 
    protected void onDestroy() { 
        super.onDestroy(); 
        soaController.terminateModel(); 
    } 
} 

Explanation: 
• Initialization: An instance of SOAAdaptiveLightController is created, and the native 

initModel() function is called to prepare the C++ environment. 
• Event Handling: An OnClickListener is set up on the analyzeBtn to capture user inputs, 

pass them to the native stepModel(), and parse the returned JSON string to update 
the UI. 

• Lifecycle Management: The native terminateModel() is called in the onDestroy() 
lifecycle method to ensure proper cleanup of C++ resources when the activity is 
closed. 
 

SOAAdaptiveLightController.java 
This is a simple Java wrapper class that loads the native library and declares the native 
methods. 

Java 
package com.example.soaadaptivelightbeamcontroller; 
 
public class SOAAdaptiveLightController { 
    static { 
        System.loadLibrary("AdaptiveLightController"); 
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    } 
 
    public native void initModel(); 
    public native String stepModel( 
        double ambientLight, 
        double roadCurvature, 
        double steeringAngle, 
        boolean vehicleOncoming, 
        double vehicleSpeed); 
    public native void terminateModel(); 
} 

Explanation: 
• System.loadLibrary(...): This static block loads the shared native library named 

libAdaptiveLightController.so. This library is the final product of the CMake build 
process, which links all the individual service libraries together. 

• native keyword: Declares the methods that are implemented in the C++ native-lib.cpp 
file. 

 

5.4.7. User Interface Layout (activity_main.xml) 

The XML layout file defines the visual components of the Android application's main screen. 

XML 
<?xml version="1.0" encoding="utf-8"?> 
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
    android:padding="24dp"> 
    <LinearLayout 
        android:layout_width="match_parent" 
        android:layout_height="wrap_content" 
        android:orientation="vertical" 
        android:gravity="center_horizontal"> 
 
        <TextView 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:text="Adaptive Light Beam Controller" 
            android:textSize="24sp" 
            android:textStyle="bold" 
            android:layout_marginBottom="24dp" 
/> 
 
        <EditText 
            android:id="@+id/inputAmbientLight" 
            android:layout_width="match_parent" 
            android:layout_height="wrap_content" 
            android:text="AmbientLight(0.0 to 100.0)" 
            android:inputType="numberDecimal" 
            android:layout_marginTop="8dp" 
/> 
        <Button 
            android:id="@+id/analyzeBtn" 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
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            android:text="Analyze Beam Intensity and degree" 
            android:layout_marginTop="20dp" 
/> 
        </LinearLayout> 
</ScrollView> 

Explanation: 
• The layout uses a ScrollView and a LinearLayout to organize the UI elements vertically. 
• EditText and Switch: These components allow the user to input sensor values 

manually for demonstration purposes. 
• Button: The analyzeBtn is the trigger for the computation logic. 
• TextView: Two text views display the final output values (intensityOutput and 

BeamAngleOutput) returned from the native model. 
 

5.4.8. Gradle Build Files 

Gradle manages the build system for both the Java and native components. 

Root-Level build.gradle.kts 
This is the top-level build script for the project, where plugins are declared. 

Gradle 
plugins { 
    alias(libs.plugins.android.application) apply false 
} 

Explanation: 
• apply false: This ensures the Android plugin is available to all modules but is not 

applied at the root level, which is a standard practice for multi-module projects. 
Module-Level build.gradle.kts 
This file contains the core build configuration for the application module. 

Gradle 
plugins { 
    alias(libs.plugins.android.application) 
} 
 
android { 
    namespace = "com.example.soaadaptivelightbeamcontroller" 
    compileSdk = 35 
 
    defaultConfig { 
        applicationId = "com.example.soaadaptivelightbeamcontroller" 
        minSdk = 33 
        targetSdk = 35 
        // ... (versioning and other configs) 
        externalNativeBuild { 
            cmake { 
                cppFlags += "-std=c++17" 
                arguments += listOf("-DANDROID_STL=c++_shared") 
            } 
        } 
        ndk { 
            abiFilters += listOf("armeabi-v7a", "x86_64", "arm64-v8a") 
        } 
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    } 
    packaging { 
        resources { 
            pickFirsts.add("**/libc++_shared.so") 
        } 
    } 
    // ... (buildTypes and compileOptions) 
    externalNativeBuild { 
        cmake { 
            path = file("src/main/cpp/CMakeLists.txt") 
            version = "3.22.1" 
        } 
    } 
} 
dependencies { 
    // ... (dependencies) 
} 

Explanation: 
• externalNativeBuild: This block is crucial for the NDK integration. It points Gradle to 

the top-level CMakeLists.txt file and sets the C++ standard and shared runtime library. 
• ndk: The abiFilters are configured to specify the target CPU architectures, which helps 

reduce the size of the final APK. 
• packaging: The pickFirsts rule prevents conflicts when multiple libraries might include 

the same shared C++ runtime library. 
 

5.4.9. Android Manifest 

Your provided AndroidManifest.xml file is a well-structured configuration for an Android 
Automotive app. It declares the app's essential components and requirements for the Android 
system. 
Code Explanation 

Here is the breakdown of your AndroidManifest.xml file, which is placed in the root of the 
app/src/main/ directory. 
XML 
<?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:android="http://schemas.android.com/apk/res/android"> 
 
    <uses-feature 
        android:name="android.hardware.type.automotive" 
        android:required="true" /> 
 
    <application 
        android:allowBackup="true" 
        android:appCategory="audio" 
        android:icon="@mipmap/ic_launcher" 
        android:label="@string/app_name" 
        android:roundIcon="@mipmap/ic_launcher_round" 
        android:supportsRtl="true" 
        android:theme="@style/Theme.SOAAdaptiveLightBeamController"> 
 
        <activity 
            android:name=".MainActivity" 
            android:exported="true"> 
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            <intent-filter> 
                <action android:name="android.intent.action.MAIN"/> 
                <category android:name="android.intent.category.LAUNCHER"/> 
            </intent-filter> 
        </activity> 
 
    </application> 
 
</manifest> 

Manifest and Feature Declaration 

• <manifest ...>: This is the root tag of the manifest file. It defines the package name for 
the application and holds all the app's components. 

• <uses-feature android:name="android.hardware.type.automotive" 
android:required="true" />: This is a crucial line for Automotive apps. It declares that 
the application is designed exclusively for in-car systems. The 
android:required="true" attribute ensures that the Google Play Store and other 
package managers will only allow this app to be installed on devices with the specified 
automotive hardware. This prevents it from being installed on phones or tablets. 

 

Application and Activity 

• <application ...>: This tag contains global settings that apply to all components within 
the app. 

o android:allowBackup="true": Permits the system to back up the app's data. 
o android:appCategory="audio": Specifies that this app belongs to the "audio" 

category, which helps the system understand its primary function. 
o android:icon and android:label: These attributes set the app's main icon and 

name as they will appear to the user. 
o android:supportsRtl="true": Enables support for right-to-left languages like 

Arabic and Hebrew. 
o android:theme="@style/...": Defines the overall visual style for the app. 

• <activity android:name=".MainActivity" android:exported="true">: This tag declares 
the app's main screen, or Activity. 

o android:name=".MainActivity": Points to the MainActivity.java file as the class 
that handles this activity. 

o android:exported="true": Marks the activity as accessible to other apps. For a 
launcher activity (an app that can be launched from the home screen), this is 
mandatory on modern Android versions. 

• <intent-filter>: This block is what makes the MainActivity the entry point of the 
application. 

o <action android:name="android.intent.action.MAIN"/>: This action indicates 
that the activity is the main entry point for the application, not just a 
supporting screen. 

o <category android:name="android.intent.category.LAUNCHER"/>: This 
category tells the Android system to display an icon for this activity in the app 
launcher, allowing the user to start the app from the home screen. 
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5.4.10 Whole Workflow  

The complete workflow from user input to final output can be summarized as follows: 

1. User Input on Android UI: The user enters values into the UI fields in 
activity_main.xml. 

2. MainActivity.java: Reads the input values and calls soaController.stepModel(...). 
3. SOAAdaptiveLightController.java: This wrapper class loads the 

libAdaptiveLightController.so library and routes the call to the native C++ method. 
4. JNI Bridge (native-lib.cpp): Receives the Java call, converts the data types, and 

orchestrates the C++ services. It calls the appropriate functions in each service to 
compute the final beamAngle and beamRange. 

