
Politecnico di Torino

Master’s Degree of ICT for Smart Socities
Graduation Session November 2025

Designing and Evaluating a
Patient-Centred Web Platform for
Pre- and Post-Treatment Cancer

Care

Supervisors

Prof.michela MEO
Prof.guido PAGANA

Candidate

elaheh LOTFIMAHYARI

Abstract

This project demonstrates the architecture and implementation of a web-based
platform intended for bowel cancer patients undergoing a prehabilitation program
before surgical intervention. The regimen, which is typically five weeks long, en-
compasses various exercises and methods to enhance the patient’s flexibility, muscle
strength, balance, breathing, and stoma, along with diet and stress management
segments. The doctors have to keep track of the patients’ progress very closely
during this time, but it is quite a tedious and challenging task to be done on paper.
The application in question makes the work of the medical staff much easier by
giving patients the opportunity to record their daily and weekly activities in secure
online forms. They can note down their exercises, diet, and general health through
a few simple clicks, and also go through the preoperative surgery checklists, which
are given in a very lucid manner. Physicians are allowed to log in to a dashboard to
get an overview of the patient’s progress, see the level of adherence to the program,
and give the necessary feedback in time. Moreover, the system provides an option
for the export of patient data into Excel files, easing the processes of data analysis
and storage for medical professionals. The integration of confidential data access,
patient support, and non-stop supervision is what this assignment is all about,
anticipating the prehabilitation period of five weeks to be a walk in the park for
the patients and a breeze in the management for doctors, making it safe, efficient,
and leading to a quicker recovery process in the vicinity of surgery. Moreover,
this app is the perfect example of how prehabilitation can be the very first step
in a patient’s journey of cancer care. By the help of carefully planned exercises
and daily monitoring done in a structured manner, patients get the drive to be
physically ready on their own, as this has been demonstrated to make the recovery
after surgery faster. In addition, the portal makes a more frequent and detailed
follow-up possible at the time of rehabilitation, thus the chances of those patients
who may be the victims of a relapse of neoplasia going unnoticed are lowered.

ii

Summary

The project was born on the principle of the simplest thing possible: develop a
functioning web application useful for something. My primary objective right from
the start was gathering disparate bits of technology—such as Python, Django,
HTML, CSS, JavaScript, and SQLite—and getting them all to coexist as an
integrated whole. It was loose ideas about tools at first, but then, step by step,
building them into an application with an evident design, robust backend, and nice
UI.

The platform is designed to be with the patients at the cancer care journey,
which is the most challenging to any human beings, starting from prehabilitation
before operation, going through the perioperative period and finally, rehabilitation
and follow-up. Hence, the app facilitates the patient’s participation in the recovery
process which is one of the keys to a better postoperative outcome and also ensures
that the patient is not totally left without clinical supervision in the long run.

It all started as research and planning. Before jumping into coding, I investigated
the available systems and referred to how others had handled the similar issues.
It gave me an understanding of where it worked well, where it didn’t work at all,
and where it could improve. I also learned about the technologies I had to utilize.
Some of them, such as HTML and CSS, I had learned before, but others, such as
the structure of Django and database manipulation, required more learning. Each
new thing learned acted as the basis for the system I was set to develop.

Actually the hard part was integrating all those components. Backend technology
being Django created the heart of the system. It took care of the database using
models, data management using views, and logically linking it all together. The
actual database managed using SQLite was basic but efficient in storing the data
the application required for it to run smoothly. Simultaneously, the frontend
was user-orientated. Employing the use of HTML, CSS, Bootstrap, and some
JavaScript, I endeavored to make the interface clear, clean, responsive so that
anyone who used it could quickly point it out.

As the project expanded, I started getting an understanding of how integrated
the frontend and backend actually are. The frontend is superficial, where people
see it and use it ,but only as powerful as the supporting backend. In just the same

iii

way, the backend gets to deposit and manipulate dat,a but without an effective
interfa,ce users could not benefit from its potential. It was this interlink between
design and functionality where the most important learning for me was gained
when carrying this project through.

During the process, I also had an eye for documenting. Screenshots, diagrams,
and pieces of code became the way not only to monitor the progress but also to
justify the decisions. It may sound as an additional activity, but as it turned out
quickly, it turns out to be highly valuable when others may use or develop the
system further. It’s the way of leaving the map behind not just for others but for
myself too, in the event I return to doing this project at some point in the future.

Working on completing the system was both technical and personal. Technically,
I built an application where by the web application standards it was functional,
stable, and easy to use. It had data handled smoothly in the backend, presented
clear interfaces on the frontend, and had the right database design supporting
the performance of the system. Personally it taught me how much I could absorb
just by going on some actual project and sticking at it when it was complex or
intimidating. Looking to the future, I realize there are numerous ways this system
could become better or larger. It could add features, it could make the interface
more interactive still, it could make the database stronger so it could deal with
larger and more involved data sets. It could also improve security as well as
performance, particularly if it was going to be scaled up. Even compatibility on
the small device level as well as further automation could make it stronger. In
some ways, this project seems just right as an initial version—you could definitely
run it but it also leaves something for the future for creativity as well as expansion.

Ultimately, it isn’t just about creating the web application. It’s about the
process of starting at an idea, learning the technology, overcoming the challenges,
and watching it all coalesce into an operational system. It demonstrates both the
technical ability I accomplished as well as the personal growth I achieved during the
process. Most importantly, it provides me the assurance I could attempt projects
of the similar nature in the future and continue getting better as a developer.

iv

Acknowledgments

I would like to express my deepest gratitude to my supervisors, Prof. Michela Meo
and Prof. Guido Pagana, for their valuable guidance, continuous support, and
encouragement throughout the development of this thesis.

My sincere thanks go to Dr. Serena Perotti for her insightful feedback and
clinical guidance, which significantly contributed to the improvement of this work.

I am also especially grateful to my family and my daughter Rasta for their
unconditional love, patience, and support during this journey. Without their
presence and motivation, this accomplishment would not have been possible.

Finally, I would like to thank all the friends and colleagues who supported
me both technically and emotionally, making this experience meaningful and
memorable.

v

Table of Contents

abstracty ii

Summary iii

Acknowledgments v

Table of Contents ix

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Research Questions . 2
1.4 Contributions . 2
1.5 Scope and Boundaries . 3

2 Background and Related Work 4
2.1 Cancer Care Pathways . 4
2.2 Digital Health Platforms in Cancer Care 6
2.3 Usability and Accessibility in Digital Health 6
2.4 Privacy and Security in Healthcare Data 7
2.5 Comparison of Existing Solutions 8

3 Technologies 10
3.1 Python Virtual Environment . 10
3.2 Django Framework . 11
3.3 JavaScript . 13
3.4 HTML . 14
3.5 Bootstrap CSS . 16

vii

3.5.1 SQLite3 . 17

4 Methodology 19
4.1 User Interface and Web Views . 19

4.1.1 User Registration Form . 20
4.1.2 Activity Logging Interface 21
4.1.3 Dynamic Instructional Content 22
4.1.4 Navigation and User Experience 24
4.1.5 Integration with Backend . 25

4.2 Backend Development with Django 26
4.3 Database Design . 32

5 Conclusion and Future Works 40

Bibliography 43

viii

List of Figures

3.1 Virtual Environment with separate Application, dependencies, and
Python version. 11

3.2 MTV Model. 12
3.3 MVC VS MTV Model. 13
3.4 JavaScript in the browser and on the server (Node.js) working with

a database. 14
3.5 Typical HTML document structure with semantic regions. 16
3.6 Simple comparison: embedded SQLite vs client–server databases. . 18

4.1 Registration Page UI. 20
4.2 Registration HTML Code. 21
4.3 Filling up Form. 22
4.4 Example of Exercise. 23
4.5 Example of Training. 24
4.6 Navbar. 24
4.7 Request Method. 25
4.8 Django Request/Response Cycle with Middleware 28
4.9 URL. 28
4.10 View HTML. 29
4.11 Combine HTML with Dynamic Data. 29
4.12 Screenshot of Dashboard Page Rendering. 30
4.13 Admin Panel. 30
4.14 Screenshot of Customized Admin Panel. 30
4.15 Update permissions for proxy models. 31
4.16 Handle Asinc Requests. 32
4.17 Database Structure. 33
4.18 Using Rich Library. 34
4.19 Database Form. 35
4.20 Middleware Manages User Sessions. 36
4.21 Activity of Users and Admin. 36
4.22 Admin FlatPage list. 37

ix

4.23 How Django Paginate. 38
4.24 Exporting File. 39
4.25 An Excel File. 39

x

List of Tables

4.1 FlatPage model fields and descriptions 33

xi

Chapter 1

Introduction

1.1 Motivation
When someone is told they have cancer, life suddenly fills up with hospital visits,
new instructions, and endless bits of paper to remember. One day it’s a scan, the
next it’s blood tests, and in between there are phone calls and notes from the
doctor that are easy to misplace. It can feel like a full-time job just trying to stay
on top of everything.

