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Abstract

This thesis presents and evaluates a variational approach designed to address 3-SAT problems at
critical clause density, examining how parameter-space trajectories generated by deterministic
time-dependent variational principle (TDVP) dynamics, seeded by an initial imaginary-time
evolution, can steer the ansatz toward low-energy configurations and, ultimately, the ground
states of the encoded instances.

Each Boolean formula is mapped to a spin Hamiltonian, whose low-energy spectrum en-
codes the satisfying assignments. Within this framework, the algorithm employs an ansatz
constructed as a superposition of uncorrelated Bloch-disk product states. The initialization is
carried out via a short imaginary-time evolution, starting from a transverse-field-like state with
equal overlap with all classical configurations. During this preliminary phase, no parameter
optimization is performed; instead, the procedure systematically generates and expands a set of
product states, steering their linear combination toward energetically favorable regions. After
a predefined number of iterations, the process transitions to a fully variational phase, during
which both the amplitudes and the local spin orientations are refined by applying the TDVP in
imaginary time.

To address computational costs and memory usage, several mitigation strategies have been
implemented. During the expansion phase, the parameter space is meticulously compressed,
retaining only the most relevant contributions. In the subsequent phase, variational updates
are carried out within an effective subspace of the manifold, selected at each step from the
full set of directions. In this phase, the algorithm also employs a local metric rescaling (LMR)
scheme, together with the regularization of the local metric tensor and the resolution of the
corresponding linear system via MINRES-QLP, thereby circumventing the explicit inversion
of large, dense, and ill-conditioned matrices. In this context, the combined imaginary-time
evolution and TDVP scheme systematically drives the ansatz toward low-energy configurations,
even for challenging 3-SAT instances within the range of system sizes we analyzed.

At the same time, the analysis reveals structural bottlenecks whose impact becomes increasingly
severe as the spin count grows. The rapid escalation of both memory consumption and wall-
clock time is directly tied to the dimension of the manifold generated by the imaginary-time
expansion, which grows drastically with both system size and expansion depth.

Overall, this work shows that imaginary-time dynamics and variational geometry can be
repurposed as a deterministic heuristic for an NP-complete problem such as 3-SAT, while also
clarifying where and why intrinsic limitations on scalability arise.
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Chapter 1

Introduction

The resolution of problems belonging to the NP-complete class represents one of the central
challenges in theoretical computer science and computational physics [1, 2]. Among these, the
3-SAT problem plays a particularly significant role, both for its paradigmatic value and for
the practical implications arising from its solution or approximation [3]. The study of such
problems is not only of purely theoretical interest: the methods developed to tackle them find
applications in areas ranging from combinatorial optimization to cryptography [4], and they
are also tightly connected to the statistical physics of disordered systems, where ideas such as
frustration, metastability, and glassy dynamics naturally emerge [3, 5].

In particular, random instances of 3-SAT (and k-SAT in general) exhibit the well-known
“easy–hard–easy” pattern as the clause density is varied [1, 6]: formulas with low clause density
are typically satisfiable and easy to solve, while highly overconstrained formulas are typically
unsatisfiable and again easy to classify. In contrast, in a narrow critical region around the
satisfiability threshold at clause density α ≃ 4.3 the problem becomes algorithmically hard [1,
6]. In that regime, the space of satisfying assignments (when it exists) breaks up into many
well-separated clusters (or “valleys”) at large Hamming distances, and simple local-search
heuristics tend to get trapped in metastable configurations [2, 7]. This behavior is commonly
interpreted as the algorithmic signature of a glass transition: under the standard spin-glass
mapping, the associated energy landscape becomes rough and highly clustered, dominated
by barriers and long-lived metastable states [8, 5]. For this reason, instances close to the
threshold are routinely used as demanding benchmarks for both classical and quantum-inspired
optimization methods [9, 10].

In recent years, the rapid development of quantum technologies has renewed interest in
tackling such hard combinatorial problems with tools inspired by quantum mechanics [11,
12]. Several approaches aim to prepare low-energy (ideally ground) states of an Ising-like
cost Hamiltonian that encodes the problem. Quantum annealing, in its original formulation,
attempts to reach the ground state of a problem Hamiltonian by slowly interpolating from a
simple transverse-field Hamiltonian, hoping to remain in the instantaneous ground state through
an adiabatic-like path [9].Variational quantum algorithms, such as the Quantum Approximate
Optimization Algorithm (QAOA) [13] and VQE-type methods [14, 10], instead construct a
parameterized trial state and iteratively optimize its parameters to minimize the expectation
value of the cost Hamiltonian. These hybrid strategies are attractive because they combine
a quantum state ansatz with classical optimization, and they can, in principle, adapt their
expressive power to the structure of a specific instance [10].

Even when large-scale fault-tolerant quantum hardware is not available, these ideas have
motivated a broad class of hybrid variational schemes, where a parameterized quantum state is
trained by a classical optimizer to approximate the ground state of a problem Hamiltonian [14,
10]. The underlying philosophy is to borrow physical mechanisms that are known to drive a
many-body system toward its ground state and reinterpret them as optimization procedures
over a variational manifold. This is especially appealing for NP-hard optimization problems
(like 3-SAT near the threshold) that resemble frustrated spin glasses: if we can navigate the
energy landscape using tools originally developed to relax quantum systems toward their ground
state, we may gain an advantage over naive local descent.

This work fits into that line. We study a variational, quantum-inspired algorithm designed
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Introduction

to search for low-energy (ideally satisfying) assignments of 3-SAT instances at clause densities
close to α ≈ 4.3, i.e. in the “hard SAT” regime. The key idea is to map the logical clauses of
3-SAT to an Ising-type Hamiltonian Ĥ acting on spin variables. In this mapping, each Boolean
assignment corresponds to a computational-basis spin configuration, and Ĥ counts the number
of violated clauses. Satisfying assignments, therefore, correspond to ground states with zero
energy (or a degenerate zero energy manifold if multiple satisfying assignments exist). The
original SAT problem is thus reformulated as a ground-state search in a frustrated spin system.

Rather than representing and evolving the full state in the 2L-dimensional Hilbert space
(where L is the number of spins/variables), we approximate imaginary-time evolution within a
variational subspace.

Our ansatz is a quantum superposition of uncorrelated product states of L spins. Each
product state is specified by a set of Bloch angles, one per spin, and the superposition is
weighted by real amplitudes. The procedure is initialized by performing a short imaginary-time
propagation (ITP) starting from a transverse-field type state that has a nonzero overlap with
every classical assignment. Each ITP-step inflates our variational parameter vector, generating
new product states with the corresponding amplitudes and updating the old amplitudes while
keeping the old states untouched.

After this initialization stage, the evolution is performed by integrating the imaginary
time-dependent variational principle (TDVP) in imaginary time within the ansatz manifold. In
imaginary time, TDVP can be viewed as a projection of

∂τ |Ψ⟩ = −Ĥ |Ψ⟩

onto the tangent space of the variational state. This projection produces a deterministic linear
system

Sw̄ ˙̄w = −Fw̄,

or, in discrete-update form,
Sw̄ δw̄ = −γ Fw̄, (1.1)

where w̄ collects all variational parameters, Sw̄ is a metric (or covariance) tensor built from
overlaps of tangent vectors, and Fw̄ is the projected “force” generated by Ĥ. In practice, this is
a principled, geometry-aware parameter update that solves for the best local imaginary-time
descent direction within the chosen ansatz.

In an idealized scenario, one could continue applying ITP until the number of product states
saturates the intended expressive budget of the ansatz For sufficiently large imaginary time, this
would drive the state close to the true ground state. From that point on, both the amplitudes
and the local spin orientations could be treated as variational parameters and further refined
through TDVP to fully reach the solution of our problem. In practice, however, the number of
parameters grows drastically with the number of ITP steps, and this scaling becomes prohibitive
even for moderately large system sizes. As a consequence, we cannot afford to let ITP reach
saturation; instead after a small number of initialization steps we switch to the TDVP dynamic.

Within this framework, we raise the following questions:

• How does the number of parameters — and thus the computational cost — scale with
system size, given that our ansatz is a superposition of product states whose amplitudes
and Bloch angles are all variational?

• How effectively can a TDVP-driven imaginary-time variational update converge toward
satisfying (or nearly satisfying) assignments in the hardest region of 3-SAT, i.e., around
the satisfiability threshold?

The structure of this work is organized as follows:
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|ρ0⟩ = |→→→ · · · →⟩ n steps
of ITP

m steps
of TDVP Ground state

Variational ansatz
(product state)

Ansatz growth via
imaginary time

Deterministic
TDVP updates

Approximate
satisfying assignment

Figure 1.1: Overall structure of the algorithm. We (i) initialize a simple product-state ansatz
with broad support over all assignments; (ii) apply a short exact imaginary-time propagation
(ITP), which inflates the variational manifold by generating a superposition of product states;
(iii) switch to TDVP to perform deterministic, geometry-aware updates of all variational
parameters. The goal is to approach the ground state of the 3-SAT clause Hamiltonian, i.e. a
satisfying assignment.

• Chapter 2 introduces the essential aspects of the 3-SAT problem, the mapping that
allows us to study it as a spin system, and its connection to disordered systems and spin
glasses. It also presents the notion of the “critical clause density threshold” (and its
analogy with a glass transition), explaining why this regime produces particularly hard
instances and how we generated them.

• Chapter 3 develops imaginary-time propagation (ITP) based on a clause-structured
frontier. We introduce the Bloch-disk variational ansatz, specify the frontier growth and
pruning rules, and analyze how the size of this manifold scales with the number of variables
and clauses.

• Chapter 4 presents the time-dependent variational principle (TDVP) in imaginary time,
showing how the Schrödinger-like equation projects to the linear system in Eq (1.1) on
the variational parameters. We derive explicit expressions for the metric tensor Sw̄ and
the force term Fw̄ specialized to our ansatz.

• Chapter 5 benchmarks the variational imaginary-time dynamics on small 3-SAT in-
stances. We compare frontier-based ITP with exact imaginary-time evolution and assess
how subsequent TDVP refinement updates the variational parameters and improves
ground-state probabilities.

• Chapter 6 introduces sensitivity-driven compression strategies for both TDVP and ITP.
For TDVP, we restrict updates to an effective low-dimensional subspace without reducing
the underlying manifold, while for ITP we explicitly compress the frontier manifold. We
compare the resulting accuracy, stability, and runtime on single instances and finite-size
statistics at critical clause density.
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Chapter 2

The 3-SAT Problem
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Chapter 3

The 3-SAT Problem

In this chapter, we introduce the canonical combinatorial problem that underlies much of our
analysis: the Boolean satisfiability problem, and in particular, its 3-SAT restriction. From the
complexity-theoretic point of view, 3-SAT is a prototypical NP-complete problem and serves as
a universal source of hardness through polynomial-time reductions. From the statistical-physics
point of view, random 3-SAT provides one of the simplest ensembles where a sharp SAT/UNSAT
phase transition, an easy–hard–easy pattern of typical algorithmic complexity, and a glassy,
spin-glass-like structure of the solution space can all be studied within a unified framework. In
what follows, we start from the formal definitions of decision problems, NP, NP-completeness,
and SAT, then specialize to 3-SAT and its random ensembles, with particular emphasis on the
hard-SAT regime near the satisfiability threshold. We then review the SAT/UNSAT transition
and its interpretation in terms of spin-glass models, introduce the planted-solution instances
that define our benchmark ensemble, and finally present the explicit Ising mapping that allows
these formulas to be treated as spin systems in the variational imaginary-time framework
developed in the subsequent chapters.

3.1 NP-Completeness and Boolean Satisfiability
Problems in the class NP-complete play a central role in computational complexity theory.
Informally, these are the “hardest” problems in NP: if we could solve any one of them effi-
ciently, then every problem in NP could be solved efficiently. We begin by recalling what
NP-completeness means and then explaining how SAT, and in particular 3-SAT, fits into this
picture.

Definition 1 (Class NP and NP-completeness). The class NP (nondeterministic polynomial
time) is the set of all decision problems for which, whenever the correct answer is Yes, there exists
a certificate (also called a witness) that can be verified in polynomial time by a deterministic
Turing machine. Intuitively: finding a solution may be computationally difficult, but checking
that a proposed solution is correct is efficient.

Definition 2. A decision problem A is NP-hard if every problem in NP can be transformed
(reduced) to A by a polynomial-time reduction that preserves Yes/No answers. In other words,
solving A efficiently would allow us to solve all problems in NP efficiently.

A decision problem A is NP-complete if:

1. A ∈ NP, and

2. A is NP-hard.

NP-complete problems are therefore the most difficult problems in NP: if any NP-complete
problem can be solved in polynomial time, then all problems in NP can be solved in polynomial
time, implying P = NP.

The Boolean satisfiability problem (SAT) was historically the first problem proven to be
NP-complete. This result, due to Cook and Levin, established SAT as a kind of “universal”
NP problem: any other NP problem can be efficiently encoded as an instance of SAT. Because
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The 3-SAT Problem

of this, the SAT problem is often used as a starting point to prove that other problems are
NP-complete via polynomial-time reductions [15].

In what follows, we introduce SAT and, more specifically, its restricted form, 3-SAT, which
is also NP-complete.

Definition 3 (Boolean Formula). A Boolean formula ϕ is an expression built from:

• Boolean variables x1, x2, . . . , xN taking values in {True,False} (or equivalently {0, 1}),

• logical connectives such as ∧ (AND), ∨ (OR), and ¬ (NOT),

• and parentheses for grouping.

Given an assignment for the N variables, a Boolean formula ϕ can be either True or False.

Definition 4 (Satisfiability Problem (SAT)). Given a Boolean formula ϕ, the satisfiability
problem (SAT) asks whether there exists an assignment of Boolean values to the variables of ϕ
such that the entire formula evaluates to True. If such an assignment exists, the formula is
said to be satisfiable, and any assignment that makes ϕ evaluate to True is called a satisfying
assignment (or certificate). If no such assignment exists, the formula is unsatisfiable.

SAT is in NP because, given a candidate assignment of the variables, we can efficiently
evaluate ϕ and check whether it is True. Moreover, SAT is NP-hard, since any other NP
problem can be reduced to SAT. Therefore, SAT is NP-complete. For this reason, SAT is a
canonical reference problem for NP-completeness.

In this work, we focus on a particular structured version of SAT known as 3-SAT [15]. To
define 3-SAT, we first describe a standard normal form for Boolean formulas.

Definition 5 (Conjunctive Normal Form (CNF)). A Conjunctive Normal Form (CNF) is a
Boolean formula that can be written as:

ϕ = C1 ∧ C2 ∧ · · · ∧ CM ,

where each Cc is a clause of the form

Cc = lc1 ∨ lc2 ∨ · · · ∨ lckc .

The terms lcq are literals, each being either a variable xk or its negation ¬xk. A k-CNF formula
is a CNF in which all clauses contain at most k literals.

Definition 6 (3-SAT Satisfiability Problem). A 3-SAT instance is a Boolean formula in
3-CNF, i.e., a conjunction of M clauses, each containing exactly three literals drawn from N
Boolean variables. The decision problem of whether a given 3-SAT instance is satisfiable is the
3-SAT problem.

ϕ =
MÞ
c=1

(lic ∨ ljc ∨ lhc) . (3.1)

Here lic denotes the literal in position ic, which can be either xic or ¬xic . The parameter M is
the number of clauses, N is the number of variables, and for each clause Cc the triple (ic, jc, hc)
indicates the indices of its three literals, with ic /= jc /= hc.

3-SAT is a restriction of SAT (because it only allows formulas in 3-CNF, with exactly
three literals per clause); despite this restriction, it remains NP-complete. In practice, this
makes 3-SAT extremely important: many NP problems are shown to be NP-complete by
reduction from 3-SAT rather than from general SAT, since 3-SAT already has a very uniform
and combinatorial structure that is convenient to encode in other settings.

6



3.2 – The SAT transition

3.2 The SAT transition
A striking empirical and theoretical property of random k-SAT (and, in particular, random
3-SAT) is the emergence of a sharp phase transition as we vary the clause density

α = M

N
,

i.e., the ratio between the number of clauses M and the number of Boolean variables N . For
small α the instance is typically underconstrained and therefore satisfiable; for large α it is
typically overconstrained and therefore unsatisfiable. Between these two extremes, there is
a very narrow “critical” window where the probability of satisfiability drops abruptly from
almost 1 to almost 0 as N →∞ [1, 2]. In complexity-theoretic language, this window is where
typical instances of NP-complete SAT become algorithmically hardest, giving rise to the famous
easy–hard–easy pattern [1].

SAT/UNSAT threshold

Fix k and generate a random k-SAT instance by sampling each clause uniformly at random from
all k-clauses over {x1, . . . , xN} (each literal negated with probability 1/2). In the limit of large
N , it is now widely believed (and can be rigorously established for large k) that such random
formulas exhibit a sharp threshold: there exists a critical density αc(k) such that for α < αc(k),
a random instance is satisfiable with probability tending to 1, whereas for α > αc(k), it is
unsatisfiable with probability tending to 1 [1]. For 3-SAT, refined statistical-physics calculations
based on cavity methods and survey propagation predict this threshold at

αc(3) ≃ 4.267,

a non-rigorous value with subleading finite-size effects that is nevertheless in very good agreement
with numerical experiments [2, 16]. Below αc, satisfying assignments still exist (the formula is
SAT ); above αc, no assignment satisfies all clauses (UNSAT ).

Although αc is defined in purely combinatorial terms (“does a satisfying assignment exist?”),
it also marks a sharp change in typical algorithmic difficulty. Empirically, general-purpose
search procedures (e.g., DPLL-style backtracking with heuristics) solve most random instances
very quickly when α≪ αc (underconstrained) and also when α≫ αc (so overconstrained that
contradictions surface early). Runtime blows up dramatically in a narrow band around αc [1].
This gives a characteristic easy–hard–easy curve: as α increases from small to critical values,
instances suddenly become hard; as α increases past the critical region, they become easy again.

This spike in hardness is not accidental. Near αc, the solver is effectively forced to explore a
huge combinatorial search tree because many variables are “almost” forced but not quite, and
incorrect early guesses lead to long backtracking paths. In this regime, the search cost grows
exponentially with N in practice [1].

Statistical-physics viewpoint

From the statistical-physics point of view, a random 3-SAT formula with N variables and M
clauses is naturally mapped to a diluted Ising p-spin glass (with p = 3) on a random hypergraph
or factor graph: each Boolean variable becomes an Ising spin σi ∈ {−1,+1}, each clause
contributes a local three-spin energy term that penalizes exactly the unique assignment that
violates the clause, and the total “energy” E(σ) is the number of unsatisfied clauses [3, 2, 16].
One then considers the Boltzmann–Gibbs measure

µβ(σ) ∝ exp
!
−βE(σ)

"
,
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on this random Hamiltonian, and studies the zero-temperature limit β →∞ as a function of
the control parameter α = M/N . In this language, SAT corresponds to a phase in which the
ground-state energy density

e0(α) = 1
N

min
σ
E(σ)

is zero (there exist configurations that satisfy all clauses), while UNSAT corresponds to a phase
in which e0(α) > 0. The SAT/UNSAT transition is therefore a T = 0 phase transition in which
e0(α) first becomes strictly positive, and at the same time, the structure of low-energy states
changes qualitatively.

The cavity/replica analysis shows that for random 3-SAT, this transition is described
by a discontinuous one-step replica-symmetry-breaking (1-RSB) solution: above a dynamical
(clustering) threshold αd, the set of satisfying assignments (when it still exists) shatters into
an exponential number of clusters with positive complexity Σ(e), and at the critical density
αc ≃ 4.27 the complexity at zero energy Σ(0) vanishes; beyond this point the ground-state
energy density e0(α) becomes strictly positive [2, 16]. In parallel, order parameters that probe
long-range structure—such as the fraction of frozen (backbone) variables shared by all solutions
in a cluster, or more refined frustration parameters in the sense of Zhou [1, 17]—develop a
discontinuity at the transition, very much as in mean-field p-spin glasses [8]. In this precise
sense, random 3-SAT realizes a glass-like phase transition on a sparse random graph: the hardest
window near αc is the regime where the underlying spin-glass system enters a discontinuous
1-RSB phase, with a clustered, rugged solution space that directly manifests as typical-case
computational hardness.

In the modern picture, the glassy regime of random k-SAT may resemble an RFOT (Random
First-Order Transition): at the level of the energy landscape, it shares the same mathematical
structure (a discontinuous 1-RSB solution with an exponential number of metastable states) as
the Random First-Order Transition scenario of mean-field structural glasses [8]. The crucial
difference is that here the control parameter is the clause density α at zero temperature, and the
RFOT-like 1-RSB structure already develops within the SAT phase (at the clustering/condensa-
tion thresholds) rather than exactly at the satisfiability threshold. More generally, Monasson et
al. showed on the 2+p-SAT ensemble that random 3-SAT sits on the “random first-order” side
of a broader phase diagram: for small p, the SAT/UNSAT transition is continuous, with a back-
bone that turns on smoothly, while beyond a critical p0 (in particular, in the pure 3-SAT case),
the transition becomes random first-order, with a discontinuous backbone and exponentially
large typical running times for DPLL-type (backtracking) algorithms near the threshold [1]. At
the same time, recent rigorous work reframes this glassy picture in terms of the Overlap Gap
Property (OGP): for large k and related p-spin glasses, Kızıldağ proves a sharp threshold for
the emergence of a multi-overlap gap, i.e. a “forbidden” band of overlaps between near-optimal
configurations [18]. This provides a mathematically precise version of the shattered, clustered
geometry suggested by the cavity/1-RSB analysis and indicates that the glassy phase of random
k-SAT is best understood as governed by a glass-like discontinuous 1-RSB landscape rather
than by a standard equilibrium first-order transition in the thermodynamic sense.

Structure of the solution space

The studies discussed above provide a precise explanation of why and how the hard regime
emerges precisely at αc it is a consequence of the geometry of the set of satisfying assignments,
which undergoes its own sequence of transitions before the instance actually becomes UNSAT.[2,
16, 7].

Let us track α for random 3-SAT:

• Easy SAT phase (α < αd). For small densities, all satisfying assignments belong to
one “liquid” region of configuration space: variables are only weakly correlated, and local
search heuristics quickly find a satisfying assignment. Survey propagation (SP) converges
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3.2 – The SAT transition

to a trivial, essentially uninformative fixed point in which no variable is strongly biased
[2]. For 3-SAT this regime persists up to a dynamic/clustering threshold αd ≈ 3.92 [2, 16].

• Hard SAT (glassy) phase (αd < α < αc). Beyond αd, the solution set shatters into an
exponential number of “clusters” or pure states. Each cluster is internally well connected
(you can move between solutions by flipping a bounded number of variables at a time),
but different clusters are separated by extensive Hamming distance and energetic or
entropic barriers [16, 7]. In the spin-glass language this is a one-step replica-symmetry-
breaking (1-RSB) phase: the Gibbs measure (or, at zero temperature, the set of ground
states) decomposes into exponentially many states with positive complexity Σ(e), i.e. an
exponential density of metastable valleys at a given energy density e.

Survey propagation now converges to a nontrivial fixed point encoding long-range biases and
“frozen” variables within each cluster [2, 16]. In this window, formulas are still satisfiable
with high probability, but finding one satisfying assignment becomes algorithmically
difficult, because local moves get trapped inside suboptimal clusters and complete search
must effectively navigate an exponentially branching space of states. This regime is
sometimes called the hard-SAT phase [2], and is the algorithmic manifestation of the
RFOT-like glassy structure.

• UNSAT phase (α > αc). Past αc ≃ 4.267, no satisfying assignments remain: every
assignment violates some clauses. In the cavity/1-RSB solution this is the point where
the complexity of zero-energy states Σ(0) drops to zero and the ground-state energy
density e0(α) becomes strictly positive [16]. At this point, many solvers can quickly detect
contradictions and prove UNSAT, and the empirical runtime often drops again — hence
the “easy” tail on the high-α side of the curve [1, 2].

More generally, for random k-SAT with k ≥ 4, one finds that beyond the clustering
transition at αd an additional condensation transition can occur before αc: although there are
still exponentially many clusters, only a few of them carry almost all the weight (i.e. almost
all satisfying assignments live in a tiny number of dominant clusters). This condensation is
accompanied by a nonanalytic change in the entropy density of solutions and marks the limit
of effectiveness for message-passing heuristics such as belief propagation [7]. In this condensed
regime, the 1-RSB cavity formalism and SP are the natural tools to describe the landscape. In
the specific case of random 3-SAT, the clustering and condensation transitions are believed to
lie very close to each other in α, so the genuinely condensed regime does not extend far below
the SAT/UNSAT threshold.

Algorithm-dependent easy/hard boundaries

Finally, “hardness” is not an intrinsic property of the formula alone. For a simple branch-and-
propagate decision procedure that recursively branches on variables and rewrites the residual
subproblems back into CNF, an analytic treatment of the associated recursion shows that
the solver itself exhibits a sharp algorithmic phase transition: in one region of the (M,N, k)
parameter space the expected running time remains bounded (“easy”), whereas beyond a
critical surface the branching process leads to an uncontrolled combinatorial blow-up (“hard”)
[6]. Remarkably, this solver-induced easy/hard boundary does not coincide exactly with the
satisfiable/unsatisfiable threshold of random k-SAT. This reinforces a central message of SAT
phase-transition studies: the easy–hard–easy pattern is, to a significant extent, a property of
the search dynamics of a given algorithm, rather than solely a consequence of the underlying
logical satisfiability structure.
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3.3 Planted satisfiable instances and search objective
In classical complexity terms, SAT is formulated as a decision problem: given a Boolean formula
ϕ, decide whether there exists at least one assignment of its variables that satisfies all clauses (i.e.
makes ϕ = True). In that formulation, the algorithm must answer Yes (SAT) or No (UNSAT),
and this is exactly the NP-complete problem discussed in Section 3.1.

In this thesis, our setup is intentionally different and directly follows the “hidden (planted)
solution” ensemble introduced by Barthel, Hartmann, Leone, Ricci-Tersenghi, Weigt, and
Zecchina [19]. The central idea in [19] is to generate SAT instances that are guaranteed
satisfiable by construction, but which are nevertheless algorithmically hard near the clause-
density threshold αc ≃ 4.27 where random 3-SAT exhibits its easy–hard–easy transition [2,
16]. This lets us probe true search hardness without the confound “maybe the instance was
UNSAT”.

From the spin-glass viewpoint, the planted ensemble can be interpreted as a glassy spin
system with a hidden ferromagnetic bias along the planted configuration: the Hamiltonian still
has a rugged landscape with many metastable states, but one or more particular configurations
are guaranteed to be a ground state.

From decision to search We do not ask “Is the instance satisfiable?”. By construction, our
instances are satisfiable. Instead, our task is of a different flavour:

• Given a formula that we already know to be satisfiable, we aim to recover one or more
satisfying assignments.

• In stronger form, we are interested in exploring (part of) the space of satisfying assignments.

In other words, our problem is no longer a pure decision problem (SAT or UNSAT?) but a
search / reconstruction problem: find satisfying configurations and characterize how they are
organized. This shift from decision to search mirrors the philosophy in [19], where the instance is
designed so that at least one ground-truth solution exists, and the interesting question becomes
how difficult it is for an algorithm to actually reconstruct it.

Planted (a.k.a. hidden) solutions The formulas we study are not arbitrary random 3-SAT
instances. They are generated via a planted-solution procedure that guaranties satisfiability
while trying to “hide” the planted assignment [19]. The procedure, as implemented in code
developed within the Cluster of Excellence “Complexity and Topology in Quantum Matter”
(Prof. Jan Budich, TU Dresden), is:

1. Choose a “planted” assignment σ⋆ ∈ {0,1}N that we want to satisfy for all clauses. In
practice, we start from σ⋆ = (1,1, . . . ,1) and optionally apply a global random sign flip
(see below) so that σ⋆ is effectively random.

2. For each clause, decide how many of the three distinct variables will appear negated.

3. Accept only clauses that are satisfied by σ⋆; reject clauses that σ⋆ would violate.

4. Repeat until we reach the target number of clauses M , hence a desired clause density

α = M

N
,

which we tune close to the hard-SAT regime around αc ≃ 4.27 [2, 16].

More explicitly, each 3-clause is drawn from three “types”:

• type 0: all three literals are positive (x ∨ y ∨ z),

10
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• type 1: exactly one negated literal (¬x ∨ y ∨ z),

• type 2: exactly two negated literals (¬x ∨ ¬y ∨ z).
A clause with three negations (¬x ∨ ¬y ∨ ¬z) is forbidden, because it would be false under
σ⋆ = (1,1, . . . ,1). By restricting ourselves to types 0, 1, and 2, we guaranty that σ⋆ satisfies
every generated clause.

The generator then chooses the clause type probabilistically. We denote by p0 the probability
of drawing a type-0 clause (all positive literals). Following [19], the probabilities for the other
types are set as

p1 = 1− 4p0

6 , p2 = 1 + 2p0

6 , (3.2)

so that the normalization condition

p0 + 3p1 + 3p2 = 1 (3.3)

holds, where 3p1 is the total weight of all clauses with exactly one negation (since there are
three possible positions for that negation), and 3p2 is the total weight of all clauses with exactly
two negations.

The parameter p0 is chosen in the range

0.077 ≲ p0 ≲ 0.25

has two important effects [19]:
• it prevents trivial “majority-vote” recovery of σ⋆ (so the planted solution is genuinely

hidden),

• it produces formulas that are empirically hard for both local-search heuristics and complete
solvers, especially when α is tuned near the satisfiability threshold.

In code, this is exactly how we generate each clause: with probability p0 we emit a type-0
clause (no negations); with probability 3p1 we emit a clause with a single negated literal; with
probability 3p2 we emit a clause with two negated literals. Clauses with three negations are
never produced.

Finally, to avoid the planted assignment being trivially the “all-True” vector, we optionally
perform a global “gauge” transformation: for each variable xi we randomly decide whether
to flip its sign everywhere in the formula. This corresponds to the shuffle option in our
implementation and is the practical version of the “hidden”/“concealed” planted assignment
discussed in [19].

3.4 Our framework
In this thesis, we focus on clause densities α in the hard-SAT region, i.e., close to the SAT/UN-
SAT threshold αc. In this near-critical regime, typical instances (i) remain satisfiable with
non-negligible probability, (ii) display a clustered, glassy solution space with long-range con-
straints, and (iii) are empirically among the hardest for modern solvers due to backbone freezing,
deep backtracking, and, conjecturally, geometric barriers of OGP type [2, 16, 7]. Working here,
therefore, provides a controlled stress test on maximally challenging yet meaningful inputs. Our
aim is not only to assess whether the proposed procedure works, but also to understand how
and where it fails, using its breakdowns as a probe of the underlying hardness landscape.

To this end, we consider planted-SAT instances in the hard-SAT regime described in
Section 3.2. This choice has several advantages for our goals:

• A known ground truth. By construction, we know at least one satisfying assignment
σ⋆. Whenever our procedure outputs a candidate configuration, we can verify it clause by
clause (using a dedicated check_assignment routine) and evaluate performance in terms
of correctness, not only runtime.

11
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• Direct access to the glassy regime. By tuning α = M/N close to αc ≃ 4.27, where
random 3-SAT exhibits clustering, frozen backbones, and exponential search cost [2, 16,
7], we force our method to operate in a phase where the solution space is rugged and
metastable. Barthel et al. show that, for suitable choices of (p0, p1, p2), planted instances
in this regime remain satisfiable but are algorithmically difficult [19], making them ideal
testbeds.
[2, 16, 7] and are directly tied to the trapping behavior observed in [19].

• Clean separation of modeling vs satisfiability issues. If our method fails to
reconstruct a satisfying assignment in this planted setting, we know that the failure is
algorithmic (search, heuristics, sampling), rather than a trivial consequence of UNSAT.
This was precisely the motivation in [19]: by eliminating the “maybe the instance is
unsatisfiable” explanation, hardness can be attributed directly to the search dynamics
and the geometry of the solution space.

Conceptual perspective In summary, the computational problem we investigate can be
phrased as:

Given a 3-SAT instance ϕ whose satisfiability is guaranteed by construction but
is unknown by the procedure, can we efficiently recover one (or more) satisfying
assignments?

3.5 Ising mapping
As already discussed in computationally hard problems — whose worst-case behavior exhibits
exponential time or memory, such as NP-complete problems — they admit one-to-one corre-
spondences with the ground-state structure of disordered spin systems [3]. A highly structured
family of satisfiable 3-SAT formulas can be mapped to an ordered spin-glass model with dis-
tinctly glassy behavior: exponentially many metastable minima separated by barriers that trap
local search and hinder the discovery of the true ground state [20]. The SAT transition has
been argued to play a role analogous to a random first-order phase transition, in the sense of
structural glasses, where the system freezes into a mosaic of aperiodic, statistically distributed
states [5, 2, 16]. This provides a natural framework for theoretical interpretation. Several
mappings from SAT to Ising / QUBO models exist [15]; in this work we adopt the following
Hamiltonian for 3-SAT:

H =
Ø
c

Hc =
Ø

c:(i,j,h)
O(i,j,h) (3.4)

which is the sum of local clause contributions Hc, each associated with a clause c (M in total)
of the SAT problem.

