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Abstract

Superconductivity is one of the most important macroscopic quantum coherent phenom-
ena in physics, where at sufficiently low temperatures electrons form Cooper pairs sharing
the same phase. When an interface is realized between a superconductor (S) and a normal
(N) material, a phenomenon called Andreev reflection occurs: an electron impinging from
the normal side towards the interface cannot penetrate the superconductor as a single
quasiparticle and is back-reflected as a hole.

Recently, one of the most interesting and studied setups involving a normal and a su-
perconducting material is the case of semiconductor nanowires with spin-orbit coupling
(SOC), where a nanowire portion, covered by a superconducting film, acquires a super-
conducting pairing by proximity effect. Nanowires characterized by strong SOC, such as
InAs and InSb, exhibit ballistic transport and a wide tunability of the SOC, and have
been predicted to host Majorana quasiparticles that are robust to decoherence, with po-
tential applications in quantum technology.

While experimental evidence for Majorana quasiparticles is still debated, a key open
problem is to understand how Andreev Reflection is affected by SOC inhomogeneities.
Indeed, while most theoretical models assume a homogeneous SOC, in actual experiments
inhomogeneities are present mainly for two reasons: firstly, when a nanowire portion is
covered by a superconducting film, its structural inversion asymmetry underlying the
Rashba SOC is modified as compared to the bare nanowire portion. Secondly, the SOC
in the normal portion can be controlled in magnitude and direction by wrap metallic
gates, with the purpose of tuning the conduction properties of the system. So far, these
aspects have been mainly overlooked in the literature.

This MS Thesis is an attempt to bridge this gap, by investigating how Andreev reflection
is affected by the inhomogeneities of the SOC. In order to describe a homogeneous single
channel semiconductor nanowire proximized by a superconducting pairing, we first con-
sider the generalization of the Bardeen-Cooper-Schrieffer model including the effects of
SOC and of an external magnetic field. Then, by adopting the Bogoliubov-de Gennes for-
malism, we further extend this model to describe inhomogeneous systems, specifically a
Normal-Superconducting (N/S) nanowire junction where the SOC profile is non-uniform
across the interface.

By combining analytical and numerical methods, we analyze the effects of two specific
types of spin-orbit inhomogeneities on Andreev reflection. The first one is an inhomo-
geneity in the direction of the SOC field, defined by a misalignment angle between the
N and S sides. The second type is the inhomogeneity in the magnitude of the Rashba
SOC. Our results show that, while Andreev Reflection is independent of the misalignment
angle, it can be significantly affected by the difference in the spin-orbit magnitude. We
analyze this effect in two distinct regimes, where the spin-orbit energy is much larger



than the superconducting gap, and in the opposite case of a large superconducting gap.
Furthermore, we also discuss how these effects are modified by the presence of a magnetic
field.

In conclusion, this work provides a rigorous framework for modeling quantum transport
in N/S nanowire junctions. Our findings clarify the distinct roles of directional and
magnitude-based SOC inhomogeneities in modulating Andreev reflection, providing a
solid basis for the design of future quantum devices.
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Chapter 1

Superconductivity and nanowires
with spin-orbit coupling

1.1 Superconductivity and Andreev reflection

1.1.1 A quick overview of supercoductivity

Superconductivity stands as one of the most fascinating macroscopic quantum phenomena
in condensed matter physics. It was first observed by Heike Kamerlingh Onnes in 1911
while cooling Mercury and other metals down to temperatures of a few Kelvin using liquid
Helium. Kamerlingh Onnes observed that below a certain critical temperature Tc, the
electrical resistance of these materials dropped abruptly to zero, thereby characterizing
them as perfect conductors. Later, further experiments have demonstrated that currents
in superconducting rings can flow indefinitely without any measurable decay, indicating
a truly zero-resistance state. The critical temperature Tc represents the first fundamental
parameter characterizing a superconductor and it depends on the material type [1, 2].
In particular, for a given superconducting element, Tc depends on its specific isotopic
variant. This phenomenon, known as the Isotope Effect[3], reveals that Tc changes with
the mass M of the constituent ions.
A second feature characterizing a superconductor, discovered in 1933 by Walther Meissner
and Robert Ochsenfeld, is the Meissner effect[4]. It was observed that below Tc, and for
magnetic fields below a certain critical value Hc(T ), superconductors behave as perfect
diamagnets, actively expelling applied magnetic fields from their interior. This expulsion
is spontaneous and reversible. The critical magnetic field Hc is temperature-dependent,
typically following a universal empirical parabolic law (for materials characterized by low
Tc), and vanishing at Tc, namely

Hc(T ) ≈ Hc(0)
[
1−

(
T

Tc

)2]
(1.1)

Above the critical field Hc, superconductivity is destroyed, and the material exhibits its
normal resistive state.
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Superconductivity and nanowires with spin-orbit coupling

The discovery of the Meissner effect was crucial to identify superconductivity as a ther-
modynamic state of matter, which differs from a mere hypothetical “perfect conductor”
(a material with just zero resistance). Indeed let us highlight their difference by consid-
ering two possible scenarios. In the first one, both materials are cooled below Tc in zero
magnetic field, and then a magnetic field is applied. In this case both of them will expel
the field, without showing any response to it. For the perfect conductor, this is due to
Faraday’s law of induction (∇×E = −∂B/∂t): zero resistance implies zero internal elec-
tric field, which means the internal magnetic field cannot change over time (∂B/∂t = 0),
i.e. remainingvanishing in the material.
In contrast, if a magnetic field is applied above Tc and the materials are subsequently
cooled, a perfect conductor would trap the field inside (maintaining ∂B/∂t = 0 as it be-
comes perfectly conducting), whereas a superconductor will spontaneously expel the field
as it crosses Tc, as observed in the Meissner effect. The reversibility of this effect and the
observations that the transition and the final state depend only on the thermodynamic
variables (T , H) and not on the cooling history, suggests prove that the superconducting
state is a distinct, stable thermodynamic phase of matter.
The evidence that the transition to a superconductivity state represents a phase transi-
tion, in which the system enter in a lower energy state, is also supported by the obser-
vations of a discontinuity in the specific heat cv at Tc in zero magnetic field [2]. This
represents a second order phase transition, since it involves the second derivative of the
Gibbs free energy, and it is characterized by a discontinuos increase of the specific heat
at Tc, followed by an exponentially decrease towards zero. This jump indicates an inter-
nal reordering of the system (the formation of the superconducting order) that does not
require an energy cost, but changes the way in which the system stores heat.
In contrast, in presence of a field H, the superconductivity transition is of the first order,
since it involves a discontinuity in entropy and therefore an associated latent heat. Indeed
in this case an energetic cost is required to expel the magnetic field in order to enter in
the new state([1, 2]).
Over the years further research led to the discovery of a second type of low Tc superconduc-
tors (predicted by Abrikosov in 1957), called type II superconductors. The classification
of these materials into two types is based on their magnetic response:

• Type-I Superconductors that exhibit complete Meissner effect up to a single critical
field Hc, above which superconductivity is completely lost.

• Type-II Superconductors characterized by two critical fields, Hc1 and Hc2. Below Hc1,
they are perfect diamagnets. Between Hc1 and Hc2, they enter a mixed state (or
vortex state) where magnetic flux penetrates the material in quantized vortices while
remaining superconducting. Above Hc2, the bulk superconductivity is destroyed.

Furthermore, in 1986 scientists Georg Bednorz and K. Alex Müller discovered the first
high-Tc superconductors [5], characterized by a high critical temperature with respect the
superconductors discovered up to that time. Tipically, a superconductor is classified as an
high-Tc one, when the critical temperature is above the boiling point of liquid nitrogen,
i.e. 77K. All known high-Tc superconductors are Type-II ones.
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1.1 – Superconductivity and Andreev reflection

1.1.2 The phenomenological Ginzburg–Landau theory of superconduc-
tivity

Before a thorough microscopic theory of superconductivity was formulated, Ginzburg
and Landau (1950) proposed a powerful phenomenological approach to explain this phe-
nomenon . Their approach is based on Landau’s theory of continuous phase transitions
(1937). The central concept is the introduction of an order parameter, a quantity that is
non-zero below the critical temperature Tc (in the ordered superconducting phase) and
identically zero above it (in the normal phase). Landau suggested that the free energy
F of the system near the critical point can be expanded as a power series of this order
parameter and its derivatives, constrained by the fundamental symmetries of the sys-
tem. In the context of superconductivity, the order parameter is a complex macroscopic
wavefunction ψ(r), whose squared modulus represents

|ψ(r)|2 = ns = density of superconducting charge carriers

whose charge and mass are denoted by e∗ and m∗, respectively. Denoting by Fn the
free energy of the normal state, the physical value taken by the superconducting order
parameter is determined by minimizing the free energy functional

F = Fn +
∫
dr
[
|(−iℏ∇− e∗A(r))ψ(r)|2

2m∗ + α|ψ(r)|2 + β

2 |ψ(r)|4 + B2(r)
2µ0

]
(1.2)

with respect to ψ,ψ∗ and A [1, 2]. In particular, for a spatially uniform order parameter
ψ and in the absence of external fields (A ≡ 0), the free energy difference F−Fn exhibits
two qualitatively different behaviors depicted in Fig.1.1. As one can see, while for α > 0

(a)

ψ

α > 0

ℱ-ℱ

(b)

ψ
-
α2

2 β

α < 0

ℱ-ℱ

Figure 1.1: The Ginzburg-Landau free energy difference F − Fn for α > 0(left panel) and
α < 0(right panel). For α > 0 the minimum is reached at energy value −α2

2β .

the minimal free energy is obtained for ψ = 0 (no superconductivity), for α < 0 the free
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Superconductivity and nanowires with spin-orbit coupling

energy exhibits two local minima, corresponding to the order parameter value

|ψ|2 = −α
β

(1.3)

thereby causing the emergence of a superconducting state. This suggests that α(T ) =
a(T − Tc) with a > 0.
In the most general case (1.2) where also the spatial variations of the order parameter
are included, the minimization leads to the Ginzburg Landau equations

− ℏ2

2m∗

(
−∇− ie

∗

ℏ
A(r)

)2
ψ(r) + αψ(r) + β|ψ(r)|2ψ(r) = 0 (1.4)

and
J = − ie

∗ℏ
2m∗ (ψ∗∇ψ −∇ψ∗ ψ)− (e∗)2

m∗ A|ψ(r)|2 (1.5)

The former equation (1.4) resembles a non-linear Schrödinger equation for the supercon-
ducting order parameter, while the second one returns the value of the current density.
In particular, by expressing the order parameter in terms of its modulus and phase

ψ(r) = |ψ(r)| eiφ(r) (1.6)

the current density (1.5) can be re-expressed as

J = e∗

m∗ |Ψ|
2 (ℏ∇φ− e∗ A) (1.7)

The spatial variations of the phase of the order parameter are related to the current due
to the superconducting carriers.
The Ginzburg-Landau theory enables one to identify the coherence length ξ, i.e. the
typical lengthscale over which the density of superconducting carriers spatially changes,
the penetration depth of the magnetic field inside the superconductor. Moreover, it
enables one to predict the existence of type-I and type-II superconductors, to compute
the critical magnetic fields and current, and to demonstrate the existence of magnetic
vortices and fluxoid quantization.

1.1.3 The microscopic theory of superconductivity by Bardeen, Cooper
and Schrieffer

The first comprehensive microscopic theory describing superconductivity was proposed
in 1957 by Bardeen, Cooper and Schrieffer, known as the BCS theory[6]. Unlike previous
phenomenological approaches, this theory provides an explanation of the phenomenon
starting from fundamental quantum mechanical principles. BCS theory is founded on
the second quantization formalism, which is essential for treating many-body systems
characteristic of condensed matter. Within this framework, the system is described by
considering the fundamental constituents and their couplings:

• The crystal lattice of positively charged ions.
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1.1 – Superconductivity and Andreev reflection

• The “sea” of conduction electrons (Fermi sea).

• The mutual interactions between these entities: specifically, the direct electron-electron
Coulomb repulsion and the electron-lattice (electron-phonon) interaction.

A first, simplified attempt to describe condensed matter relies on the Born-Oppenheimer
approximation[7, 8]. This approach decouples the motion of electrons from that of the
ions, based on the significant difference in their respective velocities due to their vastly
different masses. Following this observation, the approximation assumes that the elec-
trons perceive the ionic configuration as a static attractive potential, instantaneously
adjusting to any change in ionic positions, whereas Ions move much slower and feel an
effective potential generated by the average distribution of the electron cloud.
Going beyond the Born-Oppenheimer approximation, the crucial starting point for effec-
tively modeling the interaction between electrons and ions is the Fröhlich Hamiltonian
[9]. This Hamiltonian represents a first attempt in which the dynamics of electrons and
ions become coupled. It is composed by three terms and reads

HF r =
∑
kσ

ϵkc
†
kσckσ +

∑
q

ℏωqa
†
qaq +

∑
kqσ

νqc
†
k+qσckσ(aq + a†

−q) (1.8)

where

• Hel = ∑
kσ ϵkc

†
kσckσ describes the kinetic energy of the non-interacting Fermi Sea;

• Hph = ∑
q ℏωqa

†
qaq represents the vibrational energy of the lattice in the harmonic

approximation. In particular ℏωq denotes the quanta of energy of the quasi-particle
with momentum q, called phonons;

• Hel−ph = ∑
kqσ νqc

†
k+qσckσ(aq + a†

−q) accounts for the electron-phonon interaction,
i.e. the fundamental process through which an electron interacts with the lattice by
absorbing or emitting a phonon. Specifically νq denotes the coupling constants of
such process where an electron is scattered from momentum k→ k + q by absorbing
a phonon with momentum q or by emitting one with momentum −q.

Thus, this Hamiltonian isolates the interaction between electrons and the vibrational
modes of the lattice, neglecting the electron-electron interaction. Indeed, in the Frḧlich
model, electrons experience the vibrating lattice as a perturbation of the periodic po-
tential in which they are embedded, and this perturbation induces a scattering process
between electrons and phonons.
In this framework it is possible to demonstrate that, under certain conditions, the inter-
action mediated by the exchange of virtual phonons can overcompensate for the natural
Coulomb repulsion between two electrons, resulting in a net effective attractive interac-
tion between electrons near the Fermi surface. This counterintuitive effective attraction
is the key ingredient required for the formation of bound electron states, a central concept
that is formally explored through Cooper’s theorem [10].
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Superconductivity and nanowires with spin-orbit coupling

Cooper Theorem

The foundational step towards a microscopic theory of superconductivity was taken by
Leon Cooper in 1956 [10]. He demonstrated that the normal ground state of a metal
(the filled Fermi sea) becomes unstable in the presence of an arbitrarily small attractive
interaction between electrons.
Before deriving the theorem formally, it is crucial to understand the origin of this attrac-
tive interaction. In a simple picture, as an electron moves through the crystal lattice, it
attracts the surrounding positive ions, creating a local lattice deformation (a region of
increased positive charge density). Due to the much larger mass of the ions compared to
the electron mass (Mion ≫ me), the lattice response is slow (vion ≪ ve). The ion lattice
deformation persists for a short time after the electron has passed. A second electron can
then be attracted to this region of enhanced positive charge before the lattice relaxes back
to equilibrium. This process effectively results in a net attractive interaction between the
two electrons, mediated by the exchange of virtual phonons, which may overcome the
direct Coulomb repulsion, which is strongly screened in a metal.
The Cooper theorem, which reveals the instability of the Fermi Sea to attractive inter-
action [1]. Cooper considered a simplified model with a non-interacting Fermi sea at
T = 0K, filled up to the Fermi energy EF . Let us now add two extra electrons to the
Fermi sea. By Pauli exclusion principle, they must have energies E > EF . We assume
that these two electrons interact via a weak attractive potential V (r1, r2). All other
electrons in the Fermi sea are treated as a non-interacting background whose role is to
exclude states with E ≤ EF .
We look for a two-electron bound state with total energy E < 2EF . If such a state exists,
it is energetically favorable for electrons to pair up, destabilizing the normal Fermi sea.

Let us start by writing the Schrödinger equation for the two-electron wavefunction ψ(r1, r2),
namely (

− ℏ2

2m(∇2
1 +∇2

2) + V (r1, r2)
)
ψ(r1, r2) = E ψ(r1, r2) (1.9)

We look for solutions in the form

ψ(r1, r2) = 1√
Ω
eiK·Rϕ(r)χ(σ1, σ2) (1.10)

where R is the center of mass coordinates, r = r1 − r2 represents the relative distance of
the two electrons, ϕ(r) represents the wavefunction in the center of mass, and χ(σ1, σ2)
denotes the spin wavefunction. Expanding ϕ(r) in plane waves, we enforce the constraint
that states k < kF are occupied:

ϕ(r) = 1
Ω

∑
k,|k|>kF

gke
ik·r (1.11)

where Ω represent the volume. Assuming the electrons to have opposite spin we obtain
the following spin wavefunction (spin singlet)

χ(↑, ↓) = 1√
2

[
|↑⟩ |↓⟩ − |↓⟩ |↑⟩

]
. (1.12)

10



1.1 – Superconductivity and Andreev reflection

which characterizes the so-called convential (low Tc) superconductivity. We remark that,
since the total wavefunction must be antisymmetric, then ϕ(r) must be symmetric, im-
plying that ϕ(r) = ϕ(−r) and thus gk = g−k. Finally, to minimize the kinetic energy of
the pairs and to maximize the number of available final states of the scattering process
between the two electrons, we consider solutions with the center of mass at rest (i.e. total
momentum K = 0) obtaining

ψ(r) = 1
Ω

∑
|k|>kF

gke
ik·rχ(↑, ↓) (1.13)

Then, inserting Eq.(1.13) in Eq.(1.9) we obtain

∑
k

[
− ℏ2

2m(∇2
1 +∇2

2) + V (r1 − r2)
]
gke

ik·(r1−r2) = E
∑

k
gke

ik·(r1−r2) (1.14)

Assuming translation invariance for the potential V (r1 − r2), multiplying both side by
e−ik′r and integrating over r, one obtains

Ω(2ϵk − E)gk +
∑
k′

Vkk′gk′ = 0 (1.15)

where 2ϵk = ℏ2k2

m is the kinetic energy of the pair and Vkk′ represents the Fourier trans-
form of the potential.
We now assume that the two electrons interact via a weak attractive potential −V only
when their energies are within a small range ℏωD above EF (where ωD is the Debye
frequency, characteristic of lattice vibrations), namely

Vkk′ =


−V if EF < ϵk, ϵk′ < EF + ℏωD

0 otherwise
(1.16)

The equation simplifies to:

Ω(2ϵk − E)gk = V
∗∑
k′

gk′ (1.17)

where the symbol ”*” indicates that the summation is performed over the spherical energy
shell EF < ϵk′ < EF + ℏωD. Summing over k in the spherical energy shell yields the
self-consistency condition:

1
Ω
∑

k

V

2ϵk − E
= 1 (1.18)

Converting the sum to an integral over energy using the density of states N(ξ) (where
ξ = ϵk − EF )

1 = V

∫ ℏωD

0
N(ξ) dξ

2ξ − (E − 2EF ) ≈ V N(0)
∫ ℏωD

0

dξ

2ξ + ∆ (1.19)
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Superconductivity and nanowires with spin-orbit coupling

Here we defined the binding energy ∆ = 2EF − E (whence E = 2EF − ∆, and we are
looking for ∆ > 0) and approximated the density of states as constant N(0) over the
range of integration

1 = V N(0)
2 ln

(2ℏωD + ∆
∆

)
(1.20)

Solving for the binding energy ∆ in the weak coupling limit V N(0) ≪ 1,( implying
∆≪ ℏωD) it follows that

∆ ≈ 2ℏωDe
− 2

N(0)V (1.21)

Since ∆ > 0 for any V > 0, a bound state always exists for any attractive interaction,
no matter how weak. Furthermore, the binding energy depends on V as ∝ e−1/V . This
function cannot be expanded in a Taylor series at V = 0, meaning that this result cannot
be obtained by standard perturbation theory.
Thus, the existence of a state with energy E < 2EF implies that adding electrons to form
pairs, lowers the system total energy. This suggests that the normal Fermi sea is unstable
against the formation of such pairs, leading to a new ground state: the superconducting
ground state.

The BCS wavefunction

As demonstrated by Cooper’s calculation, the Fermi sea becomes unstable against the
formation of electron pairs (Cooper pairs) when the net interaction between them is
attractive. This occurs when the mutual Coulomb repulsion is overcome by a stronger
attractive interaction mediated by phonons.
Furthermore, the implications of this theorem are strongly supported by experimental
observations of the Isotope Effect. For many conventional superconductors, this effect
shows that the critical temperature Tc depends on the isotopic mass M of the constituent
ions:

Tc ∝M−α (1.22)

where the exponent α ≈ 0.5. This mass dependence provided crucial evidence that the
attractive pairing mechanism was not purely electronic, but must be mediated by lattice
vibrations (phonons). This conclusion is strongly supported by the fact that characteristic
phonon frequencies (such as the Debye frequency, ωD) scale precisely the same manner,
ωD ∝M−1/2.
Cooper’s theorem further implies the opening of an energy gap (∆) in the excitation
spectrum relative to the Cooper pair ground state. This theoretical result is supported
by experimental observations of an exponential decay in specific heat as temperatures
approach absolute zero. Consequently, the only electrons available for thermal transport
are those that, thanks to thermal excitations, can cross this gap via tunneling.
Given these experimental observations and the implications of Cooper’s theorem, the
thermodynamic superconducting phase is expected to arise when these Cooper pairs
condense to form a new stable ground state with lower energy compared to the normal
ground state.
The N -electron ground state can be constructed starting from the individual Cooper pair
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1.1 – Superconductivity and Andreev reflection

wavefunctions as:

ΨN = Â
N/2∏
j=1

ψ(r2j−1 − r2j) (1.23)

Here, ψ(r2j−1 − r2j) is the pair wavefunction (analogous to Eq. (1.13)), where we have
considered the center of mass at rest, meaning the wavefunction depends only on the
relative distance between the electrons in the pair. The antisymmetrization operator Â
ensures that the total wavefunction satisfy the Pauli exclusion principle.
In real space, handling this antisymmetrization for an N -electron wavefunction typically
involves an N × N Slater determinant. This determinant finds a much more compact
expression using the second quantization formalism, utilizing creation (c†

kσ) and annihi-
lation (ckσ) operators. In this formalism, the wavefunction in Eq. (1.23) becomes

ΨN =
∑
k1

∑
k2

...
∑

kN/2

gk1gk2 ...gkN/2c
†
k1↑c

†
−k1↓...c

†
kN/2↑c

†
−kN/2↓ |0⟩ (1.24)

where |0⟩ represents the electron vacuum state.

Bardeen, Cooper, and Schrieffer in their theory [6] proposed an alternative formulation
of the superconducting state, which captures the crucial physical ingredients of the phe-
nomenon of superconductivity, allowing much more efficient calculations. The BCS state

|BCS⟩ =
∏
k

(uk + vkc
†
k↑c

†
−k↓) |0⟩ (1.25)

consists of products of superpositions of empty and paired state (k ↑,−k ↓), with |vk|2
denoting the probability that the pair state is occupied, while |uk|2 the probability that it
is empty. The normalization condition for the |BCS⟩ state requires that the coefficients
uk and vk are related by |uk|2 + |vk|2 = 1. The relative complex phase between vk and uk
identifies the phase of the pair. The crucial feature of the |BCS⟩ state is that it describes
a macroscopic quantum coherent state, since all pairs acquire a well specified phase,
rather than a randomly distributed one. In this way the system gains a finite energy with
respect to remaining in a normal state. Scattering of one electron is suppressed because
it would cause a pair breaking, which requires the supply of a finite energy. This is the
gist of the superconductivity phenomenon. Moreover, |BCS⟩ is also referred to as a pair
condensate, for all pairs (k ↑,−k ↓) are in the same state of (vanishing) center-of-mass
momentum.
Importantly, the BCS state (1.25) can be shown to be the ground state of the following

BCS Hamiltonian [2, 6]:

HBCS =
∑
kσ

ξkc
†
kσckσ +

∑
k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)

+ const. (1.26)

which describes (k ↑,−k ↓) pairs moving in a mean pairing field

∆k = +
∑
k′

Vkk′⟨c−k′↓ck′↑⟩ (1.27)
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Figure 1.2: The BCS state (1.25) is a macroscopically coherent quantum states formed by pairs
that all share the same phase. This state is robust to perturbation and is separated by a gap ∆0
from the excitations.

generated by all other pairs a caused by the attractive potential Vkk′ . The k-dependence
of the pairing potential determines the k-dependence of the pair phases. In conventional
superconductors, it turns out that the pairing field can be taken as k-independent (s-wave
superconductors)

∆k = ∆0 e
iφ . (1.28)

Its phase φ is also the phase shared coherently by all Cooper pairs. It therefore char-
acterizes the superconducting state macroscopically and is essential for phenomena like
the Josephson effect. The modulus ∆0 has the meaning of the superconducting gap, i.e.
the minimal energy one has to supply in order to excite a quasi-particle above the BCS
condensate, see Fig.1.2.
The main difference between the BCS form in Eq.(1.25) and the expression in Eq.(1.24)
lies in the total number of particles N . Although, the ground state in Eq.(1.24) has a
fixed number of particles, this is no longer true for the BCS ground state. These two
different representations of the GS can be related by rewriting Eq.(1.25) as a coherent
superposition of states with different particle numbers N = 0, 2, 4, . . . ,∞,namely

|BCS⟩ =
∑
N

λN |ΨN ⟩ (1.29)

with the normalization condition |λN | = 1.
The reason beyond the BCS proposal for |BCS⟩ is that such theory represents effectively
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1.1 – Superconductivity and Andreev reflection

a mean-field theory where the exact particle number N is not conserved ([H, N̂ ] /= 0) [2,
6]. In contrast, what is fixed is the average particle number N̄ , defined as

N̄ = ⟨BCS| N̂ |BCS⟩ (1.30)

where N̂ is the number operator defined as

N̂ =
∑
kσ

c†
kσckσ =

∑
k

(c†
k↑ck↑ + c†

−k↓c−k↓) (1.31)

This approach is justified because, in a typical metal, the average number of electrons is
enormous (N̄ ≈ 1023). From statistical considerations, the root-mean-square fluctuations
δN are

δN =
√
⟨N̂2⟩ − ⟨N̂⟩2 ≈

√
N̄ (1.32)

These fluctuations are around 1011 particle, which might seem large absolutely, however
the relative fluctuations δN/N̄ are extremely small (≈ 10−12), meaning the distribution
is extremely sharply peaked around the average value. This fully justifies using a grand
canonical ensemble approach (mean-field) to describe the superconducting state.

1.1.4 The Andreev reflection phenomenon

In 1964 the physicist Alexander F. Andreev discovered that, at the interface between
a normal (N), i.e. non superconducting, material, and a superconductor (S), a unique
particle-hole conversion effect occurs [11]. This phenomenon, which occurs under general
conditions at any N/S interface, is called Andreev Reflection (AR) and underlies the
physical behavior of most nanodevices based on superconductors.
In order illustrate this effect, let us consider an electron impinging from the N region
onto the interface with the superconductor S, as depicted in Fig.1.3. For the electron the
possible outcomes are being either back-reflected into the N region or transmitted into
the S region. The probabilities for these events, which depend on the incident electron
energy (E) and the system parameters, must satisfy the conservation law R+ T = 1.
If the incident electron has an energy below the superconducting gap value (E < ∆0),
it cannot penetrate the S region as a single-particle excitation, as no propagating quasi-
particle states are available within the gap energy range. Indeed, the probability ampli-
tude for a quasi-particle decays exponentially inside S.
The crucial observation is that, because the superconducting ground state is formed by
Cooper pairs, an incoming electron with E < ∆0 is transmitted by forming a Cooper
pair, with an electron in the S region with (almost) opposite momentum and spin. This
partner electron is drawn from the Fermi sea on the N side, leaving behind a hole (with
opposite charge, momentum, and spin) that is back-reflected into the N region. The same
process, with the appropriate differences, holds for a hole incident onto the interface.
Andreev Reflection thus enables the flow of supercurrent across the interface by convert-
ing the charge current in the normal region into a pair current in the superconducting
region.
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BCS GS

Δ0E
Incoming electron

x

-E
Reflected hole

Cooper Pair

N S

Andreev Reflection at interface

Figure 1.3: The Andreev Reflection effect occurs at the interface between a Normal (non su-
perconducting) material and a Superconductor. An electron impinging from the N side with an
energy E < ∆0 cannot penetrate inside the superconductor, due to the absence of propagating
states inside the superconducting gap. Instead, it is back-reflected as a hole, while a Cooper pair
travels into the superconductor.

One of the seminal theoretical frameworks for the quantitative study of reflection and
transmission at a non-ideal N/S interface is the model developed by Blonder, Tinkham,
and Klapwijk [12] (BTK) in 1982. The BTK model uses a scattering approach to calculate
the probabilities for Andreev Reflection and Normal Reflection at the interface, including
also a potential barrier strength (Z) to account for non-ideal interface transparency, which
is characterized by a strength parameter Z. The differential Conductance G(V ) = dI/dV
of the N/S junction as a function of the bias voltage (V ), i.e.

G(V ) = dI

dV
= GN

∫ ∞

−∞
dE[1 +Ra(E)−Rn(E)]

(
− ∂f
∂E

(E − eV )
)

(1.33)

where

• GN is the conductance in the normal state, experimentally obtained when the bias
energy is much larger than the superconducting gap, i.e., eV ≫ ∆ ;

• Ra(E) is the probability for Andreev Reflection, which is a function of the energy E
and the barrier strength Z;

• Rn(E) is the probability for Normal Reflection;

• f(E − eV ) is the Fermi-Dirac distribution function at finite temperature T .
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1.2 – Spin-orbit coupling (SOC)

The BTK formula shows that in the high-transparency limit (Z → 0), when E < ∆0, the
Normal Reflection probability B tends to zero, while the Andreev Reflection probability
A tends to unity. This leads to the characteristic doubling of the conductance at zero
bias, where G(V = 0) = 2GN , a hallmark signature used extensively in experiments.
The phenomenon of Andreev Reflection serves as the fundamental microscopic mechanism
underlying a wide range of transport phenomena in superconducting hybrid structures.
Most notably, it governs the Josephson effect in weak links [13, 14] and the superconduct-
ing proximity effect[15] at normal-superconductor interfaces. These phenomena are the
cornerstones of modern quantum technologies, enabling devices such as Superconductor-
Normal-Superconductor (SNS) junctions and proximized semiconductor nanowires. In
particular, a crucial application of the proximity effect-specifically its role in the search
for Majorana zero modes—will be discussed in detail in the following sections.

1.2 Spin-orbit coupling (SOC)

1.2.1 Origin and derivation of the SOC in atomic structures

Spin-orbit coupling is a purely relativistic effect intrinsically that is present in the atomic
structure. It is typically first encountered in the study of hydrogen-like atoms, where
this interaction, along with other relativistic corrections, is responsible for the so-called
fine structure, i.e. the splitting of the single atomic energy levels in more levels. These
deviations are typically characterized by the fine-structure constant, α ≈ 1/137 ≈ 10−2.
This term was introduced by Arnold Sommerfeld to explain experimental observations of
spectral lines splitting.
Given its relativistic origin, the spin-orbit interaction can be derived directly from the
Dirac equation . Indeed, unlike the Schrödinger equation, the former intrinsically ac-
counts for both the electron spin and special relativity laws. Then, considering the non
relativistic-limit (v/c≪ 1) of the Dirac equation, by performing a low-velocity expansion
(e.g., using the Foldy-Wouthuysen transformation), one naturally obtains a Hamiltonian
term describing the SOC [16, 17].
However, a physically intuitive derivation can be equally obtained by considering the
implications of special relativity for an electron orbiting around a nucleus [18, 19]. Thus,
let us consider a classical picture, in which an electron moves with velocity v around the
positively charged nucleus. In the rest frame of the electron, the nucleus orbits around
it, generating an effective current loop. This moving charge creates a magnetic field Beff

perceived by the electron. According to the Biot-Savart law, this field is:

Beff = µ0Ze

4πr3 (r× v) (1.34)

where µ0 is the vacuum permeability and r represents the nucleus position in the electron
reference frame. Exploiting the definition of orbital angular momentum L = r × p =
m(r× v), then Beff reads

Beff = µ0Ze

4πmr3 L (1.35)

Note that the effective magnetic field points in same direction as the orbital angular
moment, Beff ∥ L. To express this in terms of the central electrostatic potential energy
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V (r) = − Ze2

4πϵ0r , we note that 1
r

dV
dr = Ze2

4πϵ0r3 , and recalling that ϵ0µ0 = 1/c2, we can rewrite
the magnetic field as

Beff = 1
mec2

1
r

dV

dr
L (1.36)

Considering now that the electron exhibits an intrinsic magnetic dipole moment associ-
ated with its spin S, the effective magnetic field Beff gives rise to a torque applied to
the electron, trying to align the spin along its direction. The interaction energy between
this magnetic moment and the effective magnetic field is given by the standard Zeeman
energy interaction term and reads

USO = −µS ·Beff (1.37)

The magnetic moment µS for the electron is defined as

µS = −gs
e

2mS ≈ − e

m
S (1.38)

where gs represents the electron spin g-factor and is gs ≈ 2. The interaction energy
becomes

USOC = 1
m2c2

1
r

dV

dr
S · L (1.39)

In fact, the above naive derivation requires a correction factor of 1/2, known as Thomas
precession, because the electron rest frame is not inertial, as it rotates around the nucleus.
The correct SOC energy term is thus:

USOC = 1
2m2c2

1
r

dV

dr
S · L (1.40)

This formula clearly shows that the interaction depends on the scalar product S ·L, hence
the name “spin-orbit coupling.” We remark here that this represents a naive derivation
in a semiclassical picture, in which the electron performs a loop around its nucleous.
As will be clear in the following section, the SOC coupling is actually a quite general
phenomenon experienced by an electron whenever an electric field is present.

1.2.2 Derivation of the SOC in crystalline structures

After illustrating the origin and the name of the spin-orbit coupling in atoms, it is natural
to ask whether it can be generalized to situations where electrons move freely within a
background electromagnetic field without performing any loop, such as in a crystalline
solid. The fundamental ingredients remain the same, i.e. the intrinsic electron magnetic
moment due to the spin S and the motion through an electric field E. In a crystalline
structure, an electron moves through a static periodic potential generated by the lattice
ions. In the rest frame of the crystal, there is a purely electrostatic field E and no
magnetic field (B = 0). The electric field is related to the gradient of the potential
energy V through:

E = 1
e
∇V (r) (1.41)

Consider now the rest frame of the electron, which is moving with velocity v relative to
the crystal. According to special relativity, the electromagnetic fields transform between
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inertial frames. The magnetic field B′ observed in the electron’s rest frame is given by
the Lorentz transformation:

B′ = γ

(
B− v×E

c2

)
(1.42)

where γ = (1 − v2/c2)−1/2 is the Lorentz factor. In the non-relativistic limit (v ≪ c),
γ ≈ 1. Since B = 0 in the lattice frame, the effective magnetic field experienced by the
electron is:

B′ ≈ − 1
c2 (v×E) (1.43)

Substituting the expression for the electric field in the crystal

B′ = − 1
c2e

(
v×∇V (r)

)
(1.44)

The interaction energy between the electron intrinsic magnetic dipole moment µS ≈ − e
mS

and this field is

U ′ = −µS ·B′ ≈
(
e

m
S
)
·
[
− 1
c2e

(
v×∇V (r)

)]
= − 1

mc2 S ·
(
v×∇V (r)

)
(1.45)

Using the canonical momentum p = mv, and exchanging the terms of the cross product,
we obtain

U ′ = + 1
m2c2 S ·

(
∇V (r)× p

)
(1.46)

Just like in the atomic case, the above result must be corrected by the Thomas precession
factor of 1/2 due to the non-inertial nature of the electron frame during acceleration.
Thus, the final, correct Hamiltonian term in the first quantization formalism, describing
Spin-Orbit Coupling interaction, due to a general potential V (r) reads

HSOC = + 1
2m2c2 S ·

(
∇V (r)× p

)
(1.47)

Note that, for a central potential V (r) = V (r), one has ∇V (r) = r−1 dV
dr r, and one

recovers the atomic result (1.40). Finally, recalling that the spin operators is expressed
as S = ℏ

2σ in terms of the the Pauli matrices, one can also rewrite

HSOC = + ℏ
4m2c2σ ·

(
∇V (r)× p

)
(1.48)

The specific symmetries of this potential determine the nature of the spin splitting, which
in a crystal has the periodicity of the lattice. Specifically, there are two main types of
spin-orbit coupling in this context, known as the Rashba and Dresselhaus interactions.

1.2.3 Symmetries and SOC: The Rashba and Dresselhaus effect

When studying the band structure of a crystal, spatial and temporal symmetries play
a fundamental role. In the absence of an external magnetic field, a crystal structure
fulfills Time-Reversal Symmetry (TRS). The time-reversal operation maps an electron
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state with momentum k and spin σ onto a state with momentum −k and flipped spin
(−σ). The most important consequence is a mandatory energy degeneracy, known as
Kramers degeneracy

Ek,↑ = E−k,↓ and Ek,↓ = E−k,↑ (1.49)
If the system also exhibits Spatial Inversion Symmetry (IS)—meaning a center of inversion
exists such that the operation r→ −r leaves the system unchanged—states with opposite
momenta but the same spin are degenerate:

Ek,↑ = E−k,↑ and Ek,↓ = E−k,↓ (1.50)

Consequently, a system respecting both symmetries (TRS + IS) will be characterized by
the following degeneracy at every point k in the Brillouin zone:

Ek,↑ = Ek,↓ (1.51)

In such a system, every band is at least doubly spin-degenerate, and the bands are sym-
metric around the center of the Brillouin zone (k = 0) [20].

Breaking at least one of these two symmetries can lift this degeneracy, causing a spin
splitting of the bands. It is known that TRS is broken by applying an external magnetic
field (Zeeman effect), which establishes a preferred orientation for the spins.
Recalling the general form of the SOC Hamiltonian, HSO ∝ (∇V ×p)·S, one can straight-
forwardly realize that it fulfills TRS. Moreover, in a system with inversion symmetry, the
local contributions to SOC due to an atom at position r are perfectly cancelled by an op-
posite contribution from the symmetric atom at −r. However, when inversion symmetry
of V (r) is broken, this cancellation fails and a net spin-splitting emerges.
Then, the electron experiences an asymmetric potential (V (r) /= V (−r)), which leads
to a net, non-zero expectation value for the p ×∇V term. This generates the effective,
k-dependent magnetic field that ultimately removes the spin degeneracy, even in zero
magnetic field (IS broken, TRS preserved).
The lack of spatial inversion symmetry can be primarily ascribed to two factors, either
intrinsic to the material (Bulk Inversion Asymmetry, BIA) or caused by external inter-
vention (Structural Inversion Asymmetry, SIA).

Rashba effect

The structural inversion asymmetry represents the source of the Rashba SOC effect [21].
SIA is not an intrinsic property of the bulk crystal, but is imposed on the system by
the application of an external field, or due to the setup geometry. It typically occurs in
low-dimensional systems, such as quantum wells, heterostructures, or surfaces, where a
confining potential -e.g. along the z direction- V (z) creates a strong electric field E = Ezẑ,
which restricts the electron motion to the perpendicular 2D plane (the xy-plane).
To derive the corresponding Hamiltonian contribution, we start from the general SOC
term HSO displayed in Eq.(1.48). Expanding the electric potential energy V (r) up to the
first order as

V (r) = V0 + eE(r) · r (1.52)
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then the electric field E(r) governs the inversion asymmetry breaking [20].
Assuming that the electron is well described by plane waves, then the velocity and the
momentum are related by p = ℏk. Thus, the Rashba SOC interaction term HSO an
external electric field applied along the z-direction, i.e. E = E(z) and ∇V = (∂V/∂z)ẑ,
is proportional to:

HRSOC ∝ (ẑ× k) · σ = (kxσy − kyσx) (1.53)

By grouping all the constants (related to ∇V , m, c, etc.) in Eq.(1.48) into a single
parameter αR, known as the Rashba SOC parameter, we obtain the effective 2D Rashba
Hamiltonian:

HRSOC = αR(k× σ) · ẑ = αR(kxσy − kyσx) (1.54)

The strength parameter αR is proportional to the electric field Ez and can therefore be
tuned externally, for example, by a gate voltage. This tunability is the operating principle
of the proposed Datta-Das spin transistor, which we will describe in the following.
A primary example of a system characterized by the Rashba SOC is the case of 2D
electron gas, realized in doped semiconductor heterostuctures such as GaAs/AlGaAs or
InGaAs/InAlAs, InAs/GaSb. Other examples are InAs, InSb nanowires, oxide interfaces
(LaAlO3/SrTiO3), heavy-element surfaces and surface alloys (Au(111), Bi/Ag) and polar
Rashba crystals (BiTeI, GeTe) [22].

Dresselhaus effect

The Dresselhaus effect is a type of spin-orbit coupling caused by a symmetry breaking
that is intrinsic to the material itself, known as Bulk Inversion Asymmetry (BIA) [20,
23]. This effect is prominent in materials with a zinc-blende crystal structure, which lacks
a center of inversion. Common examples include III-V zinc-blende semiconductors such
as GaAs, AlAs, InAs, and InSb,or II-VI zinc-blende such as ZnSe, CdTe.
For the 3D bulk crystal, the Dresselhaus Hamiltonian (or BIA term) acquires the following
form

H
(3D)
DSO = αD

[
kx(k2

y − k2
z)σx + ky(k2

z − k2
x)σy + kz(k2

x − k2
y)σz

]
(1.55)

where αD is the Dresselhaus coefficient. This Hamiltonian is derived within the framework
of the Kane model using k · p perturbation theory.
Differently from the Rashba SOC, which is typically linear in k, the Dresselhaus SOC
(1.55) exhibits a cubic dependence on the wave vector. However, in a two-dimensional
system (e.g. a two-dimensional electron gas, 2DEG) confined to the x-y-plane, the 2D
Dresselhaus Hamiltonian reduces to the sum of a linear and a cubic term in k, namely

H
(2D)
DSO = β(kyσy − kxσx) + αD(kxk

2
yσx − kyk

2
xσy) (1.56)

Here, the linear coefficient is β = αD⟨k2
z⟩, which is often the dominant term, and the

cubic coefficient αD is the original bulk coefficient αD.
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Rashba vs Dresselhaus effect

As previously discussed, the main difference between these two types of spin–orbit inter-
action lies in how spatial inversion symmetry is broken, namely BIA vs SIA.
As a result, while the Dresselhaus effect essentially represents an intrinsic BIA prop-
erty of the crystal, the Rashba effect stems from SIA and depends on an interfacial or
gate–induced electric field, which in turn can be externally tuned.
It is also possible to have materials where both effects are present. Indeed, this is the
case in many III–V semiconductors with zinc–blende structure, which do not exhibit a
center of inversion in the unit cell (BIA), and which, in heterostructures or gated devices,
acquire additional structural inversion asymmetry via asymmetric quantum wells or ex-
ternally applied electric fields (SIA).
In many InAs/InSb nanowire devices, the Rashba SOC typically dominates over the
Dresselhaus SOC, which is often negligible. However, recent studies have shown that, de-
pending on the growth direction and geometry, it is possible to engineer materials where
the Dresselhaus contribution can become relevant and change the effective direction of
the spin–orbit field along the wire[24].
The goal of achieving an external tuning of the Rashba SOC in materials is a primary
has fostered various theoretical proposals and subsequent experimental realizations. The
applications range from proposed spintronic devices (like the Datta–Das spin transistor),
gate–programmable spin precession and spin filters, and the generation/detection of pure
spin currents (via the spin Hall and inverse spin Hall effects). Quite interestingly, ap-
plications also include the design of superconducting hybrid devices and, more broadly,
platforms for novel topological phases of matter.
In particular, semiconductor nanowires featuring strong Rashba SOC, such as InAs or
InSb, are currently on the spotlight of this research field, for reasons that will be described
in the subsequent sections [25, 26].

