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Abstract

Graph Neural Networks (GNNs) have proven to be a powerful tool for
machine learning tasks on static graphs, such as node classification, link
prediction, and graph classification. However, many real-world networks are
dynamic in nature, with edges and node attributes changing over time. Fully
dynamic GNN architectures successfully capture temporal patterns, but they
often come with high computational costs, complex training pipelines, and
limited scalability.

This thesis investigates an alternative approach: mapping dynamic graphs
into an equivalent static representation, enabling the use of simpler and more
efficient GNN models while still preserving essential temporal information.
We study the problem in the context of supervised dynamic link predic-
tion, introducing two dynamic-to-static graph mapping strategies and several
GNN architectures designed to operate on the resulting representations.

Our experiments highlight the benefits and limitations of this approach.
We show that lightweight, static models can achieve competitive performance
on dynamic link prediction tasks when supported by carefully constructed
temporal graph snapshots. At the same time, we identify key challenges that
limit the expressiveness of purely static representations, including embedding
scarcity, cold-start issues, and the difficulty of capturing long-range temporal
dependencies.

Overall, this work positions dynamic-to-static graph mappings as a prac-
tical middle ground between static GNNs and fully dynamic architectures.
The proposed framework offers a scalable and modular alternative for learn-
ing on temporal networks, while also opening several opportunities for future
development in temporal encoding and hybrid dynamic architectures.
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Chapter 1

Introduction

Many aspects of our lives can be naturally represented using graphs. So-
cial networks, recommendation systems, mobility patterns, power grids, and
even physical experiments all exhibit underlying relational structures that
can be modeled as networks. While early graph analysis relied on classical
algorithms and predefined structural measures, more recent work has shifted
toward graph representation learning approaches, beginning with the pio-
neering Graph Convolutional Networks (GCNs) [25], which introduced an
expressive, learnable framework for node representation learning.

Over the years, increasingly expressive architectures have been proposed,
beginning with the earliest GCNs [25], progressing to attention-based ap-
proaches such as GAT [50], and extending to inductive frameworks like
GraphSAGE [14]. These models are built on the principle of message ag-
gregation from neighboring nodes, enabling effective learning on both homo-
geneous and heterogeneous graph structures. The resulting SOTA models
span a wide range of applications and support a rapidly growing research
area that is increasingly essential in modern data-driven systems. Never-
theless, static graph representations overlook important aspects that only a
fully dynamic formulation, where information changes over time, can cap-
ture. The temporal behavior of a system is often crucial, revealing patterns
and dependencies that would remain hidden if one relied exclusively on a
fixed, time-independent version of the data.

From this need emerged the study of temporal graphs, along with a va-
riety of methods developed to analyze their structure and dynamics. Early
approaches built upon preexisting static graph techniques: temporal data
was converted into a series of fixed snapshots on which traditional GNNs
were applied, at the cost of losing temporal information due to fragmenta-
tion. The following step was the introduction of discrete-time models (e.g.
EvolveGCN [35], DySAT [41]) that explicitly encode the evolving nature of
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the graph across successive snapshots. In parallel, continuous-time models
such as Temporal Graph Networks (TGN) [39], TGAT [52], and DyRep [49]
were developed, representing events as lists of temporally ordered interac-
tions. These approaches enable temporal graph analysis to fully exploit the
continuous evolution of the system, capturing dynamics that snapshot-based
methods might miss and providing a richer foundation for subsequent studies.

However, both lines of study have limitations. Continuous-time approaches
often require complex architectures and operate on fine-grained temporal in-
formation, resulting in high computational costs and scalability challenges
if applied on large datasets. Discrete-time models, while being simpler, still
suffer from information loss due to snapshot discretization and may struggle
with irregular event intervals, similar to the earlier static implementations.
Additionally, many of these models rely on task-specific encoders that are
not easily generalizable to new datasets or tasks.

Building on these ideas, our work proposes an alternative pathway that
draws on the well-established classical static GNNs to interpret a transformed
representation of the original dynamic graphs. The idea is to preserve tem-
poral ordering and event dependencies, effectively capturing the advantages
of continuous-time models, while discretizing the interactions in a controlled
manner to reduce complexity and computational cost, as in discrete-time
models. By unifying these aspects, we aim to retain crucial temporal infor-
mation for tasks such as Dynamic Link Prediction, while benefiting from the
simplicity, flexibility, and generalizability of static GNN architectures. To
achieve this, we adopt a Supra-Adjacency representation, an approach intro-
duced by Oettershagen, Kriege, Morris, and Mutzel [34] and subsequently
applied in unsupervised settings by Sato et al. [42] and by Piaggesi and
Panisson [37]. By mapping the input graph into a static structure through
a specific transformation process, the initial temporal dependencies are di-
rectly incorporated into the graph’s topological core. The resulting static
model thus inherently encodes the temporal ordering within its connections
and their directionalities.
However, this approach introduces certain trade-offs: while simpler model ar-
chitectures become feasible, this comes at the cost of a significantly increased
graph size and an additional layer of complexity in transforming the original
temporal graph. Moreover, our focus on these studies shifts toward a super-
vised setting, which requires careful management of temporal dependencies
to prevent any risk of data leakage.

In view of the aforementioned analysis, this thesis focuses on the imple-
mentation and evaluation of this method, particularly guided by the following
research questions:

RQ1: Temporal Consistency. How can we construct a mapping from
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continuous-time temporal graphs to static representations that strictly pre-
serves the chronological order of events, thereby preventing data leakage and
ensuring the validity of the predictive model?

RQ2: Complexity Trade-offs. What are the implications of this ap-
proach regarding computational resources? Specifically, does the reduction
in architectural complexity offered by static GNNs justify the increased com-
putational cost associated with processing the larger, mapped input graphs?

RQ3: Methodological Efficacy. Can a Supra-Adjacency representa-
tion effectively encode temporal dependencies into a static topological struc-
ture to solve supervised tasks (in our particular case a Dynamic Link Pre-
diction), with performance comparable to native dynamic models?

Having established the main objectives of this work, we now outline the
contributions developed in this thesis:

• We have adapted the Supra-Adjacency Framework to address a Dy-
namic Link Prediction task in a supervised setting.
To this end, we constructed a robust pipeline that ensures the complete
translation of temporal edges into a static format, generates coherent
negative edges, and adapts the original task to the transformed data;

• To prevent data leakage in the supervised context, we introduce two
graph representations that, by managing the allocation of edges inher-
ently shared across different temporal splits, ensure a correct separation
of variables;

• In the experimental setting, we introduce an additional “warm-up”
module that operates on all nodes not involved in the learning phase.
This module is carefully designed to align with the conceptual frame-
work we developed, in which self-edges represent the temporal evolution
of individual nodes, while event edges capture the original interactions;

• After implementing all feasible improvements, we conducted a sys-
tematic ablation study on the Wikipedia dataset, demonstrating that
highly sparse static representations pose significant challenges to stan-
dard GNN encoders. Based on these results, we establish a more
competitive “decoder-only” baseline, providing a foundation for future
work, such as static-dynamic hybrid architectures.

Hereafter, we briefly illustrate the structure of this work:

• Chapter 2 - Background: Introduces static and temporal graphs, in-
cluding definitions, historical context and applications. It finally intro-
duces the original Supra-Adjacency matrix by Oettershagen et al. [34]
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and its modification by Sato et al. [42], which form the study’s starting
point;

• Chapter 3 - Methods: Presents the core of the study. It details the
transformation to the static graph, the handling of positive and nega-
tive edges, the adaptation of dynamic link prediction to the supervised
context, and the methodologies implemented to prevent data leakage;

• Chapter 4 – Experimental Setting: Applies the methodologies
to the Wikipedia dataset from TGB, testing four approaches. After
limited results, a node embeddings ablation study is performed, leading
to the final decoder-only approach, intended as a baseline for future
work;

• Chapter 5 – Results: Presents results for each experimental variant,
analyzing outcomes and justifying applied refinements;

• Chapter 6 - Conclusion: Summarizes the work and addresses the
research questions.

In summary, in this thesis we explore the feasibility of applying classi-
cal GNNs to dynamic graphs by transforming the original temporal graph
into a static representation. Our goal is to investigate whether static mod-
els, when combined with strategies for mapping dynamic to static graphs,
can effectively capture temporal patterns without relying on fully dynamic
GNN frameworks. Along the way, we discuss the main challenges inherent to
this approach and identify potential strategies for developing more effective
models.
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Chapter 2

Background

In this chapter, we introduce the concept of graphs and discuss their rele-
vance. We then define the essential building blocks of graph theory required
for the subsequent discussion, beginning with the basic definition of a graph
and its fundamental components, followed by an introduction to heteroge-
neous and bipartite graphs. Thus, we present the main tasks performed on
graphs, focusing on node classification and link prediction.

This initial motivational and definition section is followed by an overview
of the key architectures developed to operate on graphs: Graph Neural Net-
works (GNNs). After a brief historical review, we focus in particular on the
Message-Passing Neural Network (MPNN) framework and one of its notable
representative, GraphSAGE.

Finally, the chapter concludes with a description of the category of graphs
and corresponding architectures central to this study: temporal graphs. We
provide their definitions, a concise historical context and introduce the Supra-
Adjacency representation, which is specifically applied in our work.

Graph Representations: Relevance and Appli-

cations

Graphs represent effective structures for modeling complex systems. When-
ever multiple elements interact, a graph provides a clear and intuitive model
of these relationships. While simple systems may be captured with direct or
minimal representations, more complex systems often require network-based
representations to reveal their essential structure, as seen in domains such
as network science, social networks, and biology [1, 18, 29]. Graph struc-
tures support a variety of tasks: at the node level, classification or anomaly
detection can be performed, while at the edge level, link prediction or edge
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labeling can be addressed [25, 14, 32]. Consequently, graphs provide a uni-
fying framework in which many real-world and theoretical phenomena share
intrinsic structural characteristics, exhibiting common mathematical [7] or
network-related [24, 2] properties.

Recognizing their relevance, research has expanded both conceptually and
in applied contexts, as well as in the architectures developed to operate on
graphs [46], ensuring that a variety of data and research questions can be
effectively modeled and analyzed.

Graph Theory Fundamentals

After discussing the relevance of graphs, we now proceed to introduce some
formal definitions.

A Graph is a mathematical structure used to model relationships be-
tween objects. Formally, a graph G is defined as a pair [7, 53]:

G = (V,E)

where:

• V is the set of vertices (or nodes), representing entities or objects;

• E is the set of edges, representing relationships or connections between
nodes.

Edges can be described as:

• Directed or undirected, depending on whether they impose an ori-
entation on the connection between nodes;

• Weighted or unweighted, depending on the presence of an associated
numerical value.

Figure 2.1: Graph representation of an undirected and unweighted graph.
Node (A) and edge (B,C) are highlighted in red.
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Two other definitions which are relevant are:

• Heterogeneous Graphs: A graphG = (V,E, TV , TE) containing mul-
tiple types of nodes and/or edges, where TV is the set of node types and
TE is the set of edge types. This formulation allows modeling complex
systems with diverse entities and relationships.

• Bipartite Graphs: Graphs in which the nodes can be divided into
two disjoint sets such that each edge connects a node from one set to
a node in the other. Formally,

G = (V,E) is bipartite if


V = U ∪W,
U ∩W = ∅,
E ⊆ U ×W

It is worth mentioning that a bipartite graph is a special case of a
heterogeneous graph with exactly two node types and a single edge
type.

Figure 2.2: Heterogeneous graph ex-
ample.

Figure 2.3: Bipartite graph exam-
ple.

Graph-Based Learning Tasks

Two fundamental learning tasks commonly addressed in graph-based ma-
chine learning are [25, 15, 56]:

• Node Classification: The objective is to infer node labels from a
subset of vertices with known values. The model employs both the
graph structure and available node or edge features to infer the labels
of the remaining nodes;
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• Graph Classification: The task consists in assigning a single label to
an entire graph. The model aggregates information from all nodes and
edges, capturing their overall relationships to generate a comprehensive
graph-level representation, which is then used to predict the graph’s
label.

• Link Prediction: Link prediction aims to estimate whether a pair of
nodes will form an interaction, with models typically exploiting con-
nectivity patterns and structural proximity to identify missing links or
forecast future connections. As this is the only task applied in our
work (see Section 3.2), we provide a brief overview of the methodol-
ogy, focusing on the most common one for a supervised context: link
prediction with negative sampling [3].

In this approach, effective training requires both positive examples (ex-
isting edges) and negative examples (non-existent edges). Negative
sampling is used to generate these non-existent edges, providing the
model with contrasting cases to learn from. This procedure is particu-
larly relevant in sparse graphs, where the number of potential negative
edges substantially exceeds the positives, and it also helps accelerate
training by ensuring a balanced dataset. Consequently, selecting an
appropriate set of negative edges is essential for achieving reliable and
robust model performance (see Paragraph 3.2 and Appendix B).

Graph Neural Network

Having established fundamental concepts, including the theoretical defini-
tion of a graph, some relevant variants, and the principal tasks that can be
performed on it, we now turn to the principal models designed to operate on
such structures: Graph Neural Networks (GNNs).

The concept of Graph Neural Networks (GNNs) was first formalized by
Scarselli et al.[43], providing a foundational framework for learning over
graph-structured data. This was followed by the introduction of Graph Con-
volutional Networks (GCNs) [25], which extended convolutional operations
from Euclidean domains to graphs. GCNs perform localized, layer-wise prop-
agation by aggregating feature information from a node’s neighbors, allowing
each node to update its representation based on its own features as well as the
graph’s structural context. This approach enabled efficient semi-supervised
learning on graphs and paved the way for a broad range of subsequent graph
neural architectures.
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The general Message-Passing Neural Network (MPNN) framework
[12] further unified these approaches, defining a flexible paradigm in which
each node v ∈ V maintains a hidden state ht

v at iteration t. This representa-
tion is updated at each step by aggregating information from its neighbors
N (v) through message functions. Formally, the framework can be divided
into two stages:

• Message-Passing Phase: For a node v, the message aggregation and
state update are defined as

mt+1
v =

∑
u∈N (v)

Mt(h
t
v, h

t
u, euv), (2.1)

ht+1
v = Ut(h

t
v,m

t+1
v ), (2.2)

where Mt is a message function that computes information from a
neighbor node u and the interaction edge euv, while Ut is an update
function that combines the node’s previous state with the aggregated
message.

• Readout Phase: After T iterations, a readout function R is applied
to obtain a graph-level representation:

ŷ = R({hT
v | v ∈ V }). (2.3)

This iterative aggregation allows each node to capture increasingly global
structural information while retaining the versatility to encode features from
both nodes and edges.

