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Introduction

Every cell within an organism must execute a multitude of tasks essential for

survival, such as cellular development and differentiation. These fundamental

processes, despite being driven by intrinsically stochastic biochemical reactions,

must reliably achieve their intended outcomes. To ensure this reliability, be-

sides precise molecular levels, the cell must maintain a precise temporal ordering

of events by means of various regulatory mechanisms acting on gene expression.

In order to study event timing, a threshold-crossing framework is typically

established. In this context, a biological process is initiated when the concentra-

tion of a specific chemical species reaches a predetermined threshold. However,

the probabilistic nature of gene expression introduces significant fluctuations

in the molecule counts. This variability, or noise, is a critical factor and it

can be categorized into intrinsic or extrinsic noise. The latter stems out from

fluctuations in global cellular conditions or external factors such as cell size,

number of ribosomes, environmental conditions, etc., while intrisic noise arises

from the inherent stochasticity of biochemical reactions themselves (e.g., the

random timing of transcription and translation events) and therefore cannot be

neglected.

This total noise directly translates into variability in the threshold-crossing

time. To ensure proper event timing, the cell must employ strategies to control

this variability and manage noise.

One crucial control mechanism operates by regulating the availability of mRNA

molecules. As the direct precursors to proteins, which are the primary effectors

of cellular tasks, mRNA levels are fundamental. A key class of regulators in this

context is microRNAs (also called miRNAs). These are small non-coding RNA

molecules which post-transcriptionally regulate gene expression by binding to

target mRNAs, typically leading to their degradation or more simply to the

inhibition of their translation.

The aim of this thesis is to investigate the distribution of threshold-crossing

times, known as the First Passage Time (FPT) distribution, of mRNAmolecules

in the context of a miRNA-based genetic circuit. This focus on the transient

dynamics, specifically ”how long” it takes to reach a determined state, repre-

sents a critical departure from many traditional analysis, which have focused

solely on the steady-state properties of gene expression.
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Particularly, this thesis is divided into three Parts.

The first one provides all biological information necessary to understand the

gene expression mechanism and its post-transcriptional regulation.

Then, in the second one, the mathematical models—known as genetic circuits—

used to analyze biochemical processes are presented. Both a deterministic and

a stochastic analysis is carried out, providing the equations describing the evo-

lution of the system under study.

As these circuits may be very complex, the corresponding mathematical equa-

tions describing their evolution in time may be hard-to-solve, therefore approx-

imation methods are usually implemented. The one carried out in this study is

the Van Kampen Expansion, a powerful method that allows to gain an approx-

imation for the probability of having a number of molecules at a certain time.

In this context, the First-Passage Time definition is introduced as the initia-

tion time of a biological process. Also, the more formal definition of the FPT

distribution is given, connecting it to the probability of having a given number

of molecules at a certain time, therefore highlighting the importance and the

need for an approximation method such as the Van Kampen one.

All concepts presented in Part II are introductory as they provide fundamen-

tal insights on the mathematical information necessary to analyze First-Passage

Time distribution related to miRNA-regulated gene expression mechanism. To

carry out this analysis on microRNA post-transcriptional regulation, a spe-

cific miRNA-mediated genetic circuit is introduced and both deterministic and

stochastic approaches are here applied to recover the equations describing its

dynamics.

The third Part of the work focuses solely on the study of the First-Passage

Time distribution related to the miRNA-mediated circuit. Both numerical and

analytical approaches are illustrated with the purpose of studying the First-

Passage Time distribution of mRNA molecules involved in the system.

The numerical simulations—based on a fundamental method for simulating

stochastic processes, i.e. the Gillespie Algorithm—allow for the direct numer-

ical construction of the First-Passage Time distribution for the circuit and,

therefore, the analysis of its properties, such as mean, variance, etc., both in

the regulated and unregulated case.

The analytical approach is then carried out with the aim of obtaining an explicit

expression of the First-Passage Time distribution. The regulated and unregu-

lated cases are treated separately due to the complexity of the regulated system
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which includes the non-linear interactions between mRNA and miRNA. An ap-

proximation is therefore necessary to obtain the analytical FPT distribution, as

briefly stated in Part II; to this end the Van Kampen expansion, also known as

the Linear Noise Approximation, is developed for the miRNA-mediated genetic

circuit of interest.

After the analytical calculation, the numerical and analytical results are illus-

trated and commented.

In general, this analysis of the First-Passage Time distribution, unlike tradi-

tional steady-state analysis, offers a powerful framework to further understand

miRNA regulation and its role in gene expression. Focusing on the dynamics of

threshold-crossing processes, this work reveals that the miRNA-mediated reg-

ulation can significantly lower the mean FPT while maintaining small noise.

This finding highlights the possibility of achieving a faster response—lower

FPT—when regulation is optimal, thereby confirming the function of miRNAs

as powerful noise buffers in addition to their known role in fine-tuning.
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Part I

Biological context

This study is at the edge of physics and biology, as mathematical tools will be

employed to comprehend and model a biological mechanism characterizing all

cells of all living organisms. To this end, this First Part will provide a biological

context necessary to understand the problem setting.

Particularly, the cell acts as the fundamental unit of biological organization,

operating as a sophisticated machine capable of self-replication and adaptation.

While inside a cell there is the complete library of instructions necessary for

an organism, the mere presence of these instructions is insufficient to sustain

life. The cell must actively select, decode, and execute specific segments of this

genetic code to produce the molecular machinery required for survival.

This fundamental biological imperative—translating the encoded instructions

of the genotype into the observable functional traits of the phenotype—is gov-

erned by the mechanism of gene expression.

However, the complexity of life requires more than a production line. It de-

mands precise control. In fact, the linear flow of genetic information is overlaid

by intricate regulatory networks, which may operate at multiple levels.

The following Chapters provide a comprehensive overview of this biological

framework. First the Central Dogma of molecular biology will be analysed,

explaining where information is kept and how it can be retrieved and utilized

by the cell. Subsequently, the critical role of gene regulation is introduced, with

specific focus on microRNA molecules—small non-coding molecules that have

emerged as fundamental ingredients of post-transcriptional control.
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1 The mechanism of gene expression

The ability of cells to store and translate the genetic instructions required to

sustain a living organism is fundamental to life. These instructions are stored

in all living cells in the same way, as they are all contained in a nucleic acid,

the DNA (deoxyribonucleic acid). [2]

In order to read and use it, DNA must be translated into macromolecules that

may actually carry out the relevant biological functions needed by each cell.

The most popular macromolecules of this type are proteins, as they play differ-

ent functions in several processes, such as transport of molecules or structural

support.

Particularly, the process allowing for protein production from DNA, known

as gene expression, can be coarsely summarized into two main steps: i) tran-

scription and ii) translation.

1.1 What is DNA?

DNA is the fundamental macromolecule containing all genetic information.

A DNA molecule is formed by many subsequent building blocks, called nu-

cleotides, made of a phosphate group, a sugar and a base. The sugar character-

izing this nucleic acid is deoxyribose and the base could be any of the following

four: adenine, thymine, cytosine and guanine. [1]

Nucleotides are not symmetric, therefore they can be covalently linked together

forming a long poly-nucleotide chain with a sugar-phosphate backbone and ex-

posed basis. Since the way in which the nucleotides are attached gives to each

DNA strand chemical polarity, a DNA molecule has a very specific 3d con-

formation, where two antiparallel strands are linked through hydrogen bonds

between paired bases, namely a double helix. The complementary base-pairing,

also referred to as the Watson-Crick base-pairing [26], leads to the lowest en-

ergy configuration, in fact hydrogen bonds form efficiently without deforming

the double helix only between adenine and thymine (with 2 hydrogen bonds)

and between guanine and cytosine (with 3 hydrogen bonds).

All information contained in DNA, known as genome, must pass on from

a cell to its daughter, therefore DNA must be accurately copied to ensure the

genome transmission, which, as briefly noted before, primarily consists of in-

structions for making proteins. These macromolecules are fundamental for cel-

lular life, as they are involved in most of its functions, from catalyzing chemical

reactions to gene regulation. Their production process is schematically repre-
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sented in Figure 1, and it is referred to as central dogma of biology. It consists

into transcription and translation of DNA, as fully explained in the following.

Figure 1: Schematic representation of gene expression, adapted from the work
of Haseltine & Patarca [13].

1.2 Transcription: from DNA to RNA

Transcription is the first step of gene expression and it is a mechanism that

allows the creation of a nucleic acid very similar to DNA, the RNA (ribonucleic

acid), used as an information carrier throughout the cell. [1]

The differences between these nucleic acids are mainly two: the type of sugar,

which is changed to ribose, and a base pair, as thymine is substituted by uracil

in RNA. The fact that RNA has a different sugar with respect to DNA has

a huge impact on its conformation, in fact, it is usually single-stranded, often

containing only stacks of canonical base pairs.

The process of transcription is very similar to DNA duplication, as it begins

with the unwinding and opening of a DNA molecule in order to expose the

bases. Then, one of the two DNA strands serves as a template, and RNA nu-

cleotides are added one by one to form a chain that is complementary to this

template strand. In contrast to a newly formed DNA strand, the RNA chain

is displaced just beyond the region where new nucleotides are added and DNA

double-helix is restored.

All these steps are performed by enzymes called RNA polymerases, which cat-

alyze the link between different nucleotides in the RNA chain. The process

differs between bacteria and eukaryotes, as in the former RNA polymerase pro-

duces RNA molecules, starting and stopping at specific spots on the DNA,

respectively called promoter and terminator. Instead, in eukaryotes there is

more than one RNA polymerase, each of which performs a different function,

and there are many ingredients, called general transcription factors (TFs), that

are involved in the positioning of the polymerase on the promoter.

There exist many types of RNA molecules, such as messenger RNA (mRNA),
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transfer RNA (tRNA), micro-RNA (miRNA), but only the messenger RNA

is protein coding, meaning it carries genetic information. All other types of

non-coding RNAs may take part in the process of protein production fulfilling

distinct functions, such as transport or catalytic. In order to produce mRNA

molecules in eukaryotes, transcription is only the first of several steps needed,

such as covalent modification of the ends of mRNA (capping, cleavage and

polyadenylation) and splicing, which consists into the removal of all non-coding

regions form the mRNA molecule just transcribed. [12]

Furthermore, since transcription involves only a limited region of DNA, par-

ticularly only genes necessary to perform a given task are read, RNA molecules

are typically much shorter than DNA ones: DNA molecules in human can have

up to 250 million nucleotide base-pairs, while RNA ones are no more than a

few thousand nucleotides long [1].

1.3 Translation: from RNA to protein

The mechanism to go from a nucleotide sequence of a mRNA to protein is

referred to as translation. Proteins are indeed made of amino-acids, not nu-

cleotides, therefore a whole process of association of amino-acids to nucleotides

is needed.

The rules through which a sequence of mRNA is translated into a sequence

of amino-acids are known as the genetic code and the main concept is that

the sequence of nucleotides is read in consecutive groups of three, ensuring 64

possible combinations (AAA, AUG, etc.). This code is evidently redundant, as

only twenty amino-acids are commonly found in proteins, and therefore some

amino-acids are specified by more than one triplet. This is also known as the

coding problem.[4]

Translation takes place in the cytoplasm, on a complex catalytic machine,

the ribosome, made by different proteins and several RNA molecules (rRNAs).

The ribosome is characterized by two subunits, only joined together around

a mRNA molecule when a protein is being synthesized. Translation is car-

ried out thanks to an adaptor that recognizes and binds to both the triplet

of nucleotides, called codon, and the corresponding amino-acid. The molecule

responsible for this process is the transfer RNA (tRNA).

It all starts when initiator tRNA—which always carries a particular amino-acid
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(methionine)—binds to the small subunit of the ribosome, so that this complex

begins the reading of the mRNA molecule. As soon as the start codon (AUG)

is matched with initiator, the large ribosomal subunit binds to the small one

and translation begins with the first bond between methionine and the subse-

quent amino-acid. The process ends when one of the stop codons (UAA,UAG,

UGA) is recognized, as they do not represent any amino-acid, and the protein

is immediately released.

