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Abstract

In the framework of Economic Complexity, the concept of capabilities represents
a fundamental theoretical construct for modeling economic systems. These capa-
bilities, while extensively theorized as the hidden endowments driving countries’
productive structures, have remained empirically elusive, never subjected to direct
inference attempts. The present work addresses this critical gap by developing an
approach to infer and extract information about this theoretical capabilities layer
directly from empirical data. Our methodology employs Italian municipal-level eco-
nomic data, specifically utilizing ATECO codes (the Italian classification system for
economic activities harmonized with the European NACE nomenclature) organized
in a binary matrix format, representing the presence or absence of economic activities
in municipalities. We approach the problem through the lens of matrix factorization,
treating the reconstruction of the municipality-activity matrix as an optimization
problem where latent factors correspond to underlying economic capabilities. Em-
ploying a mask-and-predict methodology that systematically hide portions of the
matrix to evaluate reconstruction accuracy, we determined that five capabilities con-
stitute an excellent candidate in order to balance reconstruction precision against
model parsimony. This dimensionality provides reconstruction accuracies already
exceeding eighty percent for both the zeros and ones in the original binary matrix,
demonstrating the method’s robustness in capturing the underlying economic struc-
ture. The analysis reveals that the five identified degrees of freedom exhibit strong
correlations with empirically observable economic-geographic properties of Italian
municipalities, suggesting that our latent factors capture meaningful economic di-
mensions. Incorporating the fitness-complexity metrics into our model served dual
purposes: consolidating the reliability of the Fitness-Complexity classification, which
proved consistent with our analysis and revealing that the structural skeleton, intro-
duced by the Fitness-Complexity algorithm, remains visible even when additional
degrees of freedom are introduced. Specifically, reconstructions with more than one
capability maintain a fundamental structure reminiscent of the Fitness-Complexity
framework, suggesting that the approach captures essential features of economic
organization that persist across different levels of dimensional reduction. Through
appropriate null models, we demonstrated that the municipality-activity matrix pos-
sesses a sub-structure beyond what is captured by the fitness-complexity algorithm
alone. This finding presents new challenges and opportunities for developing algo-
rithms capable of revealing these deeper structural patterns. This thesis contributes
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to the economic complexity literature by providing the first systematic attempt at
capabilities inference from empirical data, trying to bridge the gap between theo-
retical frameworks and observable economic patterns.



Chapter 1

The Economic Complexity Framework

1.1 What is Economic Complexity

Economic Complexity constitutes a theoretical framework that applies the meth-
ods and mathematical tools of complex systems physics to the analysis of economic
phenomena. This approach emerged as a fundamental departure from classical eco-
nomic modeling, emphasizing that economic behavior emerges from the interactions
between multiple heterogeneous agents, such as countries [19, 42], firms [27], prod-
ucts, and/or technologies [11], rather than from aggregated representative agents
operating in equilibrium conditions. The framework fundamentally recognizes that
these interactions generate non-linear dynamics, path dependencies, and emergent
properties that cannot be understood through reductionist approaches.

The distinction from classical economics manifests in several critical dimen-
sions. Traditional economic theory, rooted in neoclassical assumptions, relies heav-
ily on equilibrium analysis, rational expectations, and representative agent models
that assume homogeneity across economic actors. These models typically employ
linear relationships and analytical solutions that, while mathematically tractable,
fail to capture the heterogeneity and adaptive behavior observed in real economic
systems. Classical approaches, exemplified by Solow growth models [37] and their
derivatives, attribute economic development primarily to factor accumulation (i.e.
physical capital, human capital, exogenous technological progress etc...) treating
productivity as a residual unexplained by inputs. This framework struggles to ex-
plain persistent income disparities between nations with similar factor endowments
and fails to account for the sudden economic transformations observed in countries
like South Korea and Singapore.

Economic Complexity addresses these limitations by reframing economic sys-
tems as evolving networks where capabilities, seen as non-tradable productive knowl-
edge embedded in organizations, institutions, and social structures, determine the
feasible production space. This perspective shifts focus from aggregate quantities to
the structural properties of economic networks, recognizing that, for example, the
same amount of capital or labor can produce vastly different outcomes depending on
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CHAPTER 1. THE ECONOMIC COMPLEXITY FRAMEWORK 2

how these factors combine with existing capabilities. The mathematical formalism
draws from statistical physics, network theory, and non-linear dynamics, employ-
ing tools such as bipartite network analysis, fixed-point algorithms, and entropy
maximization that reveal patterns invisible to traditional economic analysis.

1.1.1 Evolution of Theoretical Framework and Algorithms

(ECI, EFC)

The foundational problem addressed by Economic Complexity concerned the quan-
tification of national competitiveness through the country-product bipartite net-
work, where edges represent revealed comparative advantages in international trade.
Hidalgo and Hausmann’s 2009 seminal contribution [19] introduced the Economic
Complexity Index (ECI) through their Method of Reflections, an iterative linear
algorithm designed to extract information about the productive capabilities of coun-
tries from their export baskets. The motivation arose from recognizing that product
sophistication and country development exhibit mutual dependencies: developed
countries produce complex products, while complex products are typically produced
only by developed countries.

Figure 1.1: A schematic representation of the hidden capabilities layer. The real
observable data is the contraction of the tripartite network Countries-Capabilities-
Products: each country is connected to all and only those products for which owns
all the necessary capabilities.[12]

The ECI algorithm operates on the binary country-product matrix Mcp (1.1),
where Mcp = 1 indicates that country c has a revealed comparative advantage [3]
(RCA > 1) in product p. The method initializes with two quantities: diversifica-
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tion kc,0 =
∑

pMcp (the number of products a country exports competitively) and
ubiquity kp,0 =

∑
cMcp (the number of countries exporting a product). Through

iterative refinement:
kc,N+1 =

1

kc,0

∑
p

Mcpkp,N (1.1)

kp,N+1 =
1

kp,0

∑
c

Mcpkc,N (1.2)

The algorithm appears conceptually straightforward: a country’s complexity
increases with the complexity of its exports, while a product’s complexity reflects
the average sophistication of its producers. However, this linear formulation harbors
some mathematical and economic pathologies that limit its effectiveness.

The mathematical structure forces convergence to the eigenvectors of the ma-
trix H̃ = CMPMT , where C and P are diagonal normalization matrices. By the
Perron-Frobenius theorem, this Markov transition matrix drives the iteration expo-
nentially toward a trivial fixed point where all countries converge to identical com-
plexity values. Hidalgo and Hausmann circumvented this degeneracy by extracting
rankings from the second eigenvector after mean subtraction, but this mathematical
manipulation lacks economic justification.

Also the economic interpretation present some inconsistency. The arithmetic
averaging inherent in the linear algorithm treats a country producing both sophis-
ticated electronics and basic commodities identically to one specializing exclusively
in mid-complexity manufactures. This equivalence erases crucial qualitative distinc-
tions, indeed the diversified economy demonstrably possesses advanced capabilities
absent in the specialized mid-complexity producer. The algorithm’s linear structure
cannot distinguish between a country’s most sophisticated achievements and its av-
erage production, leading to systematic underestimation of diversified economies
like China and the United States while inflating rankings of narrowly specialized
nations.

Recognizing these limitations, Tacchella et al. in 2012 [42] introduced the
Economic Fitness and Complexity (EFC) algorithm, implementing a non-linear ap-
proach instead of the previous linear one. The key conceptual innovation is that a
product’s complexity should be bounded by the least capable producer, not averaged
across all producers. If both Japan and a developing nation export basic electronics,
the product’s accessibility to low-capability producers reveals its limited complexity
requirements.