For each Boolean literal li, we introduce a spin variable si defined as

si =
I
−1 if li is the positive literal xi,
1 if li is the negated literal ¬xi,

(3.5)

where the spin is related to the Pauli operator σzi . Each clause involving three literals on
variables (i, j, h) is mapped to a projector

O(i,j,h) =
p

k /=i,j,h
I
p
q=i,j,h

(1− sqσzq )
2 (3.6)

which acts as the identity on all qubits not in the clause and as a penalty projector on the
clause qubits. In this way, O(i,j,h) contributes a positive energy only if the clause is violated,
and contributes zero otherwise. Therefore, the spin configuration that minimizes H corresponds
to an assignment satisfying the largest possible number of clauses; if the minimum energy is
Hmin = 0, the corresponding assignment is a satisfying solution of the SAT problem.
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Sign convention In the computational basis

|0⟩ =
31

0

4
, |1⟩ =

30
1

4
, σz =

31 0
0 −1

4
.

and identify Boolean values by xi = 0↔ |0⟩ (FALSE) and xi = 1↔ |1⟩ (TRUE). For a clause
literal lq referring to variable xq, define

sq =

−1, if lq = xq (positive literal),
+1, if lq = ¬xq (negated literal).

Then
Plq :=

1− sq σzq
2

is exactly the projector onto the falsifying value of that literal:

literal lq false when desired projector 1−sq σz
q

2
xq xq = 0 (|0⟩) 1+σz

q

2 since sq = −1
¬xq xq = 1 (|1⟩) 1−σz

q

2 since sq = +1

Therefore, for a 3-literal clause (i, j, h) the operator

O(i,j,h) =
p

k /=i,j,h
I
p
q=i,j,h

1− sq σzq
2

projects onto the unique assignment where all three literals in that clause are false, i.e. the
clause is violated; it yields 0 otherwise. Consequently, the Hamiltonian

H =
Ø
c

Oc

is diagonal in the computational basis and returns, on any assignment |x⟩, exactly the number
of unsatisfied clauses. Minimizing H is therefore equivalent to maximizing the number of
satisfied clauses, with Hmin = 0 if and only if the formula is satisfiable.
Hence

σz |0⟩ = + |0⟩ ≡ |↑⟩ (spin up), σz |1⟩ = − |1⟩ ≡ − |↓⟩ (spin down).
Therefore, we can express the projectors ont the eigenstates as

P↑ = 1+σz

2 (selects |0⟩), P↓ = 1−σz

2 (selects |1⟩).

Example: Consider the clause

C = (x1 ∨ ¬x2 ∨ x3 ),

so that s1 = −1 (positive literal x1), s2 = +1 (negated literal ¬x2), and s3 = −1 (positive
literal x3). Suppressing identities on qubits /= 1,2,3, the clause operator is

O(1,2,3) = Px1 ⊗ P¬x2 ⊗ Px3 with Px = 1+σz

2 , P¬x = 1−σz

2 .

Take the (satisfying) assignment (x1, x2, x3) = (1,1,0), i.e.

|x⟩ = |1⟩1 ⊗ |1⟩2 ⊗ |0⟩3 ,

for which the clause C is True because x1 = 1. Then

Px1 |1⟩1 = 1+σz
1

2 |1⟩1 = 1−1
2 |1⟩1 = 0,

and therefore

O(1,2,3) |x⟩ =
!
Px1 |1⟩1

"
⊗
!
P¬x2 |1⟩2

"
⊗
!
Px3 |0⟩3

"
= 0⊗ (·)⊗ (·) = 0.

Hence a satisfying assignment yields O(1,2,3) |x⟩ = 0 and contributes zero energy, as claimed.
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Correctness of the clause-projector Hamiltonian. The construction above matches the
standard statistical-mechanics encoding of K-SAT: one introduces one spin degree of freedom
per Boolean variable and assigns an energy penalty to each violated constraint [3, 16]. In that
language, for any classical assignment x, the cost Hamiltonian is

Hcost(x) = (# of violated clauses under x).

Our Hamiltonian H =
q
cOc exactly reproduces this. By construction:

• Oc is a projector that evaluates to 1 if and only if clause c is violated by x, and 0 otherwise.

• Therefore H(x) =
q
cOc(x) is an integer equal to the number of violated clauses.

It immediately follows that any assignment x minimizing H is an assignment that violates
the fewest possible clauses. In particular, Hmin = 0 if and only if there exists an assignment
that violates zero clauses, i.e. a satisfying assignment. Thus, finding the ground state of H is
equivalent to solving the SAT instance. This is precisely the viewpoint under which random
K-SAT is treated as a spin-glass energy landscape, and SAT corresponds to the existence of
zero-energy ground states [3, 20, 2, 16].

From the conceptual standpoint, this is exactly the Hamiltonian analyzed by Mézard,
Parisi, and Zecchina using the cavity method at zero temperature: each clause contributes
a multi-spin interaction that penalizes one local pattern, and the competition between these
random constraints generates the glassy phase diagram described in Section 3.2 [2, 16]. The
same Hamiltonian (or closely related diluted p-spin models) is also the playground for Zhou’s
long-range frustration analysis [17] and for rigorous OGP results at large k [18].
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Chapter 4

Imaginary Time Propagation

A straightforward (“naive”) strategy for solving a 3-SAT instance mapped to an Ising Hamilto-
nian would be to fully diagonalize the Hamiltonian and read off its lowest-energy eigenstate(s).
However, exact diagonalization scales exponentially with the number of spins and becomes
intractable even for modest system sizes. A more practical alternative is imaginary-time
propagation (ITP), which allows one to project onto the ground state without computing the
full spectrum. [21]

Imaginary time is an unphysical but extremely powerful mathematical device used throughout
quantum mechanics, statistical mechanics, and quantum field theory. Formally, one performs a
Wick rotation t→ −iτ , which maps real (Minkowski) time to imaginary (Euclidean) time and
connects unitary quantum evolution to Euclidean/statistical evolution. In this picture, thermal
weights of the form e−βH and ground-state projectors arise from imaginary-time evolution
operators e−τH/ℏ, and ground-state preparation appears as the limit τ →∞ of e−τH/ℏ acting
on a suitable trial state. [21, 22]

On classical hardware, this principle underlies projector and diffusion Monte Carlo methods,
which implement imaginary-time evolution as a stochastic diffusion-and-branching process. [21]
On near-term quantum hardware, the non-unitarity of e−τH/ℏ prevents its direct realization;
instead, one approximates imaginary-time evolution variationally. Variational Quantum Imagi-
nary Time Evolution (VarQITE) and related schemes update the parameters of an ansatz state
so that its evolution best approximates the action of e−τH/ℏ, enabling approximate ground-state
preparation for Ising-encoded SAT instances on noisy intermediate-scale quantum (NISQ)
devices. [23, 24]

In the remainder of this chapter, we first introduce imaginary time more formally via
Wick rotation and make explicit the connection between Euclidean evolution and thermal
weights (Sec. ??). We then highlight the ground-state projection property of imaginary-time
dynamics and discuss its interpretation as a formal cooling process (Secs. ??–??). Building
on this foundation, we present the Bloch-disk variational ansatz that underpins our algorithm
(Sec. 4.3) and derive a frontier-based ITP scheme tailored to the clause structure of the 3-
SAT Ising Hamiltonian (Sec. ??). Finally, we analyze the scaling of the resulting variational
representation, emphasizing the proliferation of configurations and its algorithmic implications
(Sec. ??). Technical details, including analytical estimates of frontier proliferation and related
scaling arguments, are deferred to Appendix A.2, while explicit pseudo-code and implementation
details for the frontier-based ITP routine are collected in Appendix A.1.

4.1 Imaginary time and Wick rotation
A Wick rotation replaces real time by an imaginary variable,

t → − i τ, τ ∈ R, (4.1)

which can be related to inverse temperature by introducing

τ = ℏβ, β = 1
kBT

. (4.2)

Geometrically, this is a rotation by π/2 in the complex time plane, mapping Minkowski to
Euclidean signature. [22]
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In quantum mechanics, the real-time propagator generated by a time-independent Hamilto-
nian H is

U(t) = e−
i
ℏHt. (4.3)

Under the Wick rotation t = −iτ one obtains the Euclidean (imaginary-time) evolution operator

UE(τ) = e−τH/ℏ. (4.4)

Setting τ = ℏβ and working in units with ℏ = 1, one writes

UE(β) = e−βH , (4.5)

which is precisely the exponential appearing in the Gibbs state

ρβ = e−βH

Z
, Z = Tr

1
e−βH

2
, β = 1

kBT
. (4.6)

Thus the correspondence
it

ℏ
−→ β (or t→ −iℏβ)

links unitary quantum time evolution to thermal physics: imaginary time in quantum mechanics
plays the role of inverse temperature 1/T in statistical mechanics. This same correspondence
underlies Euclidean path integrals, Matsubara (imaginary-time) Green’s functions, and the
standard ground-state projection limβ→∞ e

−βH ∝ |E0⟩. [21, 22]
Given an initial trial state |ψ(0)⟩, imaginary-time propagation is defined by

|ψ(τ)⟩ = e−τH/ℏ |ψ(0)⟩..e−τH/ℏ |ψ(0)⟩
.. , (4.7)

with τ ∈ R≥0. The propagator e−τH/ℏ is non-unitary and exponentially suppresses excited-state
components: high-energy contributions decay as e−τEn/ℏ faster than the ground-state component
e−τE0/ℏ, so the large-τ limit projects onto the ground state without explicit diagonalization.
[21]

4.2 Ground-state projection
The ground-state projection property of imaginary-time evolution can be made explicit by
working in the energy eigenbasis. For simplicity, we set ℏ = 1 henceforth. Let H |En⟩ = En |En⟩
with E0 ≤ E1 ≤ E2 ≤ · · · and expand an arbitrary initial state as

|ψ⟩ =
Ø
n

cn |En⟩ , cn ∈ C. (4.8)

Then

e−βH |ψ⟩ =
Ø
n

cne
−βEn |En⟩ (4.9)

= e−βE0

c0 |E0⟩+
Ø
n/=0

cne
−β(En−E0) |En⟩

 . (4.10)

Assuming E0 is non-degenerate (or that |ψ⟩ has support only in one ground-state vector), one
obtains

|E0⟩ = lim
β→∞

e−βH |ψ⟩
∥e−βH |ψ⟩∥

for any |ψ⟩ with ⟨E0|ψ⟩ /= 0. (4.11)
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Indeed,

lim
β→∞

e−βH |ψ⟩
∥e−βH |ψ⟩∥

= lim
β→∞

e−βE0
1
c0 |E0⟩+

q
n/=0 cne

−β(En−E0) |En⟩
2

e−βE0
ñ
|c0|2 +

q
n/=0 |cn|2e−2β(En−E0)

(4.12)

= c0

|c0|
|E0⟩ , (4.13)

i.e. convergence to the ground state up to an irrelevant global phase. This is the fundamental
reason why imaginary-time propagation is a ground-state preparation primitive. [21, 23]

Simple imaginary-time propagation algorithm

The operator e−βH can be represented as the limit of a product of short imaginary-time steps.
Starting from the identity

eA = lim
n→∞

1
1 + A

n

2n
,

set A = −βH and write
e−βH = lim

n→∞

1
1− β

nH
2n
. (4.14)

Equivalently, one may start from the truncated Taylor series

e−βH =
∞Ø
l=0

(−βH)l
l! , (4.15)

and introduce a short imaginary-time step δτ := β/n. For large n one has δτ ≪ 1, and each
factor

e−δτH = 1− δτ H +O(δτ 2)
is well approximated by a first-order Euler step for the imaginary-time Schrödinger equation

∂τ |ϕ(τ)⟩ = −H |ϕ(τ)⟩ , (4.16)
where |ϕ(τ)⟩ = e−τH |ψ(0)⟩ denotes the unnormalized state. The corresponding normalized
state is

|ψ(τ)⟩ = |ϕ(τ)⟩
∥ |ϕ(τ)⟩ ∥ ,

which satisfies
∂τ |ψ(τ)⟩ = −

!
H − ⟨H⟩τ

"
|ψ(τ)⟩ , ⟨H⟩τ := ⟨ψ(τ)|H |ψ(τ)⟩ .

One usually applies finite-difference updates to the non-normalized state, then explicitly
renormalizes.

Thus, for a small time step δτ ,
e−βH ≈

!
1− δτ H

"n
, n = β/δτ.

This suggests the following simple iterative ITP scheme:
|Ψ⟩ ←

!
1− δτ H

"
|Ψ⟩ , followed by |Ψ⟩ → |Ψ⟩ /∥ |Ψ⟩ ∥ (4.17)

at each step. In the limit δτ → 0 and n→∞ with nδτ = β fixed, the iteration converges to
e−βH |ψ(0)⟩, i.e. to the imaginary-time evolved state approaching the ground state. In numerical
implementations, one often shifts the Hamiltonian by a constant, H → H − Eref1, to keep the
overall scale of the propagator under control.

In practice, numerical stability requires δτ to be sufficiently small compared to the energy
scales of H, and explicit renormalization after each step prevents the norm from diverging or
vanishing. This “power-method-like” projector iteration is the basis of projector and diffusion
Monte Carlo methods on classical hardware. [21] On quantum hardware, variational imaginary-
time evolution algorithms aim to reproduce the same flow in parameter space: instead of directly
applying the non-unitary operator (1− δτH) to a state vector, one updates the parameters of
a variational ansatz so that its infinitesimal change best approximates −H |ψ⟩. [23, 24]
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This subsection clarifies the meaning and limitations of ITP as a sort of formal (yet
unphysical) “cooling” process.

Using the definition of imaginary-time evolution in Eq. (4.7) and the spectral decomposition
employed in Sec. 4.2 [cf. Eq. (4.11)], the imaginary-time evolution essentially re-weights each
energy eigencomponent of the initial state by a factor e−τEn( or e−βEn in thermal notation).
Relative to the ground-state contribution, the weight of an excited state with energy En is
suppressed by a factor e−τ(En−E0). For imaginary times τ ≫ 1/∆, where ∆ denotes the gap
between the ground state and the first excited state, the amplitudes of excited eigenstates
are exponentially suppressed, and the state becomes exponentially close to the ground state
subspace.

Formally, the operator e−τH has the same algebraic structure as the Boltzmann weight
e−βH , with the identification β = τ (in units where ℏ = 1). Large imaginary time, therefore,
corresponds to a large inverse temperature and, hence, to a low effective temperature. This
reweighting is precisely where the analogy with a cooling process lies: imaginary-time evolution
suppresses high-energy components in the same way that lowering the temperature suppresses
high-energy contributions in a Gibbs state.

It is crucial, however, to emphasize that imaginary time is not a physical time coordinate. It
is an auxiliary Euclidean parameter obtained by analytic continuation t→ −iτ of the real-time
Schrödinger equation, and the non-unitary map e−τH does not describe the dynamical evolution
of an isolated quantum system in real laboratory time. From the operator-theoretic point of
view, two features distinguish imaginary-time propagation from genuine dynamics:

• Non-unitarity. The map |ψ⟩ → e−τH |ψ⟩ is non-unitary and generically changes the
norm of the state. Relative to the ground-state component, all excited-state components
are exponentially suppressed as e−τ(En−E0). In numerical implementations one therefore
renormalizes the state after each step, or equivalently shifts the Hamiltonian by a reference
energy to control the overall norm. This non-unitarity is precisely what makes imaginary-
time evolution an efficient projector onto low-energy states, but also makes it a purely
mathematical construction rather than a literal cooling process for an isolated quantum
system.

• Many-body non-locality. Even if H is a sum of local terms, the finite-time propagator
e−τH is, in general, a generically nonlocal and highly entangling operator on the many-body
Hilbert space. Quantum algorithms for imaginary-time evolution therefore approximate
e−τH using sequences of local unitaries and measurements, or by reconstructing its action
within a variational manifold, because there is no simple local dissipative channel whose
exact action coincides with e−τH at finite τ .

Within this perspective, the “cooling” picture should be interpreted strictly as a formal
analogy: imaginary time plays the role of an effective inverse temperature in the weight factors,
but there is no underlying thermal bath, no real-time stochastic thermalization, and no causal
local dynamics in physical spacetime that literally follows τ .

Loss of excited-state information. The same formal cooling picture explains why imaginary-
time evolution deliberately discards information about excited states. Since excited-state
contributions are exponentially suppressed relative to the ground state, beyond some imaginary
time their amplitudes fall below numerical precision, and the resulting state is indistinguishable
from a pure ground state. At that stage the excitation spectrum cannot be reconstructed from
|ψ(τ)⟩ alone.

State preparation and practical advantages/limitations. Because of its projector
character, imaginary-time propagation is best viewed as a state-preparation primitive rather
than as a model of real-time dynamics. On classical hardware it underlies projector and
diffusion Monte Carlo methods for ground-state properties of many-body systems, while on
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quantum hardware it motivates quantum imaginary-time evolution (QITE) and variational
imaginary-time algorithms, in which unitary circuits and measurements are engineered to
approximate the non-unitary map e−τH .

In this context, ITP exhibits several characteristic advantages and limitations:

• Advantages: (i) imaginary-time dynamics is governed by a diffusion-like equation rather
than by the oscillatory unitary Schrödinger equation, which typically improves convergence
towards low-energy states and enhances numerical stability; (ii) the conceptual structure
is simple — formally, one “applies e−τH and renormalizes” — and admits both classical
Monte Carlo realizations and hybrid quantum–classical variational implementations.

• Limitations: (i) many imaginary-time iterations are often required, especially in the
presence of small spectral gaps; (ii) information about excited states is intentionally
suppressed, so accessing excited spectra requires additional projections or modified schemes;
(iii) simulating large systems remains computationally demanding, either due to sampling
cost in classical projector Monte Carlo or due to repeated measurements and parameter
updates in variational quantum implementations.

These features motivate the use of ITP as a ground-state preparation tool for Ising-encoded SAT
instances, while also delineating the practical reach of both classical and quantum realizations
of imaginary-time evolution.

4.3 Variational Ansatz
In the previous section, imaginary-time propagation was introduced as an ideal projector onto
the ground state of the 3-SAT cost Hamiltonian, assuming access to the full 2L-dimensional
Hilbert space. In practice, such an exact evolution is infeasible for large L, and one must work
with a restricted, efficiently representable family of states and an approximate imaginary-time
update rule acting within that family.

In what follows, we instantiate this idea for Ising-encoded 3-SAT by specifying (i) a concrete
variational ansatz based on superpositions of simple product states restricted to a Bloch disk,
and (ii) a “frontier-based” imaginary-time propagation scheme that selectively grows this ansatz
under the action of the clause projectors. The resulting state at the end of the frontier-based
ITP stage will then serve as the initial procedure for a subsequent TDVP refinement.

Definition We work with a family of fully separable L-qubit product states indexed by
λ = 0, . . . , D,

|ρλ⟩ =
L−1p
k=0
|Bkλ⟩ , |Bkλ⟩ := cos θλk |0k⟩+ sin θλk |1k⟩ . (4.18)

Each single-qubit factor |Bkλ⟩ is parameterized by a single real angle θλk . We restrict every
qubit to the x–z plane of the Bloch sphere (a “Bloch disk”), i.e. we fix the azimuthal phase to
ϕλk = 0 and only vary the polar angle θλk . By construction,

cos2 θλk + sin2 θλk = 1 (∀ k, λ), (4.19)

so each |Bkλ⟩ and hence each |ρλ⟩ is normalized.
The full variational state at imaginary time τ is a linear superposition of D+1 such product

configurations,

|Ψ(τ)⟩ =
DØ
λ=0

aλ(τ) |ρλ⟩ ,
DØ
λ=0
|aλ(τ)|2 = 1, (4.20)

where aλ(τ) are real amplitudes in our implementation. Although each |ρλ⟩ is not entangled,
the superposition (4.20) can represent nontrivial correlations through interference between
different product configurations.
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x

z |0⟩ (↑)

|1⟩ (↓)

θ
|ψ⟩ = cos θ |0⟩+ sin θ |1⟩

Figure 4.1: Bloch disk: single-qubit states restricted to the x–z plane. The polar angle θ
rotates the state from |0⟩ (up, +z) toward |1⟩ (down, −z).

All variational degrees of freedom are collected in the parameter vector

w̄ = (a0, . . . , aD; θ0
0, . . . , θ

0
L−1; θ1

0, . . . , θ
1
L−1; . . . ; θD0 , . . . , θDL−1). (4.21)

Here λ labels distinct product configurations, and k runs over qubits.

Initialization We initialize along +x on every qubit,

|Ψ0⟩ =
L−1p
k=0
|→k⟩ , |→k⟩ := 1√

2
!
|0k⟩+ |1k⟩

"
, (4.22)

which corresponds to the seed configuration λ = 0 with

θ0
k = π

4 , ∀ k. (4.23)

This choice gives nonzero overlap with every computational-basis assignment (including satisfying
assignments of the 3-SAT instance) and avoids starting in already “pinned” configurations such
as θ = 0 or θ = π/2.

Clause projectors The cost Hamiltonian H is a sum of clause projectors, each diagonal in
the computational σz basis (see Chapter 3.5). A clause acting on qubits (i, j, h) can be written
as

H =
Ø
c

Hc =
Ø

c:(i,j,h)
O(i,j,h), (4.24)

O(i,j,h) =
p

k/∈{i,j,h}
Ik ⊗

p
q∈{i,j,h}

1− sq σzq
2 . (4.25)

where sq = ±1 fixes which σz eigenstate is selected on qubit q. On a single-qubit factor

|Bqλ⟩ = cos θλq |0q⟩+ sin θλq |1q⟩ ,

we use σz |0⟩ = + |0⟩ and σz |1⟩ = − |1⟩ to obtain

1− sq σzq
2 |Bqλ⟩ =

cos θλq |0q⟩ , sq = −1,

sin θλq |1q⟩ , sq = +1.
(4.26)
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Thus, on each qubit in the clause, the projector keeps only the computational-basis component
it demands (|0⟩ if sq = −1, |1⟩ if sq = +1) and discards the other one. In the special cases
θλq = 0 (already |0q⟩) or θλq = π/2 (already |1q⟩), Eq. (4.26) can also return the zero vector when
the clause demands the opposite value; such branches are interpreted as logical contradictions
and are discarded.

Applying O(i,j,h) to a parent product state |ρλ⟩ either produces:
• a child product state |ρ′λ⟩(i,j,h), in which qubits (i, j, h) are now pinned to definite compu-

tational values, and all other qubits remain unchanged, with total weight

A(i,j,h),λ = AiλAjλAhλ, Aqλ =

cos θλq , sq = −1,

sin θλq , sq = +1,
(4.27)

or

• the zero vector, which we drop.
In this preliminary framework, each clause either fixes a subset of spins in a product state
or excludes the state as inconsistent. Within this context, we will henceforth refer to |ρλ⟩ as
“replicas,” since in this initialization procedure they effectively reproduce partial (or potentially
complete) invalid assignments. This terminology is adopted solely for convenience and does not
intend to establish any conceptual connection with the replica method discussed in 3.

4.4 Frontier-based Imaginary-Time Propagation
We now describe how imaginary-time propagation is implemented within the variational family
introduced in Sec. 4.3. Starting Eq. (4.20)), we approximate one step of imaginary-time
evolution by the first-order Euler rule

|Ψ(τ + dτ)⟩ ∝
!
I− dτ Ĥ

"
|Ψ(τ)⟩ , (4.28)

where Ĥ is the 3-SAT cost Hamiltonian written as a sum of clause projectors [cf. Eq. (4.25)].
The role of the frontier-based ITP scheme is to realize Eq. (4.28) while (i) never leaving the
span of product states of the form (4.18), and (ii) enlarging this span in a controlled, sparse
way.

Naive clause expansion and combinatorial issues
Plugging the variational expansion (4.20) into (4.28), and using the clause structure of Ĥ =q
cOc together with the single-qubit action in Eq. (4.26), one obtains the Euler-expanded

update
|Ψ(τ + dτ)⟩ ≈

Ø
λ

aλ |ρλ⟩ − dτ
Ø
λ

Ø
c

aλAcλ |ρ′λ⟩c , (4.29)

which is the variational version of Eq. (4.28). Here Acλ is the clause weight defined in Eq. (4.27),
and |ρ′λ⟩c denotes the (possibly pinned) child product state produced by clause c acting on the
parent |ρλ⟩.

If we were to take Eq. (4.29) at face value and, at every step, include in the ansatz all
children |ρ′λ⟩c generated by all pairs (λ, c), the number D of distinct product states would
grow combinatorially. In fact , each pair (λ, c) produces a candidate child state |ρ′λ⟩c that, in
principle, should be added to the pool.

Two key mechanisms help reduce the true growth of the basis:
1. Clones. Different (λ, c) pairs can generate the same product configuration, i.e. the same

pattern of pinned spins (same angles θλk ∈ {0, π/2, π/4}). This happens when distinct
sequences of clause projectors pin qubits in a logically equivalent way. All such children
are clones and must be merged into a single basis state with the sum of their amplitude
contributions.
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2. Incompatible branches. If a clause demands a value for some qubit that contradicts an
already pinned value, Eq. (4.26) yields the zero vector on that branch. These logically
inconsistent children are projected to |0⟩ and are discarded from the variational manifold.

Clone merging and annihilation of incompatible branches imply that many of the formal children
in (4.29) either collapse onto existing states or vanish. After a few layers of clause applications,
most new branches are either clones or contradictions, and the manifold spanned by the |ρλ⟩
tends to saturate (see Appendix A.2).

However, the algorithmic cost of the naive update remains high: even if D eventually
saturates , at each imaginary-time step one would still

• apply all clauses to all D parents,

• and, for each child, perform an expensive search over the current pool to decide whether
it is a clone or a genuinely new state.

The frontier-based scheme introduced below is designed precisely to avoid this cost: instead of
treating all parents symmetrically, we identify the subset of states that are actually responsible
for discovering new product configurations at step k, and we restrict the full “create-or-merge”
logic to this subset.

Toy example with two clause operators
To illustrate this more concretely, consider a simple Hamiltonian

Ĥ = Oc1 +Oc2 , (4.30)

with two clause projectors Oc1 and Oc2 . We start from a single product state |ρ0⟩ with amplitude
a

(0)
0 at step k = 0. For clarity we focus only on the Hamiltonian part −dτ Ĥ and omit the

identity channel.

Step 1. Acting with the two clauses on |ρ0⟩ gives

−dτ a(0)
0 Oc1 |ρ0⟩ = −dτ a(0)

0 Ac10 |ρ1⟩ , (4.31)

−dτ a(0)
0 Oc2 |ρ0⟩ = −dτ a(0)

0 Ac20 |ρ2⟩ , (4.32)

where Ac10, Ac20 are the clause weights defined as in Eq. (4.27), and |ρ1⟩, |ρ2⟩ are the (possibly
distinct) child product states obtained by pinning the qubits involved in c1 and c2. After
merging and normalization, we can view the pools as

S0 = {|ρ0⟩}, S1 = {|ρ1⟩ , |ρ2⟩}, (4.33)

with amplitudes (a(1)
0 , a

(1)
1 , a

(1)
2 ). Denoting the norm at this step by

N1 :=
ñ!

a
(0)
0
"2 +

!
dτ Ac10a

(0)
0
"2 +

!
dτ Ac20a

(0)
0
"2
,

the amplitudes can be written explicitly as

a
(1)
0 = a

(0)
0
N1

, (4.34)

a
(1)
1 = −dτ a

(0)
0 Ac10

N1
, (4.35)

a
(1)
2 = −dτ a

(0)
0 Ac20

N1
. (4.36)

Here S0 denotes the set of states first created at step 0, and S1 those first created at step 1.
The frontier at step 1 is F (1) = S1.
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4.4 – Frontier-based Imaginary-Time Propagation

Step 2. At the next step both the old state |ρ0⟩ and the new states |ρ1⟩ , |ρ2⟩ contribute to
−dτ Ĥ |Ψ(1)⟩.

From the old state |ρ0⟩ we obtain

−dτ a(1)
0 Oc1 |ρ0⟩ = −dτ a(1)

0 Ac10 |ρ1⟩ , (4.37)

−dτ a(1)
0 Oc2 |ρ0⟩ = −dτ a(1)

0 Ac20 |ρ2⟩ . (4.38)

Crucially, |ρ0⟩ has regenerated exactly the same children as at the previous step: |ρ1⟩ and |ρ2⟩.
These are already in S1, so they contribute only to updating the amplitudes a(2)

1 , a
(2)
2 ; they do

not create new basis states.
By contrast, acting with Oc1 , Oc2 on the frontier state |ρ1⟩ can generate genuinely new

configurations:

−dτ a(1)
1 Oc1 |ρ1⟩ = −dτ a(1)

1 Ac11 |ρ3⟩ , (4.39)

−dτ a(1)
1 Oc2 |ρ1⟩ = −dτ a(1)

1 Ac21 |ρ4⟩ , (4.40)

and similarly for the other frontier state |ρ2⟩. Here |ρ3⟩ , |ρ4⟩ denote new product states (unless
they happen to coincide with existing ones), and Ac11, Ac21 are the corresponding clause weights.
These new states populate the next layer S2 and become the new frontier F (2) = S2.

After collecting all contributions and renormalizing, the new amplitude of |ρ1⟩ at step 2 has
the schematic form

a
(2)
1 =

a
(1)
1üûúý

identity

−dτ a(1)
0 Ac10 + . . .

N2
, (4.41)

where N2 is the normalization factor at step 2, the first term in the numerator comes from the
identity channel, and the ellipsis includes additional contributions from other parents (such as
|ρ2⟩) that could generate a clone of |ρ1⟩.

This example highlights three key facts:

• Old states (here |ρ0⟩) still contribute to the imaginary-time update by modifying the am-
plitudes of already-known states (|ρ1⟩ , |ρ2⟩), but they do not discover new configurations.

• Only the current frontier (here |ρ1⟩ , |ρ2⟩ at step 1) can generate new states (|ρ3⟩ , |ρ4⟩ , . . . ).

• The adjacency pattern (which parent can generate which children) is fixed once the states
are created; what changes during the evolution are the amplitudes a(k)

λ flowing along this
graph.

The frontier can therefore be seen as the outermost “active layer” in a genealogical graph of
states.

Layered decomposition and active frontier
The toy example suggests a more general organization of the dynamics. Let Si denote the set
of product states that are created for the first time at ITP step i. By construction,

S(k) =
kÛ
i=0
Si, F (k) = Sk, (4.42)

and the variational state after k steps can be written as

|Ψ(k)⟩ =
kØ
i=0

Ø
λ∈Si

a
(k)
λ |ρλ⟩ . (4.43)

23



Imaginary Time Propagation

The product states |ρλ⟩ themselves do not depend on k: once a state is created and assigned to
some layer Si, its bitstring of pinned spins is fixed. The imaginary-time evolution modifies only
the amplitudes a(k)

λ .
Applying one Euler step,

|Ψ(k+1)⟩ ∝ (I− dτ Ĥ) |Ψ(k)⟩ , (4.44)

we can separate the Hamiltonian contribution according to the layers:

−dτ Ĥ |Ψ(k)⟩ = −dτ
kØ
i=0

Ø
λ∈Si

a
(k)
λ Ĥ |ρλ⟩ (4.45)

= −dτ
k−1Ø
i=0

Ø
λ∈Si

a
(k)
λ Ĥ |ρλ⟩ − dτ

Ø
µ∈Sk

a(k)
µ Ĥ |ρµ⟩ . (4.46)

By the construction of the algorithm, the action of Ĥ on a given parent |ρλ⟩ is completely
determined by:

• the pattern of pinned spins in |ρλ⟩,

• the fixed list of clauses {Oc}.

This data does not depend on the step index k or on the amplitudes. Therefore, the set of
children that can appear in Ĥ |ρλ⟩ is fixed once and for all.

When λ first appears in layer Si, it lies in the frontier F (i) and, at the next update i→ i+1:

• applies all clauses to |ρλ⟩,

• for each compatible child, check whether it already exists in
ti
j=0 Sj .

• if it is new, insert it into Si+1.

At that point, we have exhausted all children of λ that can ever appear in a single application
of Ĥ: any such child is either already in

ti
j=0 Sj or has just been put into Si+1. Hence, for all

later steps k ≥ i+ 1,

Ĥ |ρλ⟩ ∈ span

i+1Û
j=0
Sj

 ⊆ span
1
S(k)

2
, λ ∈ Si, i < k. (4.47)

In other words, the first term on the right-hand side of Eq. (4.46) cannot generate new product
configurations at step k+1: it only redistributes amplitude among states already in S(k). The
only part of −dτ Ĥ |Ψ(k)⟩ that can create genuinely new states is the second term in Eq. (4.46),
where Ĥ acts on the current frontier Sk. The compatible children of these frontier parents that
do not yet exist in S(k) are precisely the states assigned to Sk+1 and thus to the new frontier
F (k+1).

We can conclude that:

• the frontier Sk is the unique generative layer : only its states can enlarge the variational
manifold at step k+1;

• all older layers Si with i < k are still dynamically important: they provide amplitude flow
into already-known states, but they never introduce new product configurations again.

This layered viewpoint makes the hierarchical, graph-like structure explicit: each |ρλ⟩ is a node,
edges connect parents to children under clause applications, and imaginary-time evolution
amounts to repeatedly pushing amplitude along this fixed graph. The frontier is the moving
outer shell of this graph where new nodes may still appear.
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Amplitude update rules
It is important to stress that a single Euler step at most produces new product states while no
acting on the old ones, but that is not the only effect. Each step updates the a(k)

λ of all the
states. For each ordered pair of product states |ρλ⟩ , |ρµ⟩ we define a transition coefficient

κµλ :=
Ø

c: child(λ,c)=µ
Acλ, (4.48)

where the sum runs over all clauses c such that applying Oc to |ρλ⟩ produces the child |ρµ⟩
with weight Acλ (as in Eq. (4.27)). If no clause connects λ to µ we have κµλ = 0.

