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Abstract

The pursuit of a more natural and empathetic human–robot interaction represents
one of the key challenges in contemporary social robotics. This thesis presents the
design and implementation of an emotional control system for the TIAGo robot,
developed as an extension of previously proposed fuzzy-logic emotional frameworks
and carried out under the supervision of a psychologist. The system integrates
real-time facial expression recognition with a fuzzy-logic emotional model that
dynamically modulates the robot’s navigation parameters. The goal is to enable the
robot to exhibit adaptive and lifelike behaviour by adjusting its motion according
to the emotions perceived in the user and its own internal affective state.
An initial version of the emotional control system was first implemented and tested
in a pilot experiment with 8 participants, which produced preliminary evaluations
and revealed some technical limitations (e.g., latency in the real-time image acqui-
sition and processing pipeline, and navigation parameter updates that were too
smooth to be clearly perceivable). Based on the results obtained, targeted improve-
ments were introduced to develop an optimized system, which was then validated
on a larger sample of 28 participants, ensuring higher statistical robustness and
reliability of the results.
The proposed system defines two internal emotional dimensions for the robot, mood
and alertness, which evolve in response to the emotions detected on the user’s
face. These internal states, processed through two fuzzy state tables, influence two
corresponding navigation outputs: speed (linked to mood) and tuning (linked to
alertness), the latter regulating angular velocity and proximity to obstacles. In
this way, the robot’s movement becomes an external manifestation of its internal
affective state, producing behaviour that more closely resembles that of a living
being.
Two distinct robot personalities, “shy” and “intense”, were implemented by differ-
entiating the fuzzy rules and the amplitude of the emotional reactions. The shy
configuration is characterised by smoother and slower responses, while the intense
one reacts with faster and more marked behavioural changes.
The entire system was developed within the ROS framework and integrated on
the TIAGo platform at the Universidad Politécnica de Madrid. Real-time emotion
detection was achieved using a convolutional neural network (CNN) trained on
facial datasets, interfaced with the robot through dedicated Python and ROS
nodes.
The experimental validation involved human participants who interacted with
the robot under two conditions: neutral mode (without emotional modulation)
and personalised mode (with the emotional system active). Participants then



completed the Godspeed Questionnaire (Animacy and Likeability scales) and the
EVEA self-report emotion scale. Statistical analyses using mixed ANOVA showed
significant improvements in perceived animacy and likeability for the personalised
mode, confirming that integrating emotional dynamics enhances the perceived
naturalness and pleasantness of TIAGo. Furthermore, qualitative data revealed
that participants perceived the shy robot as more delicate and empathetic, while
the intense one appeared more expressive and engaging.
The proposed system allows for intuitive and modular adaptation of robot’s person-
ality traits, laying the groundwork for future developments in emotionally adaptive
and socially intelligent robotics.
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Chapter 1

Introduction

Human–robot interaction (HRI) is progressively moving beyond the traditional
view of robots as purely functional machines, evolving instead toward systems
capable of engaging with humans in a social, adaptive and emotionally meaningful
manner.
In daily interactions between humans and robots, the ability to interpret non-verbal
and emotional signals stands as a frontier of rising importance. On one hand,
humans are naturally inclined to read emotional states through visual, auditory,
and behavioral cues; on the other, robots must acquire tools that enable them to
recognize and respond to such stimuli coherently in order to live and collaborate
effectively in social environments.
In recent years, the concept of social robotics has gained growing attention, with
the goal of making robots not just functional tools, but also partners capable of
interacting empathetically and adaptively with humans. In this context, equipping
robots with an emotional system capable of influencing their operational behavior
represents a fundamental step toward more "human" robotics.
The idea of artificial emotions aims to create computational models capable of
translating sensory signals into dynamic internal states, which in turn can modulate
the robot’s actions, adapting them to the context and improving the quality of
interaction. One of the most promising methodologies for managing this complexity
is fuzzy logic, as it allows for modeling the uncertainty and ambiguity typical of
emotions and human behavior. Unlike rule-based or threshold-based systems, it
supports smooth transitions across emotional and behavioural states, allowing
robots to react to stimuli in a human-like, continuous manner. By combining
fuzzy inference with real-time perception modules—such as in this project facial-
expression recognition—robots can build internal affective representations and
translate them into coherent behavioural responses, including changes in speed,
trajectory, or proximity management.
The present thesis contributes to this line of research by designing, implementing,
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Introduction

and experimentally validating an emotional control system for the TIAGo robot,
developed at the Centro de Automática y Robótica (CAR) of the Universidad
Politécnica de Madrid. Building on existing fuzzy-logic emotional frameworks and
supervised by a psychologist, the system enables TIAGo to modulate its navigation
behaviour dynamically based on emotions recognised on the user’s face. Through
this mechanism, the robot can adjust its linear velocity and its navigation “style”,
exhibiting behaviour that is more expressive, lifelike, and personalised. A key
characteristic of the proposed system is the definition of two internal affective di-
mensions, mood and alertness, which evolve in real time according to the emotional
cues detected in the user throught a real-time face expression detection algorithm
that was integrated on the robot. These dimensions are processed through a
hierarchy of fuzzy controllers that influence TIAGo’s navigation parameters: speed
(modulated by mood) and tuning, a composite parameter regulating angular ve-
locity and obstacle-handling behaviour (modulated by alertness). This framework
allows the robot’s movement to become an external manifestation of its internal
emotional state, bridging the gap between perception and behaviour.
To explore how personality traits can further enrich robot behaviour, two distinct
robot personalities, shy and intense, were implemented by modifying the fuzzy
rules and adjusting the sensitivity of the control system. These profiles differ
in reaction amplitude, speed modulation, and tolerance to proximity. The shy
personality exhibits cautious, reserved behaviour, whereas the intense one responds
more rapidly and dynamically to perceived emotional states.
All the software modules developed, including the fuzzy emotional controller, the
hierarchical affective state manager and the ROS interfaces, have been released in
an open-source GitHub repository.
The complete codebase is available at: https://github.com/carlottapifferi2002/Real-
time-fuzzy-emotional-control-system-for-social-robotics
The system was tested and validated through extensive experimental sessions
involving human participants. After an initial pilot experiment, technical opti-
misations were introduced to increase responsiveness, reduce latency and ensure
that behavioural changes were clearly perceivable. The final system was evaluated
with 28 participants who interacted with both a neutral robot (without emotional
modulation) and a personalised robot (with the emotional system active). Partici-
pants then completed standardised HRI questionnaires—Godspeed (Animacy and
Likeability scales) and EVEA—together with open-ended questions. Statistical
analyses (mixed ANOVA) showed significant improvements in perceived animacy
and likeability when the emotional system was active, confirming the effectiveness
of emotional modulation in enhancing user perception. Qualitative data further
supported these findings, describing the personalised robot as more attentive, more
responsive and more human-like.

2

https://github.com/carlottapifferi2002/Real-time-fuzzy-emotional-control-system-for-social-robotics
https://github.com/carlottapifferi2002/Real-time-fuzzy-emotional-control-system-for-social-robotics


Introduction

1.1 Thesis objectives
This thesis addresses the challenge of integrating a real-time facial expression recog-
nition algorithm and an emotional system based on fuzzy logic into the TIAGo
robot, exploring how emotions and perceived stimuli—such as user emotions—can
influence key parameters of its navigation behavior. This approach aims to make
human-robot interaction more natural and adaptive, enhancing the robot’s capabil-
ities in social and assistive contexts.
The objective is twofold: on one hand, to study the impact of artificial emotions
on the quality of human-robot interaction; on the other, to propose a modular
and scalable approach that can be easily extended to other contexts or robotic
platforms.

1.2 Intelligent Control Group
For this thesis project, I had the honor of working with the Intelligent Control
Group (ICG), a research group within the Centro de Automática y Robótica (CAR)
of the Universidad Politécnica de Madrid (UPM) and the Consejo Superior de
Investigaciones Científicas (CSIC).
CAR is dedicated to advanced research in the fields of control engineering, artificial
perception, and robotics. More information about it can be found on their official
website https://www.car.upm-csic.es/.
ICG focuses on the development of intelligent control techniques for complex sys-
tems, integrating approaches such as fuzzy logic, expert systems and machine learn-
ing. Its activities include the design of algorithms for adaptive and predictive control,
the analysis of nonlinear systems, and the development of applications in areas such
as mobile robotics, industrial automation, and autonomous vehicles. For more de-
tails, the link to their website is https://blogs.upm.es/controlinteligente/welcome/.

1.3 Thesis Outline
The thesis is structured as follows:

• Chapter 2 – State of the Art:
reviews relevant literature in social and emotional robotics, autonomy and
emotional navigation, fuzzy logic applied to robotic systems, evaluation and
statistical methods in HRI.

• Chapter 3 – TIAGo and its Navigation:
describes the TIAGo robot used in this project, its hardware and software

3
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architecture, sensor suite and the navigation stack employed for autonomous
operation.

• Chapter 4 – Real-Time User Expression Recognition:
details the deep-learning-based facial-expression recognition system developed
and integrated into ROS.

• Chapter 5 – Emotional System Based on Fuzzy Logic and Personality Modu-
lation:
presents the architecture of the fuzzy emotional system, configuration files,
controllers and ROS integration.

• Chapter 6 – Experiments:
describes the experimental setup, procedure, statistical analysis and results
from both pilot and final studies.

• Chapter 7 – Conclusions and Future Works:
summarises the findings and outlines potential extensions of the emotional
system.

4



Chapter 2

State of the Art

2.1 Social and Emotional Robotics
In recent years, the field of Human-Robot Interaction (HRI) has seen a growing
emphasis on the development of robots capable of interacting with humans in a
more natural and socially intelligent way. This evolution is closely linked to the
recognized importance of emotions in cognitive processes and human interaction.
The goal is to create artificial agents that not only perform tasks but can also
understand and respond to the social and emotional nuances of human interaction.
A crucial part of this progress stems from the adoption of psychological and
neuroscientific models that explain how emotions influence cognitive processes,
decision-making and social relationships, models that are now being translated into
computational architectures capable of guiding the robot’s behaviour.

2.1.1 The Role of Emotions and Social Interaction in
Robotics

Emotions are inherently present in human language and play a crucial role in
interactions. Rosalind Picard defined the concept of Artificial Emotional Intel-
ligence (AEI), which recognises how the presence of an emotional model makes
the interaction more natural, intuitive and trustworthy, highlighting the role of
emotions in HRI. [1]
Over the past twenty years, scientific interest in this topic has grown exponen-
tially—with a growing trend in publications and citations—in parallel with the
development of increasingly sophisticated computational techniques for recognising
and generating emotion in artificial agents. The evolution of AEI has made it
possible to extend the notion of robotic emotion towards the construction of fully
fledged artificial personalities. Indeed, one of the most significant achievements in
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contemporary social robotics is the ability to endow a robot not only with emotions,
but also with a genuine personality. Robotic personality—understood as the set
of coherent and recognisable behavioural patterns expressed over time—plays a
crucial role in shaping user trust, perceived predictability and overall interaction
comfort. [2]
The relevance of personality also emerges clearly in Breazeal’s studies on sociable
robots: robots such as Kismet integrate a genuine motivational system that governs
emotions, attention and expressive behaviour. This approach is still regarded today
as one of the most advanced models of socio-emotional architecture. [3]

Moreover, the author distinguishes between different categories of robotic sociality:

• Socially evocative robots: designed to stimulate anthropomorphism for playful
interaction, such as toys that use a caregiving model. However, the robot does
not reciprocate social responsiveness;

• Robots with a social interface: use social signals and communication modes
similar to those of humans to facilitate interaction with people (e.g., robotic
avatars or robot guides in museums). Their social model of the user is often
superficial, and their social behavior may be pre-programmed;

• Socially responsive robots: benefit from interaction by learning from humans
through demonstration or other social signals, such as acquiring motor skills or
elements of a proto-language. They are more perceptive but socially passive,
responding to human initiatives without engaging proactively;

• Sociable robots: active social participants, equipped with their own goals and
internal motivations. They proactively engage with people for mutual benefit
and model individuals on a social and cognitive level. Their social behavior
derives from a computational social "psychology".

The ultimate goal is to create robots capable of interacting with empathy, rec-
ognized as a key factor in HRI, improving quality of life and social connection.
Empathic agents are defined as those capable of understanding the emotional state
of a user or another agent and responding appropriately. The study of empathy
can be approached from two perspectives: agents designed to evoke empathy in
humans (agents as targets of empathy) and agents equipped to feel empathy toward
others (empathic agents as observers).
Robot empathy is not limited to recognising the user’s emotional state; it also en-
compasses broader cognitive processes such as response modulation and the ability
to adopt another’s perspective. The distinction between empathic mechanisms,
empathy modulation, and empathic responses clarifies how a robot can move from
a purely expressive reaction (for example, imitating a smile) to a more complex
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form of emotional participation that takes into account context, interaction history,
and social goals. [2] [4]

The potential applications of social and emotional robots are diverse and in-
clude: interactive toys, mediated communication through robotic avatars, guidance
systems in museums or shopping centers, healthcare (e.g., nurse robots, robotic
pets, emotional support for Alzheimer’s patients), support for astronauts, family
companionship, public services, and education. In particular, Socially Assistive
Robots (SARs) are being studied for assisting children with autism spectrum disor-
ders and personal assistant robots for accompanying isolated elderly individuals
and young diabetic patients. [5] [6]

2.1.2 Emotional Systems and Computational Models
The primary goal of AEI is to enable machines to interpret human emotional
states and adapt their behavior accordingly, generating emotionally informed and
context-appropriate responses. This field is divided into two main research areas:

• Robot emotion: explores how robots can be endowed with the ability to
recognize human emotions and, based on that recognition, generate their own
emotional responses.

• Emotional robots: emphasizes the development of robots that not only under-
stand human emotional signals but also express emotions through physical
and behavioral modes.

Psychological theories on the generation of emotions are divided into three main
frameworks: physiological theories (attribute emotions to bodily responses), neuro-
logical theories (link emotional experiences to brain activity) and cognitive theories
(consider thoughts and mental evaluations as central to the formation of emotions).
Although human emotions are subjective and often ambiguous, machines operate
deterministically and can be programmed to simulate emotional responses based
on algorithmic logic, allowing emotional processes to be designed in a structured
and predictable way.
The development of emotional robots focuses on five main functional areas for
practical implementation:

• speech recognition: enables robots to interpret human speech and derive
emotional content;

• verbal interaction: facilitates two-way dialogue that responds to emotional
tone;

• facial identification: recognizes emotional expressions based on facial patterns;
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• emotional expression: allows the robot to exhibit its own emotional state;

• action coordination: regulates physical behavior based on perceived or internal
emotional states.

Numerous robots developed over the past two decades embody these principles. [2]
For example, Aibo has evolved to include advanced emotion-related features such
as facial recognition and the expression of over 60 emotional states. [2]
Paro, a therapeutic robot in the shape of a seal, uses sensors to respond to en-
vironmental stimuli and provide emotional support, particularly for Alzheimer’s
patients. [2]
Saya, a humanoid robot, employs facial muscle simulation to display a range of
expressions, enhancing engagement. [2]
Kismet and Probo use multidimensional emotional spaces based on psychological
theories. [2] [3]

Emotional space models serve as fundamental tools for both recognizing human
emotions and synthesizing or regulating the robot’s emotions. These models use
geometric and topological frameworks to represent emotions in multidimensional
spaces. The Valence–Arousal (VA) model, an important 2D representation, or-
ganizes emotions into quadrants based on their pleasantness and intensity. This
framework has been further elaborated through models such as Positive Activa-
tion–Negative Activation (PANA) and Pleasure–Arousal–Dominance (PAD), the
latter introducing a third dimension (dominance) to differentiate emotions. [2]
In all these models, emotion is understood as a continuum, allowing gradual tran-
sitions and nuanced changes in emotional expression. These models provide a
theoretical basis for architectures that represent emotion as the result of a com-
bination of event appraisal, memory, personality, and adaptation. In educational
contexts, the effectiveness of multimodal models for estimating the user’s emotional
state has been clearly demonstrated. In their scenario, the iCat robot integrates
information from facial expressions, posture, gaze direction, and task performance
to infer the child’s emotional valence and respond accordingly. Such integration
is essential for creating genuinely responsive robots capable of recognising subtle
emotional cues that would be difficult to infer from a single sensory channel. [5]

Finally, several specific computational models have been developed to simulate
the emotional process in artificial agents: FLAME (Fuzzy Logic Adaptive Model
of Emotions) based on fuzzy logic, FearNot! based on appraisal theories, ALMA
(A Layered Model of Affect) which integrates the OCC model and Mehrabian’s
three-dimensional model, EMA (Emotion and Adaptation), and EP-Bot, a chatbot
focused on conversational empathy. [7]
Fuzzy logic, in particular, is used to handle vague concepts and approximate
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reasoning to represent emotions in a robot.

2.2 Autonomy and Emotional Navigation
On the one hand, autonomy enables the robot to act in a flexible and adaptive
manner; on the other, it can generate concerns related to loss of control, particularly
when it is not accompanied by transparent communication of the robot’s intentions.
Robotic emotions therefore play a fundamental role: they allow the robot to express
internal states and modulate its navigation style, making the interaction more
predictable and understandable, thus reducing potential perceptions of threat.