The EFC algorithm employs coupled non-linear maps with harmonic mean
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aggregation:
F̃ (n)
c =

∑
p

McpQ
(n−1)
p (1.3)

Q̃(n)
p =

1∑
cMcp/F

(n−1)
c

(1.4)

followed by normalization at each iteration:

F (n)
c =

F̃
(n)
c

⟨F̃ (n)
c ⟩c

(1.5)

Q(n)
p =

Q̃
(n)
p

⟨Q̃(n)
p ⟩p

(1.6)

The Fitness Fc aggregates a country’s productive capabilities through linear
summation weighted by product complexities, explicitly rewarding diversification.
Conversely, the complexity Qp employs harmonic averaging, ensuring that any low-
fitness producer constrains the product’s measured complexity. This asymmetry
captures the fundamental economic insight that production requires all necessary
capabilities, so their presence enables production while any absence prevents it.

The non-linear structure of the EFC generates Pareto-distributed fitness and
complexity values, matching empirical observations of heavy-tailed economic dis-
tributions. In this case few countries possess disproportionate capabilities and few
products require rare capability combinations. This mathematical property arises
naturally from the multiplicative dynamics of capability accumulation, in which
existing capabilities facilitate the acquisition of new ones through preferential at-
tachment mechanisms. Indeed the addition of a new capability has a greater impact
on export diversification when the country already possesses a larger pool of capa-
bilities.

The predictive power of EFC has been extensively validated, particularly by
Cristelli et al. [13, 14] who demonstrated its superiority in forecasting GDP growth
compared to traditional economic indicators. Countries with high fitness compare
to GDP per capita consistently experience subsequent growth as they monetize la-
tent productive potential. The framework reveals regime-dependent predictability:
high-fitness countries with moderate income display deterministic laminar growth
trajectories driven by their diverse capability portfolios, while low-fitness countries
experience chaotic dynamics dominated by exogenous shocks rather than endoge-
nous development.

The applications of EFC have expanded across multiple domains and scales.
At the scientific production level, Cimini et al. [11] applied the framework to mea-
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Figure 1.2: a) A finer coarse graining of the dynamics highlights two regimes for
the dynamics of the evolution of countries in the fitness-income plane b) continuous
interpolation of the coarse grained dynamics to illustrate the two regimes of pre-
dictability [13]

sure national research capabilities, revealing that scientific domains accessible to
countries with weak research infrastructure signal modest knowledge requirements,
while domains monopolized by scientifically advanced nations require extensive pre-
requisite capabilities. The framework has been applied to patent data for inno-
vation analysis [4], urban economic dynamics [38, 40], and regional development
strategies. In particular, recent work by Straccamore et al. [39] extended the anal-
ysis to metropolitan scales, discovering scale-dependent relationships between spe-
cialization and diversification: cities benefit from technological coherence through
knowledge spillovers, while nations require broad diversification for resilience and
combinatorial innovation.

Particularly relevant for the present thesis, the EFC framework has been suc-
cessfully applied at increasingly fine geographical resolutions. The Enrico Fermi
Research Center has developed integrated databases enabling analysis at regional
and municipal levels, utilizing detailed economic activity classifications to uncover
local productive structures. The application to Italian municipalities using ATECO
codes, as undertaken in this thesis, represents a natural extension of this multi-
scale approach, seeking to identify the latent capabilities underlying local economic
development patterns.

Recent methodological developments have further refined the theoretical foun-
dations and practical applications of the Fitness-Complexity framework. Servedio et
al.[36] addressed numerical stability issues in the original algorithm by introducing
a modified formulation with inhomogeneous terms. Their approach ensures con-
vergence even for countries with extremely low export volumes, which previously
tended toward zero fitness in the original metric. The new formulation also pro-
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vides an approximate analytical solution, enhancing interpretability and enabling
parametric sensitivity analysis. Moreover the robustness of the framework to data
quality issues has been systematically analyzed by Battiston et al. [5], who demon-
strated that the Fitness-Complexity algorithm exhibits remarkable robustness to
random noise, maintaining high correlation with noise-free rankings even when sub-
stantial proportions of matrix entries are randomly flipped. This robustness stems
from the algorithm’s exploitation of global network structure rather than relying on
individual matrix elements.

The integration of multiple data sources represents another significant ad-
vance in the field. Recent efforts have focused on constructing integrated databases
combining trade, patent, scientific publication, and firm-level data. The integrated
database developed at the Enrico Fermi Research Center provides a unified frame-
work for Economic Complexity analysis across multiple types of economic activities
[29]. This enables researchers to study co-evolution of capabilities across domains.
For example, how scientific capabilities in a country relate to its technological in-
novations and subsequent product exports (Pugliese et al.[31]). This systemic view
highlights the interconnectedness of different aspects of the knowledge economy.

The proliferation of Economic Complexity methods has prompted comparative
studies assessing their relative merits. Tacchella et al.[44] examined relatedness mea-
surement in the era of machine learning, comparing traditional co-occurrence-based
proximity measures with model-based approaches using neural embeddings and col-
laborative filtering. Machine learning techniques offer the potential to uncover latent
structure in high-dimensional capability spaces that may not be apparent through
simple proximity calculations. However, these methods often sacrifice interpretabil-
ity for predictive performance, making it difficult to extract actionable insights for
policy. The trade-off between interpretability and predictive power remains an ac-
tive area of methodological research, with recent work exploring hybrid approaches
that combine the strengths of both paradigms[41, 2, 17].

1.1.2 EFC: Mathematical Foundation Analysis

The mathematical foundations of the Fitness-Complexity algorithm (EFC) have un-
dergone rigorous analysis, revealing deep connections to established mathematical
frameworks and resolving questions about convergence and stability. Pugliese et
al.[32] provided the first comprehensive analysis of convergence properties, demon-
strating that the adjacency matrix structure determines which countries and prod-
ucts converge to non-zero fitness and complexity values. Their analysis revealed that
convergence requires the reordered matrix’s diagonal to remain within the occupied
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region showing that matrices violating this condition produce degenerate solutions
where most entities collapse to zero values.

A critical advancement came from Servedio et al.[36], who introduced an inho-
mogeneous non-linear metric addressing the original algorithm’s stability limitations.
Their modification adds small positive parameters to the iterative equations:

F̃ (n)
c =

∑
p

McpQ
(n−1)
p + φc (1.7)

Q̃(n)
p =

1∑
cMcp/F

(n−1)
c + πp

(1.8)

After appropriate rescaling, these parameters can be set to zero, yielding a
parameter-free metric that maintains the original algorithm’s economic interpreta-
tion while guaranteeing convergence and stability even for challenging matrix struc-
tures. This formulation enables an approximate analytical solution at first order:

Fc ≈ Dc −
∑
c′

Kcc′

Dc′
(1.9)

where Dc =
∑

pMcp represents diversification and Kc1c2 =
∑

pMc1pMc2p is the
co-production matrix. This analytical form reveals that fitness primarily derives
from diversification, with a correction term (inefficiency) that penalizes countries
for producing products also made by low-diversification economies. The concept
of net-efficiency, measuring deviation from the average inefficiency-diversification
relationship, quantifies how effectively countries target high-complexity products
rather than indiscriminately expanding export baskets.

However, the most profound theoretical breakthrough emerged from Mazz-
illi et al. (2024)[26], who demonstrated the mathematical equivalence between the
Fitness-Complexity algorithm and the Sinkhorn-Knopp matrix scaling algorithm.
This connection transforms EFC from an empirically motivated metric to a princi-
pled optimization problem minimizing a logarithmic barrier function:

g(x, y) =
∑
ij

xiAijyj −
n∑

i=1

ri ln xi −
m∑
j=1

cj ln yj (1.10)

The fitness and complexity emerge as logarithmic potentials in this optimiza-
tion framework, with their ratio Qp/Fc that can be seen as the energy cost for
country c to produce product p. This interpretation explains the triangular nested
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structure observed in reordered country-product matrices: high-complexity products
become energetically unfeasible for low-fitness countries, creating a natural barrier
in the capability space.