Within this framework, GraphSAGE [14] is a noteworthy example that
we will use, which introduced an inductive approach that enables efficient
representation learning on previously unseen nodes by sampling and aggre-
gating features from local neighborhoods.
For a node v, its representation at layer k + 1 is computed as

hk+1
v = σ

(
W k · AGGREGATE

(
{hk

v} ∪ {hk
u | u ∈ N (v)}

))
, (2.4)

where

– AGGREGATE is a permutation-invariant function (e.g. sum, mean,
max, or LSTM-based aggregation):

– Wk is a learnable weight matrix at layer k;
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(a) Node v and its neighbours N (v) (b) Message creation step

(c) Message aggregation step (d) Representation update step

Figure 2.4: MPNN - Message-Passing Phase steps.

– σ is a non-linear activation;

– N (v) denotes the neighbors of v.

This inductive mechanism allows GraphSAGE to generalize to nodes not seen
during training, improving scalability and applicability to large graphs.

Subsequent developments, including Graph Attention Networks (GATs)
[50], further enhanced the expressiveness of GNNs by introducing attention
mechanisms. These allow nodes to value the importance of their neighbors
differently during aggregation, providing the means for the model to focus on
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the most relevant parts of the graph structure. This improves learning capac-
ity on heterogeneous or noisy networks and represents significant theoretical
and practical advancement in the field.

Dynamic graphs

In recent years there has been growing interest in a precise typology of graphs
known as Dynamic (or Temporal) graphs. Their emergence has become
necessary because even events that could previously be represented with sim-
ple vectors or matrices acquire substantially greater complexity when time
is taken into account. This increased complexity makes traditional modeling
assumptions outdated and demands new approaches to address these chal-
lenges [35, 41]. Classical representations are unable to adequately capture
the evolution of both parameters and structure, an essential capability for
studying real-world phenomena, ranging from biology and disease propaga-
tion [18] to social media interactions [8] and fraud detection [40].

Since our study operates within this well-defined context, it is important to
review previous works in the field in order to understand the crucial aspects
that must be considered throughout our discussion. First, a temporal graph
is formally defined, followed by an introduction of the Dynamic Link Pre-
diction task as a necessary foundation for the discussion; subsequently, the
history of its representations and the methods developed to analyze them are
presented.

Definition (Dynamic Graphs) A dynamic (or temporal) graph differs
from a classical (static) graph (Eq. 2) by the presence of an additional tem-
poral component [39, 16]. We define it as

G = (V,E, T ), (2.5)

where V is the set of vertices, E is the set of edges, and T is the set of
timestamps where the edges exist, the key notion underlying temporal graphs
(Fig. 2.5).
In particular we define each edge as

e = (u, v, t) ∈ E, (2.6)

i.e. e is a temporal edge from vertex u to vertex v that occurs at time
t. Finally, we define v ∈ V to be active if there exists at least one temporal
edge that starts or ends at v.
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Figure 2.5: Example of a Temporal graph.

Definition (Dynamic Link Prediction) Given a temporal graph G =
(V,E, T ), the Dynamic Link Prediction task consists in predicting whether a
link (u, v) will appear at a future time t′ ∈ T . Formally, the goal is to learn
a function

f : (u, v, thist) 7→ ŷuv(t
′)

where ŷuv(t
′) ∈ [0, 1] represents the predicted probability that an edge be-

tween nodes u and v will exist at time t′, conditioned on the observed history
of the temporal graph up to time thist < t′.

Dynamic Link Prediction generalizes the classical link prediction (2) prob-
lem by incorporating the temporal evolution of edges.

Moving forward, a temporal graph can be represented in various ways,
and the models applied to these representations have their own strengths and
drawbacks [22], which are important to understand.
To continue the discussion on the evolution of temporal graphs and graph
neural networks, we draw inspiration from the work of Longa et al. [28].

An early and straightforward approach was to represent temporal graphs
using static structures. However, this approach fails to capture the rich
temporal information inherent in the data: the graph is represented only
by source–destination pairs, completely ignoring the temporal component.
While classical GNN architectures can be applied to such static representa-
tions, this simplification inevitably results in a significant loss of information
and prevents the model from accounting for the dynamics introduced by the
temporal dimension. Shortly after this initial treatment, two other repre-
sentations emerged in parallel: Discrete-Time Dynamic Graphs (DTDGs),
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to which snapshot-based models are applied, and Continuous-Time Dynamic
Graphs (CTDGs), which are instead processed with event-based models.

To be more precise, DTDGs consist of a series of static graphs, each
collecting all the edges that occur within a specific temporal slot1. The most
widely recognized models operating on this representation are EvolveGCN
[35] and DySAT [41], which extend classical GNN architectures to capture the
evolving nature of the graph across snapshots. Despite introducing temporal
knowledge into the modeling process, the snapshot-based approach still fails
to fully exploit the temporal dynamics due to the inherent fragmentation in
its definition.

On the other hand, CTDGs are represented as a list of timestamped
edges. A notable early attempt to address dynamic graph learning in this
event-based setting was the Temporal Graph Network (TGN) [39], which
introduces a dedicated memory module to capture each node’s historical
state and injects it, along with the structural information collected, into
a standard GNN architecture. Several alternative approaches have since
been proposed: DyRep [49], DygFormer [54], and NAT [31], which focus
on neighbor interactions; CAW [51] and Base3 [26], which rely on intrinsic
graph motifs and EdgeBank [38], which adopts a direct edge-based memory
approach, just to name few of them. Each of these models addresses the full
dynamics of graphs in different ways, highlighting the diversity of approaches
in temporal graph analysis and the various factors that must be considered:
it is evident that certain methods perform well under some criteria but fail
under others [38, 22].

It is important to note that methods for DTDGs and CTDGs treat tem-
poral and structural information separately. Structural analysis typically ex-
amines features such as node neighborhoods and network motifs (e.g. triads,
edge patterns, centrality, co-occurrence frequency [34, 31]), whereas tem-
poral analysis captures aspects like event decay over time or node activity
frequency [30, 11]. Eventually, these two types of information are integrated
and processed by a variety of architectures, ranging from Transformers [52,
30] to simple MLPs [20, 22] (or in some cases, used directly without further
modeling) to accomplish the target task.

To conclude, the final category of representations we discuss and adopt
in our work fuses static and temporal information into a single topological
structure. The core idea is to construct a static representation of the graph,
which allows the use of classical GNNs, as they are well-established and
computationally efficient, while still preserving the full temporal knowledge

1An alternative definition exists but is less frequently used: in this version, each snap-
shot collects all edges up to a given timestamp (cumulative snapshots).
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embedded within the graph.

2.1 Supra-adjacency Matrix

There exist multiple definitions of a supra-adjacency matrix [34, 42]. In
this work, we propose a formulation that integrates all essential aspects and
modifications considered necessary for our analysis. For clarity we present a
detailed formulation below, starting from the elementary variables.

“[...] Temporal networks can be seen as a special multilayer network in
which every layer coincides with a timestamp t”[10].
Therefore, defined a temporal graph G = (V,E, T ), we first introduce the
following definitions, adopting a notation similar to that used in [34]:

- Tω, the set of times where edges are incident to ω (i.e. the timestamps
when we define ω as active);
- τω(i), the index in Tω where we can find the timestamp i:

Tω = {tω,a ∈ T | ∃(ω, j, tω,a), ω, j ∈ V, tω,a ∈ T, a ∈ {0, ..., K}}, (2.7)

Tω[τω(i)] = i, (2.8)

where tω,a in the ath timestamp of ω. It is immediate to see that Tω ⊆ T .
Note that, while it is true tω,a = tj,b when there exists (ω, j, tω,a) = (ω, j, tj,b),
the same cannot be said for tω,a and tj,a (and analogously for index b) because
a priori we have no information about the temporal ordering of the next or
previous interactions in which either ω or j participate, and therefore their
respective subsequent timestamps ts.

Considering these definitions we can describe the core idea of the Supra
Adjacency matrix which maps temporal edges E = {(u, v, t) ∈ E | {u, v} ∈
V, t ∈ T} into a set of edges, each having a precise definition inside the
thought process. For the sake of completeness, and since the second definition
is derived from a simplified version of the first, we will present both. However,
in the subsequent discussion, we will use only the more concise second one.

2.1.1 Static Expansion: Additional nodes model

In this first case we adopt the definition proposed by Oettershagen, Kriege,
Morris, and Mutzel [34]: All the original nodes of the temporal graph G =
(V,E, T ) will be mapped into tuples of the kind (node, timestamp) ∈ U .
Likewise, the temporal edges e = {(u, v, t) ∈ E, u, v ∈ V, t ∈ T} will be
mapped into three kinds of edges that are defined in the following way:
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

EN =
{(

(u, t), (v, t+1)
)
,
(
(v, t), (u, t+1)

) ∣∣ ({u, v}, t) ∈ E
}

EW1 =
{(

(w, i+1), (w, j)
) ∣∣ (w, i+1), (w, j) ∈ U, i, j ∈ T (w),

τw(i) + 1 = τw(j), i+ 1 < j
}

EW2 =
{(

(w, i), (w, j)
) ∣∣ (w, i), (w, j) ∈ U, i, j ∈ T (w),

τw(i) + 1 = τw(j), i < j
}

(2.9)

where EN represent the edges bringing the original temporal edge infor-
mation (u, v, t), EW1 are the edges which connect additional nodes necessary
to build the EN edges to the subsequent effective nodes (Fig. 2.6); EW2

connect subsequent effective nodes. In summary, EN carries the original
temporal edge information (i.e. the interaction ground truth e), while EW1

and EW2 preserve the temporal ordering by linking the (node, timestamp)
tuples that correspond to one point of the temporal evolution of the same
node ∈ V in the temporal graph.

This definition was originally developed for a Dissemination process [34],
specifically for undirected graphs (i.e. (u, v, t) = (v, u, t)), which in certain
cases leads to the creation of additional edges. A further remark is that the
model currently operates without node or edge features. Nonetheless, this
limitation is not critical for our initial objectives and can be addressed with
minor modifications, which we will detail in the following sections.

(a) Temporal Graph (b) Static expansion

Figure 2.6: A temporal graph and its static expansion representation. In
the right figure, black edges belong to EN , yellow edges to EW1 , and blue
edges to EW2 . Yellow nodes indicate the additional vertices introduced in
the expansion.
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2.1.2 Modified Static Expansion: No Fictional nodes
model

Henceforth, the approach described corresponds to that proposed by Sato et
al. [42], which defines that, given a temporal graph G = (V,E, T ) with edges
of the form (i, j, t), its static version can be represented by replacing each
node with a tuple (node, timestamp) and each temporal edge with two types
of edges (Fig. 2.7):


Eevent =

{(
(i, ti,a), (j, tj,b+1)

)
,
(
(j, tj,b), (i, ti,a+1)

) ∣∣∣ (i, j, t) ∈ E,

i, j ∈ V, ti,a, ti,a+1 ∈ Ti, tj,b, tj,b+1 ∈ Tj

}
;

Eself =
{(

(i, ti,a), (i, ti,a+1)
) ∣∣∣ i ∈ V, ti,a, ti,a+1 ∈ Ti

}
.

(2.10)

In this formulation, only the effective nodes are used to construct the
edge sets. As a consequence, the introduction of an auxiliary set such as
EW1 , together with its additional intermediate nodes, becomes unnecessary.
Instead, the set Eevent can be interpreted as a modified counterpart of the
previously defined EN , while Eself plays a role analogous to EW2 ensuring
temporal consistency along each node’s evolution.

Their names are in fact not coincidental: Eevent refers to the edges which
represent the events encoded in the original temporal graph, whereas Eself

denotes the self-referential connections of a node (i.e. its temporal evolu-
tion), which ultimately form long chains that we will later exploit in the
implementations discussed in Section 4.3.

Note that, as in the previous subsection 2.1.1, we consider undirected
edges and which do not incorporate node or edge features.

Nevertheless, both constructions remain only partially correct. In the
following chapter, we show what are their specific limitations and propose
an approach to mitigate them.
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(a) Temporal Graph (b) Modified static expansion

Figure 2.7: A temporal graph and its modified static expansion representa-
tion. In the right figure, red edges belong to Eevent while blue ones belong to
Eself .
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Chapter 3

Methods

In this chapter, we present all the logical steps required to obtain an actual
static representation. We begin by refining the Modified Static Expansion
described in paragraph 2.1.2, introducing one or more additional layers nec-
essary to achieve a complete mapping of temporal edges. After the mapping
of positive and negative edges, we proceed defining the two types of static
graphs used in our framework. Finally, we conclude with the ID mapping
step, which is required to make the resulting structure compatible with the
architectures implemented in the following section.

3.1 Observation Layer Representation

As anticipated, the two approaches previously introduced in Sections 2.1.1
and 2.1.2 exhibit two major shortcomings. Although the work of Oettersha-
gen, Kriege, Morris, and Mutzel [34] shows the Static Expansion they propose
fully preserves the information encoded in the original temporal graph, the
resulting representation may be unnecessarily cumbersome.

In particular, it requires the introduction of additional nodes and an
auxiliary edge set EW1 , whose sole purpose is to track their relationships.
Conversely, the lighter version of the Modified Static Expansion as currently
defined does not guarantee the complete transfer of temporal information
throughout the model.

To clarify this second issue and the resulting proposed solution, which
was developed independently but can upon further consideration, be seen
to have some conceptual relation to Section 2.1.1, we introduce a simple
temporal graph along with its corresponding Modified Static Expansion (see
Section 2.1.2). Consider the temporal graph G = (V,E, T ), assumed undi-
rected for simplicity, with:
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V = {i, j, k}; T = {0, 1, 2, 3}; E = {(i, j, 0), (i, k, 1), (j, k, 2), (j, k, 3)}.

Its representation and corresponding modified static expansion are presented
in Fig. 3.1 and Fig. 3.2.

Figure 3.1: Example of temporal graph.

Figure 3.2: Modified static expansion of Fig. 3.1.

If we follow the definition in Eq. 2.10, each temporal edge is expected
to generate a quartet of static edges: two event edges and two self-edges.
However, as illustrated in Fig. 3.2, the event edge that should originate from
(k, t+1) is missing because no corresponding terminal node exists at (i, t+2).
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As a result, the modified static expansion of the temporal edge (i, k, 1) re-
mains incomplete.
It should be noted that this issue, the missing edges resulting from the orig-
inal formulation, cannot happen in the richer definition reported in para-
graph 2.1.1.