5. Return to Java: The JNI bridge returns a JSON string containing the computed results. 
6. MainActivity.java: The MainActivity receives the JSON string, parses it, and updates 

the text views in the UI. 
7. User Output: The user sees the calculated Beam Angle and Beam Range on the screen. 

This comprehensive workflow ensures a clear separation of concerns, with the Android 
application handling the UI and the native C++ code performing the complex model 
computations. The JNI bridge serves as a robust and efficient connection between these two 
distinct layers. 

Flow Diagram: 

        Android UI             
   (MainActivity layout views)                               
   • Ambient Light (lux)         
   • Road Curvature (1/m)        
   • Steering Angle (deg)       
   • Vehicle Speed (km/h)         
   • Vehicle Oncoming (switch)   

                 │ Reads user input 

                ▼ 

              MainActivity.java              
 --------------------------------------------- 
  • Collects UI values from EditText/Switch    
  • Calls:                                     
      soaController.stepModel(…)              
  

                 | JNI call 

                ▼ 

        SOAAdaptiveLightController.java       
 ---------------------------------------------- 
  • Loads native library:                       
        System.loadLibrary("AdaptiveLightController")  
  • Declares native methods:                    
       initModel()                             
       stepModel(...)                          
       terminateModel()                        
  • stepModel(...) → enters JNI                 
                  Native bridge 
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                |   

               ▼ 

              JNI Bridge (C++)                 
----------------------------------------------- 
  • Converts Java → C++ types (double, bool → real_T) 
  • Calls C++ services:                         
      - BeamAngleController                     
      - RoadCurvatureService                   
      - SteeringAngleService                    
      - VehicleOncomingService                  
      - VehicleSpeedService                     
  • Runs model logic:                          
      AdaptiveLightController /                 
      SOA_AdaptiveLightController               
  • Produces outputs:                           
      beamAngle, beamRange                      
  • Returns JSON string:                        
      {"beamAngle":12.5,"beamRange":45.0}       

                 │ JSON result 

                ▼ 

            Back in Java                     
 ----------------------------------------------- 
• MainActivity receives JSON                   
 • Parses with JSONObject                      
 • Updates TextViews:                          
      Beam Angle → XX degrees                  
       Beam Range → YY meters                   

 

5.5 Configuration of Automotive Emulator 

Step 1: Open AVD Manager 

1. Open Android Studio. 

2. Go to Tools → Device Manager (or AVD Manager in older versions).[6] 

3. Click Create Device. [6] 
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Figure 45: Create new Automotive emulator 

 

Step 2: Select Automotive Hardware Profile 

1. In the Select Hardware window, scroll down and select Automotive. [6] 

2. Choose a profile, e.g., Automotive 1024x600 (or other recommended screen size). [6] 

3. Click Next. [6] 
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Figure 46: Selection of Automotive emulator from the list 

Step 3: Choose a System Image 

1. Switch to the "Recommended" or "Other Images" tab. 

2. Look for Android Automotive OS images (for example, Android 12 or 13 Automotive). 

[6] 

3. If no image is installed: 

o Click Download next to the desired image. [6] 

o Wait for the download to complete. [6] 

4. Once downloaded, select the image and click Next.  
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Figure 47: Selection of system image for Automotive emulator 

Step 4: Configure AVD 

1. Set a Name for your emulator, e.g., Automotive_Emulator_12. [6] 

2. Adjust settings if needed: 

o Orientation: Landscape (most automotive screens are landscape). 

o Scale: Keep default or adjust to your monitor size. 

3. Click Finish to create the AVD. 

Step 5: Launch the Automotive Emulator 

1. In the AVD Manager, click the Play button next to your new automotive emulator. [6] 

2. Wait for it to boot—this may take a few minutes. [6] 

3. Once running, you can deploy and test your automotive app just like a regular 

Android app. 

 



Academic Year: 2024-25                                                                                                                       
75 
 

5.6 Testing Result on emulator of monolithic and SOA applications 

Test Cases: 

Tes
t 
cas
es 

Vehicl
e 
Onco
ming) 

Vehiclespee
d(km/h) 

Ambi
ent 
light 

Steering 
Angle(de
gree) 

Road 
curvature(
degree) 

Beam 
Range
(m) 

Beam 
Angle(de
gree) 

Active 
mode 

1.1 0 60 10 0 - 100 0 High 
Beam 

1.2  1 60 10 0 - 50 0 Low 
Beam 

1.3 0 40 10 0  - 50 0  Low 
Beam 

1.4 0  60 25 0 - 50 0  Low 
Beam 

2.1 0  60 10 15 4 60 Close to 
4 

Corne
ring 
Beam 

2.2 0 60 10 5 4 100 0 High 
Beam 

2.3 0 60 10 20 10 60 Close to 
10 

Corne
ring 
Beam 

3.1 0 20 40 0 5 30 0 City 
Beam 

3.2 0 60 10 0 5 100 0 High 
Beam 

4.1 1 60 10 0 5 50 0 Low 
Beam 

 

Result of Run of test cases on automotive emulator: 
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Figure 48: Result of Test Case 1.1 

 

 

Figure 49: Result of Test Case 1.2 
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Figure 50: Result of Test Case 1.3 

 

 

Figure 51: Result of Test Case 1.4 
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Figure 52: Result of Test Case 2.1 

 

Figure 53: Result of Test Case 2.2 
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Figure 54: Result of Test Case 2.3 

 

Figure 55: Result of Test Case 3.1 
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Figure 56: Result of Test Case 3.2 

 

 

Figure 57: Result of Test Case 4.1 
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Chapter 6 

6. How to shift the Android Studio project to AOSP  

6.1 Shifting of MonolithicAdaptiveLightController 

Integration Methods 

There are two main ways to integrate an app with Android Automotive: 

• Adding the Complete Source Code: Embed your app’s code directly into the AOSP build 

system. [17] 

• Adding the Compiled APK File: Build your app separately, create an APK, and integrate 

it into the AOSP folder. [17] 

Method 1: Integrating Source Code (Detailed Steps)  

6.1.1. Create a Sample Android Project: 

• See chapter 3 and 5. In which I created the application named 

“MonolithicAdaptiveLightController” and integrated into the Android Studio. 

6.1.2. Prepare a Folder in AOSP: 

• In the AOSP source code, navigate to /packages/apps/Car. [17] 

• Duplicate an existing app folder (e.g calendar app) and rename it to 

“MonolithicAdaptiveLightController”. 

• Delete all files and folders except src, res and Android.bp. Delete the existing contents 

inside src and res folders and keep it empty. [17] 

6.1.3. Copy App Code and Resources: 

• Copy the source code from the android studio folder automotive/src/main/cpp to 

MonolithicAdaptiveLightController/src/main/cpp folder. Remove the CMakeLists.txt 

file from the cpp, c++ source code will be built using Android.bp file. [17] 

• Copy the java file from the android studio folder automotive/src/main/java to 

MonolithicAdaptiveLightController/src/main/java folder. [17] 

• Do the same for the res folder shift it from  automotive/src/main/res to 

MonolithicAdaptiveLightController /res. [17] 
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• Finally, copy AndroidManifest.xml to the AOSP 

project’s MonolithicAdaptiveLightController folder. 

 

Figure 58: AOSP MonolithicAdaptiveLight Controller folder structure 

6.1.4. Modify Android.bp:  

The Android Studio project uses gradle as build system and the build configurations are 

defined in the build.gradle file. The AOSP project uses the Soong build system and the build 

configurations are defined using blueprint file(.bp). [17] 

• Open Android.bp in the AOSP project’s  MonolithicAdaptiveLightController folder. 
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• Update the project name, remove unnecessary dependencies, and add required ones 

from your build.gradle file, ensuring syntax compatibility. 