The Sinkhorn-Knopp connection links EFC to optimal transport theory, where
similar algorithms solve entropy-regularized Wasserstein distance problems. This
mathematical unification reveals that EFC implicitly solves a resource allocation
problem, finding the most efficient distribution of productive capabilities across
countries and products subject to observed trade constraints. The scale invariance
inherent in the Sinkhorn formulation explains why logarithmic transformations are
required for forecasting applications and provides theoretical justification for com-
paring datasets across different years or aggregation levels.

In the end, recent extensions by Servedio et al. (2025)[35] have generalized
the fitness concept beyond bipartite networks to arbitrary graph structures, intro-
ducing fitness centrality as a novel network measure. This generalization reveals
that high fitness centrality identifies nodes crucial for network connectivity (those
whose removal would isolate many other nodes). Applied to economic networks, this
can be seen as a way to identify systemically important countries whose productive
capabilities enable global value chains.

1.1.3 Capabilities: Underlying Structure and Relatedness

The capabilities framework provides the theoretical foundation for interpreting the
mathematical structures revealed by complexity algorithms. This framework theo-
rizes that economic production emerges from combinations of non-tradable endow-
ments (capabilities) representing embedded knowledge within productive ecosystems
(see Fig. 1.1). These capabilities can extend beyond traditional production factors
to include tacit organizational knowledge, institutional quality that facilitates com-
plex transactions, physical and digital infrastructure, regulatory frameworks, and
social capital that facilitates collaboration [19].

Classically, mathematical formalization represents this through binary indica-
tors where Sck denotes whether the country c possesses the capability k, and Tkp

indicates whether the capability k is required for the product p. The observed
country-product matrix emerges through:

Mcp =
∏
k

[1− Tkp(1− Sck)] (1.11)

This multiplicative structure embodies a fundamental principle: production
requires all necessary capabilities to be present simultaneously. The absence of a sin-
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gle critical capability prevents production regardless of other capability abundances,
generating the nested triangular patterns observed empirically in country-product
matrices where countries and products naturally order by capability endowments
and requirements respectively.

Capabilities are expected to exhibit strong path dependencies and contex-
tual embeddedness that distinguish them from transferable production factors. The
pharmaceutical industry exemplifies this concept, as innovation tends to concentrate
in specific locations not because of capital abundance, but due to the co-location
of complementary capabilities such as research infrastructure, regulatory expertise,
intellectual property systems, academic linkages, and specialized venture capital
ecosystems.

While the Fitness–Complexity framework quantifies countries’ capability stocks
[42], understanding development dynamics requires examining the geometry of the
capability space. Hidalgo et al. [20] formalized this through the Product Space,
where proximity between products reflects the similarity of their underlying capa-
bility requirements. The proximity metric ϕpp′ is defined as:

ϕpp′ = min (P (RCAp > 1 | RCAp′ > 1), P (RCAp′ > 1 | RCAp > 1)) (1.12)

Operationally, it is computed as:

ϕpp′ =

∑
cMcpMcp′

max(kp,0, kp′,0)
(1.13)

where kp,0 =
∑

cMcp denotes the ubiquity of product p.
The Product Space exhibits a core–periphery topology: sophisticated products

form a densely interconnected core, while primary goods occupy isolated peripheral
positions, thereby constraining countries’ diversification paths. Relatedness captures
the empirical regularity that developing a new comparative advantage is more likely
when it is related to existing productive activities, and is quantified through the
Relatedness density :

ωcp =

∑
p′ Mcp′ϕpp′∑

p′ ϕpp′
(1.14)

Empirical validation demonstrates entry probability into products at prox-
imity 0.8 reaches approximately 15 percent versus near-zero at proximity 0.1 [20].
This principle extends across scales: regional industrial dynamics [28], urban tech-
nological development [22], and firm-level diversification [27]. Alternative proximity
measures include the Taxonomy Network [46] and various skill-relatedness metrics.
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The Fitness-Complexity and relatedness frameworks provide complementary
perspectives: fitness quantifies capability accumulation while relatedness reveals
acquisition pathways. High-fitness countries occupy dense Product Space regions
enabling continuous upgrading. Low-fitness countries face sparse peripheries where
sophisticated products require prohibitive capability distances. Recent advances
combine both frameworks to identify optimal diversification targets maximizing fea-
sibility through high relatedness and future opportunities through complexity and
centrality [1]. The present thesis extends this framework through matrix factor-
ization techniques applied to Italian municipal ATECO data, providing the first
systematic attempt at capabilities inference from empirical data, trying to bridge
the gap between theoretical frameworks and observable economic patterns.

1.2 Policy Implications and Applications

The Economic Complexity framework has gained traction among policymaking in-
stitutions as a practical tool for informing industrial policy, development strategy,
and growth forecasting. This adoption reflects a shift in how governments and in-
ternational organizations approach economic development planning, moving from
traditional schemes to data-driven analysis of productive capabilities and their evo-
lution.

The framework’s appeal to policymakers stems from several methodological
advantages that address challenges in development economics. The metrics are com-
puted directly from observable data on trade flows, patent filings, or employment
patterns, eliminating the need for subjective assessments of technological sophisti-
cation or strategic importance. This empirical grounding provides a degree of objec-
tivity that has sometimes been lacking in traditional approaches to industrial policy,
where sector selection might reflect political considerations or simplified narratives
about technology rather than systematic analysis of productive capabilities.

Moreover the framework is inherently forward-looking because fitness captures
latent productive potential that can become an income growth with a temporal lag.
This predictive power enables proactive policy interventions designed to guide struc-
tural transformation rather than reactive responses to economic crises. Research has
demonstrated that productive structure serves as a robust predictor of medium and
long term growth trajectories, with prediction performance particularly strong for
countries exhibiting what has been termed "laminar" growth patterns characterized
by stable capability accumulation.

The granular nature of complexity analysis provides actionable guidance that
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generic development prescriptions cannot match. By operating at the product level
for trade analysis or the technology class level for patent analysis, the framework
enables identification of specific diversification opportunities tailored to each coun-
try’s existing capability base. Rather than recommending broad sectoral priorities
like "develop manufacturing" or "invest in technology," complexity-based analysis
can identify quite precisely which products or technologies are both feasible given
current capabilities and valuable for opening pathways to further sophisticated di-
versification. The framework measures capability breadth rather than focusing on
individual champion sectors, naturally encouraging policies that build systemic com-
petitive advantage across the productive structure. This systems perspective aligns
with modern understanding of economic development as an integrated process of
capability accumulation rather than isolated sectoral advances.

The distinction between predictable and unpredictable growth patterns has im-
portant policy implications. The Selective Predictability Scheme, developed through
World Bank research, classifies countries into those exhibiting laminar growth whose
future trajectories can be reliably forecast from productive structure, and those
showing more turbulent patterns where prediction becomes difficult. This classifi-
cation enables policymakers to tailor interventions based on the stability of their
development pathway, with countries in laminar regimes benefiting most from incre-
mental capability-building strategies while those in turbulent regimes may require
more fundamental structural reforms.

For countries trapped in middle-income stagnation, particularly those whose
resource wealth creates disincentives for diversification, the framework offers specific
strategic guidance. Rather than pursuing income growth solely through intensified
resource extraction, complexity analysis recommends prioritizing export diversifi-
cation toward products of moderate complexity that lie within reach of existing
capabilities. This strategy of "lateral escape" enables countries to build productive
capacities that lower barriers to subsequent industrialization, creating pathways
out of resource dependence even before reaching high income levels. The emphasis
on gradual capability accumulation through related diversification contrasts with
strategies that attempt to jump directly to highly sophisticated production without
intermediate steps.