Usually proteins are made on poly-ribosomes, namely large assemblies of ribo-

somes, so that multiple initiations take place on each mRNA molecule.

During the translation, long chains of amino acids are created, called polypep-

tides since the peptide bond is the one connecting two amino acids. As a

polypeptide starts to exit the ribosome, so during its production, it folds with

the aid of molecular chaperons. [12]

Proteins are present in almost all essential biological processes for the cell, cov-

ering a multitude of possible functions, such as transport, motility, catalysis,

storage. etc.
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2 Gene regulation

Transcription and translation are the main mechanisms through which cells

express their genetic instructions. From a single gene, many identical RNA

molecules can be produced and similarly from each RNA molecule many iden-

tical proteins are synthetized, allowing the cell to generate a large number of

several different proteins. Furthermore, the efficiency of transcription of each

gene can be modulated, so that cells are able to produce large quantities of

some proteins and small quantities of others. In this way, regulation of gene

expression is tailored to the cell needs at any given moment.

In order to get a better insight into this concept, let us consider the cells of a

multicellular organism: they share the same genome but differ dramatically in

both structure and function. Typically, a cell expresses only a fraction of its

genes and can also change its expression pattern in response to environmental

change.

As noted before, gene expression is a multi-step process, so its regulation

may occur at any stage of the pathway from DNA to RNA to protein. [1]

Therefore, a cell may manage the amount of protein produced by controlling

when and how a given gene is transcribed. This mechanism is known as tran-

scriptional control and it allows the enhancement or the repression of a gene

transcription through regulatory proteins called transcription factors (TFs).

These factors bind to specific regulatory regions of DNA, as gene regulatory pro-

teins contain motifs that recognize DNA regulatory sequences without breaking

the double helix structure. Once TFs are bound to DNA, the corresponding

gene is either transcribed or repressed, ensuring that the respective genetic in-

formation is either used or kept for future use.

However, there exist other types of gene regulation managed by RNA molecules

directly. Cells may indeed select which mRNAs are to be exported outside the

nucleus or they may destabilize some mRNAs directly in the cytoplasm. A

cell can also perform protein activity control, therefore activating or degrading

proteins after their synthesis. [1]

2.1 mRNA degradation by post-transcriptional control

It has been known for long time that the whole genome does not contain only

coding regions, i.e., regions of nucleotides which do not encode proteins. Before

the 90s, these regions where called junk DNA. Yet, we now know that inside

cells there are several types of non-coding RNA molecules performing many
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functions besides being intermediate carriers of genetic information, such as

regulating the flow of information from DNA to protein.

In particular, one type of short RNA molecule, called microRNA or miRNA,

plays a crucial role in regulation of gene expression in plants and animals at

a post-transcriptional level. MicroRNAs are small (near 22 nucleotides) non-

coding RNAs that may bind to specific mRNAs with the purpose of degrading

them or just inhibiting their translation. [1]

Different outcomes are possible as they depend on how extensive the base-

pairing between miRNA and mRNA is. On the one hand, with low com-

plementarity, translation is repressed and eventually the mRNA molecule is

destabilized; on the other hand, with high complementarity, miRNA induces

rapid mRNA degradation. These microRNAs play the fundamental role of

post-transcriptional regulators and even a single miRNA can regulate a set

of different mRNAs and, viceversa, many miRNAs can also bind to the same

mRNA molecule leading to further reductions in its translation [17].

This mechanism has a huge impact on the output of gene expression, by ei-

ther switching it off completely or by non-trivially modulating the final protein

distribution [8].

2.2 Discovery of miRNAs

MicroRNAs were first discovered in 1993 [14] in the nematode worm C.elegans,

where the gene lin-4, until then characterized as one of the genes controlling the

developmental timing of the worm, was shown to produce a small RNA that

regulated the expression of another gene, lin-14, by binding its mRNA. This

marked the first known example of gene regulation by small non-coding RNAs

in animals and, initially, it was thought to be a nematode-specific mechanism.

Thanks to the discovery of another gene, let-7, which performs the same role as

lin-4, the previous hypothesis was rejected as let-7 gene is not only present in

the nematode worm but in many other species in a nearly identical way, includ-

ing humans, mice and flies [19]. This discovery confirmed that microRNAs are

a widespread, evolutionarily conserved class of post-transcriptional gene regu-

lators. There are many types of miRNAs: humans alone express more than 400

different types, and new miRNAs are still being discovered.
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2.3 Biogenesis of miRNAs

The canonical pathway of miRNA biogenesis is the most common way for

miRNA production in a cell. It starts with the transcription from DNA of

primary miRNAs or pri-miRNAs, long transcripts that contain one or more

hairpin structures (i.e., secondary structures that form when the RNA strand

folds back on itself due to complementary base-pairing). Still in the nucleus,

these are then processed with the aid of the microprocessor complex made by

a RNA binding protein (DGCR8) and a ribonuclease III enzyme (Drosha) into

precursor miRNAs or pre-miRNAs. During the processing from pri-miRNAs

to pre-miRNAs all flanking sequences are cleaved out by the complex, only the

hairpin structures of primary-transcript are retained.

Once pre-miRNAs are formed, they are exported into the cytoplasm and pro-

cessed once again by a ribonuclease III enzyme (Dicer) so that the terminal

loop of the hairpin is removed, generating a 22-nucleotide long mature miRNA

duplex. One strand of the duplex, referred to as the guide strand, is loaded into

an Argonaute (AGO) protein, while the other strand, known as the passenger

strand, is unwound from the complex. The RNA-induced silencing complex or

RISC is formed and it will seek out mRNAs with complementary nucleotides

sequences. [17]
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Figure 2: Schematic representation of miRNA biogenesis adapted from Zhu et
al. [27].

It was found that there are many other ways in which miRNA molecules are

produced, which are referred to as non canonical miRNA biogenesis pathways.

These can be divided into two main categories: Drosha-independent pathways,

which do not employ the microprocessor complex, and Dicer-independent path-

ways, in which Drosha’s products are directly processed by AGO proteins in-

stead of Dicer. These alternative pathways, while using different combinations

of canonical proteins, can produce functional miRNA molecules in a cell. [17]

14



In this first Part, the fundamental mechanism of gene expression is outlined,

specific emphasis placed on gene regulation.

The comprehensive examination of microRNAs—from their discovery and bio-

genesis to their function in mRNA degradation—illustrates a crucial biologial

concept: the components of gene expression do not act in isolation but form a

vast, intricate, interconnected network.

A qualitative description is insufficient to fully understand how miRNA post-

transcriptional control modulates the final protein output, therefore to rigor-

ously quantify these dynamics, we must move beyond descriptive biology and

employ the analytical tools of systems biology and mathematical modeling [15].

To this end, the following Part of this study introduces the mathematical

framework used to describe these biological processes.

To fully understand how the modeling of gene expression is carried out, first

the foundational system—the central dogma of biology (Figure 1)—is analyzed.

This, in fact, will serve as the baseline for understanding more complex systems

where also regulatory activity is included.
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Part II

Genetic circuits analysis

In the previous Chapters, the fundamental molecular mechanisms of gene ex-

pression, namely transcription and translation, were described. In living or-

ganisms, these processes do not occur in isolation. They are part of extremely

complex biochemical networks, in which a vast number of components interact,

such as genes, RNAs, proteins and regulatory molecules.[12]

To quantitatively study the dynamical and stationary properties of gene

expression and its regulation, it is necessary to simplify this complexity and

employ quantitative mathematical methods. This may be achieved by building

mathematical models that focus only on key ”ingredients” and their interac-

tions. These simplified representations, which capture the fundamental logic

of the system of interest, are known as genetic circuits. The analysis of these

circuits can vary in complexity, ranging from the simplest model—a single gene

expressed without regulation describing the flow of information from DNA to

protein—to more complex circuits that include control and feedback mecha-

nisms.

Part II of this work introduces the framework for analyzing these systems

in a more quantitative way. Accordingly, Chapter 3 examines the simple single-

gene system, a circuit where no control activity is modeled for simplicity.

Firstly, a deterministic study will be carried out, followed by a stochastic anal-

ysis, which, as will be discussed, proves to be more suitable for the description

of genetic circuits. This stochastic description represents the system using the

probability of it being in a given state—specifically in our case this is the prob-

ability of having a given number of molecules—at a certain time, which will

satisfy the so-called Master Equation. This is usually a hard-to-solve equation

for a generic circuit, but thanks to some mathematical tools, at least the mo-

ments of the distribution are accessible; these are recovered explicitly for the

single-gene circuit.

Then, the main topic of this study is introduced, i.e.: the First-Passage

Time (FPT) Distribution. This is the distribution of times at which the

molecule number of a given chemical species crosses a predetermined threshold.

It is fundamental to comprehend how this distribution changes, as many bio-

logical processes inside a cell are modeled to start whenever a given chemical

species is abundant enough. A small variability in the crossing time may ac-
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tually have huge biological consequences, therefore cells must somehow ensure

the correct event timing. Particularly, the First-Passage Time distribution is

mathematically connected to the probability of being in a state at a given time,

highlighting the importance of finding a solution to the Master Equation in

order to gain an analytical estimate for the distribution of interest.

When a solution is not achievable, approximation methods may be employed

to recover an analytical expression for the probability of being in a state at a

certain time. In this study a particular approximation will be implemented, i.e.

the Van Kampen expansion, and it is in the following introduced.

Chapter 4 proceeds then into the description and analysis of a more complex

genetic circuit, where regulation is included. Particularly, the circuit consid-

ered models the post-transcriptional control activity mediated by microRNA

molecules.

This type of circuit and its analysis are crucial to understand the role of mi-

croRNA molecules in regulation of gene expression and were abundantly pre-

viously analyzed. This study though marks a clear departure from previous

works, as the main focus are not the steady-state properties of the system but

its dynamical ones.
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3 Single-gene circuit analysis

3.1 Genetic circuits as deterministic dynamical systems

Genetic circuit models are mathematically formulated by means of differen-

tial equations, which describe the change over time of a species concentration

according to the mass-balance conservation law: change = fluxin − fluxout.

For the simplest case, a single unregulated gene, four fundamental reactions

can be considered: i) mRNA production, ii) mRNA degradation, iii) protein

production and iv) protein decay. In this way, the model describes effectively

the main steps of gene expression described in Part I. The four processes are

represented in the following as elementary chemical reactions:

- Transcription: ∅ kR−−→ R

- mRNA Degradation: R
gR−→ ∅

- Translation: R
kP−−→ R+ P

- Protein Degradation: P
gP−→ ∅

where kR is the transcription rate and gR is the degradation rate of mRNA (R),

while kP is the translation rate and gP is the degradation rate of the protein

(P).

Applying the mass-balance law to this reaction scheme yields a set of dif-

ferential equations for the concentration of the species involved, namely R(t)

and P(t),

dR

dt
= kR − gRR,

dP

dt
= kPR− gPP,

(1)

whose unique, thus stable, steady-state solution is given by:

Rss =
kR
gR

; Pss = Rss
kP
gP

=
kRkP
gRgP

. (2)

This deterministic ordinary differential equation (ODE) framework for mod-

eling gene expression involves major several simplifications.

Firstly, the concentrations of reactants must evolve continuously and dif-

ferentiably to allow the use of differential equations. In order to treat con-

centrations as continuous real-valued variables, the number of reactants must

be large enough, fact that is not typically true in the cellular environments.
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Furthermore, diffusion is assumed to be infinitely fast, allowing us to use con-

centrations (moles per volume) and ignore the physical location and movement

of individual molecules within the cell. This amounts to assume the system is

”well-mixed” or spatially homogeneous.

Moreover, this approach is deterministic, meaning that it completely ne-

glects the intrinsic stochasticity or noise of all biochemical reactions.

In fact, biochemical events occur at random times because of the discrete-

ness of molecules and because molecular interactions at the cellular scale are

governed by stochastic collisions between diffusing molecules. The timing of

these encounters depends on chance rather than determinism, especially when

the number of reacting molecules is rather small as it happens in actual living

cells. [10]

As a result, the occurrence of each reaction event is probabilistic, leading to

intrinsic noise in biochemical networks. In addition, extrinsic noise arising from

fluctuations in cellular conditions, such as changes in enzyme levels, temper-

ature, energy availability, etc., may affect as well all reactions simultaneously.