2.2.1 Autonomy, Social Acceptance and Perceived Threats
Recent studies show that the perception of robotic autonomy is closely tied to
trust. [8] Research has examined in depth how perceived autonomy influences the
acceptance of social robots. Findings indicate that seeing robots capable of making
fully autonomous decisions—even to the point of ignoring a human command —
can generate feelings of threat, both in realistic terms (safety, resource competition)
and in identity - related terms (human uniqueness). This dynamic is reinforced
by Western cultural narratives, rich in dystopian depictions of rebellious robots,
which unconsciously shape user expectations. [8]
However, the effect is not unidirectional. Studies conducted in real HRI scenarios
show that these concerns can be mitigated when the robot is transparent in its
decision-making, when it explains the reasons behind its actions, or when it displays
understandable emotional reactions that make its behaviour predictable. When
a robot clearly explains why it acts in a certain way, or when it demonstrates
awareness and respect for the user’s emotional state, the perceived threat decreases
significantly.
This aligns with Breazeal’s observations [3], according to which a robot’s social
capabilities, especially those supported by expressive and behavioural cues, promote
anthropomorphisation and enable users to interpret autonomy not as a risk, but as
a relational capability. Similarly, anthropomorphisation, as shown in museum-based
experiments with the Pepper robot, helps create a sense of familiarity and comfort,
reducing perceived strangeness. [9]

2.2.2 Emotional Control and Emotion-Aware Navigations
From an engineering perspective, a robotic system endowed with emotions must
be capable of translating its internal emotional state into observable physical
behaviours. Fuzzy logic, already employed in several affective models, provides an
especially effective mechanism for achieving a smooth transition between emotional
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states and motor responses. [1]
Extending an emotional model to navigation means enabling the robot to modulate
speed, interpersonal distance, trajectory and movement style according to both its
internal state and the user’s state. For instance, if a robot experienced an emotional
condition analogous to fear, it might slow down, maintain larger distances from
obstacles, or avoid sudden turns. This perspective is consistent with studies on
expressive motion in socially interactive robots.
Emotion-aware navigation thus represents a natural extension of multidimensional
affective models such as PAD. [9]
In these models, dominance and arousal can directly influence control parameters
such as acceleration, turning radius and safety distance. A robot with low dominance
or high uncertainty will tend to move cautiously; conversely, a positive emotional
state with high dominance may result in more fluid and direct movements.
The integration of fuzzy logic, internal emotional state and navigation therefore
enables the robot to evolve from a purely reactive system into an agent capable
of expressing personality through movement. In the case of the TIAGo robot,
employing a fuzzy controller that regulates not only emotions but also motion-
planning parameters leads to coherent behaviour, in which affective expression
and trajectory are aligned. This paradigm is particularly promising in social
and assistive robotics, where the ability to convey safety, calmness or enthusiasm
through movement is crucial for effective interaction with groups of people or in
crowded environments.

2.3 Theoretical Foundations of the Real-Time
Expression Detection Algorithm

Methods for the automatic recognition of emotions from facial images can be
divided into two main categories: traditional computer vision approaches and deep
learning-based approaches. Each category has distinct characteristics, with its
advantages and limitations depending on the use case.

2.3.1 Traditional Computer Vision Approaches
Traditional computer vision approaches n manual feature extraction and require
preprocessing of the images to identify relevant facial traits. Common techniques
include:

• Histogram of Oriented Gradients (HOG): a method used to extract visual
features from image contours, useful for detecting the shape and orientation
of objects.
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• Local Binary Patterns (LBP): an approach that identifies facial textures, useful
for classifying emotions based on local patterns.

• Facial Landmark Geometry: analysis of key facial points (such as eyes, mouth,
eyebrows) to measure and classify expressions.

These approaches have been used for decades in computer vision, with a strong
emphasis on traditional classification through algorithms such as Support Vector
Machines (SVM), Random Forests, and K-Nearest Neighbors (KNN). [16]
These methods have been effective in controlled environments but face limitations
in more complex situations, such as partial expressions, variable lighting, or non-
frontal face orientations.
The main drawbacks of these methods are the dependence on manual feature
extraction and the difficulty in adapting to new environmental conditions, such as
variable lighting and imperfectly defined facial expressions. However, they continue
to be used in environments with limited image resolution or applications that
require fewer computational resources.

2.3.2 Deep Learning-Based Approaches
In recent years, the adoption of Deep Learning has revolutionized the field of facial
emotion recognition. Convolutional Neural Networks (CNNs) have emerged as the
dominant method for facial image analysis due to their ability to automatically
extract discriminative features without the need for manual feature engineering.
[16]
CNNs can learn to recognize complex patterns and detailed features from large facial
image datasets. These models are trained to identify emotions such as happiness,
sadness, surprise, anger, fear, disgust and neutral. The adoption of CNNs has
led to superior performance compared to traditional methods, especially under
challenging conditions such as variable lighting, partial expressions or non-frontal
face orientations.
Their effectiveness is particularly evident when trained on large and balanced
datasets, making them the current standard for real-time applications.

2.4 Fuzzy Logic in the Robotic Context
In the field of assistive and social robotics, the ability to dynamically and adap-
tively modulate a robot’s behaviour is a key requirement for achieving natural,
effective, and empathetic interactions with human users. While recognizing the
user’s emotions forms the foundation for understanding the emotional state of the
interlocutor, the real challenge lies in translating this perception into a coherent
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and "human-like" behavioural response from the robot.
This need is particularly pronounced in personal assistance systems, where the robot
is not only required to perform physical actions but also to communicate an internal
state through its behaviour that is perceived as credible and context-appropriate.
To address this challenge, the work described in this project has chosen to adopt
fuzzy logic as a central tool for regulating the internal emotional state of the TIAGo
robot and modulating navigation parameters.
Fuzzy logic is particularly suited for handling uncertain, vague and qualitative
information, allowing it to overcome the limitations of traditional systems based
on rigid thresholds or binary decisions. It is especially ideal for modelling concepts
that, in reality, do not manifest as clear-cut values but instead vary continuously
and gradually, depending on a variety of sensory, contextual and psychological
factors.

2.4.1 Theoretical Foundations of Fuzzy Logic
Fuzzy logic, introduced by Lotfi Zadeh in the 1960s, represents one of the main
extensions of classical logic, specifically designed to handle uncertainty and the
graduality typical of natural and cognitive phenomena. In contrast to traditional
Boolean logic, which operates on discrete values (true/false, 0/1), fuzzy logic allows
each element to have a degree of membership to a set, expressed as a continuous
value between 0 and 1. This approach is particularly effective for modelling fuzzy
concepts such as "happiness", "shyness", "attention", or "risk", which cannot be
adequately described by rigid boundaries.
In social interactions, most emotional and behavioural states cannot be neatly
classified into rigid categories but evolve fluidly based on subtle signals, contextual
variations, and implicit intentions. For instance, modulating movement speed based
on the user’s emotional state, adjusting the safety distance from obstacles based on
alertness levels or varying voice tone and gestures in relation to perceived emotion,
these are all scenarios where fuzzy logic overcomes the limitations of traditional
threshold-based systems.
From an operational perspective, a fuzzy system is composed of three key compo-
nents:

• Fuzzification, which transforms numerical signals from sensors into degrees of
membership to linguistic sets (e.g., "low", "medium", "high" emotional level);

• Inference engine, based on linguistic IF–THEN rules, which allows complex
decisions to be made from expert knowledge;

• Defuzzification, which converts the result of the fuzzy inference into a numerical
value usable by actuators or control modules of the robotic system.
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The rule-based structure also provides considerable transparency in the decision-
making process: each robot behaviour can be directly traced back to the linguistic
rules that generated it, which is particularly important in assistive contexts where
interpretability and safety are crucial requirements. [11] [12]

2.4.2 Significant Robotic Applications and Hybrid Ap-
proaches

The application areas in which fuzzy logic has demonstrated practical value include
autonomous navigation and obstacle avoidance, manipulator control in the presence
of non-linearities and dynamic uncertainties, sensor fusion and the modulation of
social and emotional behaviours in interactive robots. In navigation, the use of
fuzzy rules to merge heterogeneous information (sonar, LiDAR, vision) enables
fluid maneuvering decisions that are tolerant to the imprecision characteristic of
unstructured environments. Recent studies show how fuzzy and hybrid approaches
are effective for collision avoidance and planning in dynamic scenarios. [13]
Regarding social robotics and neurorobotics, fuzzy logic is particularly suited for
modelling emotional and behavioural descriptors (e.g., comfort levels, expressive
intensity), allowing the robot to modulate motor and interaction parameters in a
way that is perceived as natural by users. [14]
The literature describes both "pure" fuzzy controllers, successfully used for regu-
lation and stabilization tasks, and hybrid architectures that combine fuzzy logic
with machine learning to achieve adaptability and automatic tuning. Specifically,
Takagi–Sugeno models are easier to integrate into optimization and adaptive control
schemes, while Mamdani models provide greater semantic transparency in the rules.
To reduce dependence on manual tuning, neuro-fuzzy approaches (which learn
membership functions and rules from data) and evolutionary algorithms are used
for rule base optimization. The ANFIS (Adaptive Network-based Fuzzy Inference
System) architecture is a classic and widely cited example of the fusion between
neural networks and fuzzy inference, useful for supervised learning and improving
system adaptability in the presence of experimental data. [15]

2.4.3 Advantages of Fuzzy Logic
The integration of fuzzy systems into robotic control offers multiple advantages,
which have contributed to their widespread use in areas such as mobile robotics,
social robotics and adaptive systems:

• Management of Uncertainty: fuzzy logic allows for the processing of noisy,
incomplete or variable data, typical of robotic sensory perception, without
causing abrupt changes or incoherent behaviour;
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• Adaptability and Flexibility: the robot’s response can vary gradually and be
customized based on changes in the user’s emotional state, improving the
quality of the interactive experience and avoiding robotic behaviours perceived
as “rigid” or “artificial”;

• Consistency with Natural Human Communication: linguistic concepts such as
“move a bit slower”, “maintain a comfortable distance” or “be more energetic”
have a direct translation into fuzzy sets, making the robot’s behaviour more
intuitive for the user;

• Compatibility with Neural Models: fuzzy logic can be easily integrated with
systems based on deep learning, as demonstrated in this project, where
recognized emotions are used as inputs for modulating behavioural parameters;

• Ease of Customization: the structure of the rules and membership functions can
be modified through simple configuration files, allowing the robot’s behaviour
to be tailored to different personalities or application scenarios.

These characteristics make fuzzy systems suitable for assistive scenarios where
transparency and predictability are crucial. However, practical limitations remain:
scalability of the rule base (which grows rapidly with the number of variables),
the cost of manual tuning of membership functions, and the difficulty of providing
formal safety guarantees without dedicated verification tools.

2.5 Evaluation Methods in HRI
This section presents the evaluation tools used in the study to measure both the
social perception of the robot and the variations in the participants’ emotional
state.
Over the years, several psychometric instruments have been developed to assess
dimensions such as anthropomorphism, social competence, emotional reactions,
and global attitudes toward robots. These tools allow researchers to translate
subjective impressions into quantitative data, enabling rigorous comparisons across
conditions, robot behaviours, and studies in the broader HRI literature.
The approach adopted combines standardised questionnaires, widely used in the lit-
erature, with an analogue–numerical scale designed to capture short-term emotional
changes. Among the various methods available, two instruments were selected
as particularly suitable for the objectives of the present work: the Godspeed
Questionnaire Series, which measures how participants perceive the robot’s social
and affective characteristics, and the EVEA scale, a validated tool for assessing
immediate emotional states. Together, they offer a complementary perspective on
the interaction, capturing both how the robot is perceived and how users feel after
interacting with it.
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2.5.1 Godspeed Questionnaire Series
To investigate participants’ perception of the robot’s characteristics, items were
selected from the Godspeed Questionnaire Series, a standardized and validated
psychometric instrument widely adopted in the HRI research community. De-
veloped by Bartneck et al. (2009), it represents one of the main references for
assessing perceptions and attitudes toward social robots. The questionnaire con-
sists of five principal dimensions aimed at exploring complex psychological aspects:
the tendency to attribute human-like qualities to the robot (Anthropomorphism),
its perceived “liveliness” (Animacy), the degree of sympathy or pleasantness it
evokes (Likeability), the perception of intelligence (Perceived Intelligence), and the
perception of safety (Perceived Safety). The items in these scales are organized in
pairs of opposing adjectives (for example, “Dead–Alive”, “Mechanical–Organic”,
“Dislike–Like”), evaluated on a 5-point semantic differential scale.
The use of bipolar semantic scales allows for an intuitive and immediate assessment
of users’ perceptions, translating qualitative impressions into comparable quantita-
tive data. [19]
In the present study, the Animacy and Likeability scales were selected, as they are
particularly sensitive to variations in the robot’s emotional behavior and personality,
key aspects for the experimental objectives.

Although the Godspeed Questionnaire thus remains an effective tool for the quan-
titative assessment of social perception of robots, while ensuring comparability
of results with those reported in the international literature, it is important to
acknowledge more recent approaches that broaden and strengthen this analysis.
In particular, the Human–Robot Interaction Evaluation Scale (HRIES; Spatola,
Kühnlenz and Cheng, 2021), developed to overcome some psychometric limitations
of earlier scales, adopts a multicomponent perspective grounded in theories of de-
humanization and social cognition. It identifies four main dimensions — Sociability,
Agency, Animacy, and Disturbance — capable of capturing both the attribution
and deprivation of human traits in robots, including aspects such as intentionality
attribution and discomfort. Although it was not employed in the present study, the
HRIES represents a valuable methodological reference for future research aiming
to extend the analysis of human–robot perception beyond the sole dimensions of
liveliness and likeability. [20]

2.5.2 EVEA
To analyse the impact of the interaction on participants’ emotional state, an
adapted version of the EVEA (Escalas Visuales Analógicas de Estado de Ánimo)
scale was employed.
This instrument is a validated psychometric tool for assessing current emotional
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states and is widely used in both clinical and experimental settings. In its original
format, the scale employs 10-cm visual analog scales (VAS) for each emotion;
however, for greater practicality and ease of digital administration, this study used
a numerical scale ranging from 0 to 10, which retains equivalent psychometric
validity.
The EVEA scale (Sanz et al., 2003) is designed to provide a quantitative, immediate
and multidimensional measure of an individual’s emotional state at a specific point
in time. [21] The choice of a visual analog or equivalent numerical scale allows for
the detection of even slight variations in emotional changes, making this instrument
particularly suitable for experimental studies involving shifts in emotional state in
response to specific stimuli. This is especially relevant in the context of interactions
with social robots, where emotional variations may emerge within a single session.

2.6 Statistical Models of ANOVA and mixed
ANOVA

The analysis of Human–Robot Interaction data often requires statistical methods
capable of detecting differences between experimental conditions and of modelling
how participants’ responses vary across within-subject and between-subject factors.
For this reason, the present study employs Analysis of Variance (ANOVA) tech-
niques, which represent the standard inferential framework for comparing group
means in controlled experiments. In particular, the mixed-design ANOVA is well
suited for studies in which each participant is exposed to multiple robot behaviours
while also belonging to distinct personality categories.

ANOVA is a family of statistical techniques widely used in experimental stud-
ies to compare means obtained across different groups or experimental conditions.
[22]
Historically introduced within the field of experimental statistics by R. A. Fisher, it
allows one to assess whether the observed differences between means are too large
to be attributed solely to chance, while simultaneously accounting for the variability
within groups. In practice, it evaluates whether the variability observed between
group means is significantly greater than the variability observed within groups. [23]

Conceptually, ANOVA compares two types of variability:

1. Between-groups variability, the extent to which the means of the different
groups deviate from the overall mean;

2. Within-groups variability, the extent to which individual data points differ
from their own group mean.
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The ratio between these two quantities is expressed by the F statistic, which lies at
the heart of the analysis:

F = MS between

MSwithin

Where MSbetween and MSwithin are the mean squares, i.e., sums of squares normalised
by their respective degrees of freedom.

• If F ≈ 1, the differences between groups are comparable to random variability
→ no significant effect;

• if F is large, the differences between groups exceed random noise
→ a likely real effect.

To interpret the results, three key indices are considered.

• F statistic: the ratio between the variability explained by the experimental
factor (e.g., “Condition”) and the unexplained variability (error). The higher
the value of F, the more likely it is that a real difference exists between the
group means.

• p-value: the probability, under the null hypothesis, of observing a value of the
F statistic at least as large as the one computed. In this work, we adopt the
conventional significance threshold α = 0.05: if p < α the observed difference
is considered statistically significant. However, the p-value does not measure
the practical importance of the effect, it only reflects its improbability under
chance. Very large samples can render even small effects “significant”, whereas
small samples may fail to detect real differences.

• Partial eta squared, η2
p: an effect-size index that quantifies how much a factor

contributes to the total variation observed in the data. This index ranges
from 0 to 1 and can be interpreted as a “percentage of influence” of the effect.
Practical guidelines (Cohen) suggest: 0.01 = small effect, 0.06 = medium
effect, 0.14 = large effect. [24]

In the present study, a mixed experimental design was adopted, combining two
types of factors. [25]

1. Within-subjects, conditions in which the same participants are measured
repeatedly (in this study, the Condition factor with two levels: Neutral and
Personalised);

2. Between-subjects, where different participants belong to distinct levels (in this
study: the two independent subgroups A and B, or the labels shy/intense).
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To conclude, mixed ANOVA is particularly appropriate when one wishes to test
simultaneously:

• the main effect of Condition, namely the average difference between Neutral
and Personalised;

• the main effect of Group, namely the average differences between the indepen-
dent subgroups A and B;

• the Group × Condition interaction, indicating whether the difference between
Neutral and Personalised varies as a function of group membership.

As stated earlier, a conventional significance threshold of α = 0.05 was adopted for
all analyses.
In Section 6.4 (Results), the main results will be reported in terms of F values,
p-value and η2

p for each effect considered (Group, Condition, Group × Condition).
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Chapter 3

TIAGo and its Navigation

TIAGo (Take It And Go), developed by PAL Robotics, is a mobile–manipulator
robotic platform designed for advanced research in fields such as human–robot
interaction, autonomous navigation, and manipulation in shared environments.
The design philosophy behind TIAGo is inherently modular. The structure can be
configured with one or two arms, different end-effectors (such as a parallel gripper
or the five-finger humanoid hand named Hey5), alternative locomotion bases, and
computing units of varying performance, while maintaining deep integration with
the open-source ecosystem and with ROS, the framework that facilitates its use
and extensibility within both academic and industrial communities [26].