Numerous institutions started to implement Economic Complexity in their
policies, an example is the World Bank which has broadly integrated Economic
Complexity metrics into its Country Economic Memoranda and competitiveness
assessments, using them to evaluate productive structures and design development
interventions. Also the European Commission has adopted relatedness and complex-
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ity analysis as analytical tools for evaluating regional innovation strategies within its
Smart Specialization framework [4]. Since the early 2010s, EU regional policy has
required member states to develop place-based innovation strategies that identify
priority areas for investment based on existing regional strengths. The empirical
application of complexity methods to European patent data has revealed substan-
tial heterogeneity in technological capabilities across regions and demonstrated that
successful diversification occurs predominantly into technologies related to existing
regional specializations. Research examining 285 NUTS-2 regions using data on 36
technology classes has shown that relatedness density significantly predicts techno-
logical entry, with a 10 percent increase in relatedness density raising entry probabil-
ity by approximately 23-26 percent [4]. However, evaluations of implemented Smart
Specialization strategies reveal a gap between theory and practice, with many regions
selecting priorities that neither build on related capabilities nor target appropriately
complex activities, suggesting room for improved analytical guidance. United Na-
tions agencies have embraced Product Space analysis as a framework for identifying
feasible diversification paths. UNCTAD has developed comprehensive catalogues
(UNCTAD "Catalogue of Diversification Opportunities 2022") presenting potential
new products for 233 economies based on analysis of their economic complexity
and position in the product space. These catalogues aggregate information on over
45,000 product lines differentiated by price ranges, providing developing countries
with data-driven guidance for export diversification strategies. UNCTAD’s method-
ology emphasizes products that are both technologically accessible given existing
productive capabilities and subject to favorable global demand conditions. For in-
stance, complexity analysis identified mechanical appliances, pharmaceutical prod-
ucts, and plastics as priority diversification opportunities for Angola, with plastics
being particularly appropriate given the country’s position as Africa’s second-largest
oil producer.



Chapter 2

Data and Methods

2.1 Data

The empirical analysis is based on firm-level information drawn from the 2021 Sta-
tistical Register of Active Enterprises (ASIA), maintained by the Italian National
Institute of Statistics (ISTAT). The ASIA archive provides comprehensive coverage
of the productive system and, for the reference year, includes records for 4,929,379
local units belonging to non-agricultural firms. Each local unit corresponds to a
geographically identifiable component of an enterprise, such as a workshop, factory,
warehouse, office, mine, or depot and contains detailed attributes including its ad-
dress, employment size, and activity sector. Sectors are classified according to the
five-digit ATECO system [21], which is fully aligned with the first four digits of the
European NACE Rev. 2 taxonomy [16].

Before being used in our analysis, the ASIA records underwent geocoding
and harmonization carried out by the Study Center of the Italian Chambers of
Commerce “Guglielmo Tagliacarne”. This procedure ensured spatial consistency
across municipalities but resulted in a data reduction of approximately 3%, primarily
due to incomplete or non-standardized addresses.

Construction of the Municipality–ATECO Matrix

The central component of the empirical framework is the construction of the bi-
nary bipartite matrix Mma, which encodes the presence or absence of statistically
significant economic activities a within each municipality m. Starting from the
ASIA microdata, we aggregated all local units by municipality and ATECO code,
obtaining raw counts of activity occurrences.

Because municipalities differ in population, economic scale, and firm density,
raw frequencies alone do not provide a meaningful indicator of specialization. To
statistically validate each municipality–activity pair, we compared the empirical
counts with an ensemble of 1,000 randomized bipartite networks generated using
the Bipartite Configuration Model (BiCM) [34, 33]. The BiCM preserves the degree
sequences of both municipalities and activities, making it an appropriate null model

13
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for evaluating the over- or under-representation of specific ATECO codes.
This procedure produced a matrix of p-values,

P = {Pma},

computed using the NEMtropy Python package (github.com/nicoloval/NEMtropy)
[45]. Each entry Pma quantifies the probability that the observed count for munici-
pality m and activity a could arise under the null hypothesis defined by the BiCM.

The binary matrix Mma was then obtained by applying a significance threshold
of 0.05:

Mma =

1, if Pma ≤ 0.05,

0, if Pma > 0.05.

The resulting bipartite matrix connects 7,841 Italian municipalities to 814
ATECO codes, and constitutes the foundational dataset for all subsequent analyses
of productive capabilities and structural patterns.

2.2 Methods

Matrix Factorization Approach to Capability Inference

Within the capability framework [12], the observed binary country-product matrix
can be modeled as the product of a latent country-capabilities and a capabilities-
products binary matrices, followed by a nonlinear binarization:

Mcp =
∏
k

[ 1− Tkp (1− Sck) ] , (2.1)

where Sck ∈ {0, 1} indicates whether country (or municipality) c possesses capability
k, and Tkp ∈ {0, 1} indicates whether capability k is required to produce product p.
A product can therefore be exported only if all requirements (required capabilities)
are present, giving rise to a strongly nonlinear mapping between latent capabilities
and observed diversification.

Our aim is to invert this process, starting from the observed binary Municipality–
ATECO matrix M (Figure 2.1) and inferring the two latent matrices S and T . Be-
cause the logical binarization is non-invertible since it provides no information about
which capabilities are missing when an entry is zero. Direct inversion is impossible.

To proceed, we relax the binary assumption and recast the problem within
a matrix factorization framework. Specifically, we seek two nonnegative matrices,

github.com/nicoloval/NEMtropy
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Figure 2.1: Municipality-ATECO incidence matrix M . Rows represent municipali-
ties ordered by Fitness, columns correspond to ATECO production classes ordered
by Complexity

S ∈ RNc×k
+ and T ∈ Rk×Np

+ , such that

M ≈ θ(S × T ), (2.2)

where θ(·) is a thresholding function applied for evaluation purposes, and k repre-
sents the number of latent capabilities. The central hyperparameter of the model.

From matrix factorization theory [24, 18], exact reconstruction of a matrix
requires that the latent dimensionality equals its rank. In our case, the Municipality–
ATECO matrix is nearly full rank, implying that about k=805 components would be
needed for exact reconstruction of 814 products. Such a solution is both theoretically
implausible and practically meaningless in a capability framework, where products
should represent combinations of a limited number of fundamental building blocks.

Maximizing in-sample reconstruction accuracy alone does not solve this issue:
the reconstruction precision increases monotonically with k because model expres-
sivity grows with dimensionality. Without additional validation, such an approach
would always favor the largest possible k, resulting in an overfitted, non-interpretable
decomposition.

To identify a meaningful latent dimensionality, we adopted a mask-and-predict
strategy inspired by validation methods in matrix completion and recommender
systems [23, 7]. In our implementation, the masking procedure was performed man-
ually: a random subset of the existing links (entries equal to one) in M was set to
zero, producing a masked matrix Mmask. The matrix factorization was then per-
formed on Mmask for a range of k values, while the quality of reconstruction was
evaluated exclusively on the masked entries by comparing the binarized approxima-
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Figure 2.2: Visual representation of the Mask-and-Predict process

tion θ(SkTk) with the true matrix M .
For the precision evaluation we used the F1-score, which is defined as the

harmonic mean of precision and recall, offering a balanced indicator of classification
performance when both false positives and false negatives matter. It is especially
informative in settings with class imbalance, where accuracy becomes unreliable [30].

F1 = 2 · precision · recall
precision + recall

. (2.3)

The resulting precision displays a clear maximum as a function of k, reflecting
the usual bias–variance trade-off: for small k the model underfits, while for large k

it overfits to spurious patterns induced by masking. The optimal k thus corresponds
to the point of maximum predictive generalization.

We evaluated several matrix factorization methods, including truncated Sin-
gular Value Decomposition (SVD), Boolean Matrix Factorization (BMF), and Non-
Negative Matrix Factorization (NMF) [15]. BMF proved unsuitable for large, sparse
matrices, and SVD produces components with mixed signs, which are not inter-
pretable within a capability framework that assumes non-negativity. NMF, by con-
trast, respect both constraints, yielding additive and interpretable components con-
sistent with the notion of capabilities as cumulative, non-subtractable resources.
Consequently, we selected NMF as our core algorithm.
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We also experimented with hybrid methods, such as combining NMF with
XGBoost [9] on the residual matrix, but these more complex approaches offered no
improvement over the direct application of NMF.