Now imagine having one simple place on your phone or computer where all of
this lives: your calendar, your doctor’s notes, and even a personal space to jot
down how you’re feeling or what you’ve noticed about your body. No more sticky
notes on the fridge or lost appointment cards. Patients know exactly what’s coming
next, and doctors can instantly see the updates patients share. It makes the whole
process smoother, less stressful, and helps everyone stay connected and on track.

T‌he aim of the project is to provide the clinical pathway in oncology with a
full range of support starting from prehabilitation, through perioperative care, and
further into rehabilitation and long-term follow-up. Ultimately, the platform wants
to be a factor in speeding up recovery and lowering the co-morbidity risk through
the patient becoming more actively engaged in preoperative preparation and, at
the same time, by more intensive postoperative monitoring being ‌enabled.

1.2 Problem Statement
Managing cancer care information is still a challenge in many places. Paper notes,
printed schedules, and verbal instructions are easily misplaced or misunderstood,
and updates often arrive too late. While some hospitals rely on electronic health
record (EHR) systems, these platforms are not always designed with patients in
mind—especially those receiving treatment outside the hospital or in community

1

Introduction

care, where quick and simple access is crucial.
Patients need a tool that feels easy to use and secure, one that lets them:

• Create an account and log in safely.
• Find clear instructions for before and after their treatments.
• Upload documents or complete forms within given deadlines.
• View their appointments, locations, and necessary materials through a calen-

dar.
On the other side, doctors need a way to quickly check and organize the

information their patients provide. Existing systems rarely combine these needs
with features like generating structured summaries or exporting patient history
into formats such as Excel, which are helpful for follow-ups, research, or record
keeping. At the same time, any solution has to remain easy to navigate, accessible
to different users, and compliant with privacy rules such as the GDPR.

1.3 Research Questions
This project is shaped by a few central questions that guided the design and
development process:

• RQ1: How can a web-based application be built to support cancer patients in
keeping track of tasks, filling out forms, and managing appointments before
and after treatment?

• RQ2: What design choices and features can make the platform simple for pa-
tients to use while also giving doctors an efficient way to review the information
provided?

• RQ3: To what degree does the system succeed in meeting the needs of
usability, accessibility, and data security within a healthcare setting?

• RQ4: How can the platform include an export option (Excel sheets) so that
doctors can easily access a clear record of patient submissions?

1.4 Contributions
The main contributions of this work can be summarized as follows:

• Requirements Gathering: Identifying the needs of both patients and
doctors for a shared platform that can support cancer care routines.

• System Development: Building a working web application with Django as
the backend and HTML/CSS for the frontend. The platform includes patient
registration, secure login, interactive forms, a digital notebook for materials,
calendar integration, and visit information.

• Doctor’s Dashboard: Developing a dedicated interface for doctors to view
patient histories, review forms, and generate structured Excel exports of

2

Introduction

patient submissions.
• Evaluation: Testing the platform with respect to ease of use and accessibil-

ity, while checking that it aligns with data protection and web accessibility
guidelines (such as GDPR and WCAG 2.2).

1.5 Scope and Boundaries
This thesis focuses on creating and testing a digital tool that helps organize and
support cancer care.

Scope
The system includes:

• Patient registration and login.
• Interactive forms with time-based submissions.
• A calendar showing tasks, appointments, and required materials.
• Directions and location details for upcoming visits.
• A dashboard for doctors to review and manage patient submissions.
• Export of patient data into Excel for clear, structured reports.

Boundaries
The project also has clear limitations:

• The system does not provide diagnosis or treatment tools.
• All information is supportive and organizational only.
• No real patient data is used in testing; instead, artificial data is applied to

respect privacy laws.

3

Chapter 2

Background and Related
Work

2.1 Cancer Care Pathways
Going through cancer treatment is not a single event but a long and complicated
journey that usually unfolds in three main phases: finding out about the disease,
undergoing treatment, and then trying to heal and adjust after treatment is
completed. Each of these steps creates its own pressures and difficulties, not only
for the patient but also for family members and caregivers who walk alongside
them.

The first stage, diagnosis, is often described as one of the most stressful mo-
ments of the entire cancer pathway. Patients are asked to go through a series of
medical examinations—such as blood work, biopsies, ultrasounds, CT scans, or
MRIs—that can feel overwhelming. The sheer number of appointments, along
with instructions that are sometimes confusing or provided by different doctors in
separate settings, can leave people uncertain about what they are supposed to do
next. This uncertainty frequently heightens fear and anxiety, as described by the
World Health Organization, which has emphasized how fragmented communication
in healthcare increases the emotional toll on patients [1].

When the treatment stage begins, the challenges take on a new dimension.
Depending on the type and stage of cancer, patients may face surgery, chemotherapy,
radiation therapy, targeted drugs, or a combination of these. Each of these comes
with its own strict schedule and unique side effects. For example, chemotherapy
may cause fatigue, nausea, or hair loss, while radiation might lead to burns or
localized pain. Patients must keep track of medications, attend appointments on
time, and stay aware of possible complications. Studies such as Richards et al.
(2020) have shown that patients who lack proper guidance during this stage often

4

Background and Related Work

struggle with sticking to their treatment schedules and, in turn, experience worse
outcomes [2].

The third stage—life after treatment—is often misunderstood. Many people
think finishing chemotherapy or surgery means the end of the journey, but in reality,
recovery brings its own set of difficulties. Survivors often have to manage scars,
long-term side effects, or even disabilities caused by surgery. They also need to
maintain strict routines for monitoring symptoms, taking prescribed drugs, and
attending follow-up appointments that can stretch over several years. In addition,
emotional health becomes central: survivors frequently report fear of recurrence,
feelings of isolation, and the need for psychological counseling or community support
[3]. For many, adjusting daily habits such as diet, physical activity, and sleep
becomes a lifelong task.

Across all these stages, a recurring problem is that information is rarely delivered
in a way that is clear, consistent, and easy to follow. When patients receive scattered
instructions, are overloaded with technical jargon, or feel left alone to manage
complex tasks, the results are almost always negative. They report more stress,
they miss doses or appointments, and their overall quality of life drops. Research
highlights that well-organized communication and patient-friendly tools can make
a measurable difference. For example, structured guidance improves treatment
adherence, reduces anxiety, and empowers patients to take a more active role in
their care [3, 1].

This has led many researchers and clinicians to stress the importance of practical
solutions that help patients navigate these care pathways more smoothly. One
promising direction is the use of digital applications and web-based systems. These
tools can gather all instructions in one place, send reminders about medication
or appointments, and provide educational material in clear, simple language. By
doing so, they can act almost like a digital assistant, reducing the feeling of being
lost in a maze of procedures and forms. Studies on real-time digital monitoring
systems, such as those by Richards et al. (2020), have shown encouraging results,
especially in supporting patients during and after treatment [2].

In short, the cancer care pathway is not only a medical journey but also an
emotional and organizational challenge. Diagnosis demands clarity, treatment
requires structure and support, and post-treatment recovery calls for continuous
monitoring and psychological care. Without tools that simplify this experience,
patients are left vulnerable. With the right support, however, the journey becomes
more manageable, offering patients and caregivers a stronger sense of control and
dignity throughout the process.

5

Background and Related Work

2.2 Digital Health Platforms in Cancer Care
The use of digital health technologies has transformed patient management in health-
care, particularly in oncology. One such system, MyChart, has played a pivotal role
in facilitating communication between patients and healthcare providers. These
systems allow patients to access their health records, make appointment requests,
and receive test results remotely, fostering convenience and patient engagement [4].

Similarly, mobile applications such as Carevive offer personalized care for cancer
patients. Carevive is integrated with Electronic Health Records (EHRs) to offer
personalized care plans, symptom management, and education, aiming to improve
patient outcomes and make care coordination easier [5].

Despite these advances, there are many challenges. The majority of EHR systems
are not designed to allow seamless data exchange, limiting the ability to export
structured reports like Excel spreadsheets that summarize patient histories. This
lack of interoperability could undermine comprehensive care and follow-up visits
[6].

Moreover, while digital platforms enhance communication, they do not encom-
pass the entire process of cancer care. Gaps exist in both pre-treatment preparation
and post-treatment follow-up, where digital tools can play a significant role in
providing sustained support and information for patients [7].