Collecting all contributions and using

|Ψ(k)⟩ =
Ø

λ∈S(k)

a
(k)
λ |ρλ⟩ ,

the unnormalized amplitude of |ρµ⟩ after one step is

ã(k+1)
µ = a(k)

µ − dτ
Ø

λ∈S(k)

κµλ a
(k)
λ , (4.49)

where we understand a
(k)
µ = 0 if |ρµ⟩ /∈ S(k). The first term in Eq. (4.49) comes from the

identity channel, while the second term collects the flow of amplitude from all parents |ρλ⟩ that
can generate |ρµ⟩ in one clause application. After computing all ã(k+1)

µ for |ρµ⟩ ∈ S(k+1), we
renormalize:

Nk+1 =
ó Ø
ν∈S(k+1)

!
ã

(k+1)
ν

"2
, a(k+1)

µ = ã
(k+1)
µ

Nk+1
. (4.50)

The frontier rule does not change Eq. (4.49) itself, but constrains where new indices µ are
allowed to appear. At step k → k+1:

• if |ρµ⟩ ∈ S(k) is an old state, we include in the sum in Eq. (4.49) all parents λ ∈ S(k) such
that κµλ /= 0, regardless of whether they are in the frontier or not;

• If |ρµ⟩ is a genuinely new state created at step k+1, it must first be produced by at least
one parent λ ∈ F (k). Once created, it can then receive additional contributions from
non-frontier parents λ ∈ S(k) \ F (k) that also regenerate |ρµ⟩.

In this way the set of states {|ρλ⟩}, and therefore the index set S(k), can grow only through
the frontier, while the amplitude updates remain faithful to the full imaginary-time action
(I− dτ Ĥ) on the current variational state.

Graphical interpretation
Figures 4.2 and 4.3 provide a graphical interpretation of the frontier-based ITP update. The
three panels show three snapshots of the same clause structure taken at successive ITP steps
k = 0,1,2. The left-hand labels S′,S∞,S∈ indicate the layer to which each node belongs, i.e.
the step at which that product state first appeared (cf. the layered decomposition of Sec. 4.4).

The graphical legend in Fig. 4.3 explains the symbols. Filled circles represent valid product
states |ρλ⟩ (consisitent partial assignments); a colored halo marks states that are in the frontier
at the corresponding step. A grey self-loop represents the identity contribution in (I− dτ Ĥ).
Edges labelled by Oci show the action of clause projectors. Red dashed arrows labelled “merge”
indicate clones whose amplitude is merged into an existing node, while nodes ending in a cross
and labelled |0⟩ correspond to incompatible branches where the clause demands a value that
contradicts an already pinned spin and the projector returns the zero vector. The bottom panel
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Figure 4.2: Frontier-based imaginary-time update with pruning and saturation

of Fig. 4.3 specifies the particular 3-SAT instance used (three clauses on four variables) and the
literal convention, so each node can be read as a partial assignment of the SAT variables.

Step 0 (panel a). The first panel shows the situation before any ITP update has been
applied. We start from a single delocalized product state |ρ0⟩ in which no spin is pinned (all
qubits at θ = π/4, i.e. |+⟩). This state is the only element of the pool, S(0) = {ρ0}, and at the
same time the only element of the frontier, F (0) = {ρ0}. No self-loop is drawn here, because we
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4.4 – Frontier-based Imaginary-Time Propagation

Graphical Legend

valid product state
(pinned partial assignment)

new frontier state
(first appearance at this step)

clone of an existing state
(amplitude merged, not duplicated)

Oc clause projector

I identity contribution

merge
clone merged into existing state

dead branch / contradiction
(|0⟩)

Problem Legend

ci: i-th clause.

Literal/sign convention:

sq =
I
−1, lq = xq (positive literal),
+1, lq = ¬xq (negated literal).

viol.: the (unique) assignment of the clause’s
three literals that makes them all false (i.e. violates
that clause).

Example clause set:

c1 = (x1 ∨ ¬x2 ∨ x3), (s1, s2, s3) =
(−1, +1,−1), viol.: (x1, x2, x3) = (0,1,0).
c2 = (x2 ∨ x3 ∨ ¬x4), (s2, s3, s4) =
(−1,−1, +1), viol.: (x2, x3, x4) = (0,0,1).
c3 = (x1 ∨ ¬x2 ∨ ¬x4), (s1, s2, s4) =
(−1, +1, +1), viol.: (x1, x2, x4) = (0,1,1).

Figure 4.3: Graphical legend (top) and problem legend (bottom).

have not yet applied (I− dτ Ĥ).
Step 1 (panel b). The second panel represents the graph immediately after the first ITP

step k = 0 → 1. The root |ρ0⟩ is now equipped with a grey self-loop, encoding the identity
contribution I |ρ0⟩. Each clause projector Oci acts once on the frontier state |ρ0⟩, producing
children along the three outgoing edges. For this particular problem instance, each clause
yields a distinct, compatible child, so three new product states are created in the layer S∞;
these are drawn in the row S∞ and form the new frontier F (1). At this stage no clones or
contradictions appear, so there are no red “merge” arrows and no crossed |0⟩ nodes. The pool
is now S(∞) = S′ ∪ S∞.

Step 2 (panel c). The third panel depicts the graph after the second ITP step k = 1→ 2.
The identity channel now acts on all states in S(1), so both |ρ0⟩ (in S0) and its children in S1
carry grey self-loops. Clause projectors are applied to every state, but with different status
depending on whether the parent is in the frontier or not:

• The old state |ρ0⟩ is no longer in the frontier. When Oci acts on |ρ0⟩ at Step 2, it
regenerates exactly the same children as at Step 1. These contributions are represented by
red dashed arrows that merge back into the existing nodes in S1: |ρ0⟩ continues to pump
amplitude into those states, but cannot create any new configuration.

• The states in S1, highlighted as the frontier F (1) in panel (b), are now the generative
layer. Each clause Oci is applied to each of these frontier parents. Some branches are
incompatible with previously pinned spins and terminate in crossed |0⟩ nodes; others lead
to children that coincide with states already present in S0 or S1, and are therefore shown
as red “merge” arrows into those existing nodes (clone merging). Only those branches
that reach genuinely new, consistent product states appear as new nodes in the row S2
and form the new frontier F (2) (in the figure one of them is additionally shaded, as it will
later be used as TDVP initial state).
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A striking feature of panel (c) is that almost all branches from F (1) either (i) end in
contradictions or (ii) fall back onto states that were already in S(1). In this sense the graph has
reached saturation: no additional product states are discovered. The imaginary-time evolution
continues to update the amplitudes a(k)

λ through (I− dτ Ĥ), but the underlying manifold of
product states {|ρλ⟩} is now fixed. The three panels together make visually explicit how identity
contributions, clause projections, clone merging, and annihilation of incompatible branches
work in concert with the frontier restriction to yield a controlled, hierarchical exploration of the
space of partial assignments.

4.5 From ITP to TDVP
Each ITP step k → k+1 is implemented in three phases: (i) an identity pass that copies all
states in S(k) to a working pool and seeds their amplitudes, (ii) a frontier expansion in which
only F (k) is allowed to create new product configurations, and (iii) a non-frontier expansion
in which older states merely redistribute amplitude into already known configurations. The
resulting amplitudes are then globally normalized.

The detailed algorithm, together with the bitmask representation of product states and the
corresponding pseudocode, is given in Appendix A.1

After a fixed number of ITP steps we obtain

|Ψ(n)⟩ =
Ø

λ∈S(n)

a
(n)
λ |ρλ⟩ ,

a structured, low-rank superposition of product states. Each |ρλ⟩ corresponds to a consistent
partial assignment of SAT variables, with some spins already pinned in the computational basis
according to the clause structure.
|Ψ(n)⟩ is then used as the initial state for the time-dependent variational principle (TDVP)5.

In TDVP we freeze the set {|ρλ⟩} and treat all angles {θλk} and amplitudes {aλ} as continuous
variational parameters. The evolution follows the projected imaginary-time equation

Sw̄ δw̄ = −γ Fw̄,

where Sw̄ is the TDVP metric tensor, and Fw̄ is the corresponding force vector. Operationally:
frontier-based ITP constructs and populates an expressive but still tractable ansatz manifold;
TDVP then performs a geometry-aware optimization.

4.6 Scaling of the Variational Representation
At every step of the frontier-based imaginary-time propagation (ITP) discussed in Sec. 4.4, the
wavefunction is represented as a superposition of product states {|ρλ⟩}D(k)

λ=0 with real amplitudes
a

(k)
λ . Once a product configuration has been created, its internal structure (pinned spins and

Bloch-disk angles) never changes again: the only way to enlarge the variational manifold is
to discover new product states through the action of −dτ Ĥ on the current frontier. The total
number of real variational parameters at step k scales as

Nparams(k) ∼
!
D(k) + 1

"
(L+ 1),

So, understanding the scaling of D(k) is equivalent to understanding the scaling of the ansatz
dimension.
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Layer–resolved mean-field model
In Appendix A.2 we make this picture quantitative by constructing a layer–resolved mean-field
model for the growth of the frontier manifold. Product configurations are grouped into layers
labeled by the number k of pinned spins, and for each layer and ITP step, we track the
expected frontier population Fk(t) (states first created at step t) and the cumulative number
of distinct states Dk(t). The total frontier size and manifold size are N(t) =

q
k Fk(t) and

Dtot(t) =
q
kDk(t), respectively.

When a clause acts on a parent in layer k, it can touch three unfrozen spins, two unfrozen
spins, and one frozen spin, and so on. The corresponding combinatorial factors determine the
probabilities that the clause produces a locally consistent child in layers k + 1, k + 2, k + 3.
All local compatibility effects are summarized by a single parameter ρ ∈ [0,1], which is the
probability that a literal on a pinned spin is satisfied by the current assignment. Explicit
expressions for the local success probabilities p0(k;L, ρ), p1(k;L, ρ), p2(k;L, ρ) and for the
resulting branching Y (t)

k→k′ are given in Appendix A.2.
Local branching alone would vastly overcount configurations because different parents (or

different clauses on the same parent) frequently produce the same child. To incorporate these
global clone collisions, the mean-field model applies a simple occupancy argument within each
layer: the Y (t)

k candidate children in layer k are treated as independent draws from the Sk
possible configurations in that layer, so that only a fraction of them are genuinely new. This
yields explicit recursions for Fk(t) and Dk(t) (see Eq. (A.19) in the appendix).

Crucially, the compatibility parameter ρ entering the recursions must be interpreted as
an effective phenomenological quantity. It absorbs correlations due to repeatedly applying
the same clause set, the heterogeneity of frontier states, and the enhanced production of
clones once the frontier concentrates in a small region of configuration space. By fitting the
mean-field predictions for Dtot(t) to frontier-based ITP data across system sizes and step
numbers, we obtain a system-size-dependent estimate of ρeff. We then use this estimate to
predict manifold growth over many time steps for much larger L, where direct ITP simulation
would be computationally prohibitive. After this calibration, the mean-field model has no
free parameters and can predict the growth and saturation of the frontier manifold for larger
instances, where full ITP simulations are too costly (see Chapter 6).

Comparison with frontier-based ITP
The quality of the mean-field description is illustrated in Fig. 4.4, which summarizes the frontier
dynamics for L ∈ {3,5,8,10} at critical clause density α ≃ 4.3.

Panel (a) shows the manifold size DITP(t) measured directly in the frontier-based ITP. For
all system sizes we observe a common qualitative pattern: a very rapid initial proliferation of
product states, followed by an equally rapid saturation. Already after t ≃ 3–4 global steps the
number of distinct configurations approaches a plateau value D⋆(L) and the frontier effectively
“freezes”. The saturation time is O(1) and only weakly dependent on L, but the plateau height
grows quickly with the system size: for L = 10 the saturated manifold is already of order 103,
larger than the Hilbert-space dimension 210 = 1024 indicated by the dashed line.

Panel (b) displays the mean-field prediction for the number of new frontier states N(t) per
step. With the calibrated value ρeff = 0.1 the model reproduces the sharp initial burst (effective
branching factor βt ≳M at early times) and the subsequent rapid collapse of N(t) to values
compatible with zero. This behaviour is controlled by two mechanisms that are explicit in the
recursions of Appendix A.2: on the one hand, clauses are increasingly likely to hit frozen spins
with incompatible literals, which suppresses the local success probability ploc(k;L, ρ); on the
other hand, even when many candidates are generated, the occupancy factor in Eq. (A.19)
forces the number of truly new configurations to saturate once a layer has been largely explored.

The cumulative mean-field curves in panel (c) show the resulting Dtot(t) and can be directly
compared with the ITP data of panel (a). On the logarithmic scale used here the agreement is
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(a) ITP manifold growth DITP(t) for L =
3,5,8,10. Dashed lines indicate the Hilbert-
space sizes 2L.

(b) Mean-field number of new frontier states
N(t) =

q
k Fk(t) for the same system sizes,

using ρeff = 0.1.

(c) Mean-field cumulative number of distinct product
states Dtot(t) =

q
kDk(t). Dashed lines again show the

corresponding 2L.

Figure 4.4: Frontier manifold growth at critical clause density α ≃ 4.3. Panel (a) shows the
manifold size measured in the full frontier-based ITP, while panels (b) and (c) display the
corresponding predictions of the layer–resolved mean-field model with a single phenomenological
parameter ρeff ≈ 0.1.

essentially quantitative: both the initial exponential burst and the saturation plateaux for each
L are captured by the mean-field dynamics once the effective compatibility parameter is fixed.
This supports the interpretation of ρ as a compact phenomenological summary of the complex
correlations created by the frontier-based ITP.

Scaling of the saturated manifold
Beyond a certain depth t⋆(L) the frontier becomes extinct, N(t)→ 0, and Dtot(t) saturates to
a finite limit D⋆(L) = limt→∞Dtot(t), which we call the saturated basis size. The mean-field
analysis of Appendix A.2, performed with the calibrated value ρeff ≈ 0.1, shows that

• for fixed L, the early-time growth of Dtot(t) is approximately exponential in t until the
occupancy effects become dominant and the frontier is quenched;

• for fixed depth in the pre-saturation regime, the manifold size grows very rapidly with L,
and the saturated value obeys an essentially exponential scaling

D⋆(L) ∼ exp
#
γ(α)L

$
, (4.51)
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4.6 – Scaling of the Variational Representation

with an effective rate γ(α) that is smaller than, but of the same order as, log 2 for the
critical density α ≃ 4.3.

In other words, frontier pruning and clone merging substantially reduce the effective exponent
and prefactor compared to the full Hilbert-space dimension 2L, but the size of the variational
manifold remains essentially exponential in L (at least as long as one has not yet fully saturated
the layers) and it saturates at a value that exceed the Hilbert space dimension . This explains
why, in practice, we restrict ourselves to shallow ITP schedules where Dtot(t)≪ 2L, and why
the TDVP refinement stage introduced later in the work is crucial: frontier-based ITP alone still
explores an exponentially large set of product configurations, and only through a subsequent
variational compression can this manifold be projected onto a much smaller, dynamically
relevant subspace (see Chapters 5 and 6).
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Chapter 5

Time-Dependent Variational
Principle (TDVP)

This chapter derives and motivates the imaginary-time TDVP dynamics for our variational
ansatz, and explains how we solve the resulting equations in practice. Throughout, we work
with the 3-SAT Ising Hamiltonian encoding the cost function of a clause instance (Chapter 3),
so that imaginary-time flow corresponds to energy minimization, i.e. clause satisfaction, within
a restricted variational family.

The time-dependent variational principle provides a systematic way of restricting the exact
time evolution generated by a Hamiltonian Ĥ to a lower-dimensional manifold of variational
states {|Ψw̄⟩}. Instead of evolving a full state in Hilbert space, one tracks the evolution of
a finite set of parameters w̄(τ) that define the variational ansatz and are chosen such that
|Ψw̄(τ)⟩ approximates the exact trajectory as closely as possible. In the imaginary-time setting
considered here, this induces effective descent dynamics for the energy functional restricted to
the variational manifold.

We begin by reviewing the conceptual framework that underlies the imaginary-time time-
dependent variational principle (TDVP) and its associated geometric interpretation. Subse-
quently, we formulate the imaginary-time TDVP as a projection of the exact imaginary-time
evolution onto the chosen variational manifold. We then proceed to compute the metric tensor
S and the force vector F that enter the TDVP equations, and we apply this formalism to our
explicit multi-product-state ansatz. We discuss the numerical stabilization of the update via
regularization of S and the solution of the resulting linear system with MINRES-QLP [25],
emphasizing the close analogy to preconditioned SR updates in VMC. This includes a detailed
comparison between an explicit and an operator-based representation of the TDVP metric,
together with practical pseudo-code for the full TDVP+MINRES-QLP update (App. A.4).
We further relate these implementation choices to the frontier dynamics by analyzing how the
proliferation of product replicas controls the scaling of the metric S and force F , and how this,
in turn, constrains both the memory footprint and the convergence behavior of MINRES-QLP
(Sec. 5.5 and App. A.2).

5.1 Conceptual framework

At a conceptual level, the time-dependent variational principle provides a systematic way of
restricting the exact time evolution generated by a Hamiltonian Ĥ to a lower-dimensional
manifold of variational states. Historically, this idea goes back to the Dirac–Frenkel and
McLachlan formulations of the time-dependent variational principle, where one requires that the
time derivative of a variational state minimizes the norm of the residual of the time-dependent
Schrödinger equation within the variational manifold.1

In imaginary time, the same construction leads to an effective gradient flow for the energy

1See, e.g., McLachlan’s original paper on variational solutions of the time-dependent Schrödinger equation
[26] and modern expositions such as [27].
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functional restricted to the variational manifold. In the full Hilbert space, normalized imaginary-
time evolution implements a projector onto the ground state (or, more generally, onto the lowest-
energy state with nonzero overlap with the initial state). When one restricts the dynamics to a
variational family {|Ψw̄⟩}, imaginary-time TDVP selects the trajectory that best approximates
this projector in the sense of McLachlan’s minimal-residual principle. Geometrically, this can
be viewed as a steepest-descent flow of the energy with respect to the Fubini–Study metric on
projective Hilbert space, pulled back to the parameter space w̄. The corresponding metric tensor
is precisely the matrix Sw̄ introduced below and is closely related to the quantum geometric
tensor and quantum Fisher information.

The logic followed here is parallel to the geometric derivation underlying stochastic reconfigu-
ration (SR) in variational Monte Carlo (VMC), originally proposed by Sorella [28, 29] and later
reformulated in geometric terms for neural-network quantum states by Kaubruegger, Pastori and
Budich [30]. In SR, one interprets the variational update of the parameters as an approximate
imaginary-time step projected onto the variational manifold, with the SR matrix playing the
role of a quantum Fisher metric. In our setting we adopt the same geometric viewpoint, but we
implement it deterministically for our specific multi-product-state ansatz, without Monte Carlo
sampling: all matrix elements of Sw̄ and of the force vector Fw̄ are evaluated analytically.

Imaginary-time TDVP and its real-time counterpart have been successfully applied to a
wide range of variational families. A notable example is the TDVP for matrix product states
(MPS), where projecting the Schrödinger equation onto the MPS manifold leads to efficient
algorithms for simulating both real- and imaginary-time dynamics of quantum lattice systems
[31, 32, 33]. More recently, the same formalism has been adapted to neural-network quantum
states [34, 35, 36], where SR is interpreted explicitly as an imaginary-time TDVP in parameter
space. In parallel, variational quantum algorithms such as the variational quantum eigensolver
(VQE) and its imaginary-time variants perform a similar projection of the dynamics onto the
manifold of parametrized quantum circuits [14, 10]. Our setting can be viewed as a fully
classical, deterministic analogue of these approaches, tailored to the multi-product-state ansatz
introduced in the previous chapter.

In the remainder of this chapter we make this conceptual framework explicit for our ansatz.
We first write down the projected imaginary-time evolution on the variational manifold and
identify the associated metric Sw̄ and force vector Fw̄. We then specialize these objects to
the multi-product-state structure and finally discuss how to solve the resulting linear systems
efficiently and in a numerically stable way.

5.2 Imaginary-time TDVP as a projected evolution
We start from the exact imaginary-time evolution generated by a Hamiltonian Ĥ,

|Ψ(τ)⟩ = e−τĤ |Ψ(0)⟩
∥e−τĤ |Ψ(0)⟩ ∥

, (5.1)

which solves the imaginary-time Schrödinger equation

∂

∂τ
|Ψ(τ)⟩ = −

!
Ĥ − E(τ)

"
|Ψ(τ)⟩ , E(τ) = ⟨Ψ(τ)|Ĥ|Ψ(τ)⟩ , (5.2)

with a time-dependent energy shift E(τ) enforcing the normalization ⟨Ψ(τ)|Ψ(τ)⟩ = 1 at all
times. The exponential e−τĤ suppresses high-energy components of the initial state exponentially
in τ , so that |Ψ(τ)⟩ converges towards the ground state (or any lowest-energy state overlapping
with |Ψ(0)⟩). In our setting Ĥ is the 3-SAT Ising Hamiltonian encoding the cost function of a
clause instance (Chapter 3.5); thus imaginary-time flow corresponds to energy minimization,
i.e. clause satisfaction.

In principle, evolving according to this equation would require manipulating a full vector in
Hilbert space, whose dimension grows exponentially with the number of spins. To circumvent
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this, we constrain the wavefunction to lie in a variational manifold {|Ψw̄⟩} parametrized by a
set of variables w̄ = (w1, w2, . . . ). We assume that the (normalized) state depends on τ only
through these parameters:

|Ψ̂(τ)⟩ ≡ |Ψ̂w̄(τ)⟩ =
|Ψw̄(τ)⟩ñ
⟨Ψw̄(τ)|Ψw̄(τ)⟩

. (5.3)

The TDVP then prescribes how the parameters w̄(τ) should evolve so that |Ψ̂w̄(τ)⟩ approximates
the exact imaginary-time trajectory as closely as possible, in the sense of a local variational
principle.

A short exact imaginary-time step dτ acts as

|Ψ̂(τ + dτ)⟩ = e−dτĤ |Ψ̂(τ)⟩ ≃ |Ψ̂(τ)⟩ − dτ Ĥ |Ψ̂(τ)⟩ , (5.4)

where in the last expression we have expanded the exponential to first order in dτ and implicitly
assumed a subsequent renormalization of the state.2 On the other hand, within the variational
family, varying the parameters by wk → wk + dτ ẇk changes the state as

|Ψ̂(τ + dτ)⟩ ≃ |Ψ̂(τ)⟩+ dτ
Ø
k

ẇk
è
|∂wk

Ψ̂⟩ − |Ψ̂⟩ ⟨Ψ̂|∂wk
Ψ̂⟩
é
, (5.5)

where
|∂wk

Ψ̂⟩ ≡ ∂

∂wk
|Ψ̂w̄⟩ , ẇk ≡

dwk
dτ

. (5.6)

The subtraction of the component parallel to |Ψ̂⟩ enforces norm conservation to first order and
removes the gauge freedom associated with an overall phase and amplitude of the variational
state. In geometric terms, the vectors in square brackets are tangent vectors to the projective
manifold of normalized states.

Equating (5.4) and (5.5) to leading order in dτ , and projecting onto the tangent space of
the variational manifold, gives the TDVP equations. To do this, it is convenient to define the
orthogonalized tangent vectors

|jw̄⟩ = |∂wj Ψ̂w̄⟩ − |Ψ̂w̄⟩ ⟨Ψ̂w̄|∂wj Ψ̂w̄⟩ . (5.7)

By construction ⟨Ψ̂w̄|jw̄⟩ = 0 for every j, so these |jw̄⟩ span the tangent plane at w̄ in the
manifold of normalized variational states.

Projecting the evolution equation onto ⟨jw̄| yieldsØ
k

ẇk
è
⟨∂wj Ψ̂|∂wk

Ψ̂⟩ − ⟨∂wj Ψ̂|Ψ̂⟩ ⟨Ψ̂|∂wk
Ψ̂⟩
é

= −
è
⟨∂wj Ψ̂|Ĥ|Ψ̂⟩ − ⟨∂wj Ψ̂|Ψ̂⟩ ⟨Ψ̂|Ĥ|Ψ̂⟩

é
. (5.8)

The left-hand side encodes how fast the state moves within the variational manifold when the
parameters change at rates ẇk, while the right-hand side is the projection of −Ĥ |Ψ̂⟩ onto the
same tangent directions.

It is convenient to introduce two central objects:

(Sw̄)jk ≡ ⟨∂wj Ψ̂|∂wk
Ψ̂⟩ − ⟨∂wj Ψ̂|Ψ̂⟩ ⟨Ψ̂|∂wk

Ψ̂⟩ , (5.9)
(Fw̄)j ≡ ⟨∂wj Ψ̂|Ĥ|Ψ̂⟩ − ⟨∂wj Ψ̂|Ψ̂⟩ ⟨Ψ̂|Ĥ|Ψ̂⟩ . (5.10)

The matrix Sw̄ is the pullback of the Fubini–Study metric to the variational parameter space.
In the context of VMC it coincides (up to complex conjugation and a real part) with the SR

2More precisely, one should replace Ĥ by Ĥ − E(τ) in (5.4). This change only affects the component of
the evolution parallel to |Ψ̂⟩ and is therefore irrelevant once we project onto the tangent space orthogonal to
|Ψ̂⟩.
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matrix and with the quantum Fisher information associated with the variational family. As
such, Sw̄ is positive semi-definite and becomes singular whenever two directions in parameter
space generate the same physical variation of the state. The vector Fw̄ is the effective “force”
driving imaginary-time descent of the energy: for normalized states one can show that, up
to an overall factor and taking the real part, (Fw̄)j is precisely the derivative of the energy
expectation value with respect to wj .

With these definitions, (5.8) becomesØ
k

(Sw̄)jk ẇk = −(Fw̄)j , ∀j, (5.11)

or, in vector form,
Sw̄ ˙̄w = −Fw̄. (5.12)

Equation (5.12) is the imaginary-time TDVP equation of motion on the variational manifold.
It can be interpreted as a natural-gradient flow in parameter space: the velocity ˙̄w is obtained
by raising the energy gradient Fw̄ with the metric S−1

w̄ . This equation is identical in structure
to the SR equation of motion used in VMC and neural-network quantum states [28, 29, 34,
30], except that here we regard it as deterministic: we compute Sw̄ and Fw̄ analytically for our
ansatz, rather than sampling them stochastically.

For numerical updates it is convenient to recast (5.12) in discrete form:

Sw̄ δw̄ = −γ Fw̄, (5.13)

where γ > 0 plays the role of an imaginary-time step. Solving this linear system provides the
parameter displacement δw̄ that best approximates an infinitesimal imaginary-time step within
the variational manifold. In practice, γ controls the trade-off between faithfully following the
continuous TDVP flow (small γ) and making rapid progress in energy minimization (larger γ).
The potentially ill-conditioned nature of Sw̄ and the large number of variational parameters
motivate the use of regularization and Krylov-subspace solvers such as MINRES-QLP, as
discussed in Sec. 5.4.2.

5.3 Our variational ansatz and its tangent space

5.3.1 Parametrization of the state
We consider a variational state given by a coherent superposition of D+1 product states:

|Ψ⟩ =
DØ
λ=0

aλ |ρλ⟩ , |ρλ⟩ =
L−1p
k=0
|Bkλ⟩ , (5.14)

where each local spin state is parameterized as

|Bkλ⟩ = cos θλk |↑k⟩+ sin θλk |↓k⟩ . (5.15)

The complex amplitudes aλ and the angles θλi are our variational parameters.
We collect them into a single parameter vector

w̄ =
1
a0, . . . , aD; θ0

0, . . . , θ
0
L−1; θ1

0, . . . , θ
1
L−1; . . . ; θD0 , . . . , θDL−1

2
, (5.16)

and we will write wj ∈ {aλ}∪{θλi } with the understanding that ∂wj means partial differentiation
with respect to one of these coordinates.

The cost Hamiltonian we minimize is the 3-SAT Ising Hamiltonian

Ĥ =
Ø

c:(y,z,h)
Ô(y,z,h), (5.17)

Ô(y,z,h) =
p

k /=y,z,h
Ik

p
q=y,z,h

Iq − sqσqz
2 , (5.18)
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where the clause-dependent sign sq is

sq =
I
−1, literal lq appears un-negated (variable xq),
+1, literal lq appears negated (¬xq).

(5.19)

Ĥ counts violated clauses. Ground states of Ĥ therefore correspond to satisfying assignments
(energy 0).

5.3.2 Tangent vectors: derivatives of the ansatz
To construct Sw̄ and Fw̄, we need the parameter derivatives of |Ψ⟩.

Derivative with respect to aλ. Varying aλ selects the corresponding product state:

|∂aλ
Ψ⟩ = |ρλ⟩ =

L−1p
k=0
|Bkλ⟩ . (5.20)

Derivative with respect to θλi . Changing θλi only affects site i of configuration λ. Define

|Miλ⟩ = ∂

∂θλi
|Biλ⟩ = − sin θλi |↑i⟩+ cos θλi |↓i⟩ . (5.21)

Then

|∂θλ
i
Ψ⟩ = aλ |∂θλ

i
ρλ⟩ = aλ

p
k /=i
|Bkλ⟩ ⊗ |Miλ⟩ . (5.22)

5.3.3 Metric tensor Sw̄

The TDVP “metric” (also called the covariance matrix in SR language) is

(Sw̄)j,k = ⟨∂wj Ψ|∂wk
Ψ⟩ − ⟨∂wj Ψ|Ψ⟩ ⟨Ψ|∂wk

Ψ⟩ , (5.23)

where we have dropped hats for readability (i.e. we work with the state |Ψ⟩ assuming normal-
ization is taken into account in the subtraction terms).

Due to the linear combination of product states nature of our ansatz, these matrix elements
can be computed analytically, block by block.

In what follows, we employ the approximation delineated in Appendix A.3. The comprehen-
sive pseudo-code utilized in our implementation is articulated in Appendix A.4.

Case A: wj = θλi , wk = θµj . The first term gives

⟨∂θλ
i
Ψ|∂θµ

j
Ψ⟩ = aλaµ

L−1Ù
k=0

cos(θλk − θ
µ
k )×

I
− tan(θλi − θ

µ
i ) tan(θλj − θ

µ
j ), i /= j,

1, i = j ,
(5.24)

while

⟨∂θλ
i
Ψ|Ψ⟩ =

Ø
ν

aνaλ

L−1Ù
k=0

cos(θλk − θνk)
è
− tan(θλi − θνi )

é
, (5.25)

⟨Ψ|∂θµ
j
Ψ⟩ =

Ø
η

aηaµ

L−1Ù
k=0

cos(θηk − θ
µ
k ) tan(θηj − θ

µ
j ). (5.26)
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Combining these,

(Sw̄)∂
θλ

i
, ∂θ

µ
j

= aλaµ

L−1Ù
k=0

cos(θλk − θ
µ
k )×

I
− tan(θλi − θ

µ
i ) tan(θλj − θ

µ
j ), i /= j,

1, i = j

−
CØ

ν

aνaλ

L−1Ù
k=0

cos(θλk − θνk)
1
− tan(θλi − θνi )

2 D

×
CØ

η

aηaµ

L−1Ù
k=0

cos(θηk − θ
µ
k ) tan(θηj − θ

µ
j )
D
. (5.27)

Case B: wj = aλ, wk = aµ. We have

⟨∂aλ
Ψ|∂aµΨ⟩ = ⟨ρλ|ρµ⟩ =

L−1Ù
k=0

cos(θλk − θ
µ
k ), (5.28)

and

⟨∂aλ
Ψ|Ψ⟩ =

Ø
ν

aν

L−1Ù
k=0

cos(θλk − θνk), (5.29)

⟨Ψ|∂aµΨ⟩ =
Ø
η

aη

L−1Ù
k=0

cos(θηk − θ
µ
k ). (5.30)

Therefore

(Sw̄)∂aλ
, ∂aµ

=
L−1Ù
k=0

cos(θλk − θ
µ
k )

−
AØ

ν

aν

L−1Ù
k=0

cos(θλk − θνk)
BAØ

η

aη

L−1Ù
k=0

cos(θηk − θ
µ
k )
B
. (5.31)

Case C: wj = aλ, wk = θµj . Here

⟨∂aλ
Ψ|∂θµ

j
Ψ⟩ = aµ

L−1Ù
k=0

cos(θλk − θ
µ
k ) tan(θλj − θ

µ
j ), (5.32)

and with

⟨∂aλ
Ψ|Ψ⟩ =

Ø
ν

aν

L−1Ù
k=0

cos(θλk − θνk), (5.33)

⟨Ψ|∂θµ
j
Ψ⟩ =

Ø
η

aηaµ

L−1Ù
k=0

cos(θηk − θ
µ
k ) tan(θηj − θ

µ
j ), (5.34)

we obtain

(Sw̄)∂aλ
, ∂θ

µ
j

= aµ

L−1Ù
k=0

cos(θλk − θ
µ
k ) tan(θλj − θ

µ
j )

−
AØ

ν

aν

L−1Ù
k=0

cos(θλk − θνk)
BAØ

η

aηaµ

L−1Ù
k=0

cos(θηk − θ
µ
k ) tan(θηj − θ

µ
j )
B
. (5.35)
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Case D: wj = θλi , wk = aµ. By symmetry we find

⟨∂θλ
i
Ψ|∂aµΨ⟩ = aµ

L−1Ù
k=0

cos(θλk − θ
µ
k )
#
− tan(θλi − θ

µ
i )
$
, (5.36)

and

⟨∂θλ
i
Ψ|Ψ⟩ =

Ø
ν

aνaλ

L−1Ù
k=0

cos(θλk − θνk)
#
− tan(θλi − θνi )

$
, (5.37)

⟨Ψ|∂aµΨ⟩ =
Ø
η

aη

L−1Ù
k=0

cos(θηk − θ
µ
k ), (5.38)

so that

(Sw̄)∂
θλ

i
, ∂aµ

= aµ

L−1Ù
k=0

cos(θλk − θ
µ
k )
#
− tan(θλi − θ

µ
i )
$

−
AØ

ν

aνaλ

L−1Ù
k=0

cos(θλk − θνk)
#
− tan(θλi − θνi )

$BAØ
η

aη

L−1Ù
k=0

cos(θηk − θ
µ
k )
B
.