1.2.4 1D Nanowires: Quantum Confinement, Phenomena and Applica-
tions

Nanowires (NWs) are cylindrical semiconductor structures, typically characterized by
a diameter of the order of nanometers (10–100 nm) and a length that can reach several
micrometers (1–10 µm). Due to their extremely high length-to-diameter aspect ratio, they
are considered quasi-one-dimensional (1D) channels. In practice, electrons are quantum-
confined in the two transverse dimensions (the diameter), and their motion occurs along
the longitudinal direction (the axis of the wire).
The physical feature that distinguishes NWs from bulk solid-state structures is that the
electron de Broglie wavelength (λB) is comparable to the wire diameter. Consequently,
classical transport laws no longer apply, and quantum effects become dominant, leading to
quantum transport. For this reason, NWs are a remarkable example of quantum wires.
Several relevant quantum phenomena can be observed in quantum wires. The most
fundamental one is the conductance quantization, where the conductance G exhibits
discrete steps of conductance G0 = 2e2/h quantum as a function of the transversal
confinement potential [27]. Another key phenomenon is ballistic transport that occurs
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when the electron mean free path lm, i.e. the average distance traveled between scattering
events (e.g., off impurities or phonons), is longer than the length of the nanowire (L) [28].
This means that electrons can cross the wire with minimal or no scattering, resulting
in very low resistance (though non-zero, unlike superconductors). Others widely studied
effects include Spin Hall effect, Aharonov–Bohm and Aharonov–Casher phase-coherent
oscillations and universal conductance fluctuations [29].
One-dimensional (1D) NWs represent an evolving technological frontier with applications
across different fields. The main physical reasons why they are so investigated are :

(i) the transverse confinement yields few (sometimes single) well-resolved 1D modes,
enabling clean tests of quantum transport and scattering;

(ii) local gates allow precise control of carrier density, potential profiles, and the mag-
nitude/direction of spin–orbit coupling (SOC), enabling engineered spin textures
[30, 31];

(iii) hybrid normal/superconducting (NS, SNS, NF) devices show Andreev reflection,
Josephson effects, and spin filtering useful for metrology and spintronics [32];

(iv) their large surface-to-volume ratio underpins sensitive chemical/biological sensors
and efficient light–matter interaction for photonics/photodetectio [33].

1.2.5 Nanowires and SOC : an effective 1D model

In this subsection, we will briefly illustrate the main qualitative aspects regarding the
importance of 1D nanowires with SOC. A quantitative discussion (i.e., the calculation
of the eigensolutions of the corresponding Hamiltonian) for this type of system will be
provided extensively in the following chapters in this thesis. A suitable starting point to
derive an effective model for a 1D nanowire is a two-dimensional electron gas (2DEG)
system [34]. By applying an additional lateral confinement to the latter in, e.g., the y
direction, the motion transverse to the transport axis is quantized. The wavefucntion
describing such a system reads

Ψ(x, y, z) ≈ ϕn(y, z)ψn(x) , (1.57)

where ϕn solves the transverse Schrodinger problem with energy eigenenvalues E⊥
n . In

the locally uniform (adiabatic) limit, i.e. when the confinement varies slowly along x, the
longitudinal dynamics in each transverse mode decouples and is governed by an effective
1D dispersion

En(kx) = E⊥
n + ℏ2k2

x

2m∗ − µ, (1.58)

so that the 2DEG is mapped onto a set of 1D subbands indexed by n, i.e. we are
neglecting the contribution from the mixing-subbands term, which naturally arises when
a confinement potential is applied. If the chemical potential lies close to the bottom
of the first subband and the spacing ∆⊥≡E⊥

2 − E⊥
1 exceeds thermal and bias energies

(kBT, eV ≪ ∆⊥), only one the two lowest subbands are occupied (two because of spin
degree of freedom), and transport is effectively one dimensional. In this regime, the small
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number of well-resolved channels enables clean tests of quantum transport, including
conductance quantization and phase–coherent effects.
This reduction also justifies the effective 1D Hamiltonian used later in the thesis.
Starting from either a single-band effective-mass model or a multiband k · p description,
one projects all single-particle operators onto the occupied transverse mode: the kinetic
term yields the parabolic ℏ2k2

x/2m∗ dispersion, while spin–orbit terms become linear
in kx after averaging over ϕn(y, z). The 1D SOC term of the form − kx α · σ shall be
characterized by an effective magnitude α and the direction α is determined by the actual
geometrical confinement and electrostatics.
The second quantization Hamiltonian describing such an ideal system, written in the
spinor basis Ψ†

k = (c†
k↑, c

†
k↓) (where k ≡ kx), is

H =
∑

k

(
c†

k↑, c
†
k↓

) (
ξ0

kσ0 − kα · σ
)(ck↑

ck↓

)
(1.59)

To summarize, the resulting model assumes a strong transverse quantization (no inter-
subband mixing), an approximate translational invariance along x (or slowly varying
potentials), and a parabolic conduction band with effective mass m∗. Furthermore weak
disorder are assumed such that the mean free path is not shorter than the device length in
the ballistic/coherent measurements considered. Under these conditions, the 1D descrip-
tion captures the essential physics of transport and interfacial matching in a minimal,
analytically transparent form.
In a strictly 1D wire with linear-in-k SOC, the single-particle spectrum splits into two
spin bands. A suitable parametrization is

H1D
SO = − kα·σ = − |α| k σn̂, n̂ ≡ α/|α|, (1.60)

so that the strength |α| fixes the spin-precession scale, while the unit vector n̂ sets the
spin quantization axis defined by SOC.
In typical III–V NWs the dominant linear SOC is Rashba-like and scales with the trans-
verse electric field. As a result:

• Magnitude control. The application of back, side, or wrap gates modify the transverse
field and thus the SOC strength |α|, enabling continuous tuning of the spin-precession
length ℓso∼ ℏ2/(m∗|α|). Experiments have demonstrated large, continuous electrical
tuning in single nanowires [35].

• Directional control. Asymmetric gating (e.g., multiple side gates), facet-selective di-
electrics, or partial metallic/superconducting coverage can rotate the effective field and
hence the SOC axis n̂ in spin space, realizing electrically programmable spin textures
along the wire [35, 36].

• Materials/geometry leverage. Crystal orientation and cross-section (core/shell, hexag-
onal facets) set a baseline for the SOC direction n̂; the electrostatic environment (di-
electric constant, gate spacing and geometry) sets additional, purely electrical control
parameters for tailoring both the magnitude and the orientation of SO vector [37].
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1.2.6 SOC and Spintronics : the Datta-Das Transistor

Spintronics is a major research field in electronics aiming to exploit the spin electron
degrees of freedom, in addition to its charge, to store, transport, and process informa-
tion [38, 39]. This pursuit is driven by fundamental physical and technological needs.
As conventional silicon-based transistors approach the physical limits of miniaturization
(the end of Moore’s Law), spintronic devices promise significant advantages, such as lower
power consumption, higher processing speeds, and non-volatile memory (retaining infor-
mation when powered off). While applications like Giant Magnetoresistance (GMR) in
hard-drive read heads and MRAM have already proven to be commercially successful,
the full potential of spintronics lies in active logic and computation.
A central challenge in spintronics is the efficient control of electron spin. Manipulating
spin with external magnetic fields is typically slow, power-intensive, and difficult to inte-
grate at the nanoscale. The key to practical spintronics lies in finding a way to control
spin using fast, scalable electric fields. In this context, spin-orbit coupling plays a central
role because it links spin to the electron momentum. Thus, by engineering the SOC
effects, an applied electric field controlling the electron momentum becomes a “steering
wheel” to manipulate the electron spin.

This mechanism drives key spintronic phenomena: in metals and heterostructures with
strong SOC, it enables the generation of pure spin currents via the Spin Hall Effect or
the conversion of spin currents into transverse charge currents through the Inverse Spin
Hall Effect, forming the operating principle of gate-tunable logic devices, most notably
the Datta-Das spin transistor or spin-FET. The Datta-Das spin transistor is a field-effect
device that exploits gate-tunable spin precession to modulate the source-drain current in
the transistor, and was first proposed in 1990 [40]. Its canonical implementation consists
of a non-magnetic semiconductor channel with Rashba spin-orbit coupling, contacted by
a spin-selective injector and detector. An electron spin, injected with a well-defined ori-
entation, precesses while propagating through the channel because Rashba SOC acts as
an effective, momentum-dependent magnetic field, whose magnitude is controlled elec-
trostatically by external gates. The drain behaves as a spin analyzer. Specifically, the
transmitted current is maximized when the spin at the exit channel is aligned with the
detector polarization axis and minimized when it is orthogonal, yielding a gate-controlled
conductance.

Let us illustrate the simplest system where a Datta-Das transistor can be implemented.
We consider a toy model where the SOC vector α is aligned with the spin quantization
axis z, i.e., α = (0,0, αz). For this choice of the SOC parameter, the Hamiltonian (1.59)
describing the system is diagonal in the ↑ / ↓ basis, and its eigenvalues reads

E↑/↓(k) = ℏ2k2

2m∗ ± αzk (1.61)

Thus, for a fixing energy value E, a generic propagating spin-polarized state can be
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written as superposition of spin-↑ and spin-↓ states, namely

ϕ(x) = 1√
2

[(1
0

)
eik↑x +

(
0
1

)
eik↓x

]
(1.62)

where k↑, k↓ are obtained by inverting Eq.(1.61) for a fixed energy E. For a channel of
lenght L, the injected (x = 0) and detected (x = L) spin states read, respectively,

ϕ(0) = 1√
2

[(1
0

)
+
(

0
1

)]
(1.63)

ϕ(L) = 1√
2

[(1
0

)
eik↑L +

(
0
1

)
eik↓L

]
(1.64)

At a fixed energy E, the wavevectors of the two spin bands differ in wave vector by

∆k = 2m∗|αz|
ℏ2 , (1.65)

then, a spin injected at x = 0 accumulates a precession angle of

∆θ(L) = ∆k L (1.66)

If a ferromagnetic detector is also aligned along the x-axis, the current is minimized
when the spin is anti-aligned, i.e., ∆θ(L) = π. As a result the current is minimized for
∆θ(L) = π, that is when

|αz| =
πℏ2

2m∗L
(1.67)

Thus, it is possible to modulate the current by controlling the phase difference ∆θ(L),
which in turn depends on the SOC parameter |αz| that can be tuned by external gates.
The device works in the regime where the channel is ballistic and phase-coherent over L,
and where spin relaxation time is longer than the transit time over the channel.
Furthermore, spin injection/detection can be implemented for 2DEGs as well, not only
in semiconductor nanowires.
A significant practical challenge in this architecture is the impedance mismatch between
the ferromagnetic metal contacts and the semiconductor channel, which can severely
inhibits efficient spin injection and detection. For this reason many experimental efforts
have shifted to all-electrical methods, such as the Spin Hall Effect, which can generate
and detect spin currents without ferromagnetic contacts.
Regardless of its practical implementation, the Datta-Das architecture remains a guiding
paradigm for gate-controlled spin manipulation.

1.3 Nanowires and superconductors

1.3.1 Nanowires as a platform for Andreev spin qubits

A quite interesting applications of NWs is the realization of Andreev spin qubits. A
qubit is the building block for encoding and transmitting information at quantum level,
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offering the advantage, with respect to classical qubits, to be prepared in a quantum
superposition of states. Quantum entanglement is a property that can be exploited to
speed up algorithms with respect to the classical physics realm.
Various realizations of qubits have been proposed. Among them, an interesting proposal
was formulated by Y. Nazarov and co-workers [41, 42] and is based on the Andreeev
bound states of a Josephson junction. Indeed, when a normal region is sandwiched
between two superconductors, the Andreev processes occurring at the two N/S interfaces
in the energy range within the superconducting gap ∆0 lead to a finite number of electron-
hole bound states, which are characterized by a discrete energy separation caused by the
Andreev confinement. For a customary material without any spin-texture, these states
are spin-degenerate. However, if the normal region between the two superconductors is
characterized by strong spin-orbit coupling, an spin splitting occurs. Thus, such discrete
spin states can realize an Andreev spin qubit (ASQ).
Differently from a customary quantum dot, the charge of the ASQ is not fixed, because
Andreev bound states carry an electron current. This reduces the effects of electron-
electron interaction. Moreover, because the spin state of the ASQ determines the super-
conducting current in the Josephson junction, it also enables one to readout the qubit
state by measuring the current.
Following this idea, A. Levy-Yeyati and co-workers have investigated a model for a Joseph-
son junction based on a semiconductor NWs with strong spin-orbit coupling contacted to
two superconducting electrodes, paving the way to an application of NWs as a platform
for ASQs [43]. More recently this theoretical proposal was experimentally realized by
various groups [44, 45, 46, 47, 48]. Evidence of the resulting spin-split Andreev bound
states in the weak link was observed, and the possibility to control, readout and ma-
nipulate the spin qubit via microwave radiation has been demonstrated. These results
confirm the broad and promising range of applications of NWs in qauntum science and
technology.

1.3.2 Topological superconductivity and Majorana quasi-particles

In the last two decades, many research studies in condensed matter physics have focussed
on applying concepts borrowed by the field topology to the quantum ground states char-
acterizing gapped systems, i.e models that exhibit a gap in their excitation spectrum.
Indeed for such systems—most notably insulators and fully gapped superconductors—a
topological classification is possible based on their symmetries. In this context, the under-
lying idea is to consider continuous variations of the system Hamiltonian and to inspect
how they impact on the phase, i.e. on the fundamental properties characterizing its
ground states. Specifically, two phases are topologically equivalent if and only if they
can be connected by varying the Hamiltonian parameters, without abruptly changing its
fundamental nature, i.e. without ever closing the bulk gap, and while preserving the
relevant symmetries. Conversely, a transition between topologically distinct phases nec-
essarily involves a gap closing at some critical point in parameter space, followed by a
reopening on the other side [49].
The classification of these states is achieved through topological invariants. These are
integer (or discrete) quantities that assume a specific value for all states within a given
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topological class and a different value for states in another class.
Depending on the system dimensionality and its fundamental symmetries-specifically
Time-Reversal Symmetry (TRS), Particle-Hole Symmetry (PHS), and Chiral Symme-
try (SLS) -it is possible to categorize all gapped quantum systems into the so-called
Ten-Fold Way (or Altland-Zirnbauer classification [50]). For each symmetry class, a spe-
cific topological invariant is defined (e.g., Chern number, Z2 invariant, winding number).
Typically, this invariant is zero for a ”trivial” phase (like the vacuum or ordinary insula-
tors) and non-zero for a ”non-trivial” topological phase[51, 52].
The most profound physical consequence of this mathematical structure is the Bulk-
Boundary Correspondence. Consider the interface between two materials belonging to
different topological classes (e.g., a non-trivial topological superconductor and a trivial
vacuum). Since it is impossible to adiabatically deform the non-trivial state into the
trivial one without closing the gap, the topology mismatch enforces gapless boundary
states at the interface, allowing the topological invariant to change, while the bulk of the
material remains gapped [53].
These states are known as topological edge modes or bound states. The bulk-boundary
correspondence principle rigorously links the topological invariant of the bulk (a global
property) to the existence and number of these robust gapless modes at the surface.[54,
55, 56, 57].
In particular, in recent years topological superconductivity has attracted a great deal
of attention. This is mainly because the boundary states topological superconductors
are predicted to host Majorana zero modes (or Majorana quasi-particles). These exotic
quasiparticles, which will be briefly described in the following paragraph, hold immense
potential for fault-tolerant topological quantum computing.

Majorana quasi-particles

A Majorana quasi-particle was proposed by Ettore Majorana in 1937 as a special solution
of the Dirac equation [58]. The Dirac framework, which merges special relativity with
quantum mechanics, describes relativistic spin-1/2 particles (e.g., electrons) and predicts
their antiparticles (e.g., the positron, with the same mass and spin but opposite charge).
By contrast, a Majorana quasi-particle is a particle identical to its own antiparticle. In
high-energy physics this requires electric neutrality and spin 1/2; the neutrino has long
been considered a candidate, although a conclusive experimental evidence remains elusive
due to its extremely weak interactions. Over the past two decades, a different route to ob-
serve Majorana quasi-particles has been proposed in condensed matter physics: in super-
conductors, Majorana quasi-particles can emerge as zero-energy Bogoliubov excitations
at boundaries or defects of topological superconductors[59]. These are not fundamental
particles, but collective excitations protected by symmetry and topology. Indeed, the
intrinsic particle–hole symmetry of the Bogoliubov–de Gennes (BdG) formalism, implies
the following relation for the operators describing a spinless Bogoliubov quasiparticle at
energy E, then

γ†(E) = γ(−E) . (1.68)
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Therefore, a zero-energy excitation necessarily satisfies

γ†(0) = γ(0), (1.69)

implying that the corresponding operator is Hermitian and defines a Majorana zero mode
(MZM), which represents a spinless, neutral charge quasi-particle [60, 61].
We emphasize here that the emergence of these MZMs is a direct consequence of the
bulk-boundary correspondence principle. A superconductor in a non-trivial topological
phase must host gapless excitations at its boundaries, which, in a system of this kind,
manifest as Majorana quasiparticles [55, 56, 62, 63].
Because condition (1.69) holds, the zero-mode operator γ0 cannot be viewed as a standard
creation operator. Indeed it would lead to a contraddiction.
It is often said that a Majorana zero mode represents “half” of a Dirac fermion. Indeed,
two spatially separated MZMs, γA and γB, can be combined into a nonlocal Dirac fermion

c = γA + iγB

2 , c† = γA − iγB

2 , (1.70)

with fermion parity n = c†c ∈ {0,1}. The Majorana operators obey the algebra

γ†
i = γi, {γi, γj} = 2δij , γ2

i = 1. (1.71)

When the two MZMs are well separated, their overlap is exponentially small and they
weakly couple to each other. As a consequence, the two configurations n = 0, n = 1
have essentially the same energy and a twofold ground-state degeneracy is obtained. In
this limit for a 1D system the fermionic state built from the two Majoranas is encoded
non-locally across the two ends of the device, making it insensitive to local perturbations
at a single end.
This topological degeneracy is the key ingredient giving rise to exotic non-Abelian statis-
tics, which fundamentally distinguishes MZMs from standard quantum particles. Indeed,
let us consider a simply two non-exotic particles system: while for bosons the exchange
operations of the two particles in position space leaves the total system wavefunction
unchanged, for fermions, the exchange introduces a sign change (a phase of π) to the
wavefunction. However, in both these standard cases, the exchange operation simply
multiplies the wavefunction by a scalar phase factor (eiϕ). Since the multiplication of
scalars is commutative (the order in which we perform multiple exchanges does not mat-
ter), these particles obey Abelian statistics.
In contrast, exchanging (or braiding) two MZMs does not simply apply a global phase
factor. Instead, because of the ground-state degeneracy, the exchange operation performs
a unitary rotation within the degenerate subspace. Mathematically, the operation is de-
scribed by a matrix (operator) rather than a scalar number. Notably, if one performs
multiple exchanges in sequence, the final state of the system depends on the chronological
order in which the swaps are performed. Since matrix multiplication is generally non-
commutative (U1U2 /= U2U1), the result of braiding A then B is different from braiding
B then A. For this reason, Majorana modes are classified as non-Abelian anyons. For
further details on the non-Abelian statistics of Majorana fermions, we refer to [64, 65,
66, 67, 68, 69, 70].
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Besides the fascination of non-Abelian exchange statistics, Majorana modes are partic-
ularly attractive for quantum information and computation applications due to their
intrinsic robustness against decoherence [71, 72].
First, their zero-energy nature is topologically protected by the bulk superconducting gap
and particle–hole symmetry. As long as the gap remains open and symmetries are pre-
served, smooth local perturbations cannot remove a Majorana mode or flip the fermion
parity encoded by two spatially separated modes. Indeed, modifying this state would
require either closing the bulk gap or inducing a strong hybridization between the distant
pair.
Moreover, Majorana excitations are, on average, electrically neutral objects, being coher-
ent superpositions of electron and hole states. Consequently, they couple only weakly to
environmental electrostatic noise. Crucially, the quantum information is encoded non-
locally in the parity shared by these spatially separated modes, which suppresses the
sensitivity to strictly local disturbances. In the ideal limit, braiding operations depend
solely on the topology of the exchange path rather than on precise timing or microscopic
details, thus providing an intrinsically robust route to fault-tolerant quantum control.
For a more in-depth discussion on the quantum computation research field we refer the
reader to [73, 74, 75, 76, 77].

1.3.3 Nanowires as a platform for topological superconductivity

Over the last 20 years, several proposals for the realization of a topological superconduc-
tor supporting Majorana quasi-particles have been discussed. The works that marked
a turning point in this field were those of Read and Green for 2D systems [78] and the
1D discrete model by Kitaev [79]. Both of these seminal works are based on the fact
that pairing in a spinless p-wave superconductor offers an ideal platform, as it admits the
closing and reopening of the superconducting gap, thereby allowing for the characteri-
zation of a non-trivial topological phase[80, 81]. Unfortunately, the realization of such
a system is not trivial for two primary reasons. First, intrinsic p-wave superconductors
are quite rare in nature. Although some materials, such as Sr2RuO4 [82], K2Cr3As3 [83]
or iron-based superconductors, have been proposed as possible candidates, there is not a
full scientific consensus on the nature of the pairing yet[84]. Second, actual spinless su-
perconductors do not exist, as electrons are spin-1/2 particles. Consequently, to create a
spinless system, it is necessary to break the Kramers degeneracy caused by Time-Reversal
Symmetry (TRS), for example, by applying a magnetic field.
However, starting from 2010, proposals emerged based on engineering an effective spinless
p-wave superconductor by combining semiconductor nanowires with conventional s-wave
superconductors. In the literature, this realization is referred to as a Majorana Nanowire
and was first proposed in Refs.Lutchyn, Sau, and Das Sarma [85] et al. and Oreg, Refael,
and Von Oppen [86] et al.
The fundamental ingredients for creating such a spinless p-wave superconducting plat-
form showing a non trivial topological phase are three: the superconducting proximity
effect, a strong spin-orbit coupling, and the application of an external magnetic field.
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We will now briefly analyze these three ingredients :

• Superconducting Proximity Effect
This effect was first observed by Holm–Meissner in 1932 [15, 87]. It occurs when a
superconductor (S) is placed in electrical contact with a normal conductor (N), such
as a metal or a doped semiconductor and due to this contact, the superconducting
properties are induced into the normal material. The proximity effect is necessary to
give rise to Majorana quasi-particles: a semiconductor nanowire (N), typically InAs or
InSb, is “proximized” by coupling it closely to a conventional superconductor (S), such
as Aluminum (Al). This induces the necessary s-wave pairing within the nanowire,
effectively turning it into a superconductor [49, 60, 88, 89].

• Spin-orbit coupling and magnetic field
In a strictly 1D channel without spin-orbit coupling, spin-rotation symmetry is con-
served. Therefore, the two spin species form degenerate bands, and a proximity-
induced s-wave pairing only couples opposite spins. With no spin mixing, the phase
remains topologically trivial and there is no route to an effectively spinless supercon-
ducting state. In contrast, the Rashba SOC lifts the spin degeneracy, and the spectrum
splits horizontally into two non-degenerate bands. For any value of the chemical po-
tential µ, there exists two Kramers pairs of “helical” states, i.e. states with opposite
momenta ±kF that exhibit opposite group velocities and carry opposite spin direc-
tions. Applying a magnetic field that is orthogonal to the spin-orbit field causes the
breaking of Time-Reversal Symmetry and the opening of a helical gap at k = 0. This
means that, within such an energy range, the chemical potential only crosses one pair
of propagating helical states, while the other pair is “frozen out”. For the helical states
the propagation direction is locked to the spin orientation, e.g. right-moving electrons
only have spin-↑, while left-moving electrons only have spin-↓. This makes spin to
behave as a redundant degree of freedom and the system becomes effectively spinless.
In this regime, the addition of a further proximity s-wave pairing, when projected onto
the helical basis, develops an intraband component with effective p-wave symmetry.
Indeed electrons with the same energy and opposite momenta, are polarized in different
directions, therefore they can couple via the s-wave superconducting pairing. As the
Zeeman field is increased, the bulk gap closes and reopens, marking a transition into
a 1D topological superconducting phase that supports Majorana zero modes localized
at the wire ends [49, 60, 61].

The minimal Hamiltonian proposed by Lutchyn [85] and Oreg [86] to model the 1D
proximized nanowire reads

H =
∫
dxΨ†

(
− ℏ2

2m∗
∂2

∂x
− µ+ iα σz∂x + bx σx

)
Ψ +

∫
dx
(
∆ Ψ†

↑Ψ†
↓ + h.c.

)
. (1.72)

where Ψ† = (Ψ†
↑, Ψ†

↓) and Ψ = (Ψ↑, Ψ↓)T describe the creation and annihilation field
operators, respectively, for an electron with effective mass m∗, µ is the chemical potential,
bx represents the applied magnetic field along the x-direction, α represents the Rashba
SOC coupling which along the z-direction and ∆ represents the induced superconducting
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pairing by proximity.
The excitation spectrum of this Hamiltonian gives an upper band E1 and a lower band
E2. In particular, the latter exhibits a minimum at k = 0 with energy

Emin(0) =
∣∣∣∣|bx| −

√
∆2 + µ2

∣∣∣∣ (1.73)

where ∆ denotes the superconducting gap. The energy value Emin(0) represent the
energy bulk gap for the system. We observe that this gap closes precisely when the
Zeeman field reaches the critical value b∗

x =
√

∆2 + µ2. As widely discussed, the closing
and subsequent reopening of the bulk gap signals a topological phase transition. This
unique feature renders proximized nanowires with strong spin-orbit coupling and magnetic
fields a prime candidate for the search of Majorana quasiparticle, as the system can be
tuned into a non-trivial topological phase. Specifically, the classification of the system
via a topological invariant allows for a sharp distinction between the trivial and the
topological superconducting phases, according to the following criterion

|bx| >
√

∆2
0 + µ2 Topological Phase (1.74)

|bx| <
√

∆2
0 + µ2 Trivial Phase (1.75)

Crucially, it is within the topological phase that the system supports Majorana Zero
Modes (MZMs) localized at the ends of the nanowire. [49, 60].
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Chapter 2

Review of the BCS model

2.1 Derivation of the mean-field BCS Hamiltonian

In order to derive the BCS Hamiltonian, we start from the Fröhlich Hamiltonian displayed
in Eq.(1.8). In particular the latter can be rewritten as

H = H0 + λH1 (2.1)

where H0 represents the unperturbed Hamiltonian related to the phonon and electronic
decoupled problem, whereas H1 represents the perturbation containing the electron-
phonon coupling

H0 =
∑
kσ

ϵkc
†
kσckσ +

∑
q

ℏωqa
†
qaq (2.2)

H1 =
∑
kqσ

νqc
†
k+qσckσ(aq + a†

−q) (2.3)

Applying the Schrieffer-Wolff Transformation it is possible to treat the problem pertur-
batively and after a series of calcultations one obtain an effective Hamiltonian which
describes the electron-electron interaction mediated by phonons [7]. Specifically, it de-
scribes a process where an electron with momentum k exchanges a phonon of momentum
q with another electron with momentum k′, scattering them to states k− q and k′ + q,
respectively,

Heff =
∑

q,k,k′,σ,σ′

|νq|2c†
k′+q,σ′c

†
k−q,σck,σ′ck,σ

ℏωq

(ϵk − ϵk−q)2 − (ℏωq)2 (2.4)

where ϵk−q − ϵk denotes the energy difference between the initial and final state for the
electron scattered from k→ k− q, whereas the term (ℏωq)2 represents the energy of the
exchanged phonon. The effective interaction potential Veff is given by:

Veff (q, ω) = |νq|2ℏωq
(ϵk − ϵk−q)2 − (ℏωq)2 (2.5)
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Crucially, this interaction becomes attractive (Veff < 0) when the energy transfer |ϵk −
ϵk−q| is less than the phonon energy ℏωq. Therefore, taking into consideration the result
of the Cooper theorem, which highlights the instability of the Fermi sea with respect of
Cooper pairs, the pairing Hamiltonian, also referred to as the reduced Hamiltonian, only
retains the interaction terms that scatter a Cooper pair (k′ ↑,−k′ ↓) into another pair
state (k ↑,−k ↓) (i.e. pairs with total momentum K = 0), as these are the most relevant
correlations for forming the superconducting condensate. It reads

Hpair =
∑
kσ

ξkc
†
kσckσ +

∑
k,k′

Vkk′c†
k↑c

†
−k↓c−k′↓ck′↑ (2.6)

where ξk = ϵk − µ is the single-particle energy relative to the chemical potential. We
introduce the chemical potential µ, to account for the constraint related to the average
number of particles N̄ . Indeed in the Grand canonical ensemble the chemical potential µ
represents the Lagrange multiplier related to such quantity. Despite this simplification,
Hpair is still a many-body Hamiltonian containing quartic interaction terms, making it
difficult to solve exactly.
To further proceed, considering that the superconducting GS represents a condensed
coherent macroscopic state containing Cooper pairs (k ↑,−k ↓), we assume that the pair
creation and annihilation operators can be written as their quantum mechanical average
plus a small fluctuation:

c−k↓ck↑ = ⟨c−k↓ck↑⟩+ δ(c−k↓ck↑) (2.7)

Note that this approximation represents the standard procedure of any mean-field theory.
Because of the large number of involved particles we expect such fluctuations to be small.
Then, substituting the decomposition in Eq.(2.7) into the interaction term and neglecting
the second-order terms in the fluctuations (i.e., δ(. . . )δ(. . . ) ≈ 0), we obtain

c†
k↑c

†
−k↓c−k′↓ck′↑ ≈ ⟨c†

k↑c
†
−k↓⟩c−k′↓ck′↑ + c†

k↑c
†
−k↓⟨c−k′↓ck′↑⟩

− ⟨c†
k↑c

†
−k↓⟩⟨c−k′↓ck′↑⟩

(2.8)

We now introduce the superconducting order parameter (or energy gap) ∆k, defined as:

∆k = +
∑
k′

Vkk′⟨c−k′↓ck′↑⟩ (2.9)

Using this definition, the linearized interaction term can be rewritten in a more compact
form. Substituting it back into the original Hamiltonian yields the BCS Mean-Field
Hamiltonian [2, 6]:

HBCS =
∑
kσ

ξkc
†
kσckσ +

∑
k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)

+ const. (2.10)

where the constant term is ∑k ∆k⟨c†
k↑c

†
−k↓⟩. This Hamiltonian describes quasiparticles

moving in a mean field generated by the condensate of all other pairs. It is now quadratic
in the fermionic operators c, c† and can be diagonalized exactly using the Bogoliubov-de
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Gennes (BdG) method [90, 91]. This method will be extensively used in the following
sections to describe excitations in a superconducting material. In particular, it represents
the most suitable formalism for describing the scattering phenomenon at the interface be-
tween a normal and a superconducting material.

Remark
We remark here that the standard BCS theory provides a valid framework to describe
the phenomenon of conventional (phonon–mediated) superconductivity, most commonly
realized in low-Tc materials. This class of superconductors is generally characterized by
an antisymmetric spin wavefunction (spin singlet, S = 0). Due to the Pauli exclusion
principle, this implies an even spatial part of the total fermionic wavefunction.
In fact, these materials typically exhibit an even-parity order parameter, i.e. ∆k = ∆−k,
which in simple metals is often nearly isotropic in k and, to a good approximation, in-
dependent of k. For this reason, in analogy with atomic orbital this type of pairing is
often dubbed s-wave pairing (L = 0) [2, 92]. It should be pointed out, however, that
such terminology, borrowed by the atomic classification and based on spin and angular
momentum, is evocative, in a crystalline structure it is actually not rigorous, since spin
and angular momentum are not good quantum numbers. Strictly speaking, the pairing
potential and the spatial wavefunction should be classified on the crystal symmetry.

Any superconducting material not adequately described by standard s-wave BCS pair-
ing falls into the unconventional superconductivity category, which often includes the
high critical temperature (high-Tc) families [92]. Indeed, beyond (nearly) isotropic s-
wave pairing, it is possible for a material to exhibit anisotropic pairing with a non-trivial
dependence on k. For instance, a p-wave pairing (L = 1) is characterized by a pairing
potential that is odd with respect to k (i.e., ∆k = −∆−k). This implies an antisymmetric
spatial part and, consequently, a symmetric spin wavefunction, known as a spin-triplet
state (S = 1). Some studies suggested that materials like Sr2RuO4 [82] , K2Cr3As3 [83]
or iron-based superconductors [93] might exhibit a p-wave order parameter. While a clear
evidence of an intrinsic p-wave superconductor is still under debate, we will show in sub-
sequent sections that it is possible to engineer effective p-wave pairing in the laboratory
by combining specific ingredients, such as applied magnetic fields and strong spin–orbit
coupling [60].

In addition to p-wave, there is also d-wave pairing (L = 2, spin singlet), which has been
experimentally observed, for instance, in high-Tc cuprate superconductors [94]. It differs
from s-wave pairing in that it produces nodes in the quasiparticle excitation spectrum.
Indeed d-wave pairing is characterized by an even and anisotropic pairing.
Finally, we emphasize that the study of high-Tc superconductors represents a major re-
search field in condensed matter, since the mechanism underlying this phenomenon is
highly non trivial and it also involves strong electronic correlations [95].
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2.2 Diagonalization of the BCS Hamiltonian

Let us now analyze the BCS Hamiltonian derived in Eq.(2.10)

HBCS =
∑

k

(
ξkc

†
k↑ck↑ + ξkc

†
k↓ck↓

)
+
∑

k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)

(2.11)

where the summation over k spans the first BZ, (i.e |k| ≤ π
a with ’a’ denoting the lattice

spacing), and ξk = εk − µ, where εk is the bare band dispersion relation and µ denotes
the chemical potential.
Our goal is to diagonalize HBCS . To this purpose, we first realize that all terms of
Eq.(2.11) are bilinears c†c, c†c† and cc in the creation/annilahilation operators. This
means that HBCS can be rewritten in a quadratic form, i.e.

HBCS = 1
2
∑

k
Ψ†

kHkΨk + C (2.12)

where C is a constant, Hk is a matrix, and Ψk is a spinor of operators and must nec-
essarily contain both the annihilation and the creation operators. This type of operator
spinor is called Nambu spinor. There are various possible choices of Nambu spinor. Each
choice of Ψk determines a specific form of the matrix Hk, since HBCS is given.

Here are two customary choices adopted in the literature

Ψk = Ψ(1)
k =


ck↑
ck↓
c†

−k↓
−c†

−k↑

 ⇒ Hk =


ξk 0 ∆k 0
0 ξk 0 ∆−k

∆∗
k 0 −ξ−k 0

0 ∆∗
−k 0 −ξ−k

 (2.13)

or

Ψk = Ψ(2)
k =


ck↑
c−k↓
c†

−k↓
−c†

k↑

 ⇒ Hk =


ξk 0 ∆k 0
0 ξ−k 0 ∆k

∆∗
k 0 −ξ−k 0

0 ∆∗
k 0 −ξk

 (2.14)

It can be noticed that, in any case, the component of Ψk are redundant, in the sense
that there are two pairs of hermitian conjugate operators; this induces some symmetries
in the structure of Hk.

Proof of Eq.(2.14)
In order to rewrite Eq.(2.11) in the form (2.12) with the Nambu spinor and the matrix
defined in Eqs.(2.14), we first relabel the summation index k → −k in the spin-↓ band
term, and rewrite each term as twice its half, obtaining

HBCS =1
2
∑

k
ξk(c†

k↑ck↑ + c†
k↑ck↑) + 1

2
∑

k
ξ−k(c†

−k↓c−k↓ + c†
−k↓c−k↓) +

+ 1
2
∑

k
(∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑) + 1
2
∑

k
(∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑)
(2.15)
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Then, using anticommutation rules of the fermionic operators one has

c†
kσckσ′ = δσ,σ′ − ckσ′c

†
kσ (2.16)

and
∆kc

†
k↑c

†
−k↓ = −∆kc

†
−k↓c

†
k↑ (2.17)

which enables us to rewrite

HBCS =1
2
∑

k
ξk(c†

k↑ck↑ − ck↑c
†
k↑) + 1

2
∑

k
ξ−k(c†

−k↓c−k↓ − c−k↓c
†
−k↓) +

+ 1
2
∑

k
(∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑)− 1
2
∑

k
(∆kc

†
−k↓c

†
k↑ + ∆∗

kck↑c−k↓) +
∑

k
ξk

(2.18)

Then by comparing (2.18) with (2.12) and using the expression of the Nambu spinor
(2.14), it is easy to identify the constant C as

C =
∑

k
ξk (2.19)

and the matrix Hk is the one given in Eq.(2.14), i.e.

Hk =


ξk 0 ∆k 0
0 ξ−k 0 ∆k

∆∗
k 0 −ξ−k 0

0 ∆∗
k 0 −ξk

 (2.20)

End of proof.

The proof for Eq.(2.13) follows similar lines.

The reformulation in a quadratic form is now completed and we can proceed to diago-
nalize Hk. Let us e.g. consider the Nambu spinor and the matrix Hk given in Eq.(2.14).
The latter is the matrix representation of the Hamiltonian in first quantization formal-
ism, therefore it is Hermitian and can be always diagonalized by an orthonormal matrix,
whose columns are the orthonormal eigenvectors of Hk, forming a basis of our space.

We observe that the matrix (2.20) consists of two decoupled 2× 2 blocks, related to (1,3)
and (2,4) entries, respectively. Moreover, under the reasonable hypothesis that εk is even
in k, then

ξ−k = ξk (2.21)

i.e. ξk is even too, and the matrix (2.20) reduces to

Hk =


ξk 0 ∆k 0
0 ξk 0 ∆k

∆∗
k 0 −ξk 0

0 ∆∗
k 0 −ξk

 (2.22)
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implying that the two 2× 2 blocks are exactly equal to

hk =
(
ξk ∆k
∆∗

k −ξk

)
(2.23)

This means that we can proceed to diagonalize one single block to diagonalize the entire
4× 4 matrix. Denoting

∆k = |∆k| eiφk (2.24)
from the diagonalization of Eq.(2.23) two eigenvalues are obtained

Ek,± = ±Ek where Ek =
√
ξ2

k + |∆k|2 (2.25)

and the corresponding eigenvectors are

wk,+ =
(
uk
vk

)
eigenvalue Ek,+

wk,− =
(
−v∗

k
u∗

k

)
eigenvalue Ek,−

(2.26)

where

uk =
√

1
2

(
1 + ξk

Ek

)
(2.27)

vk = e−iφk

√
1
2

(
1− ξk

Ek

)
(2.28)

and φk is the phase of ∆k [see Eq.(2.24)].
We remark here that the quantity |vk|2 represents the probability that the pair state (k ↑
,−k ↓) is occupied, while |uk|2 represents the probability that it is empty. In particular,
for |∆k| = 0 we obtain the occupation probability for the Normal ground state at T = 0K,
i.e. |vk|2 = 1 for k < kF and |vk|2 = 0 for k > kF , as shown in Fig.2.1. The particular
structure of wk,+ and wk,− stems from the structure of hk, and it can be proven by the
following theorem.

Theorem 2.1. For any eigenvector wk =
(
uk
vk

)
with eigenvalue Ek of the 2 × 2 Hermi-

tian matrix hk defined in Eq.(2.23), the vector (−iσy)·w∗
k =

(
−v∗

k
u∗

k

)
is also an eigenvector

of hk, with eigenvalue −Ek .

Proof. Let us start by noting that, if wk is an eigenvector for hk, with eigenvalue Ek,
i.e. hkwk = Ekwk, then, taking the complex conjugate of the previous expression, we
obtain h∗

kw
∗
k = Ekw

∗
k. One can now observe that the very structure of the matrix (2.23)

straightforwardly implies the following identity :

−hk = (−iσy)(h∗
k)(iσy)
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Figure 2.1: Graphic representations of |uk|2 and |vk|2 as a function of ξk. The left panel shows
the Normal Ground State |∆k| = 0, while the right panel refers to the Superconducting Ground
State |∆k| /= 0. The plot has been realized by considering a gap parameter with constant modulus
|∆k| = ∆0 [see Eq.(1.28]. In the Normal GS |vk|2 reproduces the Fermi distribution at T = 0K.

By applying the above matrix identity on the vector (−iσy)w∗
k, we obtain

hk (iσy)w∗
k = (−iσy)h∗

k w
∗
k

Then, substituting h∗
kw

∗
k with Ekw

∗
k (and multiplying both side by −1), it follows that

hk(−iσy w
∗
k) = −Ek,+(−iσyw

∗
k)

which shows that (−iσy) · w∗
k =

(
−v∗

k
u∗

k

)
is an eigenvector of hk with eigenvalue −Ek.

On account of the above theorem, in Eqs.(2.25) and (2.26), we have denoted by w∗
k,+

the eigenvector with positive eigenvalue Ek,+ and by wk,− = (−iσy) ·w∗
k,+ =

(
−v∗

k
u∗

k

)
the

eigenvector with negative eigenvalue Ek,− = −Ek,+.

The diagonal matrix of the full problem is

Hdiag =


Ek,+ 0 0 0

0 Ek,+ 0 0
0 0 Ek,− 0
0 0 0 Ek,−

 (2.29)

39



Review of the BCS model

while the four orthonormal eigenvectors are

w
(1)
k,+ =


uk
0
vk
0

 w
(2)
k,+ =


0
uk
0
vk

 w
(1)
k,− =


−v∗

k
0
u∗

k
0

 w
(2)
k,− =


0
−v∗

k
0
u∗

k

 (2.30)

Then the matrix U , such that U †HkU = Hdiag, acquires the form

U =


uk 0 −v∗

k 0
0 uk 0 −v∗

k
vk 0 u∗

k 0
0 vk 0 u∗

k

 (2.31)

Inverting the previous relation as Hk = UHdiagU
† and inserting it in (2.12) , we obtain

HBCS = 1
2
∑

k
Ψ†

kHkΨk +C = 1
2
∑

k

Ψ†
kUHdiagU

†Ψk +C = 1
2
∑

k

Γ†
kHdiagΓk +C (2.32)

where two new spinors Γk and Γ†
k are introduced. They are defined as

Γk = U †Ψk and Γ†
k = Ψ†

kU (2.33)

Assigning to Γk the same structure of Ψk, it follows that

Γk =


γk↑
γ−k↓
γ†

−k↓
−γ†

k↑

 =


u∗

kck↑ + v∗
kc

†
−k↓

u∗
kc−k↓ − v∗

kc
†
k↑

ukc
†
−k↓ − vkck↑

−ukc
†
k↑ − vkc−k↓

 (2.34)

Because the latter is linear in Ψk, it contains the same redundancy encountered in (2.14).
Moreover, operators γ and γ† are obviously fermionic operators, therefore they satisfy
the usual anticommutator relations

{γ†
kσ, γk′σ′} = δk,k′δσ,σ′ , {γ†

kσ, γ
†
k′σ′} = 0 , {γkσ, γk′σ′} = 0 (2.35)

It is also useful to express Ψk in terms of Γk by inverting formula (2.33. It follows that

Ψk = U Γk =


ck↑
c−k↓
c†

−k↓
−c†

k↑

 =


ukγk↑ − v∗

kγ
†
−k↓

ukγ−k↓ + v∗
kγ

†
k↑

u∗
kγ

†
−k↓ + vkγk↑

−u∗
kγ

†
k↑ + vkγ−k↓

 (2.36)

The expression of HBCS in terms of γ and γ† is now

HBCS = 1
2
∑

k
Ek(γ†

k↑γk↑ + γ†
−k↓γ−k↓ − γ−k↓γ

†
−k↓ − γk↑γ

†
k↑) + C. (2.37)
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where C is given by Eq.(2.19). Using now anticommutator relations (2.35) and relabelling
the summation index −k → k in the spin-↓ terms, HBCS acquires the desired diagonal
form

HBCS = −
∑

k
(Ek − ξk) +

∑
k
Ek(γ†

k↑γk↑ + γ†
k↓γk↓), (2.38)

Here, the first term represents the energy of the Ground State, whereas the second term
represents the energy of the excitations.