Non-Negative Matrix Factorization Implementation

The matrix factorization step was performed using the NMF class from the scikit-learn
Python library (version 1.5). In this implementation, we approximate the masked
data matrix Mmask by a low-rank product of two nonnegative matrices,

Mmask ≈ S T,

with S ∈ RN×k
+ and T ∈ Rk×M

+ . The parameters S and T are estimated by mini-
mizing the classical Frobenius-norm objective introduced in [24]:

min
S≥0, T≥0

∥∥Mmask − S T
∥∥2

F
. (2.4)

Here, Mmask denotes the manually masked matrix used for training, i.e. the entries
reserved for validation are removed from the loss and treated as missing data.

In our experiments we rely on the coordinate-descent solver implemented in
scikit-learn (solver=’cd’), which is based on a Fast Hierarchical Alternating
Least Squares (Fast HALS) scheme.1 Rather than taking explicit gradient steps,
Fast HALS performs an alternating minimization of (2.4) over one coordinate (or
one component) at a time under nonnegativity constraints.

Concretely, the algorithm repeatedly cycles over the latent components r =

1, . . . , k. For a fixed component r, it updates:

• the r-th column of S (denoted S:,r) by solving a one-dimensional nonnega-
tive least-squares subproblem for each row, holding all other columns and the
matrix T fixed;

• the r-th row of T (denoted Tr,:) by an analogous nonnegative least-squares
update.

Each such update admits a closed-form expression that can be interpreted as taking
an exact minimization step along a single coordinate direction, followed by projection
onto R+. In this sense, coordinate descent can be seen as a gradient-based descent
method where the step sizes along each coordinate are chosen so as to minimize

1See the scikit-learn documentation for non_negative_factorization and NMF, where the
’cd’ solver is described as a coordinate-descent method using Fast HALS.
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the objective exactly in that direction, rather than by a generic line search. Fast
HALS algorithms of this kind are known to exhibit strong convergence properties and
favorable computational efficiency for medium- to large-scale NMF problems [25, 10].

In our implementation, we use the default settings for the Frobenius-loss objec-
tive (beta_loss=’frobenius’) in combination with the coordinate-descent solver.
The optimization iterates until one of two stopping criteria is satisfied: (i) the rela-
tive decrease in the objective between successive iterations falls below the tolerance
tol=1e-4, or (ii) the maximum number of iterations max_iter=1000 is reached.

Because the objective (2.4) is jointly nonconvex in (S, T ), the optimization is
sensitive to initialization. For all experiments, we initialized the factor matrices with
random nonnegative entries (init=’random’). While deterministic schemes such as
NNDSVD [6] can accelerate convergence by providing a good starting point close to
a local minimum, random initialization allows the algorithm to explore a broader
region of the nonconvex landscape. In the context of our application, we found that
this exploration was beneficial for identifying stable, low-dimensional structures that
are robust across different random seeds.

The masking procedure was applied manually prior to factorization: entries
selected for evaluation were removed from the loss and treated as missing, yielding
the training matrix Mmask. The NMF optimization thus minimizes (2.4) on the
observed (unmasked) entries only. After convergence, the reconstructed matrix

M̂ = S T

is used to impute the masked entries, and performance is evaluated exclusively on
this held-out subset.

For each value of the latent dimensionality k, we select a binarization threshold
τk on M̂ by maximizing the F1-score on the test mask. The optimal dimensionality
k⋆ and its associated threshold τk⋆ are then chosen as the configuration achieving
the highest mask-and-predict F1-score. This protocol exploits the non-monotonic
dependence of the validation F1 on k, in contrast to standard reconstruction metrics
such as the unmasked F1-score or RMSE, which typically increase/decrease mono-
tonically with increasing rank and are therefore not informative for model selection.

To verify that the mask-and-predict protocol reliably identifies the intrinsic
latent dimensionality, we also applied it to synthetic “toy” matrices. These were
generated by first sampling two random nonnegative continuous matrices Stoy ∈
RN×k

+ and Ttoy ∈ Rk×M
+ , computing their product X = StoyTtoy, and then binarizing

X elementwise. The same masking and NMF procedure was then applied to these
synthetic matrices.
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Across a range of values of k, the maximum of the validation F1 curve con-
sistently coincided with the true generative rank used to construct the data. This
confirms that the combination of (i) gradient-based iterative descent (via coordinate
descent / Fast HALS) on the Frobenius objective and (ii) the mask-and-predict se-
lection criterion is capable of recovering the underlying latent dimensionality even
after a nonlinear binarization step.

Finally, the nonnegativity constraints on both S and T imply that the re-
construction S T is a purely additive superposition of latent components. Each
column of S can thus be interpreted as the intensity with which a municipality ex-
presses a given latent “capability”, while each row of T describes the association of
that capability with specific ATECO sectors. The positivity constraint ensures that
capabilities only contribute positively to the reconstruction and never cancel one
another, which is fully consistent with the conceptual framework of capabilities in
economic complexity. This parts-based, additive representation is precisely the type
of interpretable structure that NMF was originally designed to capture [24].



Chapter 3

Inference of the Capabilities Layer

Optimal Dimensionality and Statistical Relevance

To infer the underlying structure of the Municipalities-ATECO bipartite system,
we begin by determining its intrinsic latent dimensionality. We adopt the mask-
and-predict strategy described in the previous chapter, whereby a subset of links
is randomly removed from the empirical matrix and subsequently reconstructed
through Non-negative Matrix Factorization (NMF).

Figure 3.1 illustrates the model’s reconstruction performance as a function of
the latent dimensionality k. The F1-score computed on masked entries exhibits a
clear, non-monotonic maximum at k = 5. At this point, the model successfully
reconstructs approximately 80% of the masked positive entries, indicating that five
latent factors capture the majority of the informational content embedded in the
empirical matrix.

This behaviour suggests the existence of five meaningful, interpretable capabil-
ity dimensions governing the productive landscape of Italian municipalities. Increas-
ing k beyond this point leads only to marginal increases in reconstruction capacity
on the unmasked data as shown by the pannels (c) and (d) in Fig.[3.1.

The comparison with the three null models (BICM [34, 33], Curveball [8], and
a purely random matrix preserving only overall density) corroborates this finding.
For every value of k, the reconstruction accuracy achieved on the empirical data is
consistently and substantially higher than that obtained under any of the null base-
lines. This demonstrates that the Italian Municipalities–ATECO matrix exhibits
non-trivial, structured regularities that are effectively captured by a latent factor
representation. This point is further underscored by the behaviour of the null mod-
els in panel (b). None of their curves displays a meaningful maximum: BICM and
Curveball, which preserve only degree sequences, retain essentially a one-dimensional
latent structure (Fitness and Complexity), and therefore reach their highest perfor-
mance at k = 1. The fully random benchmark, by construction, contains no latent
structure whatsoever, and accordingly shows no peak across values of k. Traditional
performance indicators such as the unmasked F1-score or the RMSE, vary monoton-

20
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ically with k. As a consequence, they do not provide a reliable criterion for selecting
an appropriate dimensionality of the latent space.

Figure 3.1: Matrix reconstruction performance as a function of latent dimensionality
k. Top-left panel shows the F1-score achieved on the masked entries from the original
matrix, demonstrating optimal performance at k = 5. Top-right panel compares the
reconstruction against null models (BICM, Curveball, Random), showing that the
original matrix present a more complex structure of the null models’ ones. Bottom-
left panel presents a balanced validation where equal numbers of ones and zeros are
taken to perform the F1 evaluation (we do that to counter the matrix sparsity).
Bottom-right panel displays the RMSE for the reconstruction

Analysis of the Optimal Dimensionality and Inter-

pretation of the Latent Capabilities

Having established k = 5 as the optimal dimensionality, we conduct most of the
analyses within this five-dimensional latent space. The NMF model achieves an
average F1-score of

0.8169± 0.0005,

as estimated through bootstrapping, meaning that it correctly reconstructs more
than 80% of links and zeros in the empirical matrix.