• In order to build the C++ source code use cc_library_shared inside the android.bp file 

it tells Soong to build a shared library .so from C++ sources and then using shared_libs 

inside android_app you can link your native library to the android app APK. 

Here is an example of Android.bp file 

cc_library_shared { 
    name: "monolithicadaptivelightbeamcontroller", 
    srcs: [ 
        "src/main/cpp/native-lib.cpp", 
        "src/main/cpp/MonolithicAdaptiveLightBeamController.cpp", 
    ], 
    shared_libs: [ 
        "android", 
        "log", 
    ], 
    stl: "libc++", 
    cppflags: ["-std=c++17"], 
    cflags: ["-std=c++17"], 
    export_include_dirs: [ 
        "src/main/cpp", 
    ], 
    sdk_version: "current", 
} 
 
android_app { 
    name: " monolithicadaptivelightbeamcontroller ", 
 
    srcs: [ 
        "src/main/java//*.java", 
    ], 
 
    manifest: "AndroidManifest.xml", 
 
    static_libs: [ 
        "androidx_appcompat", 
        "androidx_core", 
    ], 
 
    jni_libs: [ 
        " monolithicadaptivelightbeamcontroller ", 
    ], 
 
    sdk_version: "current", 
 
    aaptflags: ["--auto-add-overlay"], 
} 
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6.1.5 Replace UI-based input signal acquisition with retrieval from the Vehicle HAL, as is 

done in real-world applications 

Here’s a fully integrated summary of all required changes, combining the project-level 
notes with the MainActivity.java, activity_main.xml, and AndroidManifest.xml changes: [17] 

6.1.5.1 Change summary 

Here’s a concise before vs after comparison: 

Component UI-based 
Project 
(Before) 

HAL-based Project (Now) 

UI 
(activity_main.xml) 

Input fields 
(EditText, 
Switch, 
Button) for 
manual user 
input  

Only shows results & logs. All inputs come 
from HAL/mocks 

MainActivity.java Reads values 
from UI, 
validates 
them, passes 
to stepModel() 

Subscribes to Vehicle HAL via 
CarPropertyManager, mocks missing 
signals (roadCurvature, vehicleOncoming), 
sends values automatically to stepModel() 

 
JNI Bridge (C++ file) 

Method  
 
Data passed 
from UI 

Unchanged. Still gets 5 parameters, now 
from HAL 

AndroidManifest.xml Standard 
Android app 
permissions 

Needs Automotive HAL permissions (e.g., 
android.permission.CAR_SPEED, 
CAR_STEERING) 

Gradle Config Standard 
Android app 
settings 

Ensure minSdk ≥ 29, targetSdk matches 
Automotive; no major changes 

Testing User types 
input manually 

Signals auto-updated from HAL; non-
standard signals mocked (e.g., 
roadCurvature) 

 6.1.5.2  MainActivity.java (HAL-based) 

 
package com.example.monolithicadaptivelightbeamcontroller; 
 
import android.car.Car; 
import android.car.hardware.CarPropertyValue; 
import android.car.hardware.property.CarPropertyManager; 
import android.car.hardware.property.VehiclePropertyIds; 
import android.os.Bundle; 
import android.util.Log; 
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import android.widget.TextView; 
import androidx.appcompat.app.AppCompatActivity; 
 
import org.json.JSONException; 
import org.json.JSONObject; 
 
public class MainActivity extends AppCompatActivity { 
    static { 
        System.loadLibrary("monolithicadaptivelightbeamcontroller"); 
    } 
 
    // Native methods 
    public native void initModel(); 
    public native String stepModel(double ambientLight, double roadCurvature, 
                                   double steeringAngle, boolean vehicleOncoming, 
                                   double vehicleSpeed); 
    public native void terminateModel(); 
 
    // Vehicle-related 
    private Car car; 
    private CarPropertyManager carPropertyManager; 
 
    // Latest signal values 
    private double vehicleSpeed = 0.0; 
    private double steeringAngle = 0.0; 
    private double ambientLight = 50.0; 
    private boolean vehicleOncoming = false; // MOCKED 
    private double roadCurvature = 0.0;      // MOCKED (degrees) 
 
    private TextView intensityOutput; 
    private TextView logOutput; 
 
    private volatile boolean isRunning = true; 
 
    @Override 
    protected void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_main); 
 
        initModel(); 
 
        intensityOutput = findViewById(R.id.intensityOutput); 
        logOutput = findViewById(R.id.BeamAngleOutput); 
 
        // Connect to CarService 
        try { 
            car = Car.createCar(this); 
            carPropertyManager = (CarPropertyManager) 
car.getCarManager(Car.PROPERTY_SERVICE); 
 
            // Subscribe to standard HAL signals 
            registerCarSignal(VehiclePropertyIds.PERF_VEHICLE_SPEED); 
            registerCarSignal(VehiclePropertyIds.STEERING_ANGLE); 
            registerCarSignal(VehiclePropertyIds.AMBIENT_LIGHT_LEVEL); 
 
        } catch (Exception e) { 
            Log.e("MainActivity", "CarService init failed: " + e.getMessage()); 
        } 
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        //   Mock road curvature (in degrees) & vehicle oncoming 
        new Thread(() -> { 
            int counter = 0; 
            while (isRunning) { 
                // Fake curvature between -60° and +60° 
                roadCurvature = -60.0 + Math.random() * 120.0; 
 
                // Toggle oncoming vehicle every 5 updates (~10 sec) 
                if (counter % 5 == 0) { 
                    vehicleOncoming = !vehicleOncoming; 
                } 
                counter++; 
 
                runModelAndUpdateUI(); 
 
                try { 
                    Thread.sleep(2000); // update every 2s 
                } catch (InterruptedException ignored) {} 
            } 
        }).start(); 
    } 
 
    private void registerCarSignal(int propertyId) { 
        carPropertyManager.registerCallback(callback, propertyId, 
                CarPropertyManager.SENSOR_RATE_ONCHANGE); 
    } 
 
    private final CarPropertyManager.CarPropertyEventCallback callback = 
            new CarPropertyManager.CarPropertyEventCallback() { 
        @Override 
        public void onChangeEvent(CarPropertyValue value) { 
            try { 
                switch (value.getPropertyId()) { 
                    case VehiclePropertyIds.PERF_VEHICLE_SPEED: 
                        vehicleSpeed = ((Float) value.getValue()).doubleValue(); 
                        break; 
                    case VehiclePropertyIds.STEERING_ANGLE: 
                        steeringAngle = ((Float) value.getValue()).doubleValue(); 
                        break; 
                    case VehiclePropertyIds.AMBIENT_LIGHT_LEVEL: 
                        ambientLight = ((Float) value.getValue()).doubleValue(); 
                        break; 
                } 
                runModelAndUpdateUI(); 
            } catch (Exception e) { 
                Log.e("MainActivity", "Signal parse error: " + e.getMessage()); 
            } 
        } 
 
        @Override 
        public void onErrorEvent(int propId, int zone) { 
            Log.e("MainActivity", "CarProperty error for " + propId); 
        } 
    }; 
 
    private void runModelAndUpdateUI() { 
        try { 
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            String resultJson = stepModel( 
                    ambientLight, 
                    roadCurvature, 
                    steeringAngle, 
                    vehicleOncoming, 
                    vehicleSpeed 
            ); 
 
            JSONObject output = new JSONObject(resultJson); 
            double beamRange = output.getDouble("beamRange"); 
            double beamAngle = output.getDouble("beamAngle"); 
 
            runOnUiThread(() -> { 
                intensityOutput.setText(String.format("Beam Range: %.1fm | Angle: 
%.1f°", 
                        beamRange, beamAngle)); 
 
                logOutput.append(String.format( 
                        "\nSpeed: %.1f km/h | Ambient: %.1f lx | Curve: %.1f° | 
Angle: %.1f° | Oncoming: %b", 
                        vehicleSpeed, ambientLight, roadCurvature, steeringAngle, 
vehicleOncoming)); 
            }); 
 
        } catch (JSONException e) { 
            Log.e("MainActivity", "Model output parse error: " + e.getMessage()); 
        } 
    } 
 
    @Override 
    protected void onDestroy() { 
        super.onDestroy(); 
        isRunning = false; 
        try { 
            if (carPropertyManager != null) { 
                carPropertyManager.unregisterCallback(callback); 
            } 
            if (car != null) car.disconnect(); 
        } catch (Exception ignored) {} 
        terminateModel(); 
    } 
} 

Explanation 

6.1.5.2.1. Native Model Integration 

• initModel() initializes the C++ model. 
• stepModel(...) runs the adaptive light beam algorithm with five inputs: 

o ambientLight, roadCurvature, steeringAngle, vehicleOncoming, vehicleSpeed. 
• terminateModel() shuts down the model safely. 