2.3 Usability and Accessibility in Digital Health
When it comes to digital health platforms, the design can really matter a lot in
terms of how beneficial they are to the patient. Usability is about designing a
system in a simple and intuitive way so that the user can get things done without
ending up frustrated or confused. For instance, Nielsen’s usability heuristics suggest
that the system should clearly indicate what is happening, act as people expect
things to in the real world, and give users a sense of control over what they are
doing [8]. Researchers use instruments like the System Usability Scale (SUS) to
measure how easy healthcare apps are to use and identify areas where they need to
improve [9].

Accessibility is also crucial, particularly for patient populations who might have
specific requirements, such as older citizens or those who are disabled. Guidelines
like the Web Content Accessibility Guidelines (WCAG 2.2) help in making web
pages and applications easy to perceive, operate, and understand, and easy to
use across different devices [10]. Practical implementations for facilitation of
accessibility include support for screen readers, keyboard navigation with clear
controls, high contrast color schemes, and plain language that is easy to understand.
All this notwithstanding, though, most mobile health apps and patient portals are

6

Background and Related Work

inaccessible and even some people cannot use key functions [moncy].
At the level of daily practice, developers and designers need to pay close attention

to usability and accessibility issues at all stages of creating a digital health tool.
Usability testing may include observing patients utilizing the platform or asking
them questions to find out how simple things are. Accessibility testing may include
testing the app with screen readers, keyboard-only navigation, or color-blindness
simulators to ensure that all users can use the platform effectively. By combining
usability and accessibility considerations, online health platforms are more inclusive
and enable patients to manage their care confidently and reduce the risk of mistakes
or omission.

Others have demonstrated that, when applied, these principles can greatly
enhance patient engagement. For instance, clear feedback and simple interface
designs enable users to more effectively adhere to care instructions, whereas acces-
sible content prevents vision or motor impairment from excluding patients from
digital health programs. Health technology researchers more and more focus on
co-design methods, in which patients themselves contribute to the development
and improvement of applications in order to meet their requirements better [9, 10,
8].

Lastly, the goal of emphasizing usability and accessibility in digital health is to
make healthcare more equitable and effective. It is not only unpleasant, but also
unhealthy, to use systems that are hard to use or unavailable. Therefore, investing
time and resources in testing, iterating design, and adhering to proven standards is
not an option—it is necessary to create tools that actually work for all patients,
particularly the most vulnerable ones [moncy].

2.4 Privacy and Security in Healthcare Data

Healthcare information is very sensitive and subject to strict privacy and security
laws. In the European Union, conditions like informed consent, minimisation
of data, transparency, and the right to be forgotten are outlined in the General
Data Protection Regulation (GDPR) [11]. These conditions emphasize that digital
platforms must adopt a “privacy-by-design" approach, i.e., security and privacy
must be incorporated into the development phase from the beginning.

Technically, digital health platforms are vulnerable to a number of threats, i.e.,
weak authentication, injection attacks, and cross-site scripting. Standards like
the OWASP Top Ten identify these threats [12]. Best practice for securing this
is by encrypting data in transit and at rest, applying multi-factor authentication,
employing regular updates, and practicing secure coding. Trust in digital health
systems depends primarily on strong privacy and security practices.

7

Background and Related Work

2.5 Comparison of Existing Solutions
As one examines the platforms that currently exist for healthcare management, it
is clear that while they provide some useful tools, they fail to fill in the gaps for
patients or providers. Hospital portals, for example, generally allow patients to
view their medical records, lab results, and treatment histories. However, they do
not routinely provide structured support for pre-treatment preparation or patient
aftercare following procedures [13]. Similarly, mobile health management apps
often offer reminders for medication or exercise and some educational content, but
are not incorporated into the task workflow of care, lessening their actual usefulness
in daily patient management [14].

Accessibility and compliance with privacy legislation vary across platforms,
with some systems not adequately protecting sensitive patient data and others
not providing the functionality to export health data into standard formats such
as Excel for follow-up or research [15]. These shortcomings pose a challenge for
patients and providers to maintain comprehensive, easily transportable records of
treatment activities and health outcomes.

The system presented in this thesis is intended to bridge these gaps by incorpo-
rating a number of essential functions into a single platform. In the first instance,
it provides secure patient registration and authentication processes to avert unau-
thorized access to health data [16]. Second, it includes pre- and post-treatment
checklists that guide the patient step by step through what should be done before
and after receiving medical treatment. These checklists serve to promote compliance
with suggested procedures and minimize the possibility of errors or omitted steps
within treatment regimens.

In addition, the platform incorporates a patient notebook feature that allows
individuals to record instructions, observations, and progress over time. The
electronic notebook permits ongoing monitoring by patients and allows doctors to
see previous entries for a more comprehensive overview of each patient’s progress.
Calendar integration provides an extra layer of support by allowing patients to
manage appointments and daily care tasks efficiently.

From the provider’s perspective, an administrative dashboard offers healthcare
providers an overview of patient submissions, allowing them to monitor adherence
to care plans and provide feedback in a timely fashion. Finally, an export function
enables the generation of Excel files containing complete patient histories, making
it easy to analyze trends, generate reports, or create structured data for follow-up
care [17].

By consolidating these elements, the system here put forward presents patients
with a comprehensible and traversable pathway through treatment and gives
clinicians a coherent, easily interpretable collection of information. The platform
emphasizes both accessibility and confidentiality, offering a secure portal that

8

Background and Related Work

supports enhanced care coordination and results for cancer treatment and other
complex medical routines [13, 14, 15, 16, 17].

9

Chapter 3

Technologies

3.1 Python Virtual Environment

Perhaps the most important tool in Python to ensure the smooth and predictable
running of your programs is the Virtual Environment. A Virtual Environment is
essentially a self-contained folder on your computer that has a particular version of
Python with its own isolated package and module set. This separation is necessary
because the majority of Python applications rely on packages not included in
Python’s standard library. If different projects require different versions of the
same package, their global installation can quickly lead to conflicts and bugs.

As an example, consider two Python projects: Project A might need version
1.0 of a library, and Project B depends on version 2.0 of the same library. If both
projects are installed globally, then either project can fail to run if the correct
version isn’t available. Virtual Environments solve this problem by allowing each
project to have its own isolated set of packages. This makes it possible to have
multiple projects on one computer without needing to worry about incompatibilities
between their dependencies.

It’s also convenient to use a Virtual Environment for collaboration and deploy-
ment. If a project has an isolated environment, it is easier to deploy to another
machine or share with collaborators because dependencies are explicitly declared.
Using tools like pip, you can install the same versions of packages declared in a file
called requirements.txt so that everyone working on the project has the same
setup. It would be difficult to recreate results or debug issues due to unmatched
package versions without this isolation.

Figure 4.1 illustrates this idea: multiple virtual environments can exist on
a single machine, each with its own Python interpreter and packages, allowing
developers to safely run different applications simultaneously.

The concept of Virtual Environments has been standardized in Python with venv,

10

Technologies

which was introduced in Python 3.3, and is now best practice for any professional
Python project [18]. There also exist additional resources and tutorials for learning
how to properly use and understand Virtual Environments, such as Real Python’s
tutorial on Python Virtual Environments: A Primer [19], and W3Schools’ reference
for virtual environments in Python [20].

By using Virtual Environments on a routine basis, developers avoid exacerbating
the "dependency hell," ensure compatibility between projects, and maintain a clean,
well-structured Python development environment. [18, 19, 20]

Figure 3.1: Virtual Environment with separate Application, dependencies, and
Python version.

3.2 Django Framework
Django is a Python web framework with advanced features that support quicker
development of secure and sustainable websites. It was originally developed by
Adrian Holovaty and Simon Willison in 2003 and then released in 2005. Now its
maintenance is done by the Django Software Foundation [21].

It is intended to simplify the creation of dynamic, database-driven websites. It
facilitates reusability, rapid development, and the "don’t repeat yourself" (DRY)
principle. This enables developers to focus on application-specific logic instead of
repeating the same items like common functionality [22].

Rapid Development: Django follows a "batteries-included" philosophy, which
includes the following built-in features: an authentication system, an admin in-
terface, and form handling. This allows for fast development from concept to
deployment [23].

Security: Security is one of the key features of Django. It offers protection from
frequent attacks like SQL injection, cross-site scripting (XSS), cross-site request
forgery (CSRF), and clickjacking. This is particularly important in applications
that handle sensitive information [23].

11

Technologies

Scalability: Django supports multiple relational databases like PostgreSQL,
MySQL, Oracle, and SQLite. It has an Object-Relational Mapper (ORM) that
allows developers to interact with databases using Python code, thus making
applications scalable based on increasing traffic and data [24].