3.1 TIAGo One Arm
The model available at the Centro de Automática y Robótica (CAR) of the
Universidad Politécnica de Madrid (UPM), and used in this project, is the TIAGo
One Arm version, equipped with a parallel gripper.
In this single-arm configuration, the platform combines mobility and manipulation
in a compact body designed to operate within human-populated spaces, offering
researchers a solid foundation for experimenting with perception, planning and
control algorithms.
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Figure 3.1: Model of the PAL Robotics TIAGo one-arm platform used for the
project

3.1.1 Mechanical Structure and Sensor Suite
The structure of TIAGo One Arm is organised into four interconnected modules:
the mobile base, the torso with lifter, the manipulator arm with and the sensory
head.
The base (known as PMB2) is compact yet robust, designed for indoor use, and
equipped with a differential-drive locomotion system that enables stable movement
and effective manoeuvrability in confined spaces. It houses the locomotion motors,
odometry sensors and power electronics; according to official documentation, the
base has a diameter of approximately 54 cm and the entire system weighs around
72 kg.
Above the base is the torso, which incorporates a vertical lifting mechanism (lifter)
providing a stroke of about 35 cm, yielding a total height range between 110 and
145 cm. This enables adjustment of the robot’s operational height, improving
perceptual coverage and reachability during manipulation tasks [27].
Attached to the torso is the manipulator arm, with a maximum reach of approxi-
mately 87 cm and a payload capacity of up to 3 kg (excluding the end-effector).
It features a combination of 4 degrees of freedom (DoF) in the arm and 3 DoF
in the wrist, for a total of 7 DoF. As mentioned earlier, in the configuration used
for this project the robot is equipped with a parallel gripper, a reliable, precise
and lightweight tool suitable for grasping and interacting with everyday objects,
making it appropriate for assistive tasks, collaborative environments and domestic
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scenarios. For more sophisticated interactions, optional modules such as compliant
actuators and force/torque sensors at the wrist can be integrated to increase safety
in physical interactions.

The platform includes a heterogeneous sensor suite, distributed between the base
and the robot’s head, designed to meet the primary needs of navigation and ma-
nipulation. It features a 2D LIDAR mounted on the front of the mobile base,
which measures distances in a horizontal plane and allows the robot to acquire a
planar scan of the environment for mapping and obstacle avoidance. Supported
configurations include Hokuyo or SICK sensors. To maximise the effectiveness
of the RGB-D sensor, the robot can adopt specific postures (slight torso lifting
and head tilt) that extend the frontal field of view and improve scene coverage.
Additionally, in scenarios where sensors may produce false readings or fail to detect
hazards (e.g., glass panels or transparent surfaces), the Map Editor allows insertion
of virtual obstacles, protecting critical areas of the map independently of sensor
data. Complementing this, three ultrasonic sensors mounted on the rear of the
base provide short to mid range collision avoidance (0.03 ÷ 1 m), and a centrally
mounted IMU (Inertial Measurement Unit) supports odometry.
The head hosts an RGB-D camera (providing colour and depth information), es-
sential for 3D scene perception and detecting obstacles that lie outside the LIDAR
plane, as well as two stereo microphones for audio acquisition and applications
such as speech recognition.
This sensor combination is designed to provide complementary information: the 2D
LIDAR excels in planar scanning and 2D map construction for navigation, while
the RGB-D camera is fundamental for detecting off-plane obstacles (tables, chairs,
low objects) and for tasks requiring 3D perception, such as object recognition and
manipulation [28].

3.1.2 Software Architecture and Control Stack
From a software perspective, TIAGo runs on Linux Ubuntu LTS with a Real-Time
(RT) kernel, while the robotic framework underpinning its software environment is
ROS (Robot Operating System). The typical pipeline governing autonomous loco-
motion involves the acquisition and preprocessing of sensory data, map construction
or updating (mapping/SLAM), probabilistic pose estimation (localization), global
path planning to the target, and the generation of local velocity commands that
comply with the platform’s kinematic and safety constraints.
PAL Robotics provides a set of nodes, configuration files and additional tools that
simplify the use of this stack, including an integrated map editor within RViz, a
system for managing points and areas of interest, and dedicated action servers for
navigation primitives. The entire system is designed to be easily extensible, enabling
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researchers to intervene at any stage of the pipeline, from raw data processing to
motion execution.

3.2 Mapping, Localization and Path Planning
The autonomous navigation of TIAGo is managed through the robust ROS 2D
navigation stack, a software architecture that allows the robot to orient itself, build
maps, and plan paths in dynamic environments by exploiting data from the front
LIDAR and other onboard sensors. The environment is typically represented as
a 2D Occupancy Grid Map (OGM), built from laser scans and updated using
odometry. Mapping can be performed in teleoperated mode, driving the robot
through the environment with a joystick to acquire scans, or in online SLAM mode,
with algorithms that progressively integrate observations during exploration to
build and update the map.
Once the map is constructed, localization is addressed through a probabilistic
approach. The most widely used algorithm, Adaptive Monte Carlo Localization
(AMCL), represents the robot’s pose as a distribution of particles that is continuously
updated by fusing odometry and laser observations. This mechanism provides
robustness against sensor noise and enables the robot to correct the inevitable
odometric drift accumulated during navigation.
With a map available and the pose estimated, path planning takes place at two levels.
The global planner operates on the static or quasi-static map and computes an
optimal or suboptimal path to the goal, typically using grid-based search algorithms
such as A*, whose classical formulation and simplicity guarantee solutions consistent
with the defined cost function [29]. However, the generated path is only a high-level
indication: its real execution in dynamic environments requires a local planner
capable of translating the trajectory into velocity commands while respecting
kinematic limits, platform inertia, and the presence of sudden obstacles. Methods
such as the Dynamic Window Approach (DWA), or optimisation-based planners,
are typically used to generate commands that are sent to the base controller.
Supporting this, the costmap structure (global and local costmaps) aggregates
sensory information and defines forbidden or penalised areas, simplifying the
planner’s task in evaluating collisions and safety margins.
From an operational perspective, TIAGo integrates functionalities designed to
ensure safety and long-term autonomy. For use around people, the combination of
multiple sensors and the careful tuning of costmaps and local planners is crucial
to ensure behaviour that is socially aware, maintains appropriate interpersonal
distances, and reacts effectively to human movements.
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3.3 Operational use of the PAL Robotics stack
and the RViz tool (experimental procedure)

In the project described in this thesis, the navigation stack provided by PAL
Robotics and the RViz visualization interface were used to interact with the system.
The adopted operational procedure began with the selection of the map to be
used through the map-management service. Specifically, to load the map of the
environment used during the experiments (described in more detail in Chapter 6),
named “hall_map”, the following command was executed:
rosservice call /pal_map_manager/change_map "input: ’hall_map’"

After selecting the correct map, RViz allows the robot’s localization to be ini-
tialised using the “2D Pose Estimate” tool whenever the robot’s estimated heading
differs from the real one. This tool publishes an initial pose estimate (x, y, θ),
helping AMCL converge to the correct region of the distribution. Once the robot is
properly localised on the map, the “2D Nav Goal” tool (the arrow in RViz) can be
used to specify the target pose toward which the robot must move. The navigation
stack receives the goal, computes the global path, and the local planner executes
the required velocity commands to reach it.

Below is a screenshot from RViz showing the CAR laboratory map where TIAGo
operates, the laser scan, and the trajectories. It is provided as an example to
illustrate a typical visualization during experimental navigation.

Figure 3.2: Screenshot of the RViz interface with the CAR laboratory map
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Chapter 4

Real-Time User Expression
Recognition

Facial expression recognition represents a fundamental step in enabling the robot
to adapt its emotional state to that of its interlocutor. Indeed, facial expressions
are one of the primary channels through which humans convey emotions, and
embedding this perceptual capability into the robot allows for more natural and
empathetic interaction.
After an overview of the fundamental techniques, this chapter provides a detailed
account of the process followed for the integration of a real-time facial expression
recognition system, based on advanced deep learning and computer vision methods.
The system used for this integration was sourced from the GitHub repository
https://github.com/Harshxth/Real-Time-Expression-Detection.
This system is the result of the integration of emotion classification models with
tools for the acquisition and analysis of static images, enabling the automatic
interpretation of an individual’s emotional state through the simple input of a
webcam, initially the one embedded in the laptop used for integrate the algorithm,
and subsequently the camera integrated into the TIAGo robot.

4.1 Deep Learning Approach for Real-Time Fa-
cial Expression Recognition

As outlined in Chapter 2 section 2.3, the recognition of facial expressions is rooted
in fundamental principles of computer vision and machine learning For this project,
a deep learning approach was adopted, as it provides greater robustness and flexi-
bility, particularly when applied with the robot’s camera, ensuring reliable accuracy
even under varying lighting conditions and facial orientations.
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CNNs are designed to efficiently detect and classify visual features within images.
In the specific context of facial expressions, these networks are trained on large
datasets of human faces, each associated with a particular emotion: angry, disgust,
fear, happy, sad, surprise and neutral. Unlike pre-trained models such as VGG16 or
ResNet, the architecture developed for this project is a tailored CNN, specifically
designed to meet the needs of facial emotion classification.
The model consists of several convolutional layers, which progressively extract
features from the input images, starting with basic patterns like edges and progress-
ing to more complex textures and shapes. The convolutional layers are followed
by max-pooling layers, which reduce the spatial dimensions of the feature maps,
enhancing computational efficiency and improving the model’s robustness against
variations in image orientation and lighting. To prevent overfitting, dropout is
applied at each convolutional and fully connected layer. This helps the model
generalize better, avoiding excessive adaptation to the training data. After feature
extraction, the model passes through fully connected layers, which map the learned
features to the output classes. The final output layer uses a softmax activation
function to classify the facial expression into one of seven categories: angry, disgust,
fear, happy, sad, surprise or neutral. The entire system is built using deep learning
frameworks like Keras and TensorFlow, ensuring flexibility and ease of integration
with real-time processing pipelines.
In the context of image and video processing, the system leverages the OpenCV
library, a widely adopted framework in computer vision, which plays a central role
in the pipeline, as it enables the acquisition of frames directly from the webcam,
supports the preprocessing of images, and performs the detection of faces within
each frame.

4.2 Integration Procedure
The integration of the recognition system was developed starting from the GitHub
repository: https://github.com/Harshxth/Real-Time-Expression-Detection.
The first stage of the work focused on the preparation and training of the emotion
classification model.
For this phase, an interactive notebook named ModelTraining.ipynb was used,
within which the dataset, consisting of facial images categorized by emotional class,
was collected and organized.
The images were subjected to several preprocessing operations, including grayscale
conversion, resizing, and value normalization. These steps ensured consistency
across the dataset and enhanced the model’s ability to learn relevant features.
Subsequently, the Convolutional Neural Network was structured and trained, while
accuracy and loss metrics were continuously monitored to evaluate its performance
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on both validation and test data.

Figure 4.1: Sad expression Figure 4.2: Disgust expression

Figure 4.3: Surprise expression Figure 4.4: Happy expression
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Once the training process was completed, to enable the use of the model on de-
vices with limited resources, such as microcontrollers or embedded systems, the
trained network was saved and subsequently converted into a compatible format.
The trained model can be transformed into a header file (.h), which stores the
parameters and network structure in binary form. This conversion, carried out
through dedicated tools, allows the model to be integrated directly into the source
code of applications written in C or C++.
However, in the specific case of this project, the model was converted to HDF5 (.h5)
format, generating the file emotiondetector.h5. This format is particularly well
suited to the Python environment, as it efficiently stores both the structure and
the weights of the neural network, making it possible to load and use the model
through libraries such as Keras and TensorFlow. This solution ensured a more
straightforward management of the model while also facilitating its integration
within the Python-based inference and visualization pipeline.

The development of the pipeline required the coordination of several fundamental
steps, each designed to ensure efficient and real-time operation of the system:

1. Integration of the converted model into the final project;

2. Real-time acquisition of frames through the webcam, providing a continuous
stream of images to be analyzed;

3. Detection and extraction of the face within each frame, isolating the region of
interest from the image;

4. Local preprocessing of the inputs, required to ensure compatibility between
the input format and the model;

5. Analysis of the detected face by the deep learning model, which outputs the
recognized emotional category;

6. Immediate visualization of the detected expression, achieved by overlaying a
simple label directly onto the video stream.

This process is continuously repeated for each acquired frame, thus ensuring emotion
recognition that is constantly updated and responsive.
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4.3 Technical Considerations
From a technical standpoint, the main challenges concerned, on the one hand,
ensuring genuine real-time processing by optimizing inference times and minimizing
the latency between frame acquisition and result visualization, and on the other
hand, adapting the algorithm to operate correctly with the robot’s integrated
camera.

In the early phase, the facial expression recognition system was designed to operate
exclusively with the computer’s integrated webcam, using the OpenCV library for
real-time frame acquisition. Figures 4.5 and 4.6 show some of the results obtained
during the preliminary tests carried out with the laptop’s webcam.

Figure 4.5: Interface of the facial expression recognition system during preliminary
tests performed with the laptop’s webcam – expression: fear
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Figure 4.6: Interface of the facial expression recognition system during preliminary
tests performed with the laptop’s webcam – expression: happy

Subsequently, in order to enable the deployment of the emotion detection pipeline
on the TIAGo robot, it was necessary to adapt the system to the new video
source, the camera installed on the robot. This adaptation was implemented
through the creation of the file ros.py, which allows the reception and processing of
images transmitted by the ROS topic associated with the robot’s camera. This
step represented a crucial phase, as it allowed the algorithm to be tested under
conditions closer to real-world usage, moving beyond the controlled context of
preliminary trials.
The technical challenges encountered during this stage included:

• Lighting variations: TIAGo operates in different environments, where illumi-
nation is not uniform.

• Perspective and distance: the robot’s camera is positioned at a different height
compared to the laptop’s webcam, and it often captures users’ faces from
non-frontal angles. This required verifying the model’s ability to recognize
emotions despite slight head rotations or changes in distance.

• Robot movement: during navigation tests, TIAGo does not remain stationary
but performs movements and rotations. This introduces difficulties due to
rapid changes in framing, which may affect recognition accuracy.

To address these issues, additional tests were conducted in diverse scenarios, with
users placed at varying distances and under different lighting conditions. The
results showed that, although there was a slight decrease in accuracy compared to
the preliminary tests, the system maintained adequate performance, confirming
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the feasibility of emotion recognition through the TIAGo’s camera. In particular,
the algorithm demonstrated a good ability to recognize more distinct facial expres-
sions, such as happiness and surprise, which are characterized by clear and easily
identifiable features. The neutral and disgust classes also exhibited generally stable
performance, with medium-to-high confidence levels. In contrast, emotions with
subtler visual characteristics, such as fear and sadness, achieved lower accuracy.
In some cases, the algorithm tended to misclassify these expressions as neutral,
highlighting the need for further training phases or the use of larger and more
balanced datasets.
Figures 4.7 and 4.8 present some examples of facial expression detection involving
multiple individuals within the field of view of TIAGo’s integrated camera.

Figure 4.7: Interface of the facial expression recognition system during tests
performed with the TIAGo robot’s integrated camera – expressions: happy, surprise
and sad
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Figure 4.8: Interface of the facial expression recognition system during tests
performed with the TIAGo robot’s integrated camera – expressions: happy and
neutral

To properly manage dependencies and different execution environments, a dedicated
venv (“virtual environment”) folder was created within the project directory, which
must be activated before launching the various ROS nodes connected to the vision
system. It represents a Python virtual environment, that is, an isolated space
within the filesystem where the packages and libraries required for the project are
installed independently.
The use of a virtual environment prevents conflicts between different versions of
libraries or dependencies required by other projects running on the same machine.
In practice, by activating the virtual environment (through the command source
venv/bin/activate), the code is executed exclusively with the libraries installed
within that specific folder, without interfering with the system-wide ones.
This solution is particularly useful in software development and in the management
of complex projects, such as those involving the interaction with ROS and deep
learning models. In this case, it allowed the maintenance of a clean, stable, and
reproducible working environment, while facilitating the execution of the various
scripts and ROS nodes without incurring errors due to dependency incompatibilities.
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Chapter 5

Emotional System Based on
Fuzzy Logic and Personality
Modulation

After developing and validating the facial-expression recognition system described
in the previous chapter, the next step was the integration of this perceptual module
into a fuzzy-logic-based emotion-regulation system capable of translating recognised
stimuli into observable behavioural variations in the robot. Integrating an affective
model into social robots is a crucial step towards making human–robot interaction
more natural and effective. Emotions act as a bridge between external stimuli and
the robot’s behaviours, modulating its responses according to the context and the
user’s perceived emotional state.
Among the various computational approaches available for modelling emotions,
fuzzy logic, extensively explored in the literature for representing complex and
uncertain phenomena, has proved particularly suitable thanks to its ability to han-
dle uncertainty, express rules in natural language, and ensure gradual transitions
between emotional states. This allows one to describe intuitively how stimuli of
different kinds (internal, environmental or social) influence the robot’s emotions
and, consequently, its behavioural outputs. This feature was essential for involving
a psychology student in the process, who reviewed the fuzzy rules that modulate
the robot’s emotions in response to incoming stimuli.
For the theoretical foundations of fuzzy logic, see Chapter 2 section 2.4.
The fuzzy system was designed for the management and simulation of the robot
agent’s emotional states, endowing it with flexible and adaptive affective processing
so that it can respond naturally to interactions and to stimuli arising from the
surrounding environment.
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The system was developed with reference to the framework proposed by Fernández-
Blanco et al. (2023) [1] and to the code structure available in the Github
repository Grupo-de-Control-Inteligente/potato-v2 (https://github.com/Grupo-de-
Control-Inteligente/potato-v2 , in particular the folder files/software/modules/e-
motional_manager), which were used in a research study on the “Potato” robot at
the CAR of the Universidad Politécnica de Madrid. This repository proposes a
modular architecture for managing emotional states via fuzzy logic, characterised
by a clear separation between the definition of emotional variables, the inference
rules, and the management of the robot’s internal state. This system was extended
and adapted to the specific needs of the project, while preserving its modular and
flexible design philosophy.

