POLITECNICO DI TORINO

Master’s degree course
in Mechatronic Engineering

Master’s thesis

Image-Guided Joint Velocity Control of
a Mecab500 Manipulator through CNNs

UNIVERSIDADE b

COIMBRA

Supervisors Candidate

Prof. Alessandro Rizzo Isacco Ceri
Prof. Rui Pedro Duarte Cortesao

December 2025

Abstract

Deep learning has become a powerful tool for dealing with various problems. In particular,
in recent years, it has been an object of research even in the field of robotics, due to its
ability to work easily with millions of parameters, exploiting the possibility of modeling
complex functions. The aim of this thesis is to use one of the core architectures of DL,
that is, Convolutional Neural Networks (CNNs), in order to build an open control loop to
control a Meca500 robotic arm, which is intended to move towards a target.

The target object chosen for the experiment is a simple six-faced die, which is placed

in the workspace; a small endoscopic camera is mounted on the end-effector, aligned with
its approach axis, in such a way that the target is always visible to the camera.
The first phase is dedicated to the construction of a proper training set to be used in
the successive training step. This is done by capturing the frames of the camera with a
certain periodicity and pairing them with the corresponding task velocity vector, which
has been normalized.

During the offline training phase, frames and velocity labels are used to train a Pytorch
CNN that outputs the six predicted normalized components of the task-space velocity
vector. In this way, the network is able to pair the correct velocity vector with the position
of the target, as visualized by the camera. Then, online, the prediction is denormalized,
mapped to joint velocities through the robot Jacobian, and executed in real time. The
initial joint positions are then modified, taking care of possible singularities.

Finally, from the standpoint of practical application, an admittance-like control branch is
added to the main one, and the whole open control loop is tested.

Acknowledgements

I would like to thank Professor Rizzo for giving me the opportunity to work with him and
for his trust in my capabilities.

I am genuinely grateful to the University of Coimbra for hosting me in such a stimulating
environment, with a special consideration to Professor Cortesao, for his guidance and
support, which made this experience enjoyable.

Finally, a special thanks to my family, to my true friends, and to the great San Giorgio a
Colonica.

Contents

Abstract
List of Tables

List of Figures

1 Introduction
1.1 Research Context
1.2 Thesis Structure
2 Theoretical Foundations
2.1 Neural Networks
2.1.1 Perceptrons and Sigmoid Neurons
2.1.2 Sigmoid Neurons
2.1.3 Stochastic Gradient Descent
2.2 Convolutional Neural Networks
2.2.1 Local Receptive Fields
2.2.2 Shared Weights and Biases
2.2.3 Pooling
224 Summary
2.3 Robotics
2.3.1 Direct Kinematics
2.3.2 Differential Kinematics
3 Instrumentation
3.1 Mecab00 Manipulator
3.2 End-Effector
3.3 Endoscopic Camera
3.4 Forcesensor
3.5 PyTorch o
4 Implementation
4.1 Dataset construction
4.1.1 One target location
4.1.2 Generalization

4.1.3 Two-network approach

4.2 Training phase L
4.2.1 Dataset partitioning and shuffling
4.2.2 Training hyperparameters
4.2.3 Callbacks
4.24 CNNmodel

4.3 Jacobian Inversion

4.4 Velocity Smoothingo

4.5 Analyzing Different Initial Conditions
4.5.1 Different z-coordinate L.
4.5.2 Different x and y coordinates

Additional Control Branch

Results

6.1 One-Network Approach

6.2 Two-Networks Approach

6.3 Tests e
6.3.1 Moving the die during execution
6.3.2 Different initial poses of the robot
6.3.3 Damped Least Squares
6.3.4 Admittance-like branch test

7 Future work

59

63
63
67
69
69
70
71
74

7

List of Tables

3.1 Mecab00 joint limits and symmetric joint speed bounds (R3).. 33
4.1 Dataset collection format. 42
4.2 Denavit-Hartenberg parameters for the Mecab00 manipulator. 52
6.1 Excerpt from the logged dataset used to train the networks. 65

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

2.10

2.11
2.12
2.13
3.1
3.2
3.3
3.4
3.5
3.6
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Sketch of a biological neuron. oL 15
Example of a simple artificial neural network architecture. 16
General structure of a perceptron. oL 17
Step activation function of a perceptron.o 18
Sigmoid activation function. 000 L L 19
Gradient descent optimization on a quadratic cost surface. 20
Schematic structure of a convolutional neural network. 21
Example of an input layer with a local receptive field and the corresponding

first convolutional layer. 22
Same example with the receptive field shifted one pixel to the right, con-

nected to the second neuron of the first convolutional layer. 22
Same example with a stack of eight feature maps in the first convolutional

layer. L 23
A feature map with the corresponding neuron in the pooling layer. 24
Same example containing all the elements. 25
Direct Kinematics visual representation. 26
Experimental setup. 31
Meca500 Industrial Robot - [14]o oL 32
MEGP 25E/25LS Electric Parallel Gripper - [15] 33
MEGP 25E gripper dimensions - [15] L. 34
Endoscope Camera Rebel Tools RB-1140 35
Medusa side 6-axis FT sensor with Serial interface - [17] 36
Schematic representation of the image-guided control scheme. 37
Open-loop control scheme. 38
Initial relative pose between the TRF and the BRF. 39
Endoscopic camera view at the nominal arrival configuration. 39
Target pose used to manually place the die under the gripper. 40
Start of the linear approach trajectory used for data collection. 41
Captured frames and corresponding task-space velocity vectors. 41
Target pose with displaced target position. 43
Endoscopic camera views obtained while scanning the grid of target positions. 44
Illustration of the two-network approach, coarse and refinement phase. . . 45
Grid parameters for the two-network approach. 45
General CNN architecture implemented. 48

9

4.13 ReLU activation function. L.
4.14 Placement of the reference frames for Denavit—Hartenberg parameterization.
4.15 Dimensions of the Mecab00.
4.16 Base pose with a larger z-coordinate.
4.17 Wrist singularity configuration of the robot.
4.18 Different base—pose analysis: moving the TCP vs. moving the target.
5.1 Full open loop control scheme
6.1 Base pose (left) and desired target pose (right) for the first network.
6.2 Component-wise MAE for the coarse network.
6.3 Base pose (left) and desired target pose (right) for the second network.
6.4 Component-wise MAE for the refine network.
6.5 Sequence of robot configurations during a motion with live displacement of
thedie.. e
6.6 Different base poses of the robot and corresponding camera views.
6.7 Final arrival poses obtained from the three different initial configurations. .
6.8 Initial pose with the augmented z; coordinate..
6.9 Arrival poses for pure inverse (left) and DLS (right).
6.10 Sequence of robot configurations during a motion with an applied force. . .
6.11 Camera view at the arrival configuration with the admittance-like branch.

10

51
52
55
95
o7
59
64
66
67
68

69
70
71
72
73
74
75

Chapter 1

Introduction

1.1 Research Context

Deep learning, in particular Convolutional Neural Networks (CNNs), has revolutionized
robotics research in the past decade, with dozens of studies exploring this subject since
around 2014 [1]. Deep neural networks (DNNs) are powerful function approximators with
millions of parameters, capable of modeling complex relationships in high-dimensional
data. In robotic systems, this means a DNN can directly process raw, high-dimensional
sensor inputs (such as camera images) and autonomously learn compact representations
of the robot’s state, without requiring manual feature engineering [2]. This offers a key
advantage over traditional machine-learning or control methods, since DNNs can extract
both visual and kinematic features from the data itself, avoiding reliance on predefined
detectors or manual tuning. As a result, deep learning has been successfully applied to a
wide variety of robotic tasks, including perception, planning, and control [1].

A particularly active domain is wision-based robot control, where CNNs are used to
drive manipulators directly from camera images. Classical visual servoing approaches,
both image-based and position-based, require selecting and tracking visual features (e.g.,
points or contours), and often depend on camera calibration and accurate scene geome-
try [3]. Deep-learning-based methods overcome these limitations by learning an end-to-end
mapping from images to control commands.

For example, Saxena et al. [4] trained a CNN to predict robot motion given only
the current and goal images, without needing feature tracking or known camera param-
eters. Bateux et al. [5] estimated the relative pose between two camera views using a
CNN trained on synthetically augmented data, achieving high-precision 6-DoF positioning
(down to 1 mm) even under varied lighting and occlusions. These works demonstrated
that CNN-based visual servoing can outperform traditional methods in robustness and
generalization. More recently, researchers have enhanced these networks with depth maps
or learned feature encodings, applying them successfully to grasping, manipulation, and
navigation [6]

Building on these advances, this thesis proposes a CNN-based visual control system for
a 6-DoF robotic manipulator (Mecademic Meca500) using an eye-in-hand configuration.

11

Introduction

The goal is to guide the end-effector toward a fixed target object using only the live
video stream from a small endoscopic camera mounted along the approach axis. Unlike
prior methods requiring a desired image or explicit pose estimation, the proposed CNN
implicitly learns the relationship between the target’s visual appearance and the correct
motion required to reach it.

During offline training, a dataset of image—velocity pairs is constructed by capturing
camera frames at regular intervals as the robot moves within its workspace. Each image
is paired with the corresponding normalized task-space velocity vector. This supervised
training process enables the network to learn the association between target appearance
and the necessary velocity vector. At runtime, the CNN processes each camera frame to
produce a predicted velocity, mapped through the Jacobian into joint velocities, and exe-
cuted on the robot in real time. Although the system operates open-loop, the continuous
camera updates induce closed-loop behavior driven by the CNN itself, with no manually
defined feedback law.

The proposed method includes several novel contributions:

 Single-image input: Unlike Siamese or dual-input networks [4, 7], only the current
image is required. The notion of a “goal” is implicitly captured by including low-
velocity samples around the target during training.

« Real world dataset: The network is trained exclusively on images captured from
the real robot in a laboratory setting, avoiding the gap that affects many synthetic
approaches [5].

o Coarse-to-fine architecture: A two-network structure is introduced. The coarse
CNN brings the robot close to the goal, while the refine CNN, trained on a denser
local dataset, ensures final positioning accuracy.

o Admittance-like smoothing: To counteract unstable or oscillatory behavior from
direct velocity execution, a filtering branch is added. It mimics an admittance con-
troller, smoothing the predicted command for stable execution.

While Guo et al. [8] integrate CNN-based object detection (YOLOv3) with LSTM
filtering and Lyapunov-stable control for an eye-in-hand manipulator, their approach de-
pends on bounding box tracking and aims primarily at object centering. In contrast, this
thesis proposes direct task-velocity prediction from raw images, requiring no bounding
box detection, goal image, or geometric modeling.

In summary, this work presents a real-time, CNN-based visual control system for
robotic manipulators, capable of driving the end-effector to a visually defined target using
only raw camera input. Its innovations in training design, control integration, and net-
work structure position it as a practical step forward in the development of reliable deep
visuomotor policies.

12

1.2 — Thesis Structure

1.2 Thesis Structure

The organization of this thesis follows a logical progression, guiding the reader from the
foundational theoretical principles necessary for understanding the subsequent implemen-
tation and experimentation, to the final analysis and conclusions.

o Theoretical Foundations: This section introduces the key theoretical concepts
on which the control architecture is based, covering both robotic fundamentals and
convolutional neural networks.

o Instrumentation: This chapter presents the tools and instruments used throughout
the experiments, along with a brief overview of their technical specifications and roles
in the setup.

o Implementation: This section describes the practical implementation of the sys-
tem, including dataset construction, the chosen network architecture, the training
process, and hyperparameter tuning. It goes on with the mapping from task space
to joint space, detailing the formulation of the geometric Jacobian, and it concludes
with considerations related to potential singularities.

« Additional Control Branch: This section explores modifications made to the ini-
tial structure with a view toward practical applications. In particular, an admittance
control branch is introduced in parallel with the main control loop.

e Results: With the system fully implemented, this chapter presents the outcomes
of real-time testing, demonstrating the effectiveness of the proposed approach in
achieving the thesis objectives.

o Future Work: The final chapter outlines future research directions, addressing the
limitations of the current system and proposing possible enhancements for further
development.

13

14

Chapter 2

Theoretical Foundations

2.1 Neural Networks

Neural networks are powerful tools for solving complex problems. Their effectiveness arises
from a different perspective with respect to classical programming: instead of explicitly
specifying to the computer how to solve a task, a neural network is trained on examples
and learns to approximate the desired input-output mapping by itself [9].

Neural networks are loosely inspired by the structure of biological neurons in the human
brain (Fig. 2.1). There, in fact, neurons form a large, highly interconnected network and
communicate through electrical impulses. Analogously, an artificial neural network (ANN)
is composed of artificial neurons organized in layers and connected by weighted links.
Information flows from one layer to the next, and the weights are iteratively adjusted
during training in order to minimize a chosen loss function.