(5.39)

Taken together, these blocks define the full TDVP metric Sw̄ for our ansatz.

5.3.4 Force vector Fw̄

The TDVP driving term (also known as SR “force”) is

Fj(w̄) = ⟨∂wj Ψ|Ĥ|Ψ⟩ − ⟨∂wj Ψ|Ψ⟩ ⟨Ψ|Ĥ|Ψ⟩ . (5.40)

To evaluate Fw̄ we need: (i) ⟨Ψ|Ĥ|Ψ⟩, (ii) ⟨∂wj Ψ|Ψ⟩ (already given above), and (iii)
⟨∂wj Ψ|Ĥ|Ψ⟩.

First note that

Ĥ |Ψ⟩ =
Ø
λ

aλ
Ø

c:(i,j,h)

L−1p
k /=i,j,h

|Bkλ⟩
p
q=i,j,h

|Sqλ⟩ , (5.41)

where, for each site q appearing in the clause c,

|Sqλ⟩ =
I

cos θλq |0q⟩ , sq = −1,
sin θλq |1q⟩ , sq = +1.

(5.42)

Using this structure, one obtains

⟨Ψ|Ĥ|Ψ⟩ =
Ø
η,ν

aηaν

L−1Ù
k=0

cos(θηk − θνk)
Ø

c:(y,z,h)

Ù
q=y,z,h


cos θηq cos θνq
cos(θηq − θνq ) , sq = −1,

sin θηq sin θνq
cos(θηq − θνq ) , sq = +1 .

(5.43)

The overlaps ⟨∂θλ
i
Ψ|Ψ⟩ and ⟨∂aλ

Ψ|Ψ⟩ were already given in Section 5.3.3. For completeness:

⟨∂θλ
i
Ψ|Ψ⟩ =

Ø
ν

aνaλ

L−1Ù
k=0

cos(θλk − θνk)
#
− tan(θλi − θνi )

$
, (5.44)

⟨∂aλ
Ψ|Ψ⟩ =

Ø
ν

aν

L−1Ù
k=0

cos(θλk − θνk). (5.45)

The mixed matrix elements ⟨∂wj Ψ|Ĥ|Ψ⟩ then follow by inserting the explicit form of Ĥ |Ψ⟩
and again using tensor-product factorization. For example:
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• If wj = θλi and i is not one of the three spins in the clause (y, z, h), one finds

⟨∂θλ
i
Ψ|Ĥ|Ψ⟩ =

Ø
ν

aλaν

L−1Ù
k=0

cos(θλk − θνk)
#
− tan(θλi − θνi )

$

×
Ø

c:(y,z,h)

Ù
q=y,z,h


cos θλq cos θνq
cos(θλq − θνq ) , sq = −1,

sin θλq sin θνq
cos(θλq − θνq ) , sq = +1 .

(5.46)

• If wj = θλi and i is one of the spins hit by a clause (y, z, h), say i = y (or analogously z or
h), then the corresponding site is replaced by the derivative of |Sqλ⟩. Writing c/{i} for
the other two spins of the clause, this gives

⟨∂θλ
i
Ψ|Ĥ|Ψ⟩ =

Ø
ν

aλaν

L−1Ù
k=0

cos(θλk − θνk)

×
Ø

c:(y,z,h)

C Ù
q∈c/{i}


cos θλq cos θνq
cos(θλq − θνq ) , sq = −1,

sin θλq sin θνq
cos(θλq − θνq ) , sq = +1

D

×
CÙ

i


− sin θλi cos θνi
cos(θλi − θνi )

, si = −1,

cos θλi sin θνi
cos(θλi − θνi )

, si = +1

D
. (5.47)

• If wj = aλ, the derivative simply projects out |ρλ⟩:

⟨∂aλ
Ψ|Ĥ|Ψ⟩ =

Ø
ν

aν

L−1Ù
k=0

cos(θλk − θνk)
Ø

c:(y,z,h)

Ù
q=y,z,h


cos θλq cos θνq
cos(θλq − θνq ) , sq = −1,

sin θλq sin θνq
cos(θλq − θνq ) , sq = +1 .

(5.48)

The final force entries are then

(Fw̄)θλ
i

= ⟨∂θλ
i
Ψ|Ĥ|Ψ⟩ − ⟨∂θλ

i
Ψ|Ψ⟩ ⟨Ψ|Ĥ|Ψ⟩ , (5.49)

(Fw̄)aλ
= ⟨∂aλ

Ψ|Ĥ|Ψ⟩ − ⟨∂aλ
Ψ|Ψ⟩ ⟨Ψ|Ĥ|Ψ⟩ . (5.50)

Thus both Sw̄ and Fw̄ can be computed from analytic overlaps of tensor-product states,
with no stochastic sampling.

5.3.5 TDVP equations of motion for the ansatz
For our ansatz, the TDVP parameter update is obtained by solving

Sw̄ δw̄ = −γ Fw̄. (5.51)

Here:
• Sw̄ is the metric/covariance tensor assembled in Section 5.3.3;

• Fw̄ is the force vector from Section 5.3.4;

• δw̄ is the update of all parameters (aλ, θλi ) at that imaginary-time step.
Geometrically, δw̄ is the displacement in parameter space that best approximates a short

imaginary-time step e−γĤ within the variational manifold. This is the deterministic analogue
of SR in neural-network VMC [30].
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5.4 Regularization and Krylov solution of the TDVP
equation

The linear system (5.51) is not automatically well behaved. The matrix Sw̄ can be nearly
singular or extremely ill-conditioned for several reasons:

• Redundant directions. Different parameter combinations can represent almost the same
physical state, making some tangent vectors nearly linearly dependent. Those directions
correspond to very small eigenvalues of Sw̄.

• Numerical imprecision. Finite precision (and, in Monte Carlo approaches, sampling
noise [30]) can spoil exact positivity and introduce spurious tiny or even slightly negative
eigenvalues.

If we naively used δw̄ = −γ S−1
w̄ Fw̄, small eigenvalues of Sw̄ would blow up those directions

and produce unphysically large parameter updates. To avoid this, we stabilize Sw̄ by regular-
ization and solve the resulting linear system with a Krylov method designed for ill-conditioned
symmetric problems.

5.4.1 Metric regularization
Following the strategy discussed in [30], we introduce a small positive regularization parameter
λreg and define the regularized metric

S
(reg)
w̄ = Sw̄ + λreg I. (5.52)

This uniform diagonal shift has two effects: (i) it opens up near-zero eigenvalues (lifting almost-
null directions), and (ii) it penalizes very large steps in parameter space, acting like a Tikhonov
/ ridge regularizer.

An alternative is to rescale only the diagonal entries:!
S

(reg)
w̄

"
k,k

= (1 + λreg) (Sw̄)k,k,
!
S

(reg)
w̄

"
j /=k = (Sw̄)j /=k. (5.53)

This preserves the off-diagonal correlations between parameters while mildly inflating each
parameter’s self-overlap. In practice, both (5.52) and (5.53) suppress runaway updates along
directions where Sw̄ would otherwise be nearly singular.

After regularization, the TDVP step becomes

S
(reg)
w̄ δw̄ = −γ Fw̄. (5.54)

This linear system is now better conditioned, but it can still be far from trivial: it is large,
symmetric, and can remain close to singular.

5.4.2 Solving the linear system with MINRES-QLP
After regularization, the TDVP update is obtained by solving the symmetric linear system in
Eq.(5.54) where S(reg)

w̄ is large, dense in principle, and only guaranteed to be symmetric, not
strictly positive definite. In practice, S(reg)

w̄ can still be ill-conditioned or effectively singular
due to redundant or flat directions in the variational manifold. Direct inversion or naive linear
solvers are therefore unreliable both numerically and computationally.

For these reasons we use MINRES-QLP [25]. This is a Krylov subspace method designed
specifically for solving large symmetric systems (and symmetric least-squares problems) that
may be indefinite or nearly singular. In our case, it lets us compute a physically meaningful
update δw̄ without ever inverting or factorizing S(reg)

w̄ explicitly.
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Krylov viewpoint

Given a symmetric matrix A and a right-hand side b, Krylov methods construct approximate
solutions in a sequence of subspaces

Kk(A, b) = span{b, Ab, A2b, . . . , Ak−1b}. (5.55)

At iteration k, the solver chooses xk ∈ Kk(A, b) that (in some sense) best solves Ax = b. The
key point is that Krylov methods only ever need matrix–vector products Av. This is crucial for
us because

• we can compute the action v → S
(reg)
w̄ v using the matrix-free application of Sw̄ described

in Appendix A.5, without ever forming Sw̄ explicitly;

• but we do not want to build or store S(reg)
w̄ as a dense matrix, which would scale quadrati-

cally in the number of parameters.

Therefore, from a cost and memory standpoint, Krylov is exactly the right regime for our TDVP
equations.

Classical MINRES vs. MINRES-QLP

Classical MINRES (Minimum Residual) applies the Lanczos process to A: it builds an or-
thonormal basis {v1, . . . , vk} for Kk(A, b) together with a small k × k tridiagonal matrix Tk
such that

AVk ≈ VkTk, (5.56)

where Vk = [v1 · · · vk]. The method then solves a reduced least-squares problem involving Tk
(which is tiny compared to A) to pick xk = Vkyk that minimizes the residual norm ∥Axk−b∥ over
Kk(A, b). Because Tk is tridiagonal and symmetric, MINRES can update xk and the residual
norm with short recurrences, keeping memory usage modest (growing essentially linearly with
the number of parameters).

However, standard MINRES has two key weaknesses:

1. If A is singular or nearly singular, MINRES still tries to minimize the residual, but it does
not guarantee that the vector xk it returns is the minimum-norm solution. In fact, it can
“wander” into almost-null directions of A and pick a very large ∥xk∥2, which for us means
a huge and physically meaningless parameter update δw̄ along a nearly flat direction of
S

(reg)
w̄ .

2. If A is strongly ill-conditioned, the small tridiagonal problem Tk becomes numerically
delicate. Plain MINRES uses a QR-like processing of Tk, which can lose stability when Tk
is close to rank-deficient. The resulting xk may then be dominated by numerical noise in
those almost-null directions.

MINRES-QLP is engineered to fix exactly these issues for symmetric (possibly indefinite)
systems. It does so by upgrading the way the reduced problem in the Krylov space is solved.

QLP refinement and minimum-norm solutions

In MINRES-QLP, the Lanczos tridiagonal Tk is not only processed by left-orthogonal transfor-
mations (like QR), but also by right orthogonal transformations. More precisely, MINRES-QLP
computes a decomposition of the form

Q⊤k Tk Pk = Lk, (5.57)

where Qk and Pk are orthogonal (products of Givens/Householder rotations), and Lk is lower
(tri)angular. This is called a QLP decomposition. Conceptually:
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• The left orthogonal factor Qk plays a similar role as in QR, gradually driving Tk towards
triangular form.

• The additional right orthogonal factor Pk then “rebalances” that triangular form into Lk,
whose diagonal elements behave like robust approximations to the singular values of Tk.

Why is this important? Because the diagonal of Lk immediately reveals whether Tk (and
hence, effectively, A restricted to Kk) is close to rank-deficient. In other words, (5.57) tells us
which directions in the Krylov space are nearly in the nullspace of A.

MINRES-QLP then solves the reduced problem in such a way that the corresponding Krylov
approximation xk = Vkyk is the minimum Euclidean-norm solution among those with minimal
residual. In the singular or nearly singular case, this is mathematically the pseudoinverse
solution xk ≈ A†b [25]. Physically, for TDVP, this does exactly what we want:

• If S(reg)
w̄ has very soft/flat directions (tiny eigenvalues), there are infinitely many δw̄ that

almost solve S(reg)
w̄ δw̄ = −γFw̄.

• MINRES-QLP picks the one with the smallest ∥δw̄∥2, i.e., the most conservative change
of the parameters consistent with the imaginary-time descent.

This is crucial: in our variational algorithm, we prefer a gentle, well-controlled step in parameter
space over an arbitrarily large jump in a nearly redundant direction.

Another advantage of using the QLP decomposition of Tk is that it provides built-in
conditioning diagnostics. Because Lk exposes approximate singular values of Tk, the algorithm
can detect when the projected system is becoming numerically singular. Operationally, this
means:

• We can monitor how ill-conditioned the effective linear system is at each Krylov iteration.

• If certain modes are essentially null, MINRES-QLP does not try to “chase” them by
producing a giant δw̄. Instead, it damps them automatically via the minimum-norm
criterion.

Practically, MINRES-QLP keeps short recurrences like MINRES, so the memory cost grows
linearly with the number of parameters (no dense factorizations are stored). Each iteration
uses one application of S(reg)

w̄ to a vector, which in our case we can compute efficiently without
explicitly forming S(reg)

w̄ . The method naturally stops when either the residual ∥S(reg)
w̄ δw̄+γFw̄∥

is below a tolerance or the Krylov space stops producing meaningful improvement (e.g. the
projected system is effectively rank-deficient and the minimum-norm solution has stabilized).

Why MINRES-QLP is the right solver for TDVP

To summarize why this particular solver is the best fit for our TDVP equation:

• Symmetry-compatible: S(reg)
w̄ is symmetric by construction, and MINRES-QLP explic-

itly targets symmetric systems (unlike generic GMRES-type solvers for non-Hermitian
matrices).

• Robust to near-singularity: The ansatz often has redundant directions in parameter
space; these show up as almost-null eigenvalues of S(reg)

w̄ . MINRES-QLP was designed to
handle exactly this regime and produce stable updates.

• Minimum-norm update direction: Among all δw̄ that (approximately) solve S(reg)
w̄ δw̄ =

−γFw̄, MINRES-QLP returns the one with smallest ∥δw̄∥2. This is physically meaningful:
we move in parameter space as little as possible while still descending in energy.
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• Matrix-free: Only matrix–vector products with S
(reg)
w̄ are required. We avoid storing or

inverting the full metric, which would be prohibitive for large systems.

• Numerical diagnostics : The QLP step (the Q⊤k TkPk = Lk factorization) exposes rank
structure and effective singular values of the reduced problem, giving us direct feedback
on whether the TDVP step is well-conditioned or dominated by nearly flat directions.

In the language of variational quantum dynamics, MINRES-QLP therefore implements a
stable, geometry-aware update: it solves the regularized TDVP equation in a way that respects
the (symmetrized) quantum-geometric metric Sw̄, avoids exploding along redundant directions,
and produces the “least aggressive” descent step δw̄ consistent with energy minimization [25,
30].

5.5 Scaling of the TDVP metric and force with frontier
growth

The MINRES-QLP step described above implicitly assumes that we can evaluate the regularized
metric S

(reg)
w̄ and the force vector Fw̄ for the current variational state. In practice, the

computational cost of a TDVP update is dominated by the size of these objects, which in turn
is controlled by the number of product replicas generated by the preceding frontier-based ITP
stage.

As discussed in Sec. 4.6 and in the mean-field analysis of Appendix A.2, after k steps of
frontier imaginary-time propagation the ansatz contains

D(k) + 1 =
--S(k)--

distinct product states. The total number of variational parameters at that depth is

Nparams(k) ∼
!
D(k) + 1

"
(L+ 1),

since for each product replica we store one amplitude aλ and L Bloch-disk angles {θλi }L−1
i=0 .

The TDVP metric Sw̄ and force vector Fw̄ live in this parameter space: Sw̄ is an Nparams(k)×
Nparams(k) matrix and Fw̄ is a vector of length Nparams(k). In other words, their dimension
grows linearly with D(k) and L, while any explicit representation of Sw̄ scales quadratically in
Nparams(k).

The mean-field frontier model of Appendix A.2 shows that D(k) itself exhibits a very
unfavourable growth pattern. For fixed problem size (L,M), the number of distinct product
states displays a short but violent proliferation regime in imaginary-time depth: during the
first few ITP steps the effective branching factor is larger than one, and D(k) increases almost
exponentially with k before saturating to a plateau value D⋆ at a saturation depth k⋆.

Combining these observations, the scaling of the TDVP objects is particularly constraining.
At depth k we have

Nparams(k) ∼ D(k) (L+ 1),
so a dense representation of the metric would require storing

O
!
Nparams(k)2" ∼ O!D(k)2(L+ 1)2"

floating-point entries. Because D(k) grows nearly exponentially with the number of ITP steps
before saturation, the memory footprint of an explicit Sw̄ would blow up even more rapidly.
This makes it clear that we cannot afford to perform many ITP steps before handing the
resulting manifold to TDVP: the exponential burst of D(k) would translate into an even more
dramatic explosion in the size of Sw̄.

The force vector Fw̄ is cheaper to store, but its evaluation exhibits a similar dependence
on D(k). As seen in Sec. 5.3.4, each component Fj(w̄) is built from mixed matrix elements
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⟨∂wj Ψ|Ĥ|Ψ⟩, which in turn involve double sums over product replicas and clause-local factors.
The total cost of assembling Fw̄ therefore scales at least linearly in Nparams(k) and inherits an
implicit O(D(k)2) dependence through the pairwise overlaps between replicas.

The combination of large Nparams and rapid growth of D(k) has two distinct impacts on the
MINRES-QLP:

• Memory footprint. If we form Sw̄ explicitly as a dense matrix (the Smatrix route of
Appendix A.5.2), the storage requirement scales as O(D+DL)2. This is only feasible for
“small” and “medium” instances, where D is still modest. As soon as the frontier manifold
gets close to its saturated size D⋆(L), the required memory becomes prohibitive even for
relatively small L, and the explicit-matrix strategy breaks down.

• Iteration count and wall-clock time. The matrix-free, operator-based implementation
Sop described in Appendix A.5 circumvents the memory problem by providing MINRES-
QLP only with the action v → Sw̄v, without ever materializing a O(D+DL)2 matrix.
However, the dimension of parameter space and the ill-conditioning of Sw̄ are unchanged:
the Krylov solver still operates in an Nparams-dimensional space riddled with almost-null,
gauge-like directions. As discussed in Appendix A.5.2, this leads to a dramatic increase in
the number of MINRES-QLP iterations needed to reach a given tolerance, and the solver
frequently hits the iteration cap in the fully matrix-free regime. Thus, the operator form
alleviates the memory cost but does not eliminate the time cost of the TDVP step.

In summary, the near-exponential proliferation of product states in the frontier ITP (before
saturation) severely limits how deep we can push the imaginary-time dynamics before applying
TDVP. Each additional ITP step in the growth regime increases D(k), which in turn enlarges
the TDVP metric and force and either (i) overwhelms memory if Sw̄ is assembled explicitly,
or (ii) forces MINRES-QLP to work in a very high-dimensional, ill-conditioned space when
Sw̄ is used in matrix-free form. In the numerical experiments of the next chapter we therefore
restrict ourselves to a small number of ITP steps, well before the saturation plateau of D(k),
and use the explicit Smatrix formulation whenever possible, resorting to the operator form Sop
only when memory constraints make it unavoidable.
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Chapter 6

Variational Imaginary-Time
Dynamics and TDVP
Refinement

In this chapter, we test and interpret the projected imaginary-time procedure introduced in
Secs. 4.4–4.6, and show how the time-dependent variational principle (TDVP) can subsequently
drive the ansatz toward low-energy states within the fixed variational manifold generated by
that procedure.

First, we benchmark the variational imaginary-time propagation (ITP) against exact
imaginary-time evolution on small instances, where full diagonalization of H is feasible. This
provides a ground-truth trajectory against which to validate our frontier-based construction.
Second, after the frontier has saturated, we switch from ITP to TDVP and study how it further
reshapes amplitudes and local angles inside the resulting manifold.

6.1 Benchmarking Variational ITP on Small Instances
In this section, we benchmark our frontier-based variational imaginary-time propagation on
small instances where exact quantum evolution is still accessible. The aim is twofold: to clarify
the physical interpretation of frontier ITP as a dynamics that explicitly tracks clause violations
and to quantify how faithfully this picture reproduces true imaginary-time evolution.

6.1.1 Setup: frontier ITP and clause-violation dynamics
As introduced in chapter 4.4, our variational ITP evolves a state of the form

|Ψ(k)⟩ =
Ø

λ∈S(k)

a
(k)
λ |ρλ⟩ (6.1)

where each |ρλ⟩ is a product state in the Bloch-disk ansatz [Eq. (4.18)], and S(k) is the pool of
distinct product states accumulated up to discrete ITP step k.

Every new |ρλ⟩ that enters S(k) during imaginary time is generated by the action of a clause
projector Oc [Eq. (4.25)] on some parent product state. Consequently, all newly generated
|ρλ⟩ are clause-violating configurations. Each such state encodes the statement “this clause
is violated in exactly this way on these three spins,” while the remaining spins are left (possibly)
in superposition. The frontier pool is, thus, a collection of partial or total invalid assignments.
No |ρλ⟩ produced by frontier ITP is, at the moment of its creation, a satisfying assignment for
all clauses. The algorithm is not discovering solutions and storing them explicitly; instead, it
systematically collects and labels structured patterns of clause violations.

This picture becomes more transparent if we recall that the cost Hamiltonian is
H =

Ø
c

Oc, (6.2)

where each Oc is a projector onto the unique falsifying assignment of clause c. For any normalized
state |ψ⟩,

E(ψ) := ⟨ψ|H|ψ⟩ =
Ø
c

⟨ψ|Oc|ψ⟩ =
Ø
c

Pr
ψ

[clause c is violated], (6.3)
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so the energy is exactly the total violation probability.
A first-order (Euler) imaginary-time step reads

|ψ⟩ −→ |ψ′⟩ = (1− δτ H) |ψ⟩ . (6.4)

The correction term −δτ H |ψ⟩ subtracts, clause by clause, the component of |ψ⟩ living within
each violating subspace Ran(Oc). After renormalization, configurations that violate fewer
clauses are relatively enhanced, and E(ψ) decreases monotonically as imaginary time flows.

Our frontier algorithm essentially implements this subtraction explicitly in a compressed
basis. Starting from a pool of product states, for each parent |ρλ⟩ and each clause c we apply
Oc and obtain a child product state that pins exactly the falsifying triple for c (and leaves the
other spins unchanged). That child is, by definition, an invalid state that certifies a particular
violation. New children are inserted into the pool S(k) only if they are distinct, and their
contribution to the wavefunction enters with the appropriate signed amplitude inherited from
the discrete update.

The crucial point is that the superposition Eq.(6.1) can nevertheless drift toward the satisfying
sector of Hilbert space. This is enabled by the coefficients a(k)

λ , which can interfere destructively
on clause-violating subspaces and thereby suppress their weight and lower the energy. In concise
form:

frontier ITP builds a clause-structured manifold of violating configurations,
and imaginary time rebalances amplitudes.

Individual basis states remain “bad”, but their coherent combination becomes increasingly
concentrated on satisfying assignments.

To test how accurately this clause-violation picture reproduces true imaginary-time dynamics,
we now turn to a fully controlled setting where exact evolution is available. For small problem
sizes L (so that 2L is still tractable), we can compute the “true” imaginary-time state

|Ψexact(τ)⟩ = e−τH |Ψ0⟩
∥e−τH |Ψ0⟩ ∥

, (6.5)

by diagonalizing H and applying the propagator e−τH directly in the full 2L-dimensional Hilbert
space. This provides a gold-standard imaginary-time trajectory |Ψexact(τ)⟩ against which we
benchmark the frontier-based variational state |Ψ(k)⟩.

6.1.2 Validation observables and numerical comparison
The numerical data shown in Fig. 6.1 ,6.2 and in Fig. 6.3 correspond to a representative
satisfiable instance with L = 3, M = 13 clauses and 111 as a satisfying assignment for the first
and 100, 011 for which both the exact and the variational trajectories can be computed up to
k = 300 ITP steps. In these simulations we fix the imaginary-time step to τ = 0.01, which is of
the order of 1/M for M = 13. This choice is consistent with the general scaling dτ, dγ ∝ 1/M ,
motivated by the extensive nature of the cost function. Since the Hamiltonian has the form
H =

qM
c=1 Πc keeping the parameter update in a regime where the Euler discretization remains

reliable requires dτ = O(1/M). We adopt the same criterion for the TDVP dγ below. This
scaling will be used consistently throughout the thesis.

1. Energy decay. We first track the mean clause-violation energy

E(k) = ⟨Ψ(k)|H|Ψ(k)⟩

for both the exact imaginary-time state and the frontier-based variational state at each discrete
ITP step k. In Fig. 6.1a and 6.2a the solid blue curve (frontier ITP) and the dashed orange
curve (exact ITP) lie almost on top of each other over the entire evolution. Both exhibit
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(a) Mean clause-violation energy ⟨H⟩ as a function of
ITP step k for a small satisfiable instance with L = 3
and M = 13. Solid blue: frontier-based variational
ITP. Dashed orange: exact ITP obtained by evolving
in the full 2L Hilbert space.

(b) Total overlap Ptot(k) =
q

α
| ⟨Sα|Ψ(k)⟩ |2 with

all satisfying assignments as a function of ITP step k.
Solid green: variational frontier ITP. Dashed orange:
exact ITP.

(c) Best-assignment weight Pbest(k) =
maxα | ⟨Sα|Ψ(k)⟩ |2 as a function of ITP step
k. The frontier ITP (solid green) tracks the exact
ITP (dashed orange) very closely.

(d) Heat map of pk(b) = | ⟨b|Ψ(k)⟩ |2 across
imaginary-time steps k. Each row corresponds to
a classical bitstring b, each column to an ITP step.
Bright bands indicate configurations that accumu-
late probability mass over time.

Figure 6.1: Diagnostics of imaginary-time dynamics, comparing exact ITP and frontier-based
variational ITP, shown in a 2× 2 panel layout for a representative small instance with L = 3,
M = 13 clauses and 111 as a satisfying assignment.

a smooth exponential-like decay of ⟨H⟩ towards zero, reflecting the suppression of clause-
violating configurations. Any discrepancy between the two curves is at the level of the line
thickness, indicating that the compressed frontier manifold already reproduces the energy of
exact imaginary-time evolution with very high fidelity.

2. Overlap with satisfying assignments. Let {|Sα⟩} denote all satisfying assignments for
the instance. We monitor the total and best overlaps

Ptot(k) =
Ø
α

--⟨Sα|Ψ(k)⟩
--2, (6.6)

Pbest(k) = max
α

--⟨Sα|Ψ(k)⟩
--2, (6.7)

In Fig. 6.1b and 6.2c we plot Ptot(k). Starting from a small initial weight ∼ 0.1 on the
solution manifold, both curves grow smoothly and monotonically, approaching Ptot ≃ 1 by
k ≃ 300. Thus, at late times essentially all probability mass resides on satisfying assignments.
The exact (dashed orange) and variational (solid green) curves are visually indistinguishable,
showing that frontier ITP drives the wavefunction into the same solution subspace as exact
ITP.
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(a) Mean clause-violation energy ⟨H⟩ as a function
of ITP step k for a second satisfiable instance with
L = 3 and M = 13, now with two satisfying assign-
ments |001⟩ and |100⟩. Solid blue: frontier-based
variational ITP. Dashed orange: exact ITP.

(b) Total overlap Ptot(k) =
q

α
| ⟨Sα|Ψ(k)⟩ |2 with

all satisfying assignments for the second instance.

(c) Best-assignment weight Pbest(k) =
maxα | ⟨Sα|Ψ(k)⟩ |2 for the second instance.
Frontier ITP (solid green) again tracks exact ITP
(dashed orange) within line thickness.

(d) Heat map of pk(b) = | ⟨b|Ψ(k)⟩ |2 for the sec-
ond instance. The two satisfying bitstrings |001⟩
and |100⟩ (dashed lines) progressively brighten and
end up carrying almost all probability, while clause-
violating configurations are exponentially suppressed
by imaginary-time evolution.

Figure 6.2: Same diagnostics as in Fig. 6.1, now for a second small satisfiable instance with
L = 3, M = 13 and two satisfying assignments |001⟩ and |100⟩. Frontier ITP and exact ITP
remain in excellent agreement for all observables.

Figure 6.1c and 6.2c shows the behaviour of Pbest(k), the weight of the single most probable
satisfying assignment. This quantity also increases monotonically in both evolutions: after a
roughly linear rise at early times, the most-probable solution gradually takes over and ends
up with probability very close to 1. The frontier ITP again tracks the exact imaginary-time
evolution step by step, demonstrating that not only the total weight on solutions but also the
shape of the peak in configuration space is accurately reproduced.

3. Computational-basis redistribution. To obtain a more microscopic view of the
dynamics, we inspect the evolution of the full probability distribution over classical bitstrings.
At each step k we consider

pk(b) = | ⟨b|Ψ(k)⟩ |2, b ∈ {0,1}L,

and visualize it as a heat map with bitstrings b on the y-axis and imaginary-time steps k on
the x-axis (Fig. 6.1d,6.2d). Dark regions correspond to configurations with negligible weight,
while bright regions indicate bitstrings that accumulate probability mass.

For the first instance, one satisfying assignment quickly emerges as the dominant configuration
(the bright band near the top of the panel), with probability saturating close to unity by the end
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Figure 6.3: Size of the frontier manifold D(k) = |S(k)| as a function of ITP step k .

of the evolution. While for the second one the value saturates close to 1/2 , reflecting the nearly
equal sharing of probability between the two satisfying assignments. Configurations that violate
more clauses are progressively darkened as imaginary time flows, illustrating the interpretation
of imaginary-time propagation as systematic suppression of clause-violating patterns. For the
single-solution instance, this redistribution can also be viewed directly in variational parameter
space: Fig. 6.4 shows that the modulus of the frontier amplitudes |aλ(k)| evolves from a strongly
polarized initial configuration towards a pattern in which all non-solution replicas settle to a
small, nearly uniform weight while the replica aligned with the solution remains dominant but
slowly decreases, consistently with the flow of probability mass in configuration space.

Figure 6.4: Heat map of the absolute value of the variational amplitudes |aλ(k)| across
imaginary-time steps k for the single-solution instance of Fig. 6.1. Each row corresponds to a
frontier replica λ, while columns are ITP steps. The plot highlights how the modulus of the
amplitudes is gradually reshaped during the evolution, with non-solution replicas acquiring
a small but nonzero stationary weight and the solution-aligned replica remaining the most
prominent component of the frontier manifold.
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4. Growth and saturation of the frontier manifold. An additional diagnostic, specific
to the variational algorithm, is the size of the frontier manifold itself,

D(k) =
--S(k)--,

i.e. the number of distinct product states accumulated up to step k. This is shown in Fig. 6.3.
Starting from a single product state at k = 0, the frontier update rule rapidly generates new
clause-violating configurations, and D(k) jumps to D(1) = 8 after the first ITP step. For L = 3
this already equals the full Hilbert-space dimension 2L, so the manifold saturates immediately
and remains of constant size thereafter. Obviously, this is true for both instances.

This small-L behavior concretely illustrates the general picture developed in 4.4 frontier ITP
quickly builds a clause-structured basis of product states, and all subsequent imaginary-time
evolution consists of reweighting these basis states via their amplitudes a(k)

λ . The fact that the
energy and overlaps continue to evolve significantly even after D(k) has saturated shows that
most of the “work” of imaginary-time cooling is performed by amplitude rearrangement on a
fixed manifold rather than by continued growth of the basis.

The excellent agreement observed on small instances might suggest that one could simply
continue frontier ITP for as many steps as needed. This is not the case. For larger L, exact
evolution in the full 2L Hilbert space is impossible, and even the frontier manifold itself can
grow very large before saturation (Sec. 4.6 and App. A.2). In particular, the number D(k)
of distinct product configurations generated by the branching process increases rapidly with
both k and L, so that the variational parameter count Nparams(k) ∼ (D(k) + 1)(L+ 1) becomes
prohibitive well before exact convergence in imaginary time would be reached. As we will
discuss, it could also exceed 2L, making our variational description ineffective.

The limitation is not expressive power, but the cost of explicitly storing and updating all
O(D(k)L) variational parameters when D(k) itself scales poorly with system size.

This is precisely where TDVP enters. In the TDVP stage, we allow the same product states
|ρλ⟩ to deform continuously, together with their amplitudes aλ: the update changes both Bloch
angles and amplitudes in a way that attempts to heal the pinned violations. The role of frontier
ITP is, therefore, to build a structured, clause-aware manifold of product states, while TDVP
moves within that manifold and bends individual configurations toward satisfiability instead of
relying purely on interference between fixed violating patterns.

6.2 Benchmarking TDVP on Small Instances

Throughout this section, we study two planted 3-SAT instances with L = 5, M = 22, and α =
M/L ≈ 4.3, right at the SAT/UNSAT transition window. The first instance has three satisfying
assignments: 00111,00101, and 10101, while the second instance is uniquely satisfiable with
the planted solution 11101. For both instances, the frontier ITP stage after a single step
produces an effective variational manifold of size D(1) = 23 product states (replicas). We
then freeze this label set and switch to TDVP, evolving the internal parameters of the ansatz
according to the projected imaginary-time flow

Sw̄ δw̄ = −γ Fw̄, (6.8)

see Sec. 5.
Numerically, we will see that: (i) the energy ⟨H⟩ continues to decrease under TDVP and

approaches zero; (ii) the wavefunction weight concentrates on replicas that align with the
planted solution; and (iii) the Krylov solver MINRES–QLP used to solve Eq. (6.8) remains
stable (residual ≲ 10−10) even though the metric Sw̄ is nearly singular, cf. Sec. 5.4.
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Figure 6.5: Growth of the ITP manifold. Left: number D(t) of distinct pinned product states
generated by ITP for the L = 5 reference instance. Right: mean-field prediction Dtotal(t). The
horizontal dashed line marks 2L.