This is a major source of variability between different cells in a population.[7]

With the aim of correctly describing the mechanisms underlying gene ex-

pression, the deterministic approach is normally replaced in favor of a stochastic

one.

3.2 Stochastic approach: the Master Equation

As briefly noted before, within the cell, the number of key reactants in gene

expression tends to be of the order of 10-1000, so any reaction altering the

molecule number by one or two actually generates a large relative change, much

so that the concentration evolves step-wise.

With the purpose of correctly describing gene expression for small pools of

reactants, the deterministic approach is left in favor of a stochastic one, where

each reaction is considered as probabilistic. Instead of mass-balance, the con-

servation law now involved is probability balance. To this end, the probability

P (n⃗, t) to observe n⃗ molecules at time t is defined, where the vector n⃗ is a sort

of inventory of mRNA molecule numbers transcribed from first gene (n1), from

second gene (n2) and so on and protein numbers translated from mRNA from

first gene (n3), etc.

The aforementioned probability is actually a conditional probability, condi-

tioned by surely being in state n0 at initial time: P (n⃗, 0) = δn⃗,n0
. [22]
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To determine how the probability P (n⃗, t) changes over a small increment

of time, one has to write the in-going and out-going fluxes as the product of

the probability of being in a state n⃗ times the transition probability from that

state to another W
n⃗→n⃗′ , i.e.:

∆P (n⃗, t) =
∑
n⃗′

[
W

n⃗′→n⃗
P (n⃗′, t)−W

n⃗→n⃗′P (n⃗, t)
]
∆t. (3)

Dividing both sides by ∆t and taking the limit where this increment becomes

very small, the so-called Master Equation is obtained:

∂P (n⃗, t)

∂t
=

∑
n⃗′

[
W

n⃗′→n⃗
P (n⃗′, t)−W

n⃗→n⃗′P (n⃗, t)
]
. (4)

The transition probabilities W are assumed here to depend only on state at

time t, so that the process is memory-less and therefore Markovian.

Considering only the transcription event in the single gene circuit already seen

in the deterministic approach, the master equation reads

∂P (R, t)

∂t
=kR [P (R− 1, t)− P (R, t)] +

+ gR [(R+ 1) P (R+ 1, t)−R P (R, t)] ,

(5)

where the negative terms are the loss ones, while the positive terms are the

gain ones. This can be pictured diagrammatically as follows:

R− 1 R R+ 1
kR kR

gRgR

Figure 3: Transition scheme between states R− 1, R e R+ 1.

3.2.1 Solving the Master Equation: the moment generating func-

tion

Typically, the master equation associated to a genetic circuit is hard to solve

exactly, due to the complexity of the chemical reactions involved.

One way to circumvent this consists in analyzing directly the evolution of

the moments of the probability distribution through the Moment Generating

Function. Considering again the case where only mRNA is transcribed from
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a single-gene, the one-dimensional moment generating function may be intro-

duced as

M(z, t) =

∞∑
R=0

zRP (R, t), (6)

with properties:

* M(z = 1, t) = 1;

* ∂M(z,t)
∂z

∣∣∣
z=1

=
∑∞

R=0RzR−1P (R, t)
∣∣∣
z=1

=
∑∞

R=0RP (R, t) = ⟨R(t)⟩;

* ∂2M(z,t)
∂z2

∣∣∣
z=1

= ⟨R2(t)⟩ − ⟨R(t)⟩.

The master equation in this case will read:

∂M(z, t)

∂t
= kR(z − 1)F (z, t)− gR(z − 1)

∂M(z, t)

∂z
. (7)

The steady-state solution, M ss(z, t) = e
kR
gR

(z−1)
, implies that the first moment

is the same one obtained with the deterministic approach, i.e.:

∂M ss(z, t)

∂z

∣∣∣
z=1

=
kR
gR

= ⟨R⟩ss.

It is useful to compute the second moment, using the third property of the

moment generating function, that reads

∂2M ss(z, t)

∂z2

∣∣∣
z=1

=

(
kR
gR

)2

= ⟨R2⟩ss − ⟨R⟩ss,

σ2 = ⟨R2⟩ss − (⟨R⟩ss)2 = ⟨R⟩ss.

For a simple system with transcription and degradation, also referred to as

birth and death process in the literature of stochastic systems, the mean and

the variance equal each other, which is the hallmark of a Poisson process with

Fano Factor σ2

⟨R⟩ = 1.

3.2.2 Gaussian approximation: the van Kampen approach

Only in rare cases it is possible to solve the Master Equation explicitly. When

this equation cannot be solved, it is necessary to have a systematic approxi-

mation method, i.e.: the Van Kampen expansion, also known as Linear Noise

Approximation. [24]
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This method is based on the distinction between two scales, the one relative

to the macroscopic behavior of the system and the one regarding the noise. As a

matter of fact, fluctuation are caused by the discrete nature of matter: density

of a gas fluctuates because the gas consists of molecules, chemical reaction

fluctuation arise as they consists of individual relative collisions, etc. On the

other hand, the macroscopic features are determined by all particles together,

thus one expects the importance of fluctuations to be relatively small when the

system is large. Therefore, the main goal of this approximation is to separate

the deterministic behavior from the stochastic one.[24]

To this end, the Van Kampen expansion allows to re-write the state of the

system as the sum of two terms, each of which is characterized by a different

scaling with the size parameter of the system, in agreement with the previous

consideration. Particularly, in the case of genetic circuits, the size parameter is

the volume V of the cell and the state of the system, which is just the number

of molecules n, may be re-written as

n = V ϕ(t) +
√
V ξ, (8)

where ϕ(t) is the deterministic concentration of molecules present in the system

and ξ represents the noise. Notice that n, ϕ, ξ may be vectors when more than

one molecular species is present in the analyzed genetic circuit, but for now are

kept as scalar quantities for simplicity.

Then, also the probability satisfying the Master Equation can be written as

a function of the noise variable just introduced,

P (n, t) = Π(V ϕ+
√
V ξ, t) = Π(ξ, t). (9)

Therefore, it is possible to systematically expand the Master Equation follow-

ing this rule—all the details of the mathematical procedure carried out are

presented in Part III for the specific miRNA-based system of interest.

Particularly, all terms of order V −1/2 lead to the deterministic equations

(such as equations 1) describing the evolution of the concentration of the molec-

ular species involved. Then, all terms of order V 0 are considered and they lead

to a linear Fokker-Planck equation for Π(ξ, t), whose solution is a Gaussian

distribution. Therefore, just the knowledge of first and second moment, which

can be gained from the Fokker-Planck equation and the deterministic ones, is

enough to specify this distribution. The Gaussian Approximation is the name
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given to the Van Kampen expansion because, by ignoring the higher-order terms

and retaining only the dominant terms (V 0), the system’s stochastic behavior is

approximated by a linear noise process, whose probability distribution is Gaus-

sian.

This method allows to gain an approximation for probability of having n

molecules at time t, simply using the connection between P (n, t) and Π(ξ, t)

(equation 9). Of course, upon including higher orders of the expansion, correc-

tion to the gaussian behavior may be included (V −1, order of a single molecule),

but the procedure then gets mathematically much more complex.

The need for an analytic expression of this probability P (n, t) is explained

in the following, as the main focus of this study, the First-Passage Time distri-

bution, is linked to it.

3.3 First-passage Time distribution

Normally, the analysis of the Master Equation of a given system focuses on the

stationary solution, i.e., the stationary probability distribution, P (n⃗), and its

moments. More complex is the study of the dynamics.

However, biologically, each cell in an organism has to perform many tasks to

ensure its survival, such as cellular development or cell differentiation. All of

these fundamental processes must occur correctly in time, as they serve specific

purposes, and although they are driven by intrinsically stochastic biochemical

reactions, they must reliably achieve their intended outcome. To accomplish

this, the cell must maintain the correct time ordering of events and precise

timing across all processes by means of various regulatory mechanisms acting

on gene expression.

In order to study event timing, a threshold-crossing framework is typically

established. In this context, when a given chemical species reaches a predeter-

mined threshold level, it triggers the initiation of a biological process.

More precisely, when a gene is switched on, the average level of a generic chem-

ical species approaches the steady-state according to the dynamics described

by the deterministic equations associated to the system. However, since gene

expression is an intrinsically stochastic process, individual trajectories fluctuate

around this mean behavior, so that each of them reaches the threshold level at

a different time.

The distribution of times crossing for the first time a fixed threshold is the first-
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passage time (FPT) distribution and it represents the variability in reaching a

certain level of expression. In fact, a gene may reach a target level of expression

with a substantial cell-to-cell variability, even in genetically identical popula-

tion of cells exposed to the same stimulus; this, as noted before, is due to the

intrinsic stochasticity of gene expression.

With the aim of ensuring the correct timing for each event, the cell must some-

how control this variability in the timing of reaching the target level.

3.3.1 First-passage times: mathematical tools

Mathematically, the timing of molecular events can be characterized through

different probability measures.

The starting point is the already defined instantaneous probability P (n, t) of

observing n molecules at time t. However, This probability distribution does

not reflect the history of the threshold crossings. To this end, it is convenient to

introduce the so called visit probability Q(n, t) = P(nτ = n at time t0 ≤ τ ≤ t),

namely the probability that the molecule count has reached the given threshold

up to time t [25].

The visit probability is the complement of the survival probability S(t), which

measures the probability that the threshold has never been reached by time t.

If the threshold level is n∗, then the survival probability is defined as:

S(t) =
n∗−1∑
n=0

P (n, t). (10)

The survival probability contains all the information about the process. In

particular, it is directly related to the first-passage time (FPT) distribution,

F (t), through its time derivative as follows:

F (t) =
∂Q

∂t
= −∂S

∂t
. (11)

The First-Passage Time distribution, which is the aim of this study, quan-

tifies the probability that the system crosses the threshold for the first time

exactly at time t.

This formalism allows one to switch from the stochastic dynamics of molec-

ular numbers in genetic circuits to predictions about event timing, essential for

understanding the reliability of the dynamics of intra-cellular events.
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4 miRNA-mediated genetic circuit

This study focuses on a particular miRNA-mediated circuit, which represents

one of the simplest way to model the mRNA-miRNA interaction. This circuit

involves three molecular species, namely the miRNA (S), its target mRNA (R)

and the protein (P), translated from the mRNA R. In particular, for simplicity,

we assume that mRNA and microRNA are transcribed from independent genes

at independent rates and that all reaction rates are constant.

The circuit is represented in Figure 4.

Figure 4: MiRNA-mediated genetic circuit, adapted from Del Giudice et al.
[6]. Two different genes are individually transcribed into mRNA (R) and
microRNA (S) molecules. They can either bind with one another or decay
independently. If a mRNA molecule is not bound to a miRNA one, it can be
translated into protein (P).

Therefore, the molecular reactions involving the molecular species R, S and

P are

∅
kR−−⇀↽−−
gR

R mRNA transcription and degradation,

∅
kS−⇀↽−
gS

S miRNA transcription and degradation,

R+ S
g−→ RS mRNA-miRNA interaction,

RS
1−α−−→ S recycled miRNA,

R
kP−−→ R+ P, P

gP−→ ∅ protein production and degradation.
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In this framework, the miRNA and mRNA are transcribed and degraded

through independent processes with transcription rates kS and kR and degrada-

tion rates gS and gR respectively. To model the post-transcriptional role played

by miRNA molecules, we consider a further reaction such that it can bind to

target mRNA with rate g. This effective parameter amounts to the strength

of the coupling, which biologically depends on the affinity of the two molecular

species in terms of base-pairing. From a complex, we assume that mRNAs are

always degraded and that a fraction α of miRNAs cannot be recycled from the

RS complex. If a mRNA molecule is free, it can then be translated into protein

with translation rate kP . In turn, proteins can be degraded with rate gP .