This chapter presents the design principles and implementation of fuzzy logic
within the robotic system. The developed software and code architecture, from the
configuration files of the fuzzy controllers through to the centralised management
of the emotional state and its final integration into the main ROS node is described.
Through this pipeline, the robot adapts its speed, obstacle-distance handling, and
other navigation parameters in a manner consistent with the selected personality
and with the user’s perceived emotion, thereby making the interaction more realistic
and personalised.

To ensure full transparency, reproducibility and ease of reuse, all the codes devel-
oped for this project, including the fuzzy controllers, the emotional state manager,
the ROS nodes and the navigation–modulation modules, are publicly available in a
dedicated GitHub repository:
https://github.com/carlottapifferi2002/Real-time-fuzzy-emotional-control-system
-for-social-robotics
The repository contains the complete source code, configuration files, and docu-
mentation required to run the entire emotional control architecture on the TIAGo
platform or to adapt it to other robotic systems. Moreover, for users who intend
to deploy or experiment with the proposed system, Annex A includes a detailed
user manual describing the required dependencies, the execution pipeline and the
operational steps necessary for interacting with the robot through the implemented
emotional-control framework.

5.1 Architecture of the Fuzzy System
To implement the emotion regulation model described in the previous section, a
modular software architecture based on fuzzy logic was developed. The primary
objective is to translate the affective information detected by the facial-expression
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recognition system into behavioural, and subsequently navigation, parameters
that can be used by the TIAGo robot’s planner and motor controllers, ensuring a
response consistent with the robot’s internal state.
The adopted model relies on a dimensional representation of emotions. In its
full formulation, it comprises six principal dimensions (mood, sensory, affective,
alertness, interest and expectancy). However, to make the implementation on
TIAGo clearer and more manageable, while maintaining a focus on navigation, this
project considers only two dimensions, which are sufficient to generate meaningful
behavioural variations:

• Mood: happiness–sadness axis,

• Alertness: fear–calm axis.
The outputs of the affective system translate into behavioural modifications, specif-
ically:

• Linear navigation speed,

• Navigation stack tuning, which accounts for obstacle distance (via the inflation
radius parameter) and manoeuvre aggressiveness (angular velocity to control
sharper or gentler turns).

The operation of the model is schematised in Figure 5.1. The input stimuli, namely
the user’s facial-expression recognition output and the previous Alertness and Mood
states, are processed by transition tables (state tables) that update the values of
the two emotional dimensions. These updated values are then translated, via fuzzy
output tables, into the robot’s navigation parameters related to its motion (speed
and tuning).

Figure 5.1: Architecture of the emotional fuzzy system: face emotion detection
→ state tables that update the internal emotional dimensions (mood and alertness)
→ output tables that update the navigation parameters (speed and tuning).
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Fuzzy logic enables the robot’s behaviour to be expressed through intuitive linguistic
rules such as:

• If the user appears angry and the robot’s mood is “standard”, then reduce
the mood value to “sad”.

• If alertness is calm and the robot has “low” tuning, then increase tuning to
“medium” (slightly reducing the distance from obstacles and slightly increasing
the angular velocity).

The linguistic variables (e.g., low, standard, happy, slow, calm) are described by
triangular and trapezoidal membership functions. The inference process is of the
Mamdani type, with defuzzification via the centroid method, ensuring a continuous
and gradual response.
A central aspect of the model is the definition of robotic personalities that mod-
ulate the mapping between stimuli and outputs. These were encoded through
distinct sets of fuzzy tables, examples of which are provided in the following sections.

In this thesis, two variants were implemented:

1. Shy personality: characterised by slower, cautious movements, conservative
responses in the presence of negative emotions, and a greater safety distance
from obstacles. This configuration exhibits lower behavioural variability,
prioritising stability and prudence;

2. Intense personality: characterised by dynamic navigation, with higher linear
speeds and rapid, pronounced responses to stimuli. This configuration tends
to approach obstacles more closely and react more decisively to changes in
emotional state.

To ensure clarity and maintainability, the entire system was implemented in Python
and integrated into the ROS (Robot Operating System) infrastructure. Modules
communicate via ROS topics and services, following a clear and repeatable process-
ing pipeline.

The overall structure comprises five main components, each with well-defined
responsibilities:

• JSON configuration files — encode the fuzzy logic by defining membership
functions, inference rules, and linguistic labels;

• fuzzy_core.py — interprets the generic fuzzy logic and performs inference
according to the rules defined in the configuration files. It is responsible for
creating the fuzzy systems for each variable, setting membership functions and
linguistic rules, and computing the fuzzy output based on the inputs received;
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• emotional_manager.py — coordinates the various fuzzy controllers and keeps
the robot’s overall emotional state up to date;

• fuzzy_node.py — the main ROS node responsible for communication between
the perception system and the rest of the robotic platform (motor control
modules). This node receives data from the emotion-recognition system,
invokes the emotional_manager for fuzzy modulation, publishes the resulting
variables on ROS topics, and dynamically updates navigation parameters;

• parameters.py — provides the mapping from the computed emotional state
to navigation parameters (speed, inflation radius, angular gain).

This separation between logic (JSON files) and code makes the system highly flexi-
ble: new personalities or rules can be trialled simply by modifying the configuration
files (membership functions or rules), without direct changes to the source code.
With this approach, the software component of the fuzzy system is not only an
experimental tool but also a reusable platform for comparing behaviours, measur-
ing the impact of emotion regulation on navigation, and evaluating how different
personalities affect the acceptability of human–robot interaction.

To clarify the relationships between the conceptual components described above
and their software implementation, figure 5.2 summarises the high-level organisa-
tion of the emotional-control architecture. Before introducing the implementation
details of each module, this diagram highlights the logical dependencies between
components and the flow of information across the system.

Figure 5.2: Functional overview of the emotional-control system, illustrating the
dependencies between the main components and the flow of information.
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5.2 Software Implementation of the Emotional-
Control Architecture

The following subsections present the software modules that implement the emotional-
control architecture. Each file is described in terms of its role, internal logic, and
interaction with the other components in the pipeline, reflecting how the conceptual
architecture introduced earlier is translated into code.

5.2.1 Fuzzy configuration files
The first layer of the software architecture devoted to the robot’s emotional and
behavioural regulation consists of the fuzzy-controller configuration files, stored in
JSON format within the “controllers” folder. These files constitute the foundation
of the entire fuzzy system: they define the input and output variables with their
numerical ranges, the membership functions, the inference rules, the mapping
between numerical values and linguistic labels, and optionally the temporal-delay
parameters that govern the system’s responsiveness.
Each JSON file describes the behaviour of a single emotional dimension of the
fuzzy model, specifically:

• mood — encodes the robot’s overall affective state along the happiness–sadness
axis;

• alertness — quantifies the system’s tension or calm in response to perceived
stimuli (fear–calm axis);

• body_speed — regulates the robot’s linear speed as a function of the mood
state;

• tuning — modulates navigation parameters (inflation radius, safety distance
and angular velocity) as a function of the alertness state.

Each JSON configuration file is organised according to a precise structure:

• inputs: list of input variables for the fuzzy system, each characterised by a
value range, a set of membership functions (sets) and a default value used at
initialisation.

• output: definition of the output variable with its range and corresponding
membership functions. For example, the variables mood and tuning have
a continuous domain from 0 to 120, partitioned into linguistic labels such
as very_sad, sad, standard, happy, very_happy or low, medium, high. The
variable body_speed instead uses a physical interval in metres per second
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(0.1÷0.9) m/s with labels very_slow, slow, standard, fast, very_fast. Finally,
alertness defines the robot’s level of tranquillity through the labels calm,
standard, and fear, and spans a range from 0 to 100.

• rules: the set of inference rules expressed in natural language. Each rule
specifies a combination of conditions on the inputs and the corresponding
output value. The rules are expressed in tabular form and allow one to encode
both dependence on the previous state (memory) and the immediate reaction
to perceptual stimuli (facial labels).

• mapping: the association between numerical output intervals and qualitative
labels, used to translate fuzzy values into behavioural parameters.

• temporal stabilisation parameters (delay_const and use_delay): regulate the
inertia with which the emotional state varies. For the intense personality, these
parameters are tuned to balance reactivity and stability (for example, mood
has a very low delay_const of 3 to respond more rapidly to visual cues, whereas
alertness uses delay_const = 20 to smooth sharper variations). In the tuning
module, for both personalities, use_delay = true with delay_const = 10, to
avoid sudden changes in navigation parameters. By contrast, body_speed is
configured with use_delay = false because the body’s linear speed is updated
without additional temporal integration.

Given that the system supports multiple robotic personalities, specifically shy and
intense, it is possible to define personality-specific controller files that differentially
modulate affective and navigation behaviour simply by modifying the rules and
membership functions in the JSON files. Each personality includes four files (one
for each fuzzy dimension: mood, alertness, body_speed, tuning), for a total of
eight configuration files. The differences between the two personalities lie in the
definition of the fuzzy rules, which determine the intensity and direction of affective
variations.
The fuzzy rules on which the implemented control system is based are represented
through two types of tables:

• state tables, which describe the transition of TIAGo’s internal emotional state
as a function of stimuli (facial expression and previous internal state);

• output tables, which map the updated internal emotional state to the be-
havioural parameters used during the navigation (speed and tuning).

Tables 5.1, 5.2, 5.3 and 5.4 report the fuzzy rules for the shy personality, while
Tables 5.5, 5.6, 5.7 and 5.8 (presented later) illustrate the equivalent version for
the intense personality.
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FACE → neutral happy sad surprise disgust fear angry
MOOD ↓
very sad very sad very sad very sad very sad very sad very sad very sad
sad sad sad very sad sad very sad very sad very sad
standard standard standard sad standard sad sad sad
happy happy happy sad standard sad standard sad
very happy very happy very happy standard happy standard standard standard

Table 5.1: State table – MOOD Emotional dimension (Shy personality)

MOOD → very sad sad standard happy very happy
SPEED ↓
very slow very slow very slow very slow slow slow
slow very slow very slow slow slow standard
standard very slow slow standard standard standard
fast slow slow fast fast fast
very fast slow slow fast very fast very fast

Table 5.2: Output table – SPEED Emotional dimension (Shy personality)

FACE → neutral happy sad surprise disgust fear angry
ALERTNESS ↓
calm calm calm calm standard standard standard fear
standard standard standard standard fear standard fear fear
fear fear fear fear fear fear fear fear

Table 5.3: State table – ALERTNESS Emotional dimension (Shy personality)

ALERTNESS → calm standard fear
TUNING ↓
low low low low
medium medium low low
high medium medium low

Table 5.4: Output table – TUNING Emotional dimension (Shy personality)
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The four tables presented above describe the behaviour of the fuzzy system for the
Shy personality. In this configuration, the rules are designed to generate conservative
transitions and limited variations in navigation parameters. The emotional state
evolves gradually, with speed and tuning remaining within contained values even in
the presence of intense stimuli. The result is slower and more cautious navigation,
with a greater distance from obstacles, in line with the shy character of the profile.
The tables that follow report the version of the fuzzy system for the Intense
personality. While preserving the same formal structure (identical inputs, linguistic
labels, and the same separation between state and output tables), the rules are
modified to produce a more reactive and dynamic behaviour. Transitions between
emotional states are sharper, especially in response to strongly positive or negative
facial expressions—while speed and tuning values span a wider range, enabling the
robot to adopt higher speeds and more decisive manoeuvres.

FACE → neutral happy sad surprise disgust fear angry
MOOD ↓
very sad very sad standard very sad very sad very sad very sad very sad
sad sad standard very sad sad very sad very sad very sad
standard standard happy sad standard sad sad sad
happy happy very happy standard happy sad standard sad
very happy very happy very happy standard very happy standard standard standard

Table 5.5: State table – MOOD Emotional dimension (Intense personality)

MOOD → very sad sad standard happy very happy
SPEED ↓
very slow very slow very slow very slow slow slow
slow very slow slow slow standard standard
standard very slow slow standard standard fast
fast slow slow fast fast fast
very fast slow standard very fast very fast very fast

Table 5.6: Output table – SPEED Emotional dimension (Intense personality)
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FACE → neutral happy sad surprise disgust fear angry
ALERTNESS ↓
calm calm calm calm calm standard standard standard
standard standard calm standard standard standard fear standard
fear fear standard fear fear fear fear fear

Table 5.7: State table – ALERTNESS Emotional dimension (Intense personality)

ALERTNESS → calm standard fear
TUNING ↓
low medium low low
medium medium medium low
high high high medium

Table 5.8: Output table – TUNING Emotional dimension (Intense personality)

The two sets of tables enable a direct comparison and show how modifications to
the rules produce tangible differences in the robot’s navigation and behaviour.
After defining the rules for both personalities, the state and output tables were
subjected to a qualitative review by a psychology student. This comparison allowed
for the verification of consistency between the emotional transitions modelled and
the way in which an “human-like” internal state would be expected to evolve
in response to varying stimuli. The same review also confirmed the consistency
between changes in the internal state and the corresponding behavioural changes
(increases or reductions in speed, approaching or moving away from obstacles),
strengthening the psychological plausibility of the implemented model.

To support the design and validation of the fuzzy controllers, simulation models
were developed in MATLAB/Simulink, as reported in Figures 5.3, 5.8, 5.5 and 5.6.
In these schematics, each input variable is visualised together with its membership
functions, the central block implements a Mamdani Type-1 inference system with
the full rule base, and the system output is likewise represented through its own
membership functions. These images are mainly intended to illustrate the shape of
the membership functions and the coverage of the input–output space. Triangular
and trapezoidal membership functions are predominantly adopted, and defuzzifica-
tion is performed using the centroid (centre of gravity) method.
For brevity, only the screenshots corresponding to the intense personality are
reported. The shy personality shares the same structure and shapes of the mem-
bership functions for mood, alertness and tuning, and therefore would not provide
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additional insight at the graphical level. The only relevant difference concerns the
body speed controller: in the shy configuration, the output variable is defined in a
reduced range (0.1÷0.5) m/s instead of (0.1÷0.9) m/s, so as to limit the maximum
linear velocity and prevent the robot from reaching excessively high speeds.

Figure 5.3: Example graphical representation of the Mamdani controller for mood
produced in MATLAB (inputs: detected expression and previous mood → output:
new mood).

Figure 5.4: Example graphical representation of the Mamdani controller for
alertness produced in MATLAB (inputs: detected expression and previous alertness
→ output: new alertness).

42



Emotional System Based on Fuzzy Logic and Personality Modulation

Figure 5.5: Example graphical representation of the Mamdani controller for speed
produced in MATLAB (inputs: mood and previous speed → output: new speed).

Figure 5.6: Example graphical representation of the Mamdani controller for
tuning produced in MATLAB (inputs: alertness and previous tuning → output:
new tuning).

5.2.2 Base module: fuzzy_core.py

The fuzzy_core.py module acts as the "inference engine" of the fuzzy pipeline,
representing the component responsible for transforming the declarative specifica-
tions defined in the configuration files (membership, domains, rules, and mappings)
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into executable and queryable fuzzy systems for the rest of the architecture.
In practical terms, within it, the FuzzyControllerBase class reads the JSON files
and, using the scikit-fuzzy library, constructs the universe of discourse variables,
membership functions, and the inference engine (Mamdani model). This level also
handles defuzzification and provides the option to apply a temporal smoothing
mechanism through the use_delay and delay_const parameters defined in the
JSON files, in order to prevent sudden transitions caused by perceptual noise or
abrupt changes in the emotional state.
From the pipeline’s perspective, this module represents the level that isolates the
knowledge (comprising the rules and membership functions) from the application
logic: it provides a simple and uniform interface that accepts numerical input data,
performs inference based on the defined rules, and returns numerical output (or,
when necessary, qualitative labels). This output is then used by the upper layer
(emotional_manager.py) to update the internal emotional state and, consequently,
the behavioural parameters.
Thanks to this separation between application logic and declarative knowledge,
it offers great flexibility in modifying the robot’s behaviour. For example, intro-
ducing new personalities or redefining membership functions (MFs) can be done
by modifying only the JSON configuration files, without requiring changes to the
orchestration code.

Thus, this python script represents the most logical point to introduce future
improvements related to the fuzzy representation itself (e.g., rule syntax extensions,
alternative temporal smoothing strategies or caching to optimise performance),
while keeping the interface to the emotional manager and the ROS node intact,
facilitating modular and easily extendable management.