2.3 The BCS Ground State

By definition, the Ground State (GS) of a system is the eigenstate with the lowest energy.
Here below, we shall show that the ground state of the BCS Hamiltonian (2.38), denoted
as |BCS⟩, is

|BCS⟩ =
∏
k

(
u∗

k + v∗
kc

†
−k↓c

†
k↑

)
|0⟩ (2.39)

and its ground state energy is:

E0 = −
∑

k
(Ek − ξk) (2.40)

In order to prove that, let us first observe that the diagonal form (2.38) of HBCS exhibits
two contributions: the first one is a constant, and is always negative, whereas, in the
second one Ek > 0 so that its expectation values are non-negative ⟨BCS|γ†γ|BCS⟩ ≥ 0.
Therefore, in the GS energy level the eigenvalue of operators γ†

k,σγk,σ must be zero ∀ k, σ.
This means that γ†

k,σ and γk,σ represent, respectively, creation and annihilation opera-
tors of excitations with respect the GS. In particular these excitations are quasiparticle,
sometimes called Bogolubov quasiparticles. As a consequence, the absence of excitations
characterizing the GS implies that

γkσ |BCS⟩ = 0 ∀k , σ (2.41)

has to be satisfied. Therefore |BCS⟩ may be expressed as

|BCS⟩ = N
∏
k,σ

γkσ |R⟩ , (2.42)

where N is some normalization factor, and |R⟩ is some reference state to be determined.
Indeed, by applying γkσ to |BCS⟩ we obtain that

γkσ |BCS⟩ = N γkσ

∏
k′,σ′

γk′σ′ |R⟩ ∝ N

 ∏
k′ /=k,

∏
σ /=σ′

γk′σ′

 (γkσ)2 |R⟩ = 0 (2.43)

∀k, σ , because (γkσ)2 = 0, i.e. the condition required by Eq.(2.41).
Reorganizing the terms in the product (2.42) in pairs of operators and, up to a minus
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sign due to the switching γkσγk′σ′ = −γk′σ′γkσ of the annihilation operators order, we
can rewrite

|BCS⟩ = N
∏
k
γk↑ γ−k↓ |R⟩ . (2.44)

STATEMENT
The only eligible states for |R⟩ are the empty state |0⟩ and the completely filled state
|↑↓⟩. Moreover, both these choices yield the same expression for the ground state |BCS⟩.
Proof of statement
Using 2.34 , then

|BCS⟩ = N
∏
k
γk↑ γ−k↓ |R⟩ =

∏
k

(
u∗

kck↑ + v∗
kc

†
−k↓

) (
u∗

kc−k↓ − v∗
kc

†
k↑

)
|R⟩ =

= N
∏
k

[
(u∗

k)2ck↑c−k↓ − u∗
kv

∗
kck↑c

†
k↑ + u∗

kv
∗
kc

†
−k↓c−k↓ − (v∗

k)2c†
−k↓c

†
k↑

]
|R⟩

(2.45)

therefore the following condition must be satisfied :∏
k

[
(u∗

k)2ck↑c−k↓ − u∗
kv

∗
kck↑c

†
k↑ + u∗

kv
∗
kc

†
−k↓c−k↓ − (v∗

k)2c†
−k↓c

†
k↑

]
|R⟩ /= 0 (2.46)

i.e [
(u∗

k)2ck↑c−k↓ − u∗
kv

∗
kck↑c

†
k↑ + u∗

kv
∗
kc

†
−k↓c−k↓ − (v∗

k)2c†
−k↓c

†
k↑

]
|R⟩ /= 0 ∀k . (2.47)

As a consequence, at least one term of (2.47) must be different from zero.
A priori, within the space (k ↑,−k ↓) there are only four possible choices for the reference
state |R⟩k, and we shall analyze Eq.(2.45) for each of these four choices:

1. |R⟩ = |0⟩

|BCS⟩ = N
∏
k

[
(u∗

k)2ck↑c−k↓ − u∗
kv

∗
kck↑c

†
k↑ + u∗

kv
∗
kc

†
−k↓c−k↓ − (v∗

k)2c†
−k↓c

†
k↑

]
|0⟩ =

= N
∏
k

[
0− u∗

kv
∗
k + 0− (v∗

k)2c†
−k↓c

†
k↑

]
|0⟩ =

= N
∏
k

(−v∗
k)
(
u∗

k + v∗
kc

†
−k↓c

†
k↑

)
|0⟩ =

= N
(∏

k
(−v∗

k)
)∏

k

(
u∗

k + v∗
kc

†
−k↓c

†
k↑

)
|0⟩ (2.48)

where ∏k (−v∗
k) represents a constant contribution, which may be absorbed by N .

2. |R⟩ = c†
k↑ |0⟩

|BCS⟩ = N
∏
k

(
(u∗

k)2ck↑c−k↓ − u∗
kv

∗
kck↑c

†
k↑ + u∗

kv
∗
kc

†
−k↓c−k↓ − (v∗

k)2c†
−k↓c

†
k↑

)
c†

k↑ |0⟩ =

= N
∏
k

[0− 0 + 0− 0] |0⟩ = 0 (2.49)

42



2.4 – The Excitations

3. |R⟩ = c†
−k↓ |0⟩

|BCS⟩ = N
∏
k

(
(u∗

k)2ck↑c−k↓ − u∗
kv

∗
kck↑c

†
k↑ + u∗

kv
∗
kc

†
−k↓c−k↓ − (v∗

k)2c†
−k↓c

†
k↑

)
c†

−k↓ |0⟩ =

= N
∏
k

[
0− u∗

kv
∗
k(ck↑c

†
k↑) + u∗

kv
∗
kc

†
−k↓c−k↓ + 0

]
c†

−k↓ |0⟩ =

= N
∏
k

(−u∗
kv

∗
k + u∗

kv
∗
k) c†

−k↓ |0⟩ = 0 (2.50)

4. |R⟩ = c†
k↑c

†
−k↓ |0⟩

|BCS⟩ = N
∏
k

(
(u∗

k)2ck↑c−k↓ − u∗
kv

∗
kck↑c

†
k↑ + u∗

kv
∗
kc

†
−k↓c−k↓ − (v∗

k)2c†
−k↓c

†
k↑

)
c†

k↑c
†
−k↓ |0⟩ =

= N
∏
k

[
(u∗

k)2ck↑c−k↓ + 0 + u∗
kv

∗
kc

†
−k↓c−k↓ + 0

]
c†

k↑c
†
−k↓ |0⟩ =

= N
(∏

k
u∗

k

)∏
k

(
u∗

k + v∗
kc

†
−k↓c

†
k↑

)
|0⟩ (2.51)

where ∏k u
∗
k represents a constant, hence it may be absorbed in N .

We thus have proven that, within the space (k ↑,−k ↓), the reference state must be
either |R⟩ = |0⟩ or |R⟩ = c†

k↑c
†
−k↓ |0⟩. Moreover, by comparing Eqs.(2.48) and (2.51),

we realize that, up to a normalization factor, both choices yield the same ground state,
which acquires the form (2.39), and is normalized because |uk|2 + |vk|2 = 1.

End of proof

2.4 The Excitations

In Eq.(2.38), the positive energies Ek [see Eq.(2.25)]

Ek =
√
ξ2

k + |∆k|2 (2.52)

represent the energies of excitations above the ground state. This excitation spectrum is
displayed in Fig.2.2.
Because γ† and γ in Eq.(2.38) are fermionic operators describing excitations, we may now
investigate what happens by creating one over the GS.
Hence, to create an excitation, for example within the space (k ↑), we shall apply γ†

k↑ on
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k

E

Normal and Superconducting excitations spectrum

-kF kF

|ξk| Ek

Figure 2.2: The superconducting Ek (orange line) and the Normal |ξk| (blue line) excitations
spectra are plotted as a function of k, which has been taken as scalar quantities. In particular,
the figure has been obtained for a isotropic gap parameter, i.e. |∆k| = ∆0. The superconducting
energy spectrum exhibits a gap in the excitation energies, which prevents the occupation of states
with energy 0 < E < ∆0. Furthermore, the dashed lines depict “hole-like” excitations, whereas
the solid lines represent “electron-like” excitations for both Normal and Superconducting spectra.

|BCS⟩. Calling the excited state |ES⟩k↑ = γ†
k↑ |BCS⟩ and using (2.34), then

|ES⟩k↑ = N γ†
k↑
∏
k′

γk′↑ γ−k′↓ |0⟩ = N

 ∏
k′ /=k

γk′↑ γ−k′↓

 γ†
k↑γk↑ γ−k↓ |0⟩ =

= N

 ∏
k′ /=k

γk′↑ γ−k′↓

(ukc
†
k↑ + vkc−k↓

) (
u∗

k + v∗
kc

†
−k↓c

†
k↑

)
|0⟩ =

= N

 ∏
k′ /=k

γk′↑ γ−k′↓

(|uk|2c†
k↑ + vku

∗
kc

†
−k↓ − ukv

∗
k(c†

k↑)2c†
−k↓c +

+ |vk|2c−k↓c
†
−k↓c

†
k↑

)
|0⟩ = (2.53)

= N

 ∏
k′ /=k

γk′↑ γ−k′↓

(|uk|2 + |vk|2
)
c†

k↑ |0⟩ =

= N

 ∏
k′ /=k

u∗
k′ + v∗

k′c
†
−k′↓c

†
k′↑

 c†
k↑ |0⟩
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2.4 – The Excitations

up to a minus sign that may appear due to the switching of operators. In the previ-
ous equation we made use of

(
|uk|2 + |vk|2

)
= 1. From (2.53) it follows that, applying

γ†
k↑ on |BCS⟩ creates, with certainty, an electron with momentum k and spin ↑, hence

replacing the quantum superposition (u∗
k + v∗

kc
†
−k↓c

†
k↑) |0⟩ between an empty and a pair

state (Cooper pair) with a singly occupied state |−k ↓⟩.
Repeating the same calculation of (2.53) for the operator γ†

−k↓ we obtain

|ES⟩−k↓ = γ†
−k↓ |BCS⟩ = N

 ∏
k′ /=k

u∗
k′ + v∗

k′c
†
−k′↓c

†
k′↑

 c†
−k↓ |0⟩ (2.54)

Thus, we have created, with certainty, an electron with momentum −k and spin ↓, re-
placing a quantum superposition with a singly occupied state..
The expectation values of HBCS over the excitated states |ES⟩k↑ and |ES⟩−k↓ are de-
fined as

EES,k↑ = ⟨ES|HBCS |ES⟩k↑

(2.55)
EES,−k↓ = ⟨ES|HBCS |ES⟩−k↓

In analogy with operators c†
k,σ and ck,σ, for which it is possible to define a number

operator nk,σ = c†
k,σck,σ, we may define a number operator related to exicitations, i.e.

nγ,kσ = γ†
k,σγk,σ, which counts the number of excitations within the space (k, σ). There-

fore, it follows that

EES,k↑ = ⟨ES|HBCS |ES⟩k↑ =

= ⟨ES|
(
−
∑
k′

(Ek′ − ξk′) +
∑
k′

Ek′(γ†
k′↑γk′↑ + γ†

−k′↓γ−k′↓)
)
|ES⟩k↑ =

= ⟨ES|
(
−
∑
k′

(Ek′ − ξk′)
)
|ES⟩k↑ + ⟨ES|

(∑
k′

Ek′nγ,k′↑

)
|ES⟩k↑ +

+ ⟨ES|
(∑

k′

Ek′nγ,−k′↓

)
|ES⟩k↑ =

=−
∑
k′

(Ek′ − ξk′) + Ek =

= E0 + Ek

(2.56)

where we have used

nγ,k′σ |ES⟩k↑ =
{

0 if k′ /= k and σ /= ↑
1 otherwise

(2.57)

and E0 is the ground state energy (2.40).
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Review of the BCS model

Repeating the same calculation for state |ES⟩−k↓, we obtain that

EES,−k↓ = ⟨ES|HBCS |ES⟩−k↓ = ⟨ES|
(
−
∑
k′

(Ek′ − ξk′)
)
|ES⟩−k↓ +

+ ⟨ES|
(∑

k′

Ek′nγ,k′↑

)
|ES⟩−k↓ + ⟨ES|

(∑
k′

Ek′nγ,−k′↓

)
|ES⟩−k↓ =

=−
∑
k′

(Ek′ − ξk′) + Ek =

= E0 + Ek

(2.58)

As expected, the two excited states |ES⟩−k↓ and |ES⟩k↑ are degenerate states, and their
difference in energy, with respect the GS, is of a single excitation Ek.
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Chapter 3

Model for nanowire proximized by
a superconductor

Figure 3.1: Schematic representation of a Nanowire (light red) proximized by a superconductor
(light blue) with a magnetic field B⃗ (green arrow) applied along the x-direction.

As mentioned in Chap.1.3.3, the proximity effect occurs when a superconductor (S) is
placed in contact with a normal (N), i.e. non-superconducting conductor, and it consists
in the fact that a superconducting pairing is induced in the N material. In this chapter,
we shall illustrate and analyze a model to describe a nanowire with spin-orbit coupling
that is proximized by a superconducting film covering it.
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Model for nanowire proximized by a superconductor

3.1 Hamiltonian of a proximized nanowire with spin-orbit
coupling

We shall now consider a spatially homogeneous single-channel (1D) nanowire with spin-
orbit coupling, such as InAs or InSb, proximized by an s-wave superconducting film
deposited on it. Furthermore, the possible presence of an applied magnetic field will be
considered. We shall model the system with the following Hamiltonian [49, 60, 85, 86, 89]:

H =
∑

k

(
c†

k↑, c
†
k↓

) (
ξ0

k σ0 − kα · σ − b · σ
)(ck↑

ck↓

)
+
∑

k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)

(3.1)

where
ξ0

k = ε0
k − µ ε0

k = ℏ2k2

2m∗ (3.2)

is the deviation of the bare electron band energy (in the effective mass m∗ approxima-
tion) from the chemical potential µ, while α = (αx, αy, αz) is the vector identifying the
three components of the spin-orbit coupling, and the term −b · σ denotes the Zeeman
coupling with an external magnetic field b = (bx, by, bz). Here, σ0 is the 2 × 2 identity,
while σ = (σx, σy, σz) denotes the vector of the three Pauli matrices

σ0 =
(

1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

Finally, the s-wave character of the superconducting pairing appearing in Eq.(3.1) is
encoded in

∆k = ∆0 e
iφ (3.3)

where ∆0 ≥ 0 and φ represent the magnitude and the phase of the pairing, respectively.
In analogy with what we have done for the customary BCS model in Eqs.(2.11) and
(2.12), it is possible to show that the nanowire Hamiltonian (3.1) can be rewritten in the
Bogolubov de Gennes form,

H = 1
2
∑

k

Ψ†
kHBdG(k)Ψk + C (3.4)

Here, we choose the Nambu spinor as in Eq.(2.13)

Ψk = Ψ(1)
k =


ck↑
ck↓
c†

−k↓
−c†

−k↑

 Ψ†
k =

(
c†

k↑, c
†
k↓, c−k↓,−c−k↑

)
(3.5)

and the corresponding Bogolubov de Gennes Hamiltonian reads

HBdG(k) =
(
ξ0

kσ0 − kα · σ − b · σ ∆0e
iφσ0

∆0e
−iφσ0 −ξ0

kσ0 + kα · σ − b · σ

)
(3.6)
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3.1 – Hamiltonian of a proximized nanowire with spin-orbit coupling

while, the constant C appearing in Eq.(3.4) is

C =
∑

k

ξ0
k (3.7)

Particle and hole blocks
In Eq.(3.6), we denote the two 2× 2 blocks

he(k) = ξ0
kσ0 − kα · σ − b · σ

hh(k) = −ξ0
kσ0 + kα · σ − b · σ

(3.8)

related to (1,2) entries as “electron block” he(k), and related to (3,4) entries as “hole
block” hh(k), respectively. Using the property

σyσ
∗σy = −σ (3.9)

of the Pauli matrices, it is possible to verify that the following relation holds between the
blocks

hh(k) = −σyh
∗
e(−k)σy (3.10)

Proof of Eqs.(3.4)
Let us start from rewriting explicitly the scalar products in Eq.(3.1)

H =
∑

k

(
c†

k↑, c
†
k↓

) (
ξ0

kσ0 − αxσxk − αyσyk − αzσzk − bxσx − byσy − bzσz

)(ck↑
ck↓

)
+

+
∑

k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)

(3.11)

It is now convenient to decompose H as a sum

H = Hdiag +Hnon−diag (3.12)

where Hdiag is diagonal in the operators c and c† and is characterized by σ0 and σz,
whereas Hoff−diag is off-diagonal in c and c†. Explicitly,

Hdiag =
∑

k

(
c†

k↑, c
†
k↓

) (
ξ0

kσ0 − kαzσz − bzσz

)(ck↑
ck↓

)
(3.13)

Hoff−diag =−
∑

k

(
c†

k↑, c
†
k↓

)
(αxσx + αyσy + bxσx + byσy)

(
ck↑
ck↓

)
(3.14)

+
∑

k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)

(3.15)
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Model for nanowire proximized by a superconductor

Starting from Hdiag, we first rewrite such term as twice its half, then relabel one of the
two summation index k → −k, obtaining

Hdiag =1
2
∑

k

(
c†

k↑, c
†
k↓

)(ξ0
k − αzk − bz 0

0 ξ0
k + αzk + bz

)(
ck↑
ck↓

)
+

+ 1
2
∑

k

(
c†

−k↑, c
†
−k↓

)(ξ0
−k + αzk − bz 0

0 ξ0
−k − αzk + bz

)(
c−k↑
c−k↓

) (3.16)

Using now the anticommutation rules Eq.(2.16) of the fermionic operators, it follows that

Hdiag = 1
2
∑

k

(
c†

k↑, c
†
k↓

)(ξ0
k − αzk − bz 0

0 ξ0
k + αzk + bz

)(
ck↑
ck↓

)
+

− 1
2
∑

k

(c−k↑, c−k↓)
(
ξ0

−k + αzk − bz 0
0 ξ0

−k − αzk + bz

)(
c†

−k↑
c†

−k↓

)
+
∑

k

ξ0
−k =

= 1
2
∑

k

(
c†

k↑, c
†
k↓

)(ξ0
k − αzk − bz 0

0 ξ0
k + αzk + bz

)(
ck↑
ck↓

)
+

+ 1
2
∑

k

(c−k↓,−c−k↑, )

− (ξ0
−k − αzk + bz

)
0

0 −
(
ξ0

−k + αzk − bz

)( c†
−k↓
−c†

−k↑

)
+

+
∑

k

ξ0
−k =

= 1
2
∑

k

(
c†

k↑, c
†
k↓

) (
ξ0

kσ0 − (αzk + bz)σz

)(ck↑
ck↓

)
+

+ 1
2
∑

k

(c−k↓,−c−k↑)
(
−ξ0

−kσ0 + (αzk − bz)σz

)( c†
−k↓
−c†

−k↑

)
+
∑

k

ξ0
−k

(3.17)

Recalling now the definition (3.5) of the Nambu spinor, and the fact that ξ0
−k = ξ0

k is an
even function of k [see Eq.(3.2)], we can rewrite Hdiag as

Hdiag = 1
2
∑

k

Ψ†
k

(
ξ0

kσ0 − k αzσz − bzσz 0
0 −ξ0

kσ0 + k αzσz − bzσz

)
Ψk +

∑
k

ξ0
−k (3.18)

Let us now consider the off-diagonal term Hoff−diag. First, by introducing

b⊥ = (bx, by) α⊥ = (αx, αy) σ⊥ = (σx, σy) (3.19)

one can compactly rewrite Eq.(3.15) as

Hoff−diag =−
∑

k

(
c†

k↑, c
†
k↓

)
((b⊥ + kα⊥) · σ⊥)

(
ck↑
ck↓

)
+
∑

k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)

=

=−
∑

k

∑
k

∑
σ,σ′=↑,↓

c†
kσ [(b⊥ + kα⊥) · σ⊥]σ,σ′ ckσ′ +

∑
k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)

(3.20)
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3.1 – Hamiltonian of a proximized nanowire with spin-orbit coupling

Then, by rewriting the above equation as twice 1/2 of itself and by relabelling k → −k
in the second 1/2, one has

Hoff−diag =− 1
2
∑

k

∑
σ,σ′=↑,↓

c†
kσ ((b⊥ + kα⊥) · σ⊥)σ,σ′ ckσ′+

− 1
2
∑

k

∑
σ,σ′=↑,↓

c†
−kσ ((b⊥ − kα⊥) · σ⊥)σ,σ′ c−kσ′+

+ 1
2
∑

k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)

+ 1
2
∑

k

(
∆−kc

†
−k↑c

†
k↓ + ∆∗

−kck↓c−k↑
)

=

(3.21)

Now, by noticing that σ⊥ = (σx, σy) are completely off-diagonal matrices, and applying
the anticommutation rules (2.16), one can rewrite

Hoff−diag =− 1
2
∑

k

∑
σ,σ′=↑,↓

c†
kσ ((b⊥ + kα⊥) · σ⊥)σ,σ′ ckσ′

+ 1
2
∑

k

∑
σ,σ′=↑,↓

c−kσ′ ((b⊥ − kα⊥) · σ⊥)σ,σ′ c
†
−kσ +

+ 1
2
∑

k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)
− 1

2
∑

k

(
∆−kc

†
k↓c

†
−k↑ + ∆∗

−kc−k↑ck↓
)

(3.22)

The Hermiticity of the Pauli matrices implies that

((b⊥ − kα⊥) · σ⊥)σ,σ′ = ((b⊥ − kα⊥) · σ∗
⊥)σ′,σ .

By relabelling σ ↔ σ′ one can write

Hoff−diag =− 1
2
∑

k

(
c†

k↑, c
†
k↓

)
((b⊥ + kα⊥) · σ⊥)

(
ck↑
ck↓

)
+

+ 1
2
∑

k

(
c−k↑, c−k↓

)
((b⊥ − kα⊥) · σ∗

⊥)
(
c†

−k↑
c†

−k↓

)
+

+ 1
2
∑

k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)
− 1

2
∑

k

(
∆−kc

†
k↓c

†
−k↑ + ∆∗

−kc−k↑ck↓
)

(3.23)
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Model for nanowire proximized by a superconductor

Let us now sandwich the (b⊥ − kα⊥) · σ∗
⊥ between two identities σ0 = (−iσy)(iσy)

Hoff−diag =− 1
2
∑

k

(
c†

k↑, c
†
k↓

)
((b⊥ + kα⊥) · σ⊥)

(
ck↑
ck↓

)
+

+ 1
2
∑

k

(
c−k↑, c−k↓

)
(−iσy) iσy ((b⊥ − kα⊥) · σ∗

⊥) (−iσy)︸ ︷︷ ︸ iσy

(
c†

−k↑
c†

−k↓

)
+

+ 1
2
∑

k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)
− 1

2
∑

k

(
∆−kc

†
k↓c

†
−k↑ + ∆∗

−kc−k↑ck↓
)

=

[use σyσ
∗
⊥σy = −σ⊥]

=− 1
2
∑

k

(
c†

k↑, c
†
k↓

)
((b⊥ + kα⊥) · σ⊥)

(
ck↑
ck↓

)
+

− 1
2
∑

k

(
c−k↓,−c−k↑

)
((b⊥ − kα⊥) · σ⊥)

(
c†

−k↓
−c†

−k↑

)
+

+ 1
2
∑

k

(
∆kc

†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑
)
− 1

2
∑

k

(
∆−kc

†
k↓c

†
−k↑ + ∆∗

−kc−k↑ck↓
)

(3.24)

Recalling now the definition (3.5) of the Nambu spinor, and the s-wave character of the
pairing ∆k, we can rewrite Hoff−diag as

Hoff−diag = 1
2
∑

k

Ψ†
k

(
−(kα⊥ + b⊥) · σ⊥ ∆0e

iφ

∆0e
−iφ (kα⊥ − b⊥) · σ⊥

)
Ψk (3.25)

By summing up the two results (3.18) and (3.25), the total Hamiltonian H = Hdiag +
Hnondiag acquires the form (3.6).

End of proof.

3.2 The case of magnetic field parallel to the spin-orbit field

Let us consider the case where the spin-orbit coupling α and the magnetic field b are
parallel. Without any loss in generality, we can assume that both these fields point along
the z-direction.

α = (0, 0, αz) (3.26)
b = (0, 0, bz) (3.27)

The Bogolubov de Gennes Hamiltonian (3.6) reduces to

HBdG(k) =
(
ξ0

kσ0 − kαzσz − bzσz ∆0e
iφσ0

∆0e
−iφσ0 −ξ0

kσ0 + kαzσz − bzσz

)
(3.28)
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3.2 – The case of magnetic field parallel to the spin-orbit field

Let us introduce the electron bands for spin-↑ and spin-↓ electrons{
ξk↑ = ε0

k − µ− αzk − bz = ξ0
k − αzk − bz

ξk↓ = ε0
k − µ+ αzk + bz = ξ0

k + αzk + bz
, (3.29)

with ξ0
k given by Eq.(3.2). The band dispersions ξk↑ and ξk↓ are plotted in Fig. 3.2.

(a)

k

αz  0 , bz  0

Fermi level

ξk↑ ξk↓

(b)

k

αz ≠ 0 , bz  0

Fermi level

ξk↑ ξk↓

(c)

k

αz  0 , bz ≠ 0

Fermi level

ξk↑ ξk↓

(d)

k

αz ≠ 0 , bz ≠ 0

Fermi level

ξk↑ ξk↓

Figure 3.2: Plots of ξk↑ and ξk↓, defined in Eqs.(3.29), for different values of the parameters
αz and bz. In particular: Panel (a) the doubly degenerate dispersion relation in the absence of
SOC and magnetic field; (b) the degeneracy is broken by the SOC and the bands are shifted
horizontally; Panel (c) an applied magnetic field open a gap between the two energy branches;
(d) the combined effect of the SOC and magnetic field.

The Hamiltonian (3.28) acquires the form

53



Model for nanowire proximized by a superconductor

HBdG(k) =


ξk↑ 0 ∆0e

iφ 0
0 ξk↓ 0 ∆0e

iφ

∆0e
−iφ 0 −ξ−k↓ 0

0 ∆0e
−iφ 0 −ξ−k↑

 (3.30)

where ξkσ are defined in Eqs.(3.29).
We observe that in this case the Bogolubov de Gennes Hamiltonian (3.30) consists of two
decoupled 2× 2 blocks, related to (1,3) and (2,4) entries, defined as

1. block (1,3)

h(1)(k) =
(

ξk↑ ∆0 e
iφ

∆0 e
−iφ −ξ−k↓

)
=
(
ξ0

k − αzk − bz ∆0 e
iφ

∆0 e
−iφ −(ξ0

k − αzk)− bz

)
(3.31)

2. block (2,4)

h(2)(k) =
(

ξk↓ ∆0 e
iφ

∆0 e
−iφ −ξ−k↑

)
=
(
ξ0

k + αzk + bz ∆0 e
iφ

∆0 e
−iφ −(ξ0

k + αzk) + bz

)
(3.32)

where ξ0
k is defined in Eq.(3.2). In particular, it is possible to verify that the relation

(3.10) between hh(k) and he(k) is valid also for h(1)(k) and h(2)(k) i.e.

σy

(
h(1)(−k)

)∗
σy = −h(2)(k) (3.33)

As we shall see here below, the blocks (1,3) and (2,4) can be interpreted as
block (1,3) → block of spin-↑ excitations

block (2,4) → block of spin-↓ excitations
(3.34)

Let us first proceed by diagonalizing matrices (3.31 and (3.32). In order to do it, we shall
make use of the following theorem.

Theorem 3.1. For any eigenvector w(1,2)
k with eigenvalues E(1,2)

k of the 2 × 2 Hermitian
matrices h(1,2)(k) defined in eq.(3.31) and in eq (3.32), then the vectors −i σy(w(1,2)

−k )∗

are eigenvectors of h(2,1)(k), with eigenvalues E(2,1)
k = −E(1,2)

−k .

Proof. For simplicity, let us proceed by proving Theorem (3.1) for an eigenvector w(1)
k of

h(1)(k). Proof for an eigenvector w(2)
k of h(2)(k) follows similar lines.

Let us start by noting that, if w(1)
k is an eigenvector for h(1)(k), with eigenvalue E(1)

k , i.e.
h(1)(k)w(1)

k = E
(1)
k w

(1)
k , then, taking the complex conjugate of the previous expression,

we obtain (
h(1)(k)w(1)

k

)∗
= E

(1)
k (w(1)

k )∗ (3.35)
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3.2 – The case of magnetic field parallel to the spin-orbit field

By applying the matrix identity (3.33) on vector i σy(w(1)
−k)∗ it follows that

i σy

(
h(1)(−k)w(1)

−k

)∗
= −i h(2)(k)σy(w(1)

−k)∗

Using now eq (3.35) we obtain that

iσy E
(1)
−k(w(1)

−k)∗ = −i h(2)(k)σy(w(1)
−k)∗,

i.e.
h(2)(k)

[
−iσy(w(1)

−k)∗
]

= −E(1)
−k

[
−i σy(w(1)

−k)∗
]

(3.36)

which proves that −i σy(w(1)
−k)∗ is an eigenvector of h(2)(k) with eigenvalue E(2)

k = −E(1)
−k .

End of proof.

Theorem 3.2. Within each block, the eigevectors are independent of the value of bz.

Proof. This is simply because, within each block (3.31) and (3.32), bz multiplies the 2×2
identity matrix.

The case of a Normal nanowire (∆0 = 0)

The case of a Normal, i.e. non-superconducting, nanowire is obtained by removing the
superconducting pairing, i.e. by setting ∆k ≡ 0. Then, the, matrix (3.30) acquires a
diagonal form, i.e.

HBdG(k) =


ξk↑ 0 0 0
0 ξk↓ 0 0
0 0 −ξ−k↓ 0
0 0 0 −ξ−k↑

 (3.37)

and the Hamiltonian H reads

H = 1
2
∑

k

(
ξk↑c

†
k↑ck↑ + ξk↓c

†
k↓ck↓ − ξ−k↑c−k↑c

†
−k↑ − ξ−k↓c−k↓c

†
−k↓

)
+ C (3.38)

where ξkσ is defined in Eqs.(3.29) and the constant C is given by Eq.(3.7).
The Hamiltonian (3.38) can be rewritten in terms of excitation operators γkσ, as follows.
First, we rewrite

ξkσ = |ξkσ|ϑ(ξkσ)− |ξkσ|ϑ(−ξkσ) σ =↑, ↓ (3.39)
where ϑ(·) represents the Heaviside step function.
Then, we re-express the fermion operators ckσ in terms of excitation operators γkση, as
follows

ck↑ =


γk↑e if ξk↑ > 0

γ†
−k↓h if ξk↑ < 0

(3.40)

ck↓ =


γk↓e if ξk↓ > 0

γ†
−k↑h if ξk↓ < 0

(3.41)
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Model for nanowire proximized by a superconductor

where e and h describe electron and hole excitation, respectively. Inserting Eqs.(3.39),
(3.40), and (3.41) into Eq.(3.38), the Hamiltonian is rewritten as (proof given below)

H =
∑

k

[
Ee

k↑

(
γ†

k↑eγk↑e −
1
2

)
+ Eh

k↑

(
γ†

k↑hγk↑h −
1
2

)
+

+Ee
k↓

(
γ†

k↓eγk↓e −
1
2

)
+ Eh

k↓

(
γ†

k↓hγk↓h −
1
2

)]
+
∑

k

ξ0
k (3.42)

where

Ee
k↑ = |ξk↑|ϑ(ξk↑) > 0 spin-↑ excitations (electron type)

Eh
k↑ = |ξ−k↓|ϑ(−ξ−k↓) > 0 spin-↑ excitations (hole type)

Ee
k↓ = |ξk↓|ϑ(ξk↓) > 0 spin-↓ excitations (electron type)

Eh
k↓ = |ξ−k↑|ϑ(−ξ−k↑) > 0 spin-↓ excitations (hole type)

(3.43)

Proof of Eq.(3.42):
Inserting Eqs.(3.39), (3.40), and (3.41) into Eq.(3.38) one obtains

H =
∑

k

ξ0
k + 1

2
∑

k

[(
|ξk↑|ϑ(ξk↑)− |ξk↑|ϑ(−ξk↑)

)
c†

k↑ck↑ +

+
(
|ξk↓|ϑ(ξk↓)− |ξk↓|ϑ(−ξk↓)

)
c†

k↓ck↓ +

−
(
|ξ−k↑|ϑ(ξ−k↑)− |ξ−k↑|ϑ(−ξ−k↑)

)
c−k↑c

†
−k↑ +

+
(
|ξ−k↓|ϑ(ξ−k↓)− |ξ−k↓|ϑ(−ξ−k↓)

)
c−k↓c

†
−k↓

]
=

=
∑

k

ξ0
k + 1

2
∑

k

[
|ξk↑|ϑ(ξk↑)γ†

k↑eγk↑e − |ξk↑|ϑ(−ξk↑)γ−k↓hγ
†
−k↓h +

+ |ξk↓|ϑ(ξk↓)γ†
k↓eγk↓e − |ξk↓|ϑ(−ξk↓)γ†

−k↑hγ−k↑h +

− |ξ−k↑|ϑ(ξ−k↑)γ−k↑eγ
†
−k↑e + |ξ−k↑|ϑ(−ξ−k↑)γ†

k↓hγk↓h +

− |ξ−k↓|ϑ(ξ−k↓)γ−k↓eγ
†
−k↓e + |ξ−k↓|ϑ(−ξ−k↓)γ†

k↑hγk↑h

]
=

=
∑

k

ξ0
k + 1

2
∑

k

[
|ξk↑|ϑ(ξk↑)

(
γ†

k↑eγk↑e − γk↑eγ
†
k↑e

)
+

+ |ξ−k↓|ϑ(−ξ−k↓)
(
γ†

k↑hγk↑h − γk↑hγ
†
k↑h

)
+

+ |ξk↓|ϑ(ξk↓)
(
γ†

k↓eγk↓e − γk↓eγ
†
k↓e

)
+

+ |ξ−k↑|ϑ(−ξ−k↑)
(
γ†

k↓hγk↓h − γk↓hγ
†
k↓h

)
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3.2 – The case of magnetic field parallel to the spin-orbit field

=
∑

k

ξ0
k +

∑
k

[
|ξk↑|ϑ(ξk↑)

(
γ†

k↑eγk↑e −
1
2

)
+ |ξ−k↓|ϑ(−ξ−k↓)

(
γ†

k↑hγk↑h −
1
2

)
+

+|ξk↓|ϑ(ξk↓)
(
γ†

k↓eγk↓e −
1
2

)
+ |ξ−k↑|ϑ(−ξ−k↑)

(
γ†

k↓hγk↓h −
1
2

)]
=
∑

k

ξ0
k +

∑
k

[
Ee

k↑

(
γ†

k↑eγk↑e −
1
2

)
+ Eh

k↑

(
γ†

k↑hγk↑h −
1
2

)
+

+Ee
k↓

(
γ†

k↓eγk↓e −
1
2

)
+ Eh

k↓

(
γ†

k↓hγk↓h −
1
2

)]
(3.44)

End of proof.

• Ground state energy
The fact that the energies (3.43) are by definition positive, enables us to evaluate the
ground state energy E0, and to interpret also the excitations above the ground state.
Indeed, for every k-state, the lower energy is obtained for ⟨γ†

kσηγkση⟩ = 0, yielding a
ground state energy contribution −Eη

kσ
2 < 0, while the higher energy is obtained when

⟨γ†
kσηγkση⟩ = 1, yielding an excited state with energy Eη

kσ
2 > 0. As a consequence, the

ground state energy is

E0 = −1
2
∑

k

∑
σ=↑,↓

∑
η=e,h

Eη
kσ + 1

2
∑
k,σ

ξkσ (3.45)

Inserting Eq.(3.43) into Eq.(3.45), and using Eq.(3.39), one can prove that (proof given
below)

E0 = −
∑

ξk,σ<0
|ξk,σ| (3.46)

Proof of Eq.(3.46):
Inserting Eq.(3.43) into Eq.(3.45), and using Eq.(3.39), one obtains

E0 =− 1
2
∑
k,σ,η

Eη
kσ + 1

2
∑
k,σ

ξkσ =

=− 1
2
∑

k

[
|ξk↑|ϑ(ξk↑) + |ξ−k↓|ϑ(−ξ−k↓) + |ξk↓|ϑ(ξk↓) + |ξ−k↑|ϑ(−ξ−k↑)

]
+

+ 1
2
∑

k

[
|ξk↑|ϑ(ξk↑)− |ξk↑|ϑ(−ξk↑) + |ξk↓|ϑ(ξk↓)− |ξk↓|ϑ(−ξk↓)

]
=

=− 1
2
∑

k

2
[
|ξk,↑|ϑ(−ξk↑) + |ξk,↓|ϑ(−ξk↓)

]
=

=−
∑

ξk,σ<0
|ξk,σ|

(3.47)

End of proof.
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Model for nanowire proximized by a superconductor

• Fermi wavevectors
Taking into account the expressions (3.29), we can re-express Eq.(3.46) by identifying
the Fermi wavevectors, i.e. the wavevectors at which ξkσ’s vanish. They are given by:

k
(±)
F ↑ = σαkSO ±

√
k2

SO + (k0
F ↑)2 (3.48)

k
(±)
F ↓ = −σαkSO ±

√
k2

SO + (k0
F ↓)2 (3.49)

where we have defined

kSO = m∗|αz|
ℏ2 (spin-orbit wavevector) (3.50)

σα = sign(αz) (spin-orbit coupling sign) (3.51)

k0
F ↑ =

√
2m∗(µ+ bz)

ℏ
(bare spin-↑ Fermi wavevector) (3.52)

k0
F ↓ =

√
2m∗(µ− bz)

ℏ
(bare spin-↓ Fermi wavevector) (3.53)

as it is possible to appreciate in Fig.3.3, where the “k(±)
F ” points are the ones for which

the parabolas intersect the Fermi level.

• Excitations
Taking into account the expression (3.42) of the Hamiltonian, and the fact that the
ground state is obtained for ⟨γ†

kσηγkση⟩ = 0, we also deduce that, for each (k, σ, η), the
difference between the higher and the lower energy state is Ekση, which can therefore
be interpreted as the excitation energy over the GS. Concerning the nature of such ex-
citations, the structure of Hamiltonian (3.42) and the definition (3.41) of the fermionic
operators in terms of excitation operators γ, straightforward implies that by applying
the operators γ†

kση on the ground state, four different excitation processes are possible.

1. spin-↑ excitation of electron type
This occur for ξk↑ > 0 (i.e. for k < k

(−)
F ↑ or k > k

(+)
F ↑ ). In this case γ†

k↑e = c†
k↑, i.e.

one creates a spin-↑ “electron” excitation, depicted by solid blue curves in Fig.3.3;
2. spin-↑ excitation of hole type

It occurs when ξ−k↓ < 0 (i.e. for k ∈ [k(−)
F ↓ , k

(+)
F ↓ ]). In this case γ†

k↑h = c−k↓, which
corresponds to removing from the GS an electron with spin-↓ and momentum −k,
which means that we are creating a spin-↑ “hole” excitation, depicted by dashed
blue curves in Fig.3.3;

3. spin-↓ excitation of electron type
This is when ξk↓ > 0 (i.e. for k < k

(−)
F ↓ or k > k

(+)
F ↓ ). In this case, γ†

k↓e = c†
k↓. This

excitation corresponds to creating a spin-↓ “electron” excitation, depicted by solid
yellow curves in Fig.3.3;

4. spin-↓ excitation of hole type
This excitation occurs for ξ−k↑ < 0 (i.e. for k ∈ [k(−)

F ↑ , k
(+)
F ↑ ]), then γ†

k↓h = c−k↑.
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3.2 – The case of magnetic field parallel to the spin-orbit field

In this case one removes from the GS an electron with spin-↑ and momentum −k,
which means that we are creating a spin-↓ “hole” excitation, depicted by dashed
yellow curves in Fig.3.3.

(a)

k

E

Δ0  0 , αz  0 , bz  0

kF
(+)kF

(-)

Ek↑
e Ek↓

e Ek↑
h Ek↓

h

(b)

k

E

Δ0  0 , αz ≠ 0 , bz  0

kF
(+)kF

(-) kF
(+)kF

(-) kS O-kS O

Ek↑
e Ek↓

e Ek↑
h Ek↓

h

(c)

k

E

Δ0  0 , αz  0 , bz ≠ 0

kF
(+)kF

(-) kF
(+)kF

(-)

Ek↑
e Ek↓

e Ek↑
h Ek↓

h

(d)

k

E

Δ0  0 , αz ≠ 0 , bz ≠ 0

kF
(+)kF

(-) kF
(+)kF

(-) kS O-kS O

Ek↑
e Ek↓

e Ek↑
h Ek↓

h

Figure 3.3: The spectrum of the excitation energies of a Normal nanowire (∆0 = 0) plotted as
a function of k for various values of the parameters αz and bz. The spectrum consists of four
excitation bands [see Eq.(3.43)], related to two spin degrees of freedom and to the electron/hole
character. Compare with the spectrum of Fig.3.2.

The case ∆0 > 0

When ∆0 > 0, a superconducting state may appear in the system. Then, let us proceed
by diagonalizing the matrix h(1)(k) in Eq.(3.30). In order to do it, we start by computing
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Model for nanowire proximized by a superconductor

the eigenvalues of matrix (3.31). Denoting by E
(1)
k,+ and E

(2)
k,+ the eigenvalues of matrix

h(1)(k), we obtain that

E
(1)
k,+ = −bz +

√(
ξ0

k − αzk
)2 + ∆2

0

E
(1)
k,− = −bz −

√(
ξ0

k − αzk
)2 + ∆2

0

(3.54)

Let us notice that, as a consequence of theorem (3.2), the eigenvectors of matrix (3.31)
are the same as the eigenvectors of the following matrix

h̃(1)(k) =
(
ξ0

k − αzk ∆0 e
iφ

∆0 e
−iφ −(ξ0

k − αzk)

)
(3.55)

which satisfy the requirements of theorem 2.1. Therefore, we may make use of the latter
to compute the eigenvectors of matrix (3.31). It follows that

w
(1)
k,+ =

(
uk

vk

)
eigenvalue E(1)

k,+

w
(1)
k,− =

(
−v∗

k

u∗
k

)
eigenvalue E(1)

k,−

(3.56)

where

uk =

√√√√√1
2

1 + ξ0
k − αzk√

(ξ0
k − αzk)2 + ∆2

0



vk = e−iφ

√√√√√1
2

1− ξ0
k − αzk√

(ξ0
k − αzk)2 + ∆2

0


(3.57)

A similar remark holds for the diagonalization of the matrix h(2)(k) in Eq.(3.32). How-
ever, in order to diagonalize h(2)(k), we may also make use of theorem 3.1, obtaining
eigenvectors and eigenvalues of h(2)(k) from the eigenvectors and eigenvalues of h(1)(k)
in Eq.(3.31) as follows

−iσy

(
w

(1)
−k,−

)∗
=
(
−u−k

−v−k

)
is eigenvector of h(2)(k) with eigenvalue E

(2)
k,+ = −E(1)

−k,−

(3.58)

−iσy

(
w

(1)
−k,+

)∗
=
(
−v∗

−k

u∗
−k

)
is eigenvector of h(2)(k) with eigenvalue E

(2)
k,− = −E(1)

−k,+
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3.2 – The case of magnetic field parallel to the spin-orbit field

Since we always have the freedom of redefining such obtained eigenvectors by an overall
phase factor, we shall denote

w
(2)
k,+ =

(
u−k

v−k

)
eigenvector of h(2)(k) with eigenvalue E

(2)
k,+

w
(2)
k,− =

(
−v∗

−k

u∗
−k

)
eigenvector of h(2)(k) with eigenvalue E

(2)
k,−

(3.59)

where
E

(2)
k,+ = −E(1)

−k,− = bz +
√(

ξ0
k + αzk

)2 + ∆2
0

E
(2)
k,− = −E(1)

−k,+ = bz −
√(

ξ0
k + αzk

)2 + ∆2
0

(3.60)

Therefore, the diagonal form of matrix (3.30) is

HBdG−d (k) =


E

(1)
k,+ 0 0 0
0 E

(2)
k,+ 0 0

0 0 −E(2)
−k,+ 0

0 0 0 −E(1)
−k,+

 (3.61)

and the four orthonormal eigenvectors w(1)
k,+, w(2)

k,+, w(1)
k,− and w(2)

k,− for the full 4×4 matrix
are

w(1)
k,+ =


uk

0
vk

0

 w(2)
k,+ =


0
u−k

0
v−k

 w(1)
k,− =


−v∗

k

0
u∗

k

0

 w(2)
k,− =


0
−v∗

−k

0
u∗

−k

 (3.62)

Then, the matrix Uk, such that

U †
k HBdG(k)Uk = HBdG−d(k) (3.63)

acquires the form

Uk =


uk 0 −v∗

k 0
0 u−k 0 −v∗

−k

vk 0 u∗
k 0

0 v−k 0 u∗
−k

 (3.64)

Inverting the above relation (3.63)

HBdG(k) = Uk HBdG−d(k)U †
k (3.65)

and inserting it in Eq.(3.6), we obtain

H = 1
2
∑

k

Ψ†
kHBdG (k) Ψk + C = 1

2
∑

k

Ψ†
kUkHBdG−d (k)U †

kΨk + C

= 1
2
∑

k

Γ†
kHBdG−d (k) Γk + C

(3.66)
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where
Γk = U †

kΨk and Γ†
k = Ψ†

kUk (3.67)

and Ψk is given by Eq.(3.5).
Assigning to Γk the same structure of spinor (3.68), i.e.