Telodendria i .
w / |
G ,

[

Cell body

4
Nucleus \

Axon hillock Synaptic terminals

Golgi apparatus
Endoplasmic 4
reticulum

-

Mitochondrion \\ Dendrite

/
V4 \k Dendritic branches

Figure 2.1. Sketch of a biological neuron.

15

Theoretical Foundations

Taking the biological neuron as a reference, composed of a cell body and dendrites that
act as information channels, artificial neural networks are typically organized as shown
in Fig. 2.2. The figure illustrates an example network with nine artificial neurons: three
input neurons belonging to the input layer, four hidden neurons in the hidden layer, and
two output neurons in the output layer.

In general, ANNs can have very different architectures, with a larger number of neurons
and multiple hidden layers. The information exchange between neurons, which mimics
the synapses of biological cells, is represented by the directed arrows in the diagram.

Hidden

Input

Output

Figure 2.2. Example of a simple artificial neural network architecture.

The output of a neuron is computed by applying an activation function to the linear
combination of its inputs, weights, and bias (the latter are introduced in the next chap-
ter). This operation transforms a purely linear response into a nonlinear one, allowing
neural networks to learn complex decision boundaries and to approximate a wide class of
continuous functions.

Many different activation functions exist, and their choice determines the behaviour
of the artificial neuron. In the following, two classical neuron models are considered:
perceptrons and sigmoid neurons.

2.1.1 Perceptrons and Sigmoid Neurons

The basic model of an artificial neuron is the so-called perceptron, which takes n binary
inputs and produces a single binary output, as shown in Fig. 2.3.

16

2.1 — Neural Networks

T

T2 w2

Wn, b
T

Figure 2.3. General structure of a perceptron.

The output is computed by introducing the weights wi,ws, ..., w,, real-valued pa-
rameters that quantify the influence of each input on the output. A bias term b (shown
inside the neuron) shifts the decision boundary. The perceptron’s output y € {0,1} is
determined by comparing the weighted sum ;- ; w;z; with a threshold value T

n
0, if Y wa; <T,
Yy = = (2.1)

i=1

One way to conceptualize the perceptron is as a decision-making device that evaluates
evidence through a weighted sum of inputs, and by varying the weights and the threshold,
it is possible to obtain different models of decision-making.

Going back to Fig. 2.2, the input layer can be viewed as presenting the raw evidence
to the network, with each input neuron corresponding to one component of the input.
The neurons in the hidden layer then make decisions based on what the previous layer
has already computed, allowing them to detect more abstract patterns. By adding the
output layer, the network can combine these intermediate representations to produce more
sophisticated decisions. In this way, by stacking multiple layers, the network gradually
builds a hierarchical representation of the input, enabling it to solve complex decision-
making tasks.

Another way to describe the working principle of the perceptron is through the bias
term b, which can be interpreted as an adjustable threshold: it measures how easily the
perceptron activates to produce an output of 1. In biological terms, it is analogous to the
intrinsic excitability of a neuron. By setting b = —T and moving the threshold term to
the left-hand side, (2.1) can be rewritten as

n
0, if Y ww;+b<0,
y = ot (2.2)
1, if szxz +b>0.

i=1

17

Theoretical Foundations

This form is mathematically equivalent to the original threshold formulation, but it is
often more convenient in analysis and implementation.

Graphically, the activation rule in (2.2) corresponds to the step function shown in
Fig. 2.4.

1.2

_02 | | | | | | | | |
-5 -4 -3 -2 -1 0 1 2 3 4)

Yo wix; + b

Figure 2.4. Step activation function of a perceptron.

Starting from this model, it is natural to ask whether one can design learning algorithms
that automatically adjust the weights and biases of an ANN, without explicit intervention
from a programmer. Ideally, such adjustments should be smooth: a small change in the
parameters should produce only a small change in the network output. This property is
crucial for optimization methods based on gradients.

However, classical perceptrons do not satisfy this requirement. Their output is strictly
binary (0 or 1), and even an arbitrarily small change in the weights or bias can cause a
sudden flip of the output. To overcome this limitation and enable gradient-based learning,
sigmoid neurons are introduced in the next section.

2.1.2 Sigmoid Neurons

The structure of a sigmoid neuron is the same as that of the perceptron in Fig. 2.3. The
key difference is that both the inputs and the output are now allowed to take real values:
each input z; is typically taken in the interval [0,1], and the output is computed through
the sigmoid activation function o(z),

(2.3)

2.1 — Neural Networks

where .
z= Z w;T; + b. (2.4)

i=1
Comparing the sigmoid function in Fig. 2.5 with the step function in Fig. 2.4, it is
apparent that the former is a “smoothed” version of the latter. In particular, small
changes in the weights and in the bias produce only small changes in the neuron output.

Figure 2.5. Sigmoid activation function.

Although sigmoid neurons retain much of the qualitative behaviour of perceptrons
(they still “activate” more strongly when the weighted input z is large), their smoothness
makes it far easier to understand and control how changes in the weights and biases
affect the output [9]. This differentiable, real-valued output is what enables the use of
gradient-based learning algorithms in multilayer neural networks.

2.1.3 Stochastic Gradient Descent

Once the output of the network is defined, learning consists in adjusting the parameters so
that the network correctly recognizes the patterns shared by the elements of the training
set, which contains n examples. This is achieved by minimizing a suitable cost function.
A common choice is the quadratic (or mean squared) cost [9]:

C(w,b) = 53 ly(a) — a(x)]. (25

where the sum runs over all training inputs z, y(x) denotes the desired output vector
associated with z, and a(x) is the output vector produced by the network when z is fed
as input.

19

Theoretical Foundations

The cost function (2.5) measures the average squared difference between the target
outputs and the network outputs. Minimizing C'(w,b) therefore means finding weights
and biases such that a(x) is as close as possible to y(x) for all training examples. This
optimization is typically performed using the gradient descent algorithm.

Fig. 2.6 illustrates the basic idea on a toy example: a cost function C(t1,t3) depending
on two parameters t1 and to. Starting from an initial point Fy, the parameters are updated
iteratively in the direction of steepest descent of the cost, i.e., in the direction opposite
to the gradient VC. The sequence of points converges towards a local minimum, denoted
by G, in the figure. Of course, in the case of neural networks the cost function depends
on thousands (or even millions) of parameters, but the underlying geometric intuition is
the same [9].

Figure 2.6. Gradient descent optimization on a quadratic cost surface.

In gradient descent, each update step requires computing the gradient of the cost
VC(w,b) over the entire training set, which can be computationally expensive for large
datasets. In practice, neural networks are usually trained with stochastic gradient de-
scent (SGD), where the gradient is approximated using a single randomly chosen training
example, or more commonly, a small mini-batch of examples. This leads to the update
rule

(w, b) — (U), b) = 1 VCiini—batch (w, b)7

where 1 > 0 is the learning rate and Cinini—patcn, denotes the cost computed only over
the current mini-batch. Although each step is noisier, SGD dramatically reduces the
computational cost per update and usually leads to efficient learning in large-scale neural
networks.

In practice, the gradients required by (stochastic) gradient descent are computed by
the backpropagation algorithm [9]. Backpropagation applies the chain rule of calculus in
a systematic way: a forward pass first computes all weighted inputs and activations layer
by layer, while a subsequent backward pass propagates an error signal from the output

20

2.2 — Convolutional Neural Networks

layer back through the network. This backward recursion makes it possible to obtain the
derivatives of the cost with respect to all weights and biases with a computational cost
that is only a small constant factor larger than that of the forward evaluation itself.

2.2 Convolutional Neural Networks

Fully connected networks are very general function approximators, but they are often
a poor fit for image data because they ignore spatial structure. All pixels are treated
in the same way, regardless of whether they are adjacent or far apart, so locality and
approximate translation invariance must be learned from scratch. As a consequence, dense
architectures require a very large number of parameters and do not explicitly exploit the
geometric structure of images.

Convolutional neural networks (CNNs), of which the general structure is sketched in
Fig. 2.7, introduce architectural constraints that encode these inductive biases directly. By
using local receptive fields, shared weights, and pooling operations, CNNs capture spatial
hierarchies of features and exhibit a form of translation equivariance. This significantly
reduces the number of parameters, speeds up training, and enables the design of deeper
models with higher accuracy. For these reasons, most modern image recognition systems
are based on CNNs or closely related architectures [9, 10].

Fully-Connected Layers

Input Image
Convolutional Layers

Figure 2.7. Schematic structure of a convolutional neural network.

2.2.1 Local Receptive Fields

In a convolutional neural network, the input layer is no longer represented as a simple
column of neurons, as in Fig. 2.2, but as a two—dimensional grid. Each neuron in this grid
corresponds to the intensity of a single pixel in the input image. Rather than connecting
every neuron in the next layer to all input pixels, each neuron in the first convolutional
layer is connected only to a small, localized patch of the input. This patch is called a local
receptive field [9)].

21

Theoretical Foundations

As an example, it is considered an input layer of size 20 x 20, shown on the left in
Fig. 2.8. A 5 x 5 receptive field (the light gray square) is highlighted in the top-left
corner of the input. The first neuron of the following convolutional layer (on the right) is
connected only to the pixels inside this 5 x 5 patch: its weighted input is a function of
those 25 values and their associated weights, plus a bias term.

Input Layer

cecccecsescsccscsccccoce
ssecsceeeeseesessccsce CE. -

P b First Convolutional Layer
Y E RN N RN RN RN R R Y S

e e R R A e rxxxxxxxx
“eecccccccscecsccccccee eecceccccccccccce
eeecccccccsccccccccce eececcccsccccccee
eeececcccscecrcccecooe eecececcccccccee
eeecccccccsccscccccccne eececcccsccccccee
eeecccccccsccscccccccne eececcccsccccccee
eeececccvsecrcccccooe eececccecccccccee
eeecccccccsccsccccccce eececcccscccccces
eeececccvscvrcccecooe eececccecccccccee
eceecccccccsccsccccccee eecceccccccccccce
eeeccecccccsccccccccce eececcccsccccccee
eeececccvscvrcccccooe eececccecccccccee
eeecccccccscscccsccccne eececcccsccccccee
eeecccccccsccsccccccce eececcccsccccccee
eeececcevscvrcccccooe eececccecccccccee
eeece00ccscscsccsccscne eececcccseccscnccse

Figure 2.8. Example of an input layer with a local receptive field and the corre-
sponding first convolutional layer.

To obtain the next neuron in the same row of the convolutional layer, the receptive
field is shifted one pixel to the right in the input, as illustrated in Fig. 2.9. In this way,
each neuron in the convolutional layer scans a different local region of the input, but all
neurons share the same weights and bias (the convolutional kernel). For an input of size
n X n and a receptive field of size m x m with step 1, the resulting feature map has size
(n —m+1) x (n —m + 1); in this example, n = 20 and m = 5, giving 16 x 16 neurons.

Input Layer

ofcacccfeassesesceccee
R ittt g First Convolutional Layer
soececloesseccccecnsenf—
oececoocloeseseoeoseoses] — —Jrececcsccccccccooe
eeecsecsoccccsccsccccccce eececcccsccccccee
eeecccccccscsccccccce eececcccsccccccee
eeececccvsevrcccccsoe eececccecccccccee
eeecccccccsccsccccccce eececcccsccccccee
eeececcecscvrcccccsoe eececccecccccccee
cecscectcestccccecsas cecescecescsssas
eeececccvscvrcccccooe eececcceccccccree
eeecccccccscscccccccne eececcccsccccccee
eeecccccccsccccccccce eececcccccccccee
eeececccvscecscccccsoe eececccecccccccee
eeecccccccsccscccccccne eeccccccsccccccee
eeececccvscvrcccecooe eececcceccccccree
Cecsccssesecscscscss Cececsescscsssas

Figure 2.9. Same example with the receptive field shifted one pixel to the right, con-
nected to the second neuron of the first convolutional layer.

Local receptive fields thus enforce local connectivity: each neuron in a convolutional
layer “sees” only a small region of the input, focusing on simple patterns such as edges
or corners. Deeper layers can then combine these local features into more complex and

22

2.2 — Convolutional Neural Networks

abstract representations, while keeping the number of connections (and parameters) much
smaller than in a fully connected network [9].

2.2.2 Shared Weights and Biases

In a convolutional layer, the output is organized into feature maps. Each feature map
corresponds to one learned pattern (for example, a vertical edge, a corner, or a texture)
that the network tries to detect across the entire input. All neurons belonging to the same
feature map apply the same filter to different spatial locations of the previous layer.

This is achieved through weight sharing: neurons in the same feature map do not each
have their own weights and bias. Instead, they share a single collection of weights {w , }
and a single bias b. These shared parameters form a small filter (or kernel) that slides
across the input, producing one activation value for each spatial position. For a neuron
located at (j, k), the activation is

@ = (%), (2.6)
where
s—1 s—1
Zik=b+) D Wim Gjiikim: (2.7)
=0 m=0

Here, ajix+m are the activations in the previous layer within the s x s local receptive
field, while wy ,,, and b are the filter parameters shared across all positions (7, k) [9].