Maintainability: The sound separation of concerns due to the Model-Template-
View (MTV) architecture of the framework, coupled with compliance with DRY,
makes it easier to maintain and expand Django applications in the long run
[25].Figure 4.2

Figure 3.2: MTV Model.

Django employs the Model-Template-View (MTV) pattern, which is philosophi-
cally similar to Model-View-Controller (MVC). Under this structure:

• Model: Handles data and database schema (models.py).

• Template: Handles presentation and how to show data (template.html).

• View: Contains business logic and mediates models and templates (views.py).

This separation of concerns simplifies maintenance, updates, and scaling of web
applications.Figure 4.3

12

Technologies

Figure 3.3: MVC VS MTV Model.

Django’s design and capabilities make it a good candidate for creating applica-
tions that demand speed, security, and future-proof maintainability [21, 22, 23, 24,
25].

3.3 JavaScript
JavaScript used to be the non-interactive part of the web page, but now it is
responsible for all the user actions and dynamic updates on the site. HTML
structures a page, and styling is taken care of by CSS, but JavaScript is what makes
the page react to user inputs and update itself without the user’s intervention.
Practically, this is the case when the user doesn’t have to wait for a full reload
in order to press a button, write on a form that is automatically validated, or
other similar actions [26]. Basically, JavaScript talks to the Document Object
Model (DOM), which is the normal tree-like structure that holds all the information
about a web page. Thus, developers can, on the fly, manipulate texts, images,
or links, or even complete page sections. A simple script can make sure a login
form is correct or show a warning message without the need for the server’s help,
which is user-friendly [27]. To be more specific, developers are free to incorporate
JavaScript code directly into HTML using the <script> tag, or better still, they
can keep it in separate files which are more i... libraries like jQuery made the lives
of developers easier by automating their tedious and repetitive tasks, and recently
frameworks such as React or Vue.js have been providing the developers’ with fast
and efficient ways to build big scale, interactive applications [28]. JavaScript is
basically the first to be standardized within the ECMAScript umbrella, which
means that it is very stable and behaves quite similarly in different browsers. Most
of the time, this standard is being updated, actually ends up bringing modern
features, such as async/await, modules, and better object handling, to the language
while trying to continue with all the previous versions [29]. In addition, it should

13

Technologies

also be mentioned that the presence of JavaScript is not merely restricted to the
browsers any longer. Over the period of time, as a consequence of the great improv...
Consequently, the applications written under the Node.js package model carry
the nature of event-driven and are capable of handling thousands of connections
effectively, which eventually leads to making the JavaScript technology one of the
most versatile among the web development world that is still facing competition
with the likes of [30].

Figure 4.4 shows how JavaScript connects the browser with the backend and
database in a typical web system.

User’s Browser
(HTML + CSS)

JavaScript
(DOM, Event Handlers)

Server (Node.js)
API, Business Logic

Database
(SQLite / PostgreSQL)

renders & events

HTTP / Fetch / AJAX / WebSocket

queries / updatesresults

push / realtime

Figure 3.4: JavaScript in the browser and on the server (Node.js) working with a
database.

3.4 HTML
HTML is the fundamental structure that underlies every webpage - you can consider
it the frame that supports the entire application. Differently from programming
languages, which carry out operations, HTML is a language that explains to the
browsers how to organize the content visually. It establishes the properties and
characteristics of titles, text, and images, and aside from these basic elements, it
also introduces forms and links into the page. These elements are the smallest
parts of the web’s visible structure. By saying <p>This is a paragraph</p> it’s
like instructing a browser to display the text within the tags as a paragraph [31]. A

14

Technologies

progressive measure was the development of HTML5, which changed the tags into
clearer and more meaningful ones called semantic elements. It contained such items
as <header>, <nav>, <article>, <section>, and <footer>. Now, apart from
machines, even people who look at the structure of a page can get an idea much
faster. Those that are considered neither structural nor semantic are only tags and
thus do not help human readers and programmatic ones, like screen readers, gain a
better understanding of the page. The mentioned issue can be solved not only with
the help of developers but also with the help of search engines and accessibility tools
such as screen readers that change <div> tags into something more meaningful and
logical [32, 33]. Usage of semantic HTML has a direct influence on accessibility. In
a situation where a webpage is properly tagged, for instance, a user with the help
of a screen reader can selectively listen to headings in order to find the required one
quickly and thus save the time that would be spent in linear reading of the whole
page. Along with inserting descriptions in images and labels in a form, users with
visual impairments become another group of people who gain equal access to the
webpage by ensuring that they can indeed use it. The accessibility criteria, such as
WCAG 2.1, provide the best practices of the usage of semantic and well-structured
HTML, which are the major factors in making web content accessible to a wide
range of users [34, 35]. HTML in general is predictable and has a wide application
that makes it a very valuable tool from a practical perspective. Any web browser on
any device can understand it, and no additional software is needed. The developers
can first create a basic page and then use CSS and JavaScript to make the page
more attractive and interactive. The usage of semantic HTML helped the template
retain its ease of maintenance, enabled a neat CSS and Django template integration,
and facilitated the export of medical content into structured outputs in this thesis
project.

Figure 4.5 shows a simplified diagram of how a semantic HTML document is
structured. This clear separation of regions makes it easier to maintain templates
and improves accessibility.

15

Technologies

<html> Document

<head> (meta, title, CSS/JS) <body> (visible content)

<header> (site title, nav)

<main> (page content)

<article> <aside><footer> (contact, copyright)

Figure 3.5: Typical HTML document structure with semantic regions.

3.5 Bootstrap CSS

CSS frameworks are toolkits that provide developers with premade styles and layout
rules to cut down the time significantly. One of the most popular and well-known
frameworks is Bootstrap among others. Twitter engineers Mark Otto and Jacob
Thornton created it in 2011 to be the result of front-end development quicker and
more uniform across different projects [36]. Since then, it has transformed into a
worldwide open-source project with user and contributor communities in almost
every country [37]. Because of the built-in grid system, which is the main feature
of Bootstrap and allows for the automatic adjustment of the layout for the various
screen sizes, designing modern web applications has become much simpler with
Bootstrap. This basically means that any website created using Bootstrap will still
be visually appealing on a desktop monitor, a tablet, or a smartphone, and there
won’t be a need to write separate CSS rules for each device by the developers. In
reality, this accomplishment saves an enormous amount of time and also reduces
the number of mistakes when working with the responsive design [38]. The cross-
browser support is another important aspect of Bootstrap as well as cross-browser
support. Developers can be quite sure that their websites will be operational on
Chrome, Firefox, Safari, and even on older versions of Internet Explorer with a
few adjustments. Besides that, the framework comes with a collection of pre-styled
components such as buttons, navigation bars, modals, and forms, which can be
customized as needed. This equips the developers with a secure starting point
as well as the necessary malleability to come up with one-of-a-kind designs. The
community around Bootstrap has been a major factor in its success over time.
A large number of themes, templates, and UI components are available without any
charges, which in turn helps both beginners and professionals to create attractive

16

Technologies

websites in less time. The official documentation is reportedly one of the best in
the area, as it provides examples, code snippets, and explanations that facilitate
even newcomers to get started easily [39]. In general, Bootstrap is still considered
a developer-friendly tool, as it combines the advantages of being user-friendly and
being versatile. Regardless of the objective being a personal website, a business
platform, or a healthcare management system, Bootstrap makes the process of rapid
prototyping and delivering the final product, which is professional and aesthetically
pleasing, possible.

3.5.1 SQLite3

SQLite is a small, convenient database that is integrated inside the app instead of
a separate server process. As a result, the entire database engine is just a library
that you link with, and it works without any installation or running a server. For
daily development and small deployments, it is very convenient with the absence
of a daemon to configure, a user to create, and a network connection [40, 41]. The
especially great thing about SQLite is that the entire database is a single file on
the disk. The single-file format makes it very easy to copy, back up, or transfer
the database between different computers — you can, for instance, send the file
through email or check it into a project folder. That portability is one of the main
factors why SQLite developers use it when making prototypes, embedded apps, and
tools where the ease of sharing is important. Besides, the format is also quite stable
and widely adopted [42, 43]. Being a lightweight and zero-configuration program,
SQLite is definitely the first choice for development, small web projects, single-user
desktop apps, and mobile apps. It is usually installed as a local cache or staging
store in front of a larger system before the data moves there. In short, if you are
looking for a reliable and fast database without the trouble of handling a separate
server, SQLite should be the one to go [44, 41]. However, there are disadvantages as
well. On the one hand, SQLite can perform numerous simultaneous reads without
any problem; on the other hand, the writes are serialized. That is to say, the writer
will momentarily lock the database, redirecting it to a new location while updating
the file. Normally, a client–server DB (e.g., PostgreSQL or MySQL) is what you
would choose for multi-user, high-concurrency server applications. Nevertheless,
for the types of operations in this project that involve writing patient daily notes
and activity logs, exporting history to Excel, SQLite’s simplicity, portability, and
ACID guarantees are the factors that make it a very good solution [45, 43].