Γk =



γ̃k↑

γ̃k↓

γ̃†
−k↓

−γ̃†
−k↑


(3.68)

it follows that

Γk =



u∗
kck↑ + v∗

kc
†
−k↓

+u∗
−kck↓ − v∗

−kc
†
−k↑

−vkck↑ + ukc
†
−k↓

−v−kck↓ − u−kc
†
−k↑


(3.69)

The expression of H in terms of γ and γ† is now

H = 1
2
∑

k

(
E

(1)
k,+γ̃

†
k↑γ̃k↑ + E

(2)
k,+γ̃

†
k↓γ̃k↓ − E

(2)
−k,+γ̃−k↓γ̃

†
−k↓ − E

(1)
−k,+γ̃−k↑γ̃

†
−k↑

)
+ C. (3.70)

where the constant C is given in Eq.(3.7). Using Eq.(2.35) and relabeling the summation
index −k → k, the final form is

H = 1
2
∑

k

(
2 ξ0

k − E
(2)
k,+ − E

(1)
k,+

)
+
∑

k

(
E

(1)
k,+γ̃

†
k↑γ̃k↑ + E

(2)
k,+γ̃

†
k↓γ̃k↓

)
=

=
∑

k

ξ0
k +

∑
k

{
E

(1)
k,+

(
γ̃†

k↑γ̃k↑ −
1
2

)
+ E

(2)
k,+

(
γ̃†

k↓γ̃k↓ −
1
2

)}
(3.71)

Excitations
It is important to point out that, differently from the standard BCS case covered in
chapter 2, here the energy E

(1)
k,+ and E

(2)
k,+, defined in Eqs.(3.54) and (3.60) respectively,

may not be positive ∀ k, due to the presence of the magnetic field bz. Indeed, depending
on the magnitude |bz| of the Zeeman field one can distinguish two cases:

1. weak magnetic field ∆0 > |bz|
In this case one has

E
(j)
k,+ > 0 ∀k

and E
(j)
k,+ can be correctly interpreted as excitation energies. Indeed the ground state

GS is obtained for
⟨γ̃†

kσγ̃kσ⟩ = 0 ∀ k, σ
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3.2 – The case of magnetic field parallel to the spin-orbit field

(a)

k

E

Δ0 > 0 , αz  0 , bz  0

Ek
e Ek

e Ek
h Ek

h

(b)

k

E

Δ0 > 0 , αz ≠ 0 , bz  0

Ek
e Ek

e Ek
h Ek

h

(c)

k
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Δ0 > 0 , αz  0 , bz ≠ 0
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h
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Figure 3.4: The spectrum of excitation energies Ek,↑ and Ek↓ of a proximized Nanowire [see
Eqs.(3.72)] is plotted as a function of k, for various values of the parameters α and bz, in the case
|bz| < ∆0. Solid and dashed lines refer to electron-like and hole-like branches of the excitations,
where the quasi-particle operator γkσ in Eq.(3.73) exhibits a predominant weight on the particle
and in the hole sectors [see Eq.(3.57)]
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Then, one can denote

Ek↑ = E
(1)
k,+ = −bz +

√(
ξ0

k − αzk
)2 + ∆2

0

Ek↓ = E
(2)
k,+ = +bz +

√(
ξ0

k + αzk
)2 + ∆2

0

(3.72)

and the related excitations

γk↑ = γ̃k,↑ = u∗
kck↑ + v∗

kc
†
−k↓

γk↓ = γ̃k,↓ = u∗
−kck↓ − v∗

−kc
†
−k↑

(3.73)

are superpositions of particle and hole states. At a given k, depending on the relative
weights of uk and vk in Eqs.(3.57), the excitation is dubbed electron-like or hole-like.
The Hamiltonian (3.71) is rewritten as

H =
∑

k

{
Ek,↑

(
γ†

k↑γk↑ −
1
2

)
+ Ek,↓

(
γ†

k↓γk↓ −
1
2

)}
+
∑

k

ξ0
k (3.74)

In Fig.3.4 the two bands are depicted as a function of k.

2. strong magnetic field ∆0 < |bz|
In this case the energies E(j)

k,+ may become negative for some k-values. When this
occurs, the superconducting gap closes, and they cannot be interpreted as excitation
energies. This means that, for those k-values, in the GS, the expectation value ⟨γ̃†

k↑γ̃k↑⟩
is not equal to zero, and such operators do not describe excitations. Indeed, one may
have two possible situations:

(a) Ek,+ > 0 ⇒ GS is obtained for ⟨γ̃†
kσγ̃kσ⟩ = 0, with energy contribution −

Ek
2 = − |Ek|

2

(b) Ek,+ < 0 ⇒ GS is obtained for ⟨γ̃†
kσγ̃kσ⟩ = 1, with energy contribution +

Ek
2 = − |Ek|

2

This implies that the γ̃†
k operators appearing in the Hamiltonian (3.71) are related to

the actual excitation operators γk’s through the relation

E
(1)
k,+ > 0 ⇒ E

(1)
k,+ = Ek↑ → γ̃k,↑ = γk↑

E
(1)
k,+ < 0 ⇒ E

(1)
k,+ = E−k↓ → γ̃k,↑ = γ†

−k↓

E
(2)
k,+ > 0 ⇒ E

(2)
k,+ = Ek↓ → γ̃k,↑ = γ†

−k↓
E

(2)
k,+ < 0 ⇒ E

(2)
k,+ = E−k↑ → γ̃k,↓ = γ†

−k↑

(3.75)

Thus, the GS energy is

E0 =
∑

k

(
ξ0

k −
1
2 |E

(1)
k,+| −

1
2 |E

(2)
k,+|

)
(3.76)
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3.3 The case of magnetic field perpendicular to the spin-
orbit field: emergence of exotic superconducting pair-
ing

In this section we want to show that, when the magnetic field and the spin-orbit field are
orthogonal, a Nanowire proximized by an s-wave superconductor can also exhibit exotic
p-wave superconducting pairings, controlled by the intensity of the spin-orbit coupling
and the Zeeman field.

3.3.1 BdG Hamiltonian in the natural basis and effective pairings

Before implementing the hypothesis of orthogonality between the spin-orbit and the mag-
netic fields, let us start from the general expression (3.6) of the homogeneous NW proxi-
mized by the s-wave superconductor, and rewrite it in its ’natural basis’, i.e. in the basis
that diagonalizes the particle and hole sectors. To this purpose, we first rewrite Eq.(3.6)
compactly as

HBdG(k) =
(
ξ0

kσ0 + m(k) · σ ∆0e
iφσ0

∆0e
−iφσ0 −ξ0

kσ0 + m(−k) · σ

)
(3.77)

where
m(k) = −(kα + b) = (−αxk − bx ,−αyk − by, −αzk − bz) (3.78)

and the related unit vector

n̂(k) = m(k)
|m(k)| = (sin θk cosφk, sin θk sinφk, cos θk) (3.79)

identifies the azimuthal and polar angles, φk ∈ [0, 2π] and θk ∈ [0, π], respectively.
Explicitly

cos θk = − αzk + bz√
(αxk + bx)2 + (αyk + by)2 + (αzk + bz)2

sin θk =
√

(αxk + bx)2 + (αyk + by)2

(αxk + bx)2 + (αyk + by)2 + (αzk + bz)2

φk = arctan
(

αyk+by

αxk+bx

)
+ πϑ(αxk + bx) ← (here ϑ is the Heaviside function)

(3.80)
where

α = |α| b = |b| (3.81)

• Diagonalization of the electron sector
To diagonalize the electron block of the BdG Hamiltonian (3.77), we exploit the general
expression of the eigenvectors of m(k) · σ, i.e.

χ
(+)
k =

 cos θk
2

eiφk sin θk
2

 χ
(−)
k =

 −e−iφk sin θk
2

cos θk
2

 (3.82)
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and introduce the unitary matrix Uk containing the vectors (3.82) as columns

Uk =
(

cos θk
2 −e−iφk sin θk

2
eiφk sin θk

2 cos θk
2

)
U †

k =
(

cos θk
2 e−iφk sin θk

2
−eiφk sin θk

2 cos θk
2

)
(3.83)

Because Uk contains the eigenvectors of the electron block he(k) = ξ0
k + m(k) · σ,

a rotation by Uk diagonalizes the particle block he(k) = Ukh̃e(k)U †
k , where h̃e(k) =

ξ0
k + |m(k)|σz. In turn, this amounts to identify the new operators c̃k±, in terms of

which the electron Hamiltonian is diagonal

He = 1
2
∑

k

(
c†

k↑, c
†
k↓

)
he(k)

(
ck↑
ck↓

)
=

= 1
2
∑

k

(
c†

k↑, c
†
k↓

)
Uk︸ ︷︷ ︸ h̃e(k)U †

k

(
ck↑
ck↓

)
︸ ︷︷ ︸ (3.84)

whence(
c̃k+
c̃k−

)
= U †

k

(
ck↑
ck↓

)
⇔

(
ck↑
ck↓

)
= Uk

(
c̃k+
c̃k−

)
=
(

cos θk
2 c̃k+ − e−iφk sin θk

2 c̃k−
eiφk sin θk

2 c̃k+ + cos θk
2 c̃k−

)
(3.85)

Remark
We note that matrix Uk in Eq.(3.83) can be interpreted as a rotation by an angle θk

around an axis û(k) lying in the x-y plane and perpendicular to the projection of n̂(k)
in that plane. Indeed Uk can be compactly rewritten as

Uk = cos θk

2 I + i sin θk

2 (sinφk · σx − cosφk · σy) = ei
θk
2 uk·σ (3.86)

where uk is

uk = (sinφk,− cosφk, 0) =
(

cos
(
φk −

π

2

)
, sin

(
φk −

π

2

)
, 0
)

(3.87)

• Diagonalization of the hole sector
The above transformation (3.85) on the upper part of the Nambu spinor Ψk Eq.(3.5)
directly determines, by consistency requirement, the transformation on the lower part
of the Nambu spinor,(

c−k↑
c−k↓

)
= U−k

(
c̃−k+
c̃−k−

)
=
(

cos θ−k

2 c̃−k+ − e−iφ−k sin θ−k

2 c̃−k−
eiφ−k sin θ−k

2 c̃−k+ + cos θ−k

2 c̃−k−

)
(3.88)

which in turn implies(
c†

−k↓
−c†

−k↑

)
=
(
e−iφ−k sin θ−k

2 c̃†
−k+ + cos θ−k

2 c̃†
−k−

− cos θ−k

2 c̃†
−k+ + eiφ−k sin θ−k

2 c̃†
−k−

)
=

=
(

cos θ−k

2 −e−iφ−k sin θ−k

2
eiφ−k sin θ−k

2 cos θ−k

2

)
︸ ︷︷ ︸

=U−k

(
c̃†

−k−
−c̃†

−k+

)
(3.89)
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Combining Eqs.(3.85) and (3.89) we deduce that the Nambu spinor must rotate as
ck↑
ck↓
c†

−k↓
−c†

−k↑

 =
(
Uk 0
0 U−k

)
c̃k+
c̃k−
c̃†

−k−
−c̃†

−k+

 (3.90)

We therefore apply the following rotation

Uk =
(
Uk 0
0 U−k

)
(3.91)

to HBdG(k)

HBdG(k) = Uk H̃BdG(k) U†
k ⇔ H̃BdG(k) = U†

k HBdG(k) Uk (3.92)

obtaining

H̃BdG(k) =
(
ξ0

kσ0 + |m(k)|σz ∆0 e
iφU †

k U−k

∆0 e
−iφU †

−k Uk −ξ0
kσ0 + |m(−k)|σz

)
(3.93)

Note that U †
−k Uk = (U †

k U−k)†, as is expected from the Hermiticity of H̃BdG(k). Fur-
thermore, recalling Eqs.(3.86)-(3.87) the products U †

k U−k and U †
−k Uk can be compactly

rewritten as

U †
kU−k = e−i

θk
2 uk·σ ei

θ−k
2 u−k·σ (3.94)

U †
−kUk = e−i

θ−k
2 u−k·σ ei

θk
2 uk·σ (3.95)

By construction, the rotated BdG Hamiltonian H̃BdG(k) in Eq.(3.93) exhibits particle
and hole blocks that are diagonal. However, the off-diagonal blocks characterized by the
superconducting pairing acquire a richer, k-dependent, texture. As we shall see, novel
types of superconducting pairing arise, due to the products U †

k U−k and U †
−k Uk

U †
k U−k =

=

cos θk
2 cos θ−k

2 + sin θk
2 sin θ−k

2 e−i(φk−φ−k) cos θ−k

2 sin θk
2 e

−iφk − cos θk
2 sin θ−k

2 e−iφ−k

− cos θ−k

2 sin θk
2 e

iφk + cos θk
2 sin θ−k

2 eiφ−k cos θk
2 cos θ−k

2 + sin θk
2 sin θ−k

2 ei(φk−φ−k)


(3.96)

U †
−k Uk =

=

cos θk
2 cos θ−k

2 + sin θk
2 sin θ−k

2 ei(φk−φ−k) − cos θ−k

2 sin θk
2 e

−iφk + cos θk
2 sin θ−k

2 e−iφ−k

cos θ−k

2 sin θk
2 e

iφk − cos θk
2 sin θ−k

2 eiφ−k cos θk
2 cos θ−k

2 + sin θk
2 sin θ−k

2 e−i(φk−φ−k)


(3.97)

67



Model for nanowire proximized by a superconductor

In particular, in the next subsection, we shall explicitly show an example of how effective
p-wave superconducting pairing can be generated from the interplay of superconductivity,
spin-orbit coupling and magnetic field. Before doing that, let us briefly mention what
happens in the case ∆0 = 0.

The case ∆0 = 0
When ∆0 = 0 the rotated BdG Hamiltonian (3.93) of the NW is completely diagonal

H̃BdG(k) =
(
ξ0

kσ0 + |m(k)|σz 0
0 −ξ0

kσ0 + |m(−k)|σz

)
(3.98)

Its four eigenvalues are 
Ee

k,± = ξ0
k ± |m(k)|

Eh
k,± = −ξ0

k ∓ |m(−k)|
(3.99)

with corresponding eigenvectors

Φ̃e
k,+ =


1
0
0
0

 Φ̃e
k,− =


0
1
0
0

 Φ̃h
k,− =


0
0
1
0

 Φ̃h
k,+ =


0
0
0
1

 (3.100)

Thus, the eigenstates Φe/h
k,± of HBdG(k) are straightforwardly obtained using Eq.(3.92)

HBdG(k) Φe/h
k,± = E

e/h
k,± Φe/h

k,± (3.101)

and read
Φe/h

k,± = UkΦ̃e/h
k,± (3.102)

In particular

Φe
k,+ =


cos θk

2
sin θk

2 e
iφk

0
0

 Φe
k,− =


− sin θk

2 e
−iφk

cos θk
2

0
0


(3.103)

Φh
k,− =


0
0

cos θ−k

2
sin θ−k

2 eiφ−k

 Φh
k,+ =


0
0

− sin θ−k

2 e−iφ−k

cos θ−k

2


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3.3.2 The case of SO coupling along z and magnetic field along x-
direction

In the previous Sec.3.3.1, we have kept the directions of α and b completely arbitrary.
As anticipated at the beginning of this section, we now want to focus on the case where
the spin-orbit field and the magnetic field are mutually orthogonal. For definiteness, we
shall choose

α = (0,0, αz) (3.104)

b = (bx,0,0) (3.105)

In this configuration, the general relations Eqs.(3.80) reduce to
cos θk = − sgn(αzk)

√
α2

zk2

b2
x+α2

zk2 = − sgn(αzk) |αzk|√
b2

x+α2
zk2 = − αzk√

b2
x+α2

zk2

sin θk =
√

b2
x

b2
x+α2

zk2 = |bx|√
b2

x+α2
zk2 = sgn(bx) bx√

b2
x+α2

zk2

φk = πϑ(bx) → e±iφk = − sgn(bx)

(3.106)

Since θk
2 ∈ [0, π

2 ], terms of type “cos θk
2 , sin θk

2 ” shall be always positive, thus, in this
interval, the following trigonometric relations are valid

cos θk

2 = +
√

1
2 (1 + cos θk) sin θk

2 = +
√

1
2 (1− cos θk) (3.107)

whence, given that in our particular case cos θ−k = − cos θk, we have

cos θ−k

2 = sin θk

2 and sin θ−k

2 = cos θk

2 (3.108)

Given that φk = φ−k, the product U †
kU−k shall acquire the form

U †
kU−k =

 2 cos θk
2 sin θk

2

(
sin2 θk

2 − cos2 θk
2

)
e−iφk(

cos2 θk
2 − sin2 θk

2

)
eiφk 2 cos θk

2 sin θk
2

 (3.109)

Now, using the following trigonometric relations

2 cos θk

2 sin θk

2 = sin θk (3.110)

cos2 θk

2 − sin2 θk

2 = cos θk (3.111)

then

U †
kU−k =

(
sin θk − cos θke

−iφk

cos θke
iφk sin θk

)
= sgn(bx)√

b2
x + α2

zk
2

(
bx −αzk
αzk bx

)
(3.112)

69



Model for nanowire proximized by a superconductor

and U †
−kUk =

(
U †

kU−k

)†
.

Inserting this last result in Eq.(3.93), together with |m(k)| =
√
b2

x + α2
zk

2, we get

H̃BdG =


ξ0

k +
√
b2

x + α2
zk

2 0 ∆s(k) ∆p(k)
0 ξ0

k −
√
b2

x + α2
zk

2 −∆p(k) ∆s(k)
∆∗

s(k) −∆∗
p(k) −ξ0

k +
√
b2

x + α2
zk

2 0
∆∗

p(k) ∆∗
s(k) 0 −ξ0

k −
√
b2

x + α2
zk

2


(3.113)

where we have defined the k-dependent functions ∆s(k) and ∆p(k) as

∆s(k) = ∆0e
iφ sgn(bx)bx√

b2
x + α2

zk
2 (3.114)

∆p(k) = −∆0e
iφ sgn(bx)αzk√

b2
x + α2

zk
2 (3.115)

In particular, being the ∆s(k) term even in k, it represents the conventional “s-wave” su-
perconducting pairing, which couples electron from different band (interband coupling).
In contrast, the ∆p(k) term represents an effective superconducting pairing that is odd
in k, defining it as “p-wave” pairing. It couples electron from the same band (intraband
coupling) and results from the interplay between spin-orbit coupling and s-wave super-
conducting coupling.
It is this emergent pairing that is responsible for driving the system into the topological
phase. Indeed when the Fermi level lies between the two bands, one can effectively de-
scribe the system in terms of a single band, i.e.the lower one. The electrons of this unique
band can couple via the new effective p-wave term, obtaining an effective spinless p-wave
superconducting system as proposed by Lutchyn and Oreg and discussed in Section 1.3.3.
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Chapter 4

Hybrid junctions in proximized
nanowires

In this chapter, we shall describe hybrid junctions involving nanowires, i.e setups where a
portion of the nanowire is normal (N), while other portions exhibit superconducting (S)
pairing induced through proximity effect by superconducting films deposited on the NW.
These kinds of setups include the so called N-S junctions, or S-N-S junctions, also known
as Josephson junctions, which are the backbone of various modern quantum devices. In
these systems, inhomogeneities in the Rashba spin-orbit coupling are expected to arise
and to affect the physical properties such as the differential conductance or the Josephson
current. However, most theoretical studies on hybrid junctions with nanowires have ne-
glected such inhomogeneities. In particular, a thorough analysis of how inhomogeneities
of the spin-orbit coupling affect Andreev reflection is still lacking. Because such phe-
nomenon underlies the physics of these quantum systems, our ultimate goal is to address
this problem.

4.1 Model for an inhomogeneous proximized nanowire with
spin-orbit coupling

Inhomogeneities in the Rashba spin-orbit coupling in systems with proximized nanowires
emerge for various reasons. The first one is that Rashba spin-orbit coupling can be tuned
locally. Indeed, since the SOC strength depends on the electric field characterizing the
SIA, such field can be controlled by means of voltage applied to local metallic gates
near the nanowire [35, 96, 97, 98, 99]. By designing suitable setup geometries involving
various top-, side- or wrap-gates, one can realize inhomogeneous profiles α(x) of the
Rashba SOC, where both the magnitude α = |α| and the direction n̂ of the Rashba field
depend on the longitudinal position. This sort of inhomogeneity occurs already without
superconductivity, and is purposely generated with the aim of controlling the electron
transmission through the nanowire, exploiting its spin texture.
The second source of inhomogeneities is usually unwanted. It arises from disorder ef-
fects, such as impurity doping, interface density fluctuations, or random variations in the
nanowire shape, which may affect a geometry and structure dependent coupling such as

71



Hybrid junctions in proximized nanowires

SOC [100, 101, 102, 103].

Finally, in the specific case of proximized nanowires, where a superconducting pairing is
induced by proximity effect on the NW portions covered by superconducting metal films,
the different SIA characterizing the covered and uncovered portions of the NW naturally
gives rise to further inhomogeneities of the RSOC. These effects, combined with the in-
homogeneity of the superconducting pairing, are expected to strongly affect the Andreev
reflection process, the spectrum of bound states and the Josephson current.

While some works have analyzed the effects of RSOC inhomogeneities in normal NWs,
showing that they can lead to control and significantly modulate the electron transmission
through the NW [104, 105, 106, 107, 108] , when it comes to hybrid junctions involving
NWs proximized by superconductors, most studies have either assumed a homogeneous
SOC (see e.g. Refs.[85], [86] [109]) or have neglected the SOC in the proximized regions
[110]. Only a few papers have investigated the effects of inhomogeneities of SOC in prox-
imized NWs. However, the main focus of these studies was to distinguish topological
Majorana bound states from trivial bound states originating from inhomogeneities [111,
112, 113]. So far, a detailed investigation of how Andreev reflection is affected by the
RSOC inhomogeneities is still lacking.

Here below, we introduce a general model that enables us to account for spatial inho-
mogeneities both in the superconducting pairing and in the Rashba spin-orbit coupling.
While in this chapter we shall highlight the symmetries of the model and illustrate how
the Bogolubov de Gennes formalism can be exploited to attack these problems, in the
next chapter we shall focus on the specific case of a N-S junction, and show that Andreev
reflection can be strongly affected by inhomogeneities of the Rashba spin-orbit coupling.

Because hybrid systems are intrinsically spatially inhomogeneous, it is convenient to use
a real-space description of the system. The Hamiltonian consists of five terms

H = Hkin +Hµ +HSO +HZ +HSC (4.1)

where
Hkin =

∫
dx
(
Ψ†

↑(x),Ψ†
↓(x)

) P̂ 2

2m∗σ0

(
Ψ↑(x)
Ψ↓(x)

)
(4.2)

describes the kinetic term associated with the effective mass approximation,

Hµ = −
∫
dx
(
Ψ†

↑(x),Ψ†
↓(x)

)
µ(x)σ0

(
Ψ↑(x)
Ψ↓(x)

)
(4.3)

is the term accounting for the chemical potential profile µ(x),

HSO = − 1
2ℏ

∫
dx
(
Ψ†

↑(x),Ψ†
↓(x)

){
α(x), P̂

}
· σ
(

Ψ↑(x)
Ψ↓(x)

)
(4.4)

72



4.1 – Model for an inhomogeneous proximized nanowire with spin-orbit coupling

describes the inhomogeneous Rashba spin-orbit coupling. Here, the anticommutator {· , ·}
in Eq.(4.4) term is necessary because the momentum P̂ = −iℏ∂x does not commute with
a space-dependent vector field α(x) characterizing the spin-orbit field. Moreover,

HZ = −
∫
dx
(
Ψ†

↑(x),Ψ†
↓(x)

)
b(x) · σ

(
Ψ↑(x)
Ψ↓(x)

)
(4.5)

denotes the Zeeman coupling with a magnetic field b(x), whereas

HSC =
∫
dx
[
∆(x)Ψ†

↑(x)Ψ†
↓(x) + ∆∗(x)Ψ↓(x)Ψ↑(x)

]
(4.6)

is the inhomogeneous superconducting pairing potential, which vanishes in the N regions,
while it is present in the proximized regions (S) of the NW. The combination (4.1) of the
above five terms is compactly rewritten as

H =
∫
dx
(
Ψ†

↑(x),Ψ†
↓(x)

) [( P̂ 2

2m∗ − µ(x)
)
σ0 −

1
2ℏ

{
α(x), P̂

}
· σ − b(x) · σ

](
Ψ↑(x)
Ψ↓(x)

)

+
∫
dx
(
∆(x)Ψ†

↑(x)Ψ†
↓(x) + ∆∗(x)Ψ↓(x)Ψ↑(x)

)
(4.7)

Hamiltonian symmetries

• Time-reversal transformation
The time-reversal (TR) transformation T is defined as a anti-linear transformation
operating on the electron fields as follows

T
(

Ψ↑
Ψ↓

)
T −1 .=

(
−Ψ↓
Ψ↑

)
≡ −iσy

(
Ψ↑
Ψ↓

)
(4.8)

and, correspondingly

T
(
Ψ†

↑,Ψ
†
↓

)
T −1 .=

(
−Ψ†

↓,Ψ
†
↑

)
≡
(
Ψ†

↑,Ψ
†
↓

)
iσy (4.9)

The Hamiltonian H is time-reversal invariant iff

T HT −1 = H (4.10)

• Charge-conjugation transformation
The particle-hole or charge-conjugation transformation C is defined as the linear op-
eration mapping each field onto its adjoint Pro

C
(

Ψ↑
Ψ↓

)
C−1 .=

(
Ψ†

↑
Ψ†

↓

)
(4.11)

and, correspondingly
C
(
Ψ†

↑,Ψ
†
↓

)
C−1 .=

(
Ψ↑,Ψ↓

)
(4.12)
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The Hamiltonian H is particle-hole symmetric iff

CHC−1 = H (4.13)

It is straightforward to verify that, differently from TR, C-symmetry typically does
not hold for H given in Eq.(4.7), regardless of the parameter values. Indeed it is easy
to realize that the kinetic term is not charge-conjugation symmetric.

4.2 Bogoliubov de Gennes form of the proximized nanowire
Hamiltonian

It is possible to show that the proximized and inhomogenous NW Hamiltonian (4.7) can
be rewritten in the Bogolubov de Gennes form [1, 90, 91], namely as

H = 1
2

∫
dxΨ†(x)HBdG(x)Ψ(x) + C (4.14)

where

Ψ(x) =


Ψ↑(x)
Ψ↓(x)
Ψ†

↓(x)
−Ψ†

↑(x)

 (4.15)

denotes the four components (real-space) Nambu spinor, and

HBdG(x) =
(

he(x) ∆(x)σ0
∆∗(x)σ0 hh(x)

)
(4.16)

is the Bogolubov de Gennes (BdG) Hamiltonian, i.e. the first-quantization matrix repre-
sentation of the NW Hamiltonian operator H. Finally, C is a constant.

In the BdG Hamiltonian HBdG(x) appearing in Eq.(4.16), the 2× 2 electron-block he(x)
and the 2× 2 hole-block hh(x) are mutually related through

hh(x) = −σyh
∗
e(x)σy (4.17)

and are explicitly given by

he(x) = ξ̂(x)σ0 −
1
2ℏ
{
α(x), P̂

}
· σ − b(x) · σ (4.18)

hh(x) = −ξ̂(x)σ0 + 1
2ℏ
{
α(x), P̂

}
· σ − b(x) · σ (4.19)

where
ξ̂(x) = P̂ 2

2m∗ − µ(x) = − 1
2m∗

∂2

∂x2 − µ(x) (4.20)
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is the kinetic energy operator with respect to the chemical potential, and

b̂SO(x) = 1
2ℏ
{
α(x), P̂

}
= − i2

{
α(x), ∂

∂x

}
= −i

(
α(x) ∂

∂x
+ 1

2(∂xα(x))
)

(4.21)

describes the spin-orbit field operator. Note that, differently from the actual mag-
netic field b, the spin-orbit b̂SO(x) is complex (in particular it is purely imaginary, i.e.
b̂∗

SO(x) = −b̂SO(x)).

Explicitly the BdG Hamiltonian HBdG(x) for the inhomogeneous proximized NW is writ-
ten as

HBdG(x) =
(
ξ̂(x)σ0 − b̂SO(x) · σ − b(x) · σ ∆(x)σ0

∆∗(x)σ0 −ξ̂(x)σ0 + b̂SO(x) · σ − b(x) · σ

)
(4.22)

or equivalently, in a compact form,

HBdG(x) = τz⊗
(
ξ̂(x)σ0 − b̂SO(x) · σ

)
−(τ0⊗(b(x)·σ))+(τ+⊗σ0) ∆(x)+(τ−⊗σ0) ∆∗(x)

(4.23)
where σj are Pauli matrices acting on spin space, while τi are Pauli matrices acting on
Nambu space, and τ± = (τx ± iτy)/2.
Moreover, the constant C in Eq.(4.14) is given by

C =
∫∫

dx dx′δ(x− x′)
(
− ℏ2

2m∗
∂2

∂x2 − µ(x)
)
δ(x− x′) (4.24)

The proof of Eq.(4.22) is given in Appendix A.

The spatially uniform case

In the case of a homogeneous system, where all parameters in the Hamiltonian (4.22) are
spatially uniform

α(x) ≡ α
b(x) ≡ b
∆(x) ≡ ∆0 e

iφ

µ(x) ≡ µ

(4.25)

it is worth rewriting the Hamiltonian (4.14) in k-space, by re-expressing the electron field
operator Ψσ(x) in its Fourier mode operators ckσ

Ψσ(x) = 1√
Ω
∑

k

eikxckσ (4.26)

Ψ†
σ(x) = 1√

Ω
∑

k

e−ikxc†
kσ = 1√

Ω
∑

k

eikxc†
−kσ (4.27)
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whence the Nambu spinor (4.15) can be expressed as

Ψ(x) =


Ψ↑(x)
Ψ↓(x)
Ψ†

↓(x)
−Ψ†

↑(x)

 = 1√
Ω
∑

k

eikx


ck↑
ck↓
c†

−k↓
−c†

−k↑

 = 1√
Ω
∑

k

eikxΨk (4.28)

where Ω→∞ is the entire length of the system and, correspondingly

Ψ†(x) = 1√
Ω
∑

k

e−ikxΨ†
k (4.29)

Here,

Ψk =


ck↑
ck↓
c†

−k↓
−c†

−k↑

 Ψ†
k =

(
c†

k↑, c
†
k↓, c−k↓,−c−k↑

)
(4.30)

is the natural k-space version of the Nambu spinor [see Eq.(2.13)].
Inserting Eqs.(4.28)-(4.29) into Eq.(4.14), and taking into account Eq.(4.22), the Hamil-
tonian acquires a diagonal form in k-space

H = 1
2
∑

k

Ψ†
kHBdG(k)Ψk + C (4.31)

where the k-space Bogolubov de Gennes Hamiltonian found for the homogeneous case
[see Eq.(3.6)] is recovered

HBdG(k) =
(
ξ0

kσ0 − kα · σ − b · σ ∆0e
iφσ0

∆0e
−iφσ0 −ξ0

kσ0 + kα · σ − b · σ

)
(4.32)

Proof of Eqs.(4.31-4.32)

Inserting Eqs.(4.28)-(4.29) into Eq.(4.14), one has

H = 1
2

∫
dxΨ†(x)HBdG(x)Ψ(x) + C =

= 1
2Ω

∫
dx
∑

k

e−ikxΨ†
kHBdG(x)

∑
k2

eik2xΨk2 + C

= 1
2Ω

∫
dx
∑

k

∑
k2

e−ikxΨ†
kHBdG(x)eik2xΨk2 + C

(4.33)

Substituting P̂ → −iℏ ∂
∂x in Eq.(4.22), and considering that, in the homogeneous case,

Eq.(4.25) holds, then HBdG(x) acquires the form

HBdG(x) =

−( ℏ2∂2

2m∗∂x2 + µ
)
σ0 + iα · σ ∂

∂x − b · σ ∆0e
iφσ0

∆0e
−iφσ0

(
ℏ2∂2

2m∗∂x2 + µ
)
σ0 − iα · σ ∂

∂x − b · σ

(4.34)
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Applying now HBdG(x) to the exponential function e−ik2x, it follows that

HBdG(x)e−ik2x = HBdG(k2)e−ik2x (4.35)

where HBdG(k2) is

HBdG(k2) =

(ℏ2k2
2

2m∗ − µ
)
σ0 − k2 α · σ − b · σ ∆0e

iφσ0

∆0e
−iφσ0 −

(ℏ2k2
2

2m∗ − µ
)
σ0 + k2 α · σ − b · σ



(4.36)

i.e. Eq.(4.32). Finally, re-inserting HBdG(k2) in H, we get

H = 1
2Ω

∫
dx
∑

k

∑
k2

e−ikxΨ†
kHBdG(k2)eik2xΨk2 + C =

= 1
2
∑

k

∑
k2

Ψ†
kHBdG(k2)Ψk2

1
Ω

∫
dxe−i(k−k2)x + C =

= 1
2
∑

k

∑
k2

Ψ†
kHBdG(k2)Ψk2δk,k2 + C =

= 1
2
∑

k

Ψ†
kHBdG(k)Ψk + C

(4.37)

which proves Eq.(4.31).

4.3 Hamiltonian symmetries in the BdG formalism

• Time-reversal in the BdG formalism
Since we are dealing with hybrid superconducting systems, it is worth rewriting the
action of the TR transformation on the Nambu spinor (4.15), namely

T ΨT −1 = T


Ψ↑
Ψ↓

Ψ†
↓

−Ψ†
↑

 T −1 .=


−Ψ↓
Ψ↑

Ψ†
↑

Ψ†
↓

 ≡


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0




Ψ↑
Ψ↓

Ψ†
↓

−Ψ†
↑

 = (τ0⊗(−iσy))Ψ

(4.38)
which implies that the TR transformation T on the Nambu spinor is implemented by
the 4× 4 matrix

T = (τ0 ⊗ (−iσy))K (4.39)

where K is the complex conjugation characterizing any anti-linear transformation.
Correspondingly

T Ψ†T −1 = Ψ†(τ0 ⊗ (iσy)) = Ψ† T† (4.40)
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When applying the TR transformation on the Hamiltonian, one obtains

T HT −1 = T
(1

2

∫
dxΨ†(x)HBdG(x)Ψ(x) + C

)
T −1 =

= 1
2

∫
dx T Ψ†(x)T −1 T HBdG(x)T −1︸ ︷︷ ︸

=H∗
BdG

(x)

T Ψ(x)T −1 + C∗︸︷︷︸
=C

=

= 1
2

∫
dxΨ†(τ0 ⊗ (iσy))H∗

BdG(x)(τ0 ⊗ (−iσy)Ψ(x) + C =

= 1
2

∫
dxΨ†(x) (τ0 ⊗ σy)H∗

BdG(x) (τ0 ⊗ σy)Ψ(x) + C =

= 1
2

∫
dxΨ†(x) H ′

BdG(x) Ψ(x) + C

where
H ′

BdG(x) = (τ0 ⊗ σy)H∗
BdG(x) (τ0 ⊗ σy) (4.41)

is the transformed BdG Hamiltonian.
From Eq.(4.41), TR symmetry is fulfilled by H if and only if the following constraint
is fulfilled by the BdG Hamiltonian

HBdG(x) = (τ0 ⊗ σy)H∗
BdG(x) (τ0 ⊗ σy) (4.42)

Exploiting this condition, here we shall verify which of the five terms (Eqs.(4.2) to
(4.6)) of Hamiltonian (4.7) fulfills TR symmetry.

– Kinetic term (with respect the chemical potential)
In this case we are dealing with the following term

Hkin(x) +Hµ(x) = ξ̂(x)(τz ⊗ σ0) =
(
P̂ 2

2m∗ − µ(x)
)

(τz ⊗ σ0) (4.43)

from which, obviously,
(
Hkin(x) +Hµ(x)

)
=
(
Hkin(x) +Hµ(x)

)∗
.

Then, let us compute the quantity given in the rhs of condition (4.42)

(τ0 ⊗ σy)
(
Hkin(x) +Hµ(x)

)∗
(τ0 ⊗ σy) =

= ξ̂(x) (τ0 ⊗ σy)(τz ⊗ σ0)︸ ︷︷ ︸
=τz⊗σy

(τ0 ⊗ σy) =

= ξ̂(x)(τz ⊗ σy)(τ0 ⊗ σy) =

= ξ̂(x)(τz ⊗ σ0)

(4.44)

Therefore the kinetic term (with respect the chemical potential) satisfies TR sym-
metry (and thus, both the kinetic and the chemical potential terms, individually,
satisfy it).
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– Spin-orbit term
The SO term has the form

HSO(x) = −τz ⊗
(
b̂SO(x) · σ

)
(4.45)

where b̂SO(x) = 1
2ℏ

{
α(x), P̂

}
and, consequently, b̂∗

SO(x) = −b̂SO(x). Thus

H∗
SO(x) = −τz ⊗

(
b̂SO(x) · σ

)∗
=

= τz ⊗
(
b̂SO(x) · σ∗

)
(4.46)

Then, given Eq.(4.42), we have to prove that

HSO(x) = (τ0 ⊗ σy)H∗
SO(x) (τ0 ⊗ σy) (4.47)

Considering that σy σ
∗ σy = −σ, it follows

(τ0 ⊗ σy)
(
τz ⊗ σ∗

x,y,z

)
(τ0 ⊗ σy) =

=
(
σy 0
0 σy

)(
σ∗

x,y,z 0
0 −σ∗

x,y,z

)(
σy 0
0 σy

)
=

=
(
−σx,y,z 0

0 σx,y,z

)
=

= −τz ⊗ σx,y,z

(4.48)

Hence

(τ0 ⊗ σy)H∗
SO(x) (τ0 ⊗ σy) = (4.49)

= (τ0 ⊗ σy)
(
τz ⊗

(
b̂SO(x) · σ∗

))
(τ0 ⊗ σy) = (4.50)

= −τz ⊗
(
b̂SO(x) · σ

)
= (4.51)

= HSO(x) (4.52)

In conclusion, we have proven that SO term fulfills TR symmetry.
– Zeeman term

The Zeeman term is
HZ(x) = −τ0 ⊗ (b(x) · σ) (4.53)

Therefore, using σy σ
∗ σy = −σ, we have

(τ0 ⊗ σy)
(
τ0 ⊗ σ∗

x,y,z

)
(τ0 ⊗ σy) = −τ0 ⊗ σx,y,z (4.54)
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whence
(τ0 ⊗ σy)H∗

Z(x) (τ0 ⊗ σy) =

= − (τ0 ⊗ σy)
(
τ0 ⊗ (b(x) · σ∗)

)
(τ0 ⊗ σy) =

= τ0 ⊗
(
b(x) · σ

)
=

= −HZ(x)

(4.55)

We showed that, under TR transformation, the Zeeman term is mapped into its
opposite and thus, it does not satisfy TR symmetry.

– Superconducting term
The superconducting pairing term has the form

HSC(x) = (τ+ ⊗ σ0) ∆(x) + (τ− ⊗ σ0) ∆∗(x) =
(

0 ∆(x)σ0
∆∗(x)σ0 0

)
(4.56)

Then, applying relation (4.42) one gets

(τ0 ⊗ σy)H∗
SC(x) (τ0 ⊗ σy) =

=
(
σy 0
0 σy

)(
0 ∆∗(x)σ0

∆(x)σ0 0

)(
σy 0
0 σy

)
=

=
(

0 ∆(x)∗σy

∆(x)σy 0

)(
σy 0
0 σy

)
=

=
(

0 ∆(x)∗σ0
∆(x)σ0 0

)
=

= (τ+ ⊗ σ0) ∆∗(x) + (τ− ⊗ σ0) ∆(x)

(4.57)

Hence, HSC(x) = (τ0 ⊗ σy)H∗
SC(x) (τ0 ⊗ σy) is valid, and therefore TR symmetry

fulfilled, iff ∆(x) = ∆∗(x), i.e. when ∆(x) represents a real quantity.

• Particle-hole transformation
It is worth noting that the action of the C-transformation onto the Nambu spinor
(4.15)

CΨC−1 = C


Ψ↑
Ψ↓

Ψ†
↓

−Ψ†
↑

 C−1 .=


Ψ†

↑
Ψ†

↓
Ψ↓
−Ψ↑

 ≡


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




Ψ↑
Ψ↓

Ψ†
↓

−Ψ†
↑

 = (τy ⊗ σy)Ψ

(4.58)
is implemented by the 4× 4 matrix τy ⊗ σy. This is a consequence of the redundancy
of the 4 components of the Nambu spinor, which contains both the fields and their
adjoint.
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4.4 Spin operator in BdG formalism

The second-quantized spin operator is defined as (j = x, y, z)

Ŝj(x) =
(
Ψ†

↑(x),Ψ†
↓(x)

)
Sj

(
Ψ↑(x)
Ψ↓(x)

)
=

= ℏ
2
(
Ψ†

↑(x),Ψ†
↓(x)

)
σj

(
Ψ↑(x)
Ψ↓(x)

)
=

= ℏ
2

∑
σ,σ′=↑,↓

Ψ†
σ(x)

(
σj
)

σσ′
Ψσ′(x) (4.59)

where
Sj = ℏ

2σ
j (4.60)

is the first-quantized spin operator. We shall now prove that the operator (4.59) can be
rewritten in the BdG formalism as follows

Ŝj(x) = 1
2 ·

ℏ
2Ψ†(x)(τ0 ⊗ σj)Ψ(x) (4.61)

where Ψ(x) is the Nambu spinor (4.15). Thus, the first-quantized BdG spin-operator is

Sj
BdG = ℏ

2(τ0 ⊗ σj) (4.62)

Proof of Eqs.(4.61)-(4.62)
We rewrite Eq.(4.59) as

Ŝj(x) = (4.63)

= ℏ
2

1
2

∑
σ,σ′=↑,↓

Ψ†
σ(x)

(
σj
)

σσ′
Ψσ′(x) + 1

2 lim
y→x

∑
σ,σ′=↑,↓

Ψ†
σ(x)

(
σj
)

σσ′
Ψσ′(y)

 =

= ℏ
2

1
2

∑
σ,σ′=↑,↓

Ψ†
σ(x)

(
σj
)

σσ′
Ψσ′(x) + 1

2 lim
y→x

∑
σ,σ′=↑,↓

(
σj
)

σσ′

(
δσσ′δ(x− y)−Ψσ′(y)Ψ†

σ(x)
) =

= ℏ
4


∑

σ,σ′=↑,↓
Ψ†

σ(x)
(
σj
)

σσ′
Ψσ′(x) + lim

y→x

∑
σ=↑,↓

δj,3 σδ(x− y)

︸ ︷︷ ︸
=0

− lim
y→x

Ψσ′(y)
(
σj
)∗

σ′σ
Ψ†

σ(x)

 =
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= ℏ
4

{(
Ψ†

↑(x),Ψ†
↓(x)

)
σj

(
Ψ↑(x)
Ψ↓(x)

)
−
(
Ψ↑(x),Ψ↓(x)

) (
σj
)∗
(

Ψ†
↑(x)

Ψ†
↓(x)

)}
=

[insert identity σ0 = (−iσy)(iσy) on the left and on the right of
(
σj
)∗]

= ℏ
4

{(
Ψ†

↑(x),Ψ†
↓(x)

)
σj

(
Ψ↑(x)
Ψ↓(x)

)
−
(
Ψ↑(x),Ψ↓(x)

)
(−iσy)iσy

(
σj
)∗

(−iσy)iσy

(
Ψ†

↑(x)
Ψ†

↓(x)

)}
=

= ℏ
4

{(
Ψ†

↑(x),Ψ†
↓(x)

)
σj

(
Ψ↑(x)
Ψ↓(x)

)
−
(
Ψ↓(x),−Ψ↑(x)

)
σy(σj)∗σy

(
Ψ†

↓(x)
−Ψ†

↑(x)

)}
=

= ℏ
4
(
Ψ†

↑(x),Ψ†
↓(x),Ψ↓(x),−Ψ↑(x)

)
σj 0
0 −σy

(
σj
)∗
σy︸ ︷︷ ︸

=−σj




Ψ↑(x)
Ψ↓(x)
Ψ†

↓(x)
−Ψ†

↑(x)

 =

= ℏ
4


(
Ψ†

↑(x),Ψ†
↓(x),Ψ↓(x),−Ψ↑(x)

)
(τ0 ⊗ σj)


Ψ↑(x)
Ψ↓(x)
Ψ†

↓(x)
−Ψ†

↑(x)


 (4.64)

which is precisely Eq.(4.61) with Eq.(4.62).
End of Proof.