As noted in the previous Chapter, these molecular reactions can be rewritten

into a set of differential equations, one for each molecular species involved, that

govern the dynamics of the considered system, i.e.:

dR

dt
= kR − gRR− gRS,

dS

dt
= kS − gSS − gαRS,

dP

dt
= kPR− gPP,

(12)

where R, S and P are the concentrations, i.e., number of molecules over volume

ratio, of the corresponding species.

Due to the intrinsic stochasticity of molecular reactions, a stochastic ap-

proach is more appropriate to fully describe gene expression.

To this end, the probability P (n⃗, t) of observing n⃗ = (nR, nS , nP ) molecules

at time t is defined, where the number of molecules of species X is related to

the concentration ρX as nX = VcellρX , where Vcell is the cell volume. Following

the same scheme previously adopted, the dynamics can be described by the

following Master Equation,
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dP (n⃗, t)

dt
= kR[P (nR − 1, t)− P (nR, t)] +

gR
Vcell

[(nR + 1)P (nR + 1, t)+

− nRP (nR, t)] + kS [P (nS − 1, t)− P (nS , t)]+

+
gS
Vcell

[(nS + 1)P (nS + 1, t)− nSP (nS , t)]+

+
kPnR

Vcell
[P (nP − 1, t)− P (nP , t)]+

+
gP
Vcell

[(nP + 1)P (nP + 1, t)− nPP (nP , t)]+

gα

V 2
cell

[(nS + 1)(nR + 1)P (nR + 1, nS + 1, t)− nSnRP (nR, nS , t)]+

+
g(1− α)nS

V 2
cell

[(nR + 1)P (nR + 1, t)+

− nRP (nR, t)],

(13)

where P (nR + 1, t) is the simplified notation for P (nR + 1, nS , nP , t).

4.1 State-of-the-Art in miRNA-meadiated circuits: titration,

noise buffering, and bimodal protein distributions

The analysis of molecular circuits like the one described has been crucial to

understand how miRNAs regulate gene expression at the single-cell level.

A cornerstone in the analysis of regulatory network topologies is the miRNA-

mediated incoherent feed-forward loop, identified by Osella et al. (2011) [18]

as a statistically overrepresented motif. This system is shown to achieve a fine-

tuned protein output that remains stable, i.e., maintains low noise, even in the

presence of significant upstream regulatory fluctuations.
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Figure 5: Steady-state distribution of target protein numbers, adapted from
Osella et al. (2011) [18]. The comparison highlights the difference between
simple regulation (blue) and the incoherent Feed-Forward Loop (red). The
narrower shape of the red curve shows how the FFL structure reduces stochas-
tic fluctuations (noise buffering), stabilizing the protein output.

Therefore, by buffering fluctuations, miRNA post-transcriptional regulation

ensures stability and robustness in protein level (Figure 5), as confirmed also

by the work of Siciliano et al. (2013) [23] . Both works by Osella and Siciliano

show that miRNA acts as a fine-tuner of gene expression.

Other key insights came from experimental work, such as the one carried

out by Mukherji et al. (2011) [16]. In this work, the authors were able to

reconstruct the miRNA-mediated circuit in vitro. To this aim, they used a

two-color fluorescent reporter system to simultaneously monitor a given target

gene expression with and without miRNA regulation in individual cells. This

experiment allowed them to observe that protein production is highly repressed

below a specific threshold level of target mRNA but responds sensitively and

increases rapidly once that threshold is crossed (Figure 6a).
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(a) Experimental transfer function showing the thresh-
old effect. Particularly, because mCherry and eYFP are
two fluorescent protein that share a bidirectional pro-
moter, eYFP fluorescence (x-axis) serves as a proxy for
the transcriptional input, while mCherry (y-axis) repre-
sents the target protein output subject to miRNA regu-
lation.

(b) Biochemical model of miRNA-mediated molecular titration.

Figure 6: Threshold mechanism in miRNA regulation, adapted from Mukherji
et al. (2011)[16].
(a) Unregulated gene expression (black triangles) is compared with miRNA-
regulated expression (blue triangles). The ”hockey stick” shape of the blue
curve indicates a molecular titration mechanism: the pool of available miRNAs
sequesters and represses target mRNAs until the threshold is crossed, after
which protein production resumes linearly.
(b) Schematic of the molecular titration model explaining this phenomenon:
free miRNAs bind and sequester target mRNAs (r), preventing translation
until the miRNA pool is saturated.

This behavior is consistent with a mathematical model of molecular titra-

tion (Figure 6b), through which miRNAs act as a threshold-dependent switch.

In fact, in the case of low mRNA molecules (below the threshold), miRNAs
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can titrate almost all target mRNAs, effectively acting as an on/off switch that

is on the off state. On the contrary, when mRNA molecules cross the thresh-

old, they saturate the pool of available miRNAs. This means that the system

becomes very sensitive to the number of free mRNA molecules, allowing for a

linear response in protein production rather than just turning it on or off.

This experimentally verified threshold mechanism is highly sensitive to the

stochastic fluctuations inherent in gene expression. Gene expression noise is

broadly classified into two types, as experimentally demonstrated by Elowitz

et al. (2002), i.e.:

- intrinsic noise which is the stochasticity inherent to the chemical reac-

tions themselves and to the fact that molecules are discrete entities;

- extrinsic noise which is given by fluctuations in cellular conditions, such

as temperature, cell size, etc.

Intrinsic noise alone can induce bimodality [6], as the system can jump from

a low-mRNA molecule state to a high-mRNA molecule state. This phenomenon

requires a very steep threshold, which is only possible for a high interaction

strength between miRNA and target mRNA molecules [16].

Expanding on this, Bosia et al. (2017) [3] demonstrated that this bimodal

behavior is strongly influenced by the competition for shared miRNAs. This

competition generates regulatory cross-talk, a mechanism where distinct RNA

targets indirectly influence each other’s expression; in fact, by sequestering a

portion of the finite miRNA pool, an abundance of one target relieves the re-

pression on others. This showed that increasing the number of binding sites

enhances this cross-talk, thereby amplifying stochastic fluctuations and forcing

the system to segregate into two distinct subpopulations (bimodality) charac-

terized by high and low expression states.

It was also studied by Del Giudice et al. (2018) how extrinsic noise shapes

bimodal gene distributions in the context of microRNA-mediated regulation—

precisely the genetic circuit reported in Figure 4. They modeled the production

rate of miRNA molecules kS not as a constant, but as a fluctuating parameter

drawn from a Gaussian distribution. In this context, it is found that a noisy

environment can compensate for low miRNA-target interaction to obtain a bi-

modal distribution, therefore relaxing the requirements of the intrinsic noise
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mechanism (Figure 7).

Figure 7: The graph illustrates how extrinsic noise influences the probability
density function of free mRNA molecule counts, adapted from Del Giudice et
al. (2018) [6].
The black line represents the scenario with low miRNA-target interaction
strength (g) and only intrinsic noise, which results in a unimodal distribu-
tion. In contrast, the blue histogram shows that a high interaction strength
(g)—still only intrinsic noise is included—generates a bimodal distribution.
Then, the orange histogram demonstrates that introducing extrinsic noise to
the low interaction strength scenario is sufficient to induce a bimodal dis-
tribution, indicating that extrinsic noise can compensate for weak molecular
affinity.

All these previous studies, however, focus on the steady-state behavior of

the system. A foundational study regarding the dynamics of genetic systems is

the analysis carried out by Dal Co et al. (2017) [5]. This research focused on

the stochastic timing of protein accumulation, investigating how intrinsic noise

affects the time required for a gene product to reach a specific threshold.
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Figure 8: Protein First-Passage Time framework, adapted from Dal Co et al.
(2017) [5].

Specifically, they were able to derive a geometric analytical approximation

to estimate the noise of the First-Passage Time distribution (Figure 8). They

showed that transcriptional auto-regulation is a key determinant of timing pre-

cision, with negative auto-regulation minimizing noise for rapid responses and

positive auto-regulation optimizing timing for longer delays.

This laid the groundwork for understanding how transcriptional architecture—

specifically simple gene activation and feedback loops—influences timing noise

by analyzing properties of FPT distribution of proteins.

In contrast, this thesis shifts the focus to dynamical properties of miRNA-

mediated regulation by investigating the First-Passage Time distributions of

target mRNAs. Therefore, this thesis advances beyond moment estimation

(mean and variance) by aiming to compute the full First-Passage Time distribu-

tion of mRNA molecules, both in the absence and presence of miRNA-mediated

post-transcriptional regulation.

Also, being mRNA molecules the direct precursors of proteins and the direct

targets of miRNAs, studying mRNA FPT distributions rather than protein ones
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provides a higher resolution analysis on the timing dynamics under study.
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Part III

First-Passage Time study of a

miRNA-mediated circuit

The aim of this Part is to analyze the stochastic dynamics of the miRNA-

mediated circuit (Figure 4) previously introduced, specifically focusing on the

First-Passage Time (FPT) distribution for the system’s mRNA molecules. This

FPT analysis provides a powerful quantitative framework for understanding

gene expression timing and variability.

To investigate this, both a numerical and an analytical approach will be carried

out.

First, the numerical method is implemented: the Gillespie algorithm. This

algorithm simulates the exact stochastic time evolution of the system. There-

fore, by generating a large ensemble of individual trajectories, the FPT distri-

bution can be numerically constructed.

Second, the analytical approach is developed, based on the Van Kampen ex-

pansion, also known as the Linear Noise Approximation (LNA). This LNA

framework is particularly useful as it allows us to derive an analytical predic-

tion of the FPT distribution of interest.

This provides deep insights into the system’s timing, which can then be

compared directly with the exact numerical results from the Gillespie simula-

tions to test the validity and accuracy of the approximation. Particularly, the

results for the unregulated circuit are presented, comparing the Gillespie sim-

ulations with the analytical calculation of the FPT distribution. Then, results

regarding the miRNA-mediated circuit are shown, with particular focus on if

and when the approximation implemented is valid.
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5 Numerics: the Gillespie algorithm

In order to analyze genetic circuits or, more in general, stochastic chemical re-

actions, many approximation methods can be carried out.

A fundamental method that performs numerical stochastic simulations is going

to be studied in the following: the Gillespie algorithm [9].

This algorithm provides a rigorous and probabilistic framework for simulat-

ing chemical reactions [10]. It does not attempt to solve the Master Equation

associated to the system of interest (Figure 4). Instead, it provides an out-

put trajectory that exactly conforms to the solution of the chemical Master

Equation.

5.1 The algorithm

The Gillespie algorithm, or Stochastic Simulation Algorithm (SSA), is an ex-

act simulation method, as it calculates the exact time and nature of the next

discrete event, for us a single chemical reaction, that will occur [11].

The core logic of the algorithm, which allows this exact simulation, relies on

treating the system as a probabilistic ”race” between all competing reactions

to determine which event will happen next.

First, the definition of the initial state—namely the discrete populations of

all species Xj , with j ∈ [1, N ] index of the N species present in the system—and

the set of all possible reactions M is needed.

The algorithm then relies on the propensity ai, which represents the prob-

ability rate for each reaction M based on the current state. For example, for a

reaction like A+B → C, the propensity a1 is calculated as

a1 = XAXBk1,

where XA and XB are the reactant populations and k1 is the stochastic rate

constant.

By computing then the total propensity

a0 =
M∑
i=1

ai,

the algorithm then determines the time of the next event. In fact, it generates

a putative time τ by drawing from an exponential distribution based on the
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total propensity, i.e.:

τ = (− 1

a0
) ln

(
1

r1

)
,

where r1 is a uniformly distributed random number between 0 and 1. If the

system is highly reactive (high a0), τ will be very small. If the system is in a

state with few reactants (low a0), τ will be large.

After the time step τ has been calculated, the algorithm must determine

which specific reaction µ, from all M possible ones, will actually modify the

current system state.

The probability that the i-th reaction is the next to occur is given by its

relative share of the total propensity, i.e.:

Prob(µ = i) =
ai
a0

.