The graph shown in Figure 4.6 shows the differences between SQLite and the
typical client-server databases.

17

Technologies

Application
(Django backend)

SQLite DB
(single file)SQLite (embedded)

• No separate server
• Single portable file
• Zero configuration

Application
(Django backend)

Database Server
(Postgres, MySQL) Client–Server DB

• Dedicated server process
• Network connection
• Better for high concurrency

Figure 3.6: Simple comparison: embedded SQLite vs client–server databases.

18

Chapter 4

Methodology

This project is a web application developed with the Django framework. Syn-
chronously and asynchronously, the application can work, and it is still suitable for
previous Python environments. The method is a gradual development process. It
fuses the frontend, database, and backend parts, offering main code excerpts to
demonstrate the implementation options.

4.1 User Interface and Web Views
The initial phase for building this online application was, without a doubt, the
design of a user-friendly interface that would facilitate the users’ interaction with
the system. The UI was designed with HTML, CSS, and Django templates. This
enabled it to be both responsive and accessible. The essence of the interface is
to allow users to perform registration, log in, pick up activities, record work, and
check the instructional content through an easy flow. The several pages of the
interface represent different functions or user tasks. The essential parts of the UI
are briefly explained below:

1. User Registration and Login: Users can create accounts, sign in, and
access personalized content. The registration form includes:

• Username: A unique identifier for the user.
• Password: To secure the account.
• patient info: contacts, background health of patient.

Returning users can log in using their credentials.

2. Activity Logging Page: Users can select daily activities, log their completion,
and add notes. Predefined activities include:

19

Methodology

• Exercise

• relaxation

• Meal

Users can also select the date of the activity and add optional notes for
additional details.

3. Instructional Content Page: This page provides multimedia content to
guide users in performing activities. Based on user selection, it can display:
Pictures illustrating each step

4.1.1 User Registration Form

Django forms and templates have been used to create the registration page. The
registration HTML form is shown in the figure 4.1, 4.2 Input fields are validated on
the client-side (HTML required) and server-side with Django forms. The form data
is handed to a Django view for handling the user save operation in the database.
There is a separate login page through which users can log in after registration

Figure 4.1: Registration Page UI.

20

Methodology

Figure 4.2: Registration HTML Code.

4.1.2 Activity Logging Interface

An activity logging page enables users to record their daily activities. Users pick
the date and what they have done. Notes provide additional details for an activity,
for instance, length, intensity, or food consumed. A form submission turns on a
Django view, which validates the input and, with the help of the Activity model,
saves it in the database. Figure 4.3

21

Methodology

Figure 4.3: Filling up Form.

4.1.3 Dynamic Instructional Content
Users of the home page can view step-by-step instructional materials that guide
them through the correct execution of a task. The content is dynamically loaded
based on the selected activity. Pictures are kept in the media folder and shown
via Django templates. Before users carry out the tasks, they can visualize and
grasp the procedures through the instructions given to them. In addition to that,
they are also able to view the map, the dates for hospital visits, and the contact

22

Methodology

information of the related hospitals. Figure 4.4, 4.5

Figure 4.4: Example of Exercise.

23

Methodology

Figure 4.5: Example of Training.

4.1.4 Navigation and User Experience

• Navbar: Allows users to move between the dashboard, activity logging, and
instructional content. Figure 4.6

• Responsive Design: CSS and media queries make sure that pages work on
both desktop and mobile devices.

• Feedback Messages: The Django messages framework provides feedback, such
as “Activity logged successfully.”

Figure 4.6: Navbar.

24

Methodology

4.1.5 Integration with Backend

Every form on the web interface is linked to a Django view that takes in user
input through HTTP requests. Thus, the Activity Logging form in the interface
sends data to a Django view for data storage. The view here is the handler for
GET requests, to load the page, and POST requests, to update the database
with the given data. Additionally, it maintains the record of the user performing
each action. As such, this is an example of the application’s full-stack integration,
which combines user interface, backend logic, and database. Figure 4.7

• login_required ensures only authenticated users can log activities.

• request.method distinguishes between GET (rendering the form) and POST
(processing submission).

• form.save(commit=False) allows modifying the object before saving, here
to associate it with request.user.

• redirect() sends the user back to the activity page after successful submis-
sion.

Figure 4.7: Request Method.

25

Methodology

4.2 Backend Development with Django
The backend system is the mind of the project that implements all the business logic,
deals with the user interface and data storage communication, and also provides
security, scalability, and consistency. If the frontend is the face of the hospital
patients and medical staff, the backend is still working for them to manage their
requests, take care of authentication, ensure security, and make database interaction
possible. We used Django mainly for the reasons that we have mentioned prior i.e.
Fast development, Security, Scalability, ORM compatibility, and a large open-source
community that facilitates by offering packages, solutions, and documentation.

The directory structure of the Django project is as follows:

project_root/
|
|-- manage.py
|-- hamber/ # Main project configuration
| |-- __init__.py
| |-- settings.py
| |-- urls.py
| |-- asgi.py
| ‘-- wsgi.py
|
|-- home/ # Custom application (patients, activities, etc)
| |-- models.py
| |-- views.py
| |-- urls.py
| |-- admin.py
| |-- forms.py
| ‘-- templates/
|
‘-- db.sqlite3 # SQLite3 database

About Core Files Explanation: When working with a Django project, there are
a few files that show up right away, and each plays a very specific role:

• manage.py : It is the project’s control panel. From here, you can start the
development server, apply or roll back database migrations, or even create a
superuser account to access the admin panel. It’s the file you’ll often reach
for when you want to run quick commands.

• settings.py : Here is the core of the configuration. The file describes to
Django the details of the database to be connected, what apps are currently

26

Methodology

active, and the general settings of middleware, templates, and static files.
Practically any significant setting would be changed here.

• urls.py :The file is a controller of some sort. If a request (for example, a visit
to /login/ or /dashboard/) is made, then this file finds the appropriate view
to manage the request. Simply put, the program would be unable to provide
different outputs for different web addresses without this file.

• wsgi.py and asgi.py : In daily work, these two files are hardly noticed, but
they have an essential role when the project goes live. WSGI works with
standard server configurations, whereas ASGI is designed for asynchronous
operations that require instant communication. In simple terms, they are the
“access point” from the web server to the application.

• apps (for example, home/) : Django encourages breaking things down
into smaller, independent apps. Each app has its own purpose: one might
take care of patient information, another might schedule appointments, and
another might manage nutrition logs. This modular design keeps the overall
project organized and easier to extend later.

In Django, there is middleware. The request is first passed through these
middleware layers when someone clicks on your site; then, it is handled. They are
able to do various things like checking, changing, or even blocking the request if
something looks suspicious. Only after that, the request goes to the view where
your main logic is executed. And it doesn’t stop here. The response from the view,
which has to go through the same middlewares as before, is now on its way back.
This function is like some helpers who are checking if everything is okay before the
user finally gets the page. It’s not very visible, but without it, the whole process of
authentication, logging, or other background checks would be a mess. As shown in
Figure 4.8, a Django request passes sequentially through middleware, reaches the
view for processing, and then returns a response back through middleware to the
browser.

27

Methodology

Request
(from Browser)

Middleware
(Before View)

View
(Business Logic)

Middleware
(After View)

Response
(to Browser)

Figure 4.8: Django Request/Response Cycle with Middleware

About URLs and Views determine how data appears to the user and the path
to the main goal. Django offers function-based views (FBV) and class-based views
(CBV).Figure 4.9 Here, /home/ goes to the dashboard view. This view gets user
activities and displays them in HTML.Figure 4.10

Figure 4.9: URL.

28

Methodology

Figure 4.10: View HTML.

Django uses a template engine to combine HTML with dynamic data. This
code displays personalized activities for each logged-in user. Figures 4.11, 4.12

Figure 4.11: Combine HTML with Dynamic Data.

29

Methodology

Figure 4.12: Screenshot of Dashboard Page Rendering.

Django has an admin interface by default. The admin interface enables users
to carry out CRUD operations on models without the need to develop a separate
dashboard. By means of this modification, the management team is able to control,
locate, and maintain the patient’s activities through the backend without any
hassle.

Figures 4.13, 4.14

Figure 4.13: Admin Panel.

Figure 4.14: Screenshot of Customized Admin Panel.