The difficulty arises because the model as it is defined preserves all the
original information but is unable to express it fully (i.e. not all mapped
edges can be constructed). To overcome this limitation, we introduce an
additional layer of nodes in the temporal graph representation which are
considered active one timestamp after the last available t ∈ T of the original
model (Fig. 3.3).

Figure 3.3: Temporal graph with additional Observation Layer.

Formally, we treat these nodes as isolated (i.e. they do not participate
in any temporal edge, whether belonging to the original edge set E or oth-
erwise). In their corresponding mapping into the modified static expansion
(Section 2.1.2), they act as structural placeholders that facilitate the transfor-
mation of each temporal edge into its triplet or quartet based representation.
Additionally, they enable the inclusion of a final layer of self-edges, providing
a concluding observation of each node at the end of the event sequence.

This mechanism ensures the information and its transmission are fully de-
fined and preserved, without altering the relationships established in Eq. 2.10.
In fact, the only changes are in the number of nodes and edges in G, which
now include all the properly mapped elements along with the final layer of
self-edges.

Given the discussion above, we refer to this final layer of nodes as the
Observation Layer, since it represents the state of each node observable af-
ter all events have occurred. This conceptual idea is necessary for the two
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(a) Modified static expansion represen-
tation, one mapping edge cannot be cre-
ated.

(b) Observation Layers representation
in the Modified Static Expansion rep-
resentation.

Figure 3.4: Example of the Observation Layer representation.

methodologies we will briefly introduce, but it is particularly crucial for the
development of the second (see Section 3.3.2).

It is also worth noting this concept is not entirely dissimilar to the addi-
tional nodes introduced in Section 2.1.1. However, in this case we carefully
select both the number and configuration of nodes required, which in turn
reduces memory usage, and treat them as an effective component of our
temporal graph, assigning them an actual role (i.e. the Observation phase)
and allowing us to merge the previous edge set EW1 into the single edge set
Eself ∼ EW2 .

Finally, alternative design choices are possible. We adopt this formula-
tion because it aligns naturally with a Temporal Splitting strategy, which
is commonly used when reporting supervised temporal graphs and does not
introduce significant downstream effects. In contrast, Random Splitting may
require a different treatment, potentially suggesting new directions for future
research.

3.2 Dataset Transformation

Positive edges

With the refined temporal graph by incorporating a final layer of Observation
nodes defined, we can now proceed to convert the original set of temporal
edges into its modified static expansion.
Unlike the original given definitions (Eq. 2.10), we will treat more in detail
the case of a bipartite and directed graph: For this reason each temporal
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edge will be mapped not into a quartet of edges (i.e. two event and two
self-edges) but into a triplet one (i.e. one event and two self-edges) since we
do not have to deal with the bidirectionality of the interactions.

Given the Temporal graph G = (V,E, T ), its corresponding mapped ver-
sion can be defined as Gmap = (Vmap, Emap), where Vmap = Vsource,map ∪
Vdestination,map, Vsource,map ∩ Vdestination,map = ∅ made of Vi,map = {(v, t) |
v ∈ Vi, t ∈ Tv, i = {source, destination}} and the original e ∈ E are
mapped in the following three types of independent edges sets eevent ∈
Eevent, eself,source ∈ Eself,source and eself,destination ∈ Eself,destination, defined
in the following way:

Eevent =
{
((i, t), (j, t+ δtj))

∣∣∣ (i, j, t) ∈ E, i, j ∈ V,

t ∈ Ti ∩ Tj, t+ δtj ∈ Tj, Tj[τj(t) + 1] = t+ δtj

}
,

Eself,source =
{
((i, t), (i, t+ δti))

∣∣∣ i ∈ V,

t, t+ δti ∈ Ti, Ti[τi(t) + 1] = t+ δti

}
,

Eself,destination =
{
((j, t), (j, t+ δtj))

∣∣∣ j ∈ V,

t, t+ δtj ∈ Tj, Tj[τj(t) + 1] = t+ δtj

}
.

(3.1)

where we used δti,j to describe the increments in time which are not
necessarily equal to 1 like in subsection 2.1.1, but are generated according to
the time difference between the timestamps where a certain node is active. As
we follow the given definition of 3.1, to not miss any kind of edge, we generate
and add a timestamp layer of active nodes at tobs layer = max(t) + 1, t ∈ T
(i.e. (node, tobs layer) in our case) and we use it to complete the translation
of the various temporal edges. In this way we have created properly the full
static graph we can proceed with.

It is important to emphasize the edges eevent constitute the true trans-
lation of the original temporal interactions (i, j, t). In contrast, the edges
eself,source and eself,destination encode the temporal evolution of the nodes i
and j, respectively, across successive timestamps.
Finally, the extended process of how we to practically execute this translation
is described in appendix A.

22



Link Prediction

A further question to address is how the original Dynamic Link Prediction
task is translated within our framework, which consists of evaluating whether
a given source and destination will interact at a specific timestamp (see para-
graph 2).
If at first a linear transposition would lead us to execute a link prediction for
all the three (or four if the graph is undirected) kinds of edges, then we can
derive, due to the nature of our transposition (Section 2.1.2) and the concep-
tual information of the various sets in relation to the original temporal edges,
that our task can be reduced to a Link Prediction only on the event edges
Eevent (conceptually equivalent to the EN set of Section 2.1.1). Indeed upon
closer examination Eevent is the true provider of the full original informa-
tion. In contrast, Eself,source and Eself,destination (conceptually equivalent to
the EW1 and EW2 sets from Section 2.1.1) carry only a partial information of
the actual interactions and exist primarily for structural-temporal ordering.
We will revisit and extend the role played by these latter edges later in our
work.

Negative edges

Since we are dealing with a (Dynamic) Link Prediction task (section 2) we
have to handle also the existence of negative edges. In general, datasets
provide a negative sampler and auxiliary functions to cover this need, often
including a ready-to-use set of negative edges for the specific task [4].
The literature presents various definitions for a negative edge and specifically
Poursafaei et al. [38], point out how this choice strongly influences both the
evaluation results and the extent to which an architecture relies on past
history or the inductive capabilities provided by the sequence of temporal
edges. Conscious of this previous discussion, we choose to adopt for our
work the definition of a random negative edge: given a positive temporal
edge (src, dst, t), the corresponding negative edge is defined as (src, dstneg, t),
where dstneg is randomly selected and therefore, realistically non-existent at
time t1.

dstineg = {j | (i, j, t) /∈ E and (k, j, t′) ∈ E, i, k, j ∈ V, t ∈ T, t′ ∈ Tj}. (3.2)

where Tj is a subset of T where j is active.

1The variant we choose to discard is the historical one, which selects past existent
source-destination pairs, that however did not occur at the timestamp under consideration.
It is also relevant to note in some cases a random method could end up choosing a historical
variant, although this is very uncommon.
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It is worth noting that t ∈ Tj is also possible if there exists at least one triplet
(z, j, t) with z ̸= i and z, i ∈ V .
Secondly in a supervised setting, the set of timestamps T is replaced by
Ttrain during the learning phase. Therefore, Ttrain contains only the times-
tamps relevant to the training split, and nodes that do not appear in the
training set are excluded from being potential dstneg. This ensures negative
training edges are sampled only from nodes whose history is available dur-
ing training, making the learning process more conservative compared to the
random choice mentioned previously. In this current form, this can be viewed
as a “relaxed historical” variant of negatives rather than a purely random
one (see Appendix B).

The contribution of our approach lies in the actual mapping of these edges
into their respective static versions, which provides an additional degree of
freedom unavailable to previous methods. First, it is important to recall
that this translation differs from the one applied to positive edges: in the
case of negative edges, it is necessary only to translate them into their Eevent

representation, without considering the Eself edges of either kind. This is
because we are exclusively predicting the first type of positive edges, as de-
tailed previously in Section 3.2. Given a potential negative temporal edge
(src, dstneg, t) corresponding to the positive edge (src, dst, t), we have an ad-
ditional degree of freedom. To introduce this new variable, we recall that a
negative edge is mapped to the following (event) edge:

[(src, t), (dstneg, tneg)], (3.3)

where tneg can be chosen with some freedom, constrained only by the re-
quirement that it belongs to the set of available timestamps of the selected
dstneg. This restriction is introduced to avoid memorization catastrophes and
to prevent the model from selecting newly created nodes, which are far more
numerous than the active ones used to form the positive edges. In fact, since
these (potential new) nodes are never involved in the corresponding positive
translations, they would be trivial to detect, being completely isolated from
the original static graph topology, and therefore not meaningful.
Accordingly with this, three options can be considered within this definition
space for selecting tneg and the corresponding variants of negative edges:

1. Hard Negatives, where tneg is chosen by applying the original rules
of eq. 3.1 to dstneg as if it were positive;

2. Weak Negatives, where tneg is chosen at random1, with the only
constraint that it is greater than the original t (tneg > t);
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3. Very Weak Negatives, where tneg is chosen completely at random1

among all available timestamps.

As their names suggest, their complexity and equivalence with the cor-
responding mapped positive event edge decrease along the hierarchy: Hard
negatives could be actual positives if they were simply added to the original
list of temporal edges; Weak negatives still preserve the temporal ordering
between the source and destination while Very Weak Negatives are more
structural in nature, as they are defined purely by the “negative definition”
rather than by Eq. 3.1: they represent edges that can be constructed but
are not positive, following no predefined rules except that they connect pre-
existing node tuples.
Additionally, it is important to ensure that Ti, the set of timestamps for a
given node i, is defined to contain all timestamps required to construct at
least all necessary hard negative edges (i.e. at least one timestamp per node
with t > tmax,i). This requirement does not apply to Weak and Very Weak
negatives, as the timestamps included for Hard negatives already provide
sufficient values for these cases.

Moving towards the supervised context, which will be the core of our
discussion, we need to define how negative edges are constructed within each
split (training, validation, and test). We choose to restrict the generation
of validation and test edges, often provided by the dataset itself [4], to the
Hard negative definition, while allowing the full range of the three negative
edge types and their proportions to vary for the training set.
This strategy is adopted to maintain the highest degree of difficulty dur-
ing the evaluation phase, as the negative edges closely resemble the positive
ones, while the variability among the variants in the training phase, adjusted
through two additional hyperparameters (see Appendix B), aims to foster
inductive capabilities in our approach. Therefore in our discussion we gener-
ate negative edges for the training set with varying proportions among the
three variants, whereas for the validation and test sets, we either translate
the provided negative vectors when available or generate all edges as Hard
negatives.

A more detailed explanation of the mapping of validation and test neg-
ative edges when given, as well as the generation of training negatives, is
provided in Appendix B.

1Chosen uniformly at random among the available timestamps.
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3.3 Managing Data Leakage

3.3.1 Data Splits approach

As we will later see in Chapter 4, the datasets used in the supervised context
have a built-in split method that can be easily transposed. Since we know the
interval to which each original edge belongs, we can place their corresponding
translated edges into that same interval.

The only variation requiring special treatment occurs at the intersection
of splits: if a node (either (source, t) or (destination, t)) appears in two or
more edges belonging to original temporal edges assigned to different splits,
these edges must be handled carefully to avoid data leakage.

A standard approach to prevent unintended information transfer is to
move all edges containing nodes shared across splits into their destination
split. Nonetheless, this method introduces significant challenges in our static
translation. To underline what are the potential issues and possible solutions
let us analyze self and event edges singularly.

Self-Edges case

Self-edges arrangement actually does not lead to particular problems. Ac-
cording to the conceptual framework of self-edges, the two ends of each edge
represent the same node in the original graph, observed at different times-
tamps. Based on this consideration, it is reasonable to think we need to
place each edge on the cross of the splits on the arrival one. Indeed, it is
straightforward to observe that, under this approach, the (node, timestamp)
with the smaller timestamp (hereafter called also the “Past node” since it
is temporally antecedent) initially gathers information from the prior events
and subsequently can pass its state to its corresponding “Future” self node
(i.e. the destination of the self-edge) only in the following split. To conclude,
the standard approach is both applicable and necessary for self-edges.

Event Edges case

A different point of view has to be applied to manage properly the content
of event edges. If we superficially allocate event edges at the cross split into
the destination one we will incur into more than one difficulty: due to the
(Dynamic) Link prediction (Sec. 3.2), we associate to each positive event
edge a list of negative edges. As it is often the case, and as we will discuss
later in Paragraph 4.1.1, we must create the training negative edges man-
ually, whereas the validation and test edges are provided by the dataset.
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Examining the latter cases, we observe that, due to our oversight, each pos-
itive event edge and its corresponding set of negative edges would need to
be moved, thereby compromising the originally provided structure. More-
over, being each negative edge of event type recalling the hypothesis given
in paragraph 3.2, also each Negative edge should belong to a different split
according to its negative destination map.

It is evident that event edges, either positive or negative, must reside in
the source node split to avoid any inconsistencies, unlike what might result
from a standard approach. It is also necessary to ensure this arrangement
is robust against data leakage, as failure to do so would make the model’s
outputs fundamentally flawed. To achieve this, we consider two distinct
cases: Bipartite/Directed and Non-Bipartite/Undirected graphs. We antic-
ipate that the trial dataset Wikipedia previously cited, falls into the first
category, but we will demonstrate how this method can be applied to any
type of dataset.

• Bipartite/Directed case: In this case, as shown in Fig. 3.5a, the
“Future” node can be hit only by “Past” nodes belonging to one of the pre-
vious splits: all the edges in which this node is present are cross edges by
construction rules (see Eq. 3.1). Therefore, we can be confident that the
information arriving at a destination node originates from only one source
split, distinct from the split in which it terminates. It is worth noting that
even if an edge spans the training and test splits (i.e. there is another split in
between), no validation edge could possibly connect to that destination node.
Otherwise, by definition, an additional node (the white one) would exist, and
all incoming edges would instead point to it. In this way the “Future” node
receives only information from the “Past” self (if existent) and all the other
nodes which had interacted with it in the past. Since we are considering a
directed setting, each destination node is connected only to its own “future”
instance through a self-edge (here corresponding to eself,destination). In the first
split, the “Future” node participates in interactions and receives information
from them (in this case, it is reached by training event edges). In the subse-
quent split, it propagates the accumulated information to its next “future”
instance. This procedure ensures that information is not revealed prema-
turely but is instead progressively collected and appropriately transmitted
to the following step.
• Undirected case: In this case the destination node exists only if one
the following two events happens: at least another node interacts with the
“Future” node in a later timestamp and the node becomes

1. The “Past” node which is connected only through a self-edge if the
interaction is not bidirectional (i.e. it is later reached by another source
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and is not the origin of an event edge);

2. The “Past” node is connected through both a self-edge and one or more
event edges otherwise (see Fig. 3.5b).

While case (1) can be directly related to the Bipartite/Directed setting
(Fig. 3.5a), the second case requires a more detailed analysis. In this latter
scenario, during the training phase, the “Future” node first collects informa-
tion (as before, coming only from one previous split by construction) and
then, becoming the “Past” node in the subsequent split (i.e. validation),
it propagates its processed information to its “future” self and to the other
“future” destinations of its event edges. Also in this case, the mechanism
functions correctly, as the node can actively “learn” from its interactions in
the “Past” split and subsequently act upon the next one without losing the
notion of what occurred and how its history affects its state.