Because the same filter is applied everywhere, each feature map encodes where and
how strongly its associated feature appears in the input. Weight sharing dramatically re-
duces the number of trainable parameters compared to fully connected layers and enforces
translation equivariance: if a feature is present at a different location in the image, the
same filter will still detect it.

Fig. 2.10 illustrates this idea for the same 20 x 20 input image considered before. On
the right, a stack of eight 16 x 16 feature maps is shown. Each feature map corresponds
to a different set of shared weights and bias, i.e., to a different learned filter. The arrows
indicate that every feature map is computed by convolving the full input with its own
kernel, according to (2.7).

Input Layer First Convolutional Layer
R N P S S

Figure 2.10. Same example with a stack of eight feature maps in the first convolutional layer.

23

Theoretical Foundations

2.2.3 Pooling

Pooling layers are typically inserted after convolutional layers and operate independently
on each feature map. The idea is to aggregate the information contained in small, non-
overlapping regions of a feature map into a single value, hence reducing the spatial reso-
lution while retaining the most salient information [9].

Fig. 2.11 illustrates the same example. On the left, a 16 x 16 feature map (e.g., the
output of the first convolutional layer) is shown. A 2 x 2 patch in the top—left corner is
highlighted in light gray. This patch is mapped to a single neuron in the following 8 x 8
pooling layer on the right. In the case of maz pooling, the output of that neuron is the
maximum value within the corresponding 2 x 2 region; for average pooling, it is the average
of those four values. Using a 2 x 2 window with step 2 splits the spatial dimensions: a
16 x 16 feature map becomes 8 x 8.

Generic Feature Map

X3
lidid

000000000000 9,50
©00c0evccccccegpe
e0ccccccccccepppe
©000e0v0s0ce 900
®scecccccccsccgpee
RN RN NN NN VNN
©000c00v000eo 9000

First Pooling Layer

~~

®0cccccccogoecoe
®eeccccccsgoccce

e000000000p00000

X
KR
ecececcce
R
KR
XX
R
eeececoe

Figure 2.11. A feature map with the corresponding neuron in the pooling layer.

Pooling is applied separately to each feature map. Fig. 2.12 shows an example at the
level of full stacks. Starting from the 20 x 20 input image on the left, a first convolutional
layer produces a stack of eight 16 x 16 feature maps. A subsequent pooling layer then
processes these feature maps to produce a stack of smaller 8 x 8 maps on the right. The
number of feature maps is typically preserved by pooling, but the spatial dimensions are
reduced.

By reducing the resolution while keeping the most responsive activations, pooling layers
help to make the representation more robust to small translations and distortions of the
input, decrease the number of activations, and hence the computational cost in deeper
layers; moreover, they mitigate overfitting by providing a form of spatial downsampling.

For these reasons, alternating convolutional and pooling layers is a standard design
pattern in many CNN architectures [9].

24

2.2 — Convolutional Neural Networks

Input Image
P s Convolutional Layers

srriiniiiniiiiniiini gfniiiiiiiiiiei:] Pooling Layers
seasaaaiaaiaiaaniaes sissiiiiiiiiiie 2oeeeess
L N BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN J ® 0 000000000000 00 >

Figure 2.12. Same example containing all the elements.

2.2.4 Summary

Back to the structure in Fig. 2.7, a convolutional neural network can be viewed as a
sequence of stages that gradually transform the raw image into a compact representation.

Starting from the input image, one or more convolutional layers apply learned filters
over local receptive fields. Thanks to shared weights and biases, each filter acts as a feature
detector that is scanned across the whole image, producing a corresponding feature map.
Nonlinear activation functions (such as the sigmoid introduced earlier, or more commonly
the rectified linear unit, ReLU, used in the thesis and discussed later) are then applied
elementwise to these feature maps.

Pooling layers follow convolutional layers and operate independently on each feature
map. By aggregating the information in small neighbourhoods (e.g., via max or average
pooling), they reduce the spatial resolution while preserving the most salient responses.
Alternating convolution and pooling stages builds a hierarchy of increasingly abstract
features: lower layers capture simple patterns such as edges or corners, whereas deeper
layers respond to more complex structures [9].

After several convolutional and pooling blocks, the resulting feature maps are flattened
and fed into one or more fully connected layers, which play the role of a classical multilayer
perceptron operating on the learned features rather than on raw pixels. The choice of
the final activation and cost function depends on the task: for image classification, it
is common to use a softmax output with a cross—entropy loss, whereas for regression
problems a linear output layer with a quadratic cost is often preferred.

In all cases, the parameters of the convolutional, pooling (if any), and fully connected
layers are trained by stochastic gradient descent and backpropagation, exactly as in the
fully connected networks discussed in the previous section [9]. In the following, these ideas
will be specialized to the robotics scenario considered in this work, where a CNN is used
as a function approximator mapping camera images to suitable commands for the robot.

25

Theoretical Foundations

2.3 Robotics

Since robotics is at the core of this thesis, some basic concepts must first be introduced
to fully understand the proposed approach.

A robot manipulator can be modeled as a kinematic chain: a sequence of rigid links (n+
1, indexed from 0 to n) connected by joints (n, indexed from 1 to n), which are actuated
by motors. Joints are typically either revolute (rotational) or prismatic (translational).
One end of the chain is rigidly attached to the base, while the other end is equipped with
a gripper or tool, usually referred to as the end-effector.

2.3.1 Direct Kinematics

The objective of direct kinematics is to determine the pose of the end-effector of the
manipulator, i.e. its position and orientation in space. In practical terms, this corresponds
to computing the homogeneous transformation matrix

R? rb
(@) = [c(a) e(q)l |

T(q) =
01x3 1

e

(2.8)

which maps coordinates from the end-effector frame e to the base frame b, as shown in
Fig. 2.13. Here ¢ = [q1,...,qa]7 is the vector of joint variables, R%(q) € R**3 is the
rotation matrix describing the orientation of the end-effector with respect to the base,
and 7(g) € R**! is the position vector of the end-effector origin expressed in the base
frame.

Figure 2.13. Direct Kinematics visual representation.

26

2.3 — Robotics

To simplify the computation of the direct kinematics, it is convenient to exploit the
properties of homogeneous transformation matrices and express Té’ (¢) as the product of
the transformations between consecutive link frames. For a serial manipulator with n
joints, this can be written as

TP (q) =TTy ... T, (2.9)

n

where Tf—1 denotes the homogeneous transformation matrix from frame i to frame ¢ — 1.
If the reference frames are assigned according to the Denavit-Hartenberg (DH) con-
vention, each matrix Tf_l depends on only four parameters and takes the form [11]:

cosf; —sinb;cosa; sinb;sina; a;cosb;
A sinf; cosf;cosa; —cosb;sina; a;sinb;
i—1
Tt = _ : (2.10)
0 sin ¢ COoS ay; d;
0 0 0 1

The four DH parameters have the following geometric meaning:

e a; — link length: distance between the origins O;_1 and O; measured along the axis
T,

e «; — link twist: angle between the axes z;_; and z; about x;, positive when the
rotation is counterclockwise (c.c.w.);

o d; — link offset: coordinate of the origin O; along the axis z;_1;

e 0; — joint angle: angle between the axes x;_1 and x; about z;_1, positive when the
rotation is counterclockwise (c.c.w.).

By specifying the DH parameters for each joint and link, the direct kinematics of the
manipulator is completely determined through (2.9) and (2.10).

2.3.2 Differential Kinematics

Differential kinematics, instead, describes the relationship between the joint velocities of
a manipulator and the corresponding linear and angular velocity of the end-effector. This
relationship is encoded by the geometric Jacobian matrix, denoted as J(q), which depends
on the current joint configuration of the robot.

When the end-effector pose is expressed using a minimal parameterization in the op-
erational space (such as Euler angles or position coordinates), an alternative formulation,
known as the analytical Jacobian, can be derived by differentiating the direct kinemat-
ics function with respect to the joint variables. While both Jacobians describe velocity
mappings, they are not equivalent in general due to the nonlinear transformation between
angular velocity representations.

The Jacobian is a fundamental tool in robotics, as it plays a central role in several key
areas: detection of singularities, analysis of kinematic redundancy, design of control laws,
and computation of inverse kinematics solutions, as needed in this thesis. Its structure and
properties greatly influence both the dexterity and stability of manipulator motion [11,
12, 13].

27

Theoretical Foundations

The Geometric Jacobian

The Geometric Jacobian establishes the linear relationship

v=|%] = s@a, .11

e

between the task-space velocity v of the end-effector (linear velocity p. and angular velocity
we) and the vector of joint velocities ¢. In the case of a 6-DOF manipulator one can write

U1 Ju - Jis] [¢r
] (219)

(O Jor -+ Jesl Lds
where v1, ..., denote generic components of the task-space velocity (either linear or an-
gular) and J;; are the entries of the Jacobian matrix evaluated at the current configuration
q [11, 12, 13].

Each row of the Jacobian describes how all joint velocities contribute to a single com-
ponent of the operational-space velocity. On the other hand, each column describes how
the velocity of a single joint affects all components of the end-effector velocity. In par-
ticular, if an entire row of J(g) is zero, then no motion occurs along the corresponding
task-space direction, whereas if an entire column is zero, the i-th joint variable does not
influence the end-effector motion at all.

The i-th column of the geometric Jacobian is given by

; [Zi(?] ’ if joint ¢ is prismatic,
Ji(q) = { m} - (2.13)
Jai i—1 X (Pe —]Di*
[Z 1 (p 1)] , if joint ¢ is revolute,
Zi—1

where:

o z;_1 is the unit vector corresponding to the third column of the rotation matrix RY |,
i.e., the joint axis z;_1 expressed in the base frame;

e p. is the position of the end-effector origin, given by the first three elements of the
fourth column of T?;

e P, 4 is the position of the origin of frame i — 1, given by the first three elements of
the fourth column of T ;.

Thanks to the linearity of (2.11), the (local) inverse kinematics problem at the velocity
level can be written as
i=J@) ", (2.14)
provided that J(q) is square and nonsingular. In practice, this condition is not always
satisfied: for redundant manipulators the Jacobian is rectangular, and even for square
Jacobians there may exist configurations in which det J(q) = 0. These singular configu-
rations play a crucial role in the analysis and control of robot manipulators and require
the use of generalized inverses (such as the Moore—Penrose pseudo-inverse) or alternative
strategies, as discussed later in this chapter [11].

28

2.3 — Robotics

Kinematic Singularities

The Jacobian is, in general, a function of the configuration ¢; configurations at which J(q)
is rank-deficient are called kinematic singularities. When J(q) loses rank, the mapping

v=J(q)q

projects ¢ onto a lower-dimensional subspace of the task space, so the components of v
become constrained to each other.
Singularities are relevant because:

1. they represent a loss of mobility of the manipulator, i.e. it is no longer possible to
impose an arbitrary motion of the end-effector;

2. they may lead to infinitely many or no solutions to the inverse kinematics problem.

In the square, nonsingular case, one can formally write
B 1
det(J(q))

where J*U is the adjacency matrix. It is then immediate that, if .J(¢) is not full rank,

det J(¢) = 0, and the inverse is not defined. As det J(q) approaches zero, the elements of

J(q)~t grow very large: even small task velocities v would require very high joint velocities

g. In reality, joint velocities saturate as the robot approaches a singular configuration [11].
Singularities may occur:

J(g)™! T, (2.15)

1. at the boundary of the reachable workspace (e.g. when the arm is fully stretched or
fully folded);

2. inside the reachable workspace, where they are more difficult to foresee and avoid.

For manipulators with a spherical wrist, it is common to distinguish between arm sin-
gularities and wrist singularities. In practice, the numerical problems associated with
singularities are often mitigated by replacing the exact inverse or pseudo-inverse of J with
a damped least-squares inverse.

Singular Value Decomposition

Singular Value Decomposition (SVD) is a standard tool for studying the behavior of the
Jacobian near singular configurations and for computing regularized inverses. Any m x n
matrix J can be written as

J=UxVv", (2.16)
where U € R™*™ and V € R™ " are orthogonal matrices, and ¥ € R™*"™ is of the form
g1 0
3= , 2.17
o 0 (2.17)
LO 0 OJ

29

Theoretical Foundations

with = rank(J) and singular values o1 > --- > ¢, > 0. Each singular value is related to
an eigenvalue of JJT by
oi =V \i € eig(JJT). (2.18)

The (right) Moore-Penrose pseudo-inverse can be expressed as
Jr=vytu?, (2.19)

where ¥ € R™ ™ is obtained by inverting the nonzero singular values:

ot 0
st — s 2.20
ot 0 (2:20)

|_() 0 ()J

Near a singular configuration, one or more o; tend to zero, so the corresponding entries
-1

o; " in 1 become very large and the pseudo-inverse is ill-conditioned. A common remedy

is the damped least-squares inverse:
Jr=JV(JJT XD (2.21)

where A > 0 is a damping factor and [is the identity matrix. In terms of singular values,
this corresponds to replacing o; ! with

0

o2 + N\’

which remains bounded even when o; — 0. The result is a trade-off between accurate
tracking of the desired task and bounded joint velocities, making the inversion numerically
better conditioned in the neighbourhood of singular configurations [11].