5.2.3 Emotional manager: emotional_manager.py

The emotional state is centrally managed by emotional_manager.py, which acts
as the orchestrator of the entire fuzzy pipeline. This component coordinates the
set of controllers, maintains the internal variables (mood, alertness, body_speed,
tuning), and implements the temporal logic required to integrate past information
into the current emotional state (for example, using the previous value of mood
or alertness as input for computing the new emotional state). In addition, this
module manages the dynamic loading of personality profiles, the controller update
frequency, and update policies designed to limit undesired oscillations.
From an architectural perspective, the EmotionalManager forms the interme-
diate layer between the inference engine (fuzzy_core.py) and the ROS node
(fuzzy_node.py): it receives formatted sensory inputs, invokes the appropriate
controllers, combines the resulting outputs, and provides a set of values that can
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be used by the control modules and the planner.
At startup, the manager loads the four controllers defined in the JSON configura-
tion files corresponding to the selected personality and initialises the state with
predefined values for mood, body_speed, alertness and tuning. It also maintains the
current facial label (numerically encoded) and a mapping between facial-expression
codes and their semantic string representations. This organisation enables the
system to handle, in a uniform way, both perception-derived data (facial labels,
current speed) and the internal values produced by the fuzzy components (mood,
alertness, tuning).
The central operational method is compute: given an input dictionary (for example
containing the facial label and the current mood value), the manager updates the
internal state by following a defined processing sequence. For each controller, it
constructs a subset of inputs by selecting only the relevant variables (thus isolat-
ing the controller from unexpected fields), invokes fuzzy inference to obtain new
numerical values, and, when appropriate, applies additional transformations to
the outputs before updating the state. The order of processing reflects the logical
dependencies of the model: first, mood is updated (based on the previous mood
and the facial label); next, body_speed is computed (as a function of mood and the
actual velocity); the alertness level is then updated; and finally, tuning is calculated
(based on alertness and the previous tuning).
To make the responses more natural and more perceptible to the user during
interaction, this script also integrates a mechanism for transient speed modula-
tion: when a change in facial expression is detected, a boost on body_speed is
activated, defined as an additive delta with a duration expressed in iterations.
It decays progressively over a predefined number of steps and is added to the
speed value computed by the controller, and finally bounded within the allowed
operational range of the platform. The boost parameters (amplitude and duration)
are personality-dependent, enabling distinct behaviours (stronger for the intense
personality, more contained for the shy one).
This functionality was not part of the initial version of the system but - as detailed
in the Section 6.1.2 dedicated to the experiments - was added following a pilot test
that revealed that, without transient modulation, the robot’s motor changes were
insufficiently perceptible to users. The purpose of the boost is therefore to enhance
the perceptibility of behavioural changes without altering the underlying logic of
the system (the boost does not modify mood, alertness, or tuning, but only the
resulting velocity, and only for a limited period of time).
At the end of the computation cycle, the manager constructs and returns an output
dictionary containing the updated values of mood, body_speed, alertness, and tuning.
These results are then used by the integration layer (fuzzy_node), which publishes
them on the appropriate ROS topics.
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In this way, the EmotionalManager performs a dual function: it maintains an op-
erative memory of the emotional state and provides a coherent and stable interface
between the configurable fuzzy controllers and the robot’s control layer.

5.2.4 Main ROS node: fuzzy_node.py

The operational orchestration of the entire system is handled by the ROS node
implemented in fuzzy_node.py. This component serves as the integration point
between perception, decision-making, and control: on one side, it subscribes to per-
ception topics (in particular the facial-expression label and odometry/base-velocity
data) and forwards them to the emotional manager (EmotionalManager); on the
other side, it publishes the outputs produced by the fuzzy model on dedicated
topics (/fuzzy_mood, /fuzzy_alertness, /fuzzy_body_speed, /fuzzy_tuning),
so that they can be used by the control modules and the navigation planner (Pal-
LocalPlanner).
A further role of the node is the translation of the qualitative labels produced by
the fuzzy system into actual numerical parameters for the local planner: at runtime
it queries the parameter mapping defined in parameters.py (e.g., for tuning = low,
medium, high) and updates the planner behaviour through dynamic-reconfiguration
mechanisms (dynamic_reconfigure). This approach enables the modulation of safety
distances, angular limits, and maximum velocities without interrupting planner
execution, thereby facilitating comparative experiments and direct observation of
behavioural effects.
At startup, the node instantiates the emotional manager, specifying the selected
personality (which may be provided as a runtime argument; if no argument is
given, the default configuration is shy). It then registers to the necessary com-
munication channels, subscribing to the perception topics to receive facial labels
and the platform’s current velocity, while maintaining dedicated publishers to
distribute the computed fuzzy values. The odometry velocity is used as an input
to the body_speed controller, allowing the system to assess changes in locomotion
dynamics as a function of the emotional state.

To avoid unnecessary recalculations and reduce computational load, the node
applies a filtering criterion: when the incoming facial label matches the last pro-
cessed one, the computation is skipped. This design choice stems from experimental
considerations: facial recognition operates at high frequencies, and repeated read-
ings of the same state would trigger continuous reconfigurations of the planner,
potentially causing repeated increments in TIAGo’s speed and tuning parameters,
resulting in undesirable oscillations and exaggerated behaviours. The implemented
filter limits the system’s actions to perceptually meaningful changes, thereby im-
proving navigation stability. When an actual change in expression is detected, the
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node constructs the input packet expected by the emotional manager (encoded
facial label and current velocity) and requests its processing; it then receives the
updated values for mood, body_speed, alertness, and tuning. For each numerical
value, the node retrieves the corresponding qualitative label and publishes both
the numerical and qualitative representations to the dedicated topics. This dual
publication is intentionally designed to support both qualitative experimental
analysis and the direct use of numerical values by control components.
To support experimentation and debugging, the node maintains a detailed log of
the current state (latest detected expression, numerical values and labels from
the controllers, actual base velocity), producing periodic log entries that facilitate
data collection and offline analysis. Below are two illustrative screenshots of the
recognition Graphical User Interface (GUI) and the execution terminal, showing
the format of the logs generated during the experiments.
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Figure 5.7: Terminal log and GUI (example “sad”): screenshot showing the log
entries with face = “sad”, the corresponding values of mood, body_speed, alertness
and tuning, and the emotion-detection GUI window.
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Figure 5.8: Terminal log and GUI (example “happy”): screenshot showing the
log entries with face = “happy”, the corresponding values of mood, body_speed,
alertness and tuning, and the emotion-detection GUI window.
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In the terminal, informative messages with timestamps are emitted, containing the
following elements, repeated at each relevant update:

• the detected facial label (e.g., happy, sad), useful for visually linking the
perceptual stimulus;

• the current numerical value of mood and its corresponding qualitative label in
parentheses (e.g., Mood: 54.98 (standard));

• the resulting numerical value for body_speed and its qualitative label (e.g.,
BodySpeed: 0.43 (slow));

• the numerical value and label for alertness (e.g., Alertness: 49.69 (standard));

• the numerical value and label for tuning (e.g., Tuning: 49.02 (medium));

• auxiliary lines reporting the current base velocity estimated from odometry
(e.g., Current base velocity: 0.204 m/s).

This textual representation in the terminal makes the correspondence between the
stimulus (facial expression) and the system’s reaction (numerical values and labels)
immediately readable, facilitating debugging and the collection of experimental
data synchronised with the images captured by the webcam.

In summary, fuzzy_node.py is the component that materialises the outcomes
of the emotional model within the robot’s navigation strategy: it coordinates in-
coming data flows, triggers fuzzy processing, translates the outputs into operational
parameters, and applies dynamic updates to the planner, all while maintaining a
clear separation between perception, inference, and control.

5.2.5 Parameters module: parameters.py

The parameters.py module serves as the final translation stage between the
qualitative representation produced by the fuzzy system and the actual numerical
parameters used by the robot’s local planner. In practice, given a tuning category
(e.g., low, medium, high), it provides a tuple of operational parameters, in the
current implementation (max_vel_theta, security_dist), representing the planner’s
angular velocity limit and the minimum safety distance from obstacles, respectively.
The predefined mapping adopted in the code is immediately interpretable (e.g.,
low → 0.5 rad/s and 0.5 m; medium → 0.75 rad/s and 0.3 m; high → 1.0 rad/s
and 0.15 m) and includes a fallback behaviour (defaulting to medium in case of an
unrecognised label), thereby ensuring robustness during operation.
Isolating this mapping within a dedicated module allows for a clear separation of
responsibilities and abstraction levels: the fuzzy logic merely decides the qualitative
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category, while parameters.py handles numerical translation and the engineering
choices associated with the platform. In the operational flow, the integration node
queries this function to obtain the numerical values corresponding to the computed
tuning and transmits them to the planner (together with the max_vel_x value
derived from body_speed) via dynamic_reconfigure, enabling real-time adaptation
of the movement strategy.
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Chapter 6

Experiments

6.1 Experiment Design
6.1.1 Experimental Setup
The experiments were conducted in the main hall of the Universidad Politécnica
de Madrid, known as the “Sala de la Máquina”. The choice of this environment
was motivated by the need for a sufficiently large space, free of major obstacles,
capable of ensuring safety and accessibility for both the robot and the participants.
The area was prepared in advance to facilitate proper autonomous navigation of
the robot and smooth interaction with the users.

The preliminary setup phase involved mapping the environment using Simul-
taneous Localization and Mapping (SLAM) techniques implemented onboard the
TIAGo robot. The mapping procedure was performed through remote control of
the robot using a joystick, allowing it to be guided along strategic paths within
the hall and to acquire an accurate spatial representation of the environment. The
SLAM process enabled the robot to build a digital map of the surroundings—an
essential prerequisite for subsequent autonomous navigation and for executing
the interactive behaviors defined by the experimental protocol. The result was
visualized through the RViz interface, which allows real-time observation of the
two-dimensional reconstruction of the environment along with the overlay of the
sensory data acquired by the robot.
The robot used in the experiments was the TIAGo Base + Arm model, equipped
with an integrated vision system, proximity sensors, and a single robotic arm.
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Figure 6.1: Visualization of the 2D map generated by the TIAGo robot in RViz
during the SLAM phase, performed in the Sala de la Máquina at the Universidad
Politécnica de Madrid.

The facial expression recognition system and the fuzzy-based emotion regulation
model were integrated within the ROS1 framework, enabling real-time commu-
nication between the perception, processing, and navigation nodes. The correct
operation of these modules was verified beforehand to ensure the full functionality
of the system.
The experimental setup also included the definition of observation and interaction
areas, as well as the preparation of the equipment required for data collection
and for running and monitoring the various implemented codes and nodes. This
configuration allowed the system to be evaluated under actual operating conditions,
providing results that are representative of real human–robot interaction.

6.1.2 Experimental Procedure
The experimental procedure was structured to ensure the highest possible internal
and external validity of the collected data, as well as the replicability of the
experiment.
Before beginning the experiment, the testing procedure was explained in detail,
and the experimental protocol was clarified, specifying the data collection methods
and ensuring full protection of participants’ privacy and anonymity. Participants
were divided into two equivalent subgroups in order to minimize potential group
effects and to guarantee a balanced distribution of the experimental conditions.
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The experiments required participants to interact with the TIAGo robot under two
different behavioral configurations, with the interaction procedure organized into
the following phases:

1. Interaction with the robot in neutral mode.
Each participant first interacted with the robot without the emotional system
and without any predefined personality. In this phase, the robot’s behavior
was limited to standard responses, lacking emotional expression or behavioral
variations related to personality traits.

2. Interaction with the robot in personalized mode.
Subsequently, the two groups experienced different configurations:

• the first group interacted with the robot configured with personality shy
(A), characterized by moderate movements, greater interpersonal distance
and more restrained emotional responses;

• the second group interacted with the robot configured with personality
intense (B), featuring faster movements and more pronounced emotional
responses.

During each interaction session, participants were invited to interact freely with the
robot, intentionally crossing its trajectory in order to observe potential variations
in the robot’s emotional and behavioral responses.
At the end of the experimental session, each participant was asked to complete a
structured questionnaire designed to assess both their subjective perception of the
robot under the different configurations and their own emotional state experienced
during the interaction.
The procedure was carefully designed to ensure uniform testing conditions, control
for potential biases, and enable the systematic collection of data required for both
quantitative and qualitative analyses.

In order to verify the stability and reliability of the developed system, the ex-
perimental phase was organized into several distinct sessions.
The first testing session took place on October 13th, 2025, between 11:00 and 12:00
a.m., and involved a sample of eight students from the Universidad Politécnica de
Madrid (UPM), who participated in the entire experimental protocol using the
initial version of the system. Prior to the start of the experiment, participants were
given a presentation of the project, illustrating the research objectives, the technical
features of the TIAGo robot, and the nature of the planned interactions. Addition-
ally, the participants were informed in advance that they would first interact with
the robot in its neutral mode (without the emotional system) and then with the
robot in its personalized mode, which would activate the emotional system based
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on a predefined personality (shy or intense). This information was intentionally
omitted during the final tests in order to objectively assess participants’ perceptions
without prior knowledge influencing their responses.
At the end of this first session, a preliminary analysis of the collected data was
carried out, including the extraction of questionnaire responses and a statistical
study based on a mixed ANOVA method, aimed at verifying the consistency of
the measurements and identifying potential aspects of the experimental setup and
interaction procedure that could be improved.

Figure 6.2: Experimental session held on October 13th 2025, in the Sala de la
Máquina, Universidad Politécnica de Madrid.

Based on the observations that emerged, two main technical modifications were
subsequently implemented to optimize the system, reducing latency and enhancing
the visibility of the robot’s emotional reactions.

• Video telemetry: the video acquisition mode was modified from continuous
video streaming to a frame-based sampling approach, with frames captured at
a frequency of 1 fps (frame per second). This modification was introduced to
reduce the delay caused by the acquisition and transmission pipeline and to
improve the temporal correspondence between the facial recognition event and
the robot’s subsequent reaction, thereby enhancing the perceived accuracy of
the emotional expression.
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• Reactive locomotion parameters: the emotional_manager.py module was
updated by introducing a transient “boost” mechanism implemented as a
layer superimposed on the existing fuzzy results. When a change in the user’s
facial expression is detected, an additive increase or decrease in body_speed
(delta value) is triggered, applied immediately, and linearly decaying over N
iterations (factor = steps_left / total_steps). The boost parameters (delta
amplitude and duration in steps) differ between the two personalities (e.g.,
intense: happy +0.25 for 4 steps; shy: happy +0.12 for 3 steps). To ensure
operational safety and dynamic consistency, the resulting speed is always
clamped within an allowed interval, preventing invalid or unsafe values. This
mechanism produces a visible speed peak immediately after the recognition of
an expression, without altering the underlying fuzzy logic.
In parallel, some adjustments were also made to the .json modules. Specifi-
cally, the delay_const value in the mood_shy.json and mood_intense.json
files was reduced (from 10 to 3), resulting in a faster reaction to new facial
inputs while maintaining slight temporal smoothing. Finally, the output range
of body_speed was increased from 0.1 ÷ 0.5 m/s to 0.1 ÷ 0.9 m/s, allowing
for a wider speed excursion that makes velocity variations more perceptible.

Following these modifications, which constituted the final setup, two additional
experimental sessions were scheduled and conducted. The first took place on
Monday October 20th 2025, between 4:00 p.m. and 7:00 p.m., involving twelve
randomly selected participants recruited among passersby in the Sala de la Máquina.
The second session was held on Thursday October 30th 2025, between 3:00 p.m.
and 6:00 p.m., with an additional group of 16 participants.
These subsequent sessions followed the same experimental protocol described above
(an initial interaction with the robot in neutral mode, followed by an interaction
with Personality A or B depending on the group). The statistical analysis was
conducted along the same lines, employing multi-condition comparison procedures
(ANOVA) applied to the main scales, with the aim of identifying statistically
significant differences between conditions.
The detailed methods and statistical results are presented in Section 6.3 (Statistical
Analysis) and Section 6.4 (Results).

6.2 Questionnarie and Evaluation Metrics
To systematically evaluate the effectiveness of the emotion recognition and modu-
lation system implemented on the TIAGo robot, a structured questionnaire was
developed and administered to participants at the end of the experiment. The
objective was dual: on the one hand, to collect data on the subjective perceptions
of the participants about the robot and its emotional state; on the other hand, to
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assess the emotions actually experienced by the participants during the interaction.
For the overall evaluation of the experimental sessions, a mixed-methods approach
was adopted, combining validated psychometric instruments with specifically de-
signed questionnaires. This strategy allows integration of standardized measure-
ments, widely recognized in the scientific literature, with targeted questions that
aim to capture specific aspects of the user–robot interaction experience.[17][18]

The first section of the questionnaire collects essential demographic and back-
ground information, such as age, gender, and participants’ level of familiarity with
technology in general and with robotics in particular. A question was also included
to determine whether participants had any prior interactions with the TIAGo
robot, in order to control for potential biases related to familiarity with the robotic
platform. This information is useful for statistical purposes, as it allows for the
analysis of possible correlations between participants’ profiles and their evaluations.

To investigate the perception of the robot’s characteristics, as introduced in Section
2.5.1, items from the Godspeed Questionnaire Series were selected. Specifically, the
Animacy and Likeability scales were chosen, as they are particularly sensitive to
changes in the robot’s emotional behavior and personality, which are central to
the experimental objectives. For the Animacy scale, all five items were selected:
Dead-Alive, Stagnant-Lively, Mechanical-Organic, Artificial-Lifelike and Apathetic-
Responsive, while for the Likeability scale, three items were included: Dislike-Like,
Unfriendly-Friendly and Unpleasant-Pleasant.
These scales were administered twice, corresponding to the two experimental
conditions: the first involving interaction with the robot without the emotional
system, and the second with the robot equipped with the emotion recognition and
modulation system. This design made it possible to analyze how the presence of
the emotional system influenced the perception of the robot in terms of perceived
liveliness and pleasantness. At the end of the Godspeed questions, participants were
provided with a comparative section aimed at collecting their subjective preferences
between the two robot versions. Specifically, they were asked which robot appeared
more natural, more pleasant to interact with, more “alive” or expressive, and
which one, overall, they would prefer to encounter again in a future interaction.
In addition to these closed-ended questions, an open-ended item was included,
allowing participants to freely describe the differences they perceived between the
two robot versions and to provide qualitative observations or comments useful for
interpreting the results.