(a) Directed/Bipartite case (b) Undirected case

Figure 3.5: Possible cases of event edges across splits. The circled node
represents the main “Future”/“Past” node. Red nodes denote the auxiliary
nodes forming the event edge originating from the “Past” node (Undirected,
case 2). Note that cross self-edges have already been moved to their corre-
sponding destination time split according to 3.3.1.

To summarize, the edges at the cross splits have to be moved:

1. Towards the destination split if they are self-edges;

2. Towards the source split if they are event edges.

This idea could be enforced also observing the core idea behind the tu-
ples (node, timestamp) and edge types definitions: in self-edges it is more
important the destination nodes receive the information after the source has
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elaborated them (i.e. the “Future” has to know about its “Past”, not the
opposite); in event edges instead the source nodes are the only ones which
bring a piece of the original temporal edge (the original source and times-
tamp), while the destination loses the last notion by definition. In this case
is better to keep the edge in the source and then use the destination as an
information channel to the other nodes of the next split.

Finally, it is important to bring attention to another potential critical
issue of this approach, which may have previously gone unnoticed: the pos-
sible scarcity of self-edges in the training and validation phases. If a node
participates only once or twice in a temporal edge within a given split, it
will consequently be associated with only one or two self-edges, one of which,
by construction, lies at the boundary between two splits and is therefore
re-assigned to the destination split according to the previous discussion. As
a result, the earlier split (in particular the training split, which unlike vali-
dation does not receive cross-split self-edges from a preceding interval) may
become depleted of most of its self-edges. This leads to an imbalance and
a substantial reduction in the amount of information available to propagate
through the mapped static graph, with potentially severe consequences.

3.3.2 Observation Layers approach

As discussed in the previous paragraphs, the original methods proposed in
[34, 42] required progressive adjustments to be fully applicable to a super-
vised learning setting. Building on these observations, we developed an initial
methodology in Section 3.3.1, which relies on a precise management of cross-
edge re-allocation among temporal splits. However, since we aim for a more
robust and conservative approach, one that protects against any form of data
leakage and completely eliminates the self-edge depletion that the previous
model may experience, we now introduce an extension of the previously de-
fined concept of observation layers (see paragraph 3.1) to each temporal split.

Thus far we have introduced an additional observation layer temporally pos-
terior to the whole series of actions: the static representation [34] reported in
section 2.1.2 was able to save the information of the original temporal graph
but it was not equally effective to express them fully without this addition
(see Fig. 3.4b). As the name refers to, the observation layer is not an “active”
state for the nodes (i.e. we do not have any kind of actions happening in the
specific temporal moment in which we generate the layer), nonetheless this
is a stage in which the global system is analyzed, allowing us to identify for
each node the effects of a collective set of transformations applied to it.
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The principle of the observation layer is non-interference with the sequence
of temporal edges. This allows us to define as many observation layers as
needed, provided that their definition lies outside the discrete time points
T at which the nodes actually interact. For our purposes, we introduce two
additional layers on top of the final one, resulting in a total of three obser-
vation layers in the global assessment (i.e. one for each time split).
More formally, we define the set of nodes constituting these observation layers
as follows:

Observation Layer = {(node, tobs) | ∃(node, t) ∈ U, (node, tobs) /∈ U

and t < tobs}.
(3.4)

For our problem we have to restrict the range of available tobs to three
elements:

tobs ∈ Tobs lyrs = {tmax,train + δttrain, tmax,val + δtval, tmax,test + δttest} (3.5)

where {tmax,train, tmax,val, tmax,test} ∈ T are the biggest timestamps avail-
able for each specific time split and

tmax,i < tmax,i + δti < tmin,j,

tmax,test < tmax,test + δttest
(3.6)

where

i ∈ {train, val, test}, j ∈ {train, val, test}, i < j

i.e. only the combinations train–val, train–test, and val–test are considered.
These additional nodes are added into Gmap and must be incorporated

into the original construction (Eq. 3.1): the timestamps associated with each
new (node, time) pair are appended to the corresponding Tnode, thereby be-
coming valid sources or destinations for the mapped edge sets. According
to the rules defined in Eq. 2.10, the static graph is augmented with a new
category of self-edges (shown in red and blue in Fig. 3.6c), which do not
originate from temporal interactions but are structurally required to connect
(node, time) pairs across splits.
Consequently, the resulting graph structure is composed of three node clus-
ters (one per split) linked exclusively through these cross-split self-edges,
which remain independent from the original static triplet (or quartet) mapped
static edges (eevent, eself,src, eself,dst)

2. For clarity, Fig. 3.6 provides a small ex-
ample illustrating this remapping approach.
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(a) Temporal graph (b) Modified Static Expansion repr.

(c) Observation Layers approach on the modified static expansion representation

Figure 3.6: Example of the Observation Layer approach variant to a Tempo-
ral graph.

A key aspect of this design is the reduction in the number of nodes within
each observation layer: only nodes actually participating in temporal edges
within a given split are included to the analysis step at observation time.

It should also be emphasized once more the observation layer does not
represent an actual physical observation, but rather serves as an artifact used
by the model to properly cluster temporal splits. Without this mechanism,
the model could gain prior knowledge of which nodes interact during valida-
tion and testing, potentially leading to data leakage. However, as explained

2We applied a lighter notation replacing source and destination with src and dst re-
spectively.
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in this approach and in the one described in paragraph 3.3.1, this scenario
should never occur for our frameworks.

As anticipated, this revised framework resolves the major issue identified at
the end of paragraph 3.3.1: the substantial removal and potential depletion of
self-edges from the training and validation splits that was previously required
to prevent data leakage arising from cross-split edges. Under this design, the
concern is structurally eliminated: Each train, validation, and test split is
augmented with an additional timestamp associated with its corresponding
observation layer, which enforces strict isolation between splits while enabling
all previously moved self-edges to be safely reintegrated into their original
(source) split without risk. To close any remaining sources of criticality,
the introduction of cross self-edges ensures the information accumulated up
to a given split can be reliably propagated to the next one, preserving the
continuity of node identity across time. As a result, the model retains a well-
clustered temporal structure while fully maintaining the separation required
to avoid leakage.

Figure 3.7: Cluster structure of the observation layers implementation.

To conclude this section, we first note the additional observation layers
are also employed during the creation of negative edges, as they are fully in-
tegrated into the originally proposed scheme. Second, the only notable draw-
back is the further increase in node tuples, which could exacerbate memory
requirements on top of the already substantial sets of defined nodes.

3.4 Data Translation - IDs mapping

We have reached the final step before applying our transformation in an ex-
perimental setting, which requires a brief remark regarding the representation
of nodes in the “expanded” version. Since the nodes of the static representa-
tion are defined as tuples (node, time), this format is not directly compatible
with standard GNN architectures. To address this issue, we assign a unique
identifier to each tuple, effectively mapping the temporal nodes back into a
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conventional setting with standard (source, destination) edges. In particu-
lar, we maintain separate ID spaces for source and destination nodes. It is
also important to restate negative edges are constructed using only nodes
that already appear in positive interactions, and therefore require no addi-
tional IDs.

The translation we apply results in a new graph representation in which
the explicit temporal component is no longer present (i.e. the notion of the
individual t ∈ T is lost), but the underlying temporal ordering is safely em-
bedded within the topology and propagated through distinct node and edge
types. Consequently, the resulting structure is a heterograph partitioned
into training, validation, and test sets. We now describe how the remaining
components required for the model to function effectively were prepared.

Node Mappings

As previously discussed, under the hypothesis that we are working with a
bipartite graph, we establish two separate mappings to convert each temporal
node (i, t) into a type-specific node representation, depending on whether i
corresponds to an source or a destination node:

(sourcei, ti)
map−−→ srci,ti (Source nodes), denoted as Vsrc

(destinationj, tj)
map−−→ dstj,tj (Destination nodes), denoted as Vdst

Edge Mappings

We define three distinct edge relations in the static graph, each identified by
a symbolic type:

[(sourcei, ti), (destinationj, tj)]︸ ︷︷ ︸
event

map−−→ (srci,ti ,dstj,tj) ∈ Eevent

[(sourcei, ti), (sourcei, ti + δti)]︸ ︷︷ ︸
self,src

map−−→ (srci,ti , srci,ti+δti) ∈ Eself,src

[(destinationj, tj), (destinationj, tj + δtj)]︸ ︷︷ ︸
self,dst

map−−→ (dstj,tj ,dstj,tj+δtj) ∈ Eself,dst

These three edge types represent, respectively, the event (source– des-
tination interactions), the source self-temporal edges, and the destination
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self-temporal edges. The temporal consistency between the various pairs of
ti and tj follows the definitions introduced in equations (2.7), (2.8) and (3.1).

In addition to the previously defined edge sets, we introduce a reversed
version of the event relation. This is required to support the link predic-
tion task, as message-passing must be able to propagate in both directions
between sources and destinations:

[(destinationj, tj), (sourcei, ti)]︸ ︷︷ ︸
rev event

map−−→ (dstj,tj , srci,ti) ∈ Erev event.
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Chapter 4

Experimental setting

In the following chapter, we provide a brief introduction to the Temporal
Graph Benchmark (TGB) and the specific Wikipedia dataset, which will
serve as the primary trial dataset for our experiments, along with all relevant
details and adjustments required to work with it.

We then proceed with a detailed presentation of the various implementa-
tions we tested, highlighting individually the differences and the key aspects
that motivated each approach.

4.1 Temporal Graph Benchmark

The Temporal Graph Benchmark (TGB) is an organized collection of differ-
ent and challenging datasets designed for realistic, reproducible, and robust
evaluation of machine learning methods on temporal graphs. It supports
both dynamic link prediction and node property prediction tasks, with an
integrated pipeline for dataset downloading, loading, evaluation, and leader-
board submission. Its update 2.0 further expands the benchmark by adding
new datasets for temporal knowledge graphs and temporal heterogeneous
graphs [20]. Among these, we find Wikipedia, which we selected as trial
dataset [27].

4.1.1 Wikipedia Dataset

Belonging to TGB, this dataset represents a co-editing network on Wikipedia
over the span of one month. It is modeled as a bipartite temporal interaction
graph, where nodes correspond to editors and wikipages, and each temporal
edge indicates that a given editor modified a specific page at a particular
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timestamp. Each edge is enriched with textual features derived from the
corresponding page edits.

The objective is to predict which wikipage a user will interact with at
a given time, framing the problem as a temporal link prediction task (see
section 2)[21].

We can define the dataset with a corresponding temporal graph

G = (V,E, T ), Veditors, Vwikipages ∈ V,

V = Veditors ∪ Vwikipages, Veditors ∩ Vwikipages = ∅,

E = { e = (u, v, t) | t ∈ T, u ∈ Veditors, v ∈ Vwikipages }.

Note that later in our discussion, we will implicitly use the slightly mod-
ified notation Ex = {(u, v, t, xuvt) | u, v ∈ V, t ∈ T, xuvt ∈ Rd}, which
accounts for the presence of edge features that were excluded from our initial
analysis, as their specific relevance to the edits was unclear. We adopted this
modification in an attempt to implement approaches similar to some other
models, and we will discuss their utility in our approach [39, 49].

The dataset presents 8,227 editors and 1,000 wikipages, each of them
connected with a total of 157,474 temporal edges. Each temporal edges has
a feature vector of size 172. It is possible to have more than one editor editing
the same wikipage at the same timestamp or more wikipages edited at the
same timestamp by one author (even though these cases are very rare).

From the supervised setting perspective, the dataset provides a predefined
temporal split consisting of 110,232 training edges, 23,621 validation edges,
and 23,621 test edges, following the TGB methodology in which all datasets
are chronologically divided into training, validation, and test sets with 70%,
15%, and 15% of the edges respectively [44].

Regarding negative edges, the TGB framework provides negative sam-
pling and loader functions. Specifically, for Wikipedia during the validation
and test phases, negative edges are made available as vectors of vectors, with
each positive edge associated with a list of all possible negative destinations.
The size of these vectors is almost always 999, with only four exceptions
(two in the validation set and two in the test set), where they contain 998
elements.

This occurs because any destination targeted by one or more temporal
edges at a given timestamp is excluded from the corresponding negative list.
Consequently, in the few cases where a source participates in two temporal
edges at the same timestamp, the vector contains one fewer element.

Since negative training edges are not provided, they must be constructed
from scratch. In general, their number can vary and is denoted as nsamples, a
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value chosen to be as comparable as possible to those in the validation and
test sets. In line with the values provided above we select nsamples = 999 per
positive edge.

We have all that is required: the temporal graph will be mapped into one
(or both) of the static implementations defined in Sections 3.3.1 and 3.3.2,
along with its negative edges as described in Section 3.2, and then fed into
each implementation.

From the perspective of node embeddings, we rely on three components:
the projected event features that we name (XE), the initial node features
(XI), implemented in two variants, and the output embeddings produced by
the graph neural network (XG). More precisely:

• XE / Xevent: The event embeddings obtained by projecting the feature
vectors associated with event edges. These features, provided by the
Wikipedia dataset (with 172 dimensions), encode various operations
performed during each temporal edge.

• XG / XGNN : The embeddings produced by the GNN after the message-
passing operation. They are obtained by feeding XI into the GNN (see
Appendix C.1);

• XI / Xinit: We evaluated two approaches for defining the initial node
features. The first uses learnable embeddings for each node, definition
applied to the implementations in Sections 4.2, 4.3, and 4.5. The second
and more stable alternative assigns instead a group embedding to each
chain of self-edges, as detailed later in Section 4.6.

Both approaches were tested with two initialization strategies:

(i) random initialization from a uniform distribution (experimented
with in all four cases, but later abandoned in the final two imple-
mentations);

(ii) a learned default feature vector, computed from the average of
the warm (i.e. trained) embeddings and perturbed with Gaussian
noise (the definitive strategy from paragraph 4.5 onward).