Manifold growth. For the size of our reference instance, we could run the full frontier ITP
procedure up to saturation. Figure 6.5 compares three manifolds: (a) the frontier growth
measured directly for this instance, obtained by running kmax = 10 steps of frontier ITP;(b) the
mean-field model. In panel (a) the total number of distinct replicas Dtotal(k) increases from 1
to about 20 after the first frontier step and then rapidly saturates around Dtotal ≈ 54, already
larger than the Hilbert-space dimension 2L = 32. The mean-field curve in panel (b) reproduces
the same qualitative behaviour. This is the reason why, in this case, we chose to perform only
a single step of ITP. This choice is not motivated by computational considerations (these will
become relevant in the next chapter, when the system size increases), but rather by the fact
that additional steps would invalidate the effectiveness of our variational description.

Numerical stabilizers. We regularize and solve this linear system using MINRES–QLP, as
described in Sec. 5.4. In particular, we use:

• a diagonal regularization Sw̄ → Sw̄ + λreg ⊮ with λreg ∼ 10−8,

• MINRES–QLP tolerance rtol = 10−10 and cap on Krylov steps maxit = 104.

These choices keep the dynamics numerically stable without visibly affecting the physical
evolution.

6.2.1 Global TDVP behaviour on hard instances
Figures 6.6 and 6.7 collect four complementary observables for the multi-solution and single-
solution instances, respectively. The top-left panels show the imaginary-time energy ⟨Ψ|H|Ψ⟩,
while the other three panels probe the internal structure of the replica manifold: the coefficients
aλ, the overlap | ⟨ρλ|solution⟩ | with the chosen reference solution, and the replica–replica
overlaps | ⟨ρλ|ρµ⟩ | at the end of the run.

For the three-solution instance (Fig. 6.6a), the energy drops quickly and essentially reaches
zero within a few hundred TDVP steps, signaling that the evolving state has reached the
solutions. The single-solution case (Fig. 6.7a) shows a similar trend: ⟨H⟩ decays smoothly
and approaches zero on a slightly longer time scale. We attribute this slower convergence to
the presence of only one solution, which makes it harder for the state to find the path to zero
energy. In both instances, TDVP, therefore, does not merely lower the energy but actually
drives some states towards configurations that satisfy almost all clauses.

Figs. 6.6c and 6.7c reveal how this energy reduction is achieved. The rotations of the internal
Bloch angles θλi , expressed via the overlap with the most probable solution, show that only
a handful of replicas develop a large overlap with the reference satisfying assignment. This
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(a) Energy ⟨H⟩. (b) Magnitude |aλ|.

(c) Overlap with reference solution. (d) Replica–replica overlaps at step 500.

Figure 6.6: TDVP refinement on the planted instance with three solutions; we monitor the
reference bitstring 00111. The four panels show the energy, the flow of amplitudes |aλ|, the
overlap of each replica with the reference solution, and the replica–replica overlap matrix at the
end of the run.

demonstrates that TDVP both repairs the internal configuration of a few promising replicas
and amplifies them in the global superposition Figs. 6.6b and 6.7b .

The final replica–replica overlap matrices in Figs. 6.6d and 6.7d complete this picture. Apart
from the trivial diagonal, most off-diagonal overlaps remain well below 1: even after TDVP has
concentrated weight on a small subset of replicas, these survivors are not simply copies of one
another. Instead, the algorithm ends with a tiny cluster of distinct product states, all aligned
with the solution manifold but still exploring slightly different directions in configuration space.

6.2.2 Target probabilities and Krylov diagnostics
The global observables above show how TDVP reshapes the replica manifold. To assess actual
solution reconstruction and numerical stability, we now inspect the diagnostic plots in Figs. 6.8
and 6.9.

For the three-solution instance (Fig. 6.8, top panel) the probability weight on the most
probable bitstring 00111 increases monotonically and saturates at a value of order 0.6, while
the total probability carried by all satisfying assignments approaches 1. This is consistent
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(a) Energy ⟨H⟩. (b) aλvs steps.

(c) Overlap with reference solution. (d) Replica–replica overlaps at step 500.

Figure 6.7: Same diagnostics as in Fig. 6.6, now for the planted instance with a unique
satisfying assignment 11101.

with the multi-solution structure of the instance: TDVP identifies several exact solutions and
distributes weight among them but not equally. In the unique-solution case (Fig. 6.9, top panel)
the behaviour is even sharper: the probability of 11101 rises smoothly and eventually coincides
with the total solution weight, which also saturates close to 1. Here TDVP has no alternative
satisfying assignment to populate, and the algorithm effectively collapses onto the planted
bitstring.

The middle and bottom panels of Figs. 6.8 and 6.9 report the performance of the MINRES–
QLP solver used to implement the TDVP update Sw̄δw̄ = −γFw̄ (Eq. 6.8). In both instances
there is an initial spike in the residual and in the iteration count, reflecting the fact that the
TDVP metric Sw̄ is most ill-conditioned near the starting point of the refinement. After this
transient the residual stabilizes well below 10−10 and the iteration number settles to O(102)
per TDVP step. The detailed traces differ slightly between the two instances, but the overall
numerical cost and stability are comparable: the regularization scheme of Sec. 5.4 is therefore
sufficient to keep the Krylov solver well behaved even in the glassy regime.
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Figure 6.8: Target probability and MINRES–QLP diagnostics for the three-solution instance
with reference bitstring 00111. The top panel shows the probability of the reference solution
and of the full solution manifold; the middle and bottom panels show the residual and iteration
count of MINRES–QLP at each TDVP step.
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Figure 6.9: Same diagnostics as in Fig. 6.8, now for the instance with a unique solution 11101.
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Chapter 7

Sensitivity-driven manifold
compression

In this chapter we move from small-scale benchmarks to the question of how far our algorithm
can be pushed into the hard-SAT regime as the number of spins increases, and what ultimately
limits this scaling. Our starting point is an ITP–TDVP scheme that already solves a considerable
fraction of random 3-SAT instances, including many with L = 50, using only a small number of
replicas. Sensitivity-driven compression is then introduced as a refinement: its goal is to speed
up convergence and to recover (some of) the relatively small subset of hard-regime instances
that remain unsolved within 1000 TDVP steps.

The first part of the chapter introduces a sensitivity-based active-set strategy for TDVP.
We define an energy-sensitivity score for each replica and use it, at every step, to select a small
subset of “active” replicas on which the TDVP update is explicitly performed. This reduces
the effective size and density of the metric Seff , keeps the associated linear system tractable,
and allows us to retain good convergence properties even when the full manifold contains many
more replicas. We benchmark this scheme on single instances and on finite-size statistics at
critical clause density, and we show that local metric rescaling (LMR) is a crucial ingredient for
stabilising the dynamics. We also analyse cases where the TDVP energy fails to fully converge,
linking metastable plateaux and slow freezing windows to features of the underlying glassy
landscape, and we briefly explore the trade-off between accuracy and runtime when the TDVP
selection fraction is increased.

The second part (Sec. 7.2) addresses the state-space wall posed by multi-step ITP frontiers.
Naively extending the frontier in imaginary time leads to an almost exponential growth of the
manifold dimension, which quickly makes both memory usage and TDVP updates impractical.
To partially overcome this, we reuse the same sensitivity score as a compression tool: short
blocks of frontier growth are interleaved with sensitivity-based pruning and a simple diversity
filter, producing compressed frontiers that are much smaller than the raw multi-step manifold
but more structured and informative than a single-step frontier. We compare “soft” and
“aggressive” compression schemes on hard instances at L = 30, L = 40, and L = 50, showing
that aggressive compression can recover instances that the baseline one-step pipeline fails to
solve, while keeping the final manifold size of order M+1 and a small TDVP active set. At the
same time, we identify a subset of especially difficult L = 50 formulas in the hard-SAT regime
for which all pipelines (uncompressed, softly compressed, and aggressively compressed) stall
within our time budget: in these cases, the combination of glassy landscape complexity and
computational cost prevents the variational manifold from escaping deep metastable basin.

7.1 Sensitivity-based active replica selection during TDVP
As discussed in Sec. 4.6 and Appendix A.2, the frontier-based ITP dynamics can generate a
manifold whose size D(k) grows very rapidly with both the ITP step k and the system size L.
Before saturation, the variational parameter count Nparams(k) ∼ (D(k) + 1)(L+ 1) becomes
prohibitive well before exact imaginary-time convergence is reached. This is the “cost wall”
that prevents us from running many ITP steps on large, hard instances.

The severity of this cost wall is illustrated in Fig. 7.1, which shows the mean-field upper
bounds (including clone collisions) for the frontier proliferation at L = 20 and L = 30 obtained
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(a) Mean-field estimate of the number of new
frontier states N(t) for L = 20 and L = 30
(log scale).

(b) Mean-field cumulative number of distinct
product states Dtot(t) for the same L, with
dashed lines indicating 220 and 230.

Figure 7.1: Mean-field upper bounds on frontier proliferation for larger system sizes, based on
the layer–resolved model of Appendix A.2. For L = 20 and L = 30 the predicted saturated
manifold sizes D⋆(L) already lie many orders of magnitude above the Hilbert-space dimensions
2L, illustrating the “cost wall” associated with the scaling of D.

from the model of Appendix A.2. Panel (a) displays the expected number of new frontier
states N(t) per ITP step, while panel (b) shows the corresponding cumulative number of
distinct product states Dtot(t) compared with the Hilbert-space sizes 220 and 230. Even for
these moderate system sizes, Dtot(t) grows by many orders of magnitude in just a few steps
and quickly saturates to values that vastly exceed 2L.

For TDVP refinement, we therefore deliberately stay in the regime where only one ITP–frontier
step is taken on the planted instance. In our implementation, this implies that at the TDVP
starting point, the number of replicas D scales at most linearly with the number of clauses
(roughly D ∼M + 1), rather than exploding combinatorially. Nevertheless, even after a single
ITP–frontier step D can still be a few hundred for challenging instances at L ∼ 20. The TDVP
parameter vector then has ∼D(1+L) entries, and the associated metric remains large. Building
and solving (iteratively) the full TDVP metric at each step is still the dominant cost, and the
metric can be ill-conditioned enough to slow down MINRES–QLP despite the regularization
strategies of Sec. 5.4.

A natural idea would be to diagonalize the metric and drop the directions associated with its
smallest eigenvalues. However, this is dangerous for our manifold: each replica can correspond
to a different glassy basin in configuration space, and by the Overlap Gap Property, these basins
can be well separated in Hamming distance (cf. Chapter 3). Permanently discarding a replica
risks throwing away our only foothold in an entire basin. What we want is to downweight replicas
that are unimportant at the current TDVP step without erasing them from the manifold.

In this section, we introduce a first strategy to partially circumvent this cost wall while
preserving the full manifold generated after the first ITP–frontier step. The central idea is to
adaptively select, at each TDVP step, only the replicas that have the largest instantaneous
“energetic leverage” on the cost function and to solve the TDVP linear system only in the
subspace spanned by those active replicas. All replicas remain available and can become active
again in later steps.

7.1.1 Replica energy sensitivity
We now define a scalar sensitivity score that quantifies, for each replica, how much it is currently
“holding onto” energy.

Consider the instantaneous (unnormalized) energy expectation

E = ⟨Ψ|H |Ψ⟩ =
DØ

λ,µ=1
aλaµHλµ, (7.1)
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where Hλµ = ⟨ρλ|H |ρµ⟩ denote the projected Hamiltonian matrix elements.
Viewing E as a quadratic form in the amplitudes {aλ}, we first differentiate with respect to

aλ:
∂E
∂aλ

= 2
DØ
µ=1

Hλµ aµ. (7.2)

We then define, for each replica, the scalar energy sensitivity

sλ := aλ

DØ
µ=1

Hλµ aµ = 1
2 aλ

∂E
∂aλ

. (7.3)

By construction, sλ measures the contribution associated with the single variational parameter
aλ; it is therefore a replica-resolved (parameter-wise) energy sensitivity, not a global measure of
the overall sensitivity of E with respect to all parameters.

Interpretation:

• |sλ| measures how much replica λ is currently “carrying” the energy, with respect to
variations of its own amplitude aλ while keeping all other amplitudes fixed. If |sλ| is large,
a change in aλ can strongly affect E ; replica λ has high energetic leverage.

• If |sλ| is tiny, tweaking replica λ barely moves the energy at the present step; that replica
is, momentarily, a spectator.

From the implementation point of view, we never form the dense D×D matrix Hλµ explicitly.
Instead, for each pair (λ, µ) we compute their product-state overlap and their clause-resolved
contributions analytically:

• The overlap factor is

⟨ρλ|ρµ⟩ =
LÙ
i=1

cos
!
θ

(λ)
i − θ

(µ)
i

"
,

obtained from precomputed cos θ(λ)
i and sin θ(λ)

i .

• Since H =
q
c Πc is a sum of 3-local clause projectors, each matrix element Hλµ factorizes

into this global overlap times a clause term that depends only on the three spins involved
by clause c and on whether each literal is negated or not.

In practice, we loop over replicas λ and µ, reuse cached trigonometric values, and accumulate
directly the combinations aλ

q
µHλµaµ appearing in Eq. (7.3). This yields all {sλ} in O(D2(L+

C)) floating-point operations, where C is the number of clauses.
For the regime of interest here — one frontier step, with D scaling roughly like M and

D ≲ few×102 at L ∼ 20 — this additional cost is modest compared to assembling and applying
the full TDVP metric S, whose dimension scales as O

!
D2(L+ 1)2" and whose Krylov solution

dominates the runtime. However, the quadratic scaling in D means that if the frontier manifold
itself were allowed to grow much larger, sensitivity evaluation would also become a bottleneck;
the present strategy is therefore tailored to the “moderately large D” regime unlocked by
frontier saturation.

Physically, sλ aggregates detailed clause information. Since H =
q
c Πc and each Πc penalizes

a specific falsifying triple, Hλµ encodes how the pair of replicas (λ, µ) jointly violates or satisfies
the instance. A large |sλ| signal indicates that replica λ is aligned with energetically expensive
directions that TDVP should try to update next. In the following, we will simply refer to the
quantity in Eq. (7.3) and to the associated replica-selection procedure as the sensitivity.
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7.1.2 Active subset, reduced TDVP solve, and scatter-back
We now use the sensitivity scores {sλ} to define an active subset of replicas and restrict the
TDVP solve to that subset.

At each TDVP step, we proceed as follows:

1. Compute all sλ from Eq. (7.3).

2. Rank replicas by |sλ| and select the top fraction (for instance, the most sensitive ∼20%).
Denote this index set by Kactive and its size by Deff = |Kactive| ≪ D.

3. Build a restricted parameter vector

w̄eff =
!
{aλ}λ∈Kactive , {θ

(λ)
i }λ∈Kactive, i=1,...,L

"
,

so that the working dimension is reduced from O(DL) to O(DeffL).

4. Assemble only on that subset:

• the reduced TDVP metric S(eff)
w̄ , i.e. the block of Sw̄ involving w̄eff,

• the reduced force vector F (eff)
w̄ .

5. Solve the smaller linear system restricted to the active parameters with MINRES–QLP
(plus the usual small diagonal regularization of Sec. 5.4 to tame conditioning). Because
S

(eff)
w̄ is much smaller and typically less ill-conditioned than the full Sw̄, Krylov convergence

is drastically faster and cheaper here.

6. Apply the update only on the active replicas:

aλ → a′λ, θ
(λ)
i → θ

(λ)′
i for λ ∈ Kactive.

We then scatter these updated parameters back into the full ansatz, keep all other replicas
unchanged, renormalize the global amplitudes, and move on to the next imaginary-time
step.

Two conceptual remarks:

• No replica is ever deleted. Replicas that are inactive at a given step remain part of
the manifold. At the next TDVP step, we recompute the scores {sλ} from scratch; if a
previously inactive replica becomes energetically important, it enters Kactive again. In this
sense, the selection is dynamic and reversible, unlike a rigid pruning of the basis.

• Algorithmically, this behaves like a greedy coordinate descent in a very high-dimensional
curved space: at each step, we only “push” those coordinates (aλ, θ(λ)

i ) that currently
promise the largest immediate drop in energy, as diagnosed by |sλ|.

In the next sections, we will see empirically that this active-set strategy significantly lowers
the TDVP cost wall while preserving the ability of the ansatz to explore and refine multiple
glassy basins in parallel.

7.1.3 Sensitivity-Based TDVP at L = 20,M = 86
To highlight the effect of the sensitivity-based TDVP layer alone, we now show a representative
run at L = 20, M = 86. We start from the one-step ITP frontier produced by the same
branching procedure as in Sec. 4.4, which here has size Dinit = 87 replicas, and we apply TDVP
with the active-set rule of Sec. 7.1.2, keeping only the most sensitive ≈20% replicas at each
step.
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Global convergence, solver behaviour, and active-set size. Figure 7.2 summarizes the
run. The top panel shows the probability weight on the planted solution, | ⟨s|Ψ(k)⟩ |2, as a
function of the TDVP step k. Even though at each step we update only a small active subset
of replicas, the target probability grows smoothly and reaches O(0.5) by k = 500, with a clearly
accelerating trend in the late-time regime.

The middle and bottom panels report the MINRES–QLP residual and the number of Krylov
iterations per TDVP step. The residual decays rapidly down to ∼10−15 and stays there,
indicating that the reduced TDVP systems are solved essentially to machine precision. The
number of iterations is largest at the beginning of the evolution and then drops to a few hundred,
confirming that restricting to the energetically relevant subspace greatly stabilizes the linear
solver.

The effective size of the TDVP subspace at each step is shown in Fig. 7.4(c). The dashed
line marks the initial manifold size Dinit = 87, while the solid line sits at Deff ≈ 17 throughout
the evolution. Thus each TDVP update operates on only about 20% of the replicas, yet still
drives the state toward the planted solution.

Amplitude flow, solution overlaps, and selection frequencies. Figure 7.3 focuses on
how individual replicas behave.

The amplitude heatmap in Fig. 7.3(a) shows aλ(k) for all replicas λ and TDVP steps k. A
small number of bright horizontal bands emerge: these are the replicas that end up carrying
most of the probability weight. Most replicas retain small but nonzero amplitudes, reflecting
the fact that the state remains a coherent superposition rather than collapsing to a single
product state.

Figure 7.3(b) plots the overlaps | ⟨ρλ|solution⟩ | versus k. Only a handful of replicas acquire
a large overlap with the planted solution; one of them eventually reaches overlap close to unity.
These are the “winning” replicas that the TDVP flow has learned to align with the solution
basin.

The histogram in Fig. 7.3(c) shows how often each replica index λ was included in the active
set Kactive over the whole run. Every bar is nonzero: every single replica is selected at
least once. This validates the design choice of never throwing replicas away: even those with
small final amplitudes are temporarily important at some stage of the evolution and contribute
to steering the flow. Interestingly, the replica that ends up with the largest solution overlap
is not the one with the highest selection frequency. The active-set strategy is therefore not
simply “always pick the eventual winner”; rather, it redistributes attention over time across
many replicas that are useful in different phases of the descent.

Finally, Fig. 7.3(d) shows the absolute overlap matrix | ⟨ρλ|ρµ⟩ | at the final TDVP step. The
strong diagonal and mostly dark off-diagonal entries indicate that the replicas remain relatively
distinct; a few brighter off-diagonals reflect near-duplicate product states. The active-set
evolution thus preserves a diverse, nontrivial manifold while gradually amplifying the replicas
aligned with the planted solution.

Energy, entropy, coherence, and subspace dimension. Figure 7.4 collects additional
scalar diagnostics.

The energy expectation ⟨Ψ|H|Ψ⟩ decreases steadily throughout the run [Fig. 7.4(a)], dropping
by more than a factor of five. The decay is not perfectly monotone—as expected for a discrete,
approximate TDVP integrator—but the overall trend is clearly downward.

The Shannon entropy of the replica weights |aλ|2, shown in Fig. 7.4(b), rises sharply during
the early transient as probability mass is spread more evenly across replicas, then slowly
increases and finally bends down again. This late-time decrease reflects the concentration of
weight onto the few solution-aligned replicas visible in Figs. 7.3(a,b).

Panel (c) shows the already-mentioned effective TDVP subspace size Deff as a function of
step. It remains close to 17 for the entire evolution, so each step only touches about 20% of the
full manifold. The fact that the target probability and energy continue to improve under this
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7.1 – Sensitivity-based active replica selection during TDVP

Figure 7.2: Summary of sensitivity-based TDVP at L = 20, M = 86 (no PCA,
one-step ITP frontier). Top: probability weight on the planted solution versus TDVP
step. Middle: MINRES–QLP residual for the reduced TDVP linear system. Bottom: number
of MINRES–QLP iterations per step. Even though only a small active subset of replicas is
updated at each step, the state flows toward the planted solution while the linear solves remain
well behaved.

constraint demonstrates that fine-grained control of all parameters at every step is unnecessary:
what matters is to cycle through replicas according to their current sensitivity, not to update
them all simultaneously.

Finally, Fig. 7.4(d) reports the mean, minimum, and maximum values of a per-replica
coherence score (a scalar diagnostic that quantifies consistency between clause projectors and
local replica configurations). The mean coherence gradually decreases, the minimum rises
toward zero, and the maximum collapses early in the evolution. Taken together, these trends
indicate that the manifold becomes progressively more self-consistent and less dominated by
strongly incoherent replicas as the TDVP flow proceeds.
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(a) aλ vs TDVP step. (b) | ⟨ρλ|solution⟩ | vs step.

(c) Active-set selection frequency for each λ. (d) Final replica overlap matrix | ⟨ρλ|ρµ⟩ |.

Figure 7.3: Replica-level behaviour in the sensitivity-based TDVP run at L = 20,
M = 86 (no PCA). A few replicas acquire large amplitudes and very high overlap with the
planted solution, while all replicas are selected at least once by the active-set rule and remain
part of a diverse manifold.

7.1.4 Sensitivity-based TDVP at L = 30,M = 129 and Local Metric
Rescaling

Figure 7.5 shows a representative run at

L = 30, M = 129,

using the same sensitivity-based active-set TDVP as for L = 20, but with smaller imaginary-time
steps

τ = γ = 10−3.

The choice τ, γ ∝ 1/M is motivated by the extensive nature of the cost function. Since the
Hamiltonian has the form H =

qM
m=1 hm, and the TDVP force components scale roughly as

M , we keep the parameter update δw̄ = −γS−1
w̄ Fw̄ in a regime where the Euler discretization

is reliable, it requires γ = O(1/M). For M = 129, we therefore adopt the conservative value
γ = 10−3 (and analogously for the ITP step τ), so that each TDVP step is guaranteed to be
“small” on the variational manifold.
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7.1 – Sensitivity-based active replica selection during TDVP

(a) Energy ⟨Ψ|H|Ψ⟩ vs TDVP step. (b) Shannon entropy of |aλ|2.

(c) Initial manifold size Dinit and active-set size Deff. (d) Mean, minimum, and maximum coherence score
vs step.

Figure 7.4: Scalar diagnostics for the sensitivity-based TDVP run at L = 20, M = 86
(no PCA). The energy decreases, the entropy first rises and then falls as the state focuses on
a few replicas, the active-set dimension stays at about 20% of the full manifold, and coherence
metrics become more regular over time.

As expected, the convergence is much slower than at L = 20: the probability weight on the
planted solution starts growing only after k ≃ 7,000 TDVP steps and reaches |⟨s|Ψ(k)⟩|2 ≃ 0.2
only by k ≃ 12,000, while the total probability on the solution manifold gradually approaches
one. This confirms that the combined ITP frontier + active TDVP ansatz is expressive
enough to solve at least some 30-bit instances, but doing so with a globally fixed tiny step size
quickly becomes computationally unattractive.

Local Metric Rescaling (LMR). To make the TDVP evolution more efficient we borrow
the geometric idea of Local Metric Rescaling introduced by Kaubruegger et al. for SR[30], but
we apply it directly to our imaginary–time TDVP update. At every TDVP step, for the current
parameters w̄ we first solve the linear system

Sw̄ δ̄w = −γFw̄, (7.4)

where Sw̄ is the TDVP metric and Fw̄ is the projected force. The vector δw̄ is therefore the
natural–gradient direction that TDVP would follow for a standard fixed step.
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Figure 7.5: Sensitivity-based TDVP at L = 30, M = 129 with fixed small step size
τ = γ = 10−3. Top: probability weight on the best discovered solution (blue) and on the whole
solution manifold (orange) versus TDVP step. Middle: MINRES–QLP residual for the TDVP
linear system. Bottom: number of MINRES–QLP iterations per step. The algorithm eventually
concentrates almost all probability on satisfying assignments and identifies the planted solution,
but only after ∼104 TDVP steps, with clearly slower convergence than in Fig. 7.2.

The important observation is that the geometric length of this step on the variational
manifold,

ℓ2 = δ̄w
†
Sw̄δ̄w, (7.5)

can fluctuate by many orders of magnitude from one iteration to the next. When Sw̄ is badly
conditioned or very anisotropic, some updates become extremely long (and can overshoot),
while others are ineffectively small. LMR keeps the direction δw̄ but rescales it so that the
metric displacement is approximately constant. We choose a target squared step length εLMR
and define the effective scaling factor

γeff =
ò

εLMR

δw̄†Sw̄δw̄
.

The actual TDVP update is then
δw̄LMR = γeff δ̄w, (7.6)

so that δw̄†LMRSw̄δw̄LMR ≈ εLMR. If the bare step is very long in the Sw̄–metric, γeff is reduced
and the update is damped; if it is very short, γeff is increased and the update is amplified.
In practice we also impose a small lower bound on δw̄†Sw̄δ̄w to avoid instabilities due to
numerical noise when this quantity becomes negative or almost zero. Overall, LMR behaves
like a metric–aware line search that automatically adapts the step size to the local conditioning
of Sw̄, preventing catastrophic jumps while avoiding unnecessarily tiny moves.

Crucially, this rescaling does not change the fixed points of the imaginary–time evolution:
we always move along the same natural–gradient direction δw̄, so the stationary states of the
TDVP equations are untouched. What LMR modifies is only the parametrization in time of
the trajectory: because γeff varies from step to step, the iteration index k can no longer be
interpreted as a discretized imaginary time with a single constant ∆τ . TDVP steps should
therefore be viewed as optimization iterations rather than physical time units, but the payoff is
a much faster and more regular convergence at fixed numerical accuracy.

Impact on the 30-bit instance. Figure 7.6 shows the evolution on the same L = 30,
M = 129 instance as in Fig. 7.5, but now with LMR enabled. The nominal step size is still
γ = 10−3, yet convergence is now dramatically accelerated: both the total probability on
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7.1 – Sensitivity-based active replica selection during TDVP

Figure 7.6: Sensitivity-based TDVP with Local Metric Rescaling on the same
L = 30, M = 129 instance. Top: probability weight on the best solution (blue) and on all
solutions (orange).

solutions and the weight on the planted solution reach their asymptotic values within O(102)
TDVP steps. The price to pay is conceptual rather than computational: the TDVP step index
k can no longer be interpreted as a discretized imaginary time, since each step corresponds to a
different effective γeff(k). From an algorithmic perspective, however, we primarily care about
iteration count, and LMR yields an enormous speed-up at fixed numerical accuracy.

Internal structure at L = 30. Finally, we check whether the internal structure of the TDVP
manifold at L = 30 remains similar to the picture developed in Sec. 6.2.1 for the L = 5 instance.
Two diagnostics are collected in Fig. 7.7 for the LMR run:

• Panel 7.7a shows how often each replica index λ is selected in the active set over the full
TDVP evolution. Only a relatively small subset of replicas is picked very frequently, while
many others are touched only sporadically. This mirrors the L = 5 behaviour of Fig. 7.3:
TDVP learns to focus computational effort on a handful of product states.

• Panel 7.7b tracks the overlap |⟨ρλ|solution⟩| as a function of TDVP step and replica index.
Again, only a few replicas ever develop a large overlap with the planted solution, and these
are precisely the ones that appear most often in the active set. The majority of replicas
remain at small overlap and are gradually pushed to the periphery of the dynamics, even
though they are never explicitly discarded.

Qualitatively, the 30-bit run thus exhibits the same mechanism already identified in Chapter 5:
TDVP uses the variational manifold generated by frontier ITP as a “violation reservoir”, then
gradually repairs and amplifies a small cluster of solution-aligned product states. The new
ingredient is that, in high dimension, Local Metric Rescaling becomes essential to navigate this
manifold efficiently without having to reduce the global step size to prohibitively small values.

7.1.5 Finite-size statistics at critical clause density with LMR
Thanks to the speed-up provided by Local Metric Rescaling (LMR), we can carry out a
systematic benchmark of the ITP+TDVP algorithm at fixed clause density. For each problem
size L ∈ {10,20,30,40,50} we generate 100 random satisfiable 3-SAT instances at critical density
α = M/L ≈ 4.3. All runs use a single frontier-ITP step, so that the uncompressed manifold
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(a) Replica selection frequency across the TDVP evolution.

(b) Overlap |⟨ρλ|solution⟩| versus TDVP step for each replica λ.

Figure 7.7: Internal structure of the TDVP manifold with LMR at L = 30, M = 129.
Only a small subset of replicas is selected very frequently and develops a large overlap with the
planted solution, in close analogy with the L = 5 diagnostics of Sec. 6.2.1.

has dimension Dfrontier = M + 1. The imaginary-time evolution is implemented with the
sensitivity-based active-set TDVP of Sec. 7.1.2, where at every update we retain only the 20%
most sensitive replicas and apply LMR to precondition the effective metric. In practice, the
TDVP dynamics therefore explores an effective variational space whose dimension is only a
fraction of the full frontier manifold, while still growing linearly in M . This scaling is illustrated
in Fig. 7.8, which shows both Dfrontier and the size of the active set as a function of L for a
single ITP step.

The linear systems in the TDVP update are solved with a MINRES_QLP Krylov solver.
Table 7.1 summarizes the numerical parameters used for all system sizes. In particular, we
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Figure 7.8: Frontier manifold size after a single ITP step. For each L at critical density
α ≃ 4.3 the full uncompressed manifold has dimension Dfrontier = M+1 (blue), while the TDVP
evolution is restricted at each update to the 20% most sensitive replicas (orange). Even with
this truncation, the effective variational space grows linearly with L, whereas the underlying
Hilbert space grows exponentially.

L τ γ reg rtol max_iter

10, 20 10−2 10−2 10−8 10−16 104

30, 40, 50 10−3 10−3 10−7 10−16 104

Table 7.1: Numerical parameters for the TDVP updates with LMR. The regularization reg is
added to the effective metric Seff entering the MINRES_QLP linear solve.

work with a stringent tolerance rtol = 10−16 and allow up to max_iter = 104 iterations for
MINRES_QLP. The parameter reg denotes the diagonal regularization added to the effective
metric Seff ; for small systems a weaker regularization is sufficient, while for L ≥ 30 we slightly
increase it to improve numerical stability. The parameter γ is the bare TDVP step size, which
is then rescaled by LMR according to the local spectrum of Seff .

Figure 7.9 summarizes the overall success probability as a function of L. An instance is
counted as “solved” if the final TDVP state has total probability at least 0.9 on satisfying
assignments. We allow up to 1000 TDVP steps for L ≤ 40, while for L = 50 we cap the
evolution at 500 steps. Each data point in Fig. 7.9 therefore represents the fraction of solved
instances out of 100 runs for the corresponding L. All L = 10 and L = 20 instances are
solved, while the success rate gradually decreases to ∼95% at L = 30, ∼88% at L = 40, and
∼70% at L = 50. This degradation with system size is expected: both the Hilbert space and
the variational manifold grow exponentially with L, and even with LMR and the active-set
truncation (to 20% of the M + 1 frontier replicas shown in Fig. 7.8) the TDVP flow must
navigate an increasingly complex energy landscape.

Besides success probability, it is also instructive to quantify the actual computational cost
of the TDVP evolution. Figure 7.10 collects two complementary runtime diagnostics: the mean
wall-clock time per TDVP step and the average number of steps required for convergence.

To understand which formulas are missed by the algorithm it is useful to inspect the
distribution of the number of satisfying assignments. Figure 7.11 shows, for each L, the
histogram of the ground-state degeneracy (binned on a logarithmic scale) over all instances. At
critical density the formulas display a broad spread of degeneracies: for L ≥ 20 many instances
already have tens or hundreds of solutions, and for L = 50 the distribution extends to very
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Figure 7.9: Solved fraction versus problem size with LMR. Fraction of instances for
which the TDVP dynamics finds at least one satisfying assignment, as a function of L at fixed
clause density α = M/L ≈ 4.3. The maximum number of time steps is 1000 for all system sizes;
an instance is counted as solved when the total success probability exceeds 0.9.

(a) Mean TDVP time per step.
(b) Average TDVP steps to convergence.

Figure 7.10: TDVP runtime statistics with 20% selection. (a) Average wall-clock time
per TDVP update for the runs at critical density, using a selection fraction of 20%. The cost
per step grows strongly with L, reflecting the increasing dimension of the effective manifold
and the larger linear systems in MINRES_QLP. (b) Mean number of TDVP iterations needed
to reach the convergence criterion for the successful runs with L ≤ 50.

large ground-state counts.
The crucial observation is that the failures of the algorithm are not uniformly spread across

these ensembles. Figure 7.12 repeats the same analysis, but restricted to the subset of failed
runs (there are no failures at L = 10). For L = 20 all failures occur on formulas with at most
three satisfying assignments. At L = 30 and L = 40 the majority of failed instances again
has only a handful of solutions, and for L = 50 the failure set is strongly skewed towards the
low-degeneracy tail, even though the overall success probability is lower. In other words, at
fixed density the algorithm is most reliable when the formula admits many ground states, and
it struggles precisely on instances with very few satisfying bit strings.