Subsequently, to analyze the impact of the interaction on participants’ emotional
state, an adapted version of the EVEA (Escalas Visuales Analógicas de Estado
de Ánimo) scale was employed (for theoretical background, refer to Section 2.5.2).
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Participants were asked to rate, on a scale from 0 to 10, the emotions they experi-
enced during their interaction with TIAGo (i.e., I felt happy, sad, calm, anxious,
irritated and understood).
Finally, to complement this quantitative section, the questionnaire also included
a few open-ended questions aimed at collecting spontaneous impressions not con-
strained by predefined scales. Specifically, participants were asked to indicate which
emotions they perceived in the robot and to provide any comments or suggestions
regarding their interaction experience, including possible improvements. These
qualitative contributions enrich the overall analysis by offering additional interpre-
tative insights beyond the numerical data alone. [17]

The questionnaire was created and administered through the Google Forms plat-
form, chosen for its ease of use and its ability to automatically and anonymously
collect participants’ responses.
Since participants were divided into two subgroups—the first interacting with the
robot without an emotional system and then with the robot featuring personality A
(shy), and the second interacting first with the robot without an emotional system
and then with the robot featuring personality B (intense)—two distinct but struc-
turally identical questionnaires were prepared for practical and data management
reasons. The two versions differed only in the coding of the collected data.
At the end of each experimental session, respondents were asked to complete the
form by scanning a specifically generated QR code, which redirected them directly
to the questionnaire link. Each version was associated with a dedicated QR code,
ensuring that the responses of the two subgroups remained separated during the
statistical analysis phase, while maintaining full consistency in both the adminis-
tration procedure and the question structure.
This process ensured a fast, uniform and error-free data collection, while also
enabling the immediate aggregation of responses for subsequent statistical analysis.
A complete copy of the questionnaire used in this study is provided in the Appendix
section B.

6.3 Statistical Analysis
In this section, the statistical strategy adopted for the analysis of the data collected
through the questionnaires is described (Godspeed: Animacy and Likeability scales;
EVEA: emotions scale). The purpose of the analysis is to assess whether, and to
what extent, the experimental conditions (interaction with the robot in Neutral
vs Personalised mode) and membership of differential subgroups (shy vs intense
personality) influence the measured variables of perception and emotional state.
The main questions addressed are:
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• Does group (shy vs intense) influence the perception of Animacy and Likeabil-
ity?

• Does condition (Neutral vs Personalised) influence perception?

• Do these effects combine in a specific way (i.e., is there an interaction)?

To address these questions, analyses were conducted using repeated-measures
ANOVA (mixed ANOVA), following the theoretical framework outlined in Section
2.6.

6.3.1 Operational Procedure, Data Preparation and Soft-
ware Tools

The data analysis was conducted following a reproducible pipeline structured into
three main phases: preparation and aggregation of questionnaire responses; dataset
checking and cleaning; execution of statistical analyses and production of support-
ing plots. The following subsection details the operations performed at each phase,
the criteria adopted for data processing, and the software tools employed.

For the scales taken from the Godspeed Questionnaire, mean values were computed
for each participant and for each experimental condition. Specifically:

• Animacy (Godspeed): each participant answered 5 items related to Animacy
in both the Neutral and the Personalised robot conditions; for each condition,
the arithmetic mean of the 5 items (Dead-Alive, Stagnant-Lively, Mechanical-
Organic, Artificial-Lifelike, Apathetic-Responsive) was computed and stored
as Animacy_mean_Neutral and Animacy_mean_Personalised;

• Likeability (Godspeed): each participant answered 3 items related to Likeabil-
ity in both conditions; for each condition, the arithmetic mean of the 3 items
(Dislike-Like, Unfriendly-Friendly, Unpleasant-Pleasant) was computed and
stored as Likeability_mean_Neutral and Likeability_mean_Personalised.

These means formed the compact dataset for the ANOVA: in an Excel sheet, a
table was created with one row per participant and the essential columns containing
these values. This procedure and the creation of the Excel file were repeated for the
two trials: in the first case, the file was named godspeed_test.xlsx and included
the first eight participants who interacted with the first version; in the second case,
it was named godspeed_final.xlsx and compiled the union of the data collected
across the two experimental sessions, which involved 28 total participants who
interacted with the final system.
The two Excel tables are reported below.
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ID Personality
Animacy
_mean_
Neutral

Likeability
_mean_
Neutral

Animacy
_mean_

Personalised

Likeability
_mean_

Personalised

1 shy 1.6 1.00 3.2 3.67
2 shy 2.4 3.33 3.0 3.33
3 shy 2.2 2.67 3.4 3.00
4 shy 2.2 2.33 3.8 4.00
5 intense 3.0 2.67 3.0 3.33
6 intense 4.0 4.00 3.6 3.67
7 intense 2.6 2.67 3.8 4.00
8 intense 2.6 2.33 4.0 4.00

Table 6.1: godspeed_test.xlsx : mean per-participant scores for the Animacy
and Likeability scales under the Neutral and Personalised conditions - pilot test.
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ID Personality
Animacy
_mean_
Neutral

Likeability
_mean_
Neutral

Animacy
_mean_

Personalised

Likeability
_mean_

Personalised

1 shy 2.2 2.00 4.0 4.00
2 shy 3.2 2.67 3.6 3.00
3 shy 3.4 2.67 2.6 2.00
4 shy 3.4 3.67 2.6 3.67
5 shy 3.0 2.00 4.2 3.67
6 shy 2.0 3.67 2.2 3.33
7 intense 3.4 3.67 3.4 4.00
8 intense 1.4 3.67 2.0 4.00
9 intense 3.2 2.67 2.4 4.00
10 intense 1.4 1.67 4.0 3.67
11 intense 2.6 2.67 3.6 3.33
12 intense 1.6 2.67 4.2 4.33
13 shy 3.6 4.00 4.0 2.00
14 shy 3.6 1.67 1.8 2.00
15 shy 3.4 1.67 3.4 3.33
16 shy 3.0 3.00 3.4 3.33
17 shy 2.6 2.00 5.0 5.00
18 shy 3.2 2.33 1.0 2.67
19 shy 1.2 1.00 3.8 5.00
20 shy 2.8 2.33 4.0 3.33
21 intense 1.8 3.00 5.0 5.00
22 intense 2.0 2.00 4.0 4.00
23 intense 2.6 3.00 3.8 4.67
24 intense 2.0 3.00 4.4 4.67
25 intense 3.8 3.00 2.2 3.67
26 intense 4.2 3.00 3.0 4.33
27 intense 2.0 2.33 3.8 4.00
28 intense 2.6 2.33 3.8 4.00

Table 6.2: godspeed_final.xlsx : mean per-participant scores for the Animacy
and Likeability scales under the Neutral and Personalised conditions - final tests.
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Separately, for the EVEA scale, two additional Excel files were created for the
two testing situations performed, named evea_test.xlsx, which contains the
data of the eight participants who interacted with the prototype system, and
evea_final.xlsx, which contains the data of 28 individuals who interacted with
the final optimized system. Each file includes, for every participant, a unique ID,
the personality with which they interacted in the second part of the experiment
(shy or intense), and the scores on the six EVEA items (happy, sad, calm, anxious,
irritated, understood).

Given the brevity of the interaction between the user and TIAGo, and the com-
plexity of human emotions, it is difficult, and at times speculative, to describe
participants’ affective states. Nevertheless, for an indicative analysis these spread-
sheets were used for descriptive summaries and for between-group comparisons of
participants’ emotional state.
These two Excel files are reported below in tabular form.

ID Personality happy sad calm anxious irritated understood

1 shy 5 8 3 7 7 4
2 shy 7 0 7 2 0 3
3 shy 7 2 9 0 0 0
4 shy 8 8 8 2 2 6
5 intense 6 2 7 3 6 5
6 intense 7 2 4 6 1 6
7 intense 7 3 6 3 1 5
8 intense 7 1 7 7 0 6

Table 6.3: evea_test.xlsx: EVEA scores per participant — pilot test.
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ID Personality happy sad calm anxious irritated understood

1 shy 8 1 8 1 1 8
2 shy 3 0 0 7 5 0
3 shy 8 3 10 0 7 5
4 shy 8 0 8 1 3 6
5 shy 10 0 8 1 1 0
6 shy 5 0 6 7 1 2
7 intense 7 3 8 2 0 7
8 intense 6 4 8 2 3 5
9 intense 1 1 9 0 2 3
10 intense 5 0 9 3 2 7
11 intense 7 0 7 1 0 2
12 intense 8 2 9 0 0 6
13 shy 8 2 9 2 1 7
14 shy 7 1 10 0 4 3
15 shy 7 0 5 6 6 5
16 shy 8 3 6 7 8 8
17 shy 7 0 10 0 0 7
18 shy 9 3 8 1 1 4
19 shy 8 3 9 0 0 2
20 shy 8 1 7 1 0 3
21 intense 6 4 8 1 0 7
22 intense 8 1 7 1 1 7
23 intense 9 0 6 7 1 8
24 intense 6 1 8 2 1 8
25 intense 7 4 7 5 4 6
26 intense 8 0 8 2 0 5
27 intense 8 1 7 1 0 7
28 intense 8 1 6 1 1 7

Table 6.4: evea_final.xlsx: EVEA scores per participant — final tests.

The processing was automated using well-established open-source tools commonly
adopted in experimental research:
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• Python (version 3.10.12) as the scripting environment;

• pandas (version 2.2.3) for data handling and transformation;

• pingouin (version 0.5.5) for mixed ANOVA and statistical tests;

• seaborn (version 0.13.2) and matplotlib (version 3.8.2) for data visualization.

Two main Python scripts were used:

1. godspeed_analysis.py: takes as input the Excel file (godspeed_test.xlsx
or godspeed_final.xlsx), runs the mixed ANOVA for Animacy and Like-
ability using pg.mixed_anova (pingouin), produces the Godspeed plots and
prints the ANOVA tables to the terminal. The following figures are generated
for both Animacy and Likeability:

• Bar plot of means by condition and by group, with error bars representing
the standard deviation (SD). This plot shows the observed means and
sample variability; the error bars facilitate reading differences between
groups and conditions;

• Point plot (line plot with markers) of the Group × Condition interaction:
it connects the means of the two conditions for each group, highlighting
potential interaction patterns (parallel lines vs divergence/crossing).

2. evea_analysis.py: takes as input evea_test.xlsx or evea_final.xlsx,
computes descriptive statistics for each emotion to allow rapid inspection of
overall trends and between-group differences, prints numerical summaries,
means (arithmetic mean of the collected scores for that EVEA item) and
standard deviations SD (measure of score dispersion around the mean, high
SD indicates wide variability among participants), and produces the following
figures:

• Bar plot of overall means (all participants) for each emotion;
• Bar plot by group (shy vs intense) for each emotion.

The scripts were executed from the folder containing the Excel files using the
commands: python3 godspeed_analysis.py and python3 evea_analysis.py.

Before each analysis, quality checks were performed on the dataset collected
via the questionnaires, following the operational protocol below:

• verification of column names and data types, to ensure that the Python scripts
found the expected columns;
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• checking the uniqueness of identifiers (ID) and the correspondence between
ID and group;

• identification of variables: subject ID (ID) as the participant identifier, Condi-
tion as the within-subjects factor (Neutral/Personalised), and group as the
between-subjects factor (shy/intense personality);

• data aggregation and formatting: to apply mixed-ANOVA procedures, vari-
ables measured under two conditions (Neutral and Personalised) were re-
organised into ‘long’ format (one row per participant × condition); this
transformation was performed in the Python scripts via pandas.melt;

• preliminary inspection of distributions (histograms, extreme values) to identify
clear outliers or transcription errors.

To avoid missing values (NaN) in the columns of interest, which would have led to
the exclusion of the record, responses related to the Godspeed and EVEA scales
were marked as mandatory in the administered questionnaire, unlike the open-ended
questions.

Concluding, in both cases, pilot with the initial system and final analyses with
the optimised system, the procedures for preparation, checking, transformation
into long format, ANOVA analysis, and figure generation were identical, ensuring
comparability of results across the experimental blocks.
To maximise reproducibility, the two Python scripts are stored and provided in
Annex C of the project document; all numerical and graphical outputs generated
by the scripts, including the ANOVA tables with F values, p-value and η2

p values,
have been archived and incorporated into the present work in Section 6.4 Results.

6.4 Results
This section presents and discusses the statistical and descriptive analyses conducted
on the data collected through the Godspeed questionnaires (Animacy and Likeability
scales) and the EVEA scale. It is organised into three parts, corresponding to: the
results of the first test conducted with a sample of eight participants; the results
of the final tests with the optimised emotional system; and, finally, a comparison
between the two datasets.

6.4.1 Results of the first test
The pilot session involved eight participants. From the questionnaire, their ages
ranged from 21 to 23 years; 2 were female and 6 male, evenly distributed across
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the two experimental personality conditions (shy and intense). Familiarity with
technology, and, in particular, with robotics, was on average moderate–high (values
between 3 and 4 on a 1–5 scale), while most participants (6 out of 8) had not
previously had direct interaction with the TIAGo robot. The data analysed by
the godspeed_analysis.py script (reported in Annex C) are the individual means
computed on the Godspeed scales, Animacy (mean of 5 items) and Likeability
(mean of 3 items), shown in Table 6.1. Conversely, the data analysed by the
evea_analysis.py script, documented in Annex C, are the EVEA scores (0–10
scales for six emotions) collected at the end of the interaction, shown in Table 6.3
The objective of this first experimental test was to assess measurement consistency,
validate the protocol, and obtain preliminary estimates of means and variability,
identifying any criticalities to be corrected and optimised. It is important to
acknowledge the limited sample size: with such a small number of participants,
effect-size estimators can be unstable and susceptible to overestimation.
For this reason, the conclusions should be treated as exploratory.

For each of the Godspeed scales analysed (Animacy and Likeability), the Python
script returns three rows of output from the mixed ANOVA, each corresponding
to a different effect tested by the model. Specifically, the three values F, p and η2

p
reported for each measure refer to:

• the main effect of the between-subjects factor (Personality): tests whether,
averaging across the two conditions, there are overall differences between the
two groups (shy vs intense);

• the main effect of the within-subjects factor (Condition): assesses whether the
different experimental setting (Neutral vs Personalised) produces an average
change in the measure under consideration;

• the interaction effect (Personality × Condition): tests whether the effect of
Condition differs as a function of group.

For each measure (Animacy and Likeability), the results of the mixed ANOVA
for the three model terms are reported in the table below: main effect of Person-
ality (between), main effect of Condition (within), and Personality × Condition
interaction.
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Measure Effect F p η2
p

Animacy Personality 8.075 0.0295 0.574
Animacy Condition 12.874 0.0115 0.682
Animacy Interaction 1.947 0.2124 0.245

Likeability Personality 2.159 0.1921 0.265
Likeability Condition 6.952 0.0373 0.538
Likeability Interaction 0.195 0.6742 0.031

Table 6.5: Results of ANOVA tests for Animacy and Likeability measures - firt
test.

As described earlier, the F statistic represents the ratio between the variability
attributable to the effect under consideration and the residual variability not ex-
plained by the model. A high F value indicates that the observed difference is large
relative to sampling noise, implying that differences in Personality or Condition
are meaningful and produce changes in users’ responses; the associated p-value
quantifies the probability of obtaining a value at least as extreme under the null
hypothesis.
The values reported in the table show significant effects of Condition (Neutral vs
Personalised) on both Godspeed scales (very high Fand p<0.05) and, for Animacy,
also a main effect of Personality. This indicates that the experimental manipulation
(Neutral robot vs Personalised robot) was indeed perceived by participants and
leads to an average increase in both Animacy and Likeability scores. In other
words, the personalised version of the robot is, overall, judged as more ‘alive’ and
more pleasant than the neutral version. The fact that the main effect of Personality
is significant only for Animacy means that, averaging across the two conditions,
the two experimental groups (shy vs intense) differ globally in their tendency to
attribute lifelikeness/humanness to the robot, but do not show an overall difference
in their evaluation of likeability. Concluding that the personality assigned to the
robot stably shapes users’ perception of it as ‘lifelike’, whereas perceived likeability
depends primarily on whether the robot is personalised, rather than on the specific
personality (shy vs intense).
It is also important to note that the absence of a significant interaction (Personality
× Condition) implies that the effect of moving from Neutral to Personalised is
generally similar for both groups: with the available data, there is no statistical
evidence that personalisation has a different impact on participants who inter-
acted with a shy robot with respect to the ones that interacted with an intense robot.
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To complement the numerical results, figures were generated to make the col-
lected data more immediately interpretable and comparable.

Figure 6.3: Bar plot of Animacy
scale means by group and experi-
mental condition - pilot test.

Figure 6.4: Point plot of the
Group × Condition interaction for
the Animacy scale - pilot test.

Figure 6.5: Bar plot of Likeability
scale means by group and experi-
mental condition - pilot test.

Figure 6.6: Point plot of the
Group × Condition interaction for
the Likeability scale - pilot test.

The four plots produced for the pilot experimental session provide an immediate
visual summary of the trends reported in the table and facilitate the reading of
differences between conditions and groups. The outcomes of the mixed ANOVA
are consistent with the plots: the means increase when moving from Neutral to
Personalised.

• Animacy — bar plot (Figure 6.9): shows Animacy means for each condition
(Neutral vs Personalised), separated by group (shy, intense), with error bars
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representing the standard deviation. A marked average increase is observed
when moving from Neutral to Personalised in both groups; in particular, the
shy group exhibits a lower initial mean in Neutral and a larger increase in
Personalised compared with the intense group.

• Animacy — interaction point plot (Figure 6.10): connects the Neutral and
Personalised means for each group and highlights the slope of the lines. The
different magnitude of increase between shy and intense (steeper line for shy)
is clearly appreciable.

• Likeability — bar plot (Figure 6.11): for Likeability, an average increase is
likewise observed in the Personalised condition for both groups. Means are
higher in Personalised, and the error bars show greater variability in the
Neutral condition.

• Likeability — interaction point plot (Figure 6.12): the near-parallel lines
between shy and intense indicate that the increase in Likeability from the
Neutral to the Personalised condition is similar for both groups, confirming
the absence of a statistical interaction.