30

Chapter 3
Instrumentation

The goal of this chapter is to place the manipulation task in a precise experimental context
and to document the instrumentation used, so that the study can be reproduced.

Figure 3.1 depicts the whole physical setup used to design the control system, high-
lighting a Meca500 manipulator, equipped with a MEGP end-effector, the Rebel endo-
scopic camera and a Bota force/torque sensor. Moreover, the picture sketches the planar
workspace on which the target (a simple six-faced die) is placed.

Figure 3.1. Experimental setup.

31

Instrumentation

Beyond stating what hardware is used, it is essential to clarify why this configuration
was chosen. The Mecab00 offers precise joint-space velocity interfaces and low commu-
nication latency over TCP/IP, which are well matched to learning-based visual servoing
where frequent, small velocity updates are preferred to sparse pose set-points. Mount-
ing an endoscopic camera on the wrist keeps the target within the field of view during
approach and contact, and its small form factor reduces mass and the risk of collisions.

The die is intentionally simple: strong pecularities, sharp edges, and repeated tex-
tures create realistic variations in appearance as illumination and viewpoint change. This
combination yields compact yet representative characteristics for the experiments.

3.1 Meca500 Manipulator

The Meca500 (Fig. 3.2) is a compact six-axis industrial manipulator designed for high
precision; the user manual specifies a repeatability of 0.005 mm, a rated payload of 0.5 kg
(up to 1.0 kg under special conditions), a total arm mass of 4.6 kg, IP40 protection, 24 V
DC supply with < 200 W maximum power [14].

Figure 3.2. Meca500 Industrial Robot - [14]

In the following Table 3.1 are reported speed and joint limits, taken again from the

32

3.2 — End-Effector

manual user; these are notably generous, giving the arm broad workspace coverage and
plenty of room to choose comfortable configurations, even when avoiding singularities or
keeping the target within the camera’s field of view.

The maximum joint speeds are also high for a robot of this size (fast wrists and large
base/shoulder rates), enabling quick reorientation and short corrective bursts without
feeling loose. In practice, this latitude translates into many feasible trajectories and IK
solutions, with enough margin to absorb vision and communication delays while still
maintaining smooth, responsive motion.

Joint Min angle [°] Max angle [°] Max Joint speed [°/s]

J1 -175 175 150
Jo -70 90 150
J3 -135 70 180
Jy -170 170 300
Js -115 115 300
Jg -36 36 500

Table 3.1. Meca500 joint limits and symmetric joint speed bounds (R3).

3.2 End-Effector

The robot is equipped with Mecademic’s MEGP 25 electric parallel gripper (model 25E),
a plug-and-play end-effector co-developed with Schunk for the Meca500 (R3/R4). The
gripper is natively detected by the controller, homes automatically with the robot, and is
operated through simple commands [15].

Figure 3.3. MEGP 25E/25LS Electric Parallel Gripper - [15]

33

Instrumentation

The custom fingertips used for this project were pre-designed with a CAD software
and 3D-printed in a lightweight polymer. The design preserves the camera’s field of view
and ensures clearance for the wrist cable.

Using the gripper’s dimensioned drawing (Fig. 3.3), the rigid offset from the robot
flange to the geometric midpoint between the two fingertips was determined and absorbed
into the sixth Denavit—Hartenberg link so that the forward kinematics report the TCP
at the pinch center. In practice, the adapter thickness, the distance from the flange to
the jaw centerline, and the fingertip protrusion are summed to obtain a tool translation
[Az, Ay, Az].

This translation is incorporated by updating the last-row parameters of the DH table (to
be discussed later): ag — ag + Az and dg — dg + Az, while Ay is assumed to be null.

- 25 4=
T
Adapter plate
for mounting on
Meca500's flange
= [
5
[-
- DNEL | o =
L het
f__d____,-- | —
(R M4X0.7, thru — 5""‘13
14 |_. @1.5 HY, thru
T 5 2X equally spaced

units: mm

Figure 3.4. MEGP 25E gripper dimensions - [15]

3.3 Endoscopic Camera

The vision sensor used is shown in Fig. 3.5. It is a compact USB endoscope Rebel RB-1140
(480p) which delivers 640 x 480 images from a 1/5" sensor through a 7 mm-diameter probe
with a 67° nominal field of view, powered directly from 5 V USB. The probe integrates
six white LEDs around the optics to illuminate close-range scenes [16].

34

3.4 — Force sensor

Figure 3.5. Endoscope Camera Rebel Tools RB-1140

3.4 Force sensor

The end-effector uses a Bota Systems Medusa 6-axis force/torque sensor (model BFT-
MEDS-SER-MS8). 1t is compact and light (about 48 mm in diameter and 32mm tall,
around 113 g), runs on 5V at roughly 1 W, and operates from 0-55°C. Data are provided
over USB/RS-422 through an M8 serial connector [17].

Performance is strong for a wrist-mounted device: force ranges are £400N on F, F,
and £500N on F}; torque ranges are £5Nm on M,, M, and £8 Nm on M,. Overload
limits are higher (up to 1000/1000/2000 N and 12/12/15Nm). Typical accuracy is < 2%,
nonlinearity < 0.2%, and at 100 Hz the noise-free resolution is about 0.18 N (x,y), 0.07N
(z), and 3.0/1.2mNm (roll/pitch, yaw). With the serial interface, the sampling rate
reaches up to 800 Hz.

The side cable exit helps with routing near joints Js—Jg. The M8 connector exposes
TX4, RX4, VT, and V. The sensor works with common software stacks such as ROS,
MATLAB, Python, TwinCAT, and LabVIEW, and is compatible with Mecademic robots

too.

When interpreting measurements, the combined-load limits should be respected: the
full range applies on a single axis, but allowable loads decrease when several axes are
loaded at the same time. These characteristics make the Medusa well suited for contact-
rich tasks such as compliant approach, contact detection, and light manipulation on a
small arm.

35

Instrumentation

Figure 3.6. Medusa side 6-axis F'T sensor with Serial interface - [17]

3.5 PyTorch

All neural network models developed in this work are implemented in PyTorch, an open-
source deep learning framework that combines a Pythonic, imperative programming style
with efficient CPU/GPU execution [18]. PyTorch is built around the notion of tensors, i.e.
multi-dimensional arrays similar to NumPy arrays but with native support for automatic
differentiation and hardware acceleration. This makes it possible to prototype and train
complex models while keeping the implementation compact and readable.

In the context of this thesis, PyTorch is used to define and train the convolutional
neural networks that map camera images to task-space velocity commands. The same
framework is also employed to implement the loss functions, optimization routines, and
evaluation scripts needed to analyse the learned models and integrate them into the real-
time control loop of the robot.

36

Chapter 4
Implementation

The working principle of the proposed approach is illustrated in Fig. 4.1. The first sketch
in the Endoscopic Camera View column represents the initial condition, before the manip-
ulator starts moving. Once the control code is executed, the camera observes the target
and the current image acquired by the endoscopic sensor is fed to the CNN, which pre-
dicts a normalized task-space velocity. This velocity command is then mapped into joint
velocities through the inverse of the Jacobian, and the resulting joint rates are sent to the
robot controller.

As a consequence, the manipulator moves along the red vector towards the target.
At the next sampling instant a new image is acquired, the CNN is called again, and the
procedure is repeated. The sequence continues until the end-effector reaches the desired
pose, corresponding to the final image shown in the last sketch.

Endoscopic Camera View

Manipulator

Gripper

Figure 4.1. Schematic representation of the image-guided control scheme.

37

Implementation

As a result, this procedure can be represented by the open-loop control scheme in
Fig. 4.2, where v,,q denotes the task-space velocity predicted by the network and ¢ is the
vector of joint velocities obtained by mapping vp..q through the inverse of the Jacobian.

Upred q
CNN - g1 Robot

Figure 4.2. Open-loop control scheme.

If the network is trained on a sufficiently rich dataset, the gripper can reach the target
for any admissible position within the workspace, even if the die is moved during the
motion. Achieving this level of generalization, however, critically depends on how the
dataset is constructed and on the variability of the examples it contains.

4.1 Dataset construction

The performance of the learned controller strongly depends on the quality of the training
data. In this section, the procedure used to build the dataset is described in two steps.
First, the acquisition process is detailed for a single target position. Then, the method
is extended to generate data for multiple target locations across the workspace, enabling
the network to generalize beyond a fixed configuration.

4.1.1 One target location

1. The initial pose of the end-effector, i.e. the position and orientation of the Tool
Reference Frame (T'RF’) with respect to the Base Reference Frame (BRF), is selected
so that the workspace is fully visible while the robot operates in a comfortable
configuration. Figure 4.3 shows the chosen base pose, specified as [zp, 0, 2, 0, 90, 0],
where the first three entries are expressed in millimetres and the last three in degrees,
following the [X, Y, Z, Rx, Ry, Rz] convention.

Geometrically, this pose is obtained by translating the origin Oy of the base frame by
xp millimetres along X, and by z, millimetres along Z,, so that the gripper and the
camera are roughly centred over the planar workspace and kept at a sufficient height
for a clear field of view. The subsequent rotation of 90° about the Y} axis aligns the
tool frame in such a way that the camera optical axis points approximately towards
the target area, while the manipulator remains far from joint limits and kinematic
singularities. This configuration is used as the starting pose for the data acquisition
procedure and for the experiments discussed in the remainder of the thesis.

38

4.1 — Dataset construction

X

Figure 4.3. Initial relative pose between the TRF and the BRF.

2. A nominal arrival configuration must then be defined, corresponding to the pose in
which the gripper is sufficiently close to the target. With the endoscopic camera
connected to the computer and the live image displayed, the operator can move the
die on the workspace and observe in real time how it appears in the camera window.
A threshold value z, is selected for the TCP z—coordinate: when the TCP reaches
Zq, the control sequence is considered complete and the target is deemed reached.

A straightforward way to determine the in—plane coordinates (x4, y,) would be to en-
force fixed distances «, 3,7, d between the die edges and the image borders (Fig. 4.4),
but this requires precise calibration of the image geometry. Instead, the arrival pose
is chosen by exploiting the known geometry of the gripper fingers and of the die:
the target configuration is defined so that, in the camera view, the die face and its
dots appear in a repeatable alignment with the fingertips. This yields a visually
well-defined and easily reproducible arrival configuration.

Figure 4.4. Endoscopic camera view at the nominal arrival configuration.

39

Implementation

3. Once the initial and arrival configurations have been defined, a MovePose command,
which “moves the TRF to a specified pose with respect to the BRF” [19], is sent to
the robot in order to reach a convenient target pose above the workspace, illustrated
Fig. 4.5. This intermediate pose is designed as follows. First, the z-coordinate of
the tool is set to be exactly the same as in the nominal arrival configuration, that is
Zq, ensuring that the vertical distance between the gripper and the plane of the die
is fixed and known. Then, the x, and y, coordinates are selected arbitrarily within
the reachable planar region, while the tool orientation is kept identical to that of
the final arrival configuration. The robot therefore reaches a “hovering” pose at the
correct height, but horizontally displaced with respect to the final grasp point.

From this target pose, the operator manually places the die on the plane directly
under the gripper. The placement is guided by the endoscopic camera view and
by the geometric alignment between the fingertips and the visible face of the die, as
mentioned before, so that when the robot later moves from the initial pose toward the
arrival configuration, the target lies precisely along the expected approach direction
and matches the visual conditions used during dataset collection.

~ e y,
TZ: | L

v r3N%

Figure 4.5. Target pose used to manually place the die under the gripper.

4. Now that the target has been placed under the gripper, a further MovePose com-
mand is sent to the robot to bring the manipulator back to the initial base pose
[p, 0, zp, 0, 90, 0] of Fig. 4.3. This pose is used as the starting configuration for
data collection. From here, a MoveLin command is issued, so that the end-effector
“moves from the initial pose towards the nominal arrival pose along a straight line
in Cartesian space”, as sketched in Fig. 4.6 [19]. The linear speed of this motion is
set via the instruction SetCartLinVel, which “sets the desired and maximum linear
velocity of the robot TRF with respect to its WREF” [19],choosing a value that allows
the camera to acquire a sufficient number of frames along the approach trajectory
while keeping the duration of each run within practical limits.

40

4.1 — Dataset construction

Figure 4.6. Start of the linear approach trajectory used for data collection.