30

Methodology

Security is a top priority, undoubtedly, in any healthcare-related software system
or application. The good news is that Django has its own built-in facilities to
offer a positive outcome in this sphere. User accounts are unique, while different
user categories like doctors, nurses, and admins can be assigned different sets
of permissions. Moreover, Django does it automatically for each data model; it
provides default permission operations such as adding, changing, deleting, and
viewing. Additionally, you can define your own permission if required. So to
illustrate, assuming a model named PatientRecord, staff members can be allowed
to update the information with the help of permissions, but not necessarily delete
the records. All this information is stored by Django in the database. Thus, the
actions are only accessible to users with sufficient privileges. Django has a method
of making sure that every username is unique and valid. It can come up with a
default username and check if it doesn’t conflict with any other existing usernames
whenever new users are being created. This method keeps accounts in order and
avoids errors. Figure 4.15 illustrates it clearly.

Figure 4.15: Update permissions for proxy models.

Django normally runs in a regular synchronous mode (WSGI), but newer features
need it to handle things in real-time, like WebSockets, which is asynchronous
(ASGI). To make sure everything still works smoothly, the project used some
built-in Django helpers like guarantee-single-callable, CurrentThreadExecutor, and
Local. For example, guarantee-single-callable just wraps a function so it can run
safely whether the app is using old-style synchronous calls or the newer async setup.
Figure 4.16

31

Methodology

Figure 4.16: Handle Asinc Requests.

4.3 Database Design

Every web application needs some kind of storage for its data. In this particular
case, we were using Django’s ORM, which allows the database to be accessed in
Python rather than in SQL. For our development, we chose to use SQLite3 as our
database, which is basically a simple and easy to set up one. In Django, models
are nothing more than Python classes that specify the ways data will be stored.
Each class attribute gets converted into a field of the database. Django takes care
of all the changes, like creating and updating the tables, with migrations that are
automated. Besides that, we relied on the FlatPage model from Django’s flatpages.
It is a handy tool, in fact, for getting up fast small pages such as “About Us” or
“Help,” without the need for your intervention in the writing of the HTML code.
The only thing you have to do is save the content in the database, and thus editing
will be easier. . Figure 4.17

32

Methodology

Figure 4.17: Database Structure.

When Django handles this model, it sets up the database table automatically.
The FlatPage model ends up as a table called django-flatpage, and it comes with a
bunch of fields that match the model’s attributes: Table 4.1

Field Name Type Description
id (auto) Primary Key Auto-increment unique identifier
url VARCHAR(100) Relative URL of the page
title VARCHAR(200) Title of the page
content TEXT Body content of the page
enable_comments Boolean Allow comments on the page
template_name VARCHAR(70) Custom template path
registration_required Boolean Restrict to logged-in users
sites ManyToMany Relation to Site model

Table 4.1: FlatPage model fields and descriptions

This table represents the database in a very simple and user-friendly manner.
Each field shows the data that is going to be stored and its purpose. Such a table
is also convenient for the team during the development phase when they need to
discuss the database.

For this project, we mapped out the database using the classic ER diagrams
and also made some visual schematics in Python using the Rich library to see how

33

Methodology

everything connects.

We used the Rich library to make our terminal output look nicer. Its Table
feature lets you show database tables in a neat, readable format. For example, we
could display the FlatPage table with all its fields, types, and explanations, all lined
up. This made it easy to peek at the database structure and make sure everything
looked right without opening extra tools or diagrams. Figures 4.18, 4.19.

Figure 4.18: Using Rich Library.

34

Methodology

Figure 4.19: Database Form.

Middleware works like a helper that checks things before and after a page
loads. Before showing a page, it can see if someone is logged in. That way, pages
meant only for registered users stay private.

When the app finishes making a page, middleware can also update info or keep
track of activity in the database.

There are certain pages in a web application that are restricted to users who have
logged in. Django managesâ€‹â€‹ these through sessions â€‹â€‹- small records
that keep track of who is logged in. The SessionMiddleware acts on behalf of the
system to do everything. It gets the user’s session cookie upon a page request,
checks its validity, and identifies the user. When a page is returned, it also changes
or gets rid of the cookie if necessary. This is the mechanism by which users who
have logged in can only have access to secure pages.

For instance, if a page requires registration, middleware checks the session first
and either lets the user in or blocks access. You can also connect this to the
database: the session info links to the auth-user table, which stores user accounts.
Including a screenshot of that table shows how the app keeps track of users.

This setup means that database logic isn’t handled by models and views
alone—middleware helps keep everything secure and consistent. This middle-
ware manages user sessions. It checks the session cookie and keeps track of who
is logged in, which is why pages requiring login only show to authenticated users.
Figures 4.20, 4.21 show that.

35

Methodology

Figure 4.20: Middleware Manages User Sessions.

Figure 4.21: Activity of Users and Admin.

Django’s Admin Panel is really the heart of content management on the website.
Essentially, through the web interface, users with the right access can add, change,
or delete pages; thus, no direct interaction with the database is needed. In order to
ease the tasks even more, the project comprises some minor helper functions and
template tags that facilitate how pages are displayed in the admin, like sorting,
filtering, and paging through multiple pages. Besides that, I put together a special
template tag for FlatPages, giving the site the ability to show pages for a current
site as well as display them only for users with proper authorization. The tag is
also quite handy for filtering pages by URL, which is the easiest way for you to
have “About Us” or “Help” pages included into templates without having to do
extra work in the view. Figure 4.22

36

Methodology

Figure 4.22: Admin FlatPage list.

In the admin interface, to simplify the process of managing lists, I have included
several features. To make it easy for users to move from one page to another,
pagination controls were implemented; they can use page numbers, ellipses, or a
"show all" button, for instance. Sorting by various fields was the main idea behind
upgrading table headers and, consequently, besides sorting, users can also find
easy-to-read results for yes/no queries or related objects in a specially formatted
section of the table. If you look at every individual row of data in list view, you’ll
find that it not only displays the correct information but also takes care of empty
fields, foreign keys, and even editable fields if the user has the necessary permission.
Data behind the scenes is arranged in such a way that the templates can properly
present it.

In addition to that, I incorporated a detailed date breakdown feature that allows
administrators to view the records by year, month, or day. Moreover, a search box
operates throughout the list, dynamic filters enable precise narrowing of results, and
bulk action tracking facilitates the smooth performance of bulk delete or update
operations. Additionally, the ease of managing single objects has been enhanced
with the provision of tools that can be found at the top of each list and keeping
everything simple to access and use. Figure 4.23.

37

Methodology

Figure 4.23: How Django Paginate.

This was an additional requirement for the project: the user needed a simple
tool to extract patient records into an Excel file. The concept turned out to be
a perfect way for doctors and the hospital staff to download patient data quickly,
thereby having access to the patient’s database offline and not relying on the web
system if they wished. The system will extract the data that has been stored
(for example, the visit, diagnosis, or treatment notes) and will lay out the data
in proper rows and columns using Django’s built-in instruments in conjunction
with a library such as openpyxl. The generated file can then be saved locally or
distributed as any other Excel file. This feature also gives a lot of flexibility to the
medical staff as they can check the data, cross-check appointments, or even create
reports without having to be logged into the application all the time.

This function lets a user download all of their saved activity records in Excel
format. When the export button is clicked, Django looks up all the activities in
the database that belong to that user (using their user ID).

It then creates a new Excel file using the openpyxl library. The file starts with
a header row, where each column represents something the patient recorded, like
flexibility, walking, meals, or daily notes.

Next, the program goes through each activity entry in the database and writes
the values into the Excel sheet, row by row. Finally, the file is sent back to the
browser as a download, so the patient (or doctor) can keep it, share it, or review it
later. Figures 4.24, 4.25

38

Methodology

Figure 4.24: Exporting File.

Figure 4.25: An Excel File.

39

Chapter 5

Conclusion and Future
Works

Looking back on this project, it has been some journey to witness an idea grow from
concept through to fully operational web application. Coming into this project, I
had some idea that I wanted something that was both useful as well as usable but
the specifics of how it all was going to hang together from frontend right through
backend, through design all the way through database were not clear. Working on
this thesis gave me an understanding not just of the technical details of building
websites but also the value of planning, iterative development as well as attention
to detail in the production of the seamless user experience.

It’s one of the big lessons of this project how interdependently all the components
of a web application depend on each other. Frontend is not only about making
something beautiful; it should also be user-friendly, responsive, and converse
properly with the backend. Backend is not only about saving data; it is the
heart that makes the system robust, scalable, and secure. Carefully combining
all the components, selecting technologies such as Django, SQLite, JavaScript,
and Bootstrap, I was able to develop an application meeting the objectives set
at the project outset. Each of the diagrams, each of the pieces of code, each
design choice added up to a cohesive whole demonstrating how small decisions
during development may affect the application on the whole but greatly affect the
application as per the application on the whole.