The reconstruction error is not evenly distributed across the matrix. Figure 3.2
compares the original empirical matrix, ordered by municipal Fitness and sectoral
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Complexity, with the residual matrix R = M − Mk=5. The resulting error map
reveals systematic and spatially localized regions of underestimation and overesti-
mation.

(a) Binned original matrix (FC ordered) (b) Binned error matrix (FC ordered)

Figure 3.2: Comparison between original and error matrices after binning (bin num-
ber: 80×22). The left panel shows the nested structure of the original matrix ordered
by fitness (vertical axis) and complexity (horizontal axis). The right panel displays
the reconstruction error (R = M −Mk=5), with red regions indicating underestima-
tion and blue regions indicating overestimation.

These coherent error clusters indicate that the empirical matrix displays non-
trivial mesoscale structures. Certain groups of municipalities share patterns of spe-
cialization that the factorization captures only partially.

Alignment with the Fitness–Complexity Structure A remarkable feature
emerges when the actions of the five latent capabilities are visualized on the matrix
reordered by Economic Fitness and Complexity (Figure 3.3). Despite NMF having
no access to the ordering used for visualization, each latent component activates
primarily within a compact and contiguous region of the reordered matrix.

This spontaneous alignment with the Fitness–Complexity (FC) structure is
conceptually striking. It indicates that the latent geometry extracted by the NMF
decomposition mirrors the same productive hierarchy that the FC algorithm cap-
tures through a completely different, non-linear iterative process. While FC is rooted
in mutually reinforcing notions of economic diversification and product ubiquity,
NMF reconstructs the matrix by identifying additive, non-negative building blocks.

This observation is particularly remarkable because the NMF reconstruction
is, by design, independent of any prior ordering of rows or columns. The algorithm
has no knowledge of the EFC-based sorting applied for visualization purposes. The
spontaneous emergence of such localized patterns therefore implies that the optimal
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(a) (b) (c)

(d) (e)

Figure 3.3: Actions of the five latent capabilities (Simple mean binning).

decomposition identified by NMF naturally aligns with an underlying structure of
the same type as that revealed by the FC framework. In other words, the EFC or-
dering captures a structural backbone of the matrix, one that is also independently
recognized by an unsupervised factorization algorithm driven purely by reconstruc-
tion efficiency. This correspondence strengthens the interpretation of the EFC ap-
proach as a meaningful representation of the productive landscape, grounded not
only in network theory but also in latent-space geometry. This drove us to try to see
if the five latent components were effectively linked to relevant economic features.

Capability "City"

The first latent capability, ordered according to its magnitude in the municipal-
ity of Rome, displays a spatial distribution strongly concentrated in Italy’s major
urban centers (Figure 3.4). Municipalities with the highest values (Figure 3.5) in-
clude Rome, Milan, Turin, Bologna, Florence, and several regional capitals. These
are high-population hubs characterized by dense economic, institutional, and infras-
tructural environments.

The ATECO sectors most strongly associated with this capability (Figure 3.6)
provide further insight. They include highly specialized services such as financial
consulting, legal and administrative advisory services, and interurban passenger
transport. These sectors typically require substantial economies of scale, advanced
infrastructure, and access to large pools of specialized human capital.
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Figure 3.4

Figure 3.5: Top twenty Municipality with the highest value of capability "City"
associated
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Figure 3.6: Top twenty ATECO with the highest value of capability "City" associ-
ated

This capability therefore seems to reflect the economic functions characteristic
of a developed urban center. It encapsulates the concentration of high-level services,
professional activities, and advanced administrative functions that distinguish cities
from smaller municipalities. The relatively strong Spearman correlation with mu-
nicipal Fitness (0.62, p < 0.01) supports this interpretation: both quantities capture
the presence of diversified, high-complexity capabilities typical of economically ad-
vanced locations.

Interestingly, this capability stands apart from the others: while the remaining
four (Industry, Trade, Tourism, Basic Needs) tend to co-occur cumulatively across
municipalities, the "City" capability has predominantly negative correlations with
them. This suggests that once a municipality has achieved a certain threshold of
complexity and size, the presence of the "City" capability becomes a defining fea-
ture by itself, with other capabilities contributing only marginally to differentiation
among large urban centers.

Capability "Industry"

The second capability exhibits a spatial pattern characteristic of Italy’s major manu-
facturing districts, particularly within the Po Valley and the industrial areas around
Turin (Figure 3.7). Unlike the “City” capability, this dimension tends to peak not
in the metropolitan cores themselves, but rather in the productive municipalities
surrounding them.

This pattern is consistent with Italy’s historical industrial geography, where
manufacturing activities as mechanical engineering, automotive supply chains, pre-
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Figure 3.7

cision machinery, and various forms of specialized manufacturing, are concentrated
in medium-sized municipalities and industrial clusters rather than in large urban
centers. More often in the ring around them.

The municipalities with the highest values (Figure 3.8) correspond to well-
established industrial districts, and the top associated ATECO sectors (Figure 3.9)
include manufacturing, metalworking, industrial subcontracting, and related activ-
ities.

This capability seems to captures the specialization in manufacturing and in-
dustrial production. It reflects the presence of supply-chain dense ecosystems, a
strong technical workforce, and productive infrastructures typical of industrial dis-
tricts. Unlike the “City” capability, which is driven by advanced services, the “In-
dustry” capability seems to emerges from a fundamentally different economic logic:
production and manufacturing-oriented skills.

Capability "Trade"

The third capability is spatially more diffuse, with notable intensification in southern
Italy and coastal regions (Figure 3.10). Unlike the previous two capabilities, its
interpretation cannot be derived directly from geographic concentration alone.

A clearer picture emerges from examining the associated ATECO sectors (Fig-
ure 3.12). These include wholesale and retail trade mainly but also large commercial
distributors, supermarkets, discount stores, and related logistical services. The mu-
nicipalities with the highest scores (Figure 3.11) similarly tend to host significant
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Figure 3.8: Top twenty Municipality with the highest value of capability "Industry"
associated

Figure 3.9: Top twenty ATECO with the highest value of capability "Industry"
associated
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Figure 3.10

retail infrastructures.
This capability appears to capture the commercial and distribution-oriented

dimension of local economies. It does not require the dense specialization typical
of industrial districts nor the scale effects found in large cities; rather, it reflects
the presence of market-oriented activities that serve both local populations and
surrounding territories.

Its concentration along coastal areas and in the South may reflect two factors.
A reliance on commerce as a foundational economic activity in regions with fewer
high-complexity industries, and the role of touristic flows in sustaining large-scale
retail and wholesale infrastructures.

Capability "Turism"

The fourth capability presents one of the clearest spatial signatures among all compo-
nents (Figure 3.13). High values are concentrated in some of Italy’s most renowned
tourist destinations: the Dolomites, northern Sardinia, the Tuscan coast, and the
Adriatic Riviera. The municipalities with the highest values (Figure 3.14) include
iconic locations such as Livigno, Jesolo, Campo nell’Elba, and several mountain and
seaside resorts.

The associated ATECO sectors (Figure 3.15) consist almost entirely of hospitality-
related services: hotels, bed and breakfasts, mountain huts, tourism-related rentals,
and similar activities.

This capability therefore represents the touristic intensity of municipalities.
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Figure 3.11: Top twenty Municipality with the highest value of capability "Trade"
associated

Figure 3.12: Top twenty ATECO with the highest value of capability "Trade" asso-
ciated
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Figure 3.13

Figure 3.14: Top twenty Municipality with the highest value of capability "Turism"
associated

Figure 3.15: ATECO codes polarized >90% on Capability "Turism"
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Figure 3.16

Unlike the “City” or “Industry” capabilities, which capture structural economic trans-
formations, the “Tourism” capability is more sensitive to geographic attractiveness
and seasonality. It reflects economic systems where hospitality, accommodation, and
leisure constitute a substantial component of local production.