6.1.5.2.2. Vehicle HAL Integration 

• Car and CarPropertyManager connect to the vehicle’s HAL. 
• Subscribed signals: 
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o PERF_VEHICLE_SPEED 
o STEERING_ANGLE 
o AMBIENT_LIGHT_LEVEL 

• Callback (CarPropertyEventCallback) automatically updates local variables and 
triggers the model whenever a property changes. 

6.1.5.2.3. Mocked Signals 

• roadCurvature: 
o Randomly varies between −60° to +60° to simulate curved roads. 

• vehicleOncoming: 
o Boolean toggled every 5 updates (~10 seconds) to simulate oncoming traffic. 

6.1.5.2.4. Periodic Updates 

• A background thread updates mocked signals every 2 seconds. 
• Calls runModelAndUpdateUI() to combine HAL and mocked signals for processing. 

6.1.5.2.5. UI Updates 

• intensityOutput shows beam range and angle. 
• logOutput appends detailed logs: speed, ambient light, road curvature, steering angle, 

and oncoming vehicle status. 
• runOnUiThread() ensures UI updates are thread-safe. 

6.1.5.2.6. Lifecycle Management 

• onDestroy() stops the background thread (isRunning = false), unregisters HAL 
callbacks, disconnects from CarService, and terminates the model. 

• Ensures clean shutdown and prevents resource leaks. 

Summary 

This implementation automates input signal acquisition using the Vehicle HAL, while 
mocking missing signals. It continuously feeds all signals into the native model, producing live 
outputs in the UI, making it a realistic simulation of adaptive light beam control in real 
automotive systems. 

6.1.5.3 activity_main.xml 

<?xml version="1.0" encoding="utf-8"?> 
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
    android:padding="24dp"> 
 
    <LinearLayout 
        android:layout_width="match_parent" 
        android:layout_height="wrap_content" 
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        android:orientation="vertical" 
        android:gravity="center_horizontal"> 
 
        <TextView 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:text="Adaptive Light Beam Controller" 
            android:textSize="24sp" 
            android:textStyle="bold" 
            android:layout_marginBottom="24dp" /> 
 
        <!-- Output for final computed values --> 
        <TextView 
            android:id="@+id/intensityOutput" 
            android:layout_width="match_parent" 
            android:layout_height="wrap_content" 
            android:text="Beam Range: -- m | Beam Angle: -- °" 
            android:textSize="18sp" 
            android:textStyle="bold" 
            android:layout_marginTop="20dp" /> 
 
        <!-- Log/debug area --> 
        <TextView 
            android:id="@+id/BeamAngleOutput" 
            android:layout_width="match_parent" 
            android:layout_height="200dp" 
            android:text="Logs will appear here..." 
            android:background="#f0f0f0" 
            android:padding="8dp" 
            android:layout_marginTop="12dp" 
            android:scrollbars="vertical" /> 
 
    </LinearLayout> 
</ScrollView> 

Explanation: 

• Removed all manual input widgets. 
• Added TextViews for live beam output (intensityOutput) and logs 

(BeamAngleOutput). 
• UI now reflects automatic updates from HAL signals 

6.1.5.4 AndroidManifest.xml (HAL Permissions) 

<?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:android="http://schemas.android.com/apk/res/android" 
    package="com.example.monolithicadaptivelightbeamcontroller"> 
 
    <uses-permission android:name="android.permission.CAR_SPEED"/> 
    <uses-permission android:name="android.permission.CAR_STEERING"/> 
    <uses-permission android:name="android.permission.CAR_AMBIENT_LIGHT"/> 
 
    <application 
        android:allowBackup="true" 
        android:label="Adaptive Light Beam Controller" 
        android:icon="@mipmap/ic_launcher" 
        android:roundIcon="@mipmap/ic_launcher_round" 
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        android:supportsRtl="true" 
        android:theme="@style/Theme.AppCompat.Light.NoActionBar"> 
 
        <activity android:name=".MainActivity" 
            android:exported="true"> 
            <intent-filter> 
                <action android:name="android.intent.action.MAIN"/> 
                <category android:name="android.intent.category.LAUNCHER"/> 
            </intent-filter> 
        </activity> 
 
    </application> 
 
</manifest> 

Explanation: 

• Added permissions for accessing automotive vehicle signals like speed, steering, and 
ambient light. 

• Keeps standard activity declaration unchanged. 

This gives a complete view of all changes: project-level, UI, activity code, manifest, and 
testing considerations. 

6.1.6. Add the Project to the Build: 

• Navigate to the appropriate file based on your Android version. [17] 

• Android 14: packages/services/Car/car_product/build/car_system.mk. [17] 

• Android13 or Android 12: packages/services/Car/car_product/build/car.mk. [17] 

• Add your new app to the list. [17] 
PRODUCT_PACKAGES += \ 
    CarFrameworkPackageStubs \ 
    CarService \ 
    CarShell \ 
    CarDialerApp \ 
    CarRadioApp \ 
    OverviewApp \ 
    CarLauncher \ 
    CarSystemUI \ 
    LocalMediaPlayer \ 
    CarMediaApp \ 
    CarMessengerApp \ 
    CarHTMLViewer \ 
    CarHvacApp \ 
    CarMapsPlaceholder \ 
    CarLatinIME \ 
    CarSettings \ 
    CarUsbHandler \ 
    android.car \ 
    car-frameworks-service \ 
    com.android.car.procfsinspector \ 
    libcar-framework-service-jni \ 
    ScriptExecutor \ 
    MonolithicAdaptiveLightBeamController \ 
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6.1.7. Build AOSP and Run the Emulator: 

• Source the environment using . build/envsetup.sh . [17] 

• Choose your target using lunch sdk_car_x86_64-userdebug. 

• Build the source code with make -j$(nproc). 

• Launch the emulator with emulator & to see your integrated app. 
 

6.2. Shifting of SOAAdaptiveLightController to AOSP  

6.2.1 Create a Sample Android Project 

Before integrating the system into AOSP, a prototype of the SOA-based Adaptive Light 

Controller was implemented in Android Studio. (Refer to Chapters 3 and 5 for the 

implementation of the prototype.) 

6.2.2 Prepare an application Folder in AOSP 

To integrate the application within the AOSP environment: 

6.2.2.1 Navigate to: 

/packages/apps/Car 

6.6.2.2 Duplicate any existing application folder (e.g., Calendar) and rename it to: 

SOAAdaptiveLightController 

6.6.2.3 Clean the folder by removing unnecessary subfolders. Keep: 

src/ 
res/ 
Android.bp 

6.6.2.4 Inside src : 

               Inside src folder place all Java, JNI (C++) source files from the original Android Studio   
project. [17] 

6.6.2.5 Create an aidl directory 

 Create AIDL files for the AIDL interface files corresponding to each car service. (see 
figure 59) 

6.6.2.6 Add AndroidManifest.xml 

Add the application’s AndroidManifest.xml to define permissions, package, and 
activities. [17] 

 

The final file structure of the application: 
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Figure 59: SOAAdaptiveLightController application file structure  

6.2.3 Prepare folder structure associated with service implementation 

6.2.3.1 Navigate to:  

packages/services/car/service/ 

6.2.3.2 Create folders for each service: 

ambientlight/ 
beamanglecontroller/ 
roadcurvature/ 
vehicleoncoming/ 
vehiclespeed/ 

6.2.3.3 For each service: 

• Place the Simulink-generated .cpp and .h files. 
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• Add a corresponding Binder wrapper file (e.g., AmbientLightServiceBinder.cpp & 
AmbientLightServiceBinder.h). 