4.5 Bogolubov de Gennes formalism for a spatially inho-
mogeneous system

Whenever the second-quantized Hamiltonian H of a system can be written in the Bogol-
ubov de Gennes form

H = 1
2

∫
dxΨ†(x)HBdG(x)Ψ(x) + C (4.65)

where the Bogolubov de Gennes Hamiltonian exhibits the structure

HBdG(x) =
(

he(x) ∆(x)σ0
∆∗(x)σ0 −σyh

∗
e(x)σy

)
(4.66)

one can apply the Bogolubov de Gennes method for inhomogeneous system that we are
going to describe here below.

4.6 Built-in symmetry of the BdG Hamiltonian

The very structure (4.66) of the BdG Hamiltonian shows that, by construction, HBdG

exhibits an intrinsic symmetry

CHBdGC = −HBdG ↔ (τy ⊗ σy)H∗
BdG(τy ⊗ σy) = −HBdG (4.67)
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where
C = (τy ⊗ σy)K (4.68)

is the first-quantized version of the particle-hole transformation C to the second-quantized
operators of the Nambu spinor, and fulfills

C−1 = C (4.69)

Note that particle-hole C is linear in second-quantization, while its first quantization action
C in Eq.(4.68) is anti-linear, as it involves the complex conjugation K. Because it is the
product of a unitary matrix τy ⊗ σy and complex conjugation K, it is an anti-unitary
operator, since the transformation C preserves the norm of any wavefunction Φ.
We emphasize that the relation (4.67) does not correspond to any physical symmetry of
the second quantized Hamiltonian H. Rather, it is a built-in symmetry characterizing
the structure (4.66) of the first-quantized BdG Hamiltonian HBdG. Because the BdG
Hamiltonian results from re-writing the Hamiltonian H in the form (4.14) using the
Nambu spinor, such built-in symmetry originates from the redundancy of Nambu degrees
of freedom, which contains both the field operators and their adjoint.

4.7 Bogolubov quasi-particles

The built-in symmetry (4.67) implies that, for any given (4× 1 spinor) eigenfunction

Φ(x) =

 (
u(x)

)(
v(x)

)  =


u↑(x)
u↓(x)
v↓(x)
v↑(x)

 (4.70)

of the BdG Hamiltonian with energy E,

HBdG(x)Φ(x) = EΦ(x) (4.71)

the wavefunction

Φ′(x) = CΦ(x) = (τy ⊗ σy)Φ∗(x) =
(
−iσyv∗(x)
iσyu∗(x)

)
=


−v∗

↑(x)
v∗

↓(x)
u∗

↓(x)
−u∗

↑(x)

 (4.72)

is also an eigenfunction of the BdG Hamiltonian, with eigenvalue −E.
Indeed, taking the complex conjugate of Eq.(4.71)

H∗
BdG(x)Φ∗(x) = EΦ∗(x)

[apply(τy ⊗ σy)to both sides]
⇓

(τy ⊗ σy)H∗
BdG(x)(τy ⊗ σy)︸ ︷︷ ︸

=−HBdG(x) from Eq.(4.67)

(τy ⊗ σy)Φ∗(x)︸ ︷︷ ︸
=CΦ(x)=Φ′(x)

= E (τy ⊗ σy)Φ∗(x)︸ ︷︷ ︸
=CΦ(x)=Φ′(x)

⇓
HBdG(x)Φ′(x) = −EΦ′(x)

(4.73)
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As a consequence, the spectrum of the BdG equation is by construction symmetric around
E = 0. Therefore, we can only look for solutions Φ(+)

n with non-negative eigenvalues
En ≥ 0

HBdG(x)
(

un(x)
vn(x)

)
= En

(
un(x)
vn(x)

)
En ≥ 0 (4.74)

Then, the entire set of eigenfunctions Φn can be split into two groups

solutions with energy En ≥ 0 Φ(+)
n (x) =

(
un(x)
vn(x)

)
=


u↑,n(x)
u↓,n(x)
v↓,n(x)
v↑,n(x)

 (4.75)

solutions with energy −En ≤ 0 Φ(−)
n (x) = C

(
un(x)
vn(x)

)
=


−v∗

↑,n(x)
v∗

↓,n(x)
u∗

↓,n(x)
−u∗

↑,n(x)

 (4.76)

that are mutually connected through charge-conjugation

Φ(−)
n (x) = CΦ(+)

n (x) Φ(+)
n (x) = CΦ(−)

n (x) (4.77)

where C is given by Eq.(4.68) and the label n runs over a half of the eigenfunction quan-
tum numbers, i.e. En ≥ 0.

Zero energy solutions
In solving the BdG equations, there might be eigenfunctions at zero energy. Because
the charge conjugation transformation (4.72) maps a zero energy eigenfunction into a
zero energy eigenfunction, this means that, the zero-energy subspace of the Bogolubov de
Gennes Equation can always be considered as spanned by a basis formed by eigenfunctions
that are also eigenfunctions of the charge-conjugation operator

CΦ0(x) = ±Φ0(x) (4.78)

Recalling Eq.(4.68), this means that such wavefunction must fulfill
u↑(x)
u↓(x)
v↓(x)
v↑(x)

 = ±


−v∗

↑(x)
v∗

↓(x)
u∗

↓(x)
−u∗

↑(x)

 (4.79)

In customary systems, when zero energy solutions exist, they always come in pairs. How-
ever, in topological systems, there might be under suitable conditions, only one single
zero energy solution. In that case, it must be an eigenfunction of charge conjugation
(4.78).
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4.7 – Bogolubov quasi-particles

Direct relations
Because HBdG is Hermitean, its entire set of eigenfunctions (with positive and nega-
tive energies) form an orthogonal complete set of the 4 × 1 wavefunction Hilbert space.
Thus, we can expand the Nambu field operator in terms of the BdG eigenfunction Φn’s
multiplied by an operator each. In doing that, we separate the Φ(+)

n (x) from the Φ(−)
n (x)

Ψ(x) =
∑

En≥0

(
Φ(+)

n (x)γn + Φ(−)
n (x)γ†

n

)
=
∑

En≥0


Φ(+)

n (x)

 ,

Φ(−)
n (x)




︸ ︷︷ ︸
4×2

(
γn

γ†
n

)
︸ ︷︷ ︸

2×1

(4.80)
which can be compactly rewritten as

Ψ(x) =
∑

En≥0

(
Φ(+)

n (x)γn + Φ(−)
n (x)γ†

n

)
=
∑

En≥0
Wn(x)Γn (4.81)

by introducing the matrix-valued function

Wn(x) .=


Φ(+)

n (x)

 ,

Φ(−)
n (x)




︸ ︷︷ ︸
4×2

W†
n(x) .=


(
Φ(+)

n (x)
)†(

Φ(−)
n (x)

)†


︸ ︷︷ ︸

2×4

(4.82)

and the 2× 1 operator spinor

Γn(x) .=
(
γn

γ†
n

)
(4.83)

The operators γn, γ
†
n are called Bogoliubov quasi-particle (second-quantized) operators.

Remark 1: Notice that in Eq.(4.80) the operator γ†
n multiplying the negative energy

solution Φ(−)
n must be the Hermitean conjugate of the operator γn multiplying the posi-

tive energy solution Φ(+)
n related through charge conjugation (4.77). This is a consistency

condition arising from the intrinsic redundancy of the Nambu spinor

CΨ(x)C−1 = CΨ(x) (4.84)
⇓

C

 ∑
En≥0

(
Φ(+)

n (x)γn + Φ(−)
n (x)γ†

n

) C−1 = C
∑

En≥0

(
Φ(+)

n (x)γn + Φ(−)
n (x)γ†

n

)
(4.85)

⇓∑
En≥0

(
Φ(+)

n (x)γ†
n + Φ(−)

n (x)γn

)
=

∑
En≥0

(
Φ(−)

n (x)γn + Φ(+)
n (x)γ†

n

)
(4.86)

Remark 2: Notice that, in our notation, the quantum number n appearing in the oper-
ators γn, γ

†
n labels the positive energy solutions. Indeed in the Nambu spinor expansion

Eq.(4.80), n denotes the quantum number of a solution Φ(+)
n , and the negative energy
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solutions, labelled as Φ(−)
n , are the charge-conjugated of the positive energy ones [see

Eq.(4.76)]. Of course, Eq.(4.80) could in principle be rewritten as

Ψ(x) =
∑

En≥0

(
Φ(+)

n (x)γn + Φ(−)
n (x)γnc

)
(4.87)

with nc denoting the ’charge-conjugated’ of n, i.e. the quantum number labelling the
negative energy eigenfunctions obtained from charge-conjugation of the positive energy
Φ(+)

n . However, the consistency imposed by the Nambu redundancy would impose the
constraint

γ†
n(E) = γnc(−E) (4.88)

which elucidates that the γ-operators related to negative energies would not be indepen-
dent of the one with positive energy.

In particular, notice that the operators related to zero energy solutions (E = 0) that
are eigenstate of the charge conjugation transformation [see Eq.(4.78)] necessarily fulfill
nc = n and

γ†
0 = γ0 Majorana quasi-particle (4.89)

i.e. they are equal to their adjoint. These operators describe Majorana quasi-particles.

Remark 3: Taking into account the expression of Φ(−)
n and Φ(+)

n [see Eqs.(4.75)-(4.76)],
the explicit expression of the electron field operators Ψ↑ and Ψ↓ in terms of the γn’s can
be gained from the upper two components in the expansion (4.80) of the Nambu electron
field operator 

Ψ↑(x) =
∑

n

(
u↑,nγn − v∗

↑,nγ
†
n

)
Ψ↓(x) =

∑
n

(
u↓,nγn + v∗

↓,nγ
†
n

) (4.90)

Inverse relations
The BdG eigenfunctions exhibit a mutual orthogonality∫

dx (Φ(s)
n (x))† (Φ(s′)

m (x)) = δs,s′δn,m s, s′ = ± (4.91)

which can be compactly rewritten using the matrix Wn(x) defined in Eq.(4.82)∫
dx W†

n(x) Wm(x) = σ0 δn,m (4.92)

By multiplying Eq.(4.87) on the left by W†
n(x) and integrating over x, one can invert the

transformation Eq.(4.80) or and express the Bogolubov quasi-particles in terms of the
Nambu field operator

Γn =
∫
dxW†

n(x) Ψ(x) (4.93)
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4.8 – Hamiltonian in the Bogolubov quasi-particle basis

Recalling the definition (4.82) and (4.83), one obtains

γn =
∫
dx (Φ(+)

n (x))† Ψ(x) =
∫
dx
(
u∗

↑,n, u
∗
↓,n, v

∗
↓,n, v

∗
↑,n

)
(x)


Ψ↑
Ψ↓
Ψ†

↓
−Ψ†

↑

 (x) (4.94)

γ†
n =

∫
dx (Φ(−)

n (x))† Ψ(x) =
∫
dx (−v↑,n, v↓,n, u↓,n,−u↑,n) (x)


Ψ↑
Ψ↓
Ψ†

↓
−Ψ†

↑

 (x) (4.95)

Remark 1: By inspecting the scalar products in Eqs.(4.94)-(4.95), it is straightforward
to realize that the above results can equivalently be expressed in two equivalent ways

γn =
∫
dxΨ†(x) Φ(−)

n (x) =
∫
dx
(
Ψ†

↑,Ψ
†
↓,Ψ↓,−Ψ↑

)
(x)


−v∗

↑,n

v∗
↓,n

u∗
↓,n

u∗
↑,n

 (x) (4.96)

γ†
n =

∫
dxΨ†(x) Φ(+)

n (x) =
∫
dx
(
Ψ†

↑,Ψ
†
↓,Ψ↓,−Ψ↑

)
(x)


u↑,n

u↓,n

v↓,n

v↑,n

 (x) (4.97)

Remark 2: It is possible to prove that the anti-commutation relations of the fermionic
field operators {Ψσ(x),Ψ†

σ′(x′)} = δσ,σ′δ(x− x′) imply that the Bogolubov operators are
also fermionic

{γn , γ
†
m} = δn,m (4.98)

4.8 Hamiltonian in the Bogolubov quasi-particle basis

One can now rewrite the Hamiltonian H in Eq.(4.14) in terms of the Bogolubov quasi-
particle operators γn’s. It is possible to show that

H =
∑
n>0

En

(
γ†

nγn −
1
2

)
+ C (4.99)

which can be interpreted as a collection of two-level systems, labelled by n. Indeed, de-
pending on whether the eigenvalue of number operator γ†

nγn is 1 or 0, i.e. on whether
the fermionic level is occupied or empty, the energy value is ±En/2.

Proof of Eq.(4.99):
In order to prove that the Hamiltonian (4.14) can be rewritten as Eq.(4.99), we insert
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the expression (4.80) of the Nambu field, and the related expression for its adjoint

Ψ(x) =
∑
n>0

((
Φ(+)

n (x)
)
,
(
Φ(−)

n (x)
))

︸ ︷︷ ︸
=4×2

(
γn

γ†
n

)
︸ ︷︷ ︸
=2×1

(4.100)

Ψ†(x) =
∑
m>0

(
γ†

m , γm

)
︸ ︷︷ ︸

=1×2

((Φ(+)
m )†(x)

)(
(Φ(−)

m )†(x)
)

︸ ︷︷ ︸
2×4

(4.101)

into the Hamiltonian (4.14), obtaining

H = 1
2

∫
dx

∑
m,n>0

(
γ†

m , γm

)((Φ(+)
m )†(x)

)(
(Φ(−)

m )†(x)
) HBdG(x)

((
Φ(+)

n (x)
)
,
(
Φ(−)

n (x)
))(γn

γ†
n

)
+ C

(4.102)

Recalling now that Φ(±)
n (x) are the eigenfunctions of HBdG with eigenvalues ±En,

HBdG(x)Φ(±)
n (x) = ±En Φ(±)

n (x) (4.103)

one has

H = 1
2

∫
dx
∑

m,n>0

(
γ†

m , γm

)((Φ(+)
m )†(x)

)(
(Φ(−)

m )†(x)
) (

En 0
0 −En

) ((
Φ(+)

n (x)
)
,
(
Φ(−)

n (x)
))(γn

γ†
n

)
+ C =

= 1
2
∑

m,n>0

{
Enγ

†
mγn

(∫
dx(Φ(+)

m )†(x) · Φ(+)
n (x)

)
− Enγmγ

†
n

(∫
dx(Φ(−)

n )†(x) · Φ(−)
m (x)

)}
+ C

exploiting the orthonormality conditions (4.91), one finds

H = 1
2
∑
n>0

En

(
γ†

nγn − γnγ
†
n

)
+ C (4.104)

Exploiting now the anti-commutation relations (4.98) of the Bogolubov quasi-particles,
we finally obtain the claimed Eq.(4.99).

The ground state

Since by construction En ≥ 0, for each of the two-level system appearing in Eq.(4.99)
the ground state has an energy −En/2 (unoccupied level), while the excited state has an
energy +En/2 (occupied level). This means that En ≥ 0 represents the excitation energy,
and that the ground state |G⟩ of the inhomogeneous system is defined as

γn|G⟩ = 0 ∀n (4.105)

The ground state energy E0 = ⟨G|H|G⟩ is obtained when all excited levels are left empty
and is equal to

E0 = C − 1
2
∑

n

En (4.106)
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4.8 – Hamiltonian in the Bogolubov quasi-particle basis

Note that, although both (1/2)∑nEn and C are formally infinite constants, their differ-
ence E0 is typically finite.
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Chapter 5

The case of a single N/S interface
in the nanowire

Figure 5.1: Schematic geometry of the Normal-Superconductor (N-S) junction. The system is
modeled as a 1D nanowire. The Normal Region (N) and the Superconducting Region (S) are
connected through a vertical planar interface, as illustrated in the figure.

Let us now consider the problem of an interface between a normal region N that is not
proximized ∆0 = 0, and a nanowire region S proximized by a superconducting film, where
the superconducting pairing ∆0 > 0 is present

∆(x) = ϑ(x− x0)∆0e
iφ (5.1)

where x0 is the location of the interface. Fig.5.1 shows a schematic representation of such
a system.
Moreover, we shall assume that the hemical potential µ(x), the magnetic field b(x) and
the spin-orbit coupling α(x) can take different values on the two sides N and S of the
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junction. For simplicity, we shall consider piecewise constant profiles, i.e.

µ(x) = ϑ(x0 − x)µN + ϑ(x− x0)µS (5.2)
b(x) = ϑ(x0 − x)bN + ϑ(x− x0)bS (5.3)
α(x) = ϑ(x0 − x)αN + ϑ(x− x0)αS (5.4)

Equation (5.2) implies that the operator Eq.(4.20) is

ξ̂(x) = − 1
2m∗

∂2

∂x2 − ϑ(x0 − x)µN − ϑ(x− x0)µS (5.5)

while Eq.(5.4) leads to the spin-orbit field operator Eq.(4.21)

b̂SO(x) = −i
(
α(x) ∂

∂x
+ 1

2(∂xα(x))
)

=

= −i
(
α(x) ∂

∂x
+ 1

2(αS −αN ) δ(x− x0)
)

(5.6)

The BdG Equations for the N-S junction are obtained from Eq.(4.22) and read(
ξ̂(x)σ0 − b̂SO(x) · σ − b(x) · σ ∆(x)σ0

∆∗(x)σ0 −ξ̂(x)σ0 + b̂SO(x) · σ − b(x) · σ

)
Φ(x) = E Φ(x) E ≥ 0

(5.7)
where ξ̂(x) is given by Eq.(5.5), b̂SO(x) by Eq.(5.6) and ∆(x) by Eq.(5.1), and b(x) by

Eq.(5.3), while the components read [see Eq.(4.70)]

Φ(x) =
(

u(x)
v(x)

)
=


u↑(x)
u↓(x)
v↓(x)
v↑(x)

 . (5.8)

5.1 Interface boundary conditions

At the interface x0, the wavefunction Φ(x) must satisfy specific constraints at the in-
terface. Here below we shall show that, the assumptions of piecewise constant profiles
Eqs.(5.1),(5.2), (5.3) and (5.4) lead to the following boundary conditions at the N-S
interface x0

Φ(x+
0 ) = Φ(x−

0 ) = Φ(x0) (5.9)

and

∂xΦ(x+
0 )− ∂xΦ(x−

0 ) = i
m∗

ℏ2

(
τ0 ⊗

((
αS −αN

)
· σ
))

Φ(x0) (5.10)

Notably, the wavefunction derivative exhibits a discontinuity at the interface location x0,
related to the abrupt jump of the spin-orbit coupling (5.4), whereas the discontinuities
(5.2) and (5.3) in the chemical potential and magnetic field do not affect the boundary
conditions. We now proceed by deriving these boundary conditions.
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5.1 – Interface boundary conditions

Rewriting the Bogoliubov equations (5.7) with the Hamiltonian Eq.(4.22) for the two
2× 1 spinors u(x) and v(x) of the wavefunction (5.8), one obtains

(
ξ̂(x)σ0 − b̂SO(x) · σ − b(x) · σ

)
u(x) + ∆(x)v(x) = E u(x)

∆∗(x)u(x)−
(
ξ̂(x)σ0 − b̂SO(x) · σ + b(x) · σ

)
v(x) = E v(x)

(5.11)

Substituting Eqs.(5.5) and (5.6), one obtains

− 1
2m∗ ∂

2
xu− µ(x)u(x) + i

(
α(x) · σ ∂xu(x) + 1

2(αS −αN ) · σ u(x) δ(x− x0)
)

+

−b(x) · σ u(x) + ∆(x)v(x) = Eu(x)
(5.12)

1
2m∗ ∂

2
xv + µ(x)v(x)− i

(
α(x) · σ ∂xv(x) + 1

2(αS −αN ) · σ v(x) δ(x− x0)
)

+

−b(x) · σ v(x) + ∆∗(x)u(x) = Ev(x)
(5.13)

• Continuity of the wavefunction
The first equation (5.12) implies that the function u(x) must be continuous at x0.
Indeed, if u(x) had a discontinuity at x0, its first derivative would behave as ∂xu ∝
δ(x − x0), while its second derivative as ∂2

xu ∝ ∂xδ(x − x0). However, the other
equation terms do not exhibit a term ∂xδ(x − x0) and the equation could not be
fulfilled. Similarly, the second equation (5.12) implies that the function v(x) must be
continuous at x0{

u(x+
0 ) = u(x−

0 ) = u(x0)
v(x+

0 ) = v(x−
0 ) = v(x0)

=⇒ Φ(x+
0 ) = Φ(x−

0 ) = Φ(x0) (5.14)

which is the claimed Eq.(5.9).

• Discontinuity of the first derivative of the wavefunction
To derive the boundary conditions for the first derivative, we integrate each of the two
BdG equations over an infinitesimal interval [x0 − ϵ, x0 + ϵ], taking the limit ϵ→ 0,

lim
ϵ→0

∫ x0+ϵ

x0−ϵ

(
HBdG(x)− E

)
Φ(x) dx = 0 ⇔


lim
ϵ→0

∫ x0+ϵ

x0−ϵ
Eq.(5.12) dx

lim
ϵ→0

∫ x0+ϵ

x0−ϵ
Eq.(5.13) dx

(5.15)
When integrating, we observe that, because u and v are continuous, their derivatives
∂xu and ∂xv can at most exhibit a jump discontinuity (not a divergence), and are
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bounded. Thus, their integral over the infinitesimally small domain [x0 − ϵ, x0 + ϵ]
vanishes. Integrating Eq.(5.12) one obtains

− ℏ2

2m∗

(
∂xu(x+

0 )− ∂xu(x−
0 )
)
−
∫ x0+ϵ

x0−ϵ
µ(x)u(x) dx︸ ︷︷ ︸

→0

+i
∫ x0+ϵ

x0−ϵ
α(x) · σ ∂xu(x) dx︸ ︷︷ ︸

→0

+

+ i

2(αS −αN ) · σ
∫ x0+ϵ

x0−ϵ
u(x) δ(x− x0) dx︸ ︷︷ ︸

u(x0)

−
∫ x0+ϵ

x0−ϵ
b(x) · σ u(x) dx︸ ︷︷ ︸

→0

+

+
∫ x0+ϵ

x0−ϵ
∆(x)v(x) dx︸ ︷︷ ︸

→0

= E

∫ x0+ϵ

x0−ϵ
u(x) dx︸ ︷︷ ︸

→0

(5.16)

which leads to

∂xu(x+
0 )− ∂xu(x−

0 ) = i
m∗

ℏ2

((
αS −αN

)
· σ
)

u(x0) (5.17)

Similarly, integrating Eq.(5.13) one obtains
ℏ2

2m∗

(
∂xv(x+

0 )− ∂xv(x−
0 )
)

+
∫ x0+ϵ

x0−ϵ
µ(x)v(x) dx︸ ︷︷ ︸

→0

−i
∫ x0+ϵ

x0−ϵ
α(x) · σ ∂xv(x) dx︸ ︷︷ ︸

→0

+

− i2(αS −αN ) · σ
∫ x0+ϵ

x0−ϵ
v(x) δ(x− x0) dx︸ ︷︷ ︸

v(x0)

−
∫ x0+ϵ

x0−ϵ
b(x) · σ v(x) dx︸ ︷︷ ︸

→0

+

+
∫ x0+ϵ

x0−ϵ
∆∗(x)u(x) dx︸ ︷︷ ︸

→0

= E

∫ x0+ϵ

x0−ϵ
v(x) dx︸ ︷︷ ︸

→0

(5.18)

which leads to

∂xv(x+
0 )− ∂xv(x−

0 ) = i
m∗

ℏ2

(
(αS −αN ) · σ

)
v(x0) (5.19)

Finally, recalling Eq.(5.8), we can recast the two conditions Eqs.(5.16) and (5.18) into
Eq.(5.10).

5.1.1 Scattering Matrix

In this section we shall illustrate how the boundary conditions defined in Eqs.(5.9)-(5.10)
enable us to construct the Scattering Matrix, which enables us to extract all the relevant
physical transport properties and, in particular, the Andreev reflection.

We start by observing that the wavefunction Φ(x) for the entire N-S system is expressed
as the following piecewise function:

Φ(x) =


ΦN (x) if x ≤ x0

ΦS(x) if x > x0

(5.20)
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where x0 denotes the interface positions. Then, it is worth rewriting the boundary con-
dition (5.10) describing the discontinuity of the first derivatives by separating the terms
related to ΦN (x) in N region from those of ΦS(x) in S region. Then, the boundary
conditions (5.9)-(5.10) for Φ(x) are rewritten as

ΦN (x−
0 ) = ΦS(x+

0 )

∂xΦN (x−
0 )− im

∗

ℏ2

(
τ0 ⊗

(
αN · σ

))
ΦN (x−

0 ) = ∂xΦS(x+
0 )− im

∗

ℏ2

(
τ0 ⊗

(
αS · σ

))
ΦS(x+

0 )
(5.21)

Since the wavefunctions are four-component spinors, Eq.(5.21) corresponds to a system
of 8 linear equations. In order to proceed to the solution, we shall borrow some concepts
from the Scattering formalism formulated by Landauer & Büttiker [114, 115].

At a given energy E, the wavefunctions ΦN (x) and ΦS(x) on each side of the junction,
are superposition of planewaves eigenstates of the form eikEx, each being multiplied by
its complex amplitude. One can distinguish two types of waves.

• The wavefunctions characterized by a real wavevector kE are called propagating modes.
They might be particle or hole modes (in the N side) and particle-like or hole-like (in
the S side). The sign of the group velocity v = ℏ−1∂kEk determines the propagation
direction of the mode (rightwards or leftwards). At each energy E, one always has
an even number of propagating modes. Indeed for any propagating mode with a
positive group velocity, there exists also another propagating mode with negative group
velocity. Specifically, in the system considered here, for any mode with velocity vE > 0,
there exist a mode with the same energy E and opposite velocity −vE (although not
necessarily with the opposite wavevector). Such a pair of counter-propagating modes
form a quantum propagating channel. In each side of the interface, we shall label by a
the amplitudes of propagating modes that are incoming towards the interface, and by
b the amplitudes of the modes that are outgoing from the interface;

• At the energy E, one can also have wavefunctions characterized by a wavevector k
with an imaginary part. Again, in each side of the interface, such modes come always
in pairs with complex conjugate imaginary parts of the wavevectors. However, only
the ones that do not diverge exponentially at |x| → ∞ are physically acceptable and
should be retained. These are dubbed evanescent modes.

The number of propagating and evanescent modes depend on the energy. For a given
energy range, in each side i = N,S of the interface, one has a number Np,N and Np,S

of propagating channels, and each channel exhibits a mode incoming towards the inter-
face (with an amplitude denoted by a) and a mode outgoing from the interface (with
an amplitude denoted by b). Thus, in each side, one has 2Np,i unknown amplitudes.
Furthermore, each side can also exhibit a number Ne,N (and Ne,S) of evanescent modes,
whose amplitudes are denoted by c. We also note that, in the system considered here, at
each given energy E, there are always 8 wavevectors in each side. Therefore, the following
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relation holds

2(Np,i +Ne,i) = 8 ⇔ Np,i +Ne,i = 4 i = N,S (5.22)

In summary, one has

NN = 2Np,N +Ne,N = # of unknowns on the N side
NS = 2Np,S +Ne,S = # of unknowns on the S side (5.23)

We now denote by

vN =

a . . . b . . .︸ ︷︷ ︸
2Np;N

, c . . .︸︷︷︸
Ne;N


T

= vector of the NN unknown amplitudes on the N side

vS =

a . . . b . . .︸ ︷︷ ︸
2Np;S

, c . . .︸︷︷︸
Ne;S


T

= vector of the NS unknown amplitudes on the S side

(5.24)
Then, Eq.(5.21) can be written as MN (x0)


︸ ︷︷ ︸

8×NN

(
vN

)
︸ ︷︷ ︸
NN ×1

=

 MS(x0)


︸ ︷︷ ︸

8×NS

(
vS

)
︸ ︷︷ ︸
NS×1

(5.25)

where the matrices MN (x0) and MS(x0) contain the various waves (travelling or evanes-
cent) on the N and S side, respectively, evaluated at x0.
As a whole, this is a set of 8 linear equations for NN +NS unknowns. This implies that
one will be able to fix only 8 unknowns in terms of the remaining NN + NS − 8, which
remain undetermined. Exploiting Eqs.(5.22) and (5.23) it is straightforward to see that
total number of undetermined unknowns is

Np
.= NN +NS − 8 (total # of undetermined unknowns) =
≡ Np,N +Np,S (total # of propagating channels) (5.26)

Notice also that

8 = total # of determined unknowns =Np,N +Np,S +Ne,N +Ne,S (5.27)

We shall choose the amplitudes a of the incoming propagating modes as the undetermined
unknowns. Thus, the boundary conditions (5.25) will enables us to express all the b
amplitudes of the outgoing propagating modes and all the c amplitudes of the evanescent
modes in terms of the a amplitudes of the incoming propagating modes.

b
...
c


︸ ︷︷ ︸
8×1

=

 S


︸ ︷︷ ︸
Σ (8×Np)

(
a
)

︸ ︷︷ ︸
Np×1

(5.28)

96



5.1 – Interface boundary conditions

where the upper part of the Σ matrix, called the Scattering matrix, is a Np ×Np matrix
connecting the outgoing amplitudes to the incoming amplitudes. Then we have:

• N region

Range 1 vN =
(
ae

↗,+, a
e
↙,+, a

h
↗,−, a

h
↙,−, b

e
↗,−, b

e
↙,−, b

h
↗,+, b

h
↙,+

)T
{
Np,N = 4
Ne,N = 0

Range 2 vN =
(
ae

↗,+, a
e
↙,+, b

h
↗,−, b

h
↙,−, c

h
↗,−, c

h
↙,−

)T
{
Np,N = 2
Ne,N = 2

• S region

Sub-Gap vS =
(
ce

↑,+, c
e
↓,+, c

h
↑,+, c

h
↓,+

)T
{
Np,S = 0
Ne,S = 4

Lower
Supra-gap vS =

(
ae

↑,−, a
e
↓,−, a

h
↑,+, a

h
↓,+, b

e
↑,+, b

e
↓,+, b

h
↑,−, b

h
↓,−

)T
{
Np,S = 4
Ne,S = 0

Upper
Supra-gap vS =

(
ae

↑,−, a
e
↓,−, b

e
↑,+, b

e
↓,+, c

h
↑,+, c

h
↓,+

)T
{
Np,S = 2
Ne,S = 2

The explicit expression of the Matrix Σ in Eq.(5.28) can be obtained from solving the
system (5.25) using Wolfram Mathematica.

Unitarity of the Scattering Matrix

The fundamental property of the scattering matrix S is its unitarity. This mathematical
property encode a fundamental physical principle: the conservation of probability. We
will now provide a qualitative explanation for this statement. For a bound quantum state,
the normalization condition for a generic wavefunction Φ(x, t) reads∫ +∞

−∞
|Φ(x, t)|2 dx = 1. (5.29)

In scattering problems, however, the wavefunctions are not square-integrable and are
instead normalized with respect to their probability flux. The continuity equation still
expresses the same principle — the local conservation of probability.
Defining the probability density ρ(x, t) and the probability current j(x, t) as

ρ(x, t) = Φ†(x, t) Φ(x, t) (5.30)
j(x, t) = Φ†(x, t) v̂x Φ(x, t) (5.31)

where v̂x is the 4 × 4 velocity operator, then the conservation of probability implies
that the temporal change of ρ in any volume V is balanced by the net flux through its
boundaries: ∫

V

∂ρ

∂t
dx = −

∫
V

∂j

∂x
dx. (5.32)
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Since this relation holds for any volume, one obtains the continuity equation in differential
form:

∂ρ

∂t
+ ∂j

∂x
= 0. (5.33)

In a scattering problem treated with stationary states, the density ρ(x) = |Φ(x)|2 is
independent of time. Consequently, ∂tρ = 0, and the continuity equation reduces to the
conservation of the current:

∂j

∂x
= 0 =⇒ j(x) = constant. (5.34)

Considering now the scattering matrix S and denoting the vectors of incoming and out-
going components, respectively, as b and a one has

b = Sa (5.35)

Since each propagating mode in the wavefunctions ΦN [see Eqs (5.67-5.76)] and ΦS [see
Eqs(5.120-5.105-5.109)] has been normalized with respect to its corresponding group ve-
locity, the total probability flux for the incoming state is

Pin = a† a (5.36)

whereas, the total probability flux for the outgoing state is

Pout = b† b = a† S† S a (5.37)

Then the conservation of probability fluxes holds iff

Pin = Pout ⇐⇒ S† S = 1 (5.38)

namely, iff S is unitary.

The conservation of flux implies that the current jinc carried by the incoming modes,
is exactly redistributed among all outgoing waves. Therefore, considering a single in-
coming modes (normalized to carry unit flux), we define the reflection and transmission
probabilities as

Rm = |jR,m|
|jinc|

, Tn = |jT,n|
|jinc|

, (5.39)

and the conservation of flux imposes∑
m

Rm +
∑

n

Tn = 1. (5.40)

where m/n span all possible reflected and transmitted modes, respectively.
Thus, the unitarity of SE guarantees that the total probability for a particle to be either
reflected or transmitted is exactly one.
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5.2 The case without magnetic field

Let us start by analyzing the case where no magnetic field is applied to the system

b ≡ 0 (5.41)

We shall assume the spin-orbit field lies in the y-z spin plane. In fact, in a 1D nanowire
where the confinement potential acts in the y-z plane, the electron motion is restricted
to the x-axis, implying k ≡ kx. Recalling that the Rashba SOC term is proportional
to (k × σ) · r̂ [see Eq.(1.54)], where r̂ represents the direction of the applied electric
field E(r), it follows that the spin-orbit vector α lies entirely in the plane perpendicular
to the electron propagation direction. Moreover, because we aim to take into account
inhomogeneities of the spin-orbit field, we shall assume that

αN = αN (0, sin ΦSO, cos ΦSO) (5.42)

αS = (0, 0, αS) (5.43)

where αS can take any sign and ΦSO describes the mislignament angle of the spin-orbit
field directions between the N and S regions. Here below, we shall compute the solutions
in the N and S regions, and then apply the boundary conditions to match them properly
and identifying the Andreev reflection and the transmission processes

5.2.1 Solution in the N region

In the N region, i.e. for x < 0, the BdG equations (5.7) reduce to(− ∂2
x

2m∗ − µN

)
σ0 + i(αN · σ)∂x 0
0

(
∂2

x
2m∗ + µN

)
σ0 − i(αN · σ)∂x

Φ(x) = EΦ(x)

(5.44)
Introducing the matrix

σΦ = σy sin ΦSO + σz cos ΦSO (5.45)
one has

αN · σ = αN σΦ

Then, looking now for plane-wave solutions of Eq.(5.44)

Φk(x) = wk e
ikx (5.46)

with wk denoting a 4× 1 spinor, the Equation reduces to

HBdG,N (k) wk = E wk (5.47)

where the k-space Hamiltonian HBdG,N (k) in the N region is

HBdG,N (k) =
(
ξ0

N (k)σ0 − αN kσΦ 0
0 −ξ0

N (k)σ0 + αN kσΦ

)
(5.48)
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and
ξ0

N (k) = ℏ2k2

2m∗ − µN (5.49)

The problem naturally decouples in two separate problems for the particle and the hole
sectors. To find the eigenstates, we notice that the eigenvectors of σΦ are

w↗ =
(

cos ΦSO
2

i sin ΦSO
2

)
σΦw↗ = +w↗ (5.50)

w↙ =
(
i sin ΦSO

2
cos ΦSO

2

)
σΦw↙ = −w↙ (5.51)

Introducing the quantities
ξ↗/↙(k) = ξ0

k ∓ αNk (5.52)

the positive spectrum of (5.48) is

Ee
↗(k) = θ(ξ↗(k))|ξ↗(k)| = θ(ξ0

N (k)− αNk)|ξ0
N (k)− αNk|

Eh
↗(k) = θ(−ξ↙(−k))| − ξ↙(−k)| = θ(−ξ0

N (k) + αNk)|ξ0
N (k)− αNk|

Ee
↙(k) = θ(ξ↙(k))|ξ↙(k)| = θ(ξ0

N (k) + αNk)|ξ0
N (k) + αNk|

Eh
↙(k) = θ(−ξ↗(−k))| − ξ↗(−k)| = θ(−ξ0

N (k)− αNk)|ξ0
N (k) + αNk|

(5.53)

and is independent of the spin-orbit angle ΦSO. The related eigenvectors read

we
N,↗ =


cos ΦSO

2
i sin ΦSO

2
0
0

 we
N,↙ =


i sin ΦSO

2
cos ΦSO

2
0
0



wh
N,↗ =


0
0

cos ΦSO
2

i sin ΦSO
2

 wh
N,↙ =


0
0

i sin ΦSO
2

cos ΦSO
2


(5.54)

and are independent of k.

Eigenfunctions at fixed energy E

So far, we have found the eigenvalues and eigenvectors as a function of k. We now want
to fix E > 0, and determine the wavevectors and the eigenfunctions. Inverting in favor
of k the four equations (5.53), one realizes that there exist two energy regimes:

• Range 1: 0 ≤ E ≤ ESO,N + µN
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In this case each of the four eigenvalue branch leads to two wavevectors, and one
obtains 8 wavevectors at a given energy E

Ee
↗ = ξ0

N (k)− αNk > 0 → ke
↗,±(E) = kSO,N

(
1±

√
1 + E + µN

ESO,N

)
(5.55)

Ee
↙ = ξ0

N (k) + αNk > 0 → ke
↙,±(E) = kSO,N

(
−1±

√
1 + E + µN

ESO,N

)
(5.56)

Eh
↗ = −(ξ0

N (k)− αNk) > 0 → kh
↗,±(E) = kSO,N

(
1±

√
1− E − µN

ESO,N

)
(5.57)

Eh
↙ = −(ξ0

N (k) + αNk) > 0 → kh
↙,±(E) = kSO,N

(
−1±

√
1− E − µN

ESO,N

)
(5.58)

where

kSO,N = αNm
∗

ℏ2 > 0 (spin-orbit wavevector in N) (5.59)

ESO,N = α2
Nm

∗

2ℏ2 ≡
ℏ2k2

SO,N

2m∗ (spin-orbit energy in N) (5.60)

At each of these wavevectors, the group velocity, defined as

v(E) = 1
ℏ
∂E

∂k

∣∣∣∣
k=k(E)

(5.61)

reads

ve
↗,±(E) = ve

↙,±(E) = ±ve
N (E) (5.62)

vh
↗,±(E) = vh

↙,±(E) = ∓vh
N (E) (5.63)

where

ve
N (E) =

√
2
m∗ (ESO + µN + E) = vN

√
1 + E

ESO,N + µN
(5.64)

vh
N (E) =

√
2
m∗ (ESO + µN − E) = vN

√
1− E

ESO,N + µN
(5.65)

and

vN
.=

√
2(ESO,N + µN )

m∗ (5.66)

is an energy-independent velocity.
The general expression of the wavefunction in the N side of the junction, in this energy
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range, is

ΦN (x) = ae
↗,+

eike
↗,+(E) x√

2πℏve
N (E)

we
N,↗ + ae

↙,+
eike

↙,+(E) x√
2πℏve

N (E)
we

N,↙ +

+ ah
↗,−

eikh
↗,−(E) x√

2πℏvh
N (E)

wh
N,↗ + ah

↙,−
eikh

↙,−(E) x√
2πℏvh

N (E)
wh

N,↙ +

+ be
↗,−

eike
↗,−(E) x√

2πℏve
N (E)

we
N,↗ + be

↙,−
eike

↙,−(E) x√
2πℏve

N (E)
we

N,↙ +

+ bh
↗,+

eikh
↗,+(E) x√

2πℏvh
N (E)

wh
N,↗ + bh

↙,+
eikh

↙,−(E) x√
2πℏvh

N (E)
wh

N,↙

(5.67)

where the ae/h are complex amplitudes denoting the states incoming from the N side
towards the interface, i.e. right-moving, while the be/h are complex amplitudes denot-
ing the states outgoing from the interface to the N side, i.e. left-moving. The spinors
we/h

N,↗↙ are given in Eqs.(5.54).

• Range 2: E > ESO,N + µN

In this case, while the electron wavevectors are just the same as in the previous range,
the wavevectors of the hole branches acquire an imaginary part

Ee
↗ = ξ0

N (k)− αNk > 0 → ke
↗,±(E) = kSO,N

(
1±

√
1 + E + µN

ESO,N

)
(5.68)

Ee
↙ = ξ0

N (k) + αNk > 0 → ke
↙,±(E) = kSO,N

(
−1±

√
1 + E + µN

ESO,N

)
(5.69)

Eh
↗ = −(ξ0

N (k)− αNk) > 0 → kh
↗,±(E) = kSO,N

(
1± i

√
−1 + E − µN

ESO,N

)
(5.70)

Eh
↙ = −(ξ0

N (k) + αNk) > 0 → kh
↙,±(E) = kSO,N

(
−1± i

√
−1 + E − µN

ESO,N

)
(5.71)

where kSO,N and ESO,N are defined in Eqs.(5.60)-(5.60).
Note that, in the case of a single N/S interface, only one of the two hole wavevectors
kh

↗,± can be retained. Specifically, since N is on the left-hand side of the interface, only
kh

↗,− can be retained since, when inserted in Eq.(5.46), it describes an evanescent wave
decaying for x → −∞. In contrast, the solution related to kh

↗,+ grows exponentially

102



5.2 – The case without magnetic field

for x → −∞ and cannot be retained in the Hilbert space. The same occurs for the
two hole wavevectors kh

↙,±.
The group velocity is well defined only for the propagating modes, i.e. the electron
wavevectors,

v(E) = 1
ℏ
∂E

∂k

∣∣∣∣
k=k(E)

(5.72)

and reads again

ve
↗,±(E) = ve

↙,±(E) = ±ve
N (E) (5.73)

with

ve
N (E) =

√
2
m∗ (ESO + µN + E) = vN

√
1 + E

ESO,N + µN
(5.74)

where vN is the energy-independent velocity defined in Eq.(5.66).
For the hole evanescent modes a velocity is meaningless. Nevertheless, in order for the
amplitudes of the evanescent modes to be dimensionally consistent with the amplitudes
of the propagating modes, one can formally attribute

vh
↗,−(E) = vh

↙,−(E) = vN (formal definition) (5.75)

where vN is the energy-independent velocity (5.66).
The general expression of the wavefunction in the N side of the junction, in this energy
range, is

ΦN (x) = ae
↗,+

eike
↗,+(E) x√

2πℏve
N (E)

we
N,↗ + ae

↙,+
eike

↙,+(E) x√
2πℏve

N (E)
we

N,↙ +

+be
↗,−

eike
↗,−(E) x√

2πℏve
N (E)

we
N,↗ + be

↙,−
eike

↙,−(E) x√
2πℏve

N (E)
we

N,↙ +

+ch
↗,−

eikh
↗,−(E) x

√
2πℏvN

wh
N,↗ + ch

↙,−
eikh

↙,−(E) x

√
2πℏvN

wh
N,↙

(5.76)

where ch
↗/↙,− are amplitudes associated to the evanescent modes, while the spinors

we,h
N,↗,↙ are defined in Eqs.(5.54).