Concluding this preceding introductory paragraph, we reserve the de-
scription of specific functions and architectures for their respective sections,
while the more general ones are cited in the main sections but their details
are reserved for Appendix C when applied.
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4.2 First Approach: Full HeteroSAGE with-

out Node Embedding Copies

The first implementations tried are also the most direct ones: starting from
the static representations described in paragraph 3.3.1 and 3.3.2, we applied a
2-layers HeteroSAGE (see Appendix C.1), where in detail we have alternated
twice four SAGEConv wrapped into an HeteroConv layer and BathNorm1
layer (see Section 2 and Appendix C.2).
In this way, we have structurally utilized all the information available from
our model for the message aggregation step. The situation is different with
respect to the initial embeddings: since the nature of the features provided by
Wikipedia for each temporal edge was not entirely clear, we initially refrained
from implementing them. Subsequently, we incorporated these features as
attributes for the event edges, representing the closest translation of the orig-
inal graph and forming the core of our prediction task (see Section 4.1.1).
For the nodes we implemented learnable embeddings XI on which the GNN
operates, as no additional data were available for them.
As explained in paragraph 3.3.1 our first step, after the removal of the re-
dundant edges derived from the static graph construction (see Appendix A),
is the moving of the cross self-edges into their destination split. After as-
signing learnable embeddings to the nodes, the training-validation-test cycle
begins, carefully ensuring that the correct set of edges is used at each step.
To facilitate this, we have defined three subgraphs: data train, data val, and
data test (although the last one is not strictly necessary).

During the training and validation phases, only edges in the training set
are visible to the GNN, whereas at test time the GNN has access to both
the training and validation edges. At the end of each training iteration,
the model computes the loss (see Appendix C.4) using the scores produced
by the MLP decoder (see Appendix C.3) and updates the node embeddings
via backpropagation. Model performance is then evaluated using the stan-
dard Mean Reciprocal Rank (MRR) metric (see Appendix C.5), following a
standard pipeline.

4.3 Second Approach: HeteroSAGE with Node

Embedding copies

This approach was developed to address some critical issues observed in the
previous model (see Paragraph 5.1). Here, we rely only on the lighter static
mapping described in Section 3.3.1 to construct the graph. We then ex-
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plored two message aggregation strategies. The first approach propagates
messages exclusively along event edges, enforcing a more conservative as-
sumption about information flow, even though this may lead to less effec-
tive information retrieval (see Section 5.2). The second restores the original
GraphSAGE architecture, allowing aggregation from the full neighborhood
as in the previous implementation (see Appendix C.1).

It is important to note that self-edges were maintained in both config-
urations: beyond their role in message aggregation, they serve a distinct
and essential function by enabling the temporal propagation of node embed-
dings across the system. Prior to presenting the model, we provide a brief
clarification of this copy propagation mechanism.

4.3.1 Copy procedure

The copy procedure stems from the idea that chains of self-edges represent
the temporal evolution of a single node in the original temporal graph (see
Section 2.1.2). From this perspective, if a node along such a chain neither
interacts with external nodes nor undergoes any endogenous change, then it
should share initially the same embedding with all the other nodes of the
chain.

Motivated by this observation, the copy procedure addresses the “cold”
initialization problem by propagating, after each training step, the embed-
dings of the learned latest temporal nodes (i.e. those with the highest times-
tamp in training after the mapping step) along their corresponding temporal-
evolution chains into the subsequent validation and test splits. The underly-
ing principle is that validation and test nodes should inherit the final training
state as their initial state, since they represent the same original temporal
node.

In practice, this procedure is executed in two main stages. The first stage,
itself divided into two steps, begins by initializing all nodes with learnable
embeddings while immediately zeroing the embeddings of those belonging
to the test split. Subsequently, we apply the functions which identify the
connected components (i.e. the chains) defined by the test and cross-to-test
self-edges.

Due to the relocation of cross-split self-edges (see Section 3.3.1), each
chain is expected to contain exactly one node originating from the training
or validation split, and thus carrying a non-zero embedding. This node is
designated as the copy source and is stored in a dictionary mapping every
node in the chain to the corresponding “warm” node ID to be used later in
the copying mechanism.

The second part of this phase follows the same logic but is applied to the

39



validation nodes: their embeddings are zeroed, the clusters are re-identified
but in this case for the validation split, and their respective warm sources
are determined in the same manner.

The second main stage takes place at the end of each training step, when
the actual copy operation is executed. Finally, during the test phase, the op-
timal embeddings for both the training and validation nodes are transferred
to the test nodes before to perform the final MRR evaluation.

Having described the copy procedure, we can now conclude the initial
variable definitions: no edge features were incorporated on the event edges,
meaning that the model relied entirely on learnable node embeddings.

These clarifications allow us to resume the previous discussion, with the
understanding that our approach evolves along two parallel lines. On one
side, the event edges alone in the raw configuration, and subsequently both
event and self-edges in the effective configuration, are processed by the GNN
and the MLP to update the node embeddings and perform the prediction
task. On the other side, the self-edges propagate these updated embeddings
independently across time into the other partition of the system, theoretically
providing improved initial embeddings1 for all nodes, which would otherwise
remain entirely cold-initialized.

4.4 Revisiting Node Embeddings

Investigating the results of the two previous implementations (Sections 5.1
and 5.2) we highlight a significant limitation: the lack of sufficiently specific
initial features and embeddings, which we refer to as Criticality 0: Insuf-
ficient Node Representations. In the previous approaches, we attempted
to progressively enrich the graph with all available components, but this lead
to only marginal improvements.

Recalling the concluding discussion in Section 3.3.1, it is unsurprising
that no substantial performance gains were observed. Upon closer analysis,
two additional issues emerge that further limit the achievable improvements:

• Criticality 1: Self-Edge depletion. Table 4.1, which reports the
number of unique sources (editor, t) and unique destinations (wikipage, t)
of the static graph representation, reveals an important observation:
almost all nodes appear only once within each temporal split. This
implies the self-edge depletion problem is already fully in effect dur-
ing the training phase when using the lighter static representation (see

1We will discuss why this is not strictly true in the third implementation.
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Section 3.3.1), as very few self-edges are available for the message ag-
gregation step.

Total temp./event edges Unique sources Unique destinations

Training 110,232 110,222 110,226
Validation 23,621 23,619 23,621
Test 23,621 23,619 23,621

Table 4.1: Summary of original temporal/event edges and unique nodes in
the training, validation, and test splits of the Wikipedia dataset. Sources
correspond to (editor, t) nodes and destinations correspond to (wikipage, t)
nodes.

• Criticality 2: “Fully-Cold” Nodes in Validation and Test Splits.
The second criticality arises from nodes that appear directly in the val-
idation or test splits without any representation in the training set. As
observed in Figure 4.1, approximately 20.7% of editor nodes and 4.8%
of wikipage nodes from the original temporal graph are missing from
the training set. Consequently these nodes, or more precisely their
(node, timestamp) pairs, lack a “warm” starting embedding derived by
the training phase from which information can propagate. They are
therefore subject to complete cold initialization, which must be explic-
itly addressed in the design of subsequent models.

Figure 4.1: Number of editor and wikipage nodes present in each split of the
temporal graph representation. Note that 1,704 editor nodes and 48 wikipage
nodes are not present in the training set.

Motivated by these observations, the two following implementations oper-
ate on the static representation described in Section 3.3.2 employ an improved
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copy procedure, and utilize better-structured node embeddings, as outlined
below.

4.5 Third Approach: HeteroSAGE with cor-

rected Node Embedding copies

In this implementation, we aim to address the criticalities described above as
effectively as possible. While the model is not expected to differ substantially
from the implementations discussed in Approaches 4.2 and 4.3, it is modified
wherever necessary to achieve the various objectives. As motivated in Sec-
tion 3.1, we adopt the Observation Layers approach for the static graph rep-
resentation. In this way, at the cost of a slightly higher memory requirement,
Criticality 1 (4.4) is structurally eliminated. The remaining components are
largely unchanged from previous implementations: we utilize a HeteroSAGE
(see Appendix C.1) operating on both event and self-edges, an MLP decoder
(see Appendix C.3), and integrate the available features associated with the
event edges, as in Approach 4.3.

The core change which deviates from the previous implementation and
truly characterizes it is the introduction of a corrected copy mechanism,
which now takes into account the Criticality 2 (see 4.4) and poses an end to
it. To reach this goal the new mechanism performs a standard copy operation
whenever valid warm references exist, while assigning a learnable fallback em-
bedding to nodes that lack any such references (i.e. the “fully cold” starting
nodes). This fallback value is computed from the mean embedding of the
warm nodes, which is treated as a learnable parameter, passed through a
linear and non-linear transformation, and finally perturbed with Gaussian
noise (see Section 4.5.1).

Before proceeding, it is necessary to explain why this learnable fallback
approach was chosen as our definitive solution. Prior to this, we explored an
intermediate strategy between the two methods cited at the beginning of this
chapter (4.1.1) for defining XI . Instead of assigning fully random values, we
computed two separate averages of all embeddings belonging to warm nodes:
one for editor nodes and one for wiki page nodes. These averaged embed-
dings values were then used to initialize the corresponding cold-start nodes,
depending on whether they originated from editors or wikipages. The intu-
ition is straightforward: even without direct historical information for these
nodes, it is reasonable to assume that they are broadly similar to the over-
all population within their category. Initializing them with a representative
embedding should therefore provide a more meaningful starting point than
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purely random values. This approach accomplished modest improvements,
in part because it still lacked a crucial element: variability.

To address this, we introduced the aforementioned final refinement through
the Learnable Inductive Fallback (Sec. 4.5.1). In this method, the av-
erage embedding is promoted to a learnable parameter, allowing it to adapt
during training and better align with the downstream task. Additionally dur-
ing evaluation, a small Gaussian noise is injected to ensure that each node
remains distinguishable, preserving node-specific variability despite the ab-
sence of prior interactions. Overall, this refinement enhances inductive gen-
eralization: full-cold nodes maintain a meaningful connection to the trained
embedding space while still being able to represent unique temporal trajec-
tories and structural roles.
To summarize, in the definitive version we:

• Apply the copy process described in Section 4.3.1, using the corrected
version detailed in Section 4.5.1, to all nodes that have at least one
timestamp in the training split.

• For the remaining “full-cold” nodes (editors and wikipages isolated
from the training phase), initialize their embeddings using the fallback
value computed from the warm nodes, and inject a small Gaussian
noise component to preserve variability across the “fully-cold” chains.

It has not been explicitly stated before but the initialized Xinit are learn-
able embeddings as are the XGNN embeddings. It is important to note how-
ever that the event features themselves are not trainable because they are
fixed and provided by the original dataset while their projected embeddings
Xevent can be updated via the backpropagation process.

With our embeddings now formalized, we feed the initialized embeddings
Xinit into the GNN, following the same procedure as in the previous versions.

We reserve this final space to define more precisely how Learnable Induc-
tive Fallback mechanism works.

4.5.1 Learnable Inductive Fallback Mechanism

We now describe this more refined mechanism, which has proven to be more
effective in our studies.

The Learnable Inductive Fallback module defines a trainable default
feature vector for isolated nodes (i.e. fully cold-start nodes with no connec-
tions to the training phase through self-edges).

43



This module takes as input a d-dimensional vector representing the global
average of all warm self-edge chain embeddings 2. As first step, this average is
converted into a learnable parameter denoted as fmean, which can be updated
via backpropagation during decoder training. Then, a linear transformation
is applied:

flin = Wlinear · fmean + blinear, (4.1)

followed by a nonlinear activation

ffallback = tanh(flin), (4.2)

which stabilizes the learned feature values within (−1, 1), ensuring compati-
bility with the decoder (MLP) feature space.

During training, ffallback is used to directly initialize cold nodes. During
evaluation, a small Gaussian perturbation is added to improve robustness:

f ′fallback = ffallback + ϵ, ϵ ∼ N (0, σ2
noise). (4.3)

As explained, this inductive regularization introduces controlled variabil-
ity into the initialization of cold nodes, enhancing the model’s generalization
capability.

4.6 Fourth Approach: HeteroSAGE with group

Node Embedding

This approach arises from a necessary shift in approach: previously each node
has been assigned a distinct individual embedding, treating nodes as isolated
building blocks from which temporal trajectories are formed (i.e. the chains
constructed via self-edges). However, this view may diverge significantly
from the intended notion of a persistent, temporally evolving “unique” node
identity, which we are already exploiting through the copy process (see 4.3
and 4.5).

To better preserve identity continuity, this implementation introduces
group embeddings, where a single embedding represents all nodes within a
complete chain of self-edges (i.e. the temporal evolution of a single node).
In this way, the representation captures the intrinsic identity of a node over
time, rather than being limited to individual temporal snapshots.

Accordingly, to mitigate the “cold-start” problem for groups unseen dur-
ing training (i.e. the nodes recorded in Fig. 4.1), we extend the Learn-
able Inductive Fallback module (Section 4.5.1) to operate at the group level.

2Recall we distinguish between the average values for editor nodes and wiki page nodes.
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Specifically during training, the embeddings of inactive (cold) groups are re-
placed with the learned fallback vector, which is initialized from the average
embedding of all active groups and perturbed with a small Gaussian noise
to preserve expressiveness and prevent convergence toward indistinguishable
representations. In practice, this requires only a modification of the module’s
input.

For completeness, we briefly describe the process used to define the groups
(i.e. the chains representing the unique identity of the original temporal
nodes). During the construction of the positive mapping (see Appendix A),
we record the original node ∈ {editor, wikipage} corresponding to each self-
edge. Using this information, we construct a dictionary in which each key
is a tuple (node, timestamp), mapped to the unique identifier defined in
Section 3.4, and the corresponding value of the dictionary represents the
original temporal node. This mapping allows us to explicitly define groups
of nodes that correspond to the same identity entity, ensuring that each group
shares a single learnable group embedding.

The encoder employed in this implementation remains the full HeteroSAGE
architecture, while the MLP decoder is used as described in Appendix C.3.
The three types of embeddings, Xinit,group, Xevent, and XGNN , are concate-
nated to form an enriched representation, a choice intended in part to mit-
igate Criticality 0 (see Approach 4.4), which is subsequently passed to the
decoder.