The quantitative and numerical results of the statistical study were complemented
by a qualitative analysis of participants’ open-ended responses.
In the group that interacted with the “shy” personality, the emotions perceived
in the robot were primarily interpreted as shyness or discomfort; among these
participants, three out of four reported preferring the version with the affective
system (Personalised) over the neutral version. In the “intense” group, the emo-
tions perceived were described as closeness and greater proximity; in this group, all
participants (4/4) indicated a preference for the version with the emotional system.

Following the analysis of the Godspeed scales, the emotions reported by participants
through the EVEA scale were examined to assess how the robot’s personality influ-
enced the users’ emotional state. The evea_analysis.py script produced means
and standard deviations for the six EVEA items calculated across all participants.
The two resulting figures are shown below: the first displays the mean of each
emotion experienced by users, and the second provides a direct comparison between
shy and intense.
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Figure 6.7: Bar plot of mean emotions measured via the EVEA scale (all
participants) - pilot test.

Figure 6.8: Bar plot of mean EVEA emotions by robot personality (shy vs intense)
- pilot test.

The emotions “happy” and “calm” are overall high, suggesting that interaction with
the robot generally elicited positive feelings and a state of calm in most participants.
Conversely, emotions such as “sad” and “irritated” show lower means but large
standard deviations, indicating substantial individual variability in responses.
The shy group reports a higher mean for “sad” (4.50 vs 2.00), whereas the intense
group shows a much higher value for “anxious” (4.75 vs 2.75) and for “understood”
(5.50 vs 3.25). This suggests that the robot’s personality coherently modulates
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users’ emotional responses: the shy mode tends to evoke reactions oriented towards
empathy or discomfort, while the intense mode appears to evoke greater activation
(anxiety) but also a sense of being understood or recognised (higher “understood”).

It should be emphasised that, given the brevity of the interaction and the in-
herently subjective nature of self-reported emotions, conducting robust statistical
analyses on these measures is particularly challenging. In addition, the experimental
system relies on facial recognition to modulate the robot’s reactions: this implies
that the actual interaction experience is not identical for all participants but highly
personal. The elevated standard deviations highlight the strong heterogeneity of
individual responses. Consequently, the EVEA results reported here should be
regarded as exploratory and interpreted in light of these limitations.

6.4.2 Results of the final optimised system test
The optimised emotional system, obtained after the improvements described ear-
lier, was validated in two experimental sessions held on 20th and 30th October,
involving a total of 28 participants. The subjects were divided into two balanced
groups (n = 14 per group): each interacted first with the Neutral version of the
robot and subsequently with the Personalised version corresponding to the assigned
personality (shy or intense).
The preliminary questionnaire revealed the following demographic and familiarity
characteristics: participants’ ages clustered around 24–25 years on average (range
18–43), with an overall gender composition of 6 females and 22 males. General
familiarity with technology was, on average, medium–high (approximate means:
shy ≈ 4.29, intense ≈ 3.64), while specific familiarity with robotic technologies was
slightly lower (approximate means: shy ≈ 3.64, intense ≈ 3.29). Only a minority
of participants (5 out of 28, ≈ 18%) had previously interacted with the TIAGo
platform.

Following the same operational and data-preparation procedure, the Python script
godspeed_analysis.py analysed the individual means computed on the Godspeed
scales (Animacy: mean of 5 items; Likeability: mean of 3 items), reported in Table
6.2, while the data used by the Python script evea_analysis.py are the EVEA
scores (0–10 scales for six emotions) collected at the end of the interaction, reported
in Table 6.4
As in the pilot test, for each measure (Animacy and Likeability) the results of the
mixed ANOVA are reported below (values of F, p and η2

p) for the three model
terms: main effect of Personality (between), main effect of Condition (within), and
Personality × Condition interaction.
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Measure Effect F p η2
p

Animacy Personality 0.656 0.4254 0.025
Animacy Condition 9.027 0.0058 0.258
Animacy Interaction 1.194 0.2846 0.044

Likeability Personality 9.231 0.0054 0.262
Likeability Condition 18.971 0.0002 0.422
Likeability Interaction 0.319 0.5772 0.012

Table 6.6: Results of ANOVA tests for Animacy and Likeability measures — final
tests.

The values reported in the table confirm that the experimental manipulation had
clear and substantive effects on subjective evaluations.
For Animacy, the main effect of Condition (Neutral vs Personalised) is significant
(p = 0.0058) with a medium-to-large effect size (η2

p = 0.258). This means that
participants perceived the personalised version of the robot as more “alive” than
the neutral one. The main effect of Personality and the Personality × Condition
interaction are not significant for Animacy, indicating that the increase in perceived
lifelikeness due to personalisation occurred similarly for both the shy and intense
personalities: participants noticed the difference between Personalised and Neutral,
but did not rate the “liveliness” of the two personalities (shy vs intense) differently.
For Likeability, the picture is slightly different but consistent: both Condition (p
= 0.0002, η2

p = 0.422) and Personality (p = 0.0054, η2
p = 0.262) show significant

effects. This indicates that, beyond personalisation generally making the robot
more pleasant, there is also an overall difference between the two personality profiles
(shy vs intense) in the likability attributed to the robot (holding condition constant,
the two groups tend to judge likeability differently). Here too, the interaction is not
significant; thus, the increase in likeability from Neutral to Personalised is present
for both personalities and does not appear to be differentially modulated in shy
versus intense.
In summary: participants clearly perceive the personalised robot as more “alive”
and more pleasant than the neutral robot; the choice of personality (shy vs intense)
globally influences the likability attributed to the robot, but does not change the
fact that personalisation improves perception for both personalities.

After the numerical analysis, the four plots generated by the Python script are
presented below:
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Figure 6.9: Bar plot of Animacy
scale means by group and experi-
mental condition - final tests.

Figure 6.10: Point plot of the
Group × Condition interaction for
the Animacy scale - final tests.

Figure 6.11: Bar plot of Likeabil-
ity scale means by group and ex-
perimental condition - final tests.

Figure 6.12: Point plot of the
Group × Condition interaction for
the Likeability scale - final tests.

The bar plots and point plots produced for the Animacy and Likeability scales
visually show the results of the mixed ANOVA.
For Animacy, an average increase is observed when moving from Neutral to Per-
sonalised in both groups, consistent with a significant main effect of Condition.
Although the curve for the intense group appears steeper in the point plot, the
Personality × Condition interaction was not significant, meaning that, despite
visible differences in slopes, there is no statistical evidence that personalisation
has a different impact on shy versus intense personality. Participants therefore
noticed the difference between Personalised and Neutral, but did not evaluate the
“liveliness” of the two personalities in a substantially different way. The error bars
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indicate individual variability that accounts for the non-significant interaction.
For Likeability, the plots clearly show both the effect of Condition (marked increase
in Personalised) and an overall difference between groups (intense > shy). This
pattern is confirmed by the ANOVA: a very robust Condition effect and a significant
main effect of Personality, while the interaction remains non-significant. Practically,
this means that activating the emotional system made the robot overall more
pleasant for all participants, and that, regardless of condition, the two personality
profiles receive different likeability ratings.

Open-ended responses collected in the questionnaires corroborate, and subjec-
tively explain, the pattern that emerged from the Godspeed analyses.

Participants assigned to the shy personality repeatedly described a clear qual-
itative difference between the two behaviours. Behaviour 1 (Neutral robot, without
the emotional system) was often perceived as rushed, indifferent, or “aggressive”
(directly from the questionnaire responses “At first, it felt aggressive and artificial”,
“In robot’s behaviour one, I perceived indifference, haste, and displeasure”, “At the
beginning it did not seem very interested in my presence.” 1), with faster movements
and less attention to human interaction. By contrast, Behaviour 2 (Personalised
robot, with the affective system integrated) was interpreted as more reserved yet
also “more alive” and engaged: recurrent terms included shy/fearful, cautious,
curious, and more alive/realistic (“The second one was kind of shy, fearful, but at
the same time felt more alive and realistic”, “The second robot seems to be more
curious”, “The second one seemed more involved in the situation to me”, “Robot 2
tries to interact with sadness”).
Some participants highlighted a trade-off: Behaviour 1 was more effective in task
execution but potentially risky in crowded contexts, whereas Behaviour 2 was
friendlier but sometimes too slow (“Faster movements in behavior 1, more effective
in task execution but dangerous if surrounded by humans” ; “Behaviour 2 looks
friendly but too slow”).
Overall, the open-ended responses from the shy group explain why many of these
participants (≈ 57.1%) preferred Behaviour 2 (Personalised): it conveys signals of
attentiveness and social responsiveness that strengthen impressions of “liveliness”
and emotional closeness. It should nevertheless be noted that this preference is not
particularly pronounced. This may be because the navigation-parameter changes
introduced in the Personalised version were too gradual or too small in magnitude,
and thus less perceptible to users.

1All open-ended questionnaire responses cited in this section have been translated into English
and, where necessary, lightly edited for grammar and clarity.
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In the intense group, analogous descriptions emerge with different shades of mean-
ing: again, Behaviour 1 was often judged as detached or apathetic (“The first
robot was very apathetic, very uninterested in the situation it was in”), whereas
Behaviour 2 was perceived as more natural, curious, and human (“Behaviour 2 felt
much more natural, and less like a machine”, "The second one interact more like a
human”, “Very friendly and extroverty”, “Happiness to see person and curiosity”,
“In the second personality I found a robot more similar to a human that senses what
is in front of it, perceives the emotion, and acts accordingly”).
Many observations emphasised that Behaviour 2 continually monitors the environ-
ment and responds more adaptively (“The first one looks like takes information
from the outside only once at the beginning. While the second one constantly checks
its environment”, “Behaviour 2 is better because it stops when people get close”), a
feature appreciated as indicative of credible social behaviour. Comments in the
intense group also underscored differences in speed and approach (“First, it was
fast but dismissive. Second, it was slow but more approachable”).
The intense group’s responses reinforce the idea that implementing emotional
dynamics makes the robot more human-like and appealing to users: indeed, 13 out
of 14 participants (≈ 92.9%) indicated Behaviour 2 as their preferred option. This
result suggests that, for the intense personality, the difference between the Neutral
and Personalised versions was very clear and positive, providing strong evidence
for the effectiveness of the emotional control system and indicating that affective
modulation had a more evident subjective impact than in the shy profile.

Considering the complexity of the participants, it can therefore be argued that the
majority indicated “Robot behaviour 2” as the most pleasant, the most alive, and
the one with which they would prefer to interact a second time. This subjective
preference corresponds to the quantitative results: the significant Condition effect
on Animacy and Likeability (ANOVA) indicates that participants indeed perceived
the difference between Neutral and Personalised, and the comments clarify which
behavioural cues underlie this perception (greater visual orientation, pauses, ad-
justments in speed/proximity, “curious” or “attentive” behaviour).
The main Personality effect for Likeability is consistent with the tendency to evalu-
ate the profiles’ overall likability differently, while the absence of an interaction
means that, despite these global differences, the increase due to personalisation
occurred in parallel for both groups.

Following the Godspeed analysis, the two EVEA figures reported below (mean of
all emotions for the entire sample and comparisons by personality shy vs intense)
provide a coherent but multifaceted picture of participants’ emotional experience.
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Figure 6.13: Bar plot of mean emotions measured via the EVEA scale (all
participants) - final tests.

Figure 6.14: Bar plot of mean EVEA emotions by robot personality (shy vs
intense) - final tests.

In overall terms, positive emotions predominate: the mean scores for “happy” and
“calm” are the highest among the items, while “sad” and “irritated” show the
lowest values. However, the standard deviations are relatively large for some items,
indicating substantial individual variability in responses.
The comparison by personality (shy vs intense) highlights differences that are
meaningful and interpretable in light of the Godspeed results: participants exposed
to the intense personality report slightly higher scores for “happy” and “calm” and
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a marked value for “understood”, whereas the shy group shows lower mean values
for “understood” but tends to be higher for “anxious” and “irritated”. This suggests
that the intense personality tends to evoke positive emotions and a stronger sense
of being understood, consistent with the high likeability observed for the intense
profile; by contrast, the shy personality may induce a more mixed response, with a
subset of participants experiencing mild negative activation (anxiety/annoyance),
likely linked to signals of shyness or discomfort perceived as harder to interpret at
first glance or too slow.
Given the brevity of the interaction and the subjective nature of the responses,
these results remain exploratory: the large standard deviations indicate that not
all users had the same emotional experience and that the differences should be
corroborated with targeted statistical tests. In any case, the EVEA figures support
the general conclusion that activating the emotional system elicited predominantly
positive reactions and that the two personalities modulate the emotional experience
in distinct ways, an element that can inform future adjustments of the fuzzy rules
to maximise both likeability and users’ perceived comfort.

6.4.3 Comparison between the two experimental campaigns
The comparison between the pilot test (N = 8) and the final test with the optimised
affective system (N = 28) reveals both confirmation of the initial exploratory results
and some noteworthy changes in their interpretation, attributable to the increased
statistical power and to the technical modifications introduced.
In both cases, the main effect of Condition (Neutral vs Personalised) is present:
participants consistently perceive the shift to the personalised version of the robot
as an increase in animacy and pleasantness. In the pilot test, the Personalised
condition already produced a significant increase in the Animacy and Likeability
scales, but the main effect of Personality was limited to Animacy alone, with
medium-to-small η2

p values and substantial individual variability (limitations in
significance and precision).
In the optimised version, by contrast, the effects become more stable and pro-
nounced: for both scales, the main effect of Condition is highly significant, indicating
that activating the emotional system consistently improves perceptions of the robot’s
vitality and pleasantness. Moreover, the significance of the Personality effect for
Likeability (not present in the pilot) suggests that the implemented modifications
made the two behavioural profiles more distinguishable and recognisable, conferring
coherence and a specific identity to the shy and intense personalities.
This “shift” of the Personality effect can be explained by two main factors:

1. the increase in sample size improved estimator precision and thus the ability
to detect genuine effects across the different measures;
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2. the technical enhancements (reduced latency in the acquisition/processing
pipeline and greater perceptual salience of navigation-parameter updates)
made aspects related to overall pleasantness (Likeability) more evident, while
perceived differences in “liveliness” (Animacy) became more uniform across
profiles.

From a qualitative standpoint, participants’ open-ended responses reveal an equally
significant evolution. In the pilot test, descriptions tended to emphasise perceived
differences that were often vague or ambivalent, with comments alternating between
curiosity and confusion about the robot’s behaviour. In the final sessions, by con-
trast, impressions are more convergent: the personalised version is systematically
described as more natural, attentive, and “alive”, whereas the neutral mode is
perceived as rigid or artificial.
With respect to the EVEA emotional measures, the comparison between the pilot
and the final test shows consistency in the overall trend (high “happy” and “calm”,
low “sad” and “irritated”): in both studies the intense personality tends to elicit
more positive responses and a stronger sense of “being understood”, while the shy
personality is associated with more mixed responses (greater variability, some signs
of anxiety or discomfort for a subset of participants). The large standard deviations
in both phases underline the subjective heterogeneity of the experience and the
need to regard these results as indicative rather than definitively generalisable.
The pilot exhibited the typical limitations of a small sample (imprecise effect
estimates, susceptibility to overestimation); it was therefore appropriate to treat
those results as exploratory and as guidance for technical optimisations. The final
test, while having greater power, still presents limitations to consider: a relatively
young and gender-imbalanced sample, brief interactions, and possible variability in
facial-recognition conditions across participants.

The transition from the pilot to the final test strengthened the evidence that
integrating a fuzzy emotional control system, driven by real-time facial recogni-
tion, increases perceived Animacy and Likeability of the robot. The technical
optimisations made these effects more evident and statistically robust, especially
for Likeability. At the same time, differences between the shy and intense profiles
emerge more clearly in overall likeability evaluations and subjective preferences
(with intense receiving a more marked preference), indicating that personalising
the affective dynamics is a promising lever, but one that requires further parameter
tuning (magnitude and timing) according to the desired profile.
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Chapter 7

Conclusions and Future
Works

This thesis investigated how an affective control architecture, based on fuzzy logic
and real-time emotion recognition, can enhance the naturalness and perceived
quality of human–robot interaction in autonomous mobile robots.
The work focused on the development of an emotional navigation system capable
of adapting its behaviour based on the user’s facial expressions and this system
was was tested on the TIAGo platform. The system integrates deep-learning-based
emotion detection with two internal affective dimensions, mood and alertness, which
influence the robot’s linear velocity and navigation tuning parameters through a
hierarchy of fuzzy controllers.

7.1 Summary of Contributions
During the course of this project, several contributions to the field of socially
interactive robotics were provided, with a particular focus on affective navigation
and the integration of emotional systems into autonomous platforms.
A first contribution concerns the integration of a real-time facial-expression recog-
nition algorithm (https://github.com/Harshxth/Real-Time-Expression-Detection)
directly on the TIAGo robot, using its onboard RGB camera and deploying the
entire perception pipeline within the ROS framework. The resulting module enables
the robot to infer the user’s emotional state autonomously and without external
hardware, ensuring real-time performance and seamless integration with the subse-
quent stages of the affective architecture.
Building on this perception layer, the thesis introduces a complete emotional control
system that combines deep-learning-based emotion recognition with fuzzy-logic
modelling of affective variables, developed by taking as reference and extending a
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previous emotional fuzzy architecture designed within the Universidad Politécnica
de Madrid. [1]
Two internal dimensions—mood and alertness—were defined and modelled through
separate fuzzy controllers, enabling smooth and human-like transitions between
affective states. These internal variables were then linked to measurable navigation
parameters, specifically linear velocity and navigation tuning, allowing the robot’s
movement to serve as a direct expression of its internal emotional dynamics.
A further contribution of this work is the design and implementation of two distinct
robot personalities, shy and intense, obtained by modifying the fuzzy-rule base and
the sensitivity of the affective variables. This demonstrates how subtle variations
in rule structures and membership-function parameters can produce qualitatively
different behavioural profiles while maintaining safety and stability.
Finally, the thesis contributes an experimental validation of the proposed sys-
tem through user studies involving 28 participants. Using standardised HRI
instruments—Godspeed (Animacy and Likeability) and EVEA—combined with
qualitative feedback, the experiments showed that affectively modulated navigation
significantly improves users’ perception of the robot. Participants described the
emotional robot as more alive, attentive, and engaging, confirming the positive
effect of affect modulation in autonomous behaviour.