• Create a minimal Android.bp file to compile each service as a static/shared library. 

6.2.3.4 Create an aidl folder for service-side AIDL interfaces: 

services/car/aidl/ 

6.2.3.5 Create a shared folder for reusable Simulink or utility code. 

services/shared 

6.2.3.6 Implement a CarServiceMain.cpp file which registers all services to CarService at 

startup. 

6.2.3.7 Finally, create a top-level Android.bp to include and link all service libraries. 

 

Final structure of the service folder in AOSP looks like: 
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Figure 60: File structure of the service implementation in AOSP 
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6.2.4 Explanation of Important Files and Their Roles 

6.2.4.1 AIDL Files 

Each AIDL file defines a Binder interface through which the Java or C++ client (the app) 
communicates with the native services. 

Example: 
package com.android.car; 
 
interface IAmbientLightService { 
    double computeAmbientLight(double inputAmbientLight); 
} 

When compiled, AOSP generates Binder stub and proxy classes (using NDK AIDL), enabling 
inter-process communication between the app (client) and car service (server). 

6.2.4.2 Service Implementation (e.g., AmbientLightService.cpp) 

This file contains the core computation logic ( auto-generated from Simulink). 
For instance, AmbientLightService::computeAmbientLight() computes or simulates an 
environmental light response value. 

6.2.4.3 Binder Wrapper (AmbientLightServiceBinder.h / .cpp) 

These files act as the bridge between Android’s Binder system and the native C++ service 
logic. 

Header: 

#pragma once 
#include <aidl/com/android/car/BnAmbientLightService.h> 
#include "AmbientLightService.h" 
 
// Binder wrapper around AmbientLightService 
class AmbientLightServiceBinder : public 
aidl::com::android::car::BnAmbientLightService { 
public: 
    AmbientLightServiceBinder(); 
    ndk::ScopedAStatus computeAmbientLight(double ambientLight, double* 
_aidl_return) override; 
 
private: 
    AmbientLightService mService;  // Simulink-generated implementation 
}; 

Implementation: 

#include "AmbientLightServiceBinder.h" 
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AmbientLightServiceBinder::AmbientLightServiceBinder() : mService() {} 
 
ndk::ScopedAStatus AmbientLightServiceBinder::computeAmbientLight( 
        double ambientLight, double* _aidl_return) { 
    double result = 0.0; 
    mService.computeAmbientLight(ambientLight, &result); 
    *_aidl_return = result; 
    return ndk::ScopedAStatus::ok(); 
} 

Explanation: 

• The class inherits from the NDK Binder Stub (BnAmbientLightService). 
• It overrides the AIDL-defined method (computeAmbientLight). 
• Internally, it calls the real algorithm implemented in AmbientLightService.cpp. 
• It returns the result to the caller through the Binder IPC channel. 

6.2.4.4 Per-Service Build File (Android.bp) 

Each service has its own Android.bp file that defines how it is compiled. 

cc_library { 
    name: "ambientlight", 
    srcs: [ 
        "AmbientLightService.cpp", 
        "AmbientLightServiceBinder.cpp", 
    ], 
    cflags: ["-std=c++17"], 
    include_dirs: [".", "../../shared"], 
    stl: "c++_shared", 
    visibility: ["//visibility:public"], 
    ndk: { enabled: true }, 
} 

Explanation: 

• Builds the service as a shared C++ library. 
• Includes headers from both its folder and the shared Simulink headers. 
• Makes the service publicly visible to other AOSP modules. 
• Enables use in the NDK environment, which allows Binder IPC with Java apps. 

6.2.4.5 CarServiceMain.cpp (Service Registration) 

This is the entry point of the Car Service process. 
It registers all service binders into Android’s Service Manager, making them discoverable by 
clients. 

#include <android/binder_manager.h> 
#include <android/binder_process.h> 
#include <android/log.h> 
#include "ambientlight/AmbientLightServiceBinder.h" 
#include "vehiclespeed/VehicleSpeedServiceBinder.h" 
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#include "roadcurvature/RoadCurvatureServiceBinder.h" 
#include "steeringangle/SteeringAngleServiceBinder.h" 
#include "vehicleoncoming/VehicleOncomingServiceBinder.h" 
#include "beamangle/BeamAngleControllerBinder.h" 
 
int main() { 
    ABinderProcess_setThreadPoolMaxThreadCount(0); 
    ALOGI("CarServiceMain starting..."); 
 
    auto ambientLightService = 
ndk::SharedRefBase::make<AmbientLightServiceBinder>(); 
    AServiceManager_addService(ambientLightService->asBinder().get(), 
                               "com.android.car.IAmbientLightService/default"); 
 
    // ... repeat for all other services 
 
    ALOGI("All services registered successfully."); 
    ABinderProcess_joinThreadPool(); 
    return 0; 
} 

Explanation of Flow: 

1. The Binder thread pool is initialized to handle IPC requests. 
2. Each service Binder object (e.g., AmbientLightServiceBinder) is instantiated. 
3. Each service is registered with a unique name in the Android Service Manager (e.g., 

"com.android.car.IAmbientLightService/default"). 
4. The process joins the Binder thread pool to continuously listen for incoming IPC calls 

from applications. 
5. When the app calls the corresponding AIDL interface, the request is routed to this 

process and handled by the corresponding Binder wrapper. 

6.2.4.6 Master Build Script (Android.bp) 

At the controller/ or car/ level, a main Android.bp file builds the executable carservice that 
includes all service modules. 

cc_binary { 
    name: "carservice", 
    srcs: ["CarServiceMain.cpp"], 
    cflags: ["-std=c++17"], 
    stl: "c++_shared", 
    shared_libs: [ 
        "ambientlight", 
        "vehiclespeed", 
        "beamanglecontroller", 
        "roadcurvature", 
        "steeringangle", 
        "vehicleoncoming", 
    ], 
    visibility: ["//visibility:public"], 
    ndk: { enabled: true }, 
} 
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Explanation: 

• cc_binary defines a native binary executable called carservice. 
• Links all per-service libraries into one running process. 
• Registers all services automatically during boot. 

6.2.5 Workflow Summary 

1. App side calls the service method via AIDL (e.g., computeAmbientLight()). 
2. Binder IPC transmits the request to the corresponding native service process 

(carservice). 
3. The Binder wrapper (AmbientLightServiceBinder) receives the IPC call. 
4. It delegates computation to the Simulink-generated C++ logic 

(AmbientLightService.cpp). 
5. The computed result is returned through Binder IPC to the application. 
6. The UI updates accordingly to display the processed data. 

6.2.6 Conclusion 

Integrating the SOAAdaptiveLightController directly into AOSP transforms it from a 

standalone Android app into a system-level automotive service framework. 

This design leverages the AOSP Binder IPC mechanism to achieve modularity, fault isolation, 

and scalability — all key characteristics of a Service-Oriented Architecture (SOA) within 

embedded automotive platforms. 
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Chapter 7 

7. OTA Implementation for SOAAdaptiveLightController 

7.1 Introduction 

The Over-The-Air (OTA) update mechanism is an essential feature in modern automotive 
software architectures. It allows the vehicle’s software components to be updated remotely, 
improving maintainability, safety, and feature expansion over time.[1][4][11][15] 

In the context of the SOAAdaptiveLightController developed in this research, the OTA 
mechanism leverages the Service-Oriented Architecture (SOA) design to enable individual 
services, such as AmbientLightService, VehicleSpeedService, or BeamAngleController, to be 
independently updated without requiring a complete system rebuild or reflashing of the 
Android image. 

This approach aligns with the SOA principle of “loose coupling and dynamic service 
management”, making the system modular, upgradeable, and more resilient. 