4.7 Node Embeddings Ablation

This second pause in the discussion of the approaches arrives because, despite
extensive iterative refinements and a preliminary fine-tuning phase, all previ-
ous models reached a level of stability without achieving comparably valuable
improvements (Chapter 5). This suggests that we have likely reached the
limit of what can be achieved within the current framework, or that we may
have overlooked something along the way. A straightforward way to begin
verifying one or both of these hypotheses is to perform an ablation study,
testing various combinations of embeddings fed to the MLP decoder. In par-
ticular, since XGNN and Xevent are both associated with two key questions,
this analysis can provide insight into their individual contributions:

• Whether the chosen encoder is appropriate (see Appendix C.1);

• Whether the provided features are effectively exploited (see Paragraph 4.1.1).
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As evidenced by the results shown in Table 4.2, the models including
XGNN embeddings exhibit the most severe degradation, while those incor-
porating XE also decline, though far more mildly. In contrast, the XI em-
beddings provide a reasonable baseline, clearly not optimal, yet with evident
room for improvement3.

Concatenation Test MRR Val MRR

XI 0.279 ± 0.013 0.339 ± 0.007

XI XE 0.260 ± 0.014 0.320 ± 0.017

XGNN XI 0.014 ± 0.002 0.017 ± 0.001

XGNN XE 0.013 ± 0.002 0.014 ± 0.001

XGNN 0.012 ± 0.002 0.022 ± 0.002

XGNN XE XI 0.012 ± 0.003 0.012 ± 0.002

XE 0.005 ± 0.000 0.003 ± 0.000

Table 4.2: Comparison of the different concatenation configurations, pre-
sented in descending order of performance.

Based on these results, the core issue appears to lie within the GNN ar-
chitecture itself, which struggles to extract meaningful information from the
highly sparse graph structure and the functional but not fully optimal node
embeddings. This limitation ultimately represents the primary source of per-
formance degradation, rather than the quality of the initial node features XI

which are learnable embeddings initialized from a uniform random distri-
bution and progressively refined according to the implementation’s update
rules.

This outcome is not entirely unexpected. The use of classical GNNs in
temporal graph settings (i.e. without explicitly discarding the temporal com-
ponent) remains relatively unexplored, whereas successful approaches typi-
cally rely on carefully designed Temporal GNN mechanisms. Notable exam-
ples include the foundational TGN model [39] and the more recent TPNet
model [30], which currently represents the state of the art on the Wikipedia
leaderboard4.

We can also argue that both our static mapping procedures 3.3.1 and 3.3.2
further amplify graph sparsity due to the small size of Wikipedia: each orig-
inal node is expanded into multiple timestamped tuples. Although these

3Note that in this case, the results were obtained using the best hyperparameters from
the subsequent Baseline 4.8, due to time constraints preventing additional fine-tuning. In
any case, the results clearly reveal the underlying issues.

4Reported according to the most recent leaderboard data November, 2025.
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tuples are linked through self-edges, such connections could be too weak to
counteract the resulting fragmentation, making it even more difficult for the
model to aggregate the already limited information into meaningful global
representations.

Building on this analysis, we conclude the best-performing configuration
requires a reconsideration of both the encoder and the features, in order to
potentially recover the model from a suboptimal solution. Addressing this
issue in depth would require a more extensive analysis, which could not be
fully addressed within the timeframe of this work and is therefore left for
future studies.

Instead, at the conclusion of this chapter, we present a baseline strategy,
which will constitute a starting point that the aforementioned encoder should
surpass in order to be considered effective.

4.8 Baseline Approach: Decoder-Only Model

Following the insights gained in the previous paragraph, we present the base-
line approach, intended as a benchmark for evaluating future encoder con-
figurations. Given that the encoder itself requires further investigation, this
implementation adopts a counterintuitive approach: a fully decoder-based
model. While this concept may initially seem misleading, it provides the most
suitable reference for comparison, as it entirely omits the encoder, which is
the core component to be addressed in future work.
Furthermore, we remove Xevent, originally included as features derived from
the temporal graph (see Section 4.1.1), since, as shown in Table 4.2, they are
not particularly effective. This choice also leaves the door open to exploring
more informative features, such as those that better capture the underlying
graph topology or the time differences implicitly lost during the IDs mapping
phase (see Paragraph 3.4), which will be addressed in future studies.

Therefore, the described strategy relies solely on the group embeddings,
XI,group, which are processed according to the Learnable Fallback Module
and the copy procedure to handle cold nodes, then fed to the MLP decoder
(see Appendix C.3) and adjusted exclusively through loss evaluation and
backpropagation.

It is worth noting the graph structure remains relevant, albeit to a lim-
ited extent, since the group embeddings are defined based on the self-edges.
As an incidental advantage, this architecture can be applied to both static
representations of the graph (see Sections 3.3.1 and 3.3.2), as there should
be no significant difference between them, given that the graph topology is
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not directly utilized.
Before moving to the next chapter, it is worth noting this architectural de-

cision aligns with the prior cited work applying static expansion to temporal
graphs. In particular, both Sato et al. [42] and Piaggesi and Panisson [37] rely
on embedding techniques grounded in standard neural network architectures,
random-walk–based node embeddings in the former [36, 13], and higher-order
skip-gram with negative sampling (SGNS) [33] in the latter, closely related
to MLP-style learning rather than GNN message-passing. This connection
reinforces the suitability of our decoder-only formulation within the broader
literature on temporal graph embedding methods. At the same time, our
approach provides the opportunity for more graph-aware implementations,
where incorporating both the graph topology and the history of node inter-
actions, as demonstrated in Lu et al. [30], has been shown to be essential for
accurate link prediction in temporal graphs.
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Chapter 5

Results

In this chapter, we present the results obtained from five runs of each im-
plementation. We first provide a table summarizing the different variants
considered, based on the methods described in Chapter 3, followed by a
comprehensive table of overall results. Within each section, we report the
specific results obtained and provide any additional details necessary to sup-
port the accompanying discussion and analysis. A summary table of the
hyperparameters tested, including the values explored prior to selecting the
final configurations, is provided instead at the end of this chapter.

References and Global Results

ID Approaches Static representation

00 Impl
Full HeteroSAGE without NE copies

Data Splits

01 Impl Observation Layers

02 Impl Event only HeteroSAGE with NE copies
Data Splits

03 Impl Full HeteroSAGE with NE copies

04 Impl Full HeteroSAGE with correct NE copies
Observation Layers

05 Impl Full HeteroSAGE group NE

06 Impl
Decoder – ONLY

Data Splits

07 Impl Observation Layers

Table 5.1: Approaches Overview.
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ID Val MRR Test MRR

00 Impl 0.007 ± 0.001 0.007 ± 0.002

01 Impl 0.008 ± 0.000 0.008 ± 0.000

02 Impl 0.400 ± 0.199 0.047 ± 0.024

03 Impl 0.706 ± 0.362 0.612 ± 0.475

04 Impl 0.010 ± 0.002 0.009 ± 0.003

05 Impl 0.012 ± 0.002 0.012 ± 0.003

06 Impl 0.516 ± 0.000 0.468 ± 0.002

07 Impl 0.519 ± 0.003 0.470 ± 0.004

Table 5.2: Global results of all the implementations. The best result is
underlined and in bold, the second is only underlined.

5.1 First Approach: Full HeteroSAGE with-

out Node Embedding Copies

ID Approach Static representation

00 Impl
Full HeteroSAGE without NE copies

Data Splits

01 Impl Observation Layers

Table 5.3: Variants of the First Approach.

ID Val MRR Test MRR

00 Impl 0.007 ± 0.001 0.007 ± 0.002

01 Impl 0.008 ± 0.000 0.008 ± 0.000

Table 5.4: Results of the variants of the First Approach.
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Figure 5.1: First Implementation (00): Plot of the 5 runs. Analogous results
are given by the second Implementation (01).

The first approach described in Paragraph 4.2 did not lead to good re-
sults for either version of the static representation, which is not unexpected
considering that our initial attempt was fundamentally preliminary. A closer
look at the results of each individual run for the first implementation (00)
(Figure 5.1) 1, suggests that the model is overfitting. Considering these ob-
servations, we can begin speculating about possible causes of this behavior.
We briefly outline some of them and will attempt to adjust our approach
accordingly at a later stage:

• The graph is very sparse: each node typically has three edges, one event
edge and two self-edges. Exceptions include the temporally starting and
ending nodes (those with minimal or maximal timestamps), which have
only one or two edges (self only, or self and event), as well as the rare
cases involving multiple events. This pattern can be readily inferred
from Table 4.1.

• The graph lacks sufficiently informative embeddings. Since our ap-
proach relies almost exclusively on the static graph structure, which is
sparse and provides limited relational signal, the learnable node em-
beddings alone may not effectively capture all relevant dependencies.
Furthermore, enriching the model with event-level features and their
corresponding embeddings does not appear to bring a measurable per-
formance improvement. This outcome is predictable, as these event
features do not seem to introduce any meaningful additional informa-
tion to the model, as later demonstrated in Table 4.2;

• The graph contains a significant number of “cold” nodes. As mentioned
in Appendix B.2, not all editors and wiki pages tuples are included in

1The second implementation (01) shows analogous results and is therefore not reported
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the training phase. Consequently, all their representations miss an
essential refinement phase.

5.2 Second Approach: HeteroSAGE with Node

Embedding copies

ID Approach Static representation

02 Impl Event only HeteroSAGE with NE copies
Data Splits

03 Impl Full HeteroSAGE with NE copies

Table 5.5: Variants of the Second Approach.

ID Val MRR Test MRR

02 Impl 0.400 ± 0.199 0.047 ± 0.024

03 Impl 0.706 ± 0.362 0.612 ± 0.475

Table 5.6: Results the variants of the Second Approach.

This second version, described in 4.3, confirms a full HeteroSAGE is the
most promising approach, as it can act on the full graph structure and does
not appear to exhibit any evident signs of data leakage. In both cases, the
copy procedure described in 4.3.1 seems to be a reasonable way to mitigate
overfitting. However, the considerable variance and general instability of
the model indicate that some important aspects are still missing from our
approach. After a brief analysis, several issues become immediately apparent:

• As explained in Section 4.4 and previously noted in paragraph 5.1, a
significant portion of nodes are “cold,” meaning they are absent from
the learning process, even though paths of self-edges connect them to
it. Another case, representing our central challenge, involves nodes
that have no connections to the training set. Specifically, as shown in
Figure 4.1, approximately 20.7% of editor nodes and 4.8% of wiki page
nodes from the original temporal graph are completely absent from
the training set. Consequently, these nodes, or more precisely their
associated (node, timestamp) pairs, will never have a “warm” starting
node from which information can be copied. They are therefore subject
to critical zero initialization, which we identify as a primary cause of
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the high instability observed, and which must be explicitly addressed
in future modeling;

• Continuing along the line of embedding-related issues, we note once
more the imposed values for warm nodes may also not be particularly
effective. They are merely random uniformly distributed embeddings
which, although partially updated during training, certainly do not
provide an optimal starting point;

• Finally this point was noted previously, and we now provide a more
detailed explanation. A confirmed limitation, which we will quickly
address moving forward, stems from the removal of self-edges in the
initial message aggregation attempt (i.e. 02 Impl). This decision leads
to a substantial loss of information regarding node identity and tempo-
ral continuity, which is only weakly preserved through the copy process.
As a result, the graph presented to the GNN consists solely of node-to-
node event links, making the structure highly sparse, minimally infor-
mative, and prone to unstable learning dynamics.

Figure 5.2: Second Implementation (03): Plot of the 5 runs.

The results in Table 5.6 and the Val MRR outcomes, which could reveal
the persistence of overfitting despite fluctuations (Fig. 5.2), indicate that
high variability alone does not account for all the observed issues. The re-
sults presented correspond to the model incorporating self-edges in message
aggregation; nevertheless, their inclusion does not appear to provide a clear
performance improvement. The underlying issue may not be whether self-
edges participate in message-passing, but if they are actually included in the
learning split.
This observation is not casual but follows from a careful analysis of the origi-
nal temporal edges. Within the training split (and similarly in the validation
and test splits), almost every node appears exactly once per temporal seg-
ment and consequently participates in a single self-edge, with only negligible
exceptions (Table 4.1).
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Because of the way the Data splits representation is defined (Paragraph 3.3.1),
self-edges are effectively reallocated and do not appear frequently enough
during training for the model to exploit the temporal continuity they are
intended to capture (as discussed in Paragraph 4.4). As a result, they rarely
contribute meaningfully to the learning process.

This finding is crucial for two reasons: first, node-specific information is
extremely sparse; second, due to the temporal splitting strategy (see 3.3.1),
many self-edges fall outside the training segment, further reducing their util-
ity. Consequently, the model is unable to employ self-edges effectively as part
of the representation learning process.

To recover the limited information expressed by self-edges while prevent-
ing data leakage, it is necessary to substantially revise the static graph struc-
ture. At the same time, the model should maximize information propagation
so that each node can acquire as much meaningful context as possible without
introducing additional sources of instability. Guided by these requirements,
we revert to the heavier Observation Layers representation, which does not
exhibit Self-Edge Depletion (Sections 3.3.2, 4.4).

5.3 Third Approach: HeteroSAGE with cor-

rected Node Embedding copies

ID Approach Static representation

04 Impl Full HeteroSAGE with correct NE copies Observation Layers

Table 5.7: Variant of the Third Approach.

ID Val MRR Test MRR

04 Impl 0.010 ± 0.002 0.009 ± 0.003

Table 5.8: Result for the variant of the Third Approach.

Thanks to the improved node initialization and updating modules for cold
nodes, which now handle all possible scenarios, the model exhibits greater
stability. However, the results remain insufficient and are still characterized
by pronounced overfitting2. The main challenges that may still arise are:

2We do not report any training curves here, but the observed behaviors are comparable
with the results shown in Figure 5.1.
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• As in the First Approach (see 5.1), the graph structure may remain too
sparse to effectively capture and propagate certain structural informa-
tion present in the data;

• The resulting embeddings are still of limited quality: as previously dis-
cussed, the construction of Xevent, which we attempted to reintroduce,
lacks a well-defined semantic interpretation and the update mechanisms
provided by the GNN and fallback module may not be as informative
as desired. In addition XI , which is uniformly generated for each in-
dividual node, lacks any notion of unique temporal node identity, a
notion we know to be relevant and which has so far been transmitted
via the self-edge chains and the copy mechanism.

Since this last point appears to be a relevant aspect that can be effec-
tively addressed, we will define a group embedding for each self-edge chain,
i.e. for each temporal evolution of a node in the original temporal graph
(Approach 4.6).

5.4 Fourth Approach: HeteroSAGE with group

Node Embedding

ID Approach Static representation

05 Impl Full HeteroSAGE group NE Observation Layers

Table 5.9: Variant of the Fourth Approach.

ID Val MRR Test MRR

05 Impl 0.012 ± 0.002 0.012 ± 0.003

Table 5.10: Result for the variant of the Fourth Approach.