5. At this stage, while the robot moves towards the target, the association between
images and velocities is carried out. With a logging period T}, each camera frame
is captured and, for every frame, the corresponding task-space velocity is read using
the command GetRtCartVel. This function “returns the current Cartesian velocity
[V, Vy, Vs, We, wy, w,| of the TRF with respect to the BRF, computed from the joint
positions measured by the encoders” [14]. In this way, a sequence of image—velocity
pairs (frame_t,v;) is obtained, as illustrated in Fig. 4.7.

frame__1 [Vz, Uy, Vs, Wy Wy, W1
frame_ 2 Vg, Uy, Uy Wy, Wy, Wi |2
frame__38 Vgy Vy,y Vzy Wy, Wy, W |3
frame__t [Vz, Uy, Uz, W, Wy, Wt

Figure 4.7. Captured frames and corresponding task-space velocity vectors.

41

Implementation

6. Each acquired frame is saved in .png format, while the associated task-space velocity
vector is normalized using the Lo norm, treating the linear and angular components
separately. Let

v = [’Uwvvy?UZ]v W= [wwi%wz]v (41)

The corresponding Lo norms are

[vll2 = (4.2)

3
szZv HWH? -
=1

To avoid numerical issues when the norm is very small, thresholds 7, and 7, are
introduced. The normalized vectors are then computed as

v . w .
e i e >m X T i [lwllz >,
b= llvll2 . a=< vl .

0, otherwise 0 otherwise

In this way, non-zero velocity vectors are mapped to unit direction vectors, whose
components lie in [—1,1], while very small velocities are treated as zero. This rep-
resentation makes the dataset independent of the absolute speed used during the
data-collection runs: at deployment, the normalized task velocities predicted by the
CNN can be scaled by any desired gain. Finally, each frame is paired with the six
normalized components (0, 0y, 0,0y, &y, W) and stored in a .csv file, as summa-
rized in Table 4.1.

Images VUnormil VUnorm?2 VUnorms3 VUnorm4a VUnormsb VUnormé

img 1.png

img_2.png

img_t.png

Table 4.1. Dataset collection format.

At this stage, the dataset for a single target position is complete; the corresponding
table contains t rows, one for each acquired frame. However, a network trained only
on data collected from this single configuration would have limited generalization
capabilities: it would learn to predict correct velocities essentially only when the
target is placed at that same location. The next step is therefore to extend the
procedure to multiple target positions (z¢,t¢) across the z-y plane, so as to enrich
the dataset and improve the robustness of the learned controller.

42

4.1 — Dataset construction

4.1.2 Generalization

To enable the CNN to predict meaningful velocities for any admissible position of the
target on the workspace, the dataset must cover a sufficiently large portion of the plane.
For this purpose, the workspace is conceptually divided into a fictitious grid of C' =
M x N cells. The idea is to repeat the data—collection procedure described in the previous
subsection for each cell, manually placing the die in the corresponding location while
observing the endoscopic camera view displayed on the computer.

After completing the frame—velocity association for the first cell, the robot is translated
by a fixed displacement Ay along the —Y; direction, while retaining the same coordinates
Zq, 2q and the same tool orientation. This displaced hovering pose, illustrated in Fig. 4.8,
preserves the same vertical geometry of the arrival configuration while shifting the hori-
zontal projection of the gripper by a known amount.

From this new pose, the operator positions the die under the gripper exactly as before,
using the endoscopic camera and the fixed arrival configuration (Fig. 4.4) as a geometric
reference. Once the die is placed, the robot is returned to the original base pose and a new
MoveLin command is executed. The acquired frames and the corresponding normalized
task velocities are appended to the existing .csv file.

Figure 4.8. Target pose with displaced target position.

This procedure is repeated cell by cell. After covering all M cells along the first column
(from row 1 to row M), the robot performs a step of size Az along the X} direction to
reach the next column of the grid. From there, data collection continues for the second
column, using the same vertical steps Ay to visit each row. The process is iterated in a
scan—line fashion until every cell of the M x N grid has been visited and the corresponding
set of frames and velocities has been acquired. Intuitively, a larger number of cells (i.e.
smaller Az and Ay) provides a denser sampling of the workspace and, in principle, higher
prediction accuracy.

Figure 4.9 illustrates the resulting camera views. The first row schematically represents
the grid on the workspace and the successive manual placements of the die in different
cells, as seen by the base pose. The lower rows show the corresponding endoscopic images
along the approach trajectories, from initial distant views (with the die appearing in a
corner of the image) to final close-up views at arrival.

43

Implementation

Ax

M

Figure 4.9. Endoscopic camera views obtained while scanning the grid of target positions.

A practical limitation of this procedure is the amount of manual work required when
the grid is fine. For example, if the workspace is discretized into a 50 x 50 grid with steps
Az = Ay = 1 mm, the operator would need to reposition the die C' = 2500 times and
execute a full approach trajectory for each cell. This is time-consuming and not scalable.
To mitigate this problem, a solution based on two separate neural networks is proposed
in the following sections, relying on two different datasets and training stages.

4.1.3 Two-network approach

In order to reduce the amount of data required while still achieving good accuracy near
the target, a two-network strategy is adopted (Fig. 4.10). Two distinct CNNs are trained
and used in sequence:

o a first “coarse” network, responsible for approaching the target from a generic start-
ing configuration;

o a second “refinement” network, dedicated to the final part of the motion, when the
end-effector is already close to the die and higher accuracy is needed.

The switching between the two models is based on the height of the T'RF with respect
to the BRF'. Another threshold h is defined on the z-coordinate of the TCP. As long as
z > h, the velocity command is generated by the first CNN, which brings the end-effector
from the initial pose to a neighbourhood above the target. When the TCP crosses the
threshold (z < h), the control loop switches to the second CNN, which refines the motion
and drives the robot towards the arrival configuration. In the picture, the arrival pose of
the first CNN, z,; is the same as the base pose for the second CNN, zs.

44

4.1 — Dataset construction

Figure 4.10. Tlustration of the two-network approach, coarse and refinement phase.

The two networks are trained on datasets obtained with the same collection pipeline
described in the previous subsections, but using different grid parameters, as sketched in
Fig. 4.11. For the first network, which only needs to provide a rough approach, the grid on
the workspace is relatively coarse: the displacements Az; and Ay; between neighbouring
cells are larger, so the total number of cells C; = M; x Nj is smaller. This reduces the
number of required trajectories and manual placements of the die, while still giving the
CNN a global view of the workspace.

The second network, instead, is responsible for accurate positioning in the vicinity of
the target. Here the grid is finer, with smaller steps Azs and Ay, and consequently a
larger number of cells Cy = My x Ny. In this way, the dataset for the refinement network
densely samples the set of possible target locations, allowing the model to learn precise
corrections when the die is already close to the centre of the image.

Ay Ays

Az Axy

Ny Ny

My M,

Figure 4.11. Grid parameters for the two-network approach.

This strategy requires collecting two separate datasets and training two distinct net-
works, which increases the overall effort and calls for careful tuning of both models. How-
ever, the structure of each dataset remains the same: at the end of the collection phase,
there is a folder containing all the .png frames and a .csv file with the corresponding six
normalized velocity components, stored in the format illustrated in Table 4.1.

45

Implementation

4.2 Training phase

Once the dataset has been assembled, a dedicated script handles the training phase.
The overall pipeline first partitions the data into training and validation subsets, then
configures a set of hyperparameters and callbacks, and finally instantiates and optimizes
the CNN model.

4.2.1 Dataset partitioning and shuffling

Before training, the dataset is split into two disjoint subsets: a training set, used to
update the network weights, and a wvalidation set, used only for evaluation and tuning of
hyperparameters during development. The validation set provides an unbiased estimate
of generalization, enabling detection of overfitting, model selection, and hyperparameter
tuning while training is still in progress [20].

To obtain representative subsets, the dataset is randomly shuffied prior to the train-
validation split. Many acquisition pipelines produce temporally or spatially ordered sam-
ples (e.g., consecutive frames along a robot trajectory or blocks of images under similar
lighting). Splitting such ordered data without randomization would systematically assign
the early samples to one subset and the later samples to the other, biasing the validation
estimate. In implementation, a single permutation is generated and applied consistently
to both the image filenames and their labels before performing, for example, an 80/20
split.

4.2.2 Training hyperparameters

Several hyperparameters must be specified before launching the optimization, which will
be tuned :

« Resolution of the input frames

The spatial resolution of the input frames after decoding and resizing fixes the ge-
ometric detail available to the network and determines the computational cost per
batch. In this work, images are resized to 240 x 320 pixels (aspect ratio of the Rebel
RB-1140 camera preserved), which offers a good compromise: the model trains
quickly and fits within modest hardware constraints while still retaining the main
structural cues of the scene. Increasing the resolution would preserve finer details
(e.g., small gripper edges or subtle texture gradients) but would also increase the
number of activations and floating-point operations almost proportionally to the
pixel count, slowing training and potentially requiring smaller batch sizes. Because
geometric consistency matters in vision-based robotics, the aspect ratio is kept con-
stant across the dataset.

« Batch size
The batch size controls how many samples contribute to a single gradient update,
trading off gradient noise against throughput and memory usage. A relatively small
batch, such as 10, injects beneficial stochasticity into the gradients, which often
improves generalization in regression problems with noisy labels, and ensures that

46

4.2 — Training phase

the pipeline runs even on limited GPU/CPU resources. Larger batches can exploit
hardware parallelism more effectively but may require readjusting the learning rate
and can sometimes lead to sharper minima that generalize worse [21]. Since the
architecture does not employ batch normalization, very small batch sizes do not
affect running statistics, making a batch of 10 a safe and pragmatic default.

¢« Number of epochs

The number of epochs defines an upper bound on how many full passes over the
training set are allowed. Too few epochs lead to underfitting, with both training and
validation errors remaining high; too many epochs without safeguards lead to overfit-
ting, where the training loss keeps decreasing while the validation loss increases. Here
the epoch limit is combined with validation-driven callbacks (learning-rate scheduling
and early stopping) so that training typically terminates automatically when valida-
tion performance stops improving. In this setting, the epoch count acts mostly as a
safety cap rather than a precise stopping rule.

4.2.3 Callbacks

Three callbacks manage generalization and optimization during training: early stopping,
learning-rate scheduling, and checkpointing.

« Early stopping
As training progresses, the network tends to reduce the loss on the training set, but
after a certain point the validation loss (used as a proxy for generalization) may
stagnate or even worsen. Early stopping monitors a held-out metric, the validation
loss in this case, and terminates training once the metric has failed to improve for
a specified number of epochs, optionally restoring the best weights observed so far
[22]. This prevents unnecessary overfitting and saves computational time.

o Learning-Rate scheduling

When the validation loss stops improving, the current learning rate may be too large
for the optimizer to settle into a better local minimum. A learning-rate scheduler
addresses this by automatically reducing the learning rate when no progress is de-
tected for several epochs. After each epoch, the monitored metric is checked; if there
is no meaningful improvement for a given patience, the optimizer’s learning rate is
multiplied by a factor, subject to a minimum value. An optional cooldown period
prevents repeated rapid reductions.

¢ Checkpointing
Because overfitting can occur after the best validation performance has been reached,
checkpointing saves the model whenever the monitored validation metric improves.
With the save_best_only=True option, each improvement overwrites the previous
best model on disk, ensuring that, at the end of training, the weights correspond-
ing to the best validation epoch are available even if subsequent epochs degrade
performance.

47

Implementation

4.2.4 CNN model

After defining the data split, hyperparameters, and callbacks, the script instantiates the
convolutional neural network that maps each camera frame to a 6-D task—space velocity
vector. The overall processing pipeline is sketched in Fig. 4.12: a 320 x 240 RGB image is
decoded and normalized, passed through a stack of convolutional and dense hidden layers,
and finally mapped to the six output components (o1, ..., 0g).

To study how model capacity influences the fit, a sequence of architectures is con-
sidered, starting from a lightweight configuration (few filters/neurons) and progressively
increasing the number of channels, layers, and hidden units. This incremental procedure
makes it possible to observe how training and validation errors evolve and to select the
smallest architecture that achieves strong validation performance without clear signs of
underfitting or overfitting.

Input image

Normalization

Hidden layers

320x 240 px — { (R,G,B) € [0,1]3 } — . —

199911

Figure 4.12. General CNN architecture implemented.

All architectures share the same input specification, layers. Input (shape=(img_height,
img_width, 3)), where the last dimension equals 3 because each frame is encoded as an
RGB image. In the preprocessing pipeline, tf.image.decode_png(..., channels=3)
converts all images to three-channel RGB, which are then scaled to [0,1] by division by
255.0. This guarantees that every model in the capacity sweep receives inputs with the
same spatial resolution, number of channels, and numerical range, so that differences in
performance can be attributed to architectural choices rather than to changes in prepro-
cessing.