Its spatial pattern also highlights the dual nature of Italy’s tourism economy:
alpine tourism in the North and seaside tourism across coastal regions. These two
forms of tourism differ in seasonality, visitor demographics, and economic impacts,
but both produce a similar latent signature in the data.

Capability "Basic Need"

The fifth and final capability displays a spatial distribution that is almost uniform
across the Italian territory (Figure 3.16). Unlike the other components, it does not
cluster around specific geographic or economic regions.

The top municipalities (Figure 3.17) do not share any obvious similarity in
terms of location, or specialization.

The key to interpreting this capability lies in the associated ATECO sectors
(Figure 3.18). These include universal services such as postal offices, basic logistics,
and essential urban functions that are present even in the smallest or most rural
municipalities. Such activities represent the foundational layer upon which all other
capabilities can build.

This capability thus reflects the baseline functional infrastructure required for
municipal operation. It is not a marker of specialization, but rather a measure of
the degree to which municipalities host the minimal set of services enabling social
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Figure 3.17: Top twenty Municipality with the highest value of capability "Basic
Needs" associated

Figure 3.18: ATECO codes polarized >70 % on Capability "Basic Needs"
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and economic life.
Its negative correlation with the “City” capability suggests that large urban

centers rely on more advanced or differentiated forms of basic services, while smaller
municipalities rely more heavily on the standard set of universal functions captured
by this capability. Conversely, its positive correlations with the “Industry”, “Trade”,
and “Tourism” capabilities sustain the cumulative nature of capabilities, giving "Ba-
sic Needs" as ground state.

3.1 Metrics for k different from five

In the previous sections, we have focused primarily on the case k = 5, as this choice
emerged as a natural compromise between parsimony and predictive accuracy in the
mask-and-predict experiments. Nonetheless, in order to better understand how the
Non-Negative Matrix Factorization (NMF) behaves when we vary the dimensionality
of the latent capability space, it is instructive to study in a systematic way how the
reconstruction quality evolves as a function of k.

To this end, we considered a set of NMF decompositions of the Municipality-
ATECO matrix for a wide range of values of k. For each value of k we evaluated
three complementary metrics: Total F1-score, Balanced F1-score and Root Mean
Squared Error.

The first two metrics are sensitive to the classification performance on the bi-
nary structure of the matrix, with the balanced version explicitly correcting for class
imbalance, while the RMSE captures the overall goodness of fit of the continuous
reconstruction.

Figure 3.19 reports the behavior of these three metrics as functions of k, to-
gether with their increments with respect to k− 1. The plots reveal the presence of
distinct regimes. For small values of k, and in particular up to k ≈ 5, the increase in
performance is substantial: both the Total F1 and, even more clearly, the Balanced
F1 grow rapidly as we add degrees of freedom in the hidden layer. In this region,
the gains for the empirical Municipality-ATECO matrix are much larger than those
obtained for the corresponding null/random models, which are also depicted in the
figure for comparison.

The Balanced F1-score is especially informative in this context. Due to the
high sparsity of the matrix, the Total F1 is inevitably more sensitive to the over-
whelming prevalence of zeros and therefore to noise in the reconstruction of non-
links. The Balanced F1, by construction, compares the performance on links with
that on a matched sample of zeros and thus provides a clearer picture of how the
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Figure 3.19: Metrics evaluation and corresponding increments:Total F1-score
computed on all entries of the matrix, treating the factorization-based reconstruction
as a binary classifier on links and non-links, Balanced F1-score computed on all
observed links (entries equal to one) and on an equal number of randomly sampled
zeros, in order to compensate the strong sparsity of the matrix, Root Mean Squared
Error (RMSE), computed on all entries of the matrix

algorithm is learning the non-trivial backbone of the bipartite structure.
Up to k = 5, the increments of the Balanced F1 are noticeably larger than

those of the null models, signaling that each additional capability dimension is used
to capture genuinely informative patterns in the data, rather than simply overfitting
specific entries.

Beyond k = 5, the situation changes qualitatively. As shown by the incre-
mental curves in Figure 3.19, the additional improvement in all metrics becomes
much smaller and, in the case of the Balanced F1, comparable in magnitude to the
improvements observed in the null/random models. In other words, for k > 5 the
factorization still leads to a mild increase in predictive accuracy, but this increase is
similar to what would be obtained by adding degrees of freedom in matrices that do
not contain the specific structural information of the Municipality–ATECO network.
This seems to suggests that, beyond k = 5, the extra dimensions are mainly used
to fine-tune the reconstruction and to “fix” noisy or marginal aspects of the matrix,
rather than to extract new, robust information about its latent capability structure.

This interpretation is reinforced by comparison with the distribution of met-
rics obtained from the null models. Figure 3.20 displays, for selected values of k,
the empirical values of the F1 and RMSE alongside the distributions generated by
randomizations of the bipartite matrix. The Municipality-ATECO matrix lies well
outside the bulk of the null-model distributions, especially in the region around
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Figure 3.20: Comparison of various metrics (F1 score of the full matrix, F1 score
balanced with equal number of ones and zeros, RMSE) between the Municipality-
ATECO reconstructed matrix and the Null models ensambles (BiCM and Curveball)
at different values of k. The blue and red intervals represent the 95% of the Null
models’ metrics values distributions.

k = 5, confirming that the observed performance is not a trivial by-product of
the marginal properties of the matrix (e.g. degree sequences) but reflects statisti-
cally significant structure. At larger k, although the empirical metrics remain better
than those of the null models, the relative advantage becomes less pronounced, again
consistent with the picture of diminishing returns in terms of new structural infor-
mation. Overall, these results support the idea that the main nested backbone of
the Municipality–ATECO network can be effectively captured by a relatively low
number of latent factors. In our case, k = 5 emerges as a particularly meaningful
choice: it marks a clear change in regime in the performance curves, it is the value
suggested by the mask-and-predict analysis, and it sits in a region where the em-
pirical improvement is still clearly above that of the null models. Larger values of
k yield only incremental refinements, compatible with a noise-correction role of the
additional dimensions.

Connection between NMF (k = 1) and EFC

An additional insight into the meaning of the latent factors obtained via NMF
comes from comparing the case k = 1 with the Economic Fitness and Complexity
(EFC) algorithm introduced in the economic complexity literature [42, 43, 36]. In
the previous section we have already discussed the strong Spearman correlation
observed between one of the inferred capabilities (the “City” capability) and the
Fitness metric computed on the same Municipality-ATECO matrix. Here we push
this observation one step further by aligning the degrees of freedom of the two
methods.

When we apply NMF with k = 1, the factorization reduces to the search
for a single non-negative vector for municipalities and a single non-negative vector
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for ATECO codes which, when multiplied together, best approximate the original
matrix in the least-squares sense. This yields a rank-one reconstruction, and the
municipality and ATECO vectors can be interpreted as one-dimensional summaries
of their position in the bipartite network.

(a) (b)

Figure 3.21: Dot plots showing the strong link between Fitness-Complexity ranking
and the ranking coming from the single-capability decomposition made by the NMF
algorithm.

Figure 3.21 compares these NMF-derived vectors with the Fitness and Com-
plexity, respectively. Panel (a) shows a scatter plot of the municipality scores, where
each point represents a municipality with coordinates given by its NMF score and its
Fitness. The two rankings are extremely similar: the Spearman correlation between
the two vectors is approximately 0.91. Panel (b) displays the analogous comparison
for ATECO codes, where the NMF product scores are plotted against the Complex-
ity metric; again, the Spearman correlation is very high, around 0.86.