Fig.5.2 displays the energy spectrum in N region and highlights graphically the various
energy ranges previously analyzed.
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k↗,-
e k↗,-

h k↗,+
h k↗,+

ek↙,-
e k↙,-

h k↙,+
h k↙,+

e

E  ES O,N + μN (2)

(1)

(3)

k

E

The case without magnetic field: excitations spectrum in the N region

E↗
e E↙

e E↗
h E↙

h

Figure 5.2: Graphic solution for the kh,e
↗,↙ wavevectors in the N region. As already illustrated

by solving analytically Eqs.(5.53) for a given E > 0, no real solutions in the hole sectors exist for
E > ESO + µN (line (3)), whereas for E = ESO + µN (line (2)) the solutions kh

↗,±, as well as
kh

↙,±, coincide. For energy values E < ESO +µN the number of propagating modes are maximum
as illustrated by highlighting the intersections with line 1.

5.2.2 Solution in the S region

In the region S, i.e. for x > 0, the spin-orbit field is supposed to point only along the z
direction [see Eq.(5.43)] Then, the BdG equations (5.7) reduce to(− ∂2

x
2m∗ − µS

)
σ0 + iαSσz∂x ∆0e

iφ

∆0e
−iφ

(
∂2

x
2m∗ + µS

)
σ0 − iαSσz∂x

Φ(x) = EΦ(x) (5.77)

Looking for plane-wave solutions

Φk(x) = wk e
ikx (5.78)

with wk denoting a 4× 1 spinor, the Equation reduces to

HBdG,S(k) wk = E wk (5.79)

HBdG,S(k) =
(
ξ0

S(k)σ0 − αSσzk ∆0e
iφ

∆0e
−iφ −ξ0

S(k)σ0 + αSσzk

)
(5.80)

where
ξ0

S(k) = ℏ2k2

2m∗ − µS (5.81)
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5.2 – The case without magnetic field

A configuration of this type has already been discussed in Sec.(3.2), therefore, let us recall
here the expressions of the excitation energies when b ≡ 0 [see Hamiltonian (3.71)]

E1(k) =
√(

ξ0
S(k)− αSk

)2 + ∆2
0 (5.82)

E2(k) =
√(

ξ0
S(k) + αSk

)2 + ∆2
0 (5.83)

where ξ0
S(k) is given by Eq.(5.81) and we note that E2(k) = E1(−k).

As shown in (3.62) the eigenvectors are

we
S,1(k) =


uk

0
vk

0

 we
S,2(k) =


0
u−k

0
v−k

 wh
S,1(k) =


−v∗

k

0
u∗

k

0

 wh
S,2(k) =


0
−v∗

−k

0
u∗

−k


(5.84)

where

uk =

√√√√√1
2

1 + ξ0
S(k)− αSk√

(ξ0
S(k)− αSk)2 + ∆2

0


(5.85)

vk = e−iφ

√√√√√1
2

1− ξ0
S(k)− αSk√

(ξ0
S(k)− αSk)2 + ∆2

0


We remind that, even when b /= 0, uk, vk do not depend on the magnetic field.
Having revisited the solutions for the system in this region, it is important to clarify the
notation used for the spin sectors. The choice of the indices 1,2 is a matter of convention
adopted in Sec.3.2 to distinguish the superconducting case from the normal case [see
Sec.3.2], for which the more explicit spin labels ↑, ↓ were used.However, it is crucial to
remark that both sets of labels refer to the same physical reality, i.e. spin-up and spin-
down excitations.
The eigenvectors presented in Eq.(5.84) are, in fact, eigenstates of the first quantized spin
operator along the z-axis, which in the Nambu basis is written as Sz

BdG = ℏ
2(τ0 ⊗ σz)[see

Eq.(4.62)]. Indeed, it is easy to verify that :

• The eigenvectors we,h
S,1 of sector 1 are eigenvectors of Sz

BdG with eigenvalue “+1”;

• The eigenvectors we,h
S,2 of sector 2 are eigenvectors of Sz

BdG with eigenvalue “−1”;

This confirms that the Hamiltonian is block diagonal in the spin-basis and that, the ener-
gies E1(k), E2(k) are the dispersion relation for the spin-up and spin-down quasiparticle
excitations, respectively. Therefore, to maintain physical clarity, from this point on we
shall adopt the more explicit spin labels ↑, ↓ in place of 1,2 to refer to the corresponding
sector.
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The case of a single N/S interface in the nanowire

The very structure of the eigenvectors allows us to distinguish between “electron-like”
and “hole-like” excitations. Indeed

Ee
↑(k) = θ

(
ξ0

S(k)− αSk
)
|E↑(k)| = θ

(
ξ0

S(k)− αSk
)√(

ξ0
S(k)− αSk

)2 + ∆2
0

Eh
↑ (k) = θ

(
−ξ0

S(k) + αSk
)
|E↑(k)| = θ

(
−ξ0

S(k) + αSk
)√(

ξ0
S(k)− αSk

)2 + ∆2
0

Ee
↓(k) = θ

(
ξ0

S(k) + αSk
)
|E↓(k)| = θ

(
ξ0

S(k) + αSk
)√(

ξ0
S(k) + αSk

)2 + ∆2
0

Eh
↓ (k) = θ

(
−ξ0

S(k)− αSk
)
|E↓(k)| = θ

(
−ξ0

S(k)− αSk
)√(

ξ0
S(k) + αSk

)2 + ∆2
0

(5.86)

Eigenfunctions at fixed energy E

To determine the expressions for an “electron-like” and a “hole-like” eigenfunctions we
have to compute the explicit expressions of the wavevectors. This can be achieved by
solving the following equations for a given energy value E ≥ 0,

E↑(k) = E ⇒
√(

ξ0
S(k)− αSk

)2 + ∆2
0 = E ⇒

(
ξ0

S(k)− αSk
)2

= E2 −∆2
0 (5.87)

E↓(k) = E ⇒
√(

ξ0
S(k) + αSk

)2 + ∆2
0 = E ⇒

(
ξ0

S(k) + αSk
)2

= E2 −∆2
0 (5.88)

Furthermore, let us define the SO wavevector and energy in the S region as

kSO,S = αS m
∗

ℏ2 (5.89)

ESO,S =
ℏ2k2

SO,S

2m∗ = α2
S m

∗

2ℏ2 (5.90)

Now, we shall first analyze the solutions in the so called “Supra-gap regime”(E ≥ ∆0),
and then in the so-called “Sub-gap regime”(E < ∆0). Fig.5.3 illustrates graphically the
possible en

• Supra-gap regime (E > ∆0)

Similarly to the N region, in the Supra-gap regime we identify two different energy
ranges:

1. Lower supra-gap regime: ∆0 ≤ E ≤
√

∆2
0 + (ESO,S + µS)2

In this energy range, each of the energy branch in Eq.(5.86) yields two wavevector
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5.2 – The case without magnetic field

solutions for a fixed energy E:

√
(Ee

↑)2 −∆2
0 = +

(
ξ0

S(k)− αSk
)
⇒ ke

↑,±(E) = kSO,S

1±

√
1 + µS +

√
E2 −∆2

0
ESO,S



√
(Ee

↓)2 −∆2
0 = +

(
ξ0

S(k) + αSk
)
⇒ ke

↓,±(E) = kSO,S

−1±

√
1 + µS +

√
E2 −∆2

0
ESO,S



√
(Eh

↑ )2 −∆2
0 = −

(
ξ0

S(k)− αSk
)
⇒ kh

↑,±(E) = kSO,S

1±

√
1 + µS −

√
E2 −∆2

0
ESO,S



√
(Eh

↓ )2 −∆2
0 = −

(
ξ0

S(k) + αSk
)
⇒ kh

↓,±(E) = kSO,S

−1±

√
1 + µS −

√
E2 −∆2

0
ESO,S


(5.91)

Note that, as expected, ke
↓,±(E) = −ke

↑,∓(E) and kh
↓,±(E) = −kh

↑,∓(E).
Since in this energy range, we are describing propagating modes (only real solutions
for the wavevectors exist), the group velocity is well defined and reads

ve
σ,±(E) = ±ve

S(E) (5.92)
σ =↑, ↓

vh
σ,±(E) = ∓vh

S(E) (5.93)

where

ve
S(E) =

√√√√ 2
m∗

(
1− ∆2

0
E2

)(
ESO,S + µS +

√
E2 −∆2

0

)

= vS

√√√√√(1− ∆2
0

E2

)1 +

√
E2 −∆2

0

ESO,S + µS

 (5.94)

vh
S(E) =

√√√√ 2
m∗

(
1− ∆2

0
E2

)(
ESO,S + µS −

√
E2 −∆2

0

)

= vS

√√√√√(1− ∆2
0

E2

)1−

√
E2 −∆2

0

ESO,S + µS

 (5.95)
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and

vS
.=

√
2(ESO,S + µS)

m∗ (5.96)

is an energy independent velocity.
It is now possible to construct the general expression for the wavefunction in
the S region, as a superposition of hole-like and electron-like waves, propagating
towards(left-moving) and away(right-moving) from the interface, that is

ΦS(x) = ae
↑,−

eike
↑,−(E) x√

2πℏve
S(E)

we
S,↑(ke

↑,−) + ae
↓,−

eike
↓,−(E) x√

2πℏve
S(E)

we
S,↓(ke

↓,−) +

+ ah
↑,+

eikh
↑,+(E) x√

2πℏvh
S(E)

we
S,↑(kh

↑,+) + ah
↓,+

eikh
↓,+(E) x√

2πℏvh
S(E)

we
S,↓(kh

↓,+) +

+ be
↑,+

eike
↑,+(E) x√

2πℏve
S(E)

we
S,↑(ke

↑,+) + be
↓,+

eike
↓,+(E) x√

2πℏve
S(E)

we
S,↓(ke

↓,+) +

+ bh
↑,−

eikh
↑,−(E) x√

2πℏvh
S(E)

we
S,↑(kh

↑,−) + bh
↓,−

eikh
↓,−(E) x√

2πℏvh
S(E)

we
S,↓(kh

↓,−)

(5.97)

Each wave in the previous expression is weighted by a coefficient which represents
the probability amplitude related to that specific modes. In particular, ae/h coeffi-
cients are associated to incoming (left-moving) particle with respect to the interface,
while be/h coefficients to outgoing (right-moving) ones.
Let us now make the following consideration: as alreay observed, for a fixed energy
value E, the wavevectors exhibit the symmetry k

e/h
↓,±(E) = −ke/h

↑,∓(E), due to the
relation E↓(k) = E↑(−k). This implies a corresponding symmetry in the coherence
factors, that is

uk

∣∣∣
k

e/h
↑,±(E)

= u−k

∣∣∣
k

e/h
↓,±(E)

and vk

∣∣∣
k

e/h
↑,±(E)

= v−k

∣∣∣
k

e/h
↓,±(E)

(5.98)

This symmetry allow us to define a new set of eigenvectors that depend only on
the energy, rather than on the specific wavevector k. To this end, we introduce the
energy dependent quantities u0(E), v0(E) as

u0(E) =

√√√√√1
2

1 +

√
E2 −∆2

0

E

 =

√
∆0
2Ee

1
2 arccosh E

∆0 (5.99)

v0(E) =

√√√√√1
2

1−

√
E2 −∆2

0

E

 =

√
∆0
2Ee

− 1
2 arccosh E

∆0 (5.100)
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We can thus define a simplified, energy-dependent, basis of eigenvectors w̄e
↑,↓(E) for

an electron-like and hole-like states as

w̄e
S,↑(E) =


u0(E)

0
v0(E)e−iφ

0

 w̄e
S,↓(E) =


0

u0(E)
0

v0(E)e−iφ

 (5.101)

w̄h
S,↑(E) =


v0(E)

0
u0(E)e−iφ

0

 w̄h
S,↓(E) =


0

v0(E)
0

u0(E)e−iφ

 (5.102)

Note that, to ensure the normalization of the eigenvectors, the relation |u0(E)|2 +
|v0(E)|2 = 1 must hold. Indeed, we have that

|u0(E)|2 + |v0(E)|2 = ∆0
2E

(
e

arccosh E
∆0 + e

− arccosh E
∆0

)
(5.103)

= ∆0
E

cosh
(

arccosh E

∆0

)
= 1 (5.104)

Furthermore, being u0(E), v0(E) real quantities, it is also true that u2
0 + v2

0 = 1.
The general expression for the wavefunction in Eq.(5.97) can now be compactly
rewritten as

ΦS(x) = ae
↑,−

eike
↑,−(E) x√

2πℏve
S(E)

w̄e
S,↑(E) + ae

↓,−
eike

↓,−(E) x√
2πℏve

S(E)
w̄e

S,↓(E) +

+ ah
↑,+

eikh
↑,+(E) x√

2πℏvh
S(E)

w̄h
S,↑(E) + ah

↓,+
eikh

↓,+(E) x√
2πℏvh

S(E)
w̄h

S,↓(E) +

+ be
↑,+

eike
↑,+(E) x√

2πℏve
S(E)

w̄e
S,↑(E) + be

↓,+
eike

↓,+(E) x√
2πℏve

S(E)
w̄e

S,↓(E) +

+ bh
↑,−

eikh
↑,−(E) x√

2πℏvh
S(E)

w̄h
S,↑(E) + bh

↓,−
eikh

↓,−(E) x√
2πℏvh

S(E)
w̄h

S,↓(E)

(5.105)

2. Upper supra-gap regime: E >
√

∆2
0 + (ESO,S + µS)2

From Eqs.(5.91) we note that, in this energy range, the hole solutions kh
↑,±, k

h
↓,±

acquire an imaginary part, indeed, as clear from Fig.(5.3) no intersections for the
hole sectors exist. Thus, while the electron wavevectors remain unchanged, the hole
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wavevectors acquire an imaginary part

√
(Ee

↑)2 −∆2
0 = +

(
ξ0

S(k)− αSk
)
⇒ ke

↑,±(E) = kSO,S

1±

√
1 + µS +

√
E2 −∆2

0
ESO,S



√
(Ee

↓)2 −∆2
0 = +

(
ξ0

S(k) + αSk
)
⇒ ke

↓,±(E) = kSO,S

−1±

√
1 + µS +

√
E2 −∆2

0
ESO,S



√
(Eh

↑ )2 −∆2
0 = −

(
ξ0

S(k)− αSk
)
⇒ kh

↑,±(E) = kSO,S

1± i

√
−1 +

√
E2 −∆2

0 − µS

ESO,S



√
(Eh

↓ )2 −∆2
0 = −

(
ξ0

S(k) + αSk
)
⇒ kh

↓,±(E) = kSO,S

−1± i

√
−1 +

√
E2 −∆2

0 − µS

ESO,S


(5.106)

kh
↑,±(E) = kSO,S

1± i

√√√√(−1 +
√
E2 −∆2

0 − µS

ESO,S

) (5.107)

kh
↓,±(E) = kSO,S

−1± i

√√√√(−1 +
√
E2 −∆2

0 − µS

ESO,S

) (5.108)

Differently from the expression of the wavefunction in the Lower Supra-Gap regime dis-
played in Eq.(5.105), in the upper supra gap regime the appearance of imaginary wavevec-
tors implies that the hole solutions no longer represent propagating modes. Furthermore,
given that the S region is on the right-hand side of the interface, the solutions related to
wavevectors kh

↑,−, k
h
↓,− must be discard since they are diverging for x→ +∞.

Thus, the wavefunction in this regime read

ΦS(x) = ae
↑,−

eike
↑,−(E) x√

2πℏve
S(E)

w̄e
S,↑(E) + ae

↓,−
eike

↓,−(E) x√
2πℏve

S(E)
w̄e

S,↓(E) +

+ be
↑,+

eike
↑,+(E) x√

2πℏve
S(E)

w̄e
S,↑(E) + be

↓,+
eike

↓,+(E) x√
2πℏve

S(E)
w̄e

S,↓(E) +

+ ch
↑,+

eikh
↑,+(E) x

√
2πℏvS

w̄h
S,↑(E) + ch

↓,+
eikh

↓,+(E) x

√
2πℏvS

w̄h
S,↓(E)

(5.109)

where ve
S(E) represents the group velocity for the electron modes [see Eq.(5.94)] and it

is well posed, whereas we adopt the energy independent velocity (5.96) to normalize the
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coefficients of the evanescent modes, since for them the definition of group velocity become
meaningless.

• Sub-gap regime (0 < E < ∆0)
This energy regime is characterized by energies E < ∆0. Starting from the solutions
computed in “Lower Upper-gap” regime and displayed in Eqs.(5.91), we observe that,
in the current regime, the term

√
E2 −∆2

0 becomes purely immaginary, leading to
complex wavevectors.
Therefore, the latter now read

ke
↑,±(E) = kSO,S ± ke

CX

kh
↑,±(E) = kSO,S ± kh

CX

ke
↓,±(E) = −kSO,S ± ke

CX

kh
↓,±(E) = −kSO,S ± kh

CX

(5.110)

where ke
CX and kh

CX are complex quantity. We then define ke
CX as the principal square

root

ke
CX = kSO,S

√√√√√
1 +

µS + i
√

∆2
0 − E2

ESO,S

 (5.111)

and kh
CX being its complex conjugate, kh

CX = [ke
CX ]∗.

In polar coordinates they read

ke
CX = |kCX |ei θ

2 = |kCX |
(

cos θ2 + i sin θ2
)

(5.112)

kh
CX = |kCX |e−i θ

2 = |kCX |
(

cos θ2 − i sin θ2
)

(5.113)

where the magnitude and angle are given by

|kCX | = kSO,S

(1 + µ

ESO,S

)2

+ ∆2
0 − E2

E2
SO,S

 1
4

(5.114)

θ = arctan


√

∆2
0 − E2

ESO,S + µ

+ π ϑ (−ESO,S − µS) (5.115)

As a consequence, in this regime, the wavefunction ΦS(x) become a superposition of
growing and decaying exponential solutions for x→ +∞. Thus, for a physical accept-
able wavefunction we must discard the diverging terms, which, in this case, are related
to wavevectors ke

↑,−, k
e
↓,−, k

h
↑,+, k

h
↓,+.
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Furthermore, for E < ∆0 we observe that the coherence factors u0(E), v0(E) trans-
form into

u0(E) =

√
∆0
2Ee

i
2 arccos E

∆0 and v0(E) =

√
∆0
2Ee

− i
2 arccos E

∆0 (5.116)

i.e. the analityc continuation of Eq.(5.99).
The latter no longer satisfy the eigenvectors normalization condition

|u0(E)|2 + |v0(E)|2 = 1 (5.117)

instead they are related by

u0(E)2 + v0(E)2 = ∆0
2E

(
e

i arccos E
∆0 + e

−i arccos E
∆0

)
(5.118)

= ∆0
E

cos
(

arccos E

∆0

)
= 1 (5.119)

Finally, the wavefunction representing the superposition of evanescent modes reads

ΦS(x) = ce
↑,+

eike
↑,+(E) x

√
2πℏvS

w̄e
S,↑(E) + ce

↓,+
eike

↓,+(E) x

√
2πℏvS

w̄e
S,↓(E) +

+ ch
↑,−

eikh
↑,−(E) x

√
2πℏvS

w̄h
S,↑(E) + ch

↓,−
eikh

↓,−(E) x

√
2πℏvS

w̄h
S,↓(E)

(5.120)

or, equivalently

ΦS(x) = 1√
2πℏvS

{
ce

↑,+ w̄e
S,↑(E) eike

↑,+(E) x + ce
↓,+ w̄e

S,↓(E) eike
↓,+(E) x +

+ ch
↑,−w̄h

S,↑(E) eikh
↑,−(E) x + ch

↓,− w̄h
S,↓(E) eikh

↓,−(E) x
}
(5.121)

where vS is given in Eq.(5.96) and the complex wavevectors are given in Eqs.(5.110).

Fig. 5.3 shows the graphic visualization of the obtained analytical derivation.
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k↑,-
e k↑,-

h k↑,+
h k↑,+

ek↓,-
e k↓,-

h k↓,+
h k↓,+

e

E  (ES O,S + μS)
2 +Δ0

2

E < Δ0

(3)

(2)

(4)

(1)

k

E

The case without magnetic field: excitations spectrum in the S region

E↑
e E↓

e E↑
h E↓

h

s
Figure 5.3: The excitations spectrum in the S region exhibits three different energy regimes,
which have been discussed analytically: the “Sub-gap” regime, in which no intersection exists
(line (1)), and the Supra-gap one, which consists of a Lower and an Upper part. Specifically, in
the Lower regimes 8 different propagating solutions for the wavevectors are found, as clear from
the intersections of line (2) with the spectrum in the figure; whereas, in Upper regimes only 4
(electron-like) propagating modes are allowed as shown from the intersection with line (4).

5.2.3 The regime of large spin-orbit energy (ESO > ∆0)

We start by analyzing the regime of strong spin-orbit coupling, i.e. ESO ≫ ∆0. For
definiteness, we shall adopt the following parameters

ESO,N = ESO,S = 10∆0 µN = µS = 0 (5.122)

The excitations spectra for both regions are illustrated in Fig. 5.4.
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EE N S

Δ0

k

The case of strong SOC: excitations spectra in N and S regions

E↗ E↙ E↑ E↓

Figure 5.4: Plot of the excitations spectra of the two regions for the case of large spin-orbit
energy ESO > ∆0. This particular choice of parameters allows for four different energy ranges.
The energy thresholds characterizing each range are marked by horizontal lines.

For this parameter set, there exist four energy ranges, which we shall analyze in details
here below.

(I) E < ∆0

This energy range corresponds to Range 1 in the N region and to the Sub-gap regime
in the S region.
The Σ-matrix in Eq.(5.28) is an 8×4 matrix, and the upper 4×4 block is the Scattering
matrix connecting the outgoing amplitude vector b to the incoming amplitude vector
a, 

a =
(
ae

↗,+, a
e
↙,+, a

h
↗,−, a

h
↙,−

)T

b =
(
be

↗,−, b
e
↙,−, b

h
↗,+, b

h
↙,+

)T
(5.123)

thus, in this energy range we observe only the reflection phenomenon, since the out-
going coefficients are all related to the N-side.
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5.2 – The case without magnetic field

The explicit expression of the scattering matrix S is
be

↗,−

be
↙,−

bh
↗,+

bh
↙,+

 =


re,↗

e,↗ re,↗
e,↙ re,↗

h,↗ re,↗
h,↙

re,↙
e,↗ re,↙

e,↙ re,↙
h,↗ re,↙

h,↙

rh,↗
e,↗ rh,↗

e,↙ rh,↗
h,↗ rh,↗

h,↙

rh,↙
e,↗ rh,↙

e,↙ rh,↙
h,↗ rh,↙

h,↙


︸ ︷︷ ︸

=S


ae

↗,+

ae
↙,+

ah
↗,−

ah
↙,−

 (5.124)

where the rβ
α denote the reflection amplitudes with the notation defined as follows:

• the superscript β (e.g.e,↗) identifies the state of the outgoing (reflected) particle;
• the subscript α (e.g.h,↙) identifies the state of the incoming (incident) particle;

For example, re,↗
h,↙ represents the reflection amplitude for an incoming hole in the ↙

state to be reflected as an electron in the ↗ state.

We define the reflection coefficient from α to β as

Rβ
α = |rβ

α|2 ∀ α, β (5.125)

We have verified that

Re,↗
α +Re,↙

α +Rh,↗
α +Rh,↙

α = 1 ∀ α (5.126)

and that
Rβ

e,↗ +Rβ
e,↙ +Rβ

h,↗ +Rβ
h,↙ = 1 ∀ β (5.127)

in agreement with the unitarity of the Scattering Matrix, stemming from the conser-
vation of the probability flux. The numerical results for each single incoming mode
are summarized in Table 5.1, from which we observe that the dominant process is the
Andreev Reflection (AR).

Incident mode α |re,↗
α |2 |re,↙

α |2 |rh,↗
α |2 |rh,↙

α |2 Dominant process
(↗,+) ≈ 0 0 ≈ 1 0 e↗,+ → h↗,+
(↙,+) 0 ≈ 0 0 ≈ 1 e↙,+ → h↙,+
(↗,−) ≈ 1 0 ≈ 0 0 h↗,− → e↗,−
(↙,−) 0 ≈ 1 0 ≈ 0 h↙,− → e↙,−

Table 5.1: Numerical reflection probabilities for the different incoming modes α = (↗,±), (↙
,±). Each incoming particle is (almost) completely reflected into its corresponding Time-reversal
partner.

As a result, defining the total Normal and Andreev Reflection for the electron and
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hole modes as

RN
e→e(E) =

(
Re,↗

e,↗ +Re,↗
e,↙ +Re,↙

e,↗ +Re,↙
e,↙

)
Electron Normal Reflection (5.128)

RN
h→h(E) =

(
Rh,↗

h,↗ +Rh,↗
h,↙ +Rh,↙

h,↗ +Rh,↙
h,↙

)
Hole Normal Reflection (5.129)

RN
e→h(E) =

(
Rh,↗

e,↗ +Rh,↗
e,↙ +Rh,↙

e,↗ +Rh,↙
e,↙

)
Electron Andreev Reflection (5.130)

RN
h→e(E) =

(
Re,↗

h,↗ +Re,↗
h,↙ +Re,↙

h,↗ +Re,↙
h,↙

)
Hole Andreev Reflection (5.131)

we obtained that

RN
e→e(E) = RN

h→h(E) = 0 (5.132)

RN
h→e(E) = RN

e→h(E) = 2 (5.133)

as clear from Fig. 5.5.
We have observed up to this point that Normal Reflection is completely suppressed.
This result can be perfectly understood by establishing an analogy between our spin-
orbit model and the standard Blonder-Tinkham-Klapwijk (BTK) framework [12]. In
this mapping, the spin-orbit energy ESO assumes the physical role of the chemical
potential µ of the standard BTK model.
The regime of large spin-orbit energy [see Eq.(5.122)] represents an ideal scenario de-
fined by two conditions that suppress Normal Reflection .
First, the condition ESO,N = ESO,S ≫ ∆0 places the system in the Andreev approx-
imation limit. This is analogous to the µ ≫ ∆0 limit in the standard BTK model.
This large energy scale ensures that the intrinsic momentum mismatch between the
incident electron (ke) and the reflected hole (kh) is negligible, which removes the first
potential source of normal reflection.
Second, the condition ESO,N = ESO,S implies there is no “step” in the dominant
energy scale at the interface. This is analogous to a perfectly transparent interface
(zero barrier potential) in the BTK model, removing the second source of Normal
Reflection. Indeed, even within our defined Andreev approximation (ESO ≫ ∆0), a
non-negligible difference between the two energies (ESO,N /= ESO,S) would act as an
effective interface barrier, resulting in the appearance of Normal Reflection. Indeed,
as derived in the boundary condition Eq.(5.10), any discontinuity in the spin-orbit
vector at the interface (αN /= αS) creates an additional, spin-dependent effective bar-
rier. This term is mathematically analogous to the V0δ(x) potential used in the BTK
model to describe a non-ideal interface.
Furthermore, another key result is that, the Reflection coefficients are individually
completely independent of the misalignment angle ΦSO, representing the orientation
of the SO vector in the y − z plane for the N region. Indeed, in the absence of addi-
tional spin-anisotropic fields or perturbations, changing ΦSO only amounts to a local
choice of the reference frame in N and does not modify the reflection probabilities
measured.
Specifically, in the N region, varying the angle ΦSO is equivalent to a rigid rotation of
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5.2 – The case without magnetic field

the local spin quantization axis around the x-axes. This rotation does not affect the
spectrum or the group velocities of the incident modes; in practice, it is just a change
of spin basis. Because the reflected basis in N is defined within the same region, it
rotates in exactly the same way. As a result, a change in ΦSO acts as a simultaneous
rotation of the entire N-region, including the incident states, the reflected basis, and
the N-component of the interface barrier. Since all components related to reflection
phenomenon ”rotate together”, the Reflection probabilities remain unchanged.
Furthermore, in the S region, the superconducting pairing term is s-wave singlet and
proportional to σ0 in spin space, i.e. spin-isotropic. A global change of spin basis
therefore does not alter the pairing term and cannot induce any residual sensitivity
to the spin orientation chosen on the N side. Therefore, the case of strong spin-
orbit coupling demonstrates the key feature of ideal Andreev scattering: the Normal
Reflection is suppressed because the system is simultaneously in the Andreev approx-
imation (ESO,N , ESO,S ≫ ∆0) and possesses a transparent interface (guaranteed by
ESO,N = ESO,S).

10
0

2

E/Δ0

The case of strong SOC, Range I - N side

Ree
N Reh

N Rhe
N Rhh

N

Figure 5.5: Plot of the total Normal and Andreev Reflection in the energy range I. The green
and the purple curves are shown with a slight vertical offset to aid visualization, since the electron
and hole ARs, as well as the electron and hole Normal Reflections, are perfectly coincident. The
figure shows that the Normal Reflection is completely suppressed, while the AR is constant at its
maximum probability value of 2 for both the electron and hole modes. There is no dependence
on the SO misalignment angle ΦSO.

(II) ∆0 ≤ E ≤ ESO,N + µN ↔ ∆0 ≤ E ≤ 10∆0

This energy range still corresponds to Range 1 in the Normal side while spans a large
portion of the Lower Supra-gap regime in the Superconducting side . With respect
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to the sub-gap regime, it includes both incoming and outgoing components in the S
region. The vectors of propagating components read

a =
(
ae

↗,+, a
e
↙,+, a

h
↗,−, a

h
↙,−, a

e
↑,−, a

e
↓,−, a

h
↑,+, a

h
↓,+

)
b =

(
be

↗,−, b
e
↙,−, b

h
↗,+, b

h
↙,+, b

e
↑,+, b

e
↓,+, b

h
↑,−, b

h
↓,−

) (5.134)

As a result, the Scattering matrix S is a 8×4 matrix and acquires the following form

be
↗,−

be
↙,−

bh
↗,+

bh
↙,+

be
↑,+

be
↓,+

bh
↑,−

bh
↓,−


=



re,↗
e,↗ re,↗

e,↙ re,↗
h,↗ re,↗

h,↙ te,↗
e,↑ te,↗

e,↓ te,↗
h,↑ te,↗

h,↓

re,↙
e,↗ re,↙

e,↙ re,↙
h,↗ re,↙

h,↙ te,↙
e,↑ te,↙

e,↓ te,↙
h,↑ te,↙

h,↓

rh,↗
e,↗ rh,↗

e,↙ rh,↗
h,↗ rh,↗

h,↙ th,↗
e,↑ th,↗

e,↓ th,↗
h,↑ th,↗

h,↓

rh,↙
e,↗ rh,↙

e,↙ rh,↙
h,↗ rh,↙

h,↙ th,↙
e,↑ th,↙

e,↓ th,↙
h,↑ th,↙

h,↓

te,↑
e,↗ te,↑

e,↙ te,↑
h,↗ te,↑

h,↙ re,↑
e,↑ re,↑

e,↓ re,↑
h,↑ re,↑

h,↓

te,↓
e,↗ te,↓

e,↙ te,↓
h,↗ te,↓

h,↙ re,↓
e,↑ re,↓

e,↓ re,↓
h,↑ re,↓

h,↓

th,↑
e,↗ th,↑

e,↙ th,↑
h,↗ th,↑

h,↙ rh,↑
e,↑ rh,↑

e,↓ rh,↑
h,↑ rh,↑

h,↓

th,↓
e,↗ th,↓

e,↙ th,↓
h,↗ th,↓

h,↙ rh,↓
e,↑ rh,↓

e,↓ rh,↓
h,↑ rh,↓

h,↓


︸ ︷︷ ︸

=S



ae
↗,+

ae
↙,+

ah
↗,−

ah
↙,−

ae
↑,−

ae
↓,−

ah
↑,+

ah
↓,+


(5.135)

The notation for the transmission amplitudes (tβα) follows the same structure as for
the reflection ones. For example, te,↓

e,↙ represents the transmission amplitude for an
incident e,↙ electron to be transmitted as a e, ↓ quasi-electron.
The scattering matrix displayed in Eq.(5.135) is composed by four 4 × 4 sub-blocks.
Specifically:

• the 4 × 4 upper-left block contains the reflection amplitudes (rβ
α) for the N-side

modes;
• the 4 × 4 lower-left block contains the transmission amplitudes (tβα) for a particle

incoming from the N region and transmitted in the S one;
• the 4×4 upper-right block contains the transmission amplitudes (tβα) for a particle

incoming from the S region and transmitted in N one;
• the 4 × 4 lower-right block contains the reflection amplitudes (rβ

α) for the S-side
modes;

Therefore, this energy interval supports all types of scattering processes.
The Transmission coefficient T β

α from mode α to mode β is defined as

T β
α = |tβα|2 ∀ α, β (5.136)

while the Reflection coefficient was already defined in Eq.(5.125).
The computation of each of the Rβ

α and T β
α coefficients ∀α, β via Wolfram Mathe-

matica shows that, while the Reflection coefficients are independent of the ΦSO angle
also in this interval, the Transmission coefficients do depend on ΦSO . To explain
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5.2 – The case without magnetic field

this effect , let us consider, for example, the case of the (e,↗) incoming mode, which
corresponds to analyzing the first column of the S-matrix in Eq.(5.135).
Let us recall here the expressions of the (e,↗) eigenvector in the N region and of the
(e, ↑), (e, ↓) eigenvectors in the S region for a fixed energy E. From Eq.(5.54-5.101) we
have

we
N,↗ =


cos ΦSO

2
i sin ΦSO

2
0
0

 w̄e
S,↑(E) =


u0(E)

0
v0(E)e−iφ

0

 w̄e
S,↓(E) =


0

u0(E)
0

v0(E)e−iφ


We observe that the first two components in we

N,↗ depend on the spin-orbit direction
angle ΦSO . In contrast the first two components of the eigenvectors on the S side,
we

S,↑(E) and we
S,↓(E), cannot have such dependence.

Thus, the fractions of the incoming mode (e,↗), transmitted as electron-like (e, ↑) and
as electron-like (e, ↓) shall depend on the value of the ΦSO, causing such dependence
in each of the Transmission coefficients T e,↑

e,↗ and T e,↓
e,↗. However, the total electron-

electron transmission, i.e. the sum T e,↑
e,↗ + T e,↓

e,↗ of the two Transmission coefficients,
is independent of the ΦSO angle. Similarly, a ΦSO dependence is present also in T h,↑

e,↗
and T h,↓

e,↗, whereas the total electron-hole Transmission T h,↑
e,↗ + T h,↓

e,↗ is independent of
ΦSO.
The same considerations hold when considering the Transmission coefficients regard-
ing the other incoming modes, i.e. the other columns of the scattering matrix Eq.(5.135).
In addition, we verified that∑

β

(
Rβ

α + T β
α

)
= 1 ∀ α (5.137)

∑
α

(
Rβ

α + T β
α

)
= 1 ∀ β (5.138)

in agreement with the conservation of the probability flux.
Finally, let us define the total Reflection and Transmission coefficients for each of the
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possible scattering processes in the two side as

N side S side

RN
e→e(E) =

(
Re,↗

e,↗ +Re,↗
e,↙ +Re,↙

e,↗ +Re,↙
e,↙

)
RN

h→h(E) =
(
Rh,↗

h,↗ +Rh,↗
h,↙ +Rh,↙

h,↗ +Rh,↙
h,↙

)
RN

h→e(E) =
(
Re,↗

h,↗ +Re,↗
h,↙ +Re,↙

h,↗ +Re,↙
h,↙

)
RN

e→h(E) =
(
Rh,↗

e,↗ +Rh,↗
e,↙ +Rh,↙

e,↗ +Rh,↙
e,↙

)
TN→S

e→e (E) =
(
T e,↑

e,↗ + T e,↑
e,↙ + T e,↓

e,↗ + T e,↓
e,↙

)
TN→S

h→h (E) =
(
Th,↑

h,↗ +Rh,↑
h,↙ + Th,↓

h,↗ + Th,↓
h,↙

)
TN→S

h→e (E) =
(
T e,↑

h,↗ + T e,↑
h,↙ + T e,↓

h,↗ + T e,↓
h,↙

)
TN→S

e→h (E) =
(
Th,↑

e,↗ + Th,↑
e,↙ + Th,↓

e,↗ + Th,↓
e,↙

)



RS
e→e(E) =

(
Re,↑

e,↑ +Re,↑
e,↓ +Re,↓

e,↑ +Re,↓
e,↓

)
RS

h→h(E) =
(
Rh,↑

h,↑ +Rh,↑
h,↓ +Rh,↓

h,↑ +Rh,↓
h,↓

)
RS

h→e(E) =
(
Re,↑

h,↑ +Re,↑
h,↓ +Re,↓

h,↑ +Re,↓
h,↓

)
RS

e→h(E) =
(
Rh,↑

e,↑ +Rh,↑
e,↓ +Rh,↓

e,↑ +Rh,↓
e,↓

)
TS→N

e→e (E) =
(
T e,↑

e,↑ + T e,↑
e,↓ + T e,↓

e,↑ + T e,↓
e,↓

)
TS→N

h→h (E) =
(
Th,↑

h,↑ + Th,↑
h,↓ + Th,↓

h,↑ + Th,↓
h,↓

)
TS→N

h→e (E) =
(
T e,↑

h,↑ + T e,↑
h,↓ + T e,↓

h,↑ + T e,↓
h,↓

)
TS→N

e→h (E) =
(
Th,↑

e,↑ + Th,↑
e,↓ + Th,↓

e,↑ + Th,↓
e,↓

)
(5.139)

Since there are two electron and two hole incident modes in each side of the junctions,
then it holds that(
RN

e→e +RN
e→h + TN→S

e→e + TN→S
e→h

)
(E) =

(
RN

h→e +RN
h→h + TN→S

h→e + TN→S
h→h

)
(E) = 2
(5.140)

(
RS

e→e +RS
e→h + TS→N

e→e + TS→N
e→h

)
(E) =

(
RS

h→e +RS
h→h + TS→N

h→e + TS→N
h→h

)
(E) = 2
(5.141)

The graphic representation of the total Reflection and Transmission coefficients for
both sides is provided in Fig. 5.6.
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Figure 5.6: Graphic representation of the scattering process in the N side (left panel) and S
side (right panel) in range II. To aid visualization a slight vertical offset has been added to the
green and dashed blue curve in the left panel and to the blue and dashed brown curve in right
panel. As clear from the figures, this energy range supports all the possible scattering process,
since no evanescent modes are allowed. From the left panel we observe a pronounced decay of
the Andreev Reflection which is almost completely suppressed for value of 4∆0. Furthermore we
observe that the h− h Transmission in both side of the junction abruptly drops to zero while the
h− h Reflection drastically increase around the energy value of 10∆0 as for energies greater than
this value, the hole modes become evanescent in the N region.

(III) ESO,N +µN ≤ E ≤
√

(ESO,S + µS)2 + ∆2
0 ↔ 10∆0 ≤ E ≤

√
101∆0

This energy range corresponds to Range 2 in the N region, while also spanning a small
and final portion of the Lower supra-gap regime. The vectors of propagating modes
are 

a =
(
ae

↗,+, a
e
↙,+, a

e
↑,−, a

e
↓,−, a

h
↑,+, a

h
↓,+

)
b =

(
be

↗,−, b
e
↙,−, b

e
↑,+, b

e
↓,+, b

h
↑,−, b

h
↓,−

) (5.142)

The scattering matrix linearly connecting these two vectors reads

be
↗,−

be
↙,−

be
↑,+

be
↓,+

bh
↑,−

bh
↓,−


=



re,↗
e,↗ re,↗

e,↙ te,↗
e,↑ te,↗

e,↓ te,↗
h,↑ te,↗

h,↓

re,↙
e,↗ re,↙

e,↙ te,↙
e,↑ te,↙

e,↓ te,↙
h,↑ te,↙

h,↓

te,↑
e,↗ te,↑

e,↙ re,↑
e,↑ re,↑

e,↓ re,↑
h,↑ re,↑

h,↓

te,↓
e,↗ te,↓

e,↙ re,↓
e,↑ re,↓

e,↓ re,↓
h,↑ re,↓

h,↓

th,↑
e,↗ th,↑

e,↙ rh,↑
e,↑ rh,↑

e,↓ rh,↑
h,↑ rh,↑

h,↓

th,↓
e,↗ th,↓

e,↙ rh,↓
e,↑ rh,↓

e,↓ rh,↓
h,↑ rh,↓

h,↓


︸ ︷︷ ︸

=S



ae
↗,+

ae
↙,+

ae
↑,−

ae
↓,−

ah
↑,+

ah
↓,+


(5.143)
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The case of a single N/S interface in the nanowire

Thus, this energy range supports both the electron to electron and electron to hole
transmissions, as well as the electron reflection in the N side. In contrast, Andreev
Reflection is no longer allowed, since for this energy interval the hole modes in the N
region become evanescent.
The dependence of the Transmission coefficients T β

α on the spin-orbit angle ΦSO, found
in the previous energy regime, is also observed in this energy interval.
Here as well, we have verified that the conditions in Eq.(5.137), which ensure flux
conservation, are satisfied.
Finally, given the definitions of the total Reflection and Transmission coefficients in
Eq.(5.139), the following probability conservation relations must hold(

RN
e→e + TN→S

e→e + TN→S
e→h

)
(E) = 2 (5.144)

(
RS

e→e +RS
e→h + TS→N

e→e

)
(E) =

(
RS

h→e +RS
h→h + TS→N

h→e

)
(E) = 2 (5.145)

Indeed, this energy interval supports two and four incoming modes in the N and
S regions, respectively. As verification, we have plotted the total Reflection and
Transmission coefficients For the N and S side in Fig.(5.6)
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N->S Teh
N->S

(b)

10 101
0

2

E/Δ0

The case of strong SOC, Range III - S side

Ree
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Figure 5.7: The energy range III does no support hole modes in the N side (left panel), thus the
number of scattering process are limited in that region and the Andreev Reflection is no longer
allowed. To aid visualization a slight vertical offset has been addedd to the blue and dashed blue
curves, in continuity with the representation of the S side in range II.

(IV) E >
√

(ESO,S + µS)2 + ∆2
0 ↔ E >

√
101∆0

We now analyze the final range for the case of large SO energy. Here, the energy lies
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5.2 – The case without magnetic field

within Range 2 in the N side and within the Upper supra-gap regime in the S side.
The vectors of propagating components are

a =
(
ae

↗,+, a
e
↙,+, a

e
↑,−, a

e
↓,−

)
b =

(
be

↗,−, b
e
↙,−, b

e
↑,+, b

e
↓,+

) (5.146)

The scattering matrix, which relates these two vectors, is
be

↗,−

be
↙,−

be
↑,+

be
↓,+

 =


re,↗

e,↗ re,↗
e,↙ te,↗

e,↑ te,↗
e,↓

re,↙
e,↗ re,↙

e,↙ te,↙
e,↑ te,↙

e,↓

te,↑
e,↗ te,↑

e,↙ re,↑
e,↑ re,↑

e,↓

te,↓
e,↗ te,↓

e,↙ re,↓
e,↑ re,↓

e,↓


︸ ︷︷ ︸

=S


ae

↗,+

ae
↙,+

ae
↑,−,

ae
↓,−

 (5.147)

This energy range no longer supports propagating hole modes, which, in fact, are
evanescent in both sides of the junction. As a consequence, the only observable
phenomena in the two regions are Normal electron Reflection and Transmission.
The spin-orbit angle ΦSO dependence of the Transmission coefficients, observed in the
previous two regimes, persists in this energy interval as well.
Furthermore, we have numerically verified that the conservation of the flux, expressed
by the conditions in Eq.(5.137), is satisfied.
In the end, as clear from Fig. 5.8, it holds that(

RN
e→e + TN→S

e→e

)
(E) = 2 (5.148)

(
RS

e→e + TS→N
e→e

)
(E) = 2 (5.149)

since this regime supports two electron incoming modes in both sides of the junction.