In this case, it can be noted the results show some improvement although
not to a degree that can be considered statistically significant. On the pos-
itive side, the model still exhibits consistent stability, but the underlying
issues in the dataset and current approaches clearly remain unresolved.
What remains to be done is an ablation study to identify which element may
be the critical factor and if possible, determine how to address it appropri-
ately (see 4.7).
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5.5 Baseline Approach: Decoder-Only Model

ID Approach Static representation

06 Impl
Decoder – ONLY

Data Splits

07 Impl Observation Layers

Table 5.11: Variants of the Baseline Approach.

ID Val MRR Test MRR

06 Impl 0.516 ± 0.000 0.468 ± 0.002

07 Impl 0.519 ± 0.003 0.470 ± 0.004

Table 5.12: Results of the variants of the Baseline Approach.

Figure 5.3: Second Implementation (07): Plot of the 5 runs.

Building on the conclusions drawn in Paragraph 4.7, and in particular on
the results presented in Table 4.2, we obtain a solid starting point from which
develop an actual encoder structure and to further refine the embedding
design in future work (see Fig. 5.3)3. It is worth noting the configuration
employing the Observation Layers achieves marginally better performance
than the Data Splits configuration, as shown in Table 5.15.

These values alone are comparable to those of the current 11th and 12th
models on the effective leaderboard for the Wikipedia dataset [45]4.

3Analogous results were obtained with the first implementation (06) and are therefore
not reported.

4Results updated to November 2025.
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It is unnecessary to emphasize substantial advancement remains necessary
before reaching performance comparable to the top-ranked models such as
TPNet [30], HyperEvent [11], and DyGFormer [54].

For clarity and ease of comparison, the previously cited results are sum-
marized below.

Rank Method Test MRR Validation MRR

1 TPNet 0.827± 0.001 0.842± 0.001
2 HyperEvent 0.810± 0.002 0.824± 0.002
3 DyGFormer 0.798± 0.004 0.816± 0.005

Table 5.13: Top-ranked results on the Wikipedia dataset leaderboard (MRR
on test and validation). Source: TGB [45].

Rank Method Test MRR Validation MRR

11 EdgeBank(unlimited) 0.495 0.527
12 HTGN(UTG) 0.464± 0.005 0.523± 0.005

Table 5.14: Leaderboard for the Wikipedia dataset (MRR on test and vali-
dation). Source: TGB [45].

Rank Method Test MRR Validation MRR

NC Baseline (Observation Layers) 0.470± 0.004 0.519± 0.003
NC Baseline (Data Splits) 0.468± 0.002 0.516± 0.000

Table 5.15: Best Achieved Performance across All Experimental Configura-
tions Evaluated in this Study.

Hyperparameters

We report here the hyperparameters tested and the corresponding best values
for the Baseline Approach (Section 5.5), which underwent full fine-tuning.
Implementations 06 and 07 achieved their best performance using the same
hyperparameters.
Two observations are particularly noteworthy:

• The optimal batch size is 32,768, which is relatively large. This is nec-
essary to achieve the target ratio of negatives to positives of roughly

57



999:1 (see Section 4.1.1). With this batch size, each batch contains
approximately 33 positive edges and 32,735 negative edges. Since the
actual dataset has a 1:1 ratio between positive and negative event edges
(157,474 of each), we must oversample negatives or undersample posi-
tives when constructing batches. This ensures each batch maintains the
desired 999:1 ratio, providing enough negative examples to give mean-
ingful signals for the relatively small number of positive edges and to
stabilize training;

• We consider two additional, correlated hyperparameters related to the
number of each variant of negative edges during training (note that
validation and test sets are fixed to contain only hard negatives (see
Paragraph 3.2)): the number of hard negatives and the ratio between
Very Weak and Weak negative variants (see Appendix B). The optimal
values support our hypothesis: the achievement of strong performance
does not require a large number of hard negatives. Instead, a balanced
mixture of the different negative variants produces the best results,
improving the model’s generalization ability.

To conclude, for the remaining implementations, only limited or no fine-
tuning was performed. Their results are included solely for completeness and
transparency, as further optimization was deemed unnecessary given their
limited reliability.
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06/07 Implementation Hyperparameters
Hyperparameters Best Value Tried Values
Learn Rate 3× 10−4 [1× 10−5, 2× 10−4, 3× 10−4, 4× 10−4]
Batch Size 32768 [16384, 65536]
Hidden channels 128 256
Embedding dims 64 [128, 256]
Decoder dropout 0.3 0.2
Weight decay 1× 10−4 [1× 10−5, 1× 10−4, 2× 10−4, 4× 10−4]
Gamma 0.98 [0.97, 0.99]
Num hard neg 175 [0, 50, 100, 150, 200, 500, 750, 950]
Ratio Very weak:weak neg 6:1 [1:1, 1:2, 2:1, 5:1, 7:1, 10:1]
Noise 0.02 [0.001, 0.015, 0.025]
Epochs 70 50
Warmup epochs 0.2 0.1
Patience 7 5

Table 5.16: Hyperparameter search and best values for Decoder-only Imple-
mentations (06/07).

Hyperparameters 00 Impl 01 Impl 02 Impl 03 Impl 04 Impl 05 Impl
Learn Rate 1× 10−5 1× 10−5 1× 10−4 1× 10−4 1× 10−5 1× 10−5

Batch Size 65536 65536 16384 16384 16384 16384
Hidden channels 32 32 32 32 32 64
Embedding dims 32 32 32 32 32 32
Out channels 32 32 32 32 32 32
Encoder dropout 0.5 0.5 0.6 0.5 0.2 0.2
Num neigh [20,10] [20,10] [20,10] [20,10] [30,15] [30,15]
Decoder dropout 0.3 0.5 0.4 0.4 0.3 0.3
Weight decay 1× 10−2 1× 10−2 1× 10−2 1× 10−2 1× 10−2 1× 10−2

Gamma 0.99 0.99 0.99 0.99 0.99 0.99
Num hard neg 950 950 250 250 250 250
Very weak: Weak neg 1:1 1:1 1:1 1:1 1:1 1:1
Noise None None None None 0.1 0.001
Epochs 50 50 50 50 50 50
Warmup epochs 0.05 0.05 0.05 0.05 0.2 0.2
Patience 5 5 5 5 5 5

Table 5.17: Hyperparameter settings for all the implementations.
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Chapter 6

Conclusion

In this Master’s Thesis we investigated a static representation strategy for
Temporal Graphs based on the supra-adjacency construction introduced first
by Oettershagen, Kriege, Morris, and Mutzel and later refined by Sato et al.
in [34, 42], extending it to a supervised learning setting, which has not yet
been explored in the literature. Our analysis focused specifically on the task
of Dynamic Link Prediction, although the proposed framework can be readily
adapted to other tasks, which will be considered in future work.

This approach can be positioned between fully static methods, where the
temporal component is entirely discarded and classical GNNs are applied to
a time-agnostic version of the graph, and dynamic architectures such as TGN
[39] and DyRep [49], which preserve temporal information through memory
modules and other model-specific mechanisms.

In our case, temporal information is embedded directly into the topologi-
cal structure of the graph, at the cost of increased memory requirements.
This design choice however allows the use of standard, well-understood,
and computationally efficient GNN architectures on the transformed-to-static
representation.

The first stage in transforming a temporal graph into its corresponding
static representation consists of mapping positive temporal edges to their
static counterparts. In the context of a directed bipartite graph, each orig-
inal temporal edge is translated into three distinct edges: one event edge,
encoding the original interaction, and two self-edges (one for the source node
and one for the destination node), which capture the temporal evolution of
the corresponding nodes throughout the observed sequence of events.
Further refinements were necessary to ensure a complete and accurate trans-
lation. To this end, we introduced a final layer of nodes, referred to as the
Observational Layer, which serves as a structural placeholder, thereby en-
abling the full transformation of each edge.
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To address potential inconsistencies due to data leakage, two alternative con-
structions were developed, each with their own advantages and limitations:
the Data Splits representation and the Observation Layers representation.

Having established the transformation of the original graph, we trans-
posed the Dynamic Link Prediction task within the supervised setting. In
this context, the problem reduces to standard Link Prediction performed on
the event edges, which requires a precise definition of negative edges.

We carried out four distinct approaches, iteratively refining the strategy
to address challenges such as cold-start initialization, graph sparsity, and
insufficient node representations. Despite these efforts, the final implemen-
tation achieved stability but remained largely ineffective.

The closing phase involved an ablation study aimed at identifying the
components responsible for the model’s shortcomings, which revealed that
both the encoder architecture and the employment of the original event fea-
tures were the primary sources of performance degradation.

Due to time constraints, we did not implement a new encoder. Instead,
we developed a baseline model to serve as a foundation for future studies.
In this configuration, the pre-existing encoder was omitted, leaving only the
standard MLP decoder, which produced reasonable results with potential for
further optimization. These results were subsequently compared against the
current Wikipedia leaderboard to measure their relative performance.

Having reached this stage, we can answer the initial research questions
and present the outcomes of our study:

RQ1: Temporal Consistency. How can we construct a mapping
from continuous-time temporal graphs to static representations
that strictly preserves the chronological order of events, thereby
preventing data leakage and ensuring the validity of the predictive
model?

A1: To address this question, we build from the Supra-Adjacency method-
ology [34], later refined in [42]. We first add a layer of nodes at the end of the
series of events to achieve a complete transformation of all temporal edges.
This thus ensures by construction that the resulting representation strictly
preserves the original chronological order. Subsequently, within the super-
vised learning context, we introduced two types of graph representations,
Data Splits and Observation Layers, to handle edges that cross temporal
splits (i.e. edges that share a node but originate from temporal edges be-
longing to different temporal windows). This approach effectively prevents
data leakage while maintaining temporal consistency in the representation.
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RQ2: Complexity Trade-offs. What are the implications of this
approach regarding computational resources? Specifically, does the
reduction in architectural complexity offered by static GNNs jus-
tify the increased computational cost associated with processing
the larger, mapped input graphs?

A2: The current implementation represents a reasonable trade-off for a
preliminary analysis. However, to provide a more robust and justified answer,
experiments on a wider range of datasets would be necessary, as our only trial
dataset Wikipedia is to be considered small (see 4.1.1).

Excluding the transformation procedure, which only needs to be per-
formed once and is not computationally intensive, the main bottleneck arises
from generating training negative edges, as these must be computed at each
epoch using a relatively sophisticated technique. (see Appendix B for the
implementation details and 3.2 for the theoretical definition).

Two strategies can be considered to mitigate this issue: (1) selecting
datasets with fewer negative edges to generate, or (2) implementing a sim-
plified negative edge generation procedure that requires fewer checks. This
choice can be justified probabilistically, with potential negative destinations
now following a strict historical paradigm or purely random selection, rather
than the previously used relaxed historical paradigm, depending on the con-
text. While this latter approach may reduce certain controls, it could intro-
duce additional nodes and require new management strategies.

RQ3: Methodological Efficacy. Can a Supra-Adjacency repre-
sentation effectively encode temporal dependencies into a static
topological structure to solve supervised tasks (in our particular
case a Dynamic Link Prediction), with performance comparable to
native dynamic models?

A3: Based on our preliminary results, the supra-adjacency representation
appears only partially effective for encoding temporal dependencies within
a static structure for Dynamic Link Prediction. The limited performance is
likely due to dataset constraints and the absence of informative features that
could better capture temporal patterns. In our favor, prior work by the cur-
rent top-ranked model for the Wikipedia dataset, Lu et al. [30]1, emphasizes
the importance of exploiting the graph structure2 even in temporal settings
to achieve higher performance.

1Reported according to the most recent leaderboard data, November 2025.
2Note: They refer to the original temporal graph. However, we consider this insight

relevant for our static graph representation as well.
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Several improvements could enhance our approach. First, employing
datasets that provide richer node and edge features, denser activity per node
(ideally allowing a node to perform multiple actions at the same timestamp),
and fewer nodes appearing after the learning timeline (i.e. a less inductive
context) could produce more expressive static representations. Second, the
graph could be enriched with temporal-aware edge features, such as encod-
ing the time difference between the (node, timestamps) of an edge as 1/∆t,
which introduces both temporal ordering and effective event time-proximity
relevance, concepts that are crucial for dynamic tasks.

Although this model may not be optimal for Dynamic Link Prediction,
it could prove to be more effective for other supervised tasks, depending on
the representation and temporal information incorporated.

In conclusion, this master’s thesis established a foundation for applying
classical GNNs to transformed-to-static dynamic graphs. Even though this
preliminary approach did not succeed in developing a definitive, fully opti-
mized encoder to exploit the graph structure, it provides a baseline for future
work in this area and achieves moderate results compared to other architec-
tures.
The Wikipedia dataset likely represents a particularly challenging scenario,
which nonetheless highlighted critical issues that might otherwise gone un-
noticed. These challenges could be addressed in future studies, and this work
serves as an initial step toward more effective methodologies.
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Appendix A

Positive edges creation

We reserve this section to illustrate the process leading to the mapping de-
fined in Section 2.1.2, with particular focus on the specific triplet for the
directed bipartite graph case described in 3.1, such as in Wikipedia.
The first relevant element in the pipeline is the creation of some variables:
number of editors, wikipages and the tmatrix, where the latter one will be
vital in our workflow and will be later adapted and utilized also in the Ap-
pendix B. The variable tmatrix is a vector of size total number of nodes made
of sets, each one containing the lists of timestamps where a node was active:
for example, given the temporal graph G = (V,E, T ) if we have (i, j, t) ∈ E
then

t ∈ tmatrix[i] and t ∈ tmatrix[j]. (A.1)

where tmatrix[i] and tmatrix[j] are the ith and jth rows of tmatrix.

Figure A.1: Example of the tmatrix shape.

It is straightforward to observe this list facilitates the retrieval of the ap-
propriate timestamp during the translation. It is also important to point out
that in both versions of the graph mapping of Sections 3.3.1 and 3.3.2 we will
need to add to each set one or more additional timestamps corresponding to
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the Observation Layers timestamps. In particular we will have the following
additions:

– In Data Splits approach (Paragraph 3.3.1) we will add to each set
the timestamp tobs lyr = tmax,test + 1 indiscriminately;

– In Observation Layers approach (Paragraph 3.3.2) instead we have
to apply up to three additional timestamps: tobs lyr,train, tobs lyr,val and
tobs lyr,test = tobs lyr of the Data Splits model. The presence of one or
more timestamps in a set is largely determined by the effective activity
of a node. If a set contains timestamps t ∈ Ttrain, we add the “closing
and observational” time tobs lyr,train. The same reasoning applies to the
Validation and Test splits. In the end each set will contain only the
essential timestamp to fully express the node’s activities, saving us from
future redundant cross edges.