The higher the propensity ai, the higher the probability of reaction i being

the next one. To implement this probabilistic choice, the algorithm employs

an efficient linear search to find the reaction µ. Particularly, it generates a

random target value by scaling a new uniformly random number r2 by the

total propensity: r2a0. This value represents a random point along the interval

[0, a0]. The algorithm then searches for the reaction index µ ∈ [1,M ] that

corresponds to this point. Formally, it finds the smallest integer µ that satisfies

the condition:
µ−1∑
i=1

ai < r2a0 ≤
µ∑

i=1

ai.

The first reaction µ whose propensity aµ causes the partial sum to equal or ex-

ceed the r2a0 target is selected as the event that will occur at time t+ τ . This

process guarantees that reactions with higher propensities are proportionally

more likely to be selected.

Finally, the system’s populations are updated according to the stoichiometry of

reaction µ, and the global time is advanced by τ , before the entire cycle repeats

from the new state.

The algorithm iterates this procedure; in each step it re-computes the

propensities and generates a new pair (τ ′, µ′) to update the state of the system

and the time of the evolution. It will stop when this time exceeds the given

end time tend.

The result is an exact stochastically generated trajectory of the state of the

system, as will be shown in the following analysis.
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5.2 Single gene simulations

The genetic circuit that will be studied in the following is the same miRNA-

based one described in Chapter 4. In order to verify that the Gillespie algorithm

implemented works as expected, at first the mRNA-miRNA interaction will be

neglected, meaning that the parameter g encoding the strength of such coupling

will be set to zero. As previously noted, this means that the circuit simplifies to

a single-gene one, where there is just transcription and degradation of a given

chemical species.

Furthermore, as discussed in Part II, for a birth and death process a Pois-

son process is recovered. This may be also numerically verified for each gene

considered.

Figure 9: Gillespie simulation for mRNA (blue) and miRNA (green) trajec-
tories for g = 0 nM−1min−1. As the interaction between the two species has
been neglected, they evolve independently. Protein production and decay is
set to be zero (red line) and all other parameters assume values reported in
Appendix, Table 2.
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(a)

(b)

Figure 10: Normalized histograms of mRNA (Figure a) and miRNA (Figure
b) number of molecules, overlaid with theoretical Poisson model (red line).
Parameters set as explained in Figure 9.

5.3 mRNA-microRNA simulations

Upon including the fact that mRNA molecules and microRNA ones may form

the mRNA-miRNA complex, the trajectories simulated through the Gillespie

algorithm change. This is due to the fact that miRNA molecules, when bound

to their targets, reduce drastically the available number of mRNA molecules.

Just for completeness, in the first simulation also the number of proteins trans-

lated from available mRNA molecules is reported, even though in this study

focuses on mRNAs distributions.
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Figure 11: Gillespie simulation of the full miRNA-based genetic circuit. The
red line is the protein trajectory. Parameters values reported in Appendix,
Table 1.

In order to better understand how parameter g, assuming non zero value,

influences the number of mRNA molecules in the following the proteins counts

have been neglected.

Figure 12: Focus of just mRNA and miRNA trajectories not visible from
Figure 11. Parameters values reported in Appendix, Table 1.

As expected, the interaction between the two molecular species is modifying

the availability of molecules inside the cell, therefore we are correctly modeling

39



the miRNA-mediated post-transcriptional control.

5.4 First-Passage Time distribution of mRNAs

As the main aim of this study is to investigate the dynamics of the genetic

circuit shown in Figure 4, a First-Passage Time framework is developed within

the context of a Gillespie simulation. Particularly, in such a simulation, the out-

put of each run corresponds to the time evolution of the number of molecules

for each chemical species in the system. To define the First-Passage Time, a

threshold is introduced in terms of the number of mRNA molecules. The first

passage time for a given trajectory is then the time at which the number of

molecules first reaches this threshold level.

Figure 13: Number of mRNA molecules as a function of time for g =
0 nM−1min−1. The yellow line, representing the chosen threshold level, is
the half steady-state value. All other parameters are set to the values re-
ported in the Appendix, Table 2.

Because of the intrinsic stochasticity of gene expression, or better of the

underlying reactions, different stochastic realizations will produce trajectories

that reach the threshold at different times. Therefore, in order to obtain statis-

tically meaningful results, a large number of independent Gillespie simulations

must be performed. The collection of these individual crossing times constitutes

the first passage time distribution, which provides quantitative insight into the

variability and timing of gene expression.
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Figure 14: Multiple trajectories for the number of mRNA molecules as
a function of time crossing the half steady-state line (in yellow) for g =
0 nM−1min−1. All other parameters are set to the values reported in Ap-
pendix, Table 2.

Number of simulations In order to evaluate the reliability of the statistical

results and identify a suitable number of stochastic realizations, the mean of

the crossing times for a fixed threshold was calculated as a function of the total

number of simulations. In this analysis, the chosen threshold corresponds to

half of the steady-state value for the considered chemical species:

Rss =
kRV

gR
for binding affinity g = 0.

To this end, sets of 100, 200, 300, and up to 1000 simulations were per-

formed, as reported below.
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Figure 15: Mean of mRNA crossing times of half of the steady-state as a
function of the number of trajectories for g = 0 nM−1min−1. All other
parameters are set to the values reported in Appendix, Table 2.

This result shows that the mean value of the crossing times gradually con-

verges after 500 simulations. Based on this observation, 500 realizations were

chosen as a reasonable compromise between statistical accuracy and computa-

tional cost, and this number was therefore adopted for all subsequent Gillespie

simulations.

Figure 16: Visualization of all 500 trajectories obtained through Gille-
spie simulations and FPT distribution of all times crossing the half-steady-
state threshold (yellow line) neglecting miRNA-mRNA interaction (g =
0 nM−1min−1). All other parameters are set to the values reported in Ap-
pendix, Table 2.
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This First-Passage Time framework is applied to an ensemble of trajectories

for non-zero g values, enabling the study of the FPT distribution for different

interaction strengths. As shown in Figure 10, a Poisson process is recovered

for zero binding affinity (g = 0). Upon increasing the value of parameter g,

the mRNAs distribution transitions to a bimodal one. Intuitively, as more

miRNAs bind to their targets, mRNA molecules disappear from the system.

The system’s stochastic nature—i.e., noise—allows it to settle into two distinct

states: one with a high number of free mRNA molecules and one with a lower

number depending on miRNA availability.
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6 Analytics

6.1 Non interacting case: g = 0

Since we are interested in the First-Passage Time distribution of mRNAmolecules,

from now on the proteins are neglected, as they do not influence the mRNA

dynamics.

By setting parameter g to zero, so not considering the mRNA-miRNA interac-

tion, the genetic circuit already numerically analyzed (Figure 4) becomes very

simple, as it is just composed by two independent genes that transcribe one for

mRNA and one for miRNA. The master equation that describes such a system

is the single gene master equation:

dP (n, t)

dt
= k[P (n− 1, t)− P (n, t)] +

g

V
[(n+ 1)P (n+ 1, t)− nP (n, t)], (14)

where n can be the number of either mRNA molecules or microRNA ones

and k (or g) is the transcription (degradation) rate of the chemical species

considered.

With the aim of analytically obtain the First-Passage Time distribution

for mRNA molecules, two different approaches were implemented to solve this

master equation, which are reported below.

6.1.1 Redner approach

Consider Master Equation (14), which is describing birth and death of mRNA

molecules, with following initial condition:

P (n, 0) = δn,0. (15)

The idea is to apply the method used by Redner S. [20], [21], so transforming

the number of molecules and time following the equation

c(k, s) =

∫ ∞

−∞
dx eikx

∫ ∞

0
dt e−stc(x, t). (16)

Notice that n is the number of molecules, so it is discrete and cannot be

negative, therefore the transform must be modified accordingly,
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∞∑
n=0

eikn
∫ ∞

0
dt e−st ∂P (n, t)

∂t
=

∞∑
n=0

eikn
∫ ∞

0
dt e−st

[
k (P (n− 1, t)− P (n, t))

+
g

V
((n+ 1)P (n+ 1, t)− nP (n, t))

]
.

(17)

Focus on the l.h.s. of (17),

∫ ∞

0
dt e−st∂

{∑∞
n=0 e

iknP (n, t)
}

∂t
=

∫ ∞

0
dt e−st∂P (k, t)

∂t

= e−stP (k, t)

∣∣∣∣∞
0

−
∫ ∞

0
dt (−s)e−stP (k, t)

= −P (k, t = 0) + s

∫ ∞

0
dt e−stP (k, t)

= sP (k, s)− P (k, t = 0).

While the r.h.s. of equation (17) reads

∫ ∞

0
dt e−st

{
k

[ ∞∑
n=0

eiknP (n− 1, t)−
∞∑
n=0

eiknP (n, t)

]
+

+
g

V

[ ∞∑
n=0

eikn(n+ 1)P (n+ 1, t)−
∞∑
n=0

eiknnP (n, t)

]}
=

∫ ∞

0
dt e−st

{
k

[ ∞∑
n=0

eikeik(n−1)P (n− 1, t)− P (k, t)

]
+

+
g

V

[ ∞∑
n=0

zn(n+ 1)P (n+ 1, t)−
∞∑
n=0

znnP (n, t)

]}
=

∫ ∞

0
dt e−st

{
k [zP (k, t)− P (k, t)] +

g

V

[ ∞∑
n=0

∂zn+1

∂z
P (n+ 1, t)+

−
∞∑
n=0

z
∂zn

∂z
P (n, t)

]}
=

∫ ∞

0
dt e−st

{
k(z − 1)P (k, t) +

g

V
(1− z)

∂P (k, t)

∂z

}
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=

∫ ∞

0
dt e−st

[
k(z − 1) +

g

V
(1− z)

d

dz

]
P (z, t)

=

[
k(z − 1) +

g

V
(1− z)

d

dz

] ∫ ∞

0
dt e−stP (z, t)

=

[
k(z − 1) +

g

V
(1− z)

d

dz

]
P (z, s).

Notice that in the above calculations z := eik. The final equation reads

(substituting k with z inside each probability)

sP (z, s)− P (z, t = 0) =

[
k(z − 1) +

g

V
(1− z)

d

dz

]
P (z, s), (18)

with

P (z, t = 0) =

∞∑
n=0

eiknP (n, 0)

=
∞∑
n=0

eiknδn,0

= 1.

(19)

In the end, the original Master Equation is transformed into

sP (z, s)− 1 =

[
k(z − 1) +

g

V
(1− z)

d

dz

]
P (z, s), (20)

with initial condition

P (1, s) =

∫ ∞

0
dt e−st

[ ∞∑
n=0

P (n, t)

]
=

1

s
. (21)

This approach was not actually useful, as transforming back is in general non

trivial, therefore obtaining the distribution of interest becomes very hard.

6.1.2 Method of characteristics

In order to find the probability P (n, t), the Master Equation (14) can be trans-

formed just on the number of molecules—neglecting from Redner approach the

Laplace transform—becoming

∂M(z, t)

∂t
= k(z − 1)M(z, t) +

g

V
(1− z)

∂M(z, t)

∂z
. (22)

Following the same calculations reported in (19), one finds the initial con-

dition, M(z, 0) = 1.
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This equation is analytically solvable using the characteristics’ method, as

reported below:

•

dt

ds
= 1,

t = s;

•

dz

ds
=

dz

dt
= − g

V
(z − 1),

z(t) = z0e
g
V
t + 1,

z0 = (z − 1)e−
g
V
t;

•

dM(z(t), t)

dt
= k(z − 1)M(z(t), t),

M(z, t) = M(z(0), 0)exp

[
k

g
V z0(e

g
V
t − 1)

]
,

M(z, t) = exp

[
k

g
V (z − 1)(1− e−

g
V
t)

]
.

One may rewrite the last equation:

M(z, t) = exp

[
−k

g
V (1− e−

g
V
t)

]
exp

[
k

g
V z(1− e−

g
V
t)

]
=

= exp

[
−k

g
V (1− e−

g
V
t)

] ∞∑
n=0

zn
1

n!
(
k

g
V )n(1− e−

g
V
t)n.