This ensemble-level behaviour is fully consistent with the microscopic picture developed in
Chapter 5. In the small-L setting of that chapter we observed that, whenever multiple satisfying
assignments are present, the TDVP dynamics tends to spontaneously select and amplify one
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(a) L = 10 (b) L = 20

(c) L = 30 (d) L = 40

(e) L = 50

Figure 7.11: Distribution of the number of satisfying assignments at fixed clause
density α ≃ 4.3. Histograms over all random instances for each L; the x–axis is binned
logarithmically in the number of ground states. For L ≥ 20 many formulas already have tens
or hundreds of solutions, and the L = 50 data show a tail with very large degeneracies.

of them, funnelling probability weight onto a narrow subset of replicas aligned with a specific
solution. A larger ground-state degeneracy effectively provides many such “attractors” on the
variational manifold, making it easier for the flow to reach at least one of them.

Conversely, formulas with very few solutions are highly frustrated and sharply localized
in configuration space. As illustrated explicitly for a representative failed L = 30 instance
in Sec. 7.1.6, the TDVP dynamics with LMR can still drive the energy expectation down to
⟨H⟩ ∼ O(1), but the probability on any exact solution remains tiny and does not accumulate
over time. The most natural interpretation is that the variational flow converges to a low-lying
metastable state, supported on configurations that violate only one or a few clauses on average,
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(a) L = 30 (5 failed instances) (b) L = 40 (12 failed instances)

(c) L = 50 (30 failed instances)

Figure 7.12: Number of satisfying assignments among the failed instances. For each
L we show the histogram of ground-state degeneracies restricted to the instances where the
TDVP dynamics with LMR does not reach a satisfying assignment. Across all sizes, failures
are strongly concentrated on formulas with only a few solutions.

yet separated from any true ground state by large barriers. Reaching a satisfying assignment
would require coordinated flips of many bits, while TDVP performs smooth, gradient-like
parameter updates within a restricted product-replica manifold and cannot easily escape such
minima. From this perspective, the statistics of Fig. 7.12 confirm that, at the critical density,
the dominant failure mode of the ITP+TDVP algorithm with LMR is not a generic loss of
expressivity, but the difficulty of locating the exact ground state in instances with very few
satisfying assignments and a rugged energy landscape.

7.1.6 Lack of convergence and interpretation of the energy observ-
able

In order to assess the convergence of the TDVP dynamics, I monitor both the expected energy
⟨Ψ|H|Ψ⟩ and the probability weight on the known satisfying assignment(s). Figure 7.13 shows
the behaviour of the energy as a function of the TDVP step for a representative 3-SAT instance
with L = 30 variables and M = 129 clauses, while Fig. 7.14 reports the corresponding probability
of the reference solution, together with the MINRES–QLP residual and iteration count.

For this class of clause-penalty Hamiltonians, the exact ground-state energy is zero by
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Figure 7.13: Expectation value of the Hamiltonian ⟨Ψ|H|Ψ⟩ as a function of the TDVP
iteration for a satisfiable 3-SAT instance with L = 30 and M = 129.

Figure 7.14: TDVP diagnostics for the same instance as in Fig. 7.13. Top: probability of the
best solution and total probability on all satisfying assignments

construction: each satisfying assignment corresponds to an eigenstate with energy E0 = 0, while
every violated clause contributes a positive penalty. One would therefore expect a successful
optimization to both drive ⟨H⟩ close to zero and concentrate probability on at least one
satisfying bit string.

The numerical results point to a different scenario. Along the TDVP evolution the energy
decreases monotonically and reaches values ⟨H⟩ ∼ O(1), small compared to the typical scale
O(M) but still clearly non-zero (Fig. 7.13). At the same time, the probability of the reference
solution, as well as the total probability weight on all known solutions, remains extremely
small (of order 10−5 in this example) and only exhibits short-lived peaks before decaying again
(Fig. 7.14, top panel). The evolved state |Ψ⟩ thus does not develop a significant overlap with
any exact ground state, despite its relatively low energy expectation value.

The most natural interpretation is that the TDVP flow within the chosen variational manifold
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converges towards a low-lying metastable state rather than to a true ground state. Since the
Hamiltonian spectrum encodes the number of violated clauses, a state with ⟨H⟩ ≈ 1 can be
viewed as a superposition whose support is concentrated on classical configurations that violate
only a few clauses on average, but still fail to satisfy the formula exactly. Reaching a satisfying
assignment from such a state would require coordinated flips of a macroscopically large number
of bits. The local, gradient-like parameter updates generated by the TDVP equations change
the state only smoothly and therefore cannot easily overcome the corresponding energy barriers
in the rugged 3-SAT landscape.

This picture mirrors the rigorous insights associated with the m-OGP (Sec. 3.2), which
establishes provable barriers for broad classes of local or low-complexity algorithms on random
k-SAT and related models. TDVP realizes a deterministic, geometry-aware local dynamics in
parameter space and thus inherits analogous limitations in clustered regimes: it can substantially
reduce the energy while remaining confined within a metastable basin whose classical support
lies at large Hamming distance from any exact solution.

Finally, it is important to stress that a low value of ⟨Ψ|H|Ψ⟩ constitutes only a variational
certificate. Imaginary-time TDVP guarantees that the evolution is optimal within the chosen
ansatz manifold, but it does not guarantee that this manifold contains a state with exactly zero
energy or that the dynamics will reach such a state. The combination of a highly non-convex
cost landscape and a restricted variational family therefore naturally explains why the procedure
can achieve ⟨H⟩ ≪M without ever concentrating probability on any satisfying assignment.

7.1.7 Preliminary tests with higher TDVP selection fraction

A natural way to try and increase the solved fraction is to enlarge the active set in the one–step
frontier protocol, i.e. to keep a larger fraction of the frontier replicas in each TDVP update. As
a first test we repeated the benchmark at critical density using exactly the same settings as in
Sec. 7.1.5, but increasing the selection fraction from 20% to 30%. Because of the higher cost,
these runs were limited to a maximum of 500 TDVP steps for all L (instead of 1000).

Figure 7.15 compares the success probability for the two choices of selection fraction. Even
with only 500 steps, the 30% curve lies systematically above the 20% one: at L = 30 the solved
fraction increases from about 85% to ∼92%, and at L = 40 from ∼72% to above 80%. This
confirms that, as expected, giving TDVP access to a larger portion of the frontier manifold
does help on the more challenging instances.

However, this gain comes at a substantial computational price. Increasing the selection
fraction from 20% to 30% enlarges the active manifold dimension from roughly 0.2(M + 1)
to 0.3(M + 1), and the effective metric Seff used in TDVP grows accordingly. Since both the
construction of Seff and each MINRES_QLP solve scale superlinearly in the number of active
replicas, the wall–clock time per TDVP step grows rapidly with L.

This is quantified in Fig. 7.16, which reports the estimated runtime for 1000 TDVP steps
at a selection fraction 30% as a function of L. The curves should be compared with the
20%–selection runtime statistics in Fig. 7.10. Already at L = 30, the projected runtime is on
the order of a few hours, rising to ∼7 hours at L = 40 and approaching a full day at L = 50 on
our reference hardware. In other words, the apparently modest increase of the selection fraction
by 10 percentage points leads to a dramatic growth of the total runtime for larger instances.

These preliminary tests therefore confirm the qualitative picture from Sec. 4.6: the true
bottleneck is the scaling of the manifold dimension D and of the associated metric Seff . While
a higher selection fraction does improve the solved fraction, the resulting growth of Seff makes
the overall runtime explode, rendering this naive strategy prohibitive for larger instances. More
sophisticated compression or multi-scale selection schemes would be needed to further increase
performance without running into this cost wall.
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Figure 7.15: Effect of increasing the TDVP selection fraction. Solved fraction versus
L at critical clause density for the one–step frontier protocol, comparing a 20% (blue) and a
30% (orange) selection of the most sensitive replicas. All runs are capped at 500 TDVP steps.
For both system sizes shown, a larger active set improves the success probability.

Figure 7.16: Estimated TDVP runtime with 30% selection. Mean wall–clock time
required to perform 1000 TDVP steps as a function of L at critical density, using the same nu-
merical parameters as in Table 7.1 but with a 30% active set. Compared with the 20%–selection
statistics in Fig. 7.10, the cost grows much more steeply with L, making it impractical to
increase the selection fraction even slightly for larger problem sizes.

7.2 Sensitivity-driven compression of the ITP frontier
In Sec. 7.1 we introduced the sensitivity score sλ [Eq. (7.3)] as a way to identify, at a given
TDVP step, the replicas that have the largest energetic leverage and to restrict the TDVP
update to that active subset.

When we apply the one-step pipeline

1 ITP–frontier step −→ TDVP with 20% active replicas

to ensembles of random 3-SAT instances (100 instances per system size L), we nevertheless see
systematic failures on a subset of hard formulas. A plausible explanation is that the one-step
frontier is sometimes too narrowly focused on a suboptimal glassy basin; TDVP with the
active-set strategy of Sec. 7.1 then optimizes within that basin but never reaches a satisfying
assignment, even though the energy can be pushed well below M .
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A first, very natural, idea is to strengthen the TDVP stage by increasing the active fraction,
e.g. from 20% to 30% of the M+1 frontier replicas. As shown in Sec. 7.1.7, this indeed raises
the solved fraction, but it also makes the effective metric Seff significantly larger and denser.
The cost per TDVP update then grows steeply with L, as quantified in Fig. 7.16; in practice,
even a modest 10% increase in selection becomes prohibitive for the largest sizes. In other
words, pushing the active fraction higher runs into the same parameter-space cost wall discussed
in Sec. 5.5.

Extending the frontier in imaginary time does not solve the problem either: Sec. 4.6 and
App. A.2 show that multi-step frontiers suffer from a severe state-space cost wall (Fig. 7.1).
The manifold dimension D(k) grows nearly exponentially with the number of ITP steps, and
the TDVP metric becomes increasingly ill conditioned. Thus both obvious knobs—more active
replicas at fixed frontier depth, or a deeper frontier at fixed selection fraction—ultimately fail
for the same reason: the scaling of D and of Seff .

This motivates a different strategy: can we grow the ITP frontier for more than one step, but
periodically compress it to a smaller, more informative manifold before it explodes? The goal is
to end with a final frontier that is (i) much smaller than a raw multi-step frontier, yet (ii) more
expressive and diversified than the purely one-step frontier. We can then feed this compressed
manifold to TDVP and again use the sensitivity-based active set of Sec. 7.1.2, keeping the
active fraction at about 20% of M+1 replicas and avoiding the 30% runtime blow-up seen in
Sec. 7.1.7.

7.2.1 ITP compression procedure
The key observation is that the sensitivity score sλ defined in Eq. (7.3) provides a scalable
handle on the frontier. By construction,

sλ = aλ

DØ
µ=1

Hλµ aµ, (7.7)

so it depends only on the current amplitudes {aλ} and on the projected Hamiltonian matrix
elements Hλµ = ⟨ρλ|H |ρµ⟩, which we can evaluate analytically using the product-state structure
of the ansatz and the clause decomposition H =

q
c Πc. As discussed in Sec. 7.1.1, |sλ| measures

how strongly replica λ is currently “holding on” to energy.
In the TDVP setting we used |sλ| to decide which replicas to update. Here we reuse exactly

the same quantity earlier in the pipeline: |sλ| becomes a criterion for keeping or discarding
replicas during frontier growth. This leads to an iterative ITP scheme in which short bursts of
frontier growth are interleaved with sensitivity-based compression:

1. Frontier growth. Run a block of B frontier-based ITP steps (typically B = O(1)). At
each imaginary-time step we branch the current replicas according to the clause projectors,
keep successful children, and update the amplitudes {aλ}.

2. Sensitivity evaluation. After B steps the frontier has size Dcurr. We compute the
sensitivity scores {sλ}Dcurr

λ=1 via Eq. (7.3),

sλ = aλ

DcurrØ
µ=1

Hλµ aµ,

evaluating Hλµ analytically as in Sec. 7.1.1.

3. Selection of important replicas. We rank replicas by |sλ| and retain only a target
fraction fkeep ∈ (0,1). If Dcurr is the current frontier size, we keep nkeep = ⌈fkeepDcurr⌉
replicas with largest |sλ|. This filters out energetically irrelevant directions and focuses
the manifold on those replicas that appear most promising for further energy reduction.
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4. Diversity filter. A pure |sλ| ranking tends to keep many nearly identical replicas,
especially once the frontier has clustered around a good local pattern. To avoid a
compressed manifold that is small but highly redundant, we enforce a simple diversity
constraint: as we scan the sorted list, a candidate is accepted only if its pattern of single-
spin angles {θ(λ)

i } is sufficiently different from those already kept (e.g. via a cosine-similarity
threshold). Near-duplicates are discarded.

5. Compression and restart. The replicas that pass the sensitivity and diversity filters
define the new frontier, with their original amplitudes and angles. All others are dropped.
We then recast this compressed frontier into the data structures used by the ITP routine
and start the next cycle: another block of B growth steps, followed by a new compression.

This alternating growth–compression scheme keeps the frontier dimension under control
throughout the ITP while continuously pruning energetically irrelevant or redundant replicas.
In practice, we also impose a final cap on the frontier size before entering TDVP: after the last
ITP block we perform one last sensitivity-based compression enforcing

Dfinal ≤M + 1. (7.8)

In the following, this final cap on the manifold dimension will be referred to as “aggressive”
compression. The resulting compressed frontier then serves as the starting manifold {|ρλ⟩} for
the TDVP stage.

7.2.2 ITP-compression on failed L = 30 instance
To gauge how much extra structure such a compressed frontier can provide, we revisit one of the
hardest instances in our L = 30 ensemble, with M = 129 clauses and 21 satisfying assignments
(the same instance used in Sec. 7.1.6).

“Soft” sensitivity-driven ITP compression.

In the original pipeline—one ITP–frontier step followed by TDVP with a 20% active set—the
algorithm essentially never builds appreciable weight on any solution: the probability of all
satisfying assignments remains tiny , and the energy stalls far above zero.

We then rerun the instance with a two-step frontier interleaved with sensitivity-based
compression after each step (B = 1). At each compression, we keep the most sensitive ∼20% of
replicas and apply the diversity filter; however, we do not impose the final cap Dfinal ≤M + 1;
we refer to this as “soft” compression. The resulting “deep but compressed” frontier has size
Dfinal = 501, to be compared with D = 130 for the one-step frontier and D ≃ 1.3× 104 for the
fully uncompressed two-step frontier (Fig. 7.17).

Feeding this compressed manifold into TDVP, we set the selection fraction to enforce the
standard 20%(M + 1) active-set rule based on |sλ|. Thus, even if this manifold is larger, we
work within effective subspaces of the same dimension (26) for both the uncompressed and
“soft” compression, enabling a coherent comparison of the two procedures. On the compressed
manifold, the TDVP dynamics change qualitatively: as shown in Figs. 7.19 and 7.20, the total
probability of satisfying assignments rises sharply and approaches unity, while the best solution
acquires a finite fraction of the total weight. Apart from a short initial bump, the energy decays
monotonically towards values compatible with the ground-state energy. The selection histogram
in Fig. 7.21 shows that the sensitivity-based rule heavily favors a small subset of replicas, but
every replica is selected at least occasionally, as discussed in Sec. 7.1.2.

Thus, with a relatively modest increase of the final manifold size (from 130 to 501 replicas,
still tiny compared to 2L and to the uncompressed frontier) we solve a hard 3-SAT instance
while keeping the same number of active replicas per TDVP step unchanged.
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(a) ITP frontier (data). (b) Mean-field with collisions.

Figure 7.17: Growth of the manifold size D as a function of the global ITP step for the
uncompressed two-step frontier at L = 30, M = 129. Panel (a) shows the exact frontier
dimension, which exhibits an exponential blow-up reaching D ≃ 1.3× 104 at the second step.
Panel (b) displays the mean-field estimates discussed in Sec. 4.6 and App. A.2, confirming the
quantitative accuracy of the analytical model.

Figure 7.18: Manifold size D during the two-step frontier with sensitivity-based compression
at each step for the same L = 30, M = 129 instance. After each ITP step only the most sensitive
and diverse replicas are retained, leading to a final compressed frontier with Dfinal = 501 instead
of the ∼1.3× 104 replicas of Fig. 7.17a.

“Aggressive” sensitivity-driven ITP compression

The previous soft-compression experiment at L = 30 raises a key question: is the performance
gain mainly due to the larger manifold (allowing selection from more candidates without
the unchecked expansion of a 2-step ITP or a 30% selection) or to the manifold being more
informative thanks to sensitivity-driven pruning?

To disentangle these effects we discuss the second variant of the pipeline, which we will call
“aggressive” compression. We keep the same growth–compression loop as in the soft procedure
(same block length B, same fraction fkeep, same diversity filter), but at the very end of the ITP
stage we enforce a strict cap

Dfinal = min(Dcurr,M + 1), (7.9)

by performing one last sensitivity-based truncation. This yields a compact frontier with at most
M+1 replicas, constructed by the same multi-step, sensitivity-guided ITP dynamics as the
larger compressed manifold, but ultimately constrained to have the same size as the one-step
frontier used in the baseline pipeline. TDVP is then run with the usual 20%(M + 1) active-set
rule, so that in all comparisons (uncompressed, soft and aggressive) the TDVP update acts on

76
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Figure 7.19: TDVP evolution of the probability on satisfying assignments for the softly
compressed two-step frontier at L = 30, M = 129 with 21 solutions. The solid line shows the
probability of the best solution; the dashed line shows the total probability on all satisfying
assignments. Both rise sharply near the end of the trajectory, in contrast to the single-step
frontier run where solution probabilities remain negligible.

Figure 7.20: Expectation value ⟨Ψ|H|Ψ⟩ as a function of TDVP step for the softly compressed
two-step frontier. After a short transient peak, the energy decreases monotonically and
approaches zero, consistent with convergence to a satisfying assignment.

the same number of replicas.
Below, we summarize we complete our previous analysis introducing the soft compression

on the same failed L = 30 instance.
Frontier growth and manifold size. The three pipelines are:

1. one-step frontier with D = 130 (uncompressed),

2. softly compressed two-step frontier with Dfinal = 501 (see Fig. 7.18),
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Figure 7.21: Histogram of replica-selection frequencies across the TDVP evolution for the
softly compressed two-step frontier. Each bar counts how many TDVP steps a given replica λ
belonged to the active set. The selection is strongly concentrated on a subset of replicas, but
every replica is selected at least occasionally, reflecting the dynamic, reversible nature of the
sensitivity-based active set discussed in Sec. 7.1.2.

Figure 7.22: Manifold size D during the aggressively compressed two-step frontier for the
L = 30, M = 129 instance. After growth similar to the soft-compression case, a final sensitivity-
based truncation enforces Dfinal = M + 1 = 130, yielding a compact but more structured
manifold.

3. aggressively compressed two-step frontier with Dfinal = M + 1 = 130 (see Fig. 7.22)

With TDVP always updating 20%(M + 1) replicas per step.
Solution probabilities and energy decay. On the soft frontier, the TDVP dynamics manage

to reach the satisfying manifold (see Fig.7.19) , but do so relatively late compared with the
aggressive pipeline that produces a much sharper transition. (Fig. 7.23) Additionally, the energy
decays more steeply, flattening at zero (Fig. 7.24).

Replica-selection patterns. The selection histogram for soft compression (Fig. 7.21) shows a
small subset of very frequently selected replicas and a long tail of almost-inactive directions.
Aggressive compression, instead, yields a markedly more balanced pattern (Fig. 7.25): many
replicas are used often, and very few are completely dormant.
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Figure 7.23: TDVP evolution of solution probabilities for the aggressively compressed two-step
frontier at L = 30, M = 129. As in Fig. 7.19, the dashed line shows the total probability on all
satisfying assignments and the solid line the probability of the best solution. Here the jump to
unit total probability occurs significantly earlier and over a narrower time window.

Figure 7.24: Energy expectation ⟨Ψ|H|Ψ⟩ for the aggressively compressed run. The decay is
substantially steeper than in Fig. 7.20 and quickly reaches zero, where it stays for the rest of
the evolution, indicating convergence to the satisfying subspace.

In summary, for this L = 30 instance the aggressively compressed frontier outperforms both
the one-step frontier and the soft frontier, even though all three pipelines use the same TDVP
active-set size and, in the aggressive case, the same total manifold size Dfinal = M + 1 as the
one-step baseline. The improvement seems to be structural: sensitivity-driven compression is
carving out a more informative manifold, not merely buying accuracy with more parameters.
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Figure 7.25: Replica-selection frequency across the TDVP evolution for the aggressively
compressed frontier. Compared to Fig. 7.21, a larger fraction of replicas is selected many times,
indicating that the compact manifold contains fewer “dead” directions that are almost never
exploited by the TDVP dynamics.

7.2.3 ITP-compression for increasing system sizes
Since the aggressive compression procedure appears to provide a genuine advantage at L = 30,
the next question is whether the same mechanism remains effective as the system size grows.
In this subsection, we compare the aggressive compressed-frontier and uncompressed protocols
for a failed L = 40 instance and a solved L = 50 instance taken from from the same 1000-step
batch of Sec. 7.1.5. The full soft-compression data for L = 40 and L = 50 are reported in
Appendices , A.6.1, and A.6.2. In both cases the qualitative message is the same: aggressive,
sensitivity-driven compression allows us to exploit the extra expressivity of a multi-step frontier
while keeping the final manifold size Dfinal ∼M + 1 and a small TDVP active set, leading to a
cleaner and faster convergence than in the one-step baseline.

Frontier growth and manifold size. On the ITP side, both instances clearly illustrate the
state-space cost wall of uncompressed multi-step frontiers. For the L = 40 formula, extending
the frontier naïvely to a second step would already generate D ≃ 1.3× 104 distinct product
states (Fig. 7.26, left panel), far beyond what the TDVP metric can handle. Similarly, for
the L = 50 instance, a hypothetical uncompressed second step produces more than 2 × 104

replicas (Fig. 7.27, left panel), again signaling an impending blow-up of the manifold dimension.
Aggressive compression tames this proliferation in essentially the same way at both sizes.
(Fig. 7.26, right panel, and Fig. 7.27, right panel) In other words, it inherits information from
a deeper frontier while preserving the scaling of the one-step metric: the TDVP stage never
sees more than M+1 replicas, and the active set still contains only 0.2(M+1) replicas per
update (about 35 at L = 40 and 43 at L = 50). Softly compressed two-step frontiers, where the
final Dfinal is allowed to grow to ∼103 replicas, sit between these two extremes. They keep the
manifold size under control compared to the fully uncompressed frontier, but do not enforce
the strict Dfinal = M + 1 cap. The detailed soft-compression data for L = 40 and L = 50 are
reported in Appendix A.6.

Impact on TDVP dynamics. The effect of these different frontiers on the TDVP evolution
is shown in Figs. 7.28–7.29 for L = 40 and in Figs. 7.31–7.32 for L = 50. Despite the different
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(a) Hypothetical two-step uncompressed
frontier.

(b) Aggressively compressed two-step fron-
tier.

Figure 7.26: Manifold size during two-step ITP at L = 40, M = 172. (a) If we
naively extended the uncompressed frontier to two steps, D would explode to ∼104 states.
(b) With aggressive sensitivity-based compression, the two-step frontier is distilled back to
Dfinal = M + 1 = 173, matching the size of the one-step baseline.

sizes and clause densities, the two instances display a remarkably similar pattern. For the
L = 40 formula, the aggressively compressed frontier turns a failing run into a successful
one. With compression, both the total solution probability and the probability of the best
solution exhibit a sharp freezing transition: after a long transient with negligible overlap on
any satisfying assignment, they rapidly jump to 1 and remain there (Fig. 7.28a), while the
energy decays to zero and stays pinned at the ground-state value (Fig. 7.29a). In stark contrast,
the one-step frontier relaxes only to a metastable energy plateau above zero (Fig. 7.29b), and
the solution probability never becomes appreciable (Fig. 7.28b). For the L = 50 instance all
pipelines eventually succeed, but aggressive compression again leads to a noticeably cleaner
TDVP flow. The compressed frontier drives the state into the satisfying manifold earlier and
more decisively: the total probability on solutions and the probability of the best solution start
to rise around 250 steps and quickly saturate close to 1 and 0.6, respectively (Fig. 7.31, left
panel), while the energy drops steeply to zero with only a modest shoulder at intermediate times
(Fig. 7.32, right panel). The baseline one-step frontier shows the same qualitative behaviour
but shifted to later times and with a slightly smaller asymptotic weight on the best solution.
Overall, these two instances suggest that aggressive compression is not just trading accuracy for
a larger parameter count; even when Dfinal = M + 1 as in the one-step baseline, the TDVP flow
on the compressed manifold converges faster and more sharply toward the satisfying subspace.

Replica-selection patterns. The selection histograms complete this picture. At L = 40, the
aggressively compressed frontier yields a compact manifold in which most replicas are selected
a substantial number of times (Fig. 7.30a), whereas the one-step frontier leaves more directions
effectively unused (Fig. 7.30b). The TDVP active set therefore spends most of its time on
genuinely useful directions rather than redistributing weight within redundant clusters.

A similar effect is visible at L = 50 (Fig. 7.33). In the one-step baseline many replicas are
selected only rarely, while in the aggressively compressed pipeline the pattern of “few very active,
many occasionally active” replicas becomes more pronounced and essentially no direction is
completely dormant. The limited active set is concentrated on a small backbone of energetically
important replicas, but still occasionally explores the rest of the manifold.

In summary, across these L = 40 and L = 50 examples, aggressive, sensitivity-driven
compression consistently distils more informative frontiers out of multi-step ITP. It avoids
the state-space blow-up of uncompressed frontiers, preserves the favourable Dfinal ∼ M + 1
scaling of the one-step pipeline, and steers TDVP away from redundant directions. In several
challenging cases, including the L = 40 instance that fails in the baseline algorithm, this
structural advantage is enough to reach the satisfying manifold without increasing either the
total manifold size or the TDVP active-set fraction.
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(a) Hypothetical two-step uncompressed
frontier.

(b) Aggressively compressed two-step fron-
tier.

Figure 7.27: Manifold size D during two-step ITP for a solved L = 50, M = 215
instance. Without compression a second ITP step would generate more than 2× 104 replicas,
whereas aggressive compression keeps D of order M and enforces Dfinal = M + 1 = 216,
matching the one-step baseline.

(a) Aggressively compressed two-step frontier.

(b) Baseline one-step frontier.

Figure 7.28: Solution probabilities for the L = 40, M = 172 instance. Solid lines:
probability of the best solution; dashed lines: total probability on all three satisfying assignments.
Aggressive compression (a) drives the state to unit success probability, whereas the one-step
frontier (b) never develops significant weight on any solution.
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(a) Aggressively compressed two-step frontier.

(b) Baseline one-step frontier.

Figure 7.29: Energy expectation ⟨Ψ|H|Ψ⟩ for the L = 40, M = 172 instance. With
aggressive compression (a) the energy decays all the way to zero, while the one-step frontier (b)
relaxes only to a metastable plateau above the ground-state energy.
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(a) Aggressively compressed two-step frontier.

(b) Baseline one-step frontier.

Figure 7.30: Replica-selection frequency for the L = 40, M = 172 instance. Each bar
counts the number of TDVP steps in which replica λ was included in the active set. Aggressive
compression (a) leads to a more uniformly exploited set of replicas, whereas the one-step frontier
(b) leaves more directions effectively unused.
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(a) Aggressively compressed two-step frontier.

(b) Baseline one-step frontier.

Figure 7.31: Solution probabilities for the solved L = 50, M = 215 instance. Solid lines:
probability of the best solution; dashed lines: total probability on all satisfying assignments.
Both pipelines succeed, but the aggressively compressed frontier freezes earlier and with a
higher asymptotic weight on the best solution.
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(a) Softly compressed frontier (for reference).

(b) Aggressively compressed two-step frontier.

Figure 7.32: Energy expectation ⟨Ψ|H|Ψ⟩ for the solved L = 50 instance. Both
compressed pipelines reach the ground-state energy, but the aggressive scheme (b) does so
earlier and with a steeper, more decisive decay. The baseline one-step frontier follows a trend
similar to (a), with a slightly slower relaxation.
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(a) Baseline one-step frontier.

(b) Aggressively compressed two-step frontier.

Figure 7.33: Replica-selection frequency for the solved L = 50, M = 215 instance.
Each bar counts how many TDVP steps a given replica belongs to the active set. In the
aggressively compressed case the pattern of “few very active, many occasionally active” replicas
is more pronounced than in the baseline run, but virtually no direction is completely dormant.
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7.2.4 A failed L = 50 instance: when all pipelines stall
To probe the limits of frontier compression, we now turn to a hard L = 50, M = 215 instance
from the same 1000-step batch of Sec. 7.1.5, for which none of our pipelines finds a satisfying
assignment. We again compare: (i) the uncompressed one-step frontier, (ii) the softly compressed
frontier, and (iii) the aggressively compressed frontier , all followed by TDVP with a 20%(M+1)
active-set fraction.

Frontier growth and manifold size. The frontier dynamics during ITP (not shown) is
quantitatively similar to the L = 50 solved instance discussed in the previous subsection. The
uncompressed two-step frontier reaches a manifold size of order 104–105, the soft compression
keeps an intermediate number of replicas of order 103, and the aggressive compression enforces
Dfinal = M + 1 at the end of the second step. Thus, as before, the two compression pipelines
differ mainly in how aggressively they prune the raw frontier, not in the basic pattern of growth.

Solution probabilities and energy decay. Figure 7.34 shows the probability on satisfying
assignments as a function of TDVP step for the three pipelines, while Fig. 7.35 displays the
corresponding energy trajectories.

For the uncompressed and aggressively compressed frontiers, Figs. 7.34(a)–(b), the solution
probability exhibits a small peaks at intermediate times and then decays back to essentially
zero. The TDVP flow seems to briefly approach the true ground-state region before relaxing
into a metastable basin with negligible overlap on any exact solution.

The softly compressed frontier, Fig. 7.34(c), reaches a noticeably larger maximum total
solution probability than the other two. However, it is unclear whether it fully converges, and
verifying this would require many more steps, which is infeasible with our current implementa-
tion.

The energy plots in Fig. 7.35 clarify the nature of these failures. For the uncompressed and
aggressively compressed frontiers [Figs. 7.35(a)–(b)] the energy initially decreases rapidly and
then saturates to a nonzero plateau, indicating convergence to a low-lying but metastable state.
In contrast, the soft-compression run [Fig. 7.35(c)] shows a much more dramatic behaviour:
after an initial decay the energy climbs back up to a relatively high value and only then starts
slowly decreasing again, without ever approaching zero. In other words, the configuration that
achieves the largest (still tiny) solution probability is associated with a much higher energy
plateau than the metastable minima reached by the other two pipelines.

Replica-selection patterns. Finally, Fig. 7.36 compares the replica-selection frequencies.
For the uncompressed frontier the active set is spread thinly over a very large number of
replicas, with many directions touched only rarely. The aggressively compressed manifold, by
construction, contains only M+1 replicas and exhibits a more structured pattern, but several
replicas are still selected relatively infrequently, consistent with the system being stuck in a
single basin.

The soft-compression run shows an even more uneven distribution: a handful of replicas
are selected very often, while a large tail of states is barely used. Combined with the energy
behaviour, this suggests that the enlarged manifold gives TDVP enough freedom to wander
away from low-energy regions into a broad high-energy “plateau” where the sensitivity-based
selection keeps revisiting a small set of replicas without ever building significant solution weight.

In summary, this L = 50 instance illustrates a genuine limitation of our current sensitivity-
driven compression strategy. At this scale, and for instances with very few ground states, the
variational manifold and our local TDVP updates appear insufficient to escape deep glassy
basins, despite the structural advantages observed at smaller L and on the "solved" L = 50.
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(a) Uncompressed frontier.

(b) Aggressively compressed frontier.

(c) Softly compressed frontier.

Figure 7.34: Solution probabilities for a failed L = 50 instance. Total probability on
satisfying assignments (dashed) and probability of the best solution (solid) as a function of
TDVP step for the uncompressed frontier (a), the aggressively compressed frontier (b), and the
softly compressed frontier (c). None of the pipelines develops macroscopic solution weight; the
soft compression reaches the largest peak probability, but it remains tiny in absolute terms.89
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(a) Uncompressed frontier.

(b) Aggressively compressed frontier.

(c) Softly compressed frontier.

Figure 7.35: Energy trajectories for the failed L = 50 instance. Expectation value
⟨Ψ|H|Ψ⟩ versus TDVP step for the three pipelines. The uncompressed and aggressive runs
relax to nonzero plateaux, while the soft-compression run first drops to a relatively low energy,
then climbs to a much higher value before slowly decreasing again, signalling a qualitatively
different (and higher-energy) metastable state.
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(a) Uncompressed frontier.

(b) Aggressively compressed frontier.

(c) Softly compressed frontier.

Figure 7.36: Replica-selection frequencies for the failed L = 50 instance. Histogram of
how many TDVP steps each replica belongs to the active set, for the uncompressed, aggressively
compressed, and softly compressed frontiers. The soft-compression manifold shows a particularly
strong imbalance, with a small number of replicas dominating the updates while many are
almost never used.

91



Sensitivity-driven manifold compression

7.2.5 Interpretation of the L = 50 failure

The failed L = 50 instance should be viewed as representative of the whole subset of L = 50
formulas that remain unsolved after 1000 TDVP steps in the baseline one-step pipeline of
Sec. 7.1.5. These formulas are generated in the hard-SAT regime, at clause densities close to
the critical threshold, and form only a relatively small fraction of the 100-instance batches
considered at each size; the majority of instances (including many at L = 50) are solved
by the baseline scheme without any compression. For all unsolved instances that we could
check in this hard subset, we have not found a single case in which either the softly or the
aggressively compressed frontier turns a failed run into a successful one, even after scanning
over the regularization parameters of the metric S and reducing the TDVP time step γ within
the stability window of the algorithm. In this sense, the behavior in Figs. 7.34 and 7.35 is
characteristic of the L = 50 formulas that remain unsolved within our time budget, rather than
a pathological outlier.