7.2 Architecture Overview 

In the implemented AOSP structure, each vehicle-related functionality—ambient light 
detection, road curvature, vehicle speed, etc.—is developed as an independent Binder-based 
service module. 
These services are dynamically registered through the main orchestrator 
(CarServiceMain.cpp), and their compiled outputs (.so shared objects) are linked within the 
car service binary.[2][3][12] 

The OTA update mechanism introduces a new Binder service called OTAUpdateService, which 
handles downloading, verifying, and updating these service modules.[8] 

The following diagram illustrates the OTA workflow within the AOSP-based SOA 
architecture:[8][2][3][12] 

 SOAAdaptiveLightController (Android App - UI)           
 User triggers OTA update for a specific service           
 Calls IOTAUpdateService via AIDL                          

 
                        │ Binder IPC 
                       ▼ 

 OTAUpdateService (C++ Binder Service)                  
 Downloads new module (.so) via HTTPS                     
 Verifies checksum / signature                            
 Replaces old service binary in /data/vendor/carservices/ 
 Signals CarServiceMain to reload updated module          

                       │ 
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                      ▼ 

CarServiceMain.cpp                                     
Dynamically loads service libraries via dlopen()         
Registers each updated service to AServiceManager        
 Provides runtime modularity and dynamic service loading  

 

7.3 Implementation Steps 

Step 1 – OTAUpdateService AIDL Definition 

The IOTAUpdateService.aidl interface is defined to expose OTA update functionalities to the 
client layer. [8][2][3][12] 

package com.android.car; 
 
interface IOTAUpdateService { 
    boolean downloadAndUpdateModule(String moduleName, String downloadUrl); 
    String getUpdateStatus(String moduleName); 
} 

This interface allows the Android application to trigger OTA updates for specific modules (e.g., 
“ambientlight”) and to query their update status. 

Step 2 – C++ Implementation of OTAUpdateService 

The OTA service is implemented as a Binder-based C++ class that downloads and replaces 
service modules: [8][2][3][12] 

#include "IOTAUpdateService.h" 
#include <curl/curl.h> 
#include <android/binder_manager.h> 
#include <android/log.h> 
 
#define MODULE_PATH "/data/vendor/carservices/modules/" 
#define LOG_TAG "OTAUpdateService" 
 
bool downloadFile(const std::string& url, const std::string& outPath); 
 
class OTAUpdateService : public aidl::com::android::car::BnOTAUpdateService { 
public: 
    ndk::ScopedAStatus downloadAndUpdateModule( 
            const std::string& moduleName, 
            const std::string& downloadUrl, 
            bool* _aidl_return) override { 
 
        std::string tempPath = std::string(MODULE_PATH) + moduleName + "_new.so"; 
        std::string finalPath = std::string(MODULE_PATH) + moduleName + ".so"; 
 
        if (!downloadFile(downloadUrl, tempPath)) { 
            ALOGE("Download failed for %s", moduleName.c_str()); 
            *_aidl_return = false; 
            return ndk::ScopedAStatus::ok(); 
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        } 
 
        // Replace old module 
        rename(tempPath.c_str(), finalPath.c_str()); 
 
        // Restart carservice to reload updated module 
        system("stop carservice && start carservice"); 
 
        ALOGI("Updated module %s successfully", moduleName.c_str()); 
        *_aidl_return = true; 
        return ndk::ScopedAStatus::ok(); 
    } 
}; 

The service downloads a new .so binary, replaces the existing one, and triggers a lightweight 
restart of the carservice process, which then reloads all services including the updated one. 

Step 3 – Dynamic Service Loading in CarServiceMain.cpp 

To support OTA-updatable modules, CarServiceMain.cpp is modified to dynamically load 
service libraries using dlopen() and dlsym() instead of static linking. [8][2][3][12] 

#include <dlfcn.h> 
#include <android/binder_manager.h> 
 
void loadAndRegisterService(const std::string& libPath, const std::string& 
serviceName) { 
    void* handle = dlopen(libPath.c_str(), RTLD_NOW); 
    if (!handle) { 
        ALOGE("Failed to load %s: %s", serviceName.c_str(), dlerror()); 
        return; 
    } 
 
    using CreateBinderFn = ndk::SpAIBinder (*)(); 
    auto createFn = (CreateBinderFn)dlsym(handle, "createBinder"); 
    if (!createFn) { 
        ALOGE("Symbol not found in %s", serviceName.c_str()); 
        return; 
    } 
 
    auto binder = createFn(); 
    AServiceManager_addService(binder->asBinder().get(), serviceName.c_str()); 
} 
Each service (such as AmbientLightService) exports a createBinder() method that 
returns a Binder instance of the service. 
extern "C" ndk::SpAIBinder createBinder() { 
    return ndk::SharedRefBase::make<AmbientLightServiceBinder>()->asBinder(); 
} 

This mechanism allows the carservice process to load a newly updated module without 
requiring recompilation or flashing. 
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7.4 OTA Update Example: AmbientLightService 

To demonstrate the OTA functionality, the AmbientLightService was selected as a use case. 

Initial Setup: 

• Original library: /data/vendor/carservices/modules/ambientlight.so 
• Registered Binder service: com.android.car.IAmbientLightService/default 

Update Scenario: 

Suppose an improvement is made in the Simulink model of the ambient light computation 
(for example, enhanced filtering of sensor noise). A new version of the service is built and 
published on a remote server as ambientlight_v2.so. [8][2][3][12] 

Update Procedure: 

1. Trigger Update from App: 
o The user (or system) calls: 
o otaService.downloadAndUpdateModule("ambientlight", 

"https://server.com/updates/ambientlight_v2.so"); 
2. Download & Replacement: 

o OTAUpdateService downloads the new binary and stores it as 
/data/vendor/carservices/modules/ambientlight_new.so. 

o It verifies integrity and replaces the old module: 
o mv ambientlight_new.so ambientlight.so 

3. Reload Service: 
o The carservice process is restarted or signalled to reload. 
o CarServiceMain dynamically loads the new ambientlight.so. 
o The updated AmbientLightService is re-registered with the same AIDL 

interface. 
4. Result: 

o Clients (like the Adaptive Light Controller app) continue to use 
IAmbientLightService seamlessly. 

o The updated logic is now active without reflashing the firmware or rebuilding 
the AOSP image. 

7.5 Advantages of the OTA Mechanism 

Feature Description 

Service-Level Modularity Each vehicle function can be updated independently. 

Reduced Downtime No need for full system reflashing or reboots. 

Improved Maintainability Easier integration of new features or bug fixes. 

Security Update packages can be signed and verified. 

Demonstrates SOA Principles Dynamic service binding and independent deployment. 
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7.6 Summary 

The integration of OTA update functionality into the SOAAdaptiveLightController project 
transforms it into a truly service-oriented automotive software platform. 
By enabling independent updates for services such as AmbientLightService, the system 
achieves: 

• runtime flexibility, 
• reduced maintenance overhead, and 
• enhanced scalability. 

This approach demonstrates how modern automotive systems can adopt cloud-driven service 
delivery models while remaining compliant with the modularity principles defined by SOA. 
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Chapter 8 

8. Mixed Criticality in Android Automotive Systems 

8.1 Introduction 

Modern vehicles integrate a wide range of software functionalities with differing reliability, 
timing, and safety requirements. This coexistence of components with diverse assurance 
levels defines a mixed-criticality system, a core characteristic of today’s automotive software 
architecture. 

While traditional Electronic Control Units (ECUs) were designed for single-purpose, safety-
critical tasks, recent technological trends—such as domain controllers and centralized 
computing—allow both safety-critical and non-critical software to share the same hardware 
resources. Managing these workloads safely and predictably is one of the central challenges 
of Android Automotive OS (AAOS) integration in modern vehicles. [11][13][14][15] 

This chapter explores how mixed criticality is addressed in Android Automotive systems, the 
mechanisms used to achieve freedom from interference, and how the developed Service-
Oriented AdaptiveLight Controller (SOA-ALBC) fits within this context as a representative 
infotainment-level application designed using Model-Based Software Design (MBSD) and 
integrated through Android Studio. 