From the solution one may extract the expression of P (n, t),

P (n, t) = exp

[
−k

g
V (1− e−

g
V
t)

]
1

n!
(
k

g
V )n(1− e−

g
V
t)n. (23)

Following the procedure outlined previously, it is possible to compute the

First-Passage Time distribution, shown in Figure 17 from the probability P (n, t)

just gained.
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Figure 17: Analytical FPT-distribution for g = 0 nM−1min−1. All other
parameters are set to the values reported in Appendix, Table 2.

6.2 Interacting case: g ̸= 0

In order to understand how miRNA molecules actually influence translation of

mRNA, their interaction can no longer be neglected. In a more quantitative

way, this implies that parameter g appearing in the miRNA-based circuit con-

sidered must assume a non-zero value.

As in the previous case, where g = 0, the main objective is to obtain an ana-

lytical solution of the Master Equation, which will then allow the derivation of

the First-Passage Time distribution of mRNAs under miRNA regulation.

The dynamics of such a system are still described by the Master Equation (13),

which cannot be solved exactly and therefore requires suitable approximations.

6.2.1 The Van Kampen expansion

As previously seen, the fact that the number of reactants is typically low in

the cellular environment leads to a stochastic description of the dynamics of

the system considered. Upon increasing the number of molecules, the system’s

evolution becomes smoother and the deterministic description becomes more

appropriate. In support of this, consider the single-gene Master Equation (5).

This, as already computed, leads to a Fano factor equal to one or to a fractional

deviation η, which is a dimensionless measure of the fluctuations, equal to

η =

√
σ2

⟨R⟩2
=

√
1

⟨R⟩
.
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This fractional deviation states that relative fluctuations scale roughly as

the inverse square-root of the number of reactants, therefore confirming that if

reactants were to increase the system’s evolution would be smoother.

Since the Master Equation (13) is not exactly solvable, a systematic ap-

proximation is needed. In this study, the Van Kampen expansion, also known

as Linear Noise Approximation, will be employed [24].

This approximation exploits the behavior outlined above, as it lies on the hy-

pothesis that the deterministic evolution of the reactant concentrations can be

separated from the fluctuations. These fluctuations are assumed to scale as the

square root of the typical number of molecules consistent with the Poissonian

statistics discussed earlier.

In practice, this approximation consists of an expansion of the Master Equa-

tion in a power series of an extensive parameter V , the system size, through

which the molecules’ number of a generic chemical species X may be written

as

nX = V ϕX(t) +
√
V ξX , (24)

where:

- nX : number of molecules of species X;

- ϕX(t): deterministic concentration of molecules of species X;

- ξX : gaussian-distributed noise variable.

Neglecting again translation and degradation of proteins, both component of

n⃗ = (nR, nS) must be re-written following equation (24) , so that the probability

P (n⃗, t) becomes a function of ξ and t only, i.e.:

P (n⃗, t) = P (V ϕ⃗+ V 1/2ξ⃗, t) = Π(ξ⃗, t). (25)

With the purpose of re-writing the Master Equation (13) using (24), it is

useful to introduce the creation and annihilation operators, namely

EP (n, t) = P (n+ 1, t),

E−1P (n, t) = P (n− 1, t).
(26)

Therefore, the Master Equation (13) takes the following form
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∂P (n⃗, t)

∂t
= kR(E

−1
R − 1)P (n⃗, t) +

gR
V

[(ER[nRP (n⃗, t)]− nRP (n⃗, t)]+

+ kS(E
−1
S − 1)P (n⃗, t) +

gS
V

[(ES [nSP (n⃗, t)]− nSP (n⃗, t)]+

+
gα

V 2
[ESER[nSnRP (n⃗, t)]− nRnSP (n⃗, t)]+

+
g(1− α)nS

V 2
[ER[nRP (n⃗, t)]− nRP (n⃗, t)] =

= kR(E
−1
R − 1)P (n⃗, t) +

gR
V

(ER − 1)nRP (n⃗, t)+

+ kS(E
−1
S − 1)P (n⃗, t) +

gS
V

(ES − 1)nSP (n⃗, t)+

+
gα

V 2
(ESER − 1)nRnSP (n⃗, t)+

+
g(1− α)nS

V 2
(ER − 1)nRP (n⃗, t).

(27)

Since the noise is assumed to be small, the operator E can be expanded around

ξ = 0, becoming

Ei = 1 + V −1/2 ∂

∂ξi
+

1

2
V −1 ∂2

∂ξ2i
+ . . .+O(V −3/2), (28)

with i representing either mRNA (index R) or microRNA (index S).

Then, using the expansion of the operator (28) and the function Π(x⃗i, t) instead

of P (n⃗, t), let’s re-express the full Master Equation (27).

First, consider its l.h.s., with only one species present—so that ξ and ϕ in

(25) are not vectors for the following calculations.

∂Π(ξ, t)

∂t
=

∂P (n(t), t)

∂t
=

=
∂P (V ϕ+ V 1/2ξ, t)

∂t
=

=
∂P

∂t
+

dn

dt

∂P

∂n
=

=
∂P

∂t
+ V

dϕ

dt

∂P

∂n
=

=
∂P

∂t
+ V 1/2dϕ

dt

∂Π

∂ξ
,

(29)

where in the last equality, the following one has been used,

∂P

∂n
= V −1/2∂Π

∂ξ
. (30)
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Therefore,

∂P (n⃗, t)

∂t
=

∂Π(ξ⃗, t)

∂t
− V 1/2

∑
i

dϕi

dt

∂Π(ξ⃗, t)

∂ξi
, (31)

where again, index i covers all species involved, in this case mRNA (index R)

and miRNA (index S).

By defining

τ =
t

V
,

equation (30) becomes:

∂P (n⃗, t)

∂t
=

1

V

[
∂Π(ξ⃗, τ)

∂τ
− V 1/2

∑
i

dϕi

dτ

∂Π(ξ⃗, τ)

∂ξi

]
. (32)

The full Master Equation will amount to something of the form

∂Π(ξ⃗, τ)

∂τ
− V 1/2

∑
i

dϕi

dτ

∂Π(ξ⃗, τ)

∂ξi
= V [...] . (33)

Since the calculations on the r.h.s. are more involved, the terms related to

mRNA, miRNA and complex miRNA-mRNA are treated separately, particu-

larly:

• mRNA terms:

kR(E
−1
R − 1)P (n⃗, t) +

gR
V

(ER − 1)nRP (n⃗, t) =

= kR(−V −1/2 ∂

∂ξR
+

1

2
V −1 ∂2

∂ξ2R
)Π(ξ⃗, t)+

+
gR
V

(V −1/2 ∂

∂ξR
+

1

2
V −1 ∂2

∂ξ2R
)(V ϕR + V 1/2ξR)Π(ξ⃗, t) =

= kR(−V −1/2 ∂

∂ξR
+

1

2
V −1 ∂2

∂ξ2R
)Π(ξ⃗, t)+

+
gR
V

(V 1/2ϕR
∂

∂ξR
+

1

2
ϕR

∂2

∂ξ2R
+

∂

∂ξR
ξR +

1

2
V −1/2 ∂2

∂ξ2R
ξR)Π(ξ⃗, t) =

(1)
= kR(−V 1/2 ∂

∂ξR
+

1

2

∂2

∂ξ2R
)Π(ξ⃗, τ)+

+ gR(V
1/2ϕR

∂

∂ξR
+

1

2
ϕR

∂2

∂ξ2R
+

∂

∂ξR
ξR +

1

2
V −1/2 ∂2

∂ξ2R
ξR)Π(ξ⃗, τ)

(34)
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• miRNA terms:

kS(E
−1
S − 1)P (n⃗, t) +

gS
V

(ES − 1)nSP (n⃗, t) =

(1)
= kS(V

−1/2 ∂

∂ξS
+

1

2

∂2

∂ξ2S
)Π(ξ⃗, τ)+

+ gS(V
1/2ϕS

∂

∂ξS
+

1

2
ϕS

∂2

∂ξ2S
+

∂

∂ξS
ξS +

1

2
V −1/2 ∂2

∂ξ2S
ξS)Π(ξ⃗, τ)

(35)

• interaction terms:

gα

V 2
(ESER − 1)nRnSP (n⃗, t) =

=
gα

V 2

[
(1 + V −1/2 ∂

∂ξR
+

1

2
V −1 ∂2

∂ξ2R
)(1 + V −1/2 ∂

∂ξS
+

1

2
V −1 ∂2

∂ξ2S
)+

− 1
]
(V ϕR + V 1/2ξR)(V ϕS + V 1/2ξS)Π(ξ⃗, t) =

=
gα

V 2

[
V −1/2(

∂

∂ξR
+

∂

∂ξS
) +

1

2
V −1(

∂2

∂ξ2R
+

∂2

∂ξ2S
)+

+
1

2
V −3/2(

∂

∂ξR

∂2

∂ξ2S
+

∂

∂ξS

∂2

∂ξ2R
) + V −1 ∂2

∂ξR∂ξS
+

+
1

4
V −2 ∂2

∂ξ2R

∂2

∂ξ2S

]
(V 2ϕSϕR + V 3/2(ϕSξR + ξSϕR) + V ξRξS)Π(ξ⃗, t) =

=
gα

V 2
[(

∂

∂ξR
+

∂

∂ξS
)(V 3/2ϕSϕR + V (ϕSξR + ξSϕR) + V 1/2ξSξR)+

+
1

2
(
∂2

∂ξ2R
+

∂2

∂ξ2S
)(V ϕSϕR + V 1/2(ϕSξR + ξSϕR) + ξSξR)+

+
1

2
(

∂

∂ξR

∂2

∂ξ2S
+

∂

∂ξS

∂2

∂ξ2R
)(V 1/2ϕSϕR + ϕSξR + ξSϕR + V −1/2ξSξR)+

+ (
∂2

∂ξR∂ξS
)(V ϕSϕR + V 1/2(ϕSξR + ξSϕR) + ξSξR)+

+
1

4
(
∂2

∂ξ2R

∂2

∂ξ2S
)(ϕSϕR + V −1/2(ϕSξR + ξSϕR) + V −1ξSξR)]Π(ξ⃗, t) =
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(1)
= gα[(

∂

∂ξR
+

∂

∂ξS
)(V 1/2ϕSϕR + ϕSξR + ϕRξS + V −1/2ξSξR)+

+
1

2
(
∂2

∂ξ2S
+

∂2

∂ξ2R
)(ϕSϕR + V −1/2(ϕSξR + ϕRξS) + V −1ξSξR)+

+
1

2
(

∂

∂ξR

∂2

∂ξ2S
+

∂

∂ξS

∂2

∂ξ2R
)(V −1/2ϕSϕR + V −1(ϕSξR + ϕRξS) + V −3/2ξSξR)+

+ (
∂2

∂ξR∂ξS
)(ϕSϕR + V −1/2(ϕSξR + ϕRξS) + V −1ξSξR)+

+
1

4
(
∂2

∂ξ2R

∂2

∂ξ2S
)(V −1ϕSϕR + V −3/2(ϕSξR + ϕRξS) + V −2ξSξR)]Π(ξ⃗, τ) =

= gα[(
∂

∂ξR
+

∂

∂ξS
)(V 1/2ϕSϕR + ϕSξR + ϕRξS + V −1/2ξSξR)+

+
1

2
(
∂2

∂ξ2S
+

∂2

∂ξ2R
)(ϕSϕR + V −1/2(ϕSξR + ϕRξS) + V −1ξSξR)+

+
1

2
(

∂

∂ξR

∂2

∂ξ2S
+

∂

∂ξS

∂2

∂ξ2R
)(V −1/2ϕSϕR + V −1(ϕSξR + ϕRξS))+

+ (
∂2

∂ξR∂ξS
)(ϕSϕR + V −1/2(ϕSξR + ϕRξS) + V −1ξSξR)+

+
1

4
(
∂2

∂ξ2R

∂2

∂ξ2S
)V −1ϕSϕR]Π(ξ⃗, τ)

• re-cycled miRNA terms:

g(1− α)nS

V 2
(ER − 1)nRP (n⃗, t) =

=
g(1− α)

V 2
(V ϕS + V 1/2ξS)(1 + V −1/2 ∂

∂ξR
+

1

2
V −1 ∂2

∂ξ2R
+ · · · − 1)(V ϕR+

+ V 1/2ξR)Π(ξ⃗, t) =

(1)
= g(1− α)(ϕS + V −1/2ξS)(V

1/2ϕR
∂

∂ξR
+

∂

∂ξR
ξR +

1

2
ϕR

∂2

∂ξ2R
+

+
1

2
V −1/2 ∂2

∂ξ2R
ξR)Π(ξ⃗, τ) =

= g(1− α)[V 1/2ϕSϕR
∂

∂ξR
+ ϕS

∂

∂ξR
ξR +

1

2
ϕSϕR

∂2

∂ξ2R

+
1

2
V −1/2ϕS

∂2

∂ξ2R
ξR + ξSϕR

∂

∂ξR
+ V −1/2ξS

∂

∂ξR
ξR

+
1

2
V −1/2ξSϕR

∂2

∂ξ2R
+

1

2
V −1ξS

∂2

∂ξ2R
ξR]Π(ξ⃗, τ)

(36)

where in each (1) the procedure stated in equation (33) has been imposed.
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Taking now all terms of order O(V 1/2), both on the right-hand and left-hand

sides of the equation, one may verify that the correct deterministic equations

are recovered.