A first, conservative interpretation is that at L = 50 we are simply under-sampling the TDVP
dynamics. In the L = 30 and L = 40 case studies, the onset of the "solving" transition—where
the solution probability suddenly becomes macroscopic—systematically shifts to later and
later TDVP times as L grows. Nothing in our data rules out the possibility that the same
phenomenon persists at L = 50 but on even longer time scales. Consistent with this picture,
the softly compressed L = 50 frontier shows a very slowly increasing but strictly positive trend
in the total solution probability [Fig. 7.34(c)], even though the absolute values remain tiny at
the time where we stop the run.

Pushing the soft-compression runs much further in time is, however, computationally
prohibitive with our current implementation. For the failed L = 50 instance, the softly
compressed frontier reaches Dfinal ∼ 103 replicas, i.e. a manifold size several times larger
than M+1. At this point, the dominant cost in each TDVP step comes from building and
regularizing the effective metric Seff and from solving the corresponding linear system with
MINRES–QLP, together with the repeated evaluation of the sensitivity scores sλ for active-
set selection. Both operations become serious bottlenecks when D enters the 103 range,
making it unfeasible to extend the soft runs well beyond 1000 TDVP steps with our current
implementation. The aggressively compressed frontier avoids this state-space blow-up and thus
remains computationally cheaper, but in the failed L = 50 instance it no longer exhibits the
clear positive trend in solution probability seen at smaller L.

We emphasize that we have restricted ourselves to a single family of compression protocols:
two-step ITP growth blocks followed by compression at every step back to a manifold of size
M+1, with either the soft or the aggressive variant of sensitivity-driven pruning. Within
each TDVP update, we also fix a given choice of active-set selection fraction. In principle,
one could imagine overcoming some of the L = 50 failures by systematically varying these
hyperparameters—e.g. increasing the TDVP selection fraction, relaxing the compression target
below M+1, changing the number of ITP steps between pruning events, or allowing the frontier
to grow to larger intermediate dimensions before compression. Exploring this high-dimensional
space of schedules and selection fractions would amount to a large-scale benchmarking and
optimization effort that we have not carried out here, both because it would substantially
increase the total running time of our study and because our primary goal is to evaluate whether
this compression protocol is promising at all. A systematic optimization of these design choices,
starting from the present implementation, is therefore a natural direction for future work.

Beyond these finite-time and computational considerations, there is also a more struc-
tural limitation tied to the underlying energy landscape. In the glassy phase of random
constraint-satisfaction problems and mean-field spin glasses, the number of metastable states
(or clusters of solutions) grows exponentially with system size, as described by the complexity or
configurational-entropy function Σ(e) = 1

L logN (e), which remains positive over a finite energy

92



7.2 – Sensitivity-driven compression of the ITP frontier

window.1 Working at clause densities close to the satisfiability threshold, our instances are
precisely in this regime, where an exponential number of low-lying metastable basins competes
with a very small set of true ground states. By construction, our procedures only retain
O(M) product states; even after multi-step growth and sensitivity-driven pruning, the effective
manifold explores a vanishingly small fraction of the relevant configurations. It is therefore
natural that, as L increases, the ability of the TDVP flow on this low-dimensional manifold
to mimic the true imaginary-time dynamics and to escape deep metastable basins becomes
increasingly limited.

Finally, the near-exponential proliferation of frontier states with the number of ITP steps
(Sec. 4.6 and App. A.2) implies that any attempt to push the method to larger sizes or deeper
frontiers will run into a severe state-space and runtime wall unless the underlying implementation
is substantially optimized. More efficient linear solvers, better exploitation of sparsity in Seff and
in the Hamiltonian, GPU-accelerated routines for both the TDVP update and the sensitivity-
based selection, and a systematic benchmarking of different active-set fractions and compression
schedules could all change the practical regime of accessibility. These directions constitute a
natural line of future work starting from this thesis.

With these caveats in mind, the main takeaway of this section remains positive. Sensitivity-
driven frontier compression does extend the reach of our algorithm in the hard-SAT regime: it
allows us to solve a subset of random 3-SAT instances near the critical clause density that remain
unsolved within the same time budget when using the uncompressed one-step frontier, while
still working with a relatively small number of replicas and keeping the growth of the variational
manifold under tight control. At the same time, it is important to stress that the underlying
ITP–TDVP scheme without compression already solves a large fraction of random instances,
including many with L = 50, within a relatively small number of iterations; compression
should therefore be viewed as a structural refinement designed to speed up convergence and
to recover part of the relatively small set of hard-regime instances that remain unsolved after
1000 steps, rather than as an indispensable ingredient for all formulas. From the viewpoint of
state-of-the-art classical SAT solvers, problem sizes such as L = 50 are of course modest, and
our method is not intended to be competitive as a large-scale practical solver. In the context of
deterministic variational and quantum-inspired algorithms, however, reaching L = 50 at critical
density with a full ITP–TDVP pipeline and explicit metric handling is already sufficient to
expose genuine scaling bottlenecks rather than toy-model artefacts. At L = 50 and beyond,
the combination of glassy landscape complexity and computational cost therefore currently
prevents a definitive assessment of the asymptotic performance of this strategy on the most
challenging instances.

1See, e.g., Refs. [1, 2, 7, 8] for classical analyses of random k-SAT and p-spin models.
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Conclusions

In this thesis we have introduced and tested a deterministic, variational approach to random
3-SAT near the SAT/UNSAT threshold, based on imaginary-time dynamics and the time-
dependent variational principle. Each instance is mapped to a classical spin Hamiltonian, and
the search for satisfying assignments is recast as an approximate ground-state problem on a
structured manifold of product states generated by frontier ITP. On top of this manifold, an
imaginary-time TDVP flow refines both local parameters and amplitudes, while sensitivity-
based selection and compression protocols are used to control the manifold growth and focus
computational effort on the most relevant replicas.

Benchmark results on random instances at critical clause density show a mixed but overall
encouraging picture. On the one hand, the ITP–TDVP pipeline without compression already
solves a large fraction of instances up to L = 50, demonstrating that imaginary-time dynamics
and variational geometry can be turned into an effective deterministic heuristic in the hard-SAT
regime. On the other hand, the same experiments clearly expose the main scaling bottlenecks:
the near-exponential proliferation of frontier states with ITP depth, the limited expressive
power of an O(M)-dimensional ansatz in a glassy landscape with exponentially many relevant
configurations, and the rapidly increasing cost and numerical fragility of the TDVP metric.
Sensitivity-driven compression strategies partially mitigate these issues by trading manifold
size for depth and by recovering some hard instances that the baseline scheme fails to solve.

These findings suggest several natural directions for future work. Algorithmically, a more sys-
tematic benchmark of compression strategies is needed, exploring different sensitivity measures,
diversity filters, and selection fractions, and scanning over frontier depths and regularization
schemes for the metric in order to quantify the best trade-offs between expressivity, stability,
and cost. On the implementation side, further gains are likely to come from optimized linear
algebra, better exploitation of sparsity, and GPU-accelerated routines for both TDVP updates
and sensitivity evaluation, which would relax current runtime and memory limitations and allow
larger systems, deeper frontiers, and higher active-set fractions to be explored. Conceptually,
the framework developed here could be extended to more expressive variational families (for
example, tensor-network-inspired or weakly entangled ansätze), alternative imaginary-time
discretizations, and other classes of constraint-satisfaction problems. In the longer term, these
extensions may help clarify whether suitably compressed variational imaginary-time dynamics
can lead to scalable, structure-aware heuristics for a broader range of NP-hard optimization
problems and how such classical methods might interface with or inspire future quantum and
hybrid algorithms.
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Appendix A

A.1 Frontier-based ITP: implementation details
In Sec. 4.4 we introduced the frontier-based imaginary-time propagation (ITP) scheme acting
on the variational superposition of product states |ρλ⟩. In this appendix we summarize the
concrete implementation used in the numerics, highlighting the bitmask encoding for product
states and providing pseudocode for one frontier-based ITP step and for the outer ITP loop.

A.1.1 Efficient bitmask encoding
Rather than storing each |ρλ⟩ as the full list of angles {θλk}L−1

k=0 , we store two L-bit masks per
state:

• fixed_maskλ[q] = 1 if qubit q is already “pinned” by previous clauses (so θλq ∈ {0, π/2}),
and 0 if it is still unfixed at θλq = π/4;

• value_maskλ[q] = 0 if the pinned value is |0q⟩ (θ = 0), and 1 if it is |1q⟩ (θ = π/2).

This encoding lets us:

• reconstruct θλq ∈ {0, π/2, π/4} on demand (via decode_masks_to_theta_matrix);

• compare two product states for equality in constant time (two 64-bit integer comparisons);

• detect contradictions instantly (trying to pin the same qubit to 0 and 1);

• merge clones efficiently by summing their amplitude contributions.

A.1.2 Frontier-based ITP step
The frontier-based variant of the imaginary-time propagation concentrates the “create-or-merge”
logic on a dynamically selected subset F (k) ⊆ S(k) (the frontier), while older states are updated
in a cheaper “no-new-state” mode. The current state pool is denoted S(k), with amplitudes
a

(k)
λ and bitmasks encoding each product state. The frontier mask F (k) is implemented as a

boolean array pointing to indices in the state pool.
The core routine, itp_step_optimized, realizes one ITP step k → k+1 in the spirit of the

three-phase description given in Sec. 4.4. Its inputs are:

• state_fixed_masks[i], state_value_masks[i]: the bitmasks encoding the i-th product
state in S(k);

• a_vector[i]: the corresponding amplitudes a(k)
λ ;

• frontier_mask[i]: a boolean flag selecting the frontier F (k);

• clauses: the list of 3-SAT clauses (literals) defining Ĥ;

• dτ and the problem size L.
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Each clause application is handled by apply_clause_to_state_optimized, which enforces the
local projector action of Eq. (4.26), computes the trigonometric weight wc(λ) (cf. Eq. (4.27)),
constructs the child masks, and returns the unnormalized amplitude increment ∆a(c)

λ→λ′ =
−dτ a(k)

λ wc(λ).

Algorithm 1 summarizes the logic of one step in pseudocode form. Phase 1 copies all states
and adds the identity contribution; Phase 2 performs the “create-or-merge” expansion of the
frontier; Phase 3 performs a “merge-only” expansion of the non-frontier states; and finally all
amplitudes are globally normalized and the new frontier is identified as the set of states that
were created for the first time in Phase 2.

Algorithm 1 Frontier-based ITP step k → k+1
Require: Current pool S(k) (bitmasks and amplitudes), frontier mask F (k), clause list, time

step dτ , size L.
Ensure: Updated pool S(k+1), amplitudes a(k+1)

λ , new frontier F (k+1).
1: Copy all states in S(k) into a working pool.
2: Initialize provisional amplitudes ã(k+1)

λ ← a
(k)
λ for all λ ∈ S(k) (identity channel).

Frontier phase
3: for each parent λ ∈ F (k) do
4: for each clause c in the clause list do
5: Apply c to |ρλ⟩ and generate all children λ′.
6: for each child λ′ do
7: if branch is incompatible then
8: Discard λ′.
9: else if λ′ already exists in the working pool then

10: Update its provisional amplitude ã(k+1)
λ′ ← ã

(k+1)
λ′ + ∆a(c)

λ→λ′ .
(clone merging).

11: else
12: Append λ′ as a new state in the working pool.
13: Initialize its provisional amplitude ã(k+1)

λ′ ← ∆a(c)
λ→λ′ .

14: Mark λ′ as “new” in this step.

Non-frontier phase
15: for each parent λ ∈ S(k) \ F (k) do
16: for each clause c in the clause list do
17: Apply c to |ρλ⟩ and generate all children λ′.
18: for each child λ′ do
19: if branch is incompatible then
20: Discard λ′.
21: else if λ′ matches an existing state in the working pool then
22: Update its provisional amplitude ã(k+1)

λ′ ← ã
(k+1)
λ′ + ∆a(c)

λ→λ′ .
23: else
24: Discard λ′.

(non-frontier parents cannot enlarge the basis).

25: Normalize all provisional amplitudes ã(k+1)
λ to obtain a

(k+1)
λ .

26: Define the new frontier F (k+1) as the set of states that were marked as “new” during the
frontier phase.
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A.1 – Frontier-based ITP: implementation details

A.1.3 Outer ITP loop
The outer loop initializes the single unfrozen state and applies the frontier-based ITP step
a fixed number of times. Bitmasks are finally decoded into angles θλq ∈ {0, π/2, π/4} by
decode_masks_to_theta_matrix. Algorithm 2 summarizes this driver routine.

Algorithm 2 Outer frontier-based ITP loop
Require: Number of qubits L, clause list, time step dτ , number of ITP steps nsteps.
Ensure: Final amplitudes a(nsteps)

λ and angles θλq for all states in S(nsteps).
1: Initialize the state pool S(0) with a single fully unfrozen product state: all masks equal to

zero, amplitude a(0)
0 ← 1.

2: Initialize the frontier F (0) ← S(0).
3: for k = 0, . . . , nsteps − 1 do
4: Apply Algorithm 1 to perform one frontier-based ITP step k → k+1 and update

(S(k+1), a
(k+1)
λ ,F (k+1)).

5: Decode the final bitmasks into angles θλq ∈ {0, π/2, π/4} via
decode_masks_to_theta_matrix.

6: return the final amplitude vector {a(nsteps)
λ } and the corresponding angle matrix {θλq }.

97



A.2 Mean-field growth of the frontier manifold
In this appendix we refine the qualitative discussion of Sec. 4.6 by giving a fully explicit
mean-field model for how the number of distinct product states

D(k) + 1 =
--S(k)--

grows with the number of ITP steps k, the number of variables L, and the number of clauses
M , for the frontier-based imaginary-time propagation (ITP) scheme of Sec. 4.4. The mean-field
recursions derived below are exactly the ones used to generate the curves shown in Fig. 4.4(b,c)
of the main text.

We do not re-derive the frontier algorithm itself: we assume the reader is familiar with the
notation used there, in particular with

• the pool S(k) of distinct product states after k ITP steps,

• the frontier F (k) ⊆ S(k) of states first created at step k,

• the rule that only F (k) is allowed to create new product states at step k+1.
Our goal is to build a stochastic model that predicts, on average, how many new states are
generated at each step and how the total number of distinct states D(k) + 1 saturates to a
finite plateau, in a way that mirrors the layer-resolved Python implementation used to generate
the mean-field curves in Fig. 4.4(b,c).

Throughout this appendix we work purely at the level of the combinatorics of state creation.
Amplitudes a(k)

λ and the normalization of (I− dτH) are irrelevant here and will be ignored.

Layer-resolved state counting
Each product state in the ansatz can be characterized by how many spins are already pinned
to σz eigenvalues (i.e. at Bloch angles θ = 0 or θ = π/2) and how many remain unfrozen at
θ = π/4. We therefore introduce a layer index k = 0,1, . . . , L:

• the layer k consists of all product states with exactly k pinned spins and L− k unfrozen
spins.

The total number of distinct configurations in layer k is

Sk =
A
L

k

B
2k, (A.1)

because we choose which k sites are pinned (
!L
k

"
choices), and for each pinned site we choose

between |0⟩ and |1⟩ (2k choices). One can check that
qL
k=0 Sk = (1 + 2)L = 3L, consistent with

having three logical statuses per spin (unfrozen, pinned to 0, pinned to 1).
We now track, for each layer k and each ITP step t:

• Fk(t) = expected frontier size in layer k at step t, i.e. the expected number of states with
k pinned spins that are first created at step t;

• Dk(t) = expected total number of distinct states with k pinned spins that have been
discovered up to and including step t.

We initialize at imaginary-time step t = 0 with a single unfrozen state:
F0(0) = 1, D0(0) = 1, Fk(0) = 0, Dk(0) = 0 for k ≥ 1. (A.2)

At step t, the total frontier size and the total number of distinct states are then

N(t) :=
LØ
k=0

Fk(t), Dtot(t) :=
LØ
k=0

Dk(t). (A.3)

Note that Dtot(t) includes the initial t = 0 state, so the pool size after t steps is |S(t)| ≈ Dtot(t).

98



A.2 – Mean-field growth of the frontier manifold

A.2.1 Local clause statistics within a fixed layer
Consider a typical frontier parent in layer k at step t − 1. It has k pinned spins and L − k
unfrozen spins. A 3-SAT clause acts on three distinct variables drawn uniformly from {1, . . . , L}.
We classify the local intersection by the pair (u, f), where u is the number of unfrozen and f
the number of frozen spins touched by the clause:

• (u, f) = (3,0): three unfrozen, zero frozen,

• (u, f) = (2,1): two unfrozen, one frozen,

• (u, f) = (1,2): one unfrozen, two frozen,

• (u, f) = (0,3): zero unfrozen, three frozen.

The corresponding combinatorial weights are

N3,0(k) =
A
L− k

3

B
, (A.4)

N2,1(k) =
A
k

1

BA
L− k

2

B
, (A.5)

N1,2(k) =
A
k

2

BA
L− k

1

B
, (A.6)

N0,3(k) =
A
k

3

B
, (A.7)

and
!L

3
"

= N3,0(k) +N2,1(k) +N1,2(k) +N0,3(k) is the total number of three-site subsets.
We now introduce a compatibility parameter

ρ ∈ [0,1], (A.8)

defined as the probability that a literal acting on a pinned spin requests the same computational-
basis value as the one already pinned.

If one considers a completely unbiased clause ensemble where positive and negative literals
occur with equal probability and are independent of the current state, a single literal on a
pinned spin is true with probability 1

2 : this would give a natural “bare” value ρbare = 1
2 .

However, in the actual frontier-based ITP dynamics the clauses are not applied to independent
random spin configurations: the frontier states have already survived several imaginary-time
steps, correlations between different clauses build up, and configurations that are strongly
incompatible with many clauses tend to disappear early. As a result the effective probability
that a clause which touches pinned spins produces a useful child is substantially lower than the
naive ρbare.

We therefore treat ρ as a phenomenological parameter that summarizes, in a single number,
all those effects that the present mean-field model does not resolve explicitly:

• the fact that the ITP clause set is fixed and reused at every step, rather than freshly
resampled at each application;

• nontrivial correlations between different pinned spins in the frontier states, which make
some parents much “harder” to extend than others;

• the strong concentration of candidate children in a small region of the layer space, which
effectively enhances clone production.
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In Sec. A.2.4 below we determine this effective value ρeff directly from small system sizes,
finding a nearly L–independent estimate ρeff ≈ 0.1 that yields an excellent quantitative match
with the measured frontier growth, as shown in Fig. 4.4.

With this in mind, and under a mean-field independence ansatz, we classify the local effect
of a clause on a parent in layer k as follows:

• a (3,0) clause is always compatible and freezes three new spins,

• a (2,1) clause is compatible with probability ρ and freezes two new spins when compatible,

• a (1,2) clause is compatible with probability ρ2 and freezes one new spin when compatible,

• a (0,3) clause freezes no new spins and is irrelevant for growth.

We therefore define

p0(k;L, ρ) = N3,0(k)!L
3
" , (A.9)

p1(k;L, ρ) = ρN2,1(k)!L
3
" , (A.10)

p2(k;L, ρ) = ρ2 N1,2(k)!L
3
" , (A.11)

as the probabilities that a random clause produces a locally valid child with ∆k = 3,2,1 new
pins, respectively, when acting on a parent in layer k. The total local success probability is

ploc(k;L, ρ) = p0(k;L, ρ)+p1(k;L, ρ)+p2(k;L, ρ) =
!L−k

3
"

+ ρ
!k

1
"!L−k

2
"

+ ρ2 !k
2
"!L−k

1
"!L

3
" . (A.12)

Given a parent in layer k at step t − 1, the expected numbers of candidate children it
produces in layers k + 3, k + 2, k + 1 (before resolving global clones) are

Y
(t)
k→k+3 = Fk(t− 1)M p0(k;L, ρ), (A.13)

Y
(t)
k→k+2 = Fk(t− 1)M p1(k;L, ρ), (A.14)

Y
(t)
k→k+1 = Fk(t− 1)M p2(k;L, ρ), (A.15)

where M is the total number of clauses and Fk(t− 1) the expected number of frontier parents
in layer k at step t− 1.

Summing over all possible parents, the total number of candidate children landing in layer
k′ at step t is

Y
(t)
k′ =

LØ
k=0

è
Y

(t)
k→k′

é
, (A.16)

where Y (t)
k→k′ is nonzero only when k′ = k + 1, k + 2, or k + 3 and k′ ≤ L.

A.2.2 Global collisions via occupancy in each layer
The counting in the previous subsection treats each locally valid candidate child as if it were
automatically a new state. In reality, many candidates coincide with product states that have
already appeared at earlier steps, or even earlier within the same step. To capture this global
clone effect in a controlled way, we apply a standard occupancy (balls-in-boxes) argument within
each layer k′ separately.
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A.2 – Mean-field growth of the frontier manifold

At the beginning of step t, layer k′ already contains, on average, Dk′(t− 1) distinct product
states, out of the total Sk′ possibilities given by Eq. (A.1). Thus the number of configurations
in layer k′ that have not yet been seen is

Uk′(t− 1) = Sk′ −Dk′(t− 1). (A.17)

During step t, the clauses acting on the frontier generate on average Y (t)
k′ candidate children

that fall into layer k′ [Eq. (A.16)]. In the mean-field model we treat these candidates as Y (t)
k′

independent draws from a uniform distribution over the Sk′ possible configurations in that layer
(with replacement).

Consider one particular configuration C in layer k′ that is still unseen at the beginning of
step t. In a single draw, the probability that the candidate equals C is

Pr(hit C in one draw) = 1
Sk′

.

Therefore, the probability of not hitting C in a single draw is 1−1/Sk′ , and after Y (t)
k′ independent

draws the probability that C has never been selected is

1
1− 1

Sk′

2Y (t)
k′
.

The complementary event is that C is hit at least once, with probability

Pr(C is selected at least once) = 1−
1
1− 1

Sk′

2Y (t)
k′
.

By symmetry, every unseen configuration in layer k′ has the same probability to be selected at
least once during step t. Let us denote by Newk′(t) the number of distinct unseen configurations
in layer k′ that are hit at least once. If we label the Uk′(t − 1) unseen configurations by an
index i and introduce indicator random variables

Xi =

1, if configuration i is hit at least once in step t,

0, otherwise,

then

Newk′(t) =
Uk′ (t−1)Ø
i=1

Xi.

All Xi have the same expectation,

E[Xi] = 1−
1
1− 1

Sk′

2Y (t)
k′
.

Using linearity of expectation we obtain

E[Newk′(t)] = Uk′(t− 1)
è
1−

1
1− 1

Sk′

2Y (t)
k′ é

. (A.18)

In the mean-field evolution we identify this expectation with the deterministic quantity

Newk′(t) = Uk′(t− 1)
è
1−

!
1− 1

Sk′

"Y (t)
k′
é
, (A.19)

which is precisely the occupancy formula used in our recursion. Intuitively, Newk′(t) corrects
the naive candidate count Y (t)

k′ for the fact that many candidates fall on configurations that
were already visited or collide with each other within the same step.
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We now interpret
Fk′(t) = Newk′(t) (A.20)

as the expected size of the frontier in layer k′ at step t (i.e. the number of states first created at
step t in that layer), and update the cumulative distinct count in that layer according to

Dk′(t) = Dk′(t− 1) + Newk′(t). (A.21)

Together with the candidate counts Y (t)
k′ from Eq. (A.16), Eqs. (A.19) and (A.21) completely

specify the mean-field evolution at the level of each layer k′.
Finally, the total frontier size and total distinct count at step t are

N(t) =
LØ
k=0

Fk(t), Dtot(t) =
LØ
k=0

Dk(t), (A.22)

so that, by construction, Dtot(t) ≤
qL
k=0 Sk = 3L for all t.

It is convenient to define an effective average proliferation factor between steps t− 1 and t as

βt−1 :=

N(t)/N(t− 1), N(t− 1) > 0,

0, N(t− 1) = 0,
(A.23)

so that, at the coarse-grained level, N(t) ≈ βt−1 N(t− 1). The detailed layer-resolved dynamics
is however fully encoded in Eqs. (A.1), (A.12), (A.16), and (A.19).

A.2.3 Asymptotic behaviour and saturated basis size
The qualitative behaviour of the coupled recursions (A.16)–(A.21) can be summarized as follows.

Early steps: almost ideal branching. At very small t we have Dk(t) ≈ 0 for k > 0, with
D0(0) = 1, and almost all frontier weight is in the k = 0 layer. In this regime Uk(t) ≈ Sk for all
k, and the occupancy factor 1− (1− 1/Sk)Y

(t)
k is close to 1 whenever Y (t)

k is not extremely small.
Thus, almost every locally valid candidate child is also globally new, and the layer-resolved
growth is close to the “ideal” law where each frontier parent produces M distinct children.

Intermediate steps: local pruning and layer filling. As t increases, frontier weight flows
to larger k because each successful clause adds 1, 2, or 3 pins. Two effects then suppress growth:

1. Increasing k reduces the local success probability ploc(k;L, ρ) in Eq. (A.12), because
clauses are increasingly likely to encounter frozen spins with incompatible literals or to
touch only already-pinned spins. This effect reduces Y (t)

k′ .

2. Within each layer k′, the occupancy factor Uk′(t− 1)/Sk′ decreases as Dk′(t− 1) grows
and the layer fills up. Even when Y (t)

k′ is large, the expected number of new configurations
Newk′(t) saturates once Dk′(t− 1) is comparable with Sk′ .

Both mechanisms shrink Fk(t) and hence N(t); correspondingly, βt decreases from its initial
value of order M .

Late steps: frontier extinction and plateau. For sufficiently large t, essentially all layers
with nonzero Fk(t) have either: (i) almost all spins pinned (k close to L), so that ploc(k;L, ρ) ≈ 0,
or (ii) are already densely populated (Dk(t) ≈ Sk), so that Uk(t) ≈ 0. In both cases, Eq. (A.19)
yields Newk(t) ≈ 0, and therefore Fk(t) ≈ 0 for all k. At that point N(t) → 0 and Dtot(t)
saturates to a finite limit

D⋆ := lim
t→∞

Dtot(t), (A.24)
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A.2 – Mean-field growth of the frontier manifold

which we call the saturated basis size.
Beyond the corresponding saturation depth t⋆, the frontier-based ITP no longer generates

new product states; it only redistributes amplitudes among the D⋆ states in the variational
manifold. Since each product state carries L single-qubit angles and one global amplitude, the
number of variational parameters for t ≥ t⋆ scales as

Nparams(t ≥ t⋆) ∼ D⋆(L+1). (A.25)

Scaling with system size and number of steps. For a coarse-grained scaling analysis
it is useful to neglect the layer structure and treat Dtot(t) as a single population. In this
approximation, an average frontier state produces λ candidate children per step, and the
global occupancy correction acts on the total configuration space of size 3L. The evolution of
D(t) ≡ Dtot(t) is then schematically

D(t+1)−D(t) ≈ λD(t)
5
1− D(t)

3L
6
, (A.26)

which is a discrete logistic equation. Passing to a continuum variable t ∈ R and writing
a ≃ log(1 + λ) we obtain

dD

dt
= aD

3
1− D

3L
4
. (A.27)

The solution with initial condition D(0) = D0 is

D(t;L) = 3L
1 +B e−at

, B = 3L
D0
− 1. (A.28)

This form makes the interplay between L and t explicit. Introducing the rescaled depth
θ = t/L and using 3L = eL ln 3 we can rewrite Eq. (A.28) as

D(t;L)
3L ≈ 1

1 + exp
#
L(ln 3− aθ)

$ (L≫ 1). (A.29)

Three regimes emerge:

• For fixed t and L→∞, the denominator is large and D(t;L) grows only as O(1) with L:
the system has not had time to explore the exponentially large configuration space.

• For t proportional to L, t = θL, we obtain a scaling form

D(t;L) ∼ exp
#
Lf(θ)

$
, f(θ) = min

!
aθ, ln 3

"
. (A.30)

In particular, for θ < θc = ln 3/a the growth is quasi-exponential in the number of steps,
D(t) ∝ eat, while for θ > θc the curve saturates to D⋆ ∼ 3L.

• For fixed L and t→∞, Eq. (A.28) recovers the plateau D⋆(L) ∝ 3L.

Even though this scalar approximation ignores the detailed layer structure, it captures the key
qualitative message: for physically relevant depths t = O(L) the number of distinct product
states generated by the frontier dynamics grows exponentially in L up to a saturation value

D⋆(L) ∼ exp(γL), ln 2 < γ ≤ ln 3, (A.31)

with γ set by the effective growth rate a and hence, in practice, by ρeff and the clause density
M/L. The numerical results of Sec. A.2.4 below confirm this picture and allow us to determine
γ more precisely for the parameter regime of interest.
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A.2.4 Numerical mean-field curves and comparison with ITP data
The layer–resolved recursions derived above were implemented numerically for system sizes
L ∈ {6,8,10}, with clause counts M ≈ 4.3L (rounded to the nearest integer). For each L we
initialize

F0(0) = 1, D0(0) = 1, Fk(0) = Dk(0) = 0 for k ≥ 1,

iterate the layer equations up to T = 10 steps, and record

N(t) =
LØ
k=0

Fk(t), Dtot(t) =
LØ
k=0

Dk(t).

Effective compatibility parameter. As discussed in Sec. A.2.1, the bare value ρbare = 1/2
that one would assign to an isolated literal on a pinned spin leads to a mean-field manifold
size that overshoots the measured ITP frontier by roughly one order of magnitude already at
L = 10. To obtain a quantitatively faithful description we therefore treat ρ as an effective
parameter ρeff and fix it by matching the mean-field curves to the ITP data for small system
sizes.

Concretely, for each trial value of ρ we evaluate Dmf
tot(L, t; ρ) from the recursions and compare

it to the manifold size DITP(L, t) measured in the full frontier simulation, for L = 6,8,10 and
t = 1,2,3. We then minimize the sum of squared deviations in log10 D,

L(ρ) =
Ø

L∈{6,8,10}

3Ø
t=1

è
log10 D

mf
tot(L, t; ρ)− log10 D

ITP(L, t)
é2
,

over a grid of ρ values. This procedure yields a nearly L–independent optimum

ρeff ≃ 0.12, (A.32)

which we use in all the numerical mean-field curves shown here and in Fig. 4.4(b,c) of the main
text.

The comparison between the calibrated mean-field prediction for Dtot(t) and the measured
ITP manifold growth for L = 3,5,8,10 is displayed in Fig. 4.4: panel (a) corresponds to DITP(t),
while panels (b) and (c) show N(t) and Dtot(t) obtained from the recursions with ρeff ≈ 0.1.
On the logarithmic scale used there the agreement is essentially perfect: both the initial
exponential burst and the saturation plateaux are captured quantitatively by the mean-field
model once the effective compatibility parameter is fixed. This supports the interpretation of
ρ as a phenomenological parameter that absorbs the combined effects of clause correlations,
heterogeneous parents, and strong concentration of the frontier in a small region of the layer
space.

With ρ fixed once and for all to ρeff = 0.1, the mean-field model becomes a genuine predictive
tool for larger instances where a full ITP simulation would be costly. Figure 7.1 in chapter 6
shows Dtot(t) obtained from the recursions for L = 20,30 with M ≃ 4.3L and the same value of
ρeff . In all cases, we observe the same qualitative pattern as at small L and in Fig. 4.4:

• a short burst regime where the manifold size grows almost exponentially in the number of
steps, Dtot(t) ∝ eat with an L–independent rate a > 0;

• a crossover to a plateau at a depth t⋆(L) = O(L), in line with the scaling analysis of
Sec. A.2.3;

• a saturated manifold size D⋆(L) that scales exponentially with L and, for the parameters
considered here, lies well above the Hilbert-space dimension 2L while still remaining below
the full product-state count 3L.
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A.2 – Mean-field growth of the frontier manifold

The last point is crucial for our variational strategy. Because the frontier-based ansatz is an
overcomplete set of product states, there is no fundamental obstruction to having D⋆(L) > 2L:
one can always express the same subspace with more redundant vectors. However, once Dtot(t)
becomes comparable to or larger than 2L the number of variational parameters Nparams ∼
Dtot(t)(L+1) ceases to be competitive with a direct parametrization in the computational basis.
The mean-field results of Fig. 4.4 and Fig. 7.1 therefore support the practical choice, used
throughout this work, of restricting the ITP depth to a small number of steps: this keeps the
manifold firmly in the regime Dtot(t)≪ 2L where the frontier-based ansatz provides a genuine
compression of the relevant Hilbert space.
Summary. The layer–resolved mean-field model developed in this appendix is a direct
coarse-grained counterpart of the frontier-based ITP dynamics discussed in Sec. 4.4. Local
clause statistics — encoded in the probabilities p0(k), p1(k), p2(k) and in the derived quantities
ploc(k;L, ρ) and ∆k(k;L, ρ) — capture how often a clause can consistently add new pins to
a typical parent state and by how much. Global clone effects are then incorporated layer by
layer via the occupancy factor Uk(t− 1)

#
1− (1− 1/Sk)Y

(t)
k

$
, which reduces the naive candidate

count Y (t)
k to the expected number of truly new configurations in each layer.