ReLU Activation Function

Hidden layers use the Rectified Linear Unit (ReLU) activation, ReLU(z) = max(0, z),
applied elementwise (Fig. 4.13). ReLU leaves positive activations unchanged and sets
negative activations to zero, providing a simple and computationally efficient nonlinearity
that largely mitigates vanishing—gradient issues compared to sigmoid or tanh functions
[23, 24]. In this vision—based regression setting, ReLU is particularly advantageous: its
gradients do not saturate, which prevents the slowdown typical of sigmoidal activations;
it avoids artificially compressing internal feature values into fixed intervals, preserving a
wider range that is useful when the target velocities span different magnitudes; moreover,
when paired with a linear output layer, it induces a flexible mapping from pixels to the

48

4.2 — Training phase

six velocity components, an appropriate inductive bias for locally linear image—motion
relationships.

Even though hidden activations are non—negative, the final Dense(6) layer is linear, so
positive and negative velocities emerge naturally from weighted combinations of ReLLU
features.

ReLU(z)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 4.13. ReLU activation function.

Adam Optimizer

Optimization is performed with the Adam algorithm [25], which extends stochastic gra-
dient descent by maintaining separate adaptive learning rates for each parameter. For a
parameter vector § and gradient g; = VgL.(0) at iteration ¢, Adam maintains exponen-
tially decaying moving averages of the first and second moments of the gradients:

my = Bime—1 + (1 — 1) g, (4.3)
vy = Bovi—1 + (1 — B2) g7

Bias-corrected estimates are then formed as

my Ut

mt - ﬁt — =71 (45)
1— 6 1-p54
and the parameters are updated with an elementwise adaptive step
1y
Or1 =0 —a —. 4.6
t+1 t \/E + . ()

Here i acts as a momentum term (a smoothed descent direction), while 9 rescales the
step size coordinate-wise by an estimate of gradient magnitude, yielding per-parameter

49

Implementation

learning rates. The default settings a = 1073, 31 = 0.9, B> = 0.999, and ¢ = 1078 are
used, which are known to work well across a wide range of deep-learning problems.

Adam is computationally efficient (linear in the number of parameters), has modest
memory overhead (two extra vectors of the same size as), and performs well on non-
stationary objectives and problems with sparse gradients, which makes it a natural choice
for CNN-based regression tasks such as the present one.

Loss function: Mean Squared Error

The mean squared error is used as the training criterion. For a batch of size N and six out-
puts per sample (three translational and three rotational task-space velocity components),
the loss takes the form

6
Lyse = — Z Z vir — i) (4.7)

which corresponds to the standard ’mse’ loss in Keras. MSE can be interpreted as
the negative log-likelihood under an i.i.d. Gaussian noise model on the residuals and
yields smooth gradients that are proportional to the residuals: large errors receive larger
corrective updates, which is desirable when the goal is to match continuous velocities.

In practice, plain MSE is used for optimization, while mean absolute error (MAE)
is monitored for interpretability in native units. If different output components had
markedly different scales, a standardized or weighted MSE could be adopted without
changing the rest of the pipeline.

Capacity and regularization: Overfitting vs. Underfitting

To manage the bias—variance trade-off, the training strategy proceeds in two phases. First,
a deliberately larger CNN is considered, with enough filters and hidden units to rule out
underfitting: the model must be capable of driving the training loss and MAE down
and of clearly learning the image-to-velocity mapping. Once the learning curves show low
training error but only modest improvements on the validation set, the capacity is deemed
sufficient.

In the second phase, regularization is introduced to control overfitting. Dropout [26]
with a rate in the range 0.3-0.5 is applied in the regression head, randomly zeroing a
fraction of activations during training to discourage co-adaptation and improve gener-
alization (dropout is inactive at validation and test time). In addition, early stopping
on the validation loss with restore_best_weights=True halts training near the epoch
that minimizes the validation error and restores the corresponding weights. This two-step
procedure— starting with ample capacity and then regularizing with dropout plus early
stopping— first avoids underfitting and then reduces variance, yielding a compact model
with the best validation performance observed in practice.

50

4.3 — Jacobian Inversion

4.3 Jacobian Inversion

Once the CNN is properly trained, it outputs the six components of the end—effector
velocity (the task—space twist). These task—space velocities could in principle be used
directly for control, but in this work they are first mapped into joint velocities, which are
the commands actually executed by the robot motors. This mapping is obtained via the
Jacobian, and there are several advantages to working in joint space.

First, the Jacobian—based conversion makes it possible to introduce the damped least
squares inverse, which regularizes the kinematic inversion near singularities and prevents
the joint velocities from blowing up when the manipulator passes through poorly condi-
tioned configurations. Second, joint space is the natural domain for enforcing per—joint
limits and safety checks: after the inversion, each component of ¢ can be saturated or
filtered according to the hardware specifications of the corresponding actuator. Finally, if
the manipulator is kinematically redundant, joint—velocity control provides direct access
to the null space of the Jacobian, allowing posture optimization terms to be added (e.g.,
to keep the robot away from joint limits or from uncomfortable configurations) without
affecting the primary task.

To implement this mapping, a Python module jacobian_computation.py is used
throughout the tests. It defines two core functions: dh_transform, which computes the
homogeneous transformation 7}_; from link i — 1 to link i given the Denavit—Hartenberg
parameters, and compute_jacobian, which chains these transforms to evaluate the for-
ward kinematics and assemble the geometric Jacobian at the current joint configuration.

Since no official DH parameterization is provided for the Meca500, the reference frames
and corresponding parameters are assigned manually, following the rules recalled in Sec-
tion 2.3.1. The resulting DH frames and axes are shown in Fig. 4.14.

Figure 4.14. Placement of the reference frames for Denavit—Hartenberg parameterization.

51

Implementation

Once the reference frames have been assigned, the next step is to compute the cor-
responding Denavit-Hartenberg parameters. Since the manipulator has six degrees of
freedom and all joints are rotational, the joint variables are defined as:

i=1,....6 (4.8)

The remaining DH parameters are derived based on the information provided in
Fig. 4.15, which shows the link lengths (in millimeters) required to assign the param-
eters. The figure is sourced from the Meca500 user manual [14].

Gi = q; for

] ,."‘._‘ boundary for
/ wrist center
I

-
-

-
LN
- —-——

T
i-—aa—-—l units: mm

Figure 4.15. Dimensions of the Meca500.

The resulting DH parameters are summarized in Table 4.2. Note that for joints 2
and 6, an intrinsic joint offset must be accounted for. This offset is subtracted from the
corresponding joint variable, as indicated in the table.

Link a[mm)] al°] d[mm] 0[°]
0O, 0 —-90 135 Q1
O, 135 0 0 q2 — 90
O3 38 —-90 0 q3
Oy 90 120 q4
Os =90 0 g5
Osg 55 0 125 g6 — 180

Table 4.2. Denavit-Hartenberg parameters for the Mecab00 manipulator.

52

4.4 — Velocity Smoothing

So, the dh_transform function takes as input the defined Denavit-Hartenberg pa-
rameters and outputs the transformation matrix 77 ;, as shown in Equation 2.10. This
matrix is essential for computing the vectors of frame origins and axes along the kine-
matic chain. Specifically, the function compute_jacobian computes the cumulative trans-
formation 7T} ; for each link in the chain. At each step, it calculates the frame origin
pi—1 = (T}_1)o:3.3 and the joint axis z;_1 = (T}_;)o3,2. By chaining the transformations
Ti , for all links, the end-effector position p, = (T9)p.3.3 can also be obtained. These
quantities are then used to assemble the geometric Jacobian column by column for all
revolute joints, as shown in Equation 4.9:

J(): ZOX(pepr) le<pefp1) Z5X(pefp5) (49)
q 20 21 e 25 :

In the main script, a renormalize function is defined. It takes the 6-D vector from the
CNN and projects it onto the unit sphere, preserving direction while discarding magnitude.
The function first computes the L2 norm of the vector; if that is greater than the thresholds
1 and 79, it returns the normalized vector 0 = m, otherwise, it returns a zero vector
to avoid division by (near) zero. This normalized vector is then transformed into joint
velocities using the inverse of the Jacobian matrix.

4.4 Velocity Smoothing

To attenuate high-frequency fluctuations and reduce jerk in the joint-space commands
produced by the vision-based pipeline, the commanded joint velocities are filtered using a
first-order exponential moving average (EMA), following the ‘One Euro’ filtering approach
for real-time signals [27]. Let ¢, € R® be the raw joint velocity vector at control step k
(after Jacobian mapping, normalization, and saturation), and let ¢i™ be the smoothed
command that is actually sent to the robot. The update rule for the smoothing is given
by

" = (1= o) g% + g, (4.10)

where o € (0,1] is the smoothing coefficient (smoothing alpha in the code). Equa-
tion (4.10) is the standard discrete first-order low-pass filter, with a pole at 1 — «. For a
loop period At, the filter’s equivalent continuous-time time constant is

At
T T In(1—a)’ (4.11)

and the —3 dB cutoff frequency is f. &~ 5—. In the implementation, At = 0.05 s and
«a = 0.5, yielding 7 &~ 0.072 s and f. ~ 2.2 Hz. Consequently, a step change in ¢ settles
to within approximately 95% of its final value in about 37 ~ 0.22 s (roughly five control
iterations).

The filter is applied at the end of the command chain:

. . A cli EMA .
CNN image = v — § —— TP qx ¢;" — MoveJointsVel.

53

Implementation

Saturation is applied before smoothing, ensuring that both ¢, and ¢;™ remain within the
joint speed limits. The initial condition ¢g™ = 0 provides a smooth ramp from rest,
and the same filter naturally mitigates transients when switching between the coarse and
refine networks. The selection of « follows the typical trade-off: setting @ — 1 minimizes
lag (i.e., no smoothing), whereas smaller values of « increase attenuation at the cost of
responsiveness. If a target time constant 7* is preferred, a can be set as

a=1—e 8" (4.12)

The final smoothed velocity command ¢;™ is then sent to the robot as the joint velocity
command through the MoveJointsVel command.

4.5 Analyzing Different Initial Conditions

It is interesting to examine the behaviour of the system when the initial conditions differ
from those used during dataset collection. Such tests are useful not only for evaluating
the overall robustness of the control loop, but also for revealing potential failure modes
and identifying operating conditions in which the controller might behave differently than
expected.

In the following, the three Cartesian coordinates of the TCP with respect to the BRF
are analyzed separately, since variations along different directions may highlight distinct
aspects of the system.

4.5.1 Different z-coordinate

In particular, this subsection considers the case in which the z-coordinate of the TCP with
respect to the BRF is larger than in the original base pose used during data collection.
In the current setup, the target is always placed on the plane generated by the vectors
Xp and Y;. As a consequence, in all training examples the die lies below the camera, and
the predominant component of the learned task velocity is directed along the negative
Zy—axis. Therefore, even if the base z—coordinate is chosen to be larger, the CNN still
tends to predict a motion that drives the TCP downwards toward the X,-Y; plane.

Figure 4.16 shows a different initial condition, in which the TCP starts at a higher
altitude zy > 2z,. Once the control loop is started and the first image is fed to the
network, the CNN outputs a velocity whose vertical component points towards —Z3, and
the robot begins to descend, independently of the exact camera resolution or of moderate
variations in target visibility. As the TCP approaches the plane and the viewpoint becomes
closer to those seen during training, the frames enter the distribution on which the CNN
was trained, and the subsequent motion follows the same qualitative behaviour as in the
nominal case.

54

4.5 — Analyzing Different Initial Conditions

X

Dz

Figure 4.16. Base pose with a larger z-coordinate.

Along the motion shown in Fig. 4.16, there exists a configuration in which the joint
variable g5 /= 0°. This situation corresponds to the robot being in, or very close to, a wrist
singularity. In such a configuration, the axes of joints 4, 5, and 6 become nearly collinear,
causing a loss of rank in the Jacobian associated with the spherical wrist and making
certain end-effector angular velocities either uncontrollable or solvable only through un-
bounded joint rates. This configuration is illustrated in Fig. 4.17.

Figure 4.17. Wrist singularity configuration of the robot.

55

Implementation

To robustly handle this situation, the control loop employs the Damped Least Squares
(DLS) inverse kinematics method. The Jacobian J(g) is computed as described in Sec-
tion 4.3, but its inversion is carried out using the regularized map

g=J7(JJT + XD vprea,

where the damping factor A introduces a positive-definite term that prevents numerical
instability in the vicinity of singularities by compensating for small singular values of
JJT. This regularization keeps the inverse kinematics problem well-conditioned even
when the wrist axes align, ensuring that the commanded joint velocities remain bounded
and physically executable.

In practice, the use of DLS avoids the characteristic joint—velocity explosions that an
inverse or pure pseudo-inverse would produce when g5 — 0°. As a consequence, the robot
can traverse regions of poor manipulability smoothly and continue its motion toward the
target without oscillations or instability.