− V 1/2dϕS

dτ

∂Π

∂ξS
− V 1/2dϕR

dτ

∂Π

∂ξR
=

= (−kR + gRϕR)V
1/2 ∂Π

∂ξR
+ (−kS + gSϕS)V

1/2 ∂Π

∂ξS
+

+ V 1/2gαϕSϕR(
∂

∂ξS
+

∂

∂ξR
)Π + g(1− α)V 1/2ϕSϕR

∂Π

∂ξR

⇔

− dϕS

dτ

∂Π

∂ξS
− dϕR

dτ

∂Π

∂ξR
=

= (−kR + gRϕR + gαϕSϕR + g(1− α)ϕSϕR)
∂Π

∂ξR
+

+ (−kS + gSϕS + gαϕSϕR)
∂Π

∂ξS

(37)

⇔

− ϕ̇R = −kR + gRϕR + gϕSϕR,

− ϕ̇S = −kS + gSϕS + gαϕSϕR.
(38)

Taking instead all terms of order O(V 0), the resulting equation is a Fokker-

Planck Equation.

Particularly, it is possible to show that the solution of such Fokker-Planck

equation is a Gaussian [24], therefore only the first and second moments must

be determined to gain information about the distribution. For this reason the

Linear Noise Approximation is often referred to as the Gaussian approximation.

The Fokker-Planck equation obtained in this case of study is
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∂Π(ξ⃗, τ)

∂τ
= (

1

2
kR

∂2

∂ξ2R
+

1

2
gRϕR

∂2

∂ξ2R
+ gR

∂

∂ξR
ξR)Π(ξ⃗, τ)+

+ (
1

2
kS

∂2

∂ξ2S
+

1

2
gSϕS

∂2

∂ξ2S
+ gS

∂

∂ξS
ξS)Π(ξ⃗, τ)+

+ gα[(
∂

∂ξR
+

∂

∂ξS
)(ϕSξR + ξSϕR)+

+
1

2
(
∂2

∂ξ2S
+

∂2

∂ξ2R
)ϕSϕR + ϕSϕR

∂2

∂ξS∂ξR
]Π(ξ⃗, τ)+

+ g(1− α)[ϕS
∂

∂ξR
ξR + ξSϕR

∂

∂ξR
+

1

2
ϕSϕR

∂2

∂ξ2R
]Π(ξ⃗, τ).

(39)

First and second moments of ξ gaussian noise Consider the following

linear Fokker-Plank Equation, where for simplicity only one chemical species

has been involved, therefore ξ is not a vector,

∂Π(ξ, τ)

∂τ
= −α1(ϕ)

∂

∂ξ
ξΠ(ξ, τ) +

1

2
α2(ϕ)

∂2Π(ξ, τ)

∂ξ2
, (40)

where αj , j = 1, 2 are two coefficients depending on time through concentration

ϕ(t). With the aim of determine both first and second moments, multiply by ξ

and ξ2 to respectively obtain

∂⟨ξ⟩
∂τ

= α1(ϕ)⟨ξ⟩,

∂⟨ξ2⟩
∂τ

= 2α1(ϕ)⟨ξ2⟩+ α2(ϕ).

(41)

Both equations can be solved, provided that the initial condition is known.

Particularly, since the initial problem was to solve the Master Equation for

P (n, t) condition to the fact that at initial time P (n, 0) = δn,0, then at the

beginning of the process fluctuations vanish, i.e.:

⟨ξ⟩0 = ⟨ξ2⟩0 = 0. (42)

As a consequence,

⟨ξ⟩t = A e−
∫ t
0 α1(ϕ(s))ds,

therefore, using initial condition (42),

⟨ξ⟩0 = 0 = A ⇒ ⟨ξ⟩t = 0 ∀t.

(43)

The fact that the noise has zero mean implies that the variance is equal to
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the second moment, i.e.:

V ar[ξ] = ⟨⟨ξ2⟩⟩ = ⟨ξ2⟩ − ⟨ξ⟩2 = ⟨ξ2⟩. (44)

Then, passing from distribution Π(ξ, t) to distribution P (n, t), according

to relation (25), the connection between number of molecules n and noise ξ is

needed. Particularly, the following relations will be used:

•
⟨n⟩t = V ϕ(t) + V

1
2
�
�⟨ξ⟩t = V ϕ(t) (45)

•
⟨⟨n2⟩⟩t = (V ϕ(t))2 + V ⟨⟨ξ2⟩⟩t − (V ϕ(t))2

(1)
= V ⟨ξ2⟩t (46)

where in step (1) relation (44) was used.

For the Fokker-Plank Equation (39), the noise is a vector with two components

ξ⃗ = (ξR, ξS), for each of which relations (45) and (46) must hold.

Going back to equation (39) and applying the procedure outlined in the

above paragraph, therefore multiplying by ξ2R, ξ2S and ξRξS and integrating

over all their possible values, one obtains equations for autocorrelation and

cross-correlation, i.e.:

⟨ ˙ξ2R⟩ = kR + gRϕR − 2gR⟨ξ2R⟩ − 2gϕS⟨ξ2R⟩ − 2gϕR⟨ξRξS⟩+ gϕSϕR,

⟨ξ̇2S⟩ = kS + gSϕS − 2gS⟨ξ2S⟩ − 2gαϕS⟨ξRξS⟩ − 2gαϕR⟨ξ2S⟩+ gαϕSϕR,

⟨ ˙ξRξS⟩ = −(gR + gS + gϕS + gαϕR)⟨ξSξR⟩ − gϕR⟨ξ2S⟩ − gαϕS⟨ξ2R⟩+

+ gαϕRϕS .

(47)

These three equations can be solved when paired with the deterministic

ones (38) describing the evolution of the concentration of mRNA and miRNA.

As a result, the probability P (n⃗, t) of having n⃗ at time t is obtained as a

Gaussian distribution [24] with

⟨n⃗⟩ = (⟨nR⟩, ⟨nS⟩) = V (ϕR, ϕS),

⟨⟨n⃗2⟩⟩ = (⟨⟨n2
R⟩⟩t, ⟨⟨n2

S⟩⟩t) = V (⟨ξ2R⟩t, ⟨ξ2S⟩t).

Following again the procedure outlined in Part II, the First-Passage Time

distribution is obtained.
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Figure 18: Analytical First-Passage Time distribution with binding affinity
g = 125 nM−1min−1. All other parameters are set to the values reported in
Appendix, Table 2.

57



7 Results

In this Chapter all numerical and analytical results will be presented and com-

pared.

The analytical First-Passage Time distribution will be compared with the one

gained from Gillespie simulations both for the single-gene and for non-zero

binding affinity. Particularly, for the interacting circuit it will be established if

and when the approximation implemented, i.e. the Van Kampen expansion, is

a good and valid approximation for the case of study.

7.1 The non-interacting circuit

The system represented in Figure 4 has been studied while keeping a null

binding affinity (g = 0) between mRNA and miRNA molecules, therefore the

number of messenger-RNA molecules is not regulated. The analytical First-

Passage Time distribution is below reported and compared with the one ob-

tained through Gillespie simulations.

Figure 19: Analytical (orange) and numerical (blue histogram) First-Passage
Time distribution for g = 0 nM−1min−1. All other parameters are set to the
values reported in Appendix, Table 2.

Also the properties of such distribution may be computed and compared

with simulations results. Particularly mean, variance, coefficient of variation

and fano factor of the First-Passage Time distribution have been computed

upon varying the value of the transcription rate kR of mRNA molecules, specif-

ically form 0.001 to 0.015 nM min−1. All parameters, with exception of kR
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and g, are set to the values reported in Appendix, Table 2. The results are

reported in the following.

Figure 20: Analytical mean First-Passage Time as a function of transcription
rate kR for g = 0 nM−1min−1. The blue dots are the numerical simulations
results.

Figure 21: Analytical variance of First-Passage Time distribution as a function
of transcription rate kR for g = 0 nM−1min−1. The red dots are the numerical
simulations results.
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Figure 22: Analytical Coefficient of Variation (CV) of First-Passage Time
distribution as a function of transcription rate kR for g = 0 nM−1min−1.
The purple dots are the numerical simulations results.

Figure 23: Analytical Fano Factor of First-Passage Time distribution as a
function of transcription rate kR for g = 0 nM−1min−1. The green dots are
the numerical simulations results.
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7.2 The interacting circuit

Upon including the post-transcriptional regulation in the Gillespie simulations,

namely setting parameter g to a non-zero value, the trajectories of mRNA and

miRNA change accordingly, as is shown in Figure 24.

Figure 24: Trajectories of miRNA and mRNA molecules, respectively green
and blue line, for a value of binding affinity g = 150 nM−1min−1. The yellow
line is the half-steady state line for mRNA. All other parameters are set to
the values reported in Appendix, Table 2.

With the aim of comparing the analytical approach carried out and the

numerical results obtained through the Gillespie algorithm, the First-Passage

Time distribution has been computed for several values of binding affinity g.

For each chosen value the analytical and numerical FPT distributions can be

compared, as shown in Figure 25 where the two are overlaid.
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Figure 25: Comparison of analytical (orange line) and numerical (blue his-
togram) FPT distributions for g = 25 nM−1min−1. All other parameters are
set to the values reported in Appendix, Table 2.

To verify the consistency of the two approaches, the mean of the First-

Passage Time distribution (MFPT) has been computed both analytically and

numerically for different values of binding affinity g. The analytical approx-

imation is reproducing the behavior of the numerical MFPT (i.e., obtained

with Gillespie algorithm) only for small values of interaction strength. Upon

increasing this parameter, the mean FPT computed via the Van Kampen ap-

proximation overestimates the correct Gillespie mean First-Passage Time, as

shown in Figure 26.
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Figure 26: Mean of the First-Passage Time distribution (MFPT),
which has been computed for different values of binding affinity g ∈
{0, 7, 15, 25, 50, 75, 100, 125, 150, 160} nM−1 min−1. The orange dots are the
analytical MFPT gained through the Linear Noise Approximation, while the
blue dots are the ones gained through Gillespie simulations. All other param-
eters are set to the values reported in Appendix, Table 2.

Looking at the comparison of analytical and numerical MFPTs, we may see

that the approximation is not valid above a certain critical value of g.

Particularly, all analytical data beyond g = 50 nM−1 min−1 are roughly

double the corresponding Gillespie MFPT. This observation could suggest a sys-

tematic error in the computation of the analytical FPT distribution. To be more

precise, the variances of all FPT-distributions for the several values of binding

affnity have been computed. As expected, this quantity increases as parameter

g increases; in particular, for all distributions characterized by a higher value

of binding affinity than the critical one (roughly beyond g = 50 nM−1 min−1),

variances become very large, definitely confirming that the Linear Noise Ap-

proximation is failing at describing the mRNA-miRNA interaction correctly in

this regime.
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Figure 27: Mean of the First-Passage Time distribution (MFPT) as a function
of g. The analytical data (orange) and the numerical data (blue) are computed
in the same parameters set up of Figure 26.