123



The case of a single N/S interface in the nanowire

(a)
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The case of strong SOC, Range IV - N side
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Figure 5.8: This energy range trivially supports only electron modes in both sides of the junction,
therefore only Normal Reflection and electron-electron Transmission are allowed. As expected, for
larger energy values, the Reflection probabilities are completely suppressed while the Transmission
ones are maximized.

In conclusion, we have summarized the results obtained for the Normal and Andreev Re-
flection coefficients in Fig. 5.9 for energies up to 4∆0. This value marks the approximate
threshold after which the Andreev Reflection is suppressed.
We remark here that the single Reflection coefficients Rβ

α as well as the total Reflec-
tion (∑β R

β
α) and Transmission coefficients (∑β T

β
α ) for each incoming mode α does not

exhibit any dependence on the misalignment angle ΦSO. In contrast, the individual
Transmission coefficients (e.g. T e,↑

e,↗) show a dependence on the ΦSO, since the basis of N
and S regions have a difference dependence on the SO angle.
Furthermore, in Fig.5.10 we have shown that it is possible to modulate the AR probabil-
ities by varying the SO energy in the N region.
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The case of strong SOC : Normal and Andreev Reflections
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N

Figure 5.9: Plot of the total Normal and Andreev Reflections up to the energy value of 4∆0 for
the electron and hole modes. Also here the green and the purple curves are shown with a slight
vertical offset to aid visualization. The AR probability is maximum in the sub-gap regime, while
strongly decades for energy values larger than ∆0 and is completely suppressed for energy values
around 4∆0. No dependence on the misalignment angle ΦSO is observed.
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Normal and Andreev Reflections for different SO energy values
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Figure 5.10: Normal and Andreev Reflections for a fixed SO energy in S region (ESO,S = 10∆0)
and different values of ESO,N in N region. The value E = 2∆0 marks the energy after which AR
is no longer allowed for the ESO.N = 2∆0 case . Here we observe that changing the magnitude of
the SO energy in N region causes the AR probabilities to vary.
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The case of a single N/S interface in the nanowire

5.2.4 The regime of weak spin-orbit energy (ESO < ∆0)

Let us now turn to the case of weak spin-orbit energy ESO < ∆0. Specifically, we shall
adopt the following model parameters

ESO,N = ESO,S = ∆0
3 µN = µS = 0 (5.150)

EE N S

Δ0

k

The case of weak SOC : Excitations spectra in N and S regions

E↗ E↙ E↑ E↓

Figure 5.11: Plot of the excitations spectra in the two regions for the regime B of weak spin-orbit
energy (ESO < ∆0). This specific set of parameters leads to four different energy ranges, which
are marked by horizontal lines.

The energy spectrum on the two sides of the junction is shown in Fig.5.11. As one can
see, there are four different energy ranges, stemming from the combination of the energy
ranges in the two sides of the junction. Let us now analyze each of these separately:
(I) E ≤ ESO.N + µN ↔ E ≤ ∆0

3

This interval corresponds to Range 1 in the N side, and to the Sub-Gap regime in the
S one. The vector of propagating components are

a =
(
ae

↗,+, a
e
↙,+, a

h
↗,−, a

h
↙,−

)T

b =
(
be

↗,−, b
e
↙,−, b

h
↗,+, b

h
↙,+

)T
(5.151)

The corresponding scattering matrix S for this pair of incoming vectors is presented
in Eq.(5.124). Indeed, this energy interval is characterized by the same vectors a and
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5.2 – The case without magnetic field

b as for the E < ∆0 regime of large spin-orbit energy [see Sec 5.2.3]. Consequently,
the theoretical considerations regarding the structure of the S matrix and the allowed
scattering process are identical.
We emphasize that, since the parameters under consideration in this configuration are
different from those in large spin-orbit energy (5.122), the energy dependence of the
individual Reflection coefficients Rβ

α differs between the two cases.
In particular the most significant difference between the cases of large and weak spin-
orbit energy -in the case of equal SO energy in the two regions (ESO,N = ESO,S)-, is
the emergence of a finite Normal Reflection in the weak regime that was not observed
in large regime.
The emergence of the Normal Reflection confirms that the current parameters place
the system in a regime beyond the standard Andreev approximation. Indeed, as es-
tablished in our analysis of the large spin-orbit regime, this setup is analogous to the
BTK framework, but with the spin-orbit energy ESO playing the role of the chemical
potential µ. In contrast, here the spin-orbit energy is smaller than the superconduct-
ing gap ESO,N = ESO,N < ∆0, and the Andreev approximation (ESO ≫ ∆0) no
longer holds. Consequently, an intrinsic momentum mismatch ke /= kh arises between
the incident electron (hole) and the reflected hole (electron) in the Andreev Reflection
process. This mismatch acts as an effective barrier, generating the appearance of a
Normal Reflection.
Finally, we remark that even in this regime, the individual Reflection coefficients (Rβ

α)
are still independent of the angle ΦSO. Indeed, a change in ΦSO acts as a rotation
of the entire N-region. Since all parts related to the reflection phenomenon rotate
together, the reflection probabilities are left invariant.
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Figure 5.12: Plot of the Andreev and Normal Reflection for Range I in the case of weak SOC.
The green and purple curves are shown with a slight vertical offset to aid visualization, since
the electron and hole AR curves, as well as the electron and hole Normal Reflection ones, are
perfectly coincident. Differently from the case of strong SO energy, here the Normal Reflection is
not suppressed, conversely it approaches its maximum probability value as the energy tends to ∆0

3 .
No dependence on the SO misalignment angle is observed also for this choice of the parameters.

(II) ESO.N + µN < E < ∆0 ↔ ∆0
3 < E < ∆0

This energy range spans a second and final portion of the Sub-Gap regime, while
it refers to Range 2 regime for the Normal region. Notably, for all higher energy
intervals, the N region remains in Range 2, and consequently, hole modes in this side
are no longer allowed. The vector of propagating components are

a =
(
ae

↗,+, a
e
↙,+

)T

b =
(
be

↗,−, b
e
↙,−

)T
(5.152)

and the corresponding scattering matrix isbe
↗,−

be
↙,−

 =
re,↗

e,↗ re,↗
e,↙

re,↙
e,↗ re,↙

e,↙


︸ ︷︷ ︸

=S

ae
↗,+

ae
↙,+

 (5.153)

The S-matrix reveals that the system is trivial in this energy interval. Indeed, the
only permitted process is Normal Reflection. We have specifically verified that Re,↗

e,↗
and Re,↙

e,↙ are equal to 1.
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5.2 – The case without magnetic field

(III) ∆0 ≤ E ≤
√

∆2
0 + (ESO,N + µS)2 ↔ ∆0 ≤ E ≤

√
10
9 ∆0

This energy interval spans all the Lower Supra-Gap regime, while, as already dis-
cussed, it corresponds to Range 2 for the Normal region. The vectors a and b of
propagating components are

a =
(
ae

↗,+, a
e
↙,+, a

e
↑,−, a

e
↓,−, a

h
↑,+, a

h
↓,+

)T

b =
(
be

↗,−, b
e
↙,−, b

e
↑,+, b

e
↓,+, b

h
↑,−, b

h
↓,−

)T
(5.154)

and the Scattering matrix reads

be
↗,−

be
↙,−

be
↑,+

be
↓,+

bh
↑,−

bh
↓,−


=



re,↗
e,↗ re,↗

e,↙ te,↗
e,↑ te,↗

e,↓ te,↗
h,↑ te,↗

h,↓

re,↙
e,↗ re,↙

e,↙ te,↙
e,↑ te,↙

e,↓ te,↙
h,↑ te,↙

h,↓

te,↑
e,↗ te,↑

e,↙ re,↑
e,↑ re,↑

e,↓ re,↑
h,↑ re,↑

h,↓

te,↓
e,↗ te,↓

e,↙ re,↓
e,↑ re,↓

e,↓ re,↓
h,↑ re,↓

h,↓

th,↑
e,↗ th,↑

e,↙ rh,↑
e,↑ rh,↑

e,↓ rh,↑
h,↑ rh,↑

h,↓

th,↓
e,↗ th,↓

e,↙ rh,↓
e,↑ rh,↓

e,↓ rh,↓
h,↑ rh,↓

h,↓


︸ ︷︷ ︸

=S



ae
↗,+

ae
↙,+

ae
↑,−

ae
↓,−

ah
↑,+

ah
↓,+


(5.155)

This energy range has already been encountered in the analyses of the case of strong
SO energy. Therefore, we refer the reader to that specific section for the details of the
allowed scattering processes.
We remark here that the Andreev Reflection phenomenon is no longer allowed since
hole modes in N side are evanescent in this energy range.
Fig.(5.13) displays the total Reflection and Transmission probabilities, and clearly
demonstrates the unitarity of the Scattering matrix.

129



The case of a single N/S interface in the nanowire
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Figure 5.13: Graphic representation of the total Reflection and Transmission probabilities for
the N (left panel) and S regions (right panel) in Range III. A slight vertical offset has been added
to the pink curve to aid visualization.

(IV) E ≥
√

∆2
0 + (ESO,N + µS)2 ↔ E ≥

√
10
9 ∆0

The vectors of propagating components are
a =

(
ae

↗,+, a
e
↙,+, a

e
↑,−, a

e
↓,−

)
b =

(
be

↗,−, b
e
↙,−, b

e
↑,+, b

e
↓,+

) (5.156)

The Scattering matrix, which relates these two vectors, is
be

↗,−

be
↙,−

be
↑,+

be
↓,+

 =


re,↗

e,↗ re,↗
e,↙ te,↗

e,↑ te,↗
e,↓

re,↙
e,↗ re,↙

e,↙ te,↙
e,↑ te,↙

e,↓

te,↑
e,↗ te,↑

e,↙ re,↑
e,↑ re,↑

e,↓

te,↓
e,↗ te,↓

e,↙ re,↓
e,↑ re,↓

e,↓


︸ ︷︷ ︸

=S


ae

↗,+

ae
↙,+

ae
↑,−,

ae
↓,−

 (5.157)

This last energy range trivially admits only electron modes in both sides of the junc-
tion. The total Transmission and Reflection probabilities are presented in Fig.5.14,
which clearly demonstrate the unitary of the Scattering matrix.
As expected, the electron reflection are completely suppressed for larger energy values
and the Transmission coefficient reaches its maximum value.
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Figure 5.14: This energy range trivially supports only electron modes in both side of the
junction, therefore only Normal Reflection and electron-electron Transmission are allowed. As
expected, for large energy values, the Normal Reflection is completely suppressed and the Trans-
mission probabilities are maximized.

In conclusion, we summarize here the main result obtained for the current choice of
parameters. No dependence on the misalignment angle ΦSO is observed for the total
Reflection and Transmission coefficients. In Fig.5.15 we have plotted the Normal and
Andreev Reflection up to an energy of 1.5∆0 . We remark that AR is allowed up to
an energy value of ∆0

3 , since hole modes turn evanescent at higher energies; Normal
Reflection remains allowed however is completely suppressed for energy values around
1.5∆0.
In contrast, a dependence on the magnitude of the SO vector is always observed, as
showed in Fig.5.16.
Specifically, we have represented the Normal and Andreev Reflection probabilities up to
the energy value of ∆0 for a fixed SO energy in S region of ESO,S = ∆0

3 , while varying the
magnitude of the SO vector in the N side. This amounts to change the value of the SO
energy ESO in the N region, thus Fig.5.16 demonstrates the possibility to tune the AR
probabilities by modulating the value of the SO energy ESO,N . Tuning the Rashba SOC
can be experimentally realized by implementing electrostatic gates (wrap/side/back) in
the N side of the junction, through which it is possible to control the applied electrical
field E(r) and thus the Rashba interaction term [35].
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Figure 5.15: Plot of the total Normal and Andreev Reflection up to the energy value of 1.5∆0.
Also here a slight vertical offset has been added to aid visualization, as the electron and hole
ARs, as well as the electron and hole Normal Reflections, are perfectly coincident. There is no
dependence on the spin-orbit misalignment angle ΦSO.
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Figure 5.16: Plot of the total Normal and Andreev Reflection up to the energy value of ∆0, for
a fixed value of ESO,S = 0.5∆0 in the S region and for different values of ESO,N in the N region.
The inhomogeneities in the magnitude αN of the SOC, which enters the spin-orbit energy on each
side of the interface, affect the AR process.
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5.3 Effects of a perpendicular magnetic field

Building upon the system structure delineated at the beginning of Section 5, we now
extend our analysis of the N-S interface to include a uniform magnetic field that is or-
thogonal to the spin-orbit field. Specifically, since the spin-orbit field lies in y − z plane

αN = αN (0, sin ΦSO, cos ΦSO) (5.158)

αS = (0, 0, αS) (5.159)

with ΦSO denoting the mislignament angle between the N and S regions, we shall assume
that the magnetic field b is applied along the NW axis x, i.e.

b = (bx,0,0) (5.160)

Similarly to what we did in the previous section for the case without magnetic field,
we shall compute the solutions in the N and S regions, and then impose the boundary
conditions to determine the reflection and transmission properties.

5.3.1 Solution in the N region

We start by the Bogoliubov-de Gennes Hamiltonian (3.6) derived in Section 3.1. By
specifying it to the N region, where the superconducting pairing vanishes (∆0 = 0), we
obtain the block-diagonal Hamiltonian

HBdG(k) =
(
ξ0

kσ0 − kαN · σ − b · σ 0
0 −ξ0

kσ0 + kαN · σ − b · σ

)
(5.161)

The diagonalization of such matrix was already performed in Section 3.3.1, by rotating
the basis and moving to the natural basis [see Eq.(3.98)]

H̃BdG(k) =
(
ξ0

kσ0 + |m(k)|σz 0
0 −ξ0

kσ0 + |m(−k)|σz

)
(5.162)

In particular, in the present case (5.158)-(5.160) the effective field vector m(k), which
includes both the SO and Zeeman terms, is

|m(k)| =
√

(αNk)2 + b2
x (5.163)

and, the eigenvalues (3.99) read
ξe

⇑/⇓(k) = ξ0
N (k)±

√
(αNk)2 + b2

x

ξh
⇑/⇓(k) = −ξ0

N (k)∓
√

(αNk)2 + b2
x

(5.164)
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The eigenvectors (3.103) acquire the form

Φe
k,⇑ =


cos θk

2
sin θk

2 e
iφk

0
0

 Φe
k,⇓ =


− sin θk

2 e
−iφk

cos θk
2

0
0


(5.165)

Φh
k,⇓ =


0
0

cos θ−k

2
sin θ−k

2 eiφ−k

 Φh
k,⇑ =


0
0

− sin θ−k

2 e−iφ−k

cos θ−k

2


where 

cos θk = − αzk√
b2

x + (αNk)2

sin θk =
√
b2

x + (αN k sin ΦSO)2

b2
x + (αNk)2

φk = arctan
(

αN k sin ΦSO
bx

)
+ πϑ(bx)

(5.166)

and φk ∈ [0, 2π], θk ∈ [0, π], with ϑ denoting the Heaviside function.
We observe that, since θk

2 ∈ [0, π
2 ], terms of type “cos θk

2 , sin θk
2 ” shall be always positive,

thus, in this interval, the following trigonometric relations are valid

cos θk

2 = +
√

1
2 (1 + cos θk) sin θk

2 = +
√

1
2 (1− cos θk) (5.167)

whence, given that in our particular case cos θ−k = − cos θk, we get

cos θ−k

2 = sin θk

2 and sin θ−k

2 = cos θk

2 (5.168)

Finally the positive spectrum of (5.162) read

Ee
⇑(k) = ϑ

(
ξe

⇑(k)
)
|ξe

⇑(k)| = ϑ
(
ξ0

N (k) +
√

(αNk)2 + b2
x

)∣∣∣ξ0
N (k) +

√
(αNk)2 + b2

x

∣∣∣
Eh

⇑(k) = ϑ
(
ξh

⇑(k)
)
|ξh

⇑(k)| = ϑ
(
− ξ0

N (k)−
√

(αNk)2 + b2
x

)∣∣∣ξ0
N (k) +

√
(αNk)2 + b2

x

∣∣∣
Ee

⇓(k) = ϑ
(
ξe

⇓(k)
)
|ξe

⇓(k)| = ϑ
(
ξ0

N (k)−
√

(αNk)2 + b2
x

)∣∣∣ξ0
N (k)−

√
(αNk)2 + b2

x

∣∣∣
Eh

⇓(k) = ϑ
(
ξh

⇓(k)
)
|ξh

⇓(k)| = ϑ
(
− ξ0

N (k) +
√

(αNk)2 + b2
x

)∣∣∣ξ0
N (k)−

√
(αNk)2 + b2

x

∣∣∣
(5.169)

From the expression of Eh
⇑(k) in Eq.(5.169), we observe that this branch only exists in the

positive spectrum if the argument of the Heaviside ϑ-function is positive. Let us analyze
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this condition, which is

ϑ
(
ξh

⇑(k)
)

= ϑ

(
−ℏ2k2

2m∗ + µN −
√

(αNk)2 + b2
x

)
(5.170)

The terms −ℏ2k2

2m∗ and −
√

(αNk)2 + b2
x both provide a negative contribution that increases

in magnitude with k. Therefore, the maximum ofEh
+(k) occurs at k = 0, and it is µN−|bx|.

If this maximum value is negative (i.e., if |bx| > µN ), then Eh
+(k) will be negative for

all k. Consequently, the ϑ-function will be zero for all k, and the Hole-⇑ branch of the
spectrum vanishes from the positive energy range, thus losing its capacity to support
propagating modes. Despite that, in such a situation, this branch still contributes to the
total solution through evanescent modes.
We now have all the necessary ingredients to compute the wavefunction ΦN (x) in the N
region.

Remark
A crucial difference from the case with vanishing magnetic field is that here the eigen-
vectors are now necessarily k-dependent. The electron bands acquire a k-dependent spin
texture. This is a fundamental consequence of the competition between the two spin-
aligning fields in the system: the constant Zeeman field b and the momentum-dependent
spin-orbit (SO) field, kα.
The total effective field, m(k) = −(kα + b), defines the spin quantization axis for the
system, given by n̂(k) = m(k)/|m(k)|. Due to the competition between its two con-
stituent terms, this axis rotates as a function of momentum k. Specifically, the spin axis
precesses from being aligned with the Zeeman field at k = 0 (where m(0) = −b) to
being asymptotically aligned with the SO-field at large k (where m(k) ≈ −kα. Since the
eigenvectors of the Hamiltonian are, by definition, the spin states that align with this
k-dependent axis, they must inherit this strong k-dependence to form the correct basis.

Eigenfunctions at fixed energy E

To determine the eigenfunctions for our system at a fixed energy E > 0, we must first
find the corresponding wavevectors. These are obtained by inverting the four equations
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of the positive spectrum given in Eq.(5.169) in favour of k, namely

Ee
⇑(k) = E ⇒ ξ0

N (k) +
√

(αNk)2 + b2
x = E ⇒ (αNk)2 + b2

x =
(
E − ξ0

N (k)
)2

Eh
⇑(k) = E ⇒ ξ0

N (k) +
√

(αNk)2 + b2
x = −E ⇒ (αNk)2 + b2

x =
(
E + ξ0

N (k)
)2

Ee
⇓(k) = E ⇒ ξ0

N (k)−
√

(αNk)2 + b2
x = E ⇒ (αNk)2 + b2

x =
(
E − ξ0

N (k)
)2

Eh
⇓(k) = E ⇒ ξ0

N (k)−
√

(αNk)2 + b2
x = −E ⇒ (αNk)2 + b2

x =
(
E + ξ0

N (k)
)2

(5.171)

As is evident from the equations above, the two electron equations once squared, collapse
into a single algebraic equation. The same holds true for the two hole sectors (Eh

⇑ and
Eh

⇓).
Since ξ0

N (k) is a quadratic function of k (i.e., ξ0
N (k) = ℏ2k2

2m∗ −µN ), both of these resulting
equations are biquadratic in k (i.e., of the form Ak4 +Bk2 + C = 0).
Solving each of these two biquadratic equations yields four distinct roots for k.
The correct correspondence between these solutions and the four original dispersion
branches is recovered by considering the sign constraints in the unsquared equations.
For example, the roots belonging to Ee

⇑ must satisfy the constraint E − ξ0
N (k) ≥ 0, while

those belonging to Ee
⇓ must satisfy E − ξ0

N (k) ≤ 0. An analogous sorting applies to the
two hole branches.
As a result the number of solutions for each branch strictly depends on the competition
between the energy parameters µN , ESO,N , EZ , where the definition of ESO,N is given
in Eq.(5.60) and the Zeeman Energy EZ is defined as

EZ = |bx| (5.172)

Specifically, we start our analysis by considering the case EZ > µN . We have already
noted that, in this situation, the Hole-⇑ branch in Eq.(5.169) is shifted entirely below the
Fermi level (E = 0) and thus it is unable to carry propagating modes, but only evanescent
ones.
Furthermore, we will structure our analysis based on a critical condition that dictates
the Hole-⇓ sector band structure. Indeed, we observe that the competition between the
Zeeman energy (EZ) and the spin-orbit energy (ESO,N ) fundamentally alters the shape
of the Eh

⇓(k) branch, thereby changing the number of available propagating channels.
In particular, it is possible to distinguish between two regimes, namely the Rashba-
dominated regime, defined by the condition EZ < 2ESO,N and the Zeeman dominated-
regime EZ > 2ESO,N .
When the spin-orbit interaction is dominant(EZ < 2ESO,S), the Eh

⇓(k) band exhibits
a “double-well” (or inverted Mexican hat) structure and it is characterized by a local
minimum at k = 0 and two global maxima at k = ±kmax. The crucial consequence is the
emergence of a finite energy window between the local minimum Eh

⇓(0) and the global
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maxima Eh
⇓(±kmax) where a line of constant energy E intersects the band four times.

Therefore, in this specific energy interval, the hole-⇓ sector can support four propagating
solutions (i.e., four real k-vectors).
Conversely, when the Zeeman field is strong enough to overcome the spin-orbit splitting
(EZ > 2ESO,S), the double-well structure collapses. The band’s shape is now featuring
by only a single global maximum at k = 0. In this regime, any line of constant energy E
can intersect the band Hole-⇓ at most twice.
Consequently, the hole sector can only support a maximum of two propagating solutions.
This distinction is extremely important, as the number of “open” propagating channels
(four vs two) at given energy depends on it.
Finally, in what follows we will analyze only the case of the Rashba-dominated regime, as
the main focus of this thesis lies in the study of how SOC changes the scattering process
in an N/S junction.

Rashba-dominated regime EZ < 2ESO,N

Let us start by solving the equations (5.171) for a fixed energy E to identify the various
energy regimes governing the scattering process.
In doing so, we first identify two critical energy thresholds derived from the band ex-
trema: I1 = EZ − µN and I2 = µN + E2

Z
4ESO,N

. We observe that the relative order
of these two thresholds depends on the specific system parameters. In particular, if
µN > 1

2

(
EZ −

E2
Z

4ESO,N

)
, then I1 marks the lower energy threshold, whereas if this condi-

tion is not met, I2 becomes the lower threshold. As will be clear, the primary consequence
of this ordering relates to the nature and presence of evanescent modes within the differ-
ent energy intervals defined by I1 and I2.
Regardless, for the remainder of this derivation, we shall focus on the specific situation
where µN < 1

2

(
EZ −

E2
Z

4ESO,N

)
.

In particular we identify five possible regimes:

• Range 1 : E < µN + E2
Z

4ESO,N

The solution of the Eqs defined in (5.171) are

(αNk)2 + b2
x =

(
Ee

⇑ − ξ0
N (k)

)2

ke
⇑,± = ±i

√
2m∗

ℏ2

(√
4ESO,N (µN + E + ESO,N ) + E2

Z − (µN + E + 2ESO,N )
)

(5.173)

(αNk)2 + b2
x =

(
Eh

⇑ + ξ0
N (k)

)2

kh
⇑,± = ±i

√
2m∗

ℏ2

(√
4ESO,N (µN − E + ESO,N ) + E2

Z − (µN − E + 2ESO,N )
)

(5.174)
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(αNk)2 + b2
x =

(
Ee

⇓ − ξ0
N (k)

)2

ke
⇓,± = ±

√
2m∗

ℏ2

(
(µN + E + 2ESO,N ) +

√
4ESO,N (µN + E + ESO,N ) + E2

Z

)
(5.175)

(αNk)2 + b2
x =

(
Eh

⇓ + ξ0
N (k)

)2

kh,1
⇓,± = ±

√
2m∗

ℏ2

(
(µN − E + 2ESO,N ) +

√
4ESO,N (µN − E + ESO,N ) + E2

Z

)
(5.176)

and we assign the index “1” to the kh,1
⇓,± wavevectors, since in the following ranges the

Eh
⇓ branch will admit more than two solutions. Therefore, we obtain 4 real solutions,

describing propagating modes, and 4 complex ones describing evanescent ones. Indeed
the electron k⇑,± solutions possess an imaginary part for the energy constraint E <
EZ − µN that, by hypothesis, Range 1 always satisfies. Similarly, the hole Eh

⇑ branch
admits two evanescent solutions for E < EZ + µN , which is also true for all energies
within Range 1.
In fact, as previously discussed, this last branch only admits complex solutions for
E > 0, since it lies entirely below the Fermi level. In particular, as will become
evident in the following ranges, this Hole branch will cease to contribute any solutions,
including evanescent ones.
However, since N is on the left-hand side of the interface, only solutions with a negative
imaginary part can be retained, since describing evanescent waves decaying for x →
−∞. As a result ke

⇑,−, k
h
⇑,− modes represents the only permitted solutions here, whereas

ke
⇑,+, k

e
⇑,+ modes bring to a divergent contribution and must be discarded.

For the propagating modes the group velocity is defined as

vg(E) = 1
ℏ
∂E

∂k

∣∣∣∣
k=k(E)

(5.177)

and reads

ve
⇓,±(E) = ℏ

m∗ k
e
⇓,±(E) De

2ESO,N +De
and De =

√
4ESO,N (µN + E + ESO,N ) + E2

Z

(5.178)

vh,1
⇓,±(E) = − ℏ

m∗ k
h,1
⇓,±(E) Dh

2ESO,N +Dh
and Dh =

√
4ESO,N (µN − E + ESO,N ) + E2

Z

(5.179)

The general expression of the wavefunction in the N side of the junction for this energy
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range is

ΦN (x) = ae
⇓,+

eike
⇓,+(E) x√

2πℏve
⇓,+(E)

Φe
⇓(ke

⇓,+) + ah,1
⇓,−

eikh,1
⇓,−(E) x√

2πℏvh,1
⇓,−(E)

Φh
⇓(kh,1

⇓,−) +

+ be
⇓,−

eike
⇓,−(E) x√

2πℏve
⇓,−(E)

Φe
⇓(ke

⇓,−) + bh,1
⇓,+

eikh,1
⇓,+(E) x√

2πℏvh,1
⇓,+(E)

Φh
⇓(kh,1

⇓,+) +

+ ce
⇑,−

eike
⇑,−(E) x

√
2πℏvN

Φe
⇑(ke

⇑,−) + ch
⇑,−

eikh
⇑,−(E) x

√
2πℏvN

Φh
⇑(kh

⇑,−)

(5.180)

where vN is defined as

vN
.=

√
2(ESO,N + µN )

m∗ (5.181)

and represent a formal definition of velocity, introduced to correctly normalize the
evanescent mode in ΦN , similarly to the propaganting ones.

• Range 2 : µN + E2
Z

4ESO,N
≤ E < EZ − µN

We observe that for energies E ≥ µN + E2
Z

4ESO,N
hole-⇑ branch stops contributing

solutions altogether, not even evanescent ones, whereas the solution of Eqs (5.171) for
the hole-⇓ branch always yields four solutions.
In particular, the real ones solutions for the ⇓-Hole branch were already computed
for the Range 1 energy interval, whereas the remaining two solutions represent always
complex quantity for energy E such that EZ > |µN − E|, which for our choice of the
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parameters traduces to E < µN + EZ . Therefore, we have

(αNk)2 + b2
x =

(
Ee

⇑ − ξ0
N (k)

)2

ke
⇑,± = ±i

√
2m∗

ℏ2

(√
4ESO,N (µN + E + ESO,N ) + E2

Z − (µN + E + 2ESO,N )
)
(5.182)

(αNk)2 + b2
x =

(
Ee

⇓ − ξ0
N (k)

)2

ke
⇓,± = ±

√
2m∗

ℏ2

(
(µN + E + 2ESO,N ) +

√
4ESO,N (µN + E + ESO,N ) + E2

Z

)
(5.183)

(αNk)2 + b2
x =

(
Eh

⇓ + ξ0
N (k)

)2


kh,1

⇓,± = ±
√

2m∗

ℏ2

(
(µN − E + 2ESO,N ) +

√
4ESO,N (µN − E + ESO,N ) + E2

Z

)
kh,2

⇓,± = ±i
√

2m∗

ℏ2

(√
4ESO,N (µN − E + ESO,N ) + E2

Z − (µN − E + 2ESO,N )
)

(5.184)

Note that the kh,2
⇓,± solutions are equal to kh

⇑,± ones, since the two equations for the Hole
branch in (5.171), once squared, represents the same unique equation. The difference
between the two ranges clearly lies in the specific energy regimes of validity for the 4
solutions.
From the four evanescent solutions, we must discard the ones indentified by kh,2

⇓,+, k
e
⇑,+,

since characterized by a positive imaginary part and thus diverging for x → −∞.
Given the definition of velocity group in Eq.(5.178) for the propagating ⇓-modes, the
wavefunction ΦN (x) in this regime reads

ΦN (x) = ae
⇓,+

eike
⇓,+(E) x√

2πℏve
⇓,+(E)

Φe
⇓(ke

⇓,+) + ah,1
⇓,−

eikh,1
⇓,−(E) x√

2πℏvh,1
⇓,−(E)

Φh
⇓(kh,1

⇓,−) +

+ be
⇓,−

eike
⇓,−(E) x√

2πℏve
⇓,−(E)

Φe
⇓(ke

⇓,−) + bh,1
⇓,+

eikh,1
⇓,+(E) x√

2πℏvh,1
⇓,+(E)

Φh
⇓(kh,1

⇓,+) +

ce
⇑,−

eike
⇑,−(E) x

√
2πℏvN

Φe
⇑(ke

⇑,−) + ch,2
⇓,−

eikh,2
⇓,−(E) x

√
2πℏvN

Φh
⇓(kh,2

⇓,−)

(5.185)

where vN is defined in (5.181).

• Range 3 : EZ − µN ≤ E < EZ + µN

The value EZ − µN represents the onset energy for propagating modes within the Ee
⇑

branch, as determined by Eqs.(5.171). This marks the energy threshold above which
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the solutions for the Ee
⇑ branch transition from evanescent to permanently propagating.

It follows that

(αNk)2 + b2
x =

(
Ee

⇑ − ξ0
N (k)

)2

ke
⇑,± = ±

√
2m∗
ℏ2

(
(µN + E + 2ESO,N )−

√
4ESO,N (µ+ E + ESO,N ) + b2

x

)
(5.186)

(αNk)2 + b2
x =

(
Ee

⇓ − ξ0
N (k)

)2

ke
⇓,± = ±

√
2m∗
ℏ2

(
(µN + E + 2ESO,N ) +

√
4ESO,N (µ+ E + ESO,N ) + E2

Z

)
(5.187)

(αNk)2 + b2
x =

(
Eh

⇓ + ξ0
N (k)

)2


kh,1

⇓,± = ±
√

2m∗

ℏ2

(
(µN − E + 2ESO,N ) +

√
4ESO,N (µ− E + ESO,N ) + E2

Z

)
kh,2

⇓,± = ±i
√

2m∗

ℏ2

(√
4ESO,N (µ− E + ESO,N ) + E2

Z − (µN − E + 2ESO,N )
)

(5.188)

The computation of velocity group vg(E) = 1
ℏ

∂E
∂k for the two Electron-⇑ modes brings

to

ve
⇑,±(E) = ℏ

m∗ k
e
⇑,±(E) De

De − 2ESO,N
and De =

√
4ESO,N (µ+ E + ESO,N ) + E2

Z

(5.189)

We observe that the quantity De − 2ESO,N is always positive, therefore assigning the
right sign to the velocities of the two electron modes. The wavefunctions in the N side
reads

ΦN (x) = ae
⇓,+

eike
⇓,+(E) x√

2πℏve
⇓,+(E)

Φe
⇓(ke

⇓,+) + ah,1
⇓,−

eikh,1
⇓,−(E) x√

2πℏvh
⇓,−(E)

Φh
⇓(kh,1

⇓,−) +

+ ae
⇑,+

eike
⇑,+(E) x√

2πℏve
⇑,+(E)

Φe
⇑(ke

⇑,+) + be
⇓,−

eike
⇓,−(E) x√

2πℏve
⇓,−(E)

Φe
⇓(ke

⇓,−)

+ bh,1
⇓,+

eikh,1
⇓,+(E) x√

2πℏvh,1
⇓,+(E)

Φh
⇓(kh

⇓,+) + be
⇑,−

eike
⇑,−(E) x√

2πℏve
⇑,−(E)

Φe
⇑(ke

⇑,−)

+ ch,2
⇓,−

eikh,2
⇓,−(E) x

√
2πℏvN

Φh
⇓(kh,2

⇓,−)

(5.190)
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• Range 4 : EZ + µN ≤ E ≤ ESO,N + E2
Z

4ESO,N
+ µN

This particular energy range is unique within the SO-dominated regime (EZ < 2ESO,N ).
Within this window, the hole-⇓ sector supports four propagating modes. Indeed, all
four real roots generated by the corresponding biquadratic equation in (5.171) satisfy
the constraint for the Eh

⇓ branch. Furthermore, the electrons sector remain unchanged
compared to adjacent energy regimes and the corresponding biquadratic equations for
each of the two electron sectors continue to yield two real (propagating) solutions.
Thus, the wavevectors solutions read

(αNk)2 + b2
x =

(
Ee

⇑ − ξ0
N (k)

)2

ke
⇑,± = ±

√
2m∗
ℏ2

(
(µN + E + 2ESO,N )−

√
4ESO,N (µ+ E + ESO,N ) + b2

x

)
(5.191)

(αNk)2 + b2
x =

(
Ee

⇓ − ξ0
N (k)

)2

ke
⇓,± = ±

√
2m∗
ℏ2

(
(µN + E + 2ESO,N ) +

√
4ESO,N (µ+ E + ESO,N ) + E2

Z

)
(5.192)

(αNk)2 + b2
x =

(
Eh

⇓ + ξ0
N (k)

)2


kh,1

⇓,± = ±
√

2m∗

ℏ2

(
(µN − E + 2ESO,N ) +

√
4ESO,N (µ− E + ESO,N ) + E2

Z

)
kh,2

⇓,± = ±
√

2m∗

ℏ2

(
(µN − E + 2ESO,N )−

√
4ESO,N (µ− E + ESO,N ) + E2

Z

)
(5.193)

The group velocity for the propagating kh,2
⇓,± modes is

vh,2
⇓,±(E) = ℏ

m∗ k
h,2
⇓,±(E) Dh

2ESO,N −Dh
and Dh =

√
4ESO,N (µ− E + ESO,N ) + E2

Z

(5.194)

From Eq.(5.194) we note that the quantity 2ESO,N − Dh is always positive in the
present regime. Consequently, unlike “traditional holes”, for which the wavevector (k)
and the velocity group (vg) have opposite sign, the two kh,2

⇓,±(E) solutions yield to waves
which propagates to the right for k = kh,2

⇓,+(E) > 0 and to the left for k = kh,2
⇓,−(E) < 0.

The emergence of this unconventional behaviour is observed only in the SO-dominated
regime (EZ < 2ESO,N . Indeed as already discussed previosly, the Eh

⇓(k) band exhibits
a “double-well” (or inverted Mexican hat) structure and it is characterized by a local
minimum at k = 0 and two global maxima at k = ±kmax. Then, the wavefunction

142



5.3 – Effects of a perpendicular magnetic field

ΦN (x) in this regime reads

ΦN (x) = ae
⇓,+

eike
⇓,+(E) x√

2πℏve
⇓,+(E)

Φe
⇓(ke

⇓,+) + ae
⇑,+

eike
⇑,+(E) x√

2πℏve
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Φe
⇑(ke

⇑,+) +

+ ah,1
⇓,−

eikh,1
⇓,−(E) x√

2πℏvh,1
⇓,−(E)

Φh
⇓(kh,1

⇓,−) + ah,2
⇓,+

eikh,2
⇓,+(E) x√

2πℏvh,2
⇓,+(E)

Φh
⇓(kh,2

⇓,+) +

+ be
⇓,−

eike
⇓,−(E) x√

2πℏve
⇓,−(E)

Φe
⇓(ke

⇓,−) + be
⇑,−

eike
⇑,−(E) x√

2πℏve
⇑,−(E)

Φe
⇑(ke

⇑,−) +

+ bh,1
⇓,+

eikh,1
⇓,+(E) x√

2πℏvh,1
⇓,+(E)

Φh
⇓(kh,1

⇓,+) + bh,2
⇓,−

eikh,2
⇓,−(E) x√

2πℏvh,2
⇓,−(E)

Φh
⇓(kh,2

⇓,−)

• Range 5 : E > ESO,N + E2
Z

4ESO,N
+ µN

Finally, in this last energy range the entire set of hole solutions exhibits an imagi-
nary part, thereby leading to possible evanescent modes.
Furthermore, the situation for electron sector remains unchanged compared to adjacent
energy regimes. Each of the two electron branches (Ee

⇑ and Ee
⇓) is associated with two

real solutions originating from the electron biquadratic equation in Eq.(5.171), sup-
porting, therefore, propagating modes The solution of Eq.(5.171) for the three branches
yields the following wavevectors

(αNk)2 + b2
x =

(
Ee

⇑ − ξ0
N (k)

)2

ke
⇑,± = ±

√
2m∗
ℏ2

(
(µN + E + 2ESO,N )−

√
4ESO,N (µ+ E + ESO,N ) + b2

x

)
(5.195)

(αNk)2 + b2
x =

(
Ee

⇓ − ξ0
N (k)

)2

ke
⇓,± = ±

√
2m∗
ℏ2

(
(µN + E + 2ESO,N ) +

√
4ESO,N (µ+ E + ESO,N ) + E2

Z

)
(5.196)

(αNk)2 + b2
x =

(
Eh

⇓ + ξ0
N (k)

)2


kh,1

⇓,± = ±
√

2m∗

ℏ2

(
(µN − E + 2ESO,N ) + i

√
4ESO,N (E − µN − ESO,N )− E2

Z

)
kh,2

⇓,± = ±
√

2m∗

ℏ2

(
(µN − E + 2ESO,N )− i

√
4ESO,N (E − µN − ESO,N )− E2

Z

)
(5.197)
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To determine which solutions causes diverging modes for x → −∞ , we rewrite the
Hole wavevectors as

kh,1
⇓,± = ±

√
Z (5.198)

kh,2
⇓,± = ±

√
Z∗ (5.199)

where

√
Z =

√
|Z|+A

2 + i

√
|Z| −A

2 (5.200)

where |Z| =
√
A2 +B2

√
Z∗ =

√
|Z|+A

2 − i

√
|Z| −A

2 (5.201)

and we have defined A and B as

A = 2m∗

ℏ2 (µN − E + 2ESO,N ) (5.202)

B = 2m∗

ℏ2

√
4ESO,N (E − µ− ESO,N )− E2

Z

)
(5.203)

Consequently, we conclude that the solutions kh,1
⇓,+, k

h,2
⇓,− must be discarded, since di-

verging for x→ −∞, whereas the solutions kh,1
⇓,−, k

h,2
⇓,+ must be retained since represent

exponentially decaying evanescent modes. Therefore, the wavefunction ΦN (x) for this
final regime read

ΦN (x) = ae
⇓,+

eike
⇓,+(E) x√

2πℏve
⇓,+(E)

Φe
⇓(ke

⇓,+) + ae
⇑,+

eike
⇑,+(E) x√

2πℏve
⇑,+(E)

Φe
⇑(ke

⇑,+) +

+ be
⇓,−

eike
⇓,−(E) x√

2πℏve
⇓,−(E)

Φe
⇓(ke

⇓,−) + be
⇑,−

eike
⇑,−(E) x√

2πℏve
⇑,−(E)

Φe
⇑(ke

⇑,−) +

+ ch,1
⇓,−

eikh,1
⇓,−(E) x

√
2πℏvN

Φh
⇓(kh,1

⇓,−) + ch,2
⇓,+

eikh,2
⇓,+(E) x

√
2πℏvN

Φh
⇓(kh,2

⇓,+)

(5.204)

Fig.5.17 shows the excitations spectrum in N region and highlights the various energy
ranges which have been previously discussed.
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Figure 5.17: Excitations spectrum in the N region for the Rashba-dominated regime. The hor-
izontal lines mark the various energy regimes which have been discussed analitically. Specifically,
in the energy interval EZ + µN < E < ESO,N + E2

Z

4ESO,N
+ µN the eight allowed propagating

solutions are highlighted and associated with their corresponding wavevectors.

5.3.2 Solution in the S region

We discuss here the solutions in the S region in the presence of a magnetic field lying along
the x-axis [see Eq.(5.160)] and of a SOC pointing along the z-direction [see Eq.(5.158)].
Let us start by writing here the BdG Hamiltonian (3.6) in k-space for such a choice of
the SOC and magnetic field, namely

HBdG(k) =
(
ξ0

kσ0 − k αSσz − bxσx ∆0e
iφσ0

∆0e
−iφσ0 −ξ0

kσ0 + k αSσz − bxσx

)
(5.205)

Although the direct diagonalization of this matrix is not algebraically trivial, its eigen-
values can be derived by squaring the Hamiltonian HBdG. This approach exploits the
intrinsic particle-hole symmetry satisfied by HBdG, which arises from the redundancy
of the Nambu spinor in the BdG formalism. Specifically, if Φ(k) is an eigenvector of
HBdG with eigenvalue +E, then its particle-hole partner Φ′(k) = CΦ(k) (where C is the
charge-conjugation operator defined in Eq.(4.68)) will be an eigenvector with eigenvalue
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−E [see Sec. (4.67)]. Applying the operator HBdG twice to these eigenvectors, we find

HBdG(k)
[
HBdG(k)Φ(k)

]
= HBdG(k)

(
+ E Φ(k)

)
= E2Φ(k) (5.206)

HBdG(k)
[
HBdG(k)Φ′(k)

]
= HBdG(k)

(
− E Φ′(k)

)
= (−E)

(
− E Φ′(k)

)
= E2Φ′(k)

This implies that the electron-hole pair is characterized by the same squared eigenvalue.
Consequently, the squared matrix H2

BdG becomes block-diagonal and exhibits two pairs
of degenerate eigenvalues. Denoting these squared eigenvalues as (ξ2)±(k), we have:

(ξ2)±(k) = ξ2
k + α2

Sk
2 + b2

x + ∆2
0 ± 2

√
ξ2

k(α2
Sk

2 + b2
x) + b2

x∆2
0 (5.207)

Thus, the four eigenvalues of the original Hamiltonian HBdG reads

ξe
±(k) =

√
ξ2

k + α2
Sk

2 + b2
x + ∆2

0 ± 2
√
ξ2

k(α2
Sk

2 + b2
x) + b2

x∆2
0) (5.208)

ξh
±(k) = −

√
ξ2

k + α2
Sk

2 + b2
x −∆2

0 ± 2
√
ξ2

k(α2
Sk

2 + b2
x) + b2

x∆2
0)

It is worth noting that, while the eigenvalues admit a compact analytical form, the
analytical derivation of the eigenvectors is algebraically cumbersome. Nevertheless, it
can be achieved by writing a code in Wolfram Mathematica.
Exploiting the general structure of the eigenfunctions in real space defined in Eq.(5.8), a
generic eigenvector of HBdG can be decomposed as

Φ(k) =
(

u(k)
v(k)

)
=


u↑(k)
u↓(k)
v↓(k)
v↑(k)

 (5.209)

Therefore, the generic eigenvectors for HBdG Hamiltonian read

Φe
1(k) =


u1,↑(k)
u1,↓(k)
v1,↑(k)
v1,↓(k)

 Φh
1(k) = C Φe

1(k) =


−v∗

1,↑(k)
v∗

1,↓(k)
u∗

1,↓(k)
−u∗

1,↑(k)


(5.210)

Φe
2(k) =


u2,↑(k)
u2,↓(k)
v2,↑(k)
v2,↓(k)

 Φh
2(k) = C Φe

2(k) =


−v∗

2,↑(k)
v∗

2,↓(k)
u∗

2,↓(k)
−u∗

2↑(k)


where the u-components and the v-component characterize, respectively, the electron part
and the hole part of the eigenvector.
The physical interpretation of the spinor components is given by their squared moduli,
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representing the probability weight of the quasiparticle. To characterize whether an
excitation is electron-like or hole-like, we define the charge character Q(k) as

Q(k) =
(
|u↑(k)|2 + |u↓(k)|2

)
−
(
|v↑(k)|2 + |v↓(k)|2

)
(5.211)

Using this quantity, we can classify the nature of the states

Q(k) > 0 =⇒ Electron-like state (5.212)

Q(k) < 0 =⇒ Hole-like state

Thus, the excitation spectrum can be labelled according to the dominant character of the
bands 

Ee
1(k) = ϑ

(
Q1(k)

)
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+(k)

Eh
1 (k) = ϑ

(
−Q1(k)

)
ξe

+(k)

Ee
2(k) = ϑ

(
Q2(k)

)
ξe

−(k)

Eh
2 (k) = ϑ

(
−Q2(k)

)
ξe

−(k)

(5.213)

where ϑ denotes the Heaviside function.