One significant thing I learned was the learning-by-doing principle. Although I
had some familiarity with Python and introductory web technologies beforehand,
creating this project needed further understanding and experimentation by doing.
To initialize the database and properly set up communication between the models
and the views in the context of Django was hard at the beginning but made
me realize the logic behind web frameworks as well as the patterns making large

40

Conclusion and Future Works

applications manageable. In the same way, the process of planning the user interface
and its usability testing made me realize the users’ requirements and expectation
should forever direct the building protocol.

I also saw the value of clear organization and documentation. Addition of
screenshots, coding examples, and diagrams not only assisted me in finding track of
the work but will also assist the future developers or users who will come in contact
with the system. Proper documentation is never given the credit it deserves but it
plays an important part in maintaining as well as enhancing software in the long
run. It also made me more careful about the logic behind all decisions from the
database structure up to the way the interface was laid out, thereby enhancing the
overall project quality.

It was not only an exhibition of technical know-how but also an indication of
problem-solving ability, creativity, and determination. Its completon instilled in
me the belief that I am capable of taking up challenging software projects and
accomplishing them end-to-end. It also emphasized the value of learning without
stopping, as for every problem encountered, I had to go researching for newer
solutions, investigate different methods of approaching them, as well as know best
practices for building websites.

Future Work
From the clinical point of view, the system is backing up the three major stages of
quality cancer care which are: prehabilitation, perioperative care, and long-term
rehabilitation with continuous follow-up. The platform, by facilitating an active
preoperative training and a diligent postoperative monitoring, intends to be a part
of the recovery that is faster and also of the recurrence that can be detected at an
early stage.

Although the system created in this project fulfills its purposes well, there is
certainly potential for future improvement. In one potential area for improvement
could the user interface continue by making the system more intuitive as well as
aesthetically pleasing, perhaps through the use of newer interactive features or
more dynamic designs. In another area for improvement could the functionality of
the system’s functionality be increased, perhaps by incorporating more modules,
enhancing data analyzes, or providing for more individualized uses.

Optimization for security and performance for the future also involves areas.
While the existing system runs well and reliably, future releases may integrate more
robust authentication procedures, encryption, as well as performance enhancements
for supporting larger volumes of data or numbers of users more efficiently. Also,
shifting the application over to a more powerful database system or incorporating
cloud functionality could provide the application for being more scalable as well as

41

Conclusion and Future Works

adaptable for practical use.
It also presents an opportunity for incorporating more sophisticated features,

like notifications, auto-flows, or even mobility, so the system could access an larger
number of people and supply more worth. User responses could also be gathered
and studied as part of improving the app continuously so it grows according to
their requirements. Lastly, the project may become the starting point for larger
web applications or later research projects. What was learned here—design choices
to an implementation plan—can apply directly to any subsequent development
work so that hard problems may be attacked using a well-structured, user-focused
mentality. In summary, this thesis demonstrates the challenges as well as the
benefits of constructing a web application entirely on our own. It demonstrates how
planning, experimentation, and reflection may collaborate to develop an operative
system that happens to run well, be maintainable, as well as easy to use. While
doing so, it also leaves the field open for improvement, thereby evidencing software
development as an ongoing learning as well as refinement process. I am pleased at
what has been achieved as well as eager at the prospects ahead of me, considering
the fact that each step in this process has fortified my abilities as well as enriched
the understanding of how web applications may be developed.

42

Bibliography

[1] World Health Organization. «Cancer Control: Knowledge Into Action – WHO
Guide for Effective Programmes». In: (2008). url: https://www.who.int/
publications/i/item/9789241547406 (cit. on pp. 4, 5).

[2] H. S. Richards, J. M. Blazeby, A. Portal, and et al. «A real-time electronic
symptom monitoring system for patients after discharge following surgery: a
pilot study in cancer-related surgery». In: BMC Cancer 20 (2020), p. 543. doi:
10.1186/s12885-020-07027-5. url: https://doi.org/10.1186/s12885-
020-07027-5 (cit. on p. 5).

[3] Samer Sawesi, Mohamed Rashrash, Krit Phalakornkule, Janine S. Carpenter,
and Jennifer F. Jones. «The Impact of Information Technology on Patient
Engagement and Health Behavior Change: A Systematic Review of the
Literature». In: JMIR Medical Informatics 4.1 (Jan. 2016), e1. doi: 10.2196/
medinform.4514. url: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4742621/ (cit. on p. 5).

[4] Pho, K. K. et al. Mobile Device Applications for Electronic Patient Portals in
Oncology. Journal of Oncology Practice, 15(5), e467-e474. Accessed: 2025-10-
02. 2019. url: https://ascopubs.org/doi/abs/10.1200/CCI.18.00094
(cit. on p. 6).

[5] Carevive. Carevive: EHR-integrated Cancer Care Management Software. Ac-
cessed: 2025-10-02. n.d. url: https://www.carevive.com/ (cit. on p. 6).

[6] Post, A. R. et al. Electronic Health Record Data in Cancer Learning Health
Systems: Challenges and Opportunities. Journal of Oncology Practice, 18(9),
e1227-e1234. Accessed: 2025-10-02. 2022. url: https://ascopubs.org/doi/
abs/10.1200/CCI.21.00300 (cit. on p. 6).

[7] Lazarou, I. et al. Cancer Patients’ Perspectives and Requirements of Digital
Health Technologies: A Scoping Review. Cancers, 16(13), 2293. Accessed: 2025-
10-02. 2024. url: https://www.mdpi.com/2072-6694/16/13/2293 (cit. on
p. 6).

43

https://www.who.int/publications/i/item/9789241547406
https://www.who.int/publications/i/item/9789241547406
https://doi.org/10.1186/s12885-020-07027-5
https://doi.org/10.1186/s12885-020-07027-5
https://doi.org/10.1186/s12885-020-07027-5
https://doi.org/10.2196/medinform.4514
https://doi.org/10.2196/medinform.4514
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742621/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4742621/
https://ascopubs.org/doi/abs/10.1200/CCI.18.00094
https://www.carevive.com/
https://ascopubs.org/doi/abs/10.1200/CCI.21.00300
https://ascopubs.org/doi/abs/10.1200/CCI.21.00300
https://www.mdpi.com/2072-6694/16/13/2293

BIBLIOGRAPHY

[8] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1994 (cit. on pp. 6,
7).

[9] John Brooke. «SUS: a ’quick and dirty’ usability scale». In: Usability Evalua-
tion in Industry (1996), pp. 189–194 (cit. on pp. 6, 7).

[10] Web Content Accessibility Guidelines (WCAG) 2.2. https://www.w3.org/
TR/WCAG22/. 2023 (cit. on pp. 6, 7).

[11] European Union. General Data Protection Regulation (EU) 2016/679. 2016.
url: https://gdpr-info.eu/ (cit. on p. 7).

[12] OWASP Foundation. OWASP Top Ten 2021. 2021. url: https://owasp.
org/Top10/ (cit. on p. 7).

[13] J. L. Baldwin, H. Singh, D. F. Sittig, and T. D. Giardina. «Patient portals
and health apps: Pitfalls, promises, and what one might learn from the
other». In: Healthcare (Amsterdam, Netherlands) 5.3 (2017), pp. 101–107.
doi: 10.1016/j.hjdsi.2016.08.006 (cit. on pp. 8, 9).

[14] E. Carini et al. «The impact of digital patient portals on health outcomes:
A systematic review». In: Journal of Medical Internet Research 23.7 (2021),
e24568. url: https://www.jmir.org/2021/7/e24568/ (cit. on pp. 8, 9).

[15] N. El Yaman et al. «Utilization of patient portals: A cross-sectional study».
In: BMC Medical Informatics and Decision Making 23 (2023), pp. 1–10.
url: https://bmcmedinformdecismak.biomedcentral.com/articles/10.
1186/s12911-023-02252-x (cit. on pp. 8, 9).

[16] Y. N. Ong. «Usage of patient portals among primary healthcare patients: A
review». In: Saudi Medical Journal 40.4 (2019), pp. 353–359. url: https:
//journals.lww.com/smj/fulltext/9900/usage_of_patient_portals_
among_primary_healthcare.144.aspx (cit. on pp. 8, 9).

[17] C. Strawley et al. Individuals’ access and use of patient portals: A systematic
review. National Library of Medicine, 2023. url: https://www.ncbi.nlm.
nih.gov/books/NBK606032/ (cit. on pp. 8, 9).

[18] Guido van Rossum et al. PEP 405 – Python Virtual Environments. https:
//www.python.org/dev/peps/pep-0405/. Accessed: 2025-10-02. 2012 (cit.
on p. 11).