8.2 Concept of Mixed Criticality 

8.2.1 Definition 

Mixed criticality refers to the coexistence of software components with different levels of 
functional safety, real-time behaviour, and assurance requirements on a shared platform. 
According to ISO 26262, each function in a vehicle can be assigned an Automotive Safety 
Integrity Level (ASIL), ranging from ASIL D (highest safety requirement) to QM (quality-
managed, non-safety).[11] 

Mixed criticality arises when both ASIL-classified and QM components execute on the same 
processor or within the same system. This situation demands careful system partitioning and 
resource management to prevent interference between components of different criticalities. 

8.2.2 Challenges in Mixed-Criticality Integration 

The coexistence of multiple criticality levels introduces several challenges:[11][13][14] 

• Freedom from Interference (FFI): Lower-criticality software (e.g., Android 
applications) must not affect the timing, memory, or data integrity of higher-criticality 
components. 

• Timing Predictability: Real-time control systems require deterministic response, 
which general-purpose systems like Android do not natively guarantee. 
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• Resource Contention: Shared use of CPUs, GPUs, and memory can lead to 
unpredictable performance if not controlled. 

• Security and Safety Assurance: Non-safety domains must not compromise the 
operation or integrity of safety-critical subsystems. 

• Certification Complexity: Demonstrating that the overall system meets safety 
standards becomes more demanding when criticality levels are mixed. 

8.3 Mixed Criticality in Android Automotive Architecture 

8.3.1 Overview of Android Automotive OS 

Android Automotive OS (AAOS) is a Google-supported, embedded variant of the Android 
operating system specifically adapted for in-vehicle infotainment (IVI) systems. It manages 
tasks such as media playback, navigation, user interaction, and integration with vehicle 
sensors via the Vehicle Hardware Abstraction Layer (VHAL).[2][3] 

From a safety perspective, Android Automotive is considered a non-safety (QM) 
environment. However, it often operates in close proximity to safety-critical ECUs, forming 
part of a larger, mixed-criticality vehicle architecture. 

8.3.2 Architectural Separation of Domains 

To manage mixed criticality, automotive platforms employ domain separation through 
hardware and software partitioning. There is a conceptual separation between: 

• Safety/Real-Time Domain — Executes safety-critical control functions (e.g., braking, 
steering, lighting logic) under a safety-certified Real-Time Operating System (RTOS) 
such as QNX, PikeOS, or AUTOSAR Classic. [11][13][14] 

• Infotainment Domain — Hosts Android Automotive and its applications, including 
non-critical user-interface services such as the SOA AdaptiveLight Controller 
developed in this work. 

Although Android Automotive applications may visualize or influence parameters related to 
safety systems, they are not responsible for the real-time actuation or control logic. Instead, 
Android acts as a supervisory or monitoring layer interfacing through standardized APIs. 

8.3.3 Mechanisms Supporting Mixed Criticality 

Android Automotive achieves coexistence with safety-critical systems through several key 
mechanisms: 

1. Hardware Virtualization and Hypervisors: 
Modern SoCs (e.g., Qualcomm Snapdragon Ride, Renesas R-Car, NXP S32G) use 
hypervisors to host multiple isolated guest operating systems. Safety functions 
execute in a certified RTOS partition, while Android runs in a separate virtualized 
domain. This enforces spatial and temporal isolation. [13][14][15] 
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2. Safety Islands and Secure Execution Environments: 
Dedicated hardware cores, often called “safety islands,” execute essential safety 
software independently from Android. Even if Android crashes, these cores maintain 
the system in a safe state. [14][15] 

3. Linux Kernel Isolation (Cgroups, Cpuset, and Namespaces): 
Within Android, process isolation and resource control are achieved using Linux kernel 
features such as control groups (cgroups) and cpusets, which prevent resource 
starvation and enforce CPU scheduling boundaries. [12] 

4. SELinux and Permission Enforcement: 
Android Automotive enforces Security-Enhanced Linux (SELinux) in enforcing mode, 
defining policies that tightly restrict access to devices, I/O, and vehicle interfaces. 
Applications can only access vehicle data through the Car Service and Vehicle HAL 
layers, not through direct hardware interfaces. [2][3][12] 

5. Vehicle HAL Mediation: 
The Vehicle HAL acts as a secure communication bridge between Android and 
underlying ECUs. Safety-critical ECUs expose limited, read-only or verified interfaces, 
ensuring that infotainment apps cannot issue unsafe commands. [2][3][12] 

6. Safe Communication Channels: 
When cross-domain communication is necessary, it is implemented via authenticated, 
rate-limited IPC mechanisms or hypervisor-mediated shared memory channels to 
avoid overloading safety partitions.[13][14] 

8.4 Case Study: SOA AdaptiveLight Controller Application 

8.4.1 Model-Based Design Workflow 

The SOA AdaptiveLight Controller (SOA-ALC) application developed in this thesis 
demonstrates the use of Model-Based Software Design (MBSD) for automotive use cases 
within Android Automotive. 

The control logic was first designed in MATLAB/Simulink, modelled as a service-oriented 
component. Using Embedded Coder, the model was automatically converted into C++ source 
code, ensuring consistency between design and implementation. The generated code was 
then integrated into Android Studio as part of an AAOS application module. 

8.4.2 Role within Mixed Criticality Architecture 

Although adaptive lighting behaviour in production vehicles is safety-critical, in this thesis the 
SOA-ALBC serves as a non-critical infotainment demonstration. It visualizes and simulates 
adaptive lighting responses rather than directly controlling hardware. 

Thus, the application resides entirely within the Android (QM) domain, utilizing AAOS APIs to 
demonstrate vehicle service interaction without influencing real-time actuation. This 
approach makes it an ideal research use case to analyse how complex control algorithms can 
be safely hosted in a mixed-criticality environment.[1][5][16] 
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8.4.3 Interaction Boundaries 

The integration ensures clear separation between: 

• Application Layer: Android application hosting user interface and service logic. 
• System Services: Car Service and VHAL layers mediating any communication with 

vehicle subsystems. 
• External ECUs (if connected): Access limited to simulated or read-only channels. 

This architecture maintains freedom from interference by ensuring that any misbehaviour in 
the SOA-ALC app (e.g., CPU spikes, software errors) does not affect the functioning of safety 
ECUs or other domains.[2][11][12] 

8.5 Safety, Security, and System Assurance Considerations 

8.5.1 Freedom from Interference (FFI) 

AAOS ensures FFI between infotainment applications and safety-critical components through: 

• Process sandboxing and SELinux policy enforcement.[2][12] 
• Controlled access via Car Service and Vehicle HAL.[2][3] 
• Resource quotas using Linux kernel control groups. 
• Strict application signing and permission management. 

8.5.2 Compliance Context 

While AAOS itself is not ISO 26262-certified, it is designed to coexist with certified safety 
platforms. In such setups, the Android environment operates at the QM level, and its 
functions are excluded from the vehicle’s safety case.[11] 

The SOA-ALBC application, implemented in this work, thus aligns with the non-safety (QM) 
classification, illustrating a safe and structured integration of complex MBSD-generated 
software in the Android domain. 

8.5.3 Security and Update Management 

Android Automotive employs secure boot, verified updates, and application signing to ensure 
system integrity. These mechanisms are critical in mixed-criticality systems, as untrusted 
updates in non-critical domains must not jeopardize the safe operation of the overall vehicle 
architecture.[12] 

8.6 Discussion 

The study highlights that Android Automotive provides a flexible and robust platform for 
developing advanced, service-oriented automotive applications while maintaining strict 
boundaries between safety and non-safety domains. 
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From the perspective of system design: 

• Safety-critical control should reside outside Android, in RTOS or safety partitions. 
[11][13][14] 

• Infotainment and visualization functions, such as the SOA-ALC, can be implemented 
safely within Android, benefiting from its development ecosystem, connectivity, and 
user interface capabilities. 

• Proper use of the VHAL, SELinux, and virtualization ensures compliance with mixed-
criticality principles. [2][12] 

This separation allows research and development teams to explore advanced automotive 
functionalities (like adaptive lighting logic) at the application level without endangering safety 
or violating functional safety constraints. 

8.7 Conclusion 

Mixed-criticality management in Android Automotive is achieved through a combination of 
architectural isolation, hardware support, and robust software mechanisms. Android, as a 
non-safety environment, complements safety-certified domains by enabling high-level, user-
facing applications and services. 