Such strong correlations indicate that, in the one-dimensional case, the NMF
solution is essentially aligned with the EFC solution: the optimization problem
solved by rank-one NMF identifies a direction in the municipality and product spaces
that coincides, to a very good approximation, with the ranking induced by Fitness
and Complexity. This observation is in line with recent work [26] showing deep con-
nections between EFC-type iterative algorithms and matrix-scaling or optimization
procedures. From our perspective, this result provides an additional validation of
the EFC approach on this dataset and suggests that the NMF capabilities could be
understood as higher-dimensional generalizations of the Fitness-Complexity ranking.

The persistence of a strong correlation between at least one of the k = 5 ca-
pabilities and the Fitness vector, discussed in the previous section, further supports
this interpretation. It indicates that, when we increase k, the model does not discard
the global Fitness-like pattern; rather, it refines it by adding orthogonal components
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that capture more specific dimensions of municipal and sectoral specialization.

Evolution of capabilities when varying k

To better understand how the latent capabilities evolve as we change the number
of factors k, we analyzed the correlations between the columns of the municipality
factor matrices obtained for consecutive values of k. More precisely, for each pair
(k, k + 1) we computed the correlation matrix between the k capabilities at level k
and the k+1 capabilities at level k+1, after aligning them in a consistent way. The
resulting correlation patterns are summarized in Figure 3.22.

(a)

(b)

Figure 3.22: Correlation tables of the reconstructed matrices Municipality-
Capabilities (W) and Capabilities-ATECO (H) at different values of k (number of
degree of freedom in the capability layer)

Two main behaviors emerge from this analysis. In some cases, when we move
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Figure 3.23: Correlation between degrees of freedom at varying number of k in the
application of NMF to Municipality-ATECO matrix (Orange links: from 0.4 to 0.75,
Red links: >0.75)

from k to k + 1, one of the existing capabilities “splits” into two more specialized
components. A clear example of this phenomenon occurs in the transition from
k = 6 to k = 7 in the Fig[3.22b]: one of the vectors at k = 6 shows high correlation
with two distinct vectors at k = 7, indicating that the algorithm is partitioning a
previously broad capability into two sub-capabilities with more differentiated sec-
toral and spatial profiles. This is consistent with the idea that increasing k allows
the model to resolve finer-grained patterns that were previously aggregated.

In other cases, the additional dimension corresponds to the emergence of a
new capability as a combination of some of the previous ones. This happens, for
instance, in the transition from k = 5 to k = 6 in 3.22a, where the new capability
displays notable correlation with more capabilities at k = 6. In such situations,
the added factor captures a qualitatively new direction in the space of municipal
economic profiles, possibly associated with a relatively small but coherent cluster of
municipalities and ATECO codes that was previously only partially represented.

Importantly, with the exception of at most one capability at each step, the
majority of capabilities remain strongly correlated with their counterparts at the
preceding value of k. This means that the core structure of the factorization is
remarkably stable when we increase k. The new degrees of freedom typically refine or
complement the existing ones, rather than radically reorganizing the entire capability
space as shown in Fig.[3.23].

This stability explains why a Fitness-like capability persists even when we
move from k = 1 to k = 5: the main global pattern is preserved, while additional
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dimensions capture deviations and specializations around it.
Taken together, the analysis of the performance metrics as functions of k, the

comparison with null models, the strong alignment between NMF and the Fitness–
Complexity algorithm for k = 1, and the stability of capabilities across consecutive
values of k convey a coherent message: the Municipality-ATECO matrix appears to
be governed by a relatively low-dimensional latent structure, whose essential features
are already well captured by k ≈ 5 capabilities. Beyond this point, additional factors
play a secondary role, mainly associated with noise correction and finer segmentation
of existing patterns, rather than with fundamentally new dimensions of economic
heterogeneity.



Conclusions

This thesis set out to reconstruct the latent capability architecture underlying the
productive activities of Italian municipalities, drawing on the conceptual framework
of Economic Complexity and employing Non-Negative Matrix Factorization as the
central analytical tool. Through a combination of rigorous validation procedures,
comparisons with null models, and interpretation of the resulting latent factors, the
research demonstrates that the Municipality–ATECO system possesses a remarkably
strong and interpretable low-dimensional structure. This structure can be effectively
summarized by five latent capabilities, which emerge as the optimal compromise be-
tween predictive accuracy, interpretability, and robustness. A central achievement of
this work is to show that these capabilities are not arbitrary statistical artifacts, but
correspond to recognizably distinct economic domains. Their spatial and sectoral
expressions reveal coherent patterns consistent with Italy’s economic geography: the
concentration of advanced services in major urban centers; the industrial specializa-
tion of medium-sized northern municipalities; the pervasive commercial functions
distributed across the territory; the dual model of alpine and coastal tourism; and
the foundational layer of essential services that supports even the smallest locali-
ties. These findings confirm that matrix factorization techniques can indeed extract
meaningful latent economic dimensions from empirical data, lending empirical sub-
stance to the long-theorized but rarely measured concept of capabilities. Beyond
revealing the internal structure of the Italian productive system, the thesis uncov-
ers a deep and unexpected connection between NMF-based factorization and the
Fitness–Complexity approach. At the one-dimensional level, NMF reproduces, with
striking fidelity, the municipality and sector rankings obtained through the nonlin-
ear EFC algorithm. As the dimensionality increases, the alignment persists: several
latent components activate preferentially along the same nested contours revealed
by Fitness and Complexity, despite NMF having no access to the ordering used
for visualization. This convergence suggests that both methods are detecting the
same underlying geometric organization, one that governs the distribution of ac-
tivities across municipalities and shapes the hierarchy of production possibilities.
The behavior of the model when k increases above five reinforces the interpretation
of k = 5 as the intrinsic dimensionality of the system. While additional factors
continue to provide incremental improvements in reconstruction accuracy, these im-
provements are comparable to those obtained in randomized matrices. This seems
to indicate that higher-dimensional factorizations mainly correct noise or capture
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minor local variations rather than unveiling new structural properties. Correlation
analyses across consecutive values of k show that the core latent dimensions are sta-
ble and persistent, while new dimensions generally arise either by splitting existing
capabilities into more specialized subcomponents or by capturing small-scale struc-
tural deviations. The essential structure of the capability space is therefore robust
and efficiently represented with five components. While the reconstruction of latent
capabilities already provides a compact and interpretable representation of the Ital-
ian productive system, its potential extends well beyond the present analysis. The
methodological framework developed in this thesis can be naturally integrated (and
tested) with additional layers of empirical information, enabling a richer exploration
of how capabilities interact with geographical constraints and production viability.
In particular, the inferred latent capabilities can be combined with viability mea-
sures, such as those capturing the minimum set of enabling conditions required for
municipalities to sustain specific economic activities. Integrating viability with ca-
pability inference would make it possible to distinguish between activities that are
absent because the underlying capabilities are lacking and those that are structurally
unviable due to environmental, demographic, or infrastructural constraints. This
distinction would provide a more nuanced understanding of how opportunity spaces
vary across the territory and how municipalities differ in their potential for produc-
tive upgrading. Moreover, the methodology opens the door to a systematic analysis
of geographical correlations between capabilities. By embedding municipalities in
physical or functional space, through adjacency matrices and mobility networks, one
could examine whether capabilities exhibit spatial autocorrelation, whether they dif-
fuse along infrastructural corridors, or whether they cluster according to historical
or institutional boundaries. Understanding these spatial interdependencies would
shed light on the mechanisms through which capabilities propagate across regions,
possibly revealing patterns of spatial spillovers, complementarities, or lock-ins. This
line of inquiry would transform the latent capability space into a genuinely spatially
grounded object, connecting structural economic heterogeneity with territorial dy-
namics. In this sense, the presented work represents a foundational step. It demon-
strates that a low-dimensional capability space can be empirically reconstructed
and meaningful links with geo-economic features can found. Future research may
now build on this foundation to explore how capabilities interact with viability con-
straints, trade structures, and geographical proximities, ultimately contributing to
a deeper understanding of the spatial organization of productive knowledge.
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