Two additional ingredients are essential for quantitative accuracy. First, we recognize that
the compatibility parameter ρ entering p1(k) and p2(k) must be interpreted as an effective
quantity ρeff that folds into a single number the correlations, heterogeneity and enhanced clone
production that the simple mean-field model does not resolve explicitly. Second, we fix ρeff ≈ 0.1
empirically by matching the mean-field plateau heights to the ITP manifold sizes for small
systems L = 6,8,10 and using exactly the same value to generate the curves in Fig. 4.4(b,c).
With this calibration in place, the mean-field model not only reproduces the measured frontier
growth for those sizes, but also predicts that for larger instances the total number of distinct
product states generated by the frontier-based ITP grows quasi-exponentially with depth and
eventually saturates at a value D⋆(L) ∼ eγL that, for our parameters, far exceeds 2L. Beyond
this saturation depth, increasing the number of ITP steps only enlarges an already overcomplete
manifold and offers no practical advantage over working in the full Hilbert space, justifying our
focus on shallow ITP schedules in the main text.
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A.3 Efficient evaluation of the TDVP metric and force
The explicit expressions of the TDVP metric tensor Sw̄ and force vector Fw̄ for our multi–product
ansatz, as derived in Chapter 4, are algebraically simple but computationally expensive. They
contain, for each pair of replicas (λ, µ) and indices (i, j), products of the formÙ

k /=i,j
cos
!
θλk − θµk

"
× sin

!
θµi − θλi

"
sin
!
θλj − θµj

"
, (A.33)

together with sums over all replicas weighted by the amplitudes aλ. A naive implementation
would recompute similar products repeatedly for each component of Sw̄ and Fw̄, leading to a
very unfavorable scaling in both the number of replicas D and the number of qubits L.

A.3.1 Algebraic factorization of trigonometric products
The key idea behind our implementation is to factor out, whenever possible, the full product of
cosine overlaps between replicas,

Cλµ ≡
L−1Ù
k=0

cos
!
θλk − θµk

"
, (A.34)

and to express all remaining terms in terms of ratios such as

tan
!
θλi − θµi

"
=

sin
!
θλi − θµi

"
cos
!
θλi − θµi

" . (A.35)

For instance, the “new” expression for the angular–angular block of Sw̄, already reported in
Ansantz_updated as
!
Sw̄
"
∂θλi

,∂θµj

= aλaµ Cλµ ×
I
− tan

!
θλi − θµi

"
tan
!
θλj − θµj

"
, i /= j,

1, i = j,
− (projected terms),

(A.36)
is exactly obtained from the original product form by writingÙ
k /=i,j

cos
!
θλk − θµk

"
sin
!
θµi − θλi

"
sin
!
θλj − θµj

"
=
C
L−1Ù
k=0

cos
!
θλk − θµk

"D sin
!
θµi − θλi

"
cos
!
θλi − θµi

" sin
!
θλj − θµj

"
cos
!
θλj − θµj

"
= Cλµ tan

!
θµi − θλi

"
tan
!
θλj − θµj

"
, (A.37)

and similarly for the mixed (a, θ) and (a, a) blocks, where Cλµ appears naturally as the overlap
⟨ρλ|ρµ⟩ of product states.

The same strategy is applied to the force vector Fw̄: the expectation values ⟨Ψ|Hc|Ψ⟩ and
⟨Ψ|HT |Ψ⟩ (and their derivatives) are reorganized so that all dependence on (λ, µ) outside
the clause structure factorizes through Cλµ and a small number of additional precomputed
quantities. Concretely, for the clause Hamiltonian Hc we write

⟨Ψ|Hc|Ψ⟩ =
Ø
λ,ν

aλaν Cλν
Ø

c:(y,z,h)
B

(c)
λν , (A.38)

where B(c)
λν contains only local trigonometric factors on the three qubits in clause c. For the

driver term HT we similarly use a precomputed product

C
(T )
λν =

L−1Ù
k=0

+
Bk,λ

--Ak,ν, =
L−1Ù
k=0

è
cos θλk sin θνk + sin θλk cos θνk

é
, (A.39)

together with its derivative with respect to θλi.
From a mathematical point of view, these manipulations are exact whenever cos(θλi−θµi) /= 0

for all replicas and qubits. What changes is the way the expressions are organized: instead of
evaluating many products with one or two factors removed, we precompute the full product
Cλµ and reconstruct the “excluded” products by division.
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A.3 – Efficient evaluation of the TDVP metric and force

A.3.2 Impact on computational complexity
Let D be the number of product states (replicas) and L the number of qubits. The naive
evaluation of Sw̄ scales roughly as

O
!
D2L3" (A.40)

for the angular–angular block alone: for each pair (λ, µ) and each pair of sites (i, j) one has
to form a product over all k /= i, j, which is O(L). The mixed and (a, a) blocks introduce
additional contributions of comparable cost.

With the factorized form we instead proceed in two stages:

1. Precompute all angle differences and their trigonometric functions,

∆θλµk = θλk − θµk, cos ∆λµk, sin ∆λµk, (A.41)

together with the full products

Pλµ =
L−1Ù
k=0

cos ∆λµk. (A.42)

This stage costs O(D2L) operations.

2. Reconstruct all needed “excluded” products as

P
(−i)
λµ = Pλµ

cos ∆λµi
, P

(−i,−ℓ)
λµ = Pλµ

cos ∆λµi cos ∆λµℓ
, (A.43)

and build the blocks of Sw̄ and Fw̄ using these precomputed arrays. Each matrix element
is then obtained with a small, fixed number of arithmetic operations.

As a result, the overall cost of constructing Sw̄ scales as

O
!
D2L2", (A.44)

which is parametrically faster than the naive O(D2L3) behaviour for moderate and large L. A
similar reduction is obtained for the computation of the force vector Fw̄, where the precomputed
products Cλν and C(T )

λν are reused in all derivatives with respect to both the amplitudes aλ and
the angles θλi.

In practice this reorganization drastically reduces the runtime of each TDVP step and makes
it feasible to work with significantly larger values of (D,L) than would be accessible with a
direct implementation of the analytic formulas.

A.3.3 Division by small cosines and numerical regularization
The price to pay for factoring out the full product Cλµ is that all the “excluded” products
are obtained by dividing by one or two factors cos(θλi − θµi). Analytically, this is completely
harmless as long as these cosines are nonzero: the simplified formulas are exactly equivalent to
the original ones. Numerically, however, two issues may appear:

• For generic parameters, cos(θλi − θµi) can become very small, amplifying rounding errors
and potentially producing very large entries in Sw̄ and Fw̄.

• In the pathological case where a difference hits exactly a point of the form θλi − θµi =
π/2 + nπ, the denominator would vanish, and the naive floating–point division would
produce overflows or NaN.
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To tame these issues, we adopt two complementary strategies:

1:In the NumPy/Numba implementation, we introduce a tiny regularization parameter ε =
10−12 and replace

1
cos ∆λµi

−→ 1
cos ∆λµi + ε

, (A.45)

and similarly for products of two cosines. This prevents divisions by zero and limits the growth
of the entries when cos ∆λµi becomes extremely small. Since we work in double precision and
typical values of cos ∆λµi are far larger than 10−12, the induced bias is negligible at the scale of
the statistical and systematic errors discussed in the main text.
2: The linear system

Sw̄ δw̄ = −γ Fw̄ (A.46)

is solved with the MINRES–QLP algorithm [25], which is specifically designed for symmetric,
possibly indefinite, and nearly singular systems. MINRES–QLP is robust against moderate
ill–conditioning of Sw̄ and allows us to work safely even when some directions in parameter
space are weakly constrained.

Together, these two ingredients ensure that the algebraic simplification based on the Cλµ
factors leads to a numerically stable and efficient implementation of the TDVP update.
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A.4 – Imaginary time TDVP: implementation details

A.4 Imaginary time TDVP: implementation details

A.4.1 Pseudocode for the metric Sw̄

For clarity, we summarize the main steps of the optimized computation of the TDVP metric
here. The parameter vector is ordered as

w̄ =
!
a0, . . . , aD−1; θ0,0, . . . , θ0,L−1; . . . ; θD−1,0, . . . , θD−1,L−1

"
, (A.47)

so that the metric Sw̄ is a matrix of size (D +DL)× (D +DL).

Algorithm 3 Efficient computation of the TDVP metric Sw̄ (precomputations)
Require: Amplitudes aλ; angles θλi; regularization parameter ε
Ensure: Intermediate arrays for building Sw̄

1: D ← number of replicas; L← number of qubits
2: Initialize S as a (D +DL)× (D +DL) zero matrix

Precompute angle differences and trigonometric factors
3: for λ = 0, . . . , D − 1 do
4: for µ = 0, . . . , D − 1 do
5: for k = 0, . . . , L− 1 do
6: ∆θλµk ← θλk − θµk
7: cos ∆λµk ← cos(∆θλµk)
8: sin ∆λµk ← sin(∆θλµk)

Precompute full and excluded cosine products
9: for λ = 0, . . . , D − 1 do

10: for µ = 0, . . . , D − 1 do

11: Pλµ ←
L−1Ù
k=0

cos ∆λµk

12: for i = 0, . . . , L− 1 do
13: P

(−i)
λµ ← Pλµ

cos ∆λµi + ε

14: for i = 0, . . . , L− 1 do
15: for ℓ = 0, . . . , L− 1 do
16: P

(−i,−ℓ)
λµ ← Pλµ

cos ∆λµi cos ∆λµℓ + ε

Precompute auxiliary sums
17: for j = 0, . . . , D − 1 do

18: A2j ←
D−1Ø
ν=0

aν Pjν

19: for λ = 0, . . . , D − 1 do
20: for i = 0, . . . , L− 1 do

21: S2λi ← aλ

D−1Ø
ν=0

aν P
(−i)
λν sin

!
θνi − θλi

"
22: for µ = 0, . . . , D − 1 do
23: for i = 0, . . . , L− 1 do

24: S3µi ← aµ

D−1Ø
η=0

aη P
(−i)
ηµ sin

!
θηi − θµi

"
25: return Pλµ, P (−i)

λµ , P (−i,−ℓ)
λµ , A2j , S2λi, S3µi, and the zero matrix S
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Algorithm 4 Efficient computation of the TDVP metric Sw̄ (assembly)

Require: Precomputed Pλµ, P (−i)
λµ , P (−i,−ℓ)

λµ , A2j , S2λi, S3µi; zero matrix S
Ensure: Metric matrix S ∈ R(D+DL)×(D+DL)

1: D ← number of replicas; L← number of qubits

Fill the (a, a) block
2: for j = 0, . . . , D − 1 do
3: for k = 0, . . . , D − 1 do
4: Sj,k ← Pjk − A2j A2k

Fill the (θ, θ) block
5: for λ = 0, . . . , D − 1 do
6: for µ = 0, . . . , D − 1 do
7: for i = 0, . . . , L− 1 do
8: for ℓ = 0, . . . , L− 1 do
9: if i = ℓ then

10: term1← aλaµ P
(−i)
λµ cos

!
θλi − θµi

"
11: else
12: term1← aλaµ P

(−i,−ℓ)
λµ sin

!
θµi − θλi

"
sin
!
θλℓ − θµℓ

"
13: corr← S2λi S3µℓ
14: Map (λ, i) and (µ, ℓ) to global indices p, q ∈ {0, . . . , D +DL− 1}
15: Sp,q ← term1− corr

Fill the mixed (a, θ) and (θ, a) blocks
16: for j = 0, . . . , D − 1 do
17: for µ = 0, . . . , D − 1 do
18: for i = 0, . . . , L− 1 do
19: term← aµ P

(−i)
jµ sin

!
θji − θµi

"
20: Sblock ← term− A2j S3µi
21: Map (µ, i) to global index q
22: Sj,q ← Sblock
23: Sq,j ← Sblock ▷ S is symmetric
24: return S

A.4.2 Efficient computation of the TDVP force for the clause Hamil-
tonian

In this appendix we summarize the optimized implementation used to evaluate the TDVP
force Fw̄ associated with the clause Hamiltonian Hc. The state |Ψ(w̄)⟩ depends on a set of real
amplitudes {aλ}D−1

λ=0 and angles {θλk}k=0,...,L−1
λ=0,...,D−1, where D is the number of replicas and L the

number of qubits. The TDVP force components are given by

Fj = ⟨∂wj Ψ|Hc|Ψ⟩ − ⟨∂wj Ψ|Ψ⟩ ⟨Ψ|Hc|Ψ⟩ , (A.48)

with parameters wj ∈ {aλ} ∪ {θλk}.
The classical Hamiltonian Hc is constructed from a 3-SAT instance, encoded as a list of

clauses C. Each clause is first mapped to two integer arrays: one containing the qubit indices of
its literals and one storing their signs. We then precompute all trigonometric factors that enter
the overlaps and the expectation value ⟨Ψ|Hc|Ψ⟩. The same precomputed tables are reused to
evaluate all derivatives with respect to aλ and θλk and, finally, to assemble the force vector.
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A.4 – Imaginary time TDVP: implementation details

Algorithm 5 Precomputations for the TDVP force Fw̄ (classical Hamiltonian Hc)
Require: Amplitudes aλ; angles θλk; clause list C
Ensure: Clause arrays, precomputed trigonometric data and energy ⟨Ψ|Hc|Ψ⟩

1: D ← number of replicas; L← number of qubits
2: Convert the clause list C to arrays c_q, c_s (qubit indices and literal signs ±1)

Precompute trigonometric tables
3: for λ = 0, . . . , D − 1 do
4: for k = 0, . . . , L− 1 do
5: cos θλk ← cos(θλk)
6: sin θλk ← sin(θλk)
7: for λ = 0, . . . , D − 1 do
8: for ν = 0, . . . , D − 1 do
9: for k = 0, . . . , L− 1 do

10: ∆θλνk ← θλk − θνk
11: cos ∆λνk ← cos(∆θλνk)

12: tan ∆λνk ←
I

tan(∆θλνk), | cos ∆λνk| > ε,

0, otherwise

13: Cλν ←
L−1Ù
k=0

cos ∆λνk

Compute the classical energy ⟨Ψ|Hc|Ψ⟩
14: ⟨Ψ|Hc|Ψ⟩ ← 0
15: for λ = 0, . . . , D − 1 do
16: for ν = 0, . . . , D − 1 do
17: clause_sum← 0
18: for each clause c in C do
19: val_clause← 1
20: for each literal index j in clause c do
21: q ← c_q[c, j] ▷ qubit index
22: s← c_s[c, j] ▷ sign s ∈ {+1,−1}
23: denom← cos ∆λνq

24: if |denom| < ε then
25: val_clause← 0; break
26: if s = −1 then
27: val_clause← val_clause · cos θλq cos θνq

denom
28: else
29: val_clause← val_clause · sin θλq sin θνq

denom
30: clause_sum← clause_sum + val_clause
31: ⟨Ψ|Hc|Ψ⟩ ← ⟨Ψ|Hc|Ψ⟩+ aλaν Cλν clause_sum
32: return c_q, c_s, cos θ, sin θ, cos ∆, tan ∆, Cλν , ⟨Ψ|Hc|Ψ⟩
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Algorithm 6 Efficient computation of the TDVP force Fw̄ (derivatives and assembly for Hc)
Require: Amplitudes aλ; precomputed cos θ, sin θ, cos ∆, tan ∆, overlaps Cλν , clause arrays

c_q, c_s, and energy Ec = ⟨Ψ|Hc|Ψ⟩
Ensure: Force vector Fw̄ of length D +DL

1: D ← number of replicas; L← number of qubits
2: Initialize F as a zero vector of length D +DL

Derivatives w.r.t. aλ
3: for λ = 0, . . . , D − 1 do

4: ∂aλ
⟨Ψ|Ψ⟩ ←

D−1Ø
ν=0

aν Cλν

5: ∂aλ
⟨Ψ|Hc|Ψ⟩ ←

D−1Ø
ν=0

aν Cλν
#
clause factor from Hc as in Alg. 5

$

Derivatives w.r.t. θλi
6: for λ = 0, . . . , D − 1 do
7: for i = 0, . . . , L− 1 do

8: ∂θλi
⟨Ψ|Ψ⟩ ←

D−1Ø
ν=0

aλaν Cλν
#
− tan ∆λνi

$
9: ∂θλi

⟨Ψ|Hc|Ψ⟩ ← sum over ν and clauses c using cos θ, sin θ, cos ∆, tan ∆ and the
local clause structure (c_q, c_s), as in the analytic TDVP formulas

Assemble the force vector
10: for λ = 0, . . . , D − 1 do
11: Faλ

← ∂aλ
⟨Ψ|Hc|Ψ⟩ − ∂aλ

⟨Ψ|Ψ⟩ Ec
12: for λ = 0, . . . , D − 1 do
13: for i = 0, . . . , L− 1 do
14: Fθλi

← ∂θλi
⟨Ψ|Hc|Ψ⟩ − ∂θλi

⟨Ψ|Ψ⟩ Ec
15: return F (first the D entries Faλ

, then the DL entries Fθλi
)
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A.5 – Action of the TDVP metric tensor as a linear operator

A.5 Action of the TDVP metric tensor as a linear oper-
ator

A.5.1 S as an Operator
In the TDVP (or SR) equation

Sw̄ δw̄ = −γ Fw̄, (A.49)

the matrix Sw̄ is defined component-wise by

(Sw̄)j,k = ⟨∂wj Ψ|∂wk
Ψ⟩ − ⟨∂wj Ψ|Ψ⟩ ⟨Ψ|∂wk

Ψ⟩ , wj , wk ∈ {aλ, θλi }. (A.50)

In practice we never form Sw̄ explicitly as a dense matrix. Krylov solvers such as MINRES-QLP
only need the action of Sw̄ on a trial vector v. This appendix derives closed-form formulas for
y = Sw̄v, written in terms of analytically computable overlaps of our variational ansatz.

Parameter indexing
We split the variational parameters into:

• the amplitudes aλ,

• the Bloch angles θλi (site i in configuration λ).

A generic vector v in parameter space is then

v ≡
)
v(a)
µ

*
µ
∪
)
v

(θ)
j,µ

*
j,µ
,

where v(a)
µ is the component along aµ and v(θ)

j,µ is the component along θµj . The output y = Sw̄v
will have the same block structure:

y ≡
)
y

(a)
λ

*
λ
∪
)
y

(θ)
i,λ

*
i,λ
.

Shorthand definitions
For compactness we define the following quantities, all determined by the current parameters
{aλ, θλi } of the ansatz

|Ψ⟩ =
Ø
λ

aλ

L−1p
k=0

1
cos θλk |↑k⟩+ sin θλk |↓k⟩

2
.

Configuration overlaps.

Cλµ :=
L−1Ù
k=0

cos(θλk − θ
µ
k ), (A.51)

Sλµ := aλaµ Cλµ, (A.52)
tλµi := tan(θλi − θ

µ
i ). (A.53)

Mixed amplitude–overlap factors.

Rλµ := aµ Cλµ. (A.54)

Note that Rλµ is not symmetric in (λ, µ).
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Projected overlaps with |Ψ⟩. These combinations appear in the projector terms ⟨∂Ψ|Ψ⟩ ⟨Ψ|∂Ψ⟩:

Aλ :=
Ø
ν

Rλν =
Ø
ν

aν Cλν = ⟨∂aλ
Ψ|Ψ⟩ , (A.55)

Eµ :=
Ø
η

Rηµ =
Ø
η

aη Cηµ = ⟨Ψ|∂aµΨ⟩ , (A.56)

Bλi :=
Ø
ν

Sλν [−tλνi ] =
Ø
ν

aλaν Cλν [− tan(θλi − θνi )] = ⟨∂θλ
i
Ψ|Ψ⟩ , (A.57)

Dµj :=
Ø
η

Sηµ [+tηµj ] =
Ø
η

aηaµ Cηµ tan(θηj − θ
µ
j ) = ⟨Ψ|∂θµ

j
Ψ⟩ . (A.58)

Important: Bλi carries a minus in front of tλνi , while Dµj carries a plus in front of tηµj . This
sign structure is what ensures the correct projector subtraction.

Angle components of the output: y(θ)
i,λ

The component y(θ)
i,λ corresponds to the parameter θλi . It receives contributions from both

angle-type inputs v(θ) and amplitude-type inputs v(a):

y
(θ)
i,λ = y

(θ)
i,λ

--
θ←θ + y

(θ)
i,λ

--
a←a.

(i) Angle–angle block (θ ← θ). The matrix element for two angle parameters (θλi , θ
µ
j ) is

S
(θ,θ)
(i,λ),(j,µ) = ⟨∂θλ

i
Ψ|∂θµ

j
Ψ⟩ − ⟨∂θλ

i
Ψ|Ψ⟩ ⟨Ψ|∂θµ

j
Ψ⟩ (A.59)

= Sλµ
è
δij − (1− δij) tλµi tλµj

é
− BλiDµj . (A.60)

Acting on the “angle part” v(θ) gives

y
(θ)
i,λ

--
θ←θ =

Ø
µ

Ø
j

S
(θ,θ)
(i,λ),(j,µ) v

(θ)
j,µ

=
Ø
µ

Sλµ

C
v

(θ)
i,µ

1
1 + (tλµi )2

2
− tλµi

Ø
j

tλµj v
(θ)
j,µ

D
− Bλi

Ø
µ

Ø
j

Dµj v
(θ)
j,µ. (A.61)

The square bracket is the “direct” piece ⟨∂Ψ|∂Ψ⟩, while the last term comes from the projector
subtraction −⟨∂θλ

i
Ψ|Ψ⟩ ⟨Ψ|∂θµ

j
Ψ⟩.

(ii) Angle–amplitude block (a← a). For parameters (θλi , aµ) we find

S
(θ,a)
(i,λ),( a,µ) = ⟨∂θλ

i
Ψ|∂aµΨ⟩ − ⟨∂θλ

i
Ψ|Ψ⟩ ⟨Ψ|∂aµΨ⟩ (A.62)

=
è
− aµ Cλµ tλµi

é
− BλiEµ (A.63)

= −Rλµ tλµi − BλiEµ, (A.64)

using Rλµ = aµCλµ. Its action on v(a) is

y
(θ)
i,λ

--
a←a =

Ø
µ

S
(θ,a)
(i,λ),( a,µ) v

(a)
µ

=
Ø
µ

è
−Rλµ tλµi − BλiEµ

é
v(a)
µ . (A.65)
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(iii) Total angle output. Combining the two contributions:

y
(θ)
i,λ = y

(θ)
i,λ

--
θ←θ + y

(θ)
i,λ

--
a←a, (A.66)

with y
(θ)
i,λ

--
θ←θ and y

(θ)
i,λ

--
a←a given in Eqs. (A.61) and (A.65).

Amplitude components of the output: y(a)
λ

Now consider the component y(a)
λ , associated to parameter aλ. It is sourced by both angle-type

inputs and amplitude-type inputs:

y
(a)
λ = y

(a)
λ

--
θ←θ + y

(a)
λ

--
a←a.

(i) Amplitude–angle block (θ ← θ). For parameters (aλ, θµj ):

S
(a,θ)
(a,λ),(j,µ) = ⟨∂aλ

Ψ|∂θµ
j
Ψ⟩ − ⟨∂aλ

Ψ|Ψ⟩ ⟨Ψ|∂θµ
j
Ψ⟩ (A.67)

=
è
aµ Cλµ t

λµ
j

é
− AλDµj (A.68)

= Rλµ t
λµ
j − AλDµj . (A.69)

Acting on v
(θ)
j,µ:

y
(a)
λ

--
θ←θ =

Ø
µ

Ø
j

S
(a,θ)
(a,λ),(j,µ) v

(θ)
j,µ

=
Ø
µ,j

è
Rλµ t

λµ
j − AλDµj

é
v

(θ)
j,µ. (A.70)

(ii) Amplitude–amplitude block (a← a). For parameters (aλ, aµ):

S
(a,a)
(a,λ),(a,µ) = ⟨∂aλ

Ψ|∂aµΨ⟩ − ⟨∂aλ
Ψ|Ψ⟩ ⟨Ψ|∂aµΨ⟩ (A.71)

= Cλµ − AλEµ. (A.72)

Its action on v
(a)
µ is

y
(a)
λ

--
a←a =

Ø
µ

S
(a,a)
(a,λ),(a,µ) v

(a)
µ

=
Ø
µ

è
Cλµ − AλEµ

é
v(a)
µ . (A.73)

(iii) Total amplitude output. Thus

y
(a)
λ = y

(a)
λ

--
θ←θ + y

(a)
λ

--
a←a, (A.74)

with y
(a)
λ

--
θ←θ and y

(a)
λ

--
a←a given in Eqs. (A.70) and (A.73).

Summary
Eqs. (A.66) and (A.74) together provide the full matrix-free action

y = Sw̄v,

i.e. they tell us how to compute the product of the TDVP metric tensor Sw̄ with an arbitrary
parameter-space vector v without ever assembling or inverting Sw̄ as a dense matrix. This is
precisely what is required by Krylov solvers such as MINRES-QLP, which only rely on repeated
evaluations of v → Sw̄v.
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A.5.2 Explicit Sw̄ vs. operator form, and Krylov convergence
At each TDVP step we solve the linear system

Sw̄ δw̄ = −γ Fw̄, w̄ = {aλ, θλi }, (A.75)

where Sw̄ is the TDVP (stochastic reconfiguration) metric tensor, and Fw̄ is the corresponding
force vector. We have implemented and benchmarked two numerically distinct ways of applying
this update:

1. Dense-matrix approach (Smatrix). We explicitly build the restricted TDVP metric Sw̄
as a dense matrix in the effective subspace spanned by the currently “active” replicas {ρλ}
(the top-coherence configurations we keep after pruning). We then regularize it with a
small diagonal shift Sw̄ → Sw̄ + ϵ I, and solve the linear system either by a direct dense
solver or by a Krylov method on that explicit matrix.

2. Matrix-free / operator approach (Sop). We never construct Sw̄ as a matrix. Instead,
we provide MINRES-QLP with a callable linear operator

v −→ Sw̄v,

implemented analytically from the closed-form TDVP metric expressions ⟨∂wj Ψ|∂wk
Ψ⟩ −

⟨∂wj Ψ|Ψ⟩ ⟨Ψ|∂wk
Ψ⟩ . This completely avoids storing a (Deff+DeffL)× (Deff+DeffL) dense

matrix, which is essential when Deff and L become large.

Both approaches are formally correct: they generate TDVP updates that drive the parameters
{aλ, θλi } along a projected imaginary-time descent direction that lowers the cost function in the
restricted variational manifold.

However, in practice we observe a striking numerical difference: MINRES-QLP needs
dramatically more iterations to converge when using the operator form Sop than when using
the explicit matrix Smatrix, even with the same tolerance (rtol = 10−10), the same maximum
iteration cap (maxit = 104), and the same effective replica subspace. Concretely, with Smatrix
the Krylov solve typically converges in a relatively small number of iterations. With Sop under
identical conditions, MINRES-QLP often either takes orders of magnitude more iterations, or
hits the iteration cap before fully reducing the residual.

This behaviour is consistent with three numerical effects:

(i) Near-singular conditioning due to gauge-like directions. In our ansatz the ampli-
tudes aλ and the angles θλi are not all physically independent. There are directions in parameter
space that change the overall normalization of |Ψ⟩, or reshuffle weight among replicas without
altering the physical state very much. Those directions show up as very small eigenvalues of
Sw̄, i.e. Sw̄ is extremely ill-conditioned. When we build Smatrix on the already-pruned effective
set of replicas, we are implicitly removing a lot of this redundancy, which improves the effective
conditioning. By contrast, in the pure operator version Sop the Krylov solver still “sees” essen-
tially all those almost-null (gauge-like) directions. MINRES-QLP then interprets the system as
nearly singular and keeps iterating in an attempt to find a numerically stable solution.

(ii) Imperfect symmetry / projector enforcement at the operator level. By con-
struction,

Sw̄ = ⟨∂Ψ|∂Ψ⟩ − ⟨∂Ψ|Ψ⟩ ⟨Ψ|∂Ψ⟩

is supposed to be real-symmetric and (after projection orthogonal to |Ψ⟩) positive semi-definite.
In the explicit Smatrix path, we assemble all blocks (aa, aθ, θa, θθ), subtract the projector
terms, and then symmetrize numerically. We also add a small diagonal regularizer ϵI, which
both enforces symmetry and lifts tiny eigenvalues.
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A.5 – Action of the TDVP metric tensor as a linear operator

In the Sop path, symmetry and the projector subtraction are reproduced “on the fly” inside
the matvec routine v → Sw̄v. Tiny floating-point differences (loop ordering, rounding in the
tan(θλ−θµ) terms, etc.) mean that the operator that MINRES-QLP actually experiences is
only approximately symmetric and positive-definite. Krylov methods like MINRES-QLP are
very sensitive to this: even a small violation of symmetry or a slight drift in the null space
projection can drastically worsen the effective conditioning seen by the solver, causing the
residual to decay much more slowly.

In summary, the matrix-free Sop implementation is algorithmically correct; however, in
practice, it is much harder for MINRES-QLP to solve to a high tolerance, and the solver tends
to hit the maximum number of iterations. The explicit Smatrix approach converges in far fewer
Krylov iterations under the same stopping criteria because (a) it works in a pruned subspace
with fewer gauge-like directions, (b) we can explicitly symmetrize and regularize the matrix,
and (c) the resulting linear system is effectively better conditioned.

Because of this, our pragmatic strategy is:

• For “small” and “medium” instances, where the effective subspace size Deff is still numeri-
cally manageable and the dense Smatrix fits in memory, we prefer the explicit matrix
solve. It is simply faster in wall-clock time because Krylov converges in a handful of
iterations.

• We reserve the fully matrix-free Sop route for larger systems, where storing Smatrix
becomes prohibitive in memory. In that regime, even if MINRES-QLP requires many
iterations, Sop is still our only viable option: it allows us to apply the TDVP update
without ever materializing a (Deff+DeffL)2 matrix.

In other words, Sop is the scalable path, but it comes with a strong numerical penalty in
terms of the Krylov iteration count. Smatrix is numerically kinder and converges quickly, but it
does not scale in memory once the manifold (i.e. the number of replicas ρλ times the number of
angles per replica) becomes too large.
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Figure A.1: Manifold size D during two-step ITP with soft compression for the L = 40,
M = 172 instance.

A.6 Soft-compressed frontiers at L = 40 and L = 50
In this appendix, we collect the diagnostics for the softly compressed two-step frontiers used in
Sec. 7.2.3, focusing on the same L = 40 and L = 50 instances discussed there. The goal is not
to provide a detailed case-by-case analysis, but simply to contrast soft compression with the
aggressively compressed frontiers shown in the main text.

Overall, the picture is consistent across both sizes. For the hard L = 40 instance, the
soft-compressed frontier manages to lower the energy but keeps an extremely small probability
on the satisfying assignments, which is much smaller than in the aggressively compressed run.
For the solved L = 50 instance, soft and aggressive compression lead to essentially the same
convergence behavior in both energy and solution probability, but the soft scheme does so
with a manifold that is much larger than M+1. In both regimes, therefore, the soft procedure
is dominated by the aggressive one: it is either less effective at building solution weight (at
L = 40), or no more accurate but substantially more expensive (at L = 50).

A.6.1 L = 40, M = 172: failed instance with soft compression
Figure A.1 shows the growth of the manifold size during two-step ITP with soft sensitivity-based
compression for the hard L = 40, M = 172 instances. The final frontier remains of order 103

replicas, much smaller than the hypothetical uncompressed two-step frontier but considerably
larger than the aggressively compressed manifold of Fig. 7.26.

The corresponding TDVP diagnostics are reported in Figs. A.4–A.2. The total probability
of solutions remains extremely small throughout the run, despite a clear overall decay of the
energy. Compared to the aggressive case in Figs. 7.28–7.29, soft compression yields a lower
solution probability at comparable or higher computational costs.

A.6.2 L = 50, M = 215: solved instance with soft compression
We now turn to the solved L = 50, M = 215 instance considered in Sec. 7.2.3. Figure A.3 shows
the manifold size during ITP with soft compression: the two-step frontier reaches Dfinal ∼ 2×103

replicas before TDVP, to be compared with the aggressively compressed frontier in Fig. 7.27,
which enforces Dfinal = M + 1 = 216.

Despite this large difference in manifold size, the TDVP dynamics is qualitatively very
similar for soft and aggressive compression. As shown in Fig. A.6, the total probability on
solutions and the probability of the best solution undergo a sharp freezing transition and
saturate close to one, while the energy decays rapidly to the ground-state value. These trends
mirror those of Fig. 7.31 and Fig. 7.32 for the aggressively compressed frontier.

The replica-selection histogram in Fig. A.5 confirms that the TDVP active set concentrates
on a relatively small subset of energetically important replicas. However, because the soft
manifold is much larger than M+1, each TDVP step is significantly more expensive than in

118



A.6 – Soft-compressed frontiers at L = 40 and L = 50

Figure A.2: Replica-selection frequency across the TDVP evolution for the softly compressed
L = 40 frontier. The active set keeps revisiting a relatively small subset of replicas, but without
ever producing a macroscopic solution weight.

Figure A.3: Manifold size D during two-step ITP with soft compression for the solved L = 50,
M = 215 instance.

the aggressive case. In this sense, the soft scheme offers no clear accuracy advantage for this
instance while incurring a much higher computational cost.
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(a) Solution probabilities.

(b) Energy expectation ⟨Ψ|H|Ψ⟩.

Figure A.4: TDVP diagnostics for the softly compressed two-step frontier at L = 40, M = 172.
The energy decreases significantly, but the total probability on satisfying assignments remains
orders of magnitude below the aggressively compressed case of Figs. 7.28 and 7.29.
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A.6 – Soft-compressed frontiers at L = 40 and L = 50

Figure A.5: Replica-selection frequency across the TDVP evolution for the softly compressed
L = 50 frontier. As in Fig. 7.33, a small backbone of replicas is selected very often, but here it
is embedded in a much larger manifold.
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(a) Solution probabilities.

(b) Energy expectation ⟨Ψ|H|Ψ⟩.

Figure A.6: TDVP diagnostics for the softly compressed two-step frontier at L = 50, M = 215.
The convergence to the satisfying manifold and to the ground-state energy is essentially
equivalent to that of the aggressively compressed frontier in Figs. 7.31 and 7.32, but achieved
with a much larger manifold.
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