Defined the required variables we can start our iteration over the full set
of temporal edges and we define one by one the respective triplets of self and
event edges. We have implied in our discussion that to speed up the process
we transformed tmatrix into a dictionary of ordered vectors. In this structure,
the keys correspond to the nodes in the lists, and the ordered times enable
faster lookup of the appropriate element.
Other variables we create during the mapping phase are the split vectors, each
containing a flag for each mapped edge

[
(src, t), (dst, t′)

]
to sign whether the

built (src, t) and (dst, t′) belong or not to the same time split. This will help
us in the Data Splits approach where we need to identify the cross self-edges
that have to be moved into the respective destination split as explained briefly
in Section 3.3.1. On the other hand, since each temporal edge is mapped
one-to-one to its corresponding triplet, and the resulting sequences of edges
are stored in order for easier manipulation, we must remember to explicitly
define the cross-self edges when constructing the Observation Layers graph
representation (see Paragraph 3.3.2). This process is done verifying first the
presence of tobs lyrs,i, (with i = Train, Validation, Test) and then generating
the consequent cross self edges.
After completing the full mapping process, we can define the sets of (src, t)
and (dst, t) nodes. These collections form the basis for the dictionaries of
unique IDs required by our architecture to process the mapped graph, as
described in Section 3.4.

Finally, it is worth noting that, although we could already remove repeated
self-edges at this stage, we deliberately postpone this operation to the anal-
ysis phase. In the Wikipedia dataset case their number is limited (i.e. not
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computationally costly) and they may carry additional information for alter-
native approaches not considered in this work.
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Appendix B

Negative edges creation

The original TGB Dataset documentation [4] is equipped with a series of
function that automatize the creation of temporal negative edges for the
training phase while for validation and test provides list of lists, each con-
taining all the available negative destinations for each positive temporal edge.
In particular the new implementation of Wikipedia has defined around 999
negative destinations per positive edge (see Paragraph 3.2), the highest pos-
sible number to enforce a more demanding task.
For our discussion we adapted the given validation and test negative edges to
our translation process, while for the training negative edges we constructed
from scratch a set of functions and auxiliary variables to achieve our goal,
accounting for the possible variants allowed by our static graph version.

B.1 Validation and Test negative edges

First, we describe the validation and test translation into the static graph
version due to their simpler mapping. As previously mentioned we can load
through the TGB’s functions the whole sets of negative destinations each
original positive edge (i, j, t) the graph has. Once we download the whole
list we can derive the full list of (src, dstneg, t) that we can feed in the same
system we used for the positive edges (see Appendix A) with the only detail
that only the event edge mapping is required. It is important to note that,
based on the definition provided in Section 3.2, the entire set of these edges is
considered to be made of only Hard negative edges. This choice ensures both
easier translation and closer alignment with the positive edges, resulting in
a more effective source of information during the validation phase.
We finally conclude our translation mapping each tuple (node, t) to its proper
unique ID and building the mapped list of negative destinations back into
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their list of lists format.

B.2 Train negative edges

The work necessary to properly define the train negative edges is comparable
to or exceeding the mapping of the positive edges mapping (see Appendix A
and Eq. 2.10 as reference): in this case we reused some concepts used in the
positive mapping and we readapt them for this other conversion.
Likewise the positive mapping, our process starts defining a variable tmatrix

(see Fig. A.1), a vector of size equal to the number of all the possible destina-
tions (in the Wikipedia dataset case 1,000), where its ith element contains the
set of timestamps in which the ith destination has been active: if (i, j, t) ∈ E
then t ∈ tmatrix[j] (see Eq. A.1 notation). We repeat ourselves in saying this
variable is vital to re-use only the already existing nodes: if not, we would
fall in a case where every possible (node, timestamp) tuples is available, lead-
ing to dramatic consequences for the size we work on and the variability of
choice.
The following auxiliar variables we generate are rem (removal) and remtuples,
with an analogous format of tmatrix but of size positive event edges. In this
case for each positive edge (to be more precise each (src, t) coming from the
positive event edge map source) we save the list of destinations dst and tuples
(dst, t′), respectively for rem and remtuples, coinciding with the all available
[(src, t), (dst, t′)] defined as event edges during the positive mapping. This
parameter will help us to quickly identify whether a potential negative edge is
erroneously a positive one and discard it. A second note is that in Wikipedia
most sets contain only a single element due to the near uniqueness of events
occurring at each timestamp (see Table 4.1). Nevertheless, we retain this
structure for the sake of generality.

(a) rem variable representation (b) remtuples representation

Figure B.1: rem and remtuples format representation.
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Reached this point we define two distinctive functions, one to build Hard
negatives and one to build simultaneously Weak and Very Weak negative
edges

B.2.1 Hard negatives

As previously explained in Paragraph 3.2 and the previous Appendix B.1,
Hard train negative edges are easily formed as if they were event edges in the
positive case (see Appendix A): taken a positive temporal edge (src, dst, t)
and consequent event edge [(src, t), (dst, t′)] we choose randomly a list of
potential dstneg we immediately check with rem to discard any potential
original temporal edge. Once this first check is passed, we exploit tmatrix

to locate, in the set corresponding to dstneg, the first timestamp tneg > t.
We then use this value to construct (dstneg, tneg), which maps the negative
destination according to the original rules in Eq. 3.1. As repeatedly stated
this tuple finally will be first mapped into its unique IDs and then placed
into the translated set of negatives.
It is important to note that (to avoid any kind of errors or creation problem)
it is required that each set of tmatrix contains at least one element bigger than
the maximum value of the Ttrain = {t ∈ (i, j, t) ∈ Ttrain} (in Wikipedia this
is reached only exploiting the timestamps coming from the event edges of the
train split).

Another detail specific to Wikipedia is that the number of training nega-
tive destinations does not coincide with the total number of destinations (i.e.
952 training nodes out of 1,000 in total). This occurs because not all nodes
are involved in the training phase (see Fig. 4.1), and we must ensure that
nodes unseen during training are not used as potential negative destinations.
For this reason, the selection of potential dstneg should not be described as
“random,” but rather as a “relaxed historical” selection. Specifically, we con-
sider only nodes that appeared during the training phase. However, unlike
the original “pure historical” definition [38], these nodes are not required
to have edges with the selected source node within this temporal window,
which gives rise to their name (see Paragraph 3.2).

B.2.2 Weak negatives

This final function has been created specifically to build the missing negative
edges: as shown in Paragraph 3.2, our translation give us the opportunity
to define a great variety of negatives respect the original counterpart. It
is important also to add this is a fundamental piece to properly create the
sufficient number of negatives (in Wikipedia is 999), otherwise impossible by
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what the restricted 952 destinations training allow us and that we cannot
increase artificially without the risk of incurring in data leakage.
With this in mind, we proceed first defining the variables that help us into
building the right ratios of Weak or Very Weak negatives, then collecting
the lists of potential negative destinations. It is important to emphasize
that in this case, the control to discard unintended edges is performed only
at the end of the process, since any available destination may still form a
non-existent edge (i.e. different from the positive one) until the final step,
unlike the Hard case described in Appendix B.2.1. Then, depending on the
variant to be generated, we sample a random tneg for each dstneg. In the
Weak case, it is selected at random under the constraint tneg > t; in the
Very Weak case, tneg is selected uniformly from the available timestamps in
tmatrix; The process ends with the not positivity check, the translation into
the corresponding ID and the addition to the count of one element, keeping
control of the required ratios.
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Appendix C

Architectures

After describing all the necessary steps to properly map a temporal graph,
we can present the architectures chosen to address the Link Prediction task.
We describe the most general implementations of the encoder, normalization,
decoder, and evaluation metric here, as they are applied in both the Data
Splits and Observation Layers approaches, with some variants discussed in
the previous chapters.

C.1 Encoder

The chosen Graph Neural Network (GNN) is going to be an HeteroSAGE
model [55, 47]. In particular one layer of this architecture performs four
message-passing, one for each kind of edge: source self-edges (Wikipedia ed-
itor), destination self-edges (Wikipedia wikipages), event edges and reversed
event 3.4 (due to the required Link Prediction, Section 3.2).
As a standard approach, the convolutions over different edge types are han-
dled by HeteroConv, a wrapper module provided by PyTorch Geometric [9].
Finally, as the name itself suggests, we opted to perform message aggregation
using GraphSAGE/SAGEConv (see Section 2), a simple well known model
for being inductive and scalable [14].
More formally we can express the illustrated layer in the following way: Given
the set of relations R = {selfsrc, selfdst, event, rev event} (as formalized in

Paragraph 3.4) and defining j ∈ N (r)
i as the neighbours of node i connected

with it by an edge of relation r ∈ R, we can define the aggregation step
of the SAGEConv in various ways. In our particular work we focus on the
AGGREGATE function
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hN (r)
i

=
1

|N (r)
i |

∑
j∈N (r)

i

x
(0)
j , (C.1)

which is the default MEAN of the neighbor features and the node i’s self
features (in particular here x

(0)
j are the initial node embeddings).

As mentioned, our HeteroSAGE consists of four types of SAGEConv lay-
ers, one for each relation, which are combined into a single HeteroConv layer.
This layer simply sum the contributions from all relation types r ∈ R for
each node i (in our code, this is specified by aggr=’sum’ 1):

h
(t)
i =

∑
r∈Ri

σ
(
W

(r)
selfx

(t−1)
i +W

(r)
neigh · hN (r)

i

)
(C.2)

where:

• Ri is the set of all relations r where i is the destination node;

• xi
(t−1) and xj

(t−1) are the node and neighbor embeddings from the
previous layer;

• W
(r)
self and W

(r)
neigh are the learnable weight matrices specific to relation

r for the node and its neighbours;

• σ(·) is the non-linear activation function (e.g. ReLU, applied after
normalization in your model’s forward pass).

C.2 Normalization

In between the HeteroConv layers we apply self.norm1 layers, known as
Per-Node-Type Batch, a batch Normalization taken from PyTorch ModuleDict
[48]. Batch Normalization (BatchNorm1d) for a feature vector x within a
mini-batch B is defined by normalizing x based on the batch statistics [23]:

x̂ =
x− µB√
σ2
B + ϵ

(C.3)

This normalized vector is then scaled and shifted by learnable parameters γ
and β:

y = γx̂+ β (C.4)

1We did not perform a definitive evaluation, but across various approaches this ap-
peared to be the best option. Further confirmation is requested and encouraged.
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where µB and σ2
B are the mean and variance of the feature dimension across

the current batch B, and ϵ is a small constant for numerical stability.
Its presence is necessary to stabilize and accelerate training while handling
feature differences across the heterogeneous node types like our case.

C.3 Decoder

The other piece common in all our architectures is the decoder, aMulti-Layer
Perceptron (MLP) [17].
The goal of the MLP is to compute a score S(zsrc, zdst) which indicates the
probability of the existence of a link between a source node having embed-
dings zsrc and a destination one with embeddings zdst, where zsrc, zdst ∈ Rd

(d− dim Euclidean space, with d = hidden channels size). It is obvious this
is the required Link Prediction task (see Section 3.2).

In order to evaluate the score S(zsrc, zdst) it is necessary to first create
the enriched input vector x and our choice has lead to the more expressive
and simple four elements concatenation:

x = Concat(zsrc, zdst, zsum, zhadamard) ∈ R4d (C.5)

where we recognize the source and destination embeddings zsrc, zdst and
the two common link prediction operators: the element-wise sum and the
element-wise Hadamard (product), defined respectively as

• Element-wise Sum: zsum = zsrc + zdst ∈ Rd

• Hadamard Product: zhadamard = zsrc ⊙ zdst ∈ Rd

Computed the enriched input vector x, it can be fed into our MLP,
composed by two layers, where the first one uses both a Rectified Linear
Unit (ReLU) and Dropout:

S(zsrc, zdst) = W⊤
2 ·Dropout(ReLU(W1x+ b1)) + b2 (C.6)

where we identify

• W1 ∈ Rh×4d and b1 ∈ Rh are the weights and non-linear term of the
first linear layer;

• W2 ∈ Rh×1 and b2 ∈ R are the weights and non-linear term of the
second and final linear layer;
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• d = Node embeddings size;

• h = Hidden layer size.

C.4 Loss Function

We introduce one of the remaining components necessary to complete our
link prediction framework: the loss function. Given the strong class imbal-
ance between negative and positive samples (approximately 999:1 negative-
to-positive ratio in the Wikipedia dataset), we adopt a Weighted Binary
Cross-Entropy with Logits Loss to compensate for this imbalance and
stabilize training.

By definition, the loss function L is computed as the average of the indi-
vidual loss terms Li across the mini-batch [5]:

L =
1

N

N∑
i=1

Li(si, yi,W ) (C.7)

where the individual loss term Li for the i-th link prediction sample is
defined as:

Li(si, yi,W ) = − [yi ·W · log(σ(si)) + (1− yi) · log(1− σ(si))] (C.8)

Specifically:

• N: total number of links (both positive and negative) in the current
mini-batch;

• si: raw score (logit) output by the model for the i-th link, obtained
using the MLP decoder (see Section C.3);

• yi: ground-truth label for the i-th link, where yi ∈ {0, 1};

• σ(si): sigmoid activation function, σ(si) =
1

1+e−si
, which converts the

raw score si into a predicted probability;

• W: positive-class weight used to address class imbalance. It scales
the loss contribution of the positive class (yi = 1). In our case, W =
Number of Negative Samples
Number of Positive Samples

.
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C.5 Evaluation Metric

The TGB datasets involving Dynamic Link Prediction such as Wikipedia
dataset use as the standard evaluation metric the Mean Reciprocal Rank
(MRR). This metric measures how highly a correct (positive) link is ranked
among a set of candidate negative links [6, 19]. As the name suggests MRR
is a mean of Reciprocal ranks (RR), a parameter defined as the inverse of
the rank position of the first true positive element:

RRi =
1

ranki
(C.9)

It is easy to see RRi ∈ (0, 1], where the highest value (i.e 1) can be
reached only imposing the right element in the first place.

Because evaluation is performed over mini-batches of queries, we compute
the reciprocal rank RRi of each query i i independently, and subsequently
average these values to obtain the batch-level performance:

MRR =
1

N

N∑
i=1

1

ranki
(C.10)

Similarly to what said for the singular RRi the best result will be obtained
to a score close or equal to 1, symbol of the fact our model can correctly rec-
ognize and rank into the first places the correct edge (that in our task has to
be predicted).
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