4.5.2 Different z and y coordinates

Instead of modifying the z-coordinate, this subsection examines variations of the TCP
along the X, and Y} axes. From the camera’s perspective, the only quantity that matters
is the relative position of the target within the image plane. Consequently, the same
camera frame can be obtained in two distinct ways: either by translating the die on the
workspace, or by translating the TCP in the opposite direction by the same amount AS,
as illustrated in Fig. 4.18.

During dataset collection, the target was placed manually at different positions across
the plane, exposing the CNN to a wide variety of image configurations. However, the
network receives only the image as input and has no knowledge of the robot’s absolute
starting pose. Therefore, it cannot distinguish whether a given image results from moving
the die while keeping the base pose fixed, or from modifying the robot’s initial pose while
keeping the die fixed. If the target occupies the same pixel region, the CNN interprets the
two situations as identical, producing the same predicted task—space twist. In this sense,
the CNN implicitly treats the two operations as equivalent, because the image alone does
not encode how the relative geometry between robot and die was produced.

56

4.5 — Analyzing Different Initial Conditions

Camera view

Figure 4.18. Different base—pose analysis: moving the TCP vs. moving the target.

All the implementations presented in this chapter must operate consistently across
such situations. The two-network structure (coarse approach followed by refinement) and
the DLS Jacobian inversion must remain reliable regardless of the initial base pose. In
particular, when different starting poses produce identical camera views, the pipeline is
expected to compute essentially the same joint—space commands and to guide the ma-
nipulator toward the same final configuration, independently of how the relative position
between robot and target was originally achieved.

o7

58

Chapter 5

Additional Control Branch

Motivated by industrial scenarios in which the end—effector may need to be gently repo-
sitioned while the task is ongoing, an admittance—like branch is added to the baseline
CNN-driven architecture. As sketched in Fig. 5.1 (where the symbol “\” denotes a switch
block), the CNN maps the camera image to the task-space vpreq, whereas the measured
external wrench F' drives a virtual mass—damper model A% + D4 = F to produce a
compliant velocity vadqm. The switch routes either vpreq Or Vaam to the kinematic inverse
G = J '(q)v: in free space it passes the vision command; when interaction is detected
(IIF|l > Fin) or a manual “move” request is issued, control authority is handed to the
admittance branch to ensure safe, dissipative motion.

The design aims are to preserve fast vision—driven behavior away from contact, to
introduce mechanical compliance during interaction without ad—hoc heuristics, and to
keep the implementation real-time friendly by using diagonal, positive A and D (no
stiffness term, avoiding bias in pure velocity control). The remainder of the chapter
formalizes the switching logic, provides tuning guidelines for A and D, and evaluates the
impact on tracking accuracy and interaction safety.

Upred q

CNN \ J1 Robot

Vadm

Ai+Di =F

9

Figure 5.1. Full open loop control scheme

The main control script is then modified, in order to implement this behaviour too.
The code realizes an admittance-like behavior in task space as a discrete, first—order
mass—damper driven by the external Force, combined with a hard switch that selects

59

Additional Control Branch

between vision and admittance commands. The main difference with the classical admit-
tance control law, is that the damping matrix K has been set to 0, omitting the related
term K(x — z¢q). Including K would turn the mapping into “push — position offset”:
at steady force the velocity would go to zero and the tool would settle at some displaced x.

That conflicts with the goal (gently keep moving the end-effector while an operator or
contact applies a force), and it would also require maintaining a consistent position state
x and an equilibrium z., that wouldn’t fight the CNN’s vision command. In a velocity
architecture like this, a spring introduces bias and “snap-back”: when contact is released,
stored spring displacement can create unintended motion. By using only M and D, the
branch stays strictly dissipative, simple to tune, and provides the desired behavior. For
these reasons, the control law is the one shown in Fig. 5.1.

The admittance branch is configured by some parameters, which have been varied to test
different scenarios:

o Matrices M and D. These two matrices, defined as

my -+ 0 dy - 0
M=|: - and D=1|: .. 1,
0 - mg 0 - dg

have the role of defining the behaviour of the controlled system.

The wvirtual damping D sets the steady-state sensitivity: under a constant force fo,
the velocity converges to vgs = %. Hence D is the direct “push to speed” knob: larger
value of D yields slower drift under the same contact load and increases dissipativity.

The virtual mass M, instead, shapes the transients and the noise rejection: it acts like
inertia term on v. Larger values of M (at fixed D) show how quickly the compliant
motion ramps up or decays and attenuates high-frequency wrench spikes.

Because M and D are diagonal in the implementation, each of the six task-space
axes can be tuned independently (for the linear part M in kg and D in N -s/m; for
the rotational one, M in kg -m? and D in N -m - s/rad), allowing tighter rotational
damping and gentler translational yielding while preserving well-behaved interaction.

e Velocity deadband v.. Conceptually, this term adds a tiny region around v =
0 where the commanded velocity is forced to exactly zero, making the system
quiet when no intentional push is present and preventing micro-motions that would
otherwise persist because of noise, quantization, or the integrator memory in the
backward-Euler update.

e Force thresholds f. and 7.. To prevent spurious reactions in free space, the raw
force is filtered by per—azis thresholds: any linear force component with magnitude
below f. N and any torque component below 7. N -m is set to zero. This compo-
nentwise gate suppresses bias drift, yielding a sparse, reliable force that drives the
switch to the admittance branch only when contact is unambiguous.

60

Additional Control Branch

o Sampling period At. It parameterizes the implicit discretization of the admittance
law, to be better discussed in the following.

For each control cycle, the code reads a wrench F' € RS from the Bota sensor, containing
three forces and three torques. Since the sensor frame is not aligned with the end-effector
frame, a fixed rotation

0 0 1
R=|0 10
-1 0 0
is applied to both the force and torque components. Let f = (f1, fo, f3) and 7 = (71, T2, 73)
denote the rotated linear and angular parts, respectively.

Very small components are then filtered out componentwise using the force thresholds
fe and 7
- {fz if ’f1| > fe, = _ {Ti if |Tz| > Te,

=

fi= 0 if|fi| < £, 0 i |n| <.

The filtered wrench actually fed to the admittance law is then
F = [f_luJF2af_?n7_—177__277_—3]—r

Backward (implicit) Euler is used to discretize the system in real time. Over one sampling

interval At, the derivative at t;, is approximated by a backward difference and the damping

term is evaluated at the current step:
Uk — Vg—1

oty) ~ kT Ukl — M 2k T Ykt

Duv, = Fp.
Al A + Do k

Rearranging gives the implicit update solved at each cycle:
(D—F%) v = Fk + %'Uk:—l-

With M > 0 and D > 0, the left—-hand matrix is symmetric positive definite, the solu-
tion is unique, and the discretization preserves the intended dissipative behaviour of the
admittance element at the practical sampling rates used here.

The raw admittance velocity vy is then subjected to a small velocity deadband:

Uk f Jugs| > ve,
Vk,i < .
' 0 if |ogi| < ve,

and finally clipped to a maximum magnitude before being mapped to joint velocities
through the DLS inverse kinematics.

A separate switching threshold fs is used to decide when to engage the admittance
branch instead of the CNN branch. The decision is based on the norm of the filtered

linear force,
IFll =/ F2+ 3+ 12,

61

Additional Control Branch

leading to

. Vadm, ||fll > fs (admittance only),
total — _
venns || fIl £ fs (vision only).

Thus, the per—component deadbands (f¢, 7.) and the switching threshold fs play different
roles: the former reject small noisy readings on each axis, while the latter decides when
the interaction is strong enough to give priority to the admittance behaviour.

Although torques do not participate in the switching criterion by default, they could be
included via a torque threshold 75 (engage if || f|| > fs or ||7|| > 7s). Once the admittance
branch is active, both linear and angular admittance velocities are generated, deadbanded
and clipped as above, and then mapped to joint rates through the DLS inverse kinematics.

62

Chapter 6

Results

This chapter presents the experimental results obtained with the two proposed control
approaches. For each approach, the mechanical and vision setup used during data ac-
quisition and the corresponding workspace ranges are first described. The data-collection
phase is then summarized with quantitative descriptors, such as the number of sessions
and images. Next, the training phase is detailed for each approach, including the main hy-
perparameters, the structure of the training/validation splits, and representative images
from the experimental setup.

Finally, the performance is reported using task-relevant metrics (per-axis MAE/MSE,
overall velocity-vector error, and the percentage of samples within given tolerance bands),
together with learning curves and photographs taken from the physical experiments.

6.1 One-Network Approach

This configuration follows the procedure described in Section 4.1. The robot is initialized
in a base pose [230, 0, 190, 0, 90, 0] (Fig. 4.3), chosen so that the endoscopic camera is
approximately normal to the working surface and centered over the region of interest. In
this arrangement, the field of view covers a sufficiently large portion of the workspace to
permit reliable data collection while still providing adequate image resolution for training
and evaluation.

The target pose is selected empirically by positioning the die within the camera frame
and refining its placement until a repeatable and well-centered image is obtained (TCP
reaches z, = 17mm). For this reason, the face showing the number five is used: its sym-
metric arrangement of dots provides a visually distinctive and easily repeatable reference
frame for the final approach. Figure 6.1 shows two representative images acquired at the
base pose (left) and at the desired target pose (right), which act as the endpoints of the
single-network data-collection trajectories.

63

Results

Figure 6.1. Base pose (left) and desired target pose (right) for the first network.

Following the procedure of Section 4.1.2, a fictitious grid is superimposed on the
workspace. The initial region considered is a 40 x 130 mm rectangle in the z—y plane.
Using a fine sampling resolution of Ax = Ay = 1 mm would yield a grid with

C =130 x 40 = 5200

cells. While this density would provide excellent spatial coverage and potentially high
precision, collecting and labeling data for all 5200 positions would be impractical in terms
of time and manual effort.

For this reason, the methodology transitions to a two-network scheme in later sections:
a coarse network to cover the full workspace and a refine network dedicated to precise
control in the vicinity of the target. Notice that the orientation of the end-effector is kept
constant for all trajectories and all points of the grid, fixed at [0, 90, 0].
In the context of the single-network baseline, however, a coarser sampling grid is adopted
for feasibility. The displacements are set to Az; = Ay; = 10 mm, resulting in

Cp =13 x4=052

cells, which drastically reduces the data-collection effort while still ensuring enough spatial
variability for training.

With a logging period of Ty = % s, SetCartLinVel set to 15 mm/s, a total of 10221
frames is acquired; an excerpt of the resulting CSV file is reported in Table 6.1. The last
three columns are identically zero because the end-effector orientation is kept constant for
all trajectories and the threshold 7, = 0.1rad/s removes the noise-dominated components
(while 7, = 0.01rad/s). As expected, the dominant term is the third component, which
is consistently negative, corresponding to motion towards the z—y plane.

Inspection of Table 6.1 also shows that consecutive frames exhibit only small variations
in the first three components, while the image indices increase sequentially. This confirms
the temporal coherence between images and labels, providing a sanity check on the logging
pipeline and the consistency of the collected dataset.

64

6.1 — One-Network Approach

image_filename Vtask,1 Vtask,2 Vtask,3 Vtask,4 Vtask,5 Vtask,6

frame__000000.png 0.04416 -0.60956 -0.78475 0.00000 0.00000 0.00000
frame__000001.png 0.03190 -0.44471 -0.89413 0.00000 0.00000 0.00000
frame__000002.png 0.01400 -0.39077 -0.91772 0.00000 0.00000 0.00000
frame_000003.png -0.03325 -0.39086 -0.91951 0.00000 0.00000 0.00000
frame_000004.png -0.01605 -0.38908 -0.92092 0.00000 0.00000 0.00000

frame_010221.png 0.14312 0.26956 -0.95113 0.00000 0.00000 0.00000

Table 6.1. Excerpt from the logged dataset used to train the networks.

The training phase was carried out iteratively, starting from a very compact baseline
and progressively increasing the model capacity and the number of training epochs. As
a first attempt, a shallow network with 10 units in the first layer, 50 hidden units and
an output layer of 6 neurons (one per velocity component) was used. This configuration
served as a low—capacity baseline: it was sufficiently simple to train quickly and to verify
that the image—to—velocity mapping could be learned at all, but it exhibited clear signs
of underfitting, with relatively high training and validation errors.

Subsequent experiments increased both the width and the depth of the network, as well
as the maximum number of epochs. In practice, this meant adding more convolutional
filters and a larger fully connected layer, so that the model could extract richer visual
features and represent more complex input—output relationships. At the same time, the
number of allowed epochs was raised to give the optimizer enough iterations to exploit
this additional capacity. Overfitting was controlled by monitoring the validation loss and
by enabling early stopping, so the training was automatically halted once further epochs
no longer improved generalization.