The SOA Adaptive Light Beam Controller developed in this thesis exemplifies how a model-
based, service-oriented application can be deployed within AAOS, respecting mixed-criticality 
boundaries and demonstrating safe integration of advanced functionalities in the 
infotainment layer. 

This approach reinforces the potential of combining Model-Based Software Design with 
Android Automotive to accelerate innovation, maintain software quality, and preserve 
system integrity in future vehicle architectures. 
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Chapter 9 

9. Vehicle Signal Integration in Android Automotive 

9.1 Overview 

In a vehicle equipped with Android Automotive OS (AAOS), input signals from physical sensors 
and actuators—such as steering angle, speed, ambient light, or headlamp status—are 
typically transmitted over a Controller Area Network (CAN) bus. However, Android does not 
directly access the CAN bus for both safety and architectural reasons. [2][3][12] 

Instead, signal acquisition and distribution occur through a layered integration architecture, 
where the Vehicle HAL (Hardware Abstraction Layer) acts as the interface between Android 
and the vehicle’s underlying ECUs or middleware.[2] 

This section describes how CAN signals flow through the system, the role of intermediate 
components, and how Android applications like the SOA Adaptive Light Beam Controller can 
consume those signals safely.[11] 

9.2 Signal Flow: From CAN Bus to Android 

The typical signal path can be described in the following stages: 

[Vehicle Sensors/Actuators]  
       ↓ 
[CAN Bus]  
       ↓ 
[Vehicle Gateway ECU / Vehicle Interface Processor]  
       ↓ 
[Vehicle HAL]  
       ↓ 
[Car Service / Car API]  
       ↓ 
[Android Application Layer (e.g., SOA Adaptive Light Beam Controller)] 

9.2.1 Vehicle Sensors and CAN Bus 

At the hardware level, vehicle sensors and actuators communicate through one or more CAN 
networks (e.g., Powertrain CAN, Body CAN, Chassis CAN). Each signal is encoded as a CAN 
frame identified by a unique CAN ID, and contains payload data such as: 

• Vehicle speed 
• Steering angle 
• Ambient light intensity 
• Headlamp status 

These messages are broadcast periodically, typically every 10–100 ms, depending on their 
criticality.[12] 
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9.2.2 Vehicle Gateway ECU 

The Vehicle Gateway ECU (or Body Control Module, or dedicated middleware gateway) acts 
as a bridge between the CAN bus and higher-level systems such as Android Automotive. Its 
main responsibilities include: 

• Receiving and decoding CAN messages. 
• Converting raw CAN data into abstracted vehicle signals (e.g., VehicleSpeed = 45 

km/h). 
• Filtering, scaling, or rate-limiting the signals. 
• Providing these processed signals to higher-level software components through 

standard interfaces, often via Ethernet or shared memory. 

This gateway may run: 

• A real-time OS (RTOS) or AUTOSAR stack for safety and timing. 
• A communication middleware such as Some/IP, DDS, or gRPC over IPC for higher-level 

communication. 

It isolates Android from direct bus access, enforcing the freedom from interference 
principle.[2][3][12] 

9.3 Vehicle HAL (Hardware Abstraction Layer) 

9.3.1 Purpose 

The Vehicle HAL (VHAL) is the Android Automotive system component that provides a 
standard interface for vehicle-related data to the Android framework. It abstracts away the 
details of how vehicle signals are obtained, presenting a unified API to Android services and 
applications. 

VHAL defines a set of Vehicle Properties, each identified by an integer constant (e.g., 
VEHICLE_PROPERTY_SPEED, VEHICLE_PROPERTY_STEERING_ANGLE). These are standardized 
in the Android Open Source Project (AOSP).[2][3] 

9.3.2 Structure 

VHAL is implemented in C++ and runs in native space (under /vendor partition). It typically 
communicates with the vehicle gateway or middleware via: 

• Socket-based IPC 
• Binder interface 
• Shared memory 
• Some/IP or gRPC interface 

It translates external data into standardized property structures (VehiclePropValue), which 
are published to the Android Car Service. 
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Example (simplified flow): 

VehiclePropValue value; 
value.prop = VEHICLE_PROPERTY_SPEED; 
value.value.floatValues[0] = decodedSpeed; 
mVehicleHal->setProperty(value); 

This data is then pushed to the Car Service in the Android framework layer.[2][3][12] 

9.4 Car Service and Car API 

9.4.1 Car Service 

The Car Service runs in the Android System Server process. It communicates with the Vehicle 
HAL via Binder IPC and provides higher-level access to vehicle data through a managed API 
layer. 

It defines the permission model and ensures that only authorized components can read or 
modify certain vehicle properties. 
For example: 

• Speed or fuel level may be read by any system UI component. 
• Door lock status or ignition control is restricted to system-only components. 

9.4.2 Car API (Application Layer) 

Applications in the Android domain use the Car API, part of the android.car package, to read 
or subscribe to vehicle signals. 

Example Java/Kotlin usage: 

val car = Car.createCar(context) 
val carPropertyManager = car.getCarManager(Car.PROPERTY_SERVICE) as 
CarPropertyManager 
 
carPropertyManager.registerCallback(object : 
CarPropertyManager.CarPropertyEventCallback { 
    override fun onChangeEvent(value: CarPropertyValue<*>) { 
        if (value.propertyId == VehiclePropertyIds.PERF_VEHICLE_SPEED) { 
            val speed = value.value as Float 
            // Use vehicle speed as input for adaptive lighting visualization 
        } 
    } 
    override fun onErrorEvent(propId: Int, zone: Int) {} 
}, VehiclePropertyIds.PERF_VEHICLE_SPEED, CarPropertyManager.SENSOR_RATE_ONCHANGE) 

This abstraction ensures that the app never directly interacts with CAN data; instead, it 
receives high-level vehicle properties published by the VHAL. [2][3][12] 
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9.5 Integration Example: SOA Adaptive Light Beam Controller 

In the context of the thesis: 

1. Signal Origin: 
o Real-world: Vehicle’s ambient light sensor and steering angle sensor transmit 

data over the CAN bus. 
o Simulated case: The system emulates these signals (e.g., through test datasets 

or synthetic generators in Simulink). 
2. Gateway Translation: 

o The vehicle gateway decodes CAN frames and exposes standardized properties 
such as: 

▪ VehiclePropertyIds.STEERING_ANGLE 
▪ VehiclePropertyIds.AMBIENT_LIGHT_LEVEL 

3. Vehicle HAL Integration: 
o The HAL receives these signals through IPC (e.g., Some/IP or shared memory) 

and converts them into VehiclePropValue objects. 
4. Android Framework: 

o The Car Service receives updates and broadcasts them through the 
CarPropertyManager interface. 

5. Application Consumption: 
o The SOA Adaptive Light Beam Controller (Android app) subscribes to relevant 

properties and uses them to drive adaptive-lighting logic (simulated or 
visualized). 

In a real automotive deployment, the adaptive lighting actuation would occur in a separate, 
safety-certified ECU (e.g., Body Controller), while Android handles visualization, settings, or 
simulation only. 

9.6 Safety and Isolation Considerations 

Even though vehicle signals from CAN reach Android, the data path is strictly one-way for 
most properties. Android applications are: 

• Read-only for safety-critical properties. 
• Rate-limited to prevent flooding the HAL or gateway. 
• Permission-restricted using Android’s automotive permission model 

(android.car.permission.CAR_SPEED, etc.). 

This ensures freedom from interference, where failures in the Android domain cannot 
compromise the safety-critical vehicle control logic.[2][3][12] 

9.7 Summary 

Layer Function Example Technology 

Sensors/ECUs Generate raw signals CAN, LIN, FlexRay 
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Vehicle 
Gateway 

Decode & abstract data AUTOSAR, RTOS, Some/IP 

Vehicle HAL Standardize vehicle properties C++ HAL module 

Car Service Manage access & publish data Android system server 

Application Consume vehicle data SOA Adaptive Light Beam 
Controller 
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