Eigenfunctions at fixed energy E

To construct the spatial wavefunction at a fixed energy E, it is necessary to determine
the expression of wavevectors characterizing the different modes. This requires inverting
the dispersion relations derived above, which amounts to solving the following equations
for k

E1(k) = E ⇒
√
ξ2

k + α2
Sk

2 + b2
x + ∆2

0 + 2
√
ξ2

k(α2
Sk

2 + b2
x) + b2

x∆2
0) = E (5.214)

E2(k) = E ⇒
√
ξ2

k + α2
Sk

2 + b2
x + ∆2

0 − 2
√
ξ2

k(α2
Sk

2 + b2
x) + b2

x∆2
0) = E (5.215)

Once the solutions are found, the electron-like or hole-like nature of the wavevectors must
be assigned according to the sign of the charge character Q(k).
Unfortunately, the algebraic inversion of these relations is non-trivial, as it corresponds to
finding the roots of an eighth-degree polynomial in k (or, equivalently, a quartic equation
in k2). The algebraic complexity of the spectrum in this region prevents us from pursuing
the fully analytical approach employed in Sections 5.2 and 5.3. Consequently, we must
proceed by using a numerical approach implemented via Wolfram Mathematica.
Despite the lack of closed-form analytical solutions for the wavevectors, a graphical analy-
sis of the dispersion relation allows us to extract crucial information regarding the allowed
propagating and evanescent modes.
Specifically, we will assume µS = 0, and, consistently with our analysis of the Nor-
mal region, we restrict our study to the Rashba-dominated regime, i.e. EZ < 2ESO,S
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(EZ = |bx|), within the trivial superconducting phase. Accordingly, the constraints im-
posed on the parameters are

µS = 0 , EZ < 2ESO,S , EZ < ∆0 (5.216)

Based on a graphical analysis, this parameter configuration reveals the following extrema
for the E2 band:

(i) A global minimum at k = 0 with energy E2(0) = EZ − ∆0. This minimum cor-
responds to the excitation gap in the presence of a magnetic field, i.e., the lowest
possible energy for an excitation.

(ii) Two local minima located at k = ±kMin and energy EMin. Unfortunately, an ex-
act analytical expression for these points cannot be derived, as it would require
solving a higher-order polynomial equation in k. These points are highlighted in
Fig.5.18. It is important to emphasize that these minima do not coincide with the
”transition point” between electron-like and hole-like states within band 2. Indeed,
the mathematical conditions defining the band minimum (dE2/dk = 0) and the
charge character transition [Eq.(5.211)] are analytically distinct. However, these
two points are typically numerically proximal, rendering them virtually indistin-
guishable in a standard graphical representation.

(iii) Two local maxima located at ±kMax and energy EMax (see Fig.5.18), for which
no closed-form expression exists. For a fixed Zeeman energy EZ the value of this
maximum strongly depends on the SO energy ESO,N .

The E1 band is characterized by a global minimum at k = 0 with energy E1(0) = EZ +∆0.
The condition Q1(k) < 0, which identifies the hole-like states for the E1 band, is generally
satisfied only within an extremely narrow range around the minimum, consequently, this
feature is not visually resolvable in the given plot representation.
As a result the four quantities E1(0), EMin, EMax, E2(0) represent the energy extrema
characterizing the number of propagating modes of the scattering process in the super-
conducting region.
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Figure 5.18: The excitations spectrum in S region exhibits two well separated energy band
E1, E2. In particular E2 represents the lower bands and is characterized by a global minimum at
k = 0 and energy E2(0) = EZ−∆0, which represents the bulk gap of the spectrum. Furthermore,
this energy band shows two local minima at ±kMin and energy EMin and two local maxima at
±kMax and energy EMax. In contrast, the upper band E1 exhibits a global minimum at k = 0
and energy E1(0) = EZ + ∆0. Each gray line is associated to one of the extrema of the spectrum.
We remark that, depending on the specific parameters of the system, the local maxima of the E2
band may be larger than the minimum of the E1 band.

Although it is not possible to gain an analytical derivation of the eigenfunctions, as for the
N region, we remark that the general expressions of the wavevefunctions Φ(x) represents
a superposition of propagating and evanescent modes, namely

ΦS(x) = 1√
2πℏ

∑
ai

ai√
vai

Φ(kai)e−ikai x +
∑
bj

bj
√
vbj

Φ(kbj
)e−ikbj +

∑
cl

cl√
vcl

Φ(kcl
)e−ikcl

x


(5.217)

where the label ”ai” denotes incident propagating modes (left-moving), the label ”bj” de-
notes outgoing propagating modes (right-moving) and the label ”cl” denotes evanescent
modes. In particular, the wavevectors associated to the latter modes shall be character-
ized by a positive imaginary part, in order to avoid divergence for x→ +∞. Furthermore,
we have introduced a formal definition of velocity vc related to the evanescent modes to
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correctly normalize them , whereas the velocity group for the propagating modes is

vg(E) = 1
ℏ
∂E

∂k

∣∣∣∣
k=k(E)

(5.218)

5.3.3 Andreev Reflection in the case of a magnetic field perpendicular
to the SO vector

In this section we shall investigate the Andreev Reflection phenomenon for two specific
sets of parameters in the Rashba-dominated regime (EZ < 2ESO < ∆0). Specifically, we
shall analyze the cases of moderate (EZ = ESO) and strong (EZ > ESO) Zeeman field,
adopting the two following sets of parameters:

moderate
Zeeman field : EZ = 0.4∆0 , ESO,N = ESO,S = 0.4∆0 , µS = µN = 0 (5.219)

(5.220)
strong
Zeeman field : EZ = 0.8∆0 , ESO,N = ESO,S = 0.5∆0 , µS = µN = 0 (5.221)

EE

k

N S

Δ0 - Ez

(III)

(I)
(II)

The case of moderate Zeeman field:

excitations spectra in the N and S regions

E⇑ E⇓ E1 E2

Figure 5.19: Comparison of the excitations spectra of the N and S regions in the case of moderate
Zeeman field. Line (I) and marks, the energy values EI = 0.4∆0 while line (II) marks the energy
value EII = 0.5∆0, above which the AR phenomenon is no longer allowed. Line (III) marks the
energy value of the bulk gap EIII = E2(0) = 0.6∆0. For this specific choice of the parameters
AR occurs entirely in bulk sub-gap regime.
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The case of moderate Zeeman field

The excitations spectra in the N and S regions for this set of parameters are shown in
Fig.5.19. As illustrated in the analytical derivation of the solutions in the region N, the
threshold energy value after which the hole modes turn evanescent, and thus Andreev
Reflection no longer occurs, is

EII = ESO,N + µN + E2
Z

4ESO,N
(5.222)

which for this choice of the parameters yields EII = 0.5∆0. This energy value is high-
lighted in Fig.5.19 by ”line (II)”, while ”line (I)” marks the energy values EI = 0.4∆0 at
which further propagating modes are available for transport. In Fig.5.20, we present the
electron and hole AR probabilities for three different values of the misalignment angle,
namely ΦSO = {0, π

2 , π}.
Although the AR probabilities undergo only some slight modifications when the ΦSO

varies, this dependence can be fully appreciated graphically . Furthermore, from 5.20 we
observe that, at fixed ΦSO, the electron (RN

e→h) and the hole (RN
h→e) AR probabilities

coincide exactly. In fact, although the application of a magnetic field breaks Time Re-
versal symmetry, for this specific choice of the parameters AR occurs completely at lower
energy with respect to the bulk sub-gap (EII < EIII in Fig.5.19). Consequently, since
there are no propagating modes in the S region, AR represents a purely internal process
of the N region and the e→ h process is perfectly symmetrical with respect to the h→ e
one.

(a)

(II)(I)

0 0.4 0.5

0

1

E/Δ0

The case of moderate Zeeman field

electron AR for different values of the ΦSO angle

Reh
N :ΦS O  0 Reh

N :ΦS O  π 2 Reh
N :ΦS O  π

(b)

(II)(I)

0 0.4 0.5

0

1

E/Δ0

The case of moderate Zeeman field

hole AR for different values of the ΦSO angle

Rhe
N :ΦS O  0 Rhe

N :ΦS O  π 2 Rhe
N :ΦS O  π

Figure 5.20: Electron (left panel) and hole (right panel) Andreev Reflection probabilities for
three different SO angle values, namely ΦSO = {0, π

2 , π}. Line (I) and (II) marks the energies
EI = 0.4∆0 and EII = 0.5∆0. The AR phenomenon is limited to energy value below EII , since
at higher energies hole modes become evanescent. In the energy interval 0.4∆0 < E < 0.5∆0
the three curves collapse into a single one. We observe that the e → h and h → e processes are
perfectly coincident.
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The case of strong Zeeman field (ESO < EZ < 2ESO)

We have plotted the excitations spectra in the N and S region for this set of parameters
in Fig.5.21. The three energy values of interest for the Andreev Reflection are

EI = 0.2∆0 EII = 0.8∆0 EIII = 0.82∆0 (5.223)

and are marked by lines (I),(II),(III) in Fig.5.21 and Fig.5.22. In particular, EI = E1(0)
here represents the bulk gap energy in the S side of the junction, while EIII represents
the energy threshold above which hole modes become evanescent in the N region and
AR no longer occurs. We observe in Fig.5.22 that both electron and hole ARs show a
strong dependence on the misalignment ΦSO angle. In particular, for ΦSO = π, AR is
almost completely suppressed, while for ΦSO = 0, reaches almost the maximum value of
1, near EI . Furthermore, for energy values higher than EI (i.e. beyond the bulk sub-gap
energy), we observe that the hole and electron AR differ for the angle ΦSO = π

2 .

EE
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N S

Δ0 - Ez
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(II)
(III)

The case of strong Zeeman field:

excitations spectra in the N and S regions

E⇑ E⇓ E1 E2

Figure 5.21: Excitations spectra of the N and S regions in the case of a strong Zeeman field.
Line (I) marks the energy of the bulk gap in the S region (EI = 0.2∆0), while line (III) marks
the threshold energy for the Andreev Reflection phenomenon (EIII = 0.82∆0). For this choice of
the parameters AR also occurs for energy values beyond the bulk gap.
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Figure 5.22: Electron (left panel) and hole (right panel) Andreev Reflection probabilities for
three different SO angle values, namely ΦSO = {0, π

2 , π}. Line (I),(II) and (III) mark, respectively
the energies EI = 0.2∆0, EII = 0.8∆0, and EIII = 0.82∆0. We observe in this case a strong
dependence on the ΦSO angle. Furthermore, while in the bulk sub-gap the electron and hole AR
are coincident, for energy beyond EI , we observe a difference between them ΦSO.

In conclusion we demonstrated that applying a perpendicular magnetic field gives rise
to a dependence of the Andreev Reflection process on the spin orbit misalignment angle
ΦSO. This result can be understood by considering that the field and the SOC fix two
different axes in spin space, and their competition results in a non-trivial spin-texture
along the wire.
Indeed, differently from the case without magnetic field, here rotating the SOC vector (i.e.
changing ΦSO) cannot be reabsorbed by a simple basis transformation and the matching
conditions at the interface become genuinely angle-dependent. This explains why, in the
presence of a perpendicular magnetic field, the Andreev Reflection phenomenon develops
a clear dependence on ΦSO.
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Chapter 6

Conclusions

In this MS Thesis I have investigated the Andreev Reflection process in nanowires char-
acterized by strong spin-orbit coupling and proximized by a superconductor. Andreev
Reflection represents the fundamental effect characterizing all quantum devices based on
nanowires and superconductors, which are currently on the spotlight of scientific research
in condensed matter, in view of their promising applications as Andreev spin qubits and
in the study of topological superconductivity and Majorana quasi-particles.

Specifically, I have investigated how the inhomogeneities of the Rashba spin-orbit cou-
pling emerging across the interface between a Normal (N) and a Superconducting (S)
nanowire portion affect the Andreev reflection. While most theoretical models have over-
looked these effects, such inhomogeneities are actually present in any typical setup, due
to the change in structural inversion asymmetry across the interface and to the presence
of gate voltages applied to the nanowire. The research work of this MS Thesis bridges
this gap of knowledge, providing a thorough analysis of the Andreev Reflection process in
the presence of inhomogeneities in both the direction and the magnitude of the spin-orbit
coupling, and taking also into account the presence of an applied magnetic field.

The first part of the Thesis includes some introductory material, where -to the benefit
of the reader- I have reviewed some fundamental concepts regarding superconductivity,
the Andreev Reflection phenomenon, and I have summarized the most relevant applica-
tions of nanowires with spin-orbit. Then, after providing a brief primer on the standard
Bardeen-Cooper-Schrieffer (BCS) model describing bulk low-temperature superconduc-
tors, I have generalized the BCS model to include the effects of the spin-orbit coupling
and the presence of a magnetic field. This enables one to describe a homogeneous single
channel semiconductor NW proximized by a superconducting pairing.

The second part of the Thesis is concerned with genuine research work. Specifically, in
Chapter 4, by adopting the Bogoliubov-de Gennes method, I have further extended the
model to include inhomogeneities in both the superconducting pairing and in the spin-
orbit coupling. Then, in Chapter 5 I have applied such model to the specific case of a
Normal-Superconducting (N/S) nanowire junction in order to investigate how spin-orbit
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inhomogeneities affect the phenomenon of Andreev Reflection. This chapter contains
most of the novel and original results of the MS Thesis, which were obtained by com-
bining analytical calculations and numerical analysis carried out by writing a Wolfram
Mathematica code. Specifically, I have considered two types of inhomogeneities. The
first one is an inhomogeneity in the direction of the spin-orbit coupling field, i.e. where
a misalignment angle ΦSO exists between the N side and the S side of the junction. The
second type of inhomogeneity is in the magnitude of the Rashba spin-orbit coupling char-
acterizing the N and the S side of the junction.
I started by analyzing their effects in the absence of an external magnetic field, consider-
ing two different regimes, where the spin-orbit energy is much larger or smaller than the
superconducting gap. In both cases I found that, while the misalignment angle ΦSO has
no effect on the Andreev Reflection phenomenon, the difference in the spin-orbit magni-
tude can significantly affect it.
Then, I turned to discuss how these effects are modified by the presence of a magnetic
field. In particular, I focused on the most interesting case where the magnetic field is per-
pendicular to the spin orbit vector, where an actual spin texture in the electronic states
emerges, and unconventional superconducting pairing is generated by its interplay with
superconductivity. Interestingly, in this case Andreev reflection exhibits a dependence
on the spin-orbit misalignment angle ΦSO. Specifically, the investigation of two different
sets of system parameters reveals that such dependence can be more or less pronounced
depending on the relative ratio between spin-orbit energy and Zeeman energy. By elec-
trically tuning the direction of the spin-orbit coupling, one can either enhance or strongly
suppress the Andreev reflection phenomenon, which is the building block of any hybrid
quantum system involving NWs and superconductors.

In conclusion, this MS Thesis work provides a general theoretical framework to model
quantum transport in hybrid systems involving spin-orbit NWs and superconductors. The
results obtained for the case of a N/S junction demonstrate the feasibility of modulating
the phenomenon of Andreev Reflection by tuning either the magnitude or the direction
of the spin-orbit coupling, in the presence of a suitably applied magnetic field. The work
also provides interesting perspectives for future research. In particular, the established
framework and the obtained results are quite promising to address the case of a S-N-
S junctions, in view of potential applications for Andreev spin qubits and topological
superconductors.
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Appendix A

Details about the BdG
Hamiltonian of the
inhomogeneous nanowire

In this Appendix we provide the proof that Eq.(4.7) can be written in the BdG form (4.14),
with the Bogolubov de Gennes Hamiltonian given by Eq.(4.22). We start by rewriting
each of the five terms of the Hamiltonian Eq.(4.7), namely Eqs.(4.2) to (4.6), in another
equivalent form. To this purpose, we shall make use of the following anticommutation
relations of the electron field operators{

Ψσ(x),Ψ†
σ′(x′)

}
= Ψσ(x)Ψ†

σ′(x′) + Ψ†
σ′(x′)Ψσ(x) = δ(x− x′)δσσ′ (A.1)

∂

∂x

{
Ψσ(x),Ψ†

σ′(x′)
}

= ∂Ψσ(x)
∂x

Ψ†
σ′(x′) + Ψ†

σ′(x′)∂Ψσ(x)
∂x

= ∂

∂x
δ(x− x′)δσσ′ (A.2)

∂2

∂x2

{
Ψσ(x),Ψ†

σ′(x′)
}

= ∂2Ψσ(x)
∂x2 Ψ†

σ′(x′) + Ψ†
σ′(x′)∂

2Ψσ(x)
∂x2 = ∂2

∂x2 δ(x− x
′)δσσ′ (A.3)

{
Ψ†

σ(x),Ψ†
σ′(x′)

}
= Ψ†

σ(x)Ψ†
σ′(x′) + Ψ†

σ′(x′)Ψ†
σ(x) = 0 (A.4)

∫
dxf(x)g(x) =

∫
dxf(x)

∫
dx′g(x′)δ(x− x′) (A.5)

where σ, σ′ =↑↓.

Let us then rewrite each of the five terms in Eq.(4.7) one by one.

157



Details about the BdG Hamiltonian of the inhomogeneous nanowire

Kinetic term

Let us start by the kinetic term (4.2)

Hkin =
∫
dx
(
Ψ†

↑(x),Ψ†
↓(x)

) P̂ 2

2m∗σ0

(
Ψ↑(x)
Ψ↓(x)

)
=

=
∑

σ=↑,↓

∫
dxΨ†

σ(x) P̂
2

2m∗ Ψσ(x) =

[substitute P̂ → −iℏ ∂
∂x and use Eq.(A.5)]

= − ℏ2

2m∗

∑
σ=↑,↓

∫∫
dx dx′ Ψ†

σ(x′) ∂
2Ψσ(x)
∂x2 δ(x− x′) =

[we now use Eq.(A.3)]

= − ℏ2

2m∗

∑
σ=↑,↓

∫∫
dx dx′

[
∂2

∂x2 δ(x− x
′)− ∂2Ψσ(x)

∂x2 Ψ†
σ(x′)

]
δ(x− x′) =

=
∑

σ=↑,↓

(
Cp + ℏ2

2m∗

∫∫
dx dx′ ∂

2Ψσ

∂x2 Ψ†
σ(x′) δ(x− x′)

)
(A.6)

where we have introduced the constant

Cp = − ℏ2

2m∗

∫∫
dx dx′δ(x− x′) ∂

2

∂x2 δ(x− x
′) (A.7)

The second term in Eq.(A.6) can be rewritten by repeatedly integrating by parts

ℏ2

2m∗

∫∫
dx dx′ ∂

2Ψσ

∂x2 Ψ†
σ(x′) δ(x− x′) =

= ℏ2

2m∗

∫
dx

∂2Ψσ

∂x2 Ψ†
σ(x) =

= ℏ2

2m∗
∂Ψσ(x)
∂x

Ψ†
σ(x)

∣∣∣∣∣
+∞

−∞︸ ︷︷ ︸
=0

− ℏ2

2m∗

∫
dx

∂Ψσ(x)
∂x

∂Ψ†
σ(x)
∂x

=

= − ℏ2

2m∗ Ψσ(x)∂Ψ†
σ(x)
∂x

∣∣∣∣∣
+∞

−∞︸ ︷︷ ︸
=0

+ ℏ2

2m∗

∫
dxΨσ(x)∂

2Ψ†
σ(x)

∂x2 =

= − ℏ2

2m∗

∫
dxΨσ(x) P̂

2

2m∗ Ψ†
σ(x) (A.8)

where we exploited the fact that the field (and its derivative) vanishes at large distance,
Ψσ(x→ ±∞) = 0 .

158



Details about the BdG Hamiltonian of the inhomogeneous nanowire

The kinetic term in Eq.(A.6) acquires the form

Hkin = 2Cp −
∑

σ=↑,↓

∫
dxΨσ(x) P̂

2

2m∗ Ψ†
σ(x) =

= 2Cp −
∫
dx
(
Ψ↑(x),Ψ↓(x)

) P̂ 2

2m∗σ0

Ψ†
↑(x)

Ψ†
↓(x)

 =

[now write σ0 = (−iσy)(iσy)]

= 2Cp −
∫
dx
(
Ψ↑(x),Ψ↓(x)

) P̂ 2

2m∗ (−iσy)(iσy)

Ψ†
↑(x)

Ψ†
↓(x)

 =

= 2Cp −
∫
dx
(
Ψ↓(x),−Ψ↑(x)

) P̂ 2

2m∗σ0

(
Ψ†

↓(x)
−Ψ†

↑(x)

)
(A.9)

In conclusion, we have rewritten the kinetic term in Eq.(4.2) as

Hkin = 2Cp −
∫
dx
(
Ψ↓(x),−Ψ↑(x)

) P̂ 2

2m∗σ0

(
Ψ†

↓(x)
−Ψ†

↑(x)

)
(A.10)

Chemical potential term

Hµ = −
∫
dx
(
Ψ†

↑(x),Ψ†
↓(x)

)
µ(x)σ0

(
Ψ↑(x)
Ψ↓(x)

)
=

= −
∑

σ=↑,↓

∫
dxΨ†

σ(x)µ(x) Ψσ(x) =

= −
∑

σ=↑,↓

∫∫
dx dx′Ψ†

σ(x′)µ(x) Ψσ(x) δ(x− x′) =

using Eq.(A.1), we have

= −
∑

σ=↑,↓

∫∫
dx dx′ µ(x) δ(x− x′) δ(x− x′) +

∑
σ=↑,↓

∫∫
dx dx′Ψσ(x)µ(x) Ψ†

σ(x′) δ(x− x′) =

= −
∑

σ=↑,↓

∫∫
dx dx′ µ(x) δ(x− x′) δ(x− x′) +

∑
σ=↑,↓

∫∫
dxΨσ(x)µ(x) Ψ†

σ(x) (A.11)

By defining
Cµ =

∫∫
dx dx′ µ(x) δ(x− x′) δ(x− x′) (A.12)

the chemical potential term acquires the form
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Hµ = −2Cµ +
∑

σ=↑,↓

∫
dxΨσ(x)µ(x) Ψ†

σ(x) =

= −2Cµ +
∫
dx
(
Ψ↑(x),Ψ↓(x)

)
µ(x)σ0

Ψ†
↑(x)

Ψ†
↓(x)

 =

[now write σ0 = (−iσy)(iσy)]

= −2Cµ +
∫
dxµ(x)

(
Ψ↑(x),Ψ↓(x)

)
(−iσy)(iσy)

Ψ†
↑(x)

Ψ†
↓(x)

 =

= −2Cµ +
∫
dxµ(x)

(
Ψ↓(x),−Ψ↑(x)

)
σ0

(
Ψ†

↓(x)
−Ψ†

↑(x)

)
(A.13)

In conclusion, we have rewritten the chemical potential term (4.3) in the form

Hµ = −2Cµ +
∫
dxµ(x)

(
Ψ↓(x),−Ψ↑(x)

)
σ0

(
Ψ†

↓(x)
−Ψ†

↑(x)

)
(A.14)

Spin-orbit term

Let us now consider the spin-orbit term (4.4), which consists of three component terms

HSO = − 1
2ℏ

∫
dx
(
Ψ†

↑(x),Ψ†
↓(x)

){
α(x), P̂

}
· σ
(

Ψ↑(x)
Ψ↓(x)

)
=

=
∑

m=x,y,z

HSO,m (A.15)

where

HSO,m = −
∑

σ,σ′=↑,↓

1
2ℏ

∫
dxΨ†

σ(x)
{
αm(x), P̂

}
(σm)σσ′ Ψσ′(x) (A.16)

and P̂ → −iℏ ∂
∂x in Eq.(4.4).

Since such term consists of three components, we analyze separately the cases of the αz

component and the cases of the αx,y components.

• the z-component
For the z-component, one has

(σz)σσ′ = σ δσσ′ (A.17)
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and

HSO,z = −
∑

σ=↑,↓

σ

2ℏ

∫
dxΨ†

σ(x)
{
αz(x), P̂

}
Ψσ(x) =

=
∑

σ=↑,↓

iσ

2

∫
dx Ψ†

σ(x)
{
αz(x), ∂x

}
Ψσ(x) =

=
∑

σ=↑,↓

iσ

2

∫
dxΨ†

σ(x)
[
αz(x)∂Ψσ(x)

∂x
+ ∂

∂x

(
αz(x)Ψσ(x)

)]
=

=
∑

σ=↑,↓

iσ

2

∫
dx
[
2αz(x)Ψ†

σ(x)∂Ψσ(x)
∂x

+ Ψ†
σ(x)∂ αz(x)

∂x
Ψσ(x)

]
=

=
∑

σ=↑,↓
iσ

∫
dx
[
αz(x)Ψ†

σ(x)∂Ψσ(x)
∂x

+ 1
2Ψ†

σ(x)∂ αz(x)
∂x

Ψσ(x)
]

(A.18)

By applying Eq.(A.5) one can rewrite

HSO,z = (A.19)

=
∑

σ=↑,↓
iσ

∫∫
dx dx′

[
αz(x)Ψ†

σ(x′)∂Ψσ(x)
∂x

+ 1
2Ψ†

σ(x′)∂ αz(x)
∂x

Ψσ(x)
]
δ(x− x′)

Let us focus on each term individually.

1. The first term of (A.19) can be rewritten applying the relation (A.2)

+iσ
∫∫

dx dx′ αz(x)Ψ†
σ(x′)∂Ψσ(x)

∂x
δ(x− x′) =

= +iσ
∫∫

dx dx′ αz(x)
[
∂xδ(x− x′)− ∂Ψσ(x)

∂x
Ψ†

σ(x′)
]
δ(x− x′) =

= σC(1)
α − iσ

∫∫
dx dx′ αz(x)∂Ψσ(x)

∂x
Ψ†

σ(x′)δ(x− x′) =

= σC(1)
α − iσ

∫
dxαz(x)∂Ψσ(x)

∂x
Ψ†

σ(x) (A.20)

where we have introduced the σ-independent constant

C(1)
α = i

∫∫
dx dx′ αz(x)δ(x− x′)∂xδ(x− x′) (A.21)

Now, integrating by part the last integral in Eq.(A.20) it follows that

−iσ
∫
dxαz(x)∂Ψσ(x)

∂x
Ψ†

σ(x) =

= −iσ αz(x)Ψσ(x)Ψ†
σ(x)

∣∣∣∣∣
+∞

−∞︸ ︷︷ ︸
=0

+iσ
∫
dxΨσ(x)

∂
(
αz(x)Ψ†

σ(x)
)

∂x
=

= +iσ
∫
dx

∂αz(x)
∂x

Ψσ(x)Ψ†
σ(x) + iσ

∫
dxαz(x)Ψσ(x)∂Ψ†

σ(x)
∂x

(A.22)
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and the first term of Eq.(A.19) acquires the form

iσ

∫∫
dx dx′ αz(x)Ψ†

σ(x′)∂Ψσ(x)
∂x

δ(x− x′) = (A.23)

= σC(1)
α + iσ

∫
dx

∂αz(x)
∂x

Ψσ(x)Ψ†
σ(x) + iσ

∫
dxαz(x)Ψσ(x)∂Ψ†

σ(x)
∂x

2. Regarding the second term of Eq.(A.19), it can be rewritten as
iσ

2

∫∫
dx dx′ Ψ†

σ(x′)∂ αz(x)
∂x

Ψσ(x)δ(x− x′) =

= iσ

2

∫∫
dx dx′ ∂ αz(x)

∂x
δ(x− x′) δ(x− x′) +

− iσ

2

∫∫
dx dx′ Ψσ(x)∂ αz(x)

∂x
Ψ†

σ(x′)δ(x− x′) =

= σC(2)
α − iσ

2

∫
dxΨσ(x)∂ αz(x)

∂x
Ψ†

σ(x) (A.24)

where we have introduced the σ-independent constant

C(2)
α = i

2

∫∫
dx dx′ ∂ αz(x)

∂x
δ(x− x′) δ(x− x′) (A.25)

Inserting Eqs.(A.23) and (A.24) into Eq.(A.19), the z-component of the spin-orbit
term can be rewritten as

HSO,z =
∑

σ=↑,↓

[
σC(1)

α + iσ

∫
dx

∂αz(x)
∂x

Ψσ(x)Ψ†
σ(x) + iσ

∫
dxαz(x)Ψσ(x)∂Ψ†

σ(x)
∂x

+

+σC(2)
α − iσ

2

∫
dxΨσ(x)∂ αz(x)

∂x
Ψ†

σ(x)
]

=

= (C(1)
α + C(2)

α )
∑

σ=↑,↓
σ

︸ ︷︷ ︸
=0

+

+
∑

σ=↑,↓

[
iσ

∫
dxαz(x)Ψσ(x)∂Ψ†

σ(x)
∂x

+ iσ

2

∫
dxΨσ(x)∂ αz(x)

∂x
Ψ†

σ(x)
]

(A.26)

The contribution of the constant term vanishes. In pass, we note that the sum of the
two constants (A.21) and (A.25) would return

Cα
.= C(1)

α + C(2)
α = i

∫∫
dx dx′ δ(x− x′) {αz(x), ∂x} δ(x− x′) (A.27)

Moreover, by comparing the last two terms of Eq.(A.26) with Eq.(A.18), one finally
obtains that the z-component of the spin-orbit term can be rewritten as

HSO,z = −
∑

σ=↑,↓

σ

2ℏ

∫
dxΨ†

σ(x)
{
αz(x), P̂

}
Ψσ(x) =

= −
∑

σ=↑,↓

σ

2ℏ

∫
dxΨσ(x)

{
αz(x), P̂

}
Ψ†

σ(x) (A.28)
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• the x, y-components
Let us recall here Eq.(A.16),

HSO,(x,y) = −
∑

σ,σ′=↑,↓

1
2ℏ

∫
dxΨ†

σ(x)
{
αx,y(x), P̂

}
(σx,y)σσ′ Ψσ′(x) (A.29)

where

(σx)σ,σ′ = 1− δσ,σ′ (A.30)

(σy)σ,σ′ = i σ
(
δσ,σ′ − 1

)
(A.31)

Substituting P̂ → −iℏ ∂
∂x , it follows that

HSO,(x,y) = −
∑

σ,σ′=↑,↓

1
2ℏ

∫
dxΨ†

σ(x)
{
αx,y(x), P̂

}
(σx,y)σσ′ Ψσ′(x) =

= i

2
∑

σ,σ′=↑,↓

∫
dxΨ†

σ(x)
{
αx,y(x), ∂

∂x

}
(σx,y)σσ′ Ψσ′(x) = (A.32)

= i

2
∑

σ,σ′=↑,↓

∫
dxΨ†

σ(x)
[
αx,y(x)∂Ψσ′(x)

∂x
+ ∂

∂x

(
αx,y(x)Ψσ′(x)

)]
(σx,y)σσ′ =

= i

2
∑

σ,σ′=↑,↓

∫
dx
[
2αx,y(x)Ψ†

σ(x)∂Ψσ′(x)
∂x

+ Ψ†
σ(x)∂ αx,y(x)

∂x
Ψσ′(x)

]
(σx,y)σσ′ =

= i
∑

σ,σ′=↑,↓

∫
dx
[
αx,y(x)Ψ†

σ(x)∂Ψσ′(x)
∂x

+ 1
2Ψ†

σ(x)∂ αx,y(x)
∂x

Ψσ′(x)
]

(σx,y)σσ′

Exploiting now that the non-zero σx,y-elements are off diagonal ones (see Eqs.(A.30)
and (A.31), by applying relations (A.1) and (A.2), one obtain

HSO,(x,y) = −i
∑

σ,σ′=↑,↓

∫
dx
[
αx,y(x)∂Ψσ′(x)

∂x
Ψ†

σ(x)+ 1
2Ψσ′(x)∂ αx,y(x)

∂x
Ψ†

σ(x)
]

(σx,y)σσ′

(A.33)
Intergrating by part the first integral of the last equation, it can be rewritten as

−i
∫
dxαx,y(x)∂Ψσ′(x)

∂x
Ψ†

σ(x) =

= −i αx,y(x)Ψσ′(x)Ψ†
σ(x)

∣∣∣∣∣
+∞

−∞︸ ︷︷ ︸
=0

+i
∫
dxΨσ′(x)

∂
(
αx,y(x)Ψ†

σ(x)
)

∂x
=

= +i
∫
dx

∂αx,y(x)
∂x

Ψσ′(x)Ψ†
σ(x) + i

∫
dxαx,y(x)Ψσ′(x)∂Ψ†

σ(x)
∂x

(A.34)

163



Details about the BdG Hamiltonian of the inhomogeneous nanowire

and inserting this last result in (A.33), it follows that

HSO,(x,y) =− i
∑

σ,σ′=↑,↓

∫
dx
[
αx,y(x)∂Ψσ′(x)

∂x
Ψ†

σ(x) + 1
2Ψσ′(x)∂ αx,y(x)

∂x
Ψ†

σ(x)
]

(σx,y)σσ′ =

= + i
∑

σ,σ′=↑,↓

∫
dx
[
αx,y(x)Ψσ′(x)∂Ψ†

σ(x)
∂x

+ Ψσ′(x)∂αx,y(x)
∂x

Ψ†
σ(x) +

− 1
2Ψσ′(x)∂αx,y(x)

∂x
Ψ†

σ(x)
]

(σx,y)σσ′ = (A.35)

= + i
∑

σ,σ′=↑,↓

∫
dx
[
αx,y(x)Ψσ′(x)∂Ψ†

σ(x)
∂x

+ 1
2Ψσ′(x)∂αx,y(x)

∂x
Ψ†

σ(x)
]

(σx,y)σσ′

Finally, by comparing Eq.(A.35) with Eq.(A.32) we can state that

HSO,(x,y) = −
∑

σ,σ′=↑,↓

1
2ℏ

∫
dxΨ†

σ(x)
{
αx,y(x), P̂

}
(σx,y)σσ′ Ψσ′(x) =

= +i
∑

σ,σ′=↑,↓

∫
dx
[
αx,y(x)Ψ†

σ(x)∂Ψσ′(x)
∂x

+ 1
2Ψ†

σ(x)∂ αx,y(x)
∂x

Ψσ′(x)
]

(σx,y)σσ′ =

= +i
∑

σ,σ′=↑,↓

∫
dx
[
αx,y(x)Ψσ′(x)∂Ψ†

σ(x)
∂x

+ 1
2Ψσ′(x)∂αx,y(x)

∂x
Ψ†

σ(x)
]

(σx,y)σσ′ =

= −
∑

σ,σ′=↑,↓

1
2ℏ

∫
dxΨσ′(x)

{
αx,y(x), P̂

}
(σx,y)∗

σ′σ Ψ†
σ(x) (A.36)

where we used the following property

(σx,y)σσ′ = (σx,y)∗
σ′σ (A.37)
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In conclusion, recollecting the three components, the spin-orbit term gets rewritten as

HSO = − 1
2ℏ

∑
m=x,y,z

∑
σ,σ′=↑,↓

∫
dxΨσ(x)

{
αm(x), P̂

}
(σm)∗

σσ′ Ψ†
σ′(x) =

= − 1
2ℏ

∑
m=x,y,z

∫
dx
(
Ψ↑(x),Ψ↓(x)

){
αm(x), P̂

}
σ∗

m

Ψ†
↑(x)

Ψ†
↓(x)

 =

[now insert two identities σ0 on the left and on the right of σ∗
m]

= − 1
2ℏ

∑
m=x,y,z

∫
dx
(
Ψ↑(x),Ψ↓(x)

){
αm(x), P̂

}
(−iσy)(iσy)σ∗

m(−iσy)(iσy)

Ψ†
↑(x)

Ψ†
↓(x)

 =

= − 1
2ℏ

∑
m=x,y,z

∫
dx
(
Ψ↑(x),Ψ↓(x)

)
(−iσy)

{
αm(x), P̂

}
(iσy)σ∗

m(−iσy)(iσy)

Ψ†
↑(x)

Ψ†
↓(x)

 =

= − 1
2ℏ

∑
m=x,y,z

∫
dx
(
Ψ↓(x),−Ψ↑(x)

){
αm(x), P̂

}
σyσ

∗
mσy︸ ︷︷ ︸

=−σm

(
Ψ†

↓(x)
−Ψ†

↑(x)

)
=

= + 1
2ℏ

∑
m=x,y,z

∫
dx
(
Ψ↓(x),−Ψ↑(x)

){
αm(x), P̂

}
σm

(
Ψ†

↓(x)
−Ψ†

↑(x)

)
(A.38)

and again

HSO = + 1
2ℏ

∫
dx
(
Ψ↓(x),−Ψ↑(x)

){
α(x), P̂

}
· σ
(

Ψ†
↓(x)

−Ψ†
↑(x)

)
(A.39)

Zeeman term

The Zeeman term (4.5) consists of three components

HZ = −
∑

m=x,y,z

∑
σ,σ′=↑,↓

∫
dxΨ†

σ(x)bm(x) (σm)σσ′ Ψσ′(x) (A.40)

Let us separately analyze the z-component and the x, y-components.

• the z-component
Inserting definition (A.17) and then applying relation (A.5) to the z-component of
Eq.(A.40), we have that

HZ,z = −
∑

σ,σ′=↑,↓

∫
dxΨ†

σ(x)bz(x) (σz)σσ′ Ψσ′(x) =

= −
∑

σ,σ′=↑,↓

∫
dxΨ†

σ(x)bz(x)σδσσ′Ψσ′(x) =

= −
∑

σ,σ′=↑,↓

∫∫
dx dx′ Ψ†

σ(x)bz(x)σδσσ′Ψσ′(x)δ(x− x′) =

= −
∑

σ=↑,↓
σ

∫∫
dx dx′ Ψ†

σ(x′)bz(x) Ψσ(x)δ(x− x′) (A.41)
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Using relation (A.1), Eq.(A.41) gets rewritten as

HZ,z =−
∑

σ=↑,↓
σ

︸ ︷︷ ︸
=0

∫∫
dx dx′ bz(x)δ2(x− x′)+

+
∑

σ=↑,↓
σ

∫∫
dx dx′ Ψσ(x)bz(x) Ψ†

σ(x′)δ(x− x′) =

=
∑

σ=↑,↓
σ

∫∫
dx dx′ Ψσ(x)bz(x) Ψ†

σ(x′)δ(x− x′) =

=
∑

σ=↑,↓
σ

∫
dxΨσ(x)bz(x) Ψ†

σ(x) (A.42)

and thus
HZ,z = +

∑
σ,σ′=↑,↓

∫
dxΨσ(x)bz(x) (σz)σσ′ Ψ†

σ′(x)

• the x, y-components
Let us start from Eq(A.40) for the x, y-components, i.e.

HZ,(x,y) = −
∫
dxΨ†

σ(x)bx,y(x) (σx,y)σσ′ Ψσ′(x) (A.43)

As for the SO x, y-terms, the non-zero σx,y-elements are off diagonal ones, thus we
may directly apply relation (A.1), obtaning

HZ,(x,y) = +
∑

σ,σ′=↑,↓

∫
dxΨσ′(x)bx,y(x) (σx,y)∗

σ′σ Ψ†
σ(x) (A.44)

where again we use (σx,y)σσ′ = (σx,y)∗
σ′σ.
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Recollecting now the three components of the Zeeman term, it follows that

HZ = +
∑

m=x,y,z

∑
σ,σ′=↑,↓

∫
dxΨσ(x)bm(x) (σm)∗

σσ′ Ψ†
σ′(x) =

= +
∑

m=x,y,z

∫
dx
(
Ψ↑(x),Ψ↓(x)

)
bm(x)σ∗

m

Ψ†
↑(x)

Ψ†
↓(x)

 =

[now insert two identities σ0 on the left and on the right of σ∗
m]

= +
∑

m=x,y,z

∫
dx
(
Ψ↑(x),Ψ↓(x)

)
bm(x) (−iσy)(iσy)σ∗

m(−iσy)(iσy)

Ψ†
↑(x)

Ψ†
↓(x)

 =

= +
∑

m=x,y,z

∫
dx
(
Ψ↑(x),Ψ↓(x)

)
(−iσy)bm(x) (iσy)σ∗

m(−iσy)(iσy)

Ψ†
↑(x)

Ψ†
↓(x)

 =

= +
∑

m=x,y,z

∫
dx
(
Ψ↓(x),−Ψ↑(x)

)
bm(x) (iσy)σ∗

m(−iσy)

 Ψ†
↓(x)

−Ψ†
↑(x)

 =

= −
∑

m=x,y,z

∫
dx
(
Ψ↓(x),−Ψ↑(x)

)
bm(x)σm

 Ψ†
↓(x)

−Ψ†
↑(x)


In conclusion, the Zeeman term can be rewritten as

HZ = −
∫
dx (Ψ↓(x),−Ψ↑(x)) b(x) · σ

(
Ψ†

↓(x)
−Ψ†

↑(x)

)
(A.45)

Superconducting term
The superconducing term (4.6) can be rewritten as

HSC =
∫
dx
[
∆(x)Ψ†

↑(x)Ψ†
↓(x) + ∆∗(x)Ψ↓(x)Ψ↑(x)

]
=

= −
∫
dx
[
∆(x)Ψ†

↓(x)Ψ†
↑(x) + ∆∗(x)Ψ↑(x)Ψ↓(x)

]
(A.46)

Thus, Eqs.(A.10), (A.14), (A.39), (A.45) and (A.46) are equivalent expressions for the
five terms (4.2), (4.3), (4.4), (4.5) and (4.6), respectively, i.e.

Hkin = 2Cp −
∫
dx
(
Ψ↓(x),−Ψ↑(x)

) P̂ 2

2m∗σ0

(
Ψ†

↓(x)
−Ψ†

↑(x)

)
(A.47)

Hµ = −2Cµ +
∫
dxµ(x)

(
Ψ↓(x),−Ψ↑(x)

)
σ0

(
Ψ†

↓(x)
−Ψ†

↑(x)

)
(A.48)

HSO = + 1
2ℏ

∫
dx
(
Ψ↓(x),−Ψ↑(x)

){
α(x), P̂

}
· σ
(

Ψ†
↓(x)

−Ψ†
↑(x)

)
(A.49)

HZ = −
∫
dx (Ψ↓(x),−Ψ↑(x)) b(x) · σ

(
Ψ†

↓(x)
−Ψ†

↑(x)

)
(A.50)

HSC = −
∫
dx
[
∆(x)Ψ†

↓(x)Ψ†
↑(x) + ∆∗(x)Ψ↑(x)Ψ↓(x)

]
(A.51)
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We can therefore rewrite the full Hamitonian as

H = 1
2 (H+H) (A.52)

Now, for the first H appearing on the right hand side of Eq.(A.52) we adopt the sum of
the expressions (4.2), (4.3), (4.4), (4.5) and (4.6), whereas for the second H we exploit
the sum of the 5 equivalent expressions (A.47), (A.48), (A.49), (A.50) and (A.51). By
exploiting the definition (4.15) of the Nambu spinor, Eq.(A.52) acquires the form (4.14)
where HBdG(x) is given by Eq.(4.22).

End of proof
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