The final architecture adopted for the coarse network consists of a stack of five convo-
lutional blocks with [10, 50, 100, 180, 250] filters, each followed by 2 x 2 max—pooling, a
flattening layer, and a fully connected layer with 500 ReLLU units, ending in a 6-dimen-
sional linear output. The dataset is split into 80% training and 20% validation samples,
and images are resized to 240 x 320 pixels and normalized in [0,1]. The model is trained
with the Adam optimizer (learning rate 10~2) and mean-squared error loss, while global
and per—component mean absolute errors are tracked as metrics. A combination of early
stopping, learning-rate reduction on plateau, and model checkpointing ensures that the
best weights (in terms of validation loss) are retained and that the final model balances
fitting accuracy with robustness to overfitting.

During training, lasted about 1,5 hours, the network is optimized using the mean—squared
error loss, which is also monitored as a global metric. Figure 6.2, however, reports the
evolution of the mean absolute error for each task—space component during the training
of the coarse network, calculated as:

1N .
— =N 5@ — @
MAE N ;h} o). (6.1)

65

Results

MAE provides a more intuitive measure of the average absolute deviation between pre-
diction and ground truth for each velocity component, expressed in the same units as the
output, which makes the per-component behaviour of the network easier to interpret.

From the curves in Fig. 6.2, it can be observed that the early stopping criterion inter-
rupts the training at epoch 58, well before the initial limit of 100 epochs. This indicates
that no further improvement in validation MAE was detected beyond that point, and the
model parameters were restored to the best-performing epoch.

For the first three components, which correspond to the translational part of the task
velocity, both training (solid) and validation (dashed) curves show a rapid drop in the first
epochs and then settle to small values, with only mild oscillations. This indicates that
the coarse model quickly captures the main image—to—velocity relation without significant
overfitting. The remaining components v4 and vg are almost identically zero in the dataset,
and their MAE curves therefore converge very close to zero after a few epochs.

MAE v_task_1 MAE v_task_2

0.020 —— Train MAE v_task_1 0.030 —— Train MAE v_task_2
Val MAE v_task_1 Val MAE v_task 2
0.025
0.015
0.020
£ o010 £ o015
\ 0.010
0.005 e
Ne—_ 0.005 ;
LU SRR AR R
4 10 20 30 40 50 60 0 10 20 30 40 50 60
Epoch Epoch
MAE v_task_3 MAE v_task_4
—— Train MAE v_task_3 0.005 I —— Train MAE v_task_4
0.020 Val MAE v_task_3 | Val MAE v_task_4
0.004 1
|
0.015 |
0.003
0.010 L 0.002
0.005 \ 0.001
- ~T_.
| et SR N N g S
0.000 0.000
4 10 20 30 0 50 60 4 10 20 30 0 50 60
Epoch Epoch
MAE v_task_5 MAE v_task_6
0.0035 —— Train MAE v_task_5 —— Train MAE v_task_6
0.004
0.0030 Val MAE v_task_5 Val MAE v_task_6
0.0025 0.003
w 0.0020 g
0.0015 { 0.002
0.0010 \
\ 0.001
0.0005 - N |
o U N R I R U R
0.0000 0.000

Figure 6.2. Component-wise MAE for the coarse network.

It is worth noting that, despite the very low MAE values achieved by the coarse net-
work, the behaviour of the robot is not sufficiently accurate. The training and validation
sets cover only a limited portion of the workspace, so the network learns to interpolate
well around the sampled trajectories but does not generalize reliably to unseen positions.
As a result, the end—effector reaches only a neighbourhood of the target and still exhibits
residual errors, as expected. This motivates the introduction of a second network: the
coarse model is used solely to drive the system into a rough vicinity of the goal, while the
refine network, trained on a denser dataset around the target region, is then employed to
achieve the required positioning accuracy.

66

6.2 — Two-Networks Approach

6.2 Two-Networks Approach

As previously discussed, the second network is activated when the z-coordinate of the
TCP falls below a given threshold. In this work, the threshold is set to 40 mm: once the
end-effector is closer than this distance to the workspace plane, the refine network takes
over from the coarse one.

Figure 6.3 shows the camera perspective corresponding to the initial pose used for
training and to the desired target pose (the same configuration adopted in the one-network
approach).

Figure 6.3. Base pose (left) and desired target pose (right) for the second network.

Since the second network is responsible for the final positioning accuracy, the grid
parameters are now chosen to reflect this requirement. Tests carried out with the one-
network approach showed a maximum positioning error of approximately 10 mm at the
target pose. For this reason, the refine dataset is collected over a smaller region centred
around the target, defined as a 10 x 10 mm square in the x—y plane. With Azy = Ays =
1 mm, the resulting grid contains

Cy =10 x 10 =100

cells, providing a dense sampling of the area where the coarse network leaves the residual
error. As before, the end-effector orientation is kept fixed at [0, 90, 0] for all trajectories.

With the same logging period of Ty = % s, a total of 10254 frames are acquired for the
refine stage. Although the overall number of samples is comparable to the previous case,
the MoveLin command is now executed at 5 mm/s, so that more frames are recorded for
each grid point along the trajectory. The corresponding .csv file has the same structure
as the one reported in Table 6.1, containing, for every frame, the image filename and the
six task—space velocity components.

Then, the refine CNN is trained using the same data pipeline adopted for the coarse
model: images are resized to 240 x 320 pixels, normalized in [0,1], and the dataset is
randomly permuted and split into 80% training and 20% validation samples with fixed
random seeds for reproducibility. In order to resolve the small residual errors left by

67

Results

the coarse network, the architecture is made deeper and wider: six convolutional blocks
with [10, 50, 100, 200, 500, 1000] filters (each followed by 2 x 2 max—pooling) are used,
followed by a flattening layer and a fully connected layer with 2000 ReLU units, ending in
a 6—dimensional linear output. Training is performed with the Adam optimizer (learning
rate 1073), using the mean—squared error as loss and tracking both the global MAE and the
per—component MAE, as discussed previously. Early stopping, learning—rate reduction on
plateau, and model checkpointing are again employed to retain the best weights in terms
of validation loss.

Figure 6.4 shows the evolution of the mean absolute error for each task—space compo-
nent during training of the refine network. In this case the model continues to improve
throughout the full budget of 100 epochs (total training time approximately 4 hours), so
the early stopping criterion is not triggered.

For the translational components vy, vs and v3 the MAE starts around 6-10 x 1072
and rapidly decreases within the first ten to twenty epochs, then stabilizes below 5 x 1073.
Training (solid) and validation (dashed) curves almost coincide after the initial transient,
indicating good generalization and no evident overfitting. The remaining components vy,
vs and vg exhibit smaller initial errors and quickly converge to values of the order of 1073
or less, with only mild oscillations attributable to the reduced batch size. Overall, these
trends confirm that, on the densely sampled region around the target, the refine net-
work learns an accurate and well-behaved mapping from images to task—space velocities,
providing the precision needed to correct the residual errors left by the coarse stage.

MAE v_task_1 MAE v_task_2

—— Train MAE v_task_1 0.10 & —— Train MAE v_task_2

Val MAE v_task_1 Val MAE v_task_2

§ 0.03 §
004 13
0.02 \
- 0.02
0.01 = _
0.00 0.00
o 20 40 60 80 100 o 20 40 60 80 100
Epoch Epoch
MAE v_task_3 MAE v_task_4
0.07
—— Train MAE v_task_3 —— Train MAE v_task_4
0.06 Val MAE v_task_3 0.0025 Val MAE v_task_4
0.05 0.0020 \

y 00 W 0.0015)
00 H
0.0010
0.02
\
N\ 0.0005
0.01 S I,

0.00 0.0000

Epoch Epoch

MAE v_task_5 MAE v_task_6
0.0035
—— Train MAE v_task_S —— Train MAE v_task_6

0.008
Val MAE v_task_5 0.0030 Val MAE v_task_6
0.006 0.0025

0.0020

MAE

£ 0004 \

0.0015

0.002 \'”\ 0.0010
A\
i - 0.0005 Vst

0.000

0.0000

Figure 6.4. Component-wise MAE for the refine network.

68

6.3 — Tests

6.3 Tests

The overall control pipeline was evaluated through a series of experiments designed to
verify its behaviour under different operating conditions and to assess the consistency
between expected and observed performance.

As a first baseline scenario, the die is positioned on the workspace and the controller is
executed with the robot starting from the same base pose adopted during data collec-
tion, namely [230, 0, 195, 0, 90, 0]. This allows assessing how well the system reproduces
the behaviour seen during training, both in terms of approach trajectory and final pose
accuracy. Subsequently, a range of more challenging configurations is explored.

6.3.1 Moving the die during execution

A first qualitative test evaluates how the controller reacts when the target does not remain
fixed in the workspace. Starting from the same base pose used during data collection
[230,0,195,0,90,0], the robot begins its image-guided motion towards the die. While the
loop is running, the operator repeatedly displaces the die to different positions on the
plane, always keeping it within the camera field of view. At each control step, the new
image is processed by the CNN, which updates the predicted task—space velocity; through
the Jacobian mapping and smoothing, the resulting joint commands continuously bend
the trajectory towards the latest die position.

Figure 6.5 shows a sequence of synchronized frames: the top row reports the external
view of the robot and operator, while the bottom row shows the corresponding endoscopic
camera images. The path of the end—effector is clearly non—straight, reflecting the live
changes in the target location, but the controller remains stable and consistently steers
the gripper towards the die. The final pose is close to the desired grasp configuration: the
face with five dots ends up approximately under the fingertips, although a small residual
misalignment is visible (the upper dots are not perfectly aligned with the finger edges).

Figure 6.5. Sequence of robot configurations during a motion with live
displacement of the die.

69

Results

6.3.2 Different initial poses of the robot

A second set of tests evaluates how the controller behaves when the die remains fixed at
the same target location, while the robot starts from different initial poses. In particular,
the base pose is displaced along the Y} direction, producing three starting configurations
with three different y,:

230, —60,195,0,90,0], [230,0,195,0,90,0], [230,30,195,0,90,0].

Figure 6.6 shows the robot in the three considered configurations together with the cor-
responding camera views. Although the base position of the TCP has clearly changed,
from the vision standpoint these are simply three different images drawn from the same
image—velocity mapping learned during training. The CNN has no access to the robot
configuration: it only receives the endoscopic image and outputs the associated velocity
vector. Consequently, as long as the die remains within the field of view and its ap-
pearance is compatible with the training data, changing the base pose does not alter the
network’s behaviour, since the controller interprets each situation purely on the basis of
the observed frame.

Figure 6.6. Different base poses of the robot and corresponding camera views.

70

6.3 — Tests

Figure 6.7 shows instead the final poses reached by the robot in the three cases. As
expected, the system converges to essentially the same arrival configuration (little displace-
ments can be observed, in the first frame for example), demonstrating that the controller
compensates for different starting geometries and uses only the visual information to de-
termine the appropriate motion. This confirms that the network correctly generalizes over
changes in the robot’s initial configuration and behaves consistently with the principles
discussed in Section 4.5.2.

(o

Figure 6.7. Final arrival poses obtained from the three different initial configurations.

6.3.3 Damped Least Squares

A final experiment evaluates the behaviour of the controller when the robot starts from a
configuration that that passes close to a kinematic singularity. The base pose is modified
by increasing the z—coordinate of the TCP to z;

230, 0, 310, 0, 90, 0],

so that the wrist is much higher above the workspace than in the training setup. Figure 6.8
shows the corresponding initial configuration together with the camera view. Even though

71

Results

the CNN has never seen images acquired from this exact height, the target still appears
in the upper part of the frame, in a configuration qualitatively similar to those used for
training. As a result, the network immediately predicts task—space velocities that drive
the TCP towards the X;-Y; plane, and the robot starts moving downwards toward the
die.

_‘_i:= (L

P

Figure 6.8. Initial pose with the augmented z; coordinate.

The critical part of this trajectory occurs when the arm passes near a wrist singularity,
i.e. when the fifth joint approaches g5 =~ 0° and the wrist axes become almost aligned. In
this region the Jacobian matrix becomes nearly singular: its determinant (or, equivalently,
the manipulability) tends to zero and the condition number grows, so a standard inverse
J~! produces very large joint velocities for small commanded twists.

Figure 6.9 compares the outcome obtained without damping (left column) and with the
Damped Least Squares inverse (A = 0.03). In the no-DLS case, as the robot approaches
the singular configuration, the fifth joint begins to spin rapidly: the controller “tries” to
realize the commanded end—effector motion by generating large ¢s, but the corresponding
task—space motion is very small because the Jacobian is ill-conditioned. The arm therefore

72

6.3 — Tests

exhibits an unintended rotation of the wrist and fails to converge cleanly to the desired
grasp pose.

When DLS is enabled, the inverse kinematics uses
g=J"(JIT + ND) " prea,

so that the damping term A\2I regularizes JJ” and prevents the smallest singular values
from collapsing. Joint velocities remain bounded even near the singularity, and the arm
is able to pass through the problematic region and settle above the die. The final pose
is slightly less accurate than