Overall, this thesis offers a unified, ROS-integrated, and experimentally vali-
dated framework for emotional navigation, demonstrating that embedding affective
dynamics into robot control can meaningfully enhance human–robot interaction.

7.2 Future Works
While the emotional navigation system developed in this thesis proved effective,
several promising directions may further expand its capabilities and applicability.
The following proposals outline potential future developments.

• Extension of emotional dimensions and personality models
The system currently relies on two internal emotional variables, mood and
alertness. Future work could incorporate additional psychological constructs,
such as interest, affective or expectancy, enabling a richer behavioural reper-
toire. Moreover, adopting more sophisticated personality models inspired by
psychological theories could allow robots to display more nuanced and stable
long-term behavioural identities.

• Multimodal emotion perception
The current approach relies exclusively on facial-expression detection. Inte-
grating multimodal inputs, such as vocal cues, physiological signals, gestures,
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predominant colors in the user’s clothes or contextual information, would sig-
nificantly improve emotional inference, especially in ambiguous or low-visibility
situations.

• Adaptive learning of fuzzy rules
The fuzzy-logic system has been manually designed to ensure interpretability
and personality consistency. Future work may explore adaptive mechanisms
that allow the robot to refine or expand its rule base autonomously. Promising
directions include:

– adaptive fuzzy systems that learn or fine-tune rules from user interaction
data, gradually shaping behaviour to individual preferences;

– reinforcement learning techniques to optimise affective responses through
trial-and-error interaction;

– hybrid neuro-fuzzy approaches, where neural networks support the auto-
matic adjustment of membership functions or rule parameters.

Current research is evolving along two main directions: refining fuzzy for-
malisms to handle more complex forms of uncertainty, such as type-2 fuzzy
systems, which are particularly effective when dealing with ambiguous or noisy
affective cues, and integrating fuzzy logic with learning-based methods to
create adaptive architectures capable of autonomously updating their rule
bases.

• User modelling and Long-Term interaction
The experiments conducted focused on single-session interactions. A natural
extension would be to study long-term effects. Implementing user-profile mem-
ory or long-term adaptation could support sustained, personalised assistance.

• Improved robot behavioural expressivity
Motion expressivity could be expanded by modulating additional navigation
parameters or non-verbal channels. For example, head and arm movements or
the addition of a vocal response Combining navigation patterns with expressive
cues could significantly enhance the clarity and communicative value of the
robot’s emotional state.

• Large-scale user studies
Larger datasets would provide stronger statistical power and enable generalis-
able conclusions about affective robotics.
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Manual

1. Environment setup
Before starting the system, ensure that the following conditions are met:

• ROS Noetic is installed and sourced;

• the TIAGo robot is powered on and connected to the laboratory Wi-Fi network;

• the local PC is connected to the TIAGo Wi-fi network;

• the PC’s ROS workspace contains the required packages:

– camera_processor

– fuzzy_emotion_control

• the virtual environment (venv) is available and properly configured;

• the trained facial expression model emotiondetector.h5 is present in the
correct directory;

• he correct RViz configuration file (rviz_TIAGo.rviz) is available for visual-
ization.

2. Connection with TIAGo
Open a terminal on the PC and establish remote access to the robot’s onboard
computer:

ssh pal@tiago-162c

Password: .....
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This terminal will be referred to as TIAGo Terminal, and it will be used exclusively
for operations that must run directly on the robot.
3. Change the map on the robot (TIAGo Terminal)
To load the desired navigation map (for example hall_map), execute:

cd .pal/maps/configurations/

rosservice call /pal_map_manager/change_map "input: ’hall_map’"

4. Verify the local IP address
Before launching any ROS node locally, check the IP address of your machine:

ifconfig

This step is essential because ROS requires explicit network configuration.
The IP address shown here will be used in the next step to ensure correct commu-
nication between the local PC and TIAGo.
5. Configuration of additional terminals
Every terminal that runs ROS nodes on the local PC must be configured with the
following environment variables:

source /opt/ros/noetic/setup.bash

export ROS_MASTER_URI=http://tiago-162c:11311

export ROS_IP=10.68.0.129

Without this configuration, the nodes running on your computer will not be able
to communicate with the robot.
6. Launching RViz
RViz provides a visual interface to monitor the robot state, camera view, transfor-
mations, and navigation:

cd /home/carlotta/catkin_ws/src/tiago

rviz -d ./rviz_TIAGo.rviz

7. Launching the real-time facial expression detection system
In this step, the perception pipeline running on the local PC is activated. This
node processes the images from the robot’s RGB camera and publishes a label
describing the detected facial expression. This topic is consumed by the fuzzy
emotional controller in the next step.
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cd ~/Real-Time-Expression-Detection

source venv/bin/activate

export
PYTHONPATH=$PYTHONPATH:/opt/ros/noetic/lib/python3/dist-packages

source ~/catkin_ws/devel/setup.bash

rosrun camera_processor camera_listener.py

8. Launching the fuzzy controller (shy or intense personality)
This step activates the core of the emotional system.
The fuzzy controller receives: the detected facial expression and the robot’s current
linear velocity and generates the robot’s internal emotional state (mood, alertness)
and the navigation modulation parameters (speed, tuning).

cd catkin_ws

source /opt/ros/noetic/setup.bash

catkin_make

source ~/catkin_ws/devel/setup.bash

To launch the shy personality:

rosrun fuzzy_emotion_control fuzzy_node.py shy

To launch the intense personality:

rosrun fuzzy_emotion_control fuzzy_node.py intense
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Questionnaire

Questionnaire on Emotional Interaction with
the TIAGo Robot
Thank you for taking part in this experiment.

The aim of this questionnaire is to collect information about your perceptions
and emotions during the interaction with the TIAGo robot.

The questionnaire takes about 5 minutes to complete.
There are no right or wrong answers; we are only interested in your personal
experience.

By completing this questionnaire, you consent to the use of the collected
data exclusively for research and statistical purposes.
All responses will be treated anonymously.

Thank you for your collaboration!

1 - General Information
(anonymous, for statistical purposes only)

• Age: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Gender:
□ M □ F □ Other

• Familiarity with technology knowledge:
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Very little
knowledge

1 □ 2 □ 3 □ 4 □ 5 □ Very high
knowledge

• Familiarity with robotic technologies:
Not at all
familiar

1 □ 2 □ 3 □ 4 □ 5 □ Highly familiar

• Have you previously interacted with TIAGo?
□ Yes □ No

2 - Perception of the Robot

In the following section, you will be asked to rate your impression of the
robot’s general characteristics (e.g., how “alive”, “organic”, or “likeable” it
appeared), using standardized scales from the Godspeed questionnaire.

For each statement, select the number that best reflects your perception
for each statement from 1 to 5, indicating how strongly you perceived the
presence of that item in the robot’s behaviour.

Robot behaviour 1

Animacy scale:

1 2 3 4 5

Dead □ □ □ □ □ Alive
Stagnant □ □ □ □ □ Lively
Mechanical □ □ □ □ □ Organic
Artificial □ □ □ □ □ Lifelike
Apathetic □ □ □ □ □ Responsive

Likeability scale:

1 2 3 4 5

Dislike □ □ □ □ □ Like
Unfriendly □ □ □ □ □ Friendly
Unpleasant □ □ □ □ □ Pleasant
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Robot behaviour 2

Animacy scale:

1 2 3 4 5

Dead □ □ □ □ □ Alive
Stagnant □ □ □ □ □ Lively
Mechanical □ □ □ □ □ Organic
Artificial □ □ □ □ □ Lifelike
Apathetic □ □ □ □ □ Responsive

Likeability scale:

1 2 3 4 5

Dislike □ □ □ □ □ Like
Unfriendly □ □ □ □ □ Friendly
Unpleasant □ □ □ □ □ Pleasant

Open question:
Which emotions did you perceive in the robot? . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Preference between the two robots

• Which version of the robot did you find more natural?
□ Robot behaviour 1 □ Robot behaviour 2

• Which version of the robot did you find more pleasant to interact with?
□ Robot behaviour 1 □ Robot behaviour 2

• Which version of the robot seemed more alive or expressive?
□ Robot behaviour 1 □ Robot behaviour 2

• In general, which robot would you prefer to interact with again?
□ Robot behaviour 1 □ Robot behaviour 2

Open question:
Please describe briefly what differences you noticed between the two robots, if
any. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3 - Personal Emotions of the Participant

Please indicate how you personally felt during the interaction with the robot.
For each statement, use the scale from 0 to 10, where:

• 0 = not at all

• 10 = very much

Indicate the number that best represents your own emotional state.

0 1 2 3 4 5 6 7 8 9 10

I felt happy □ □ □ □ □ □ □ □ □ □ □
I felt sad □ □ □ □ □ □ □ □ □ □ □
I felt calm □ □ □ □ □ □ □ □ □ □ □
I felt anxious □ □ □ □ □ □ □ □ □ □ □
I felt irritated □ □ □ □ □ □ □ □ □ □ □
I felt understood □ □ □ □ □ □ □ □ □ □ □

Open question:
Do you have any comments or suggestions about the interaction with the
robot? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Python Scripts for ANOVA

C.1 Script: godspeed_analysis.py

1 import pandas as pd
2 import pingouin as pg
3 import seaborn as sns
4 import matplotlib . pyplot as plt
5

6 # Load Excel file
7 df = pd. read_excel (’godspeed_test .xlsx ’)
8

9 # =========================================
10 # ANIMACY
11 # =========================================
12 # Prepare data in "long" format
13 df_animacy = pd.melt(df ,
14 id_vars =[’ID’, ’Personality ’],
15 value_vars =[’Animacy_mean_Neutral ’, ’Animacy_mean_Personalised

’],
16 var_name =’Condition ’,
17 value_name =’Animacy_mean ’
18 )
19

20 df_animacy [’Condition ’] = df_animacy [’Condition ’]. replace ({
21 ’Animacy_mean_Neutral ’: ’Neutral ’,
22 ’Animacy_mean_Personalised ’: ’Personalised ’
23 })
24

25 # Mixed ANOVA for Animacy
26 print("=== Mixed ANOVA Results for Animacy ===\n")
27 aov_animacy = pg. mixed_anova (
28 dv=’Animacy_mean ’,
29 within =’Condition ’,
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30 between =’Personality ’,
31 subject =’ID’,
32 data= df_animacy
33 )
34 print( aov_animacy )
35

36 # BARPLOT Animacy
37 plt. figure ( figsize =(7, 5))
38 sns. barplot (data=df_animacy , x=’Condition ’, y=’Animacy_mean ’, hue=

’Personality ’, errorbar =’sd’)
39 plt.title(’Animacy : Mean by Group and Condition ’)
40 plt. ylabel (’Animacy (mean)’)
41 plt. xlabel (’Condition ’)
42 plt. legend (title=’Group ’)
43 plt. tight_layout ()
44 plt.show ()
45

46 # POINTPLOT Animacy ( interaction )
47 plt. figure ( figsize =(7, 5))
48 sns. pointplot (
49 data=df_animacy ,
50 x=’Condition ’,
51 y=’Animacy_mean ’,
52 hue=’Personality ’,
53 dodge=True ,
54 markers =’o’,
55 capsize =.1,
56 errorbar =’sd’
57 )
58 plt.title(’Animacy : Group x Condition Interaction ’)
59 plt. ylabel (’Animacy (mean)’)
60 plt. xlabel (’Condition ’)
61 plt. legend (title=’Group ’)
62 plt. tight_layout ()
63 plt.show ()
64

65 # =========================================
66 # LIKEABILITY
67 # =========================================
68 # Prepare data in "long" format
69 df_likeability = pd.melt(df ,
70 id_vars =[’ID’, ’Personality ’],
71 value_vars =[’Likeability_mean_Neutral ’, ’

Likeability_mean_Personalised ’],
72 var_name =’Condition ’,
73 value_name =’Likeability_mean ’
74 )
75
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76 df_likeability [’Condition ’] = df_likeability [’Condition ’]. replace
({

77 ’Likeability_mean_Neutral ’: ’Neutral ’,
78 ’Likeability_mean_Personalised ’: ’Personalised ’
79 })
80

81 # Mixed ANOVA for Likeability
82 print("\n=== Mixed ANOVA Results for Likeability ===\n")
83 aov_likeability = pg. mixed_anova (
84 dv=’Likeability_mean ’,
85 within =’Condition ’,
86 between =’Personality ’,
87 subject =’ID’,
88 data= df_likeability
89 )
90 print( aov_likeability )
91

92 # BARPLOT Likeability
93 plt. figure ( figsize =(7, 5))
94 sns. barplot (data= df_likeability , x=’Condition ’, y=’

Likeability_mean ’, hue=’Personality ’, errorbar =’sd’)
95 plt.title(’Likeability : Mean by Group and Condition ’)
96 plt. ylabel (’Likeability (mean)’)
97 plt. xlabel (’Condition ’)
98 plt. legend (title=’Group ’)
99 plt. tight_layout ()

100 plt.show ()
101

102 # POINTPLOT Likeability ( interaction )
103 plt. figure ( figsize =(7, 5))
104 sns. pointplot (
105 data= df_likeability ,
106 x=’Condition ’,
107 y=’Likeability_mean ’,
108 hue=’Personality ’,
109 dodge=True ,
110 markers =’o’,
111 capsize =.1,
112 errorbar =’sd’
113 )
114 plt.title(’Likeability : Group x Condition Interaction ’)
115 plt. ylabel (’Likeability (mean)’)
116 plt. xlabel (’Condition ’)
117 plt. legend ( title=’Group ’)
118 plt. tight_layout ()
119 plt.show ()

Listing C.1: Python script used for the ANOVA analysis of Godspeed
questionnaire responses.
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C.2 Script: evea_analysis.py

1 import pandas as pd
2 import matplotlib . pyplot as plt
3 import seaborn as sns
4

5 # Load the EVEA data from Excel
6 df = pd. read_excel (’evea_test .xlsx ’)
7

8 # Ensure Personality column exists and set order (shy first , then
intense )

9 if ’Personality ’ in df. columns :
10 df[’Personality ’] = df[’Personality ’]. astype (str)
11 df[’Personality ’] = pd. Categorical (df[’Personality ’],

categories =[’shy ’, ’intense ’], ordered =True)
12

13 # Define the emotion columns
14 emotions = [’happy ’, ’sad ’, ’calm ’, ’anxious ’, ’irritated ’, ’

understood ’]
15

16 # ===========================
17 # GENERAL ANALYSIS (ALL PARTICIPANTS )
18 # ===========================
19

20 # Calculate mean and std for each emotion (all participants )
21 mean_emotions = df[ emotions ]. mean ()
22 std_emotions = df[ emotions ]. std ()
23

24 print("=== EVEA Questionnaire : All Participants ===")
25 print("Mean per emotion :\n", mean_emotions )
26 print("\ nStandard deviation per emotion :\n", std_emotions )
27

28 # Barplot : mean per emotion (all participants )
29 plot_df = pd. DataFrame ({’emotion ’: mean_emotions .index , ’mean ’:

mean_emotions .values , ’std ’: std_emotions . values })
30 plt. figure ( figsize =(9 ,5))
31 ax = sns. barplot (x=’emotion ’, y=’mean ’, data=plot_df , palette =’

viridis ’, errorbar =None)
32 # add manual errorbars (mean +/- std)
33 for i, row in plot_df . iterrows ():
34 bar = ax. patches [i]
35 cx = bar.get_x () + bar. get_width ()/2
36 cy = row[’mean ’]
37 err = row[’std ’] if not pd.isna(row[’std ’]) else 0
38 ax. errorbar (cx , cy , yerr=err , fmt=’none ’, c=’black ’, capsize

=5)
39 plt.title(’Mean scores of emotions experienced (EVEA , all

participants )’)
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40 plt. ylabel (’Mean score ’)
41 plt. xlabel (’Emotion ’)
42 plt. tight_layout ()
43 plt.show ()
44

45 # ===========================
46 # ANALYSIS BY PERSONALITY (shy vs intense )
47 # ===========================
48

49 # Calculate mean and std for each emotion per Personality
50 group_mean = df. groupby (’Personality ’)[ emotions ]. mean ()
51 group_std = df. groupby (’Personality ’)[ emotions ]. std ()
52

53 print("\n=== EVEA Questionnaire : Means per Personality ===")
54 print( group_mean )
55 print("\n=== EVEA Questionnaire : Standard deviations per

Personality ===")
56 print( group_std )
57

58 # Prepare data for group barplot
59 group_mean_reset = group_mean . reset_index ()
60 group_melt = group_mean_reset .melt( id_vars =’Personality ’, var_name

=’emotion ’, value_name =’mean ’)
61

62 hue_order = [’shy ’, ’intense ’]
63 palette_shy_intense = [’#1 f77b4 ’, ’# ff7f0e ’] # blue , orange
64

65 plt. figure ( figsize =(10 ,6))
66 sns. barplot (data=group_melt , x=’emotion ’, y=’mean ’, hue=’

Personality ’,
67 palette = palette_shy_intense , hue_order =hue_order , ci=

None)
68 plt.title(’Mean score of each emotion per Personality (EVEA)’)
69 plt. ylabel (’Mean score ’)
70 plt. xlabel (’Emotion ’)
71 plt. legend (title=’Personality ’)
72 plt. tight_layout ()
73 plt.show ()

Listing C.2: Python script used for the ANOVA analysis of EVEA questionnaire
data.
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