Furthermore, the dependence of the First-Passage Time distribution on

mRNA transcription rate kR was studied. Upon increasing this parameter, for

a predetermined value binding affinity, the MFPT increases and converges to

the MFPT value characterizing the single-gene distribution (blue line of Figure

28).

Figure 28: Mean of the analytical First-Passage Time distribution as a function
of mRNA transcription rate kR, for different values of binding affinity, i.e.:
g ∈ {0, 15, 50, 150} nM−1 min−1. All other parameters values in Appendix,
Table 2.
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For completeness trajectories of Figure 28 were compared with the mean of

the FPT distribution computed with the Gillespie algorithm. The comparison

of the analytical and numerical unregulated MFPT behavior has already been

shown in Figure 20.

(a) g = 15 nM−1min−1 (b) g = 50 nM−1min−1

(c) g = 150 nM−1min−1

Figure 29: Mean of the analytical and numerical FPT distribution as a func-
tion of mRNA transcription rate kR, for three different values ofg. All other
parameters are set to the values reported in Appendix, Table 2.
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8 Conclusions

The main aim of this thesis was to shift the focus from the steady-state prop-

erties to the dynamical properties of microRNA-mediated gene regulation net-

works. To this end, a First-Passage Time framework for the mRNA molecules

was developed, as this metric is fundamental for understanding the timing at

which cells execute crucial biological processes. According to this framework,

in fact, the timing of a process is established as soon as the level of expression

of the corresponding molecular species reaches a certain threshold.

Specifically, to address this objective a dual approach was implemented:

numerical and analytical.

The numerical approach is based on the implementation of the Gillespie

algorithm, which allows for the generation of exact stochastic trajectories of all

molecular species present in the system of interest. Therefore, this enabled the

reconstruction of the First-Passage Time distribution for both the unregulated

single-gene circuit and the more complex miRNA-regulated circuit.

The challenge was to compute the First-Passage Time distributions not only

via numerical simulation, but also analytically. For the unregulated case, the

procedure carried out leads to the exact First-Passage Time distribution, as the

comparison with the Gillespie FPT distribution confirms (Figure 19). Also, the

properties of both the analytical and numerical distribution were calculated,

specifically by varying the transcription rate kR of mRNA molecules. All the

analytical properties studied—mean, variance, coefficient of variation and fano

factor—are in excellent agreement with the numerical predictions, therefore

confirming once again that the analytical distribution obtained is consistent

with the one provided by the Gillespie algorithm.

Upon introducing the post-transcriptional regulation mediated by microRNA

molecules, the Master Equation which describes the process is hard-to-solve,

therefore an approximation is needed to gain an analytical expression for the

First-Passage Time distribution of interest. The analytical approximation im-

plemented is the Van Kampen expansion, also known as Linear Noise or Gaus-

sian Approximation.

To systematically compare the numerical and analytical results of the reg-

ulated case, the mean of the FPT distribution (MFPT) has been computed

for different values of mRNA-miRNA interaction strength. As shown in Fig-

ure 27, the approximation proves valid for low values of binding affinity. As

further confirmation, the unregulated FPT distribution is recovered within this
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approximation by setting a null binding affinity.

However, as the interaction strength increases, the validity of the approx-

imation is compromised by the rapid growth of the variance. The increase

in variance upon increasing the binding affinity is physically expected, as this

implies stronger miRNA-mediated regulation. In this regime, the strong ac-

tivity of miRNAs induces large stochastic fluctuations in the mRNA molecule

number, resulting in a broad distribution of crossing times. However, the fact

that the variance grows in time much faster than the mean leads to the loss of

temporal precision of the process, making the mean First-Passage Time highly

unpredictable. This behavior indicates that the mean value ceases to be a rep-

resentative descriptor of the system’s dynamics.

The breakdown of the approximation could also be attributed to the nature of

the Van Kampen expansion, which models the probability of having a certain

number of mRNA molecules at a given time as a Gaussian distribution. In

contrast, increasing the mRNA-miRNA interaction strength drives the system

away from Gaussian behavior, so much so that the mRNA molecule number

distributions eventually exhibits bimodality. Although full bimodality may not

yet emerge within the parameter range investigated, the distributions begin to

develop long tails and marked asymmetry, features that the Gaussian Approx-

imation fails to capture.

Therefore, while for small values of interaction the approximation is still

valid, beyond a certain critical value—roughly g = 50 nM−1min−1—the Van

Kampen expansion fails to correctly describe the behavior of the system.

Nonetheless, an interesting finding is that a cell, by employing a miRNA-

mediated post-transcriptional control, can actually reduce the time at which

the number of mRNAs reaches a given threshold, while maintaining low noise

levels. Therefore, this shows that microRNA regulation plays a crucial and

fundamental role in event timing, particularly accelerating the initiation of a

given biological process and also acting as powerful noise buffer.

Furthermore, the MFPT curve (Figure 26) shows a minimum, suggesting

that there is an optimal value of binding affinity such that the MFPT is mini-

mized.

For completeness, the mRNA MFPT has been studied upon varying the tran-

scription rate kR for different binding affinity values, as shown in Figure 28.

Reasonably, as the transcription rate increases enough, the regulatory effect

is washed out. The limiting factor becomes the intrinsic degradation rather

than the miRNA interaction, causing the statistical properties of the regulated
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system—including the MFPT—to asymptotically approach those of the unreg-

ulated circuit.

It is worth noting that the analytical approximation implemented could be

refined to gain better insights into this behavior. A first option could be to

extend this same procedure, but including higher orders in the expansion of

the Master Equation. While this would increase the analytical complexity, it

would provide corrections to the Gaussian behavior.

Alternatively, the limitations of the approximation could be overcome by

developing a field-theoretic framework, for example following the methodology

of B. Walter et al (2023) [25]. By mapping the stochastic dynamics onto a

Doi-Peliti formalism equipped with a specific tracing mechanism, this method

allows for the analytical derivation of the visit probability, from which the exact

First-Passage Time distribution can be obtained.
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Appendix

Parameters definition

Definition Symbol Value Unit

mRNA transcription rate kR 2.7× 10−3 nM min−1

miRNA transcription rate kS 1.2× 10−3 nM min−1

mRNA degradation rate gR 2.4× 10−2 min−1

miRNA degradation rate gS 2.4× 10−2 min−1

mRNA-miRNA binding affinity g 1.5× 103 nM−1 min−1

protein translation rate kP 6.0 min−1

protein degradation rate gP 1.2× 10−2 min−1

Fraction of degraded miRNAs
from mRNA-miRNA complex

α 0.5 –

Table 1: Parameters values, adapted from [6].

Definition Symbol Value Unit

mRNA transcription rate kR 2.7× 10−3 nM min−1

miRNA transcription rate kS 1.2× 10−3 nM min−1

mRNA degradation rate gR 2.4× 10−2 min−1

miRNA degradation rate gS 2.4× 10−2 min−1

mRNA-miRNA binding affinity g 1.5× 103 nM−1 min−1

Fraction of degraded miRNAs
from mRNA-miRNA complex

α 0.5 –

Table 2: Parameters values for numerical simulations and analytical calcula-
tion, adapted from [6]. As proteins are not discussed, their translation and
degradation rates are not needed for numerical neither analytical procedure.
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Transform of full master equation

An attempt to solve the full master equation was made following Redner ap-

proach, but once gained an equation for the transformed probability, going back

to P(n,t) is not straightforward as thought. Here are reported the calculations

made for the case g ̸= 0:

As did for the g = 0 case, the Master Equation can be transformed according

to the following rule:

M(zR, zS , zP , t) =

∞∑
n⃗=0

P (n⃗, t)znR
R znS

S znP
P (48)

where to simplify the notation zj := eikj with j = (R,S, P ) was defined.

So, Master Equation 13 becomes:

∂M(z⃗, t)

∂t
=

∞∑
n⃗=0

[
kR[P (nR−1, t)− P (nR, t)] +

gR
V

[(nR+1)P (nR+1, t)− nRP (nR, t)]

+ kS [P (nS−1, t)− P (nS , t)] +
gS
V

[(nS+1)P (nS+1, t)− nSP (nS , t)]

+
kPnR

V
[P (nP−1, t)− P (nP , t)] +

gP
V

[(nP+1)P (nP+1, t)− nPP (nP , t)]

+
gα

V
[(nS+1)(nR+1)P (nR+1, nS+1, t)− nSnRP (nR, nS , t)]

+
g(1−α)nS

V 2
[(nR+1)P (nR+1, t)− nRP (nR, t)]

]
znR
R znS

S znP
P

(49)

Here below are reported all calculations needed to transform the r.h.s. of

equation 49, line by line:
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•

kR

∞∑
n⃗=0

P (nR − 1, t)znR
R znS

S znP
P − kR

∞∑
n⃗=0

P (nR, t)z
nR
R znS

S znP
P +

+
gR
V

∞∑
n⃗=0

(nR + 1)P (nR + 1, t)znR
R znS

S znP
P − gR

V

∞∑
n⃗=0

nRP (nR, t)z
nR
R znS

S znP
P =

= kR

∞∑
n⃗=0

zRP (nR − 1, t)znR−1
R znS

S znP
P − kR

∞∑
n⃗=0

P (nR, t)z
nR
R znS

S znP
P +

gR
V

∞∑
n⃗=0

d

dzR
P (nR + 1, t)znR+1

R znS
S znP

P − gR
V

∞∑
n⃗=0

zR
d

dzR
P (nR, t)z

nR
R znS

S znP
P =

=

[
kRzR − kR +

gR
V

d

dzR
− gR

V
zR

d

dzR

]
M(z⃗, t) =

=

[
kR(zR − 1) +

gR
V

(1− zR)
d

dzR

]
M(z⃗, t)

(50)

• Analogous procedure leads to:[
ks(zS − 1) +

gS
V

(1− zS)
d

dzS

]
M(z⃗, t) (51)

• from now on the protein are to be neglected, but just for completeness:[
kP
V

zR(zP − 1)
d

dzR
+

gP
V

(1− zP )
d

dzP

]
M(z⃗, t)

•

∞∑
n⃗=0

gα

V 2
[(nS + 1)(nR + 1)P (nR + 1, nS+, t)− nSnRP (nR, nS , t)]z

nR
R znS

S =

=
gα

V 2

∞∑
n⃗=0

d

dzR

d

dzS
P (nR + 1, nS + 1, t)znR+1

R znS+1
S +

− gα

V 2

∞∑
n⃗=0

zRzS
d

dzR

d

dzS
P (nR, nS , t)z

nR
R znS

S =

=
gα

V 2

[
d2

dzRdzS
M(z⃗, t)− zRzs

d2

dzRdzS
M(z⃗, t)

]
=

=
gα

V 2
(1− zRzS)

d2

dzRdzS
M(z⃗, t)

(52)
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•

∞∑
n⃗=0

g(1− α)

V 2
[nS(nR + 1)P (nR + 1, t)− nRP (nR, t)] z

nR
R znS

S =

=
g(1− α)

V 2

[ ∞∑
n⃗=0

zS
d

dzS

d

dzR
P (nR + 1, t)znR+1

R znS
S +

− zRzS
d

dzR

d

dzS
P (nR, t)z

nR
R znS

S

]
=

=
g(1− α)

V 2
zS(1− zR)

d2

dzSdzR
M(z⃗, t)

(53)

The full transformed Master Equation (neglecting protein part) reads:

∂M(z⃗, t)

∂t
=

{[
kR(zR − 1) +

gR
V

(1− zR)
d

dzR

]
+

+

[
ks(zS − 1) +

gS
V

(1− zS)
d

dzS

]
+

[
gα

V 2
(1− zRzS)

d2

dzRdzS

]
+

+

[
g(1− α)

V 2
zS(1− zR)

d2

dzSdzR

]}
M(z⃗, t)

(54)
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