[19] Real Python. Python Virtual Environments: A Primer. https://realpython.
com/python- virtual- environments- a- primer/. Accessed: 2025-10-02.
2024 (cit. on p. 11).

[20] W3Schools. Python Virtual Environments. https://www.w3schools.com/
python/python_virtualenv.asp. Accessed: 2025-10-02. 2024 (cit. on p. 11).

44

https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://gdpr-info.eu/
https://owasp.org/Top10/
https://owasp.org/Top10/
https://doi.org/10.1016/j.hjdsi.2016.08.006
https://www.jmir.org/2021/7/e24568/
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02252-x
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02252-x
https://journals.lww.com/smj/fulltext/9900/usage_of_patient_portals_among_primary_healthcare.144.aspx
https://journals.lww.com/smj/fulltext/9900/usage_of_patient_portals_among_primary_healthcare.144.aspx
https://journals.lww.com/smj/fulltext/9900/usage_of_patient_portals_among_primary_healthcare.144.aspx
https://www.ncbi.nlm.nih.gov/books/NBK606032/
https://www.ncbi.nlm.nih.gov/books/NBK606032/
https://www.python.org/dev/peps/pep-0405/
https://www.python.org/dev/peps/pep-0405/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://www.w3schools.com/python/python_virtualenv.asp
https://www.w3schools.com/python/python_virtualenv.asp

BIBLIOGRAPHY

[21] Django Software Foundation. Django Web Framework. https://www.django
project.com. Accessed: 2025-10-02. 2025 (cit. on pp. 11, 13).

[22] Mozilla Developer Network. Introduction to Django. https://developer.
mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction.
Accessed: 2025-10-02. 2024 (cit. on pp. 11, 13).

[23] TechVariable. Rapid Development and Security in Django. https://techva
riable.com/blogs/django-rapid-development-without-compromising-
security. Accessed: 2025-10-02. 2023 (cit. on pp. 11, 13).

[24] Amazon Web Services. What is Django? https://aws.amazon.com/what-
is/django/. Accessed: 2025-10-02. 2023 (cit. on pp. 12, 13).

[25] Wikipedia Contributors. Django (web framework). https://en.wikipedia.
org/wiki/Django_(web_framework). Accessed: 2025-10-02. 2024 (cit. on
pp. 12, 13).

[26] MDN Web Docs. JavaScript First Steps. Accessed: 2025-10-02. 2023. url:
https : / / developer . mozilla . org / en - US / docs / Learn / JavaScript /
First_steps (cit. on p. 13).

[27] MDN Web Docs. Introduction to the DOM. Accessed: 2025-10-02. 2023. url:
https://developer.mozilla.org/en- US/docs/Web/API/Document_
Object_Model/Introduction (cit. on p. 13).

[28] MDN Web Docs. Client-side web frameworks. Accessed: 2025-10-02. 2023.
url: https://developer.mozilla.org/en-US/docs/Learn/Tools_and_
testing/Client- side_JavaScript_frameworks/Introduction (cit. on
p. 13).

[29] Ecma International. ECMAScript Language Specification (ECMA-262). Ac-
cessed: 2025-10-02. 2023. url: https://262.ecma-international.org/
(cit. on p. 13).

[30] Node.js Foundation. About Node.js. Accessed: 2025-10-02. 2023. url: https:
//nodejs.org/en/about (cit. on p. 14).

[31] MDN Web Docs. HTML: HyperText Markup Language. Accessed 2025-10-01.
2025. url: https://developer.mozilla.org/en- US/docs/Web/HTML
(cit. on p. 14).

[32] WHATWG. HTML Living Standard. Accessed 2025-10-01. 2025. url: https:
//html.spec.whatwg.org/ (cit. on p. 15).

[33] MDN Web Docs. Structuring content with HTML. Accessed 2025-10-01. 2025.
url: https://developer.mozilla.org/en-US/docs/Learn_web_develop
ment/Core/Structuring_content (cit. on p. 15).

45

https://www.djangoproject.com
https://www.djangoproject.com
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://techvariable.com/blogs/django-rapid-development-without-compromising-security
https://techvariable.com/blogs/django-rapid-development-without-compromising-security
https://techvariable.com/blogs/django-rapid-development-without-compromising-security
https://aws.amazon.com/what-is/django/
https://aws.amazon.com/what-is/django/
https://en.wikipedia.org/wiki/Django_(web_framework)
https://en.wikipedia.org/wiki/Django_(web_framework)
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction
https://262.ecma-international.org/
https://nodejs.org/en/about
https://nodejs.org/en/about
https://developer.mozilla.org/en-US/docs/Web/HTML
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Structuring_content
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Structuring_content

BIBLIOGRAPHY

[34] MDN Web Docs. HTML: A good basis for accessibility. Accessed 2025-10-01.
2025. url: https://developer.mozilla.org/en-US/docs/Learn_web_
development/Core/Accessibility/HTML (cit. on p. 15).

[35] W3C. Web Content Accessibility Guidelines (WCAG) 2.1. Accessed 2025-10-
01. 2018. url: https://www.w3.org/TR/WCAG21/ (cit. on p. 15).

[36] Mark Otto and Jacob Thornton. «Bootstrap». In: First released as an open-
source front-end framework by Twitter engineers. 2011. url: https : / /
getbootstrap.com (cit. on p. 16).

[37] Jake Spurlock. Bootstrap: Responsive Web Development. O’Reilly Media, 2013.
isbn: 978-1449335176 (cit. on p. 16).

[38] S. Shah and P. Patel. «Responsive Web Design Using Bootstrap Framework».
In: International Journal of Advance Research in Computer Science and
Management Studies 7.5 (2019), pp. 45–52. url: https://www.ijarcsms.
com/docs/paper/Responsive-Web-Design-Using-Bootstrap-Framework.
pdf (cit. on p. 16).

[39] Yoshiki Matsuo and Hiroshi Sakamoto. «A Study on Front-End Frameworks:
Comparison of Bootstrap and Others». In: 2020 International Conference on
Software Engineering Research and Practice (SERP). CSREA Press, 2020,
pp. 112–118 (cit. on p. 17).

[40] About SQLite. https://sqlite.org/about.html. Accessed: 2025-10-03
(cit. on p. 17).

[41] Features Of SQLite. https://sqlite.org/features.html. Accessed: 2025-
10-03 (cit. on p. 17).

[42] SQLite: Single File Database. https://sqlite.org/onefile.html. Ac-
cessed: 2025-10-03 (cit. on p. 17).

[43] K. P. Gaffney et al. «SQLite: Past, Present, and Future». In: Proceedings of
the VLDB Endowment 15 (2022), pp. 3535–3547. doi: 10.14778/3554821.
3554842. url: https://www.vldb.org/pvldb/vol15/p3535-gaffney.pdf
(cit. on p. 17).

[44] Appropriate Uses For SQLite. https : / / sqlite . org / whentouse . html.
Accessed: 2025-10-03 (cit. on p. 17).

[45] SQLite Frequently Asked Questions (FAQ). https://sqlite.org/faq.html.
Accessed: 2025-10-03 (cit. on p. 17).

46

https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Accessibility/HTML
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Accessibility/HTML
https://www.w3.org/TR/WCAG21/
https://getbootstrap.com
https://getbootstrap.com
https://www.ijarcsms.com/docs/paper/Responsive-Web-Design-Using-Bootstrap-Framework.pdf
https://www.ijarcsms.com/docs/paper/Responsive-Web-Design-Using-Bootstrap-Framework.pdf
https://www.ijarcsms.com/docs/paper/Responsive-Web-Design-Using-Bootstrap-Framework.pdf
https://sqlite.org/about.html
https://sqlite.org/features.html
https://sqlite.org/onefile.html
https://doi.org/10.14778/3554821.3554842
https://doi.org/10.14778/3554821.3554842
https://www.vldb.org/pvldb/vol15/p3535-gaffney.pdf
https://sqlite.org/whentouse.html
https://sqlite.org/faq.html

	abstracty
	Summary
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Contributions
	Scope and Boundaries

	Background and Related Work
	Cancer Care Pathways
	Digital Health Platforms in Cancer Care
	Usability and Accessibility in Digital Health
	Privacy and Security in Healthcare Data
	Comparison of Existing Solutions

	Technologies
	Python Virtual Environment
	Django Framework
	JavaScript
	HTML
	Bootstrap CSS
	SQLite3

	Methodology
	User Interface and Web Views
	User Registration Form
	Activity Logging Interface
	Dynamic Instructional Content
	Navigation and User Experience
	Integration with Backend

	Backend Development with Django
	Database Design

	Conclusion and Future Works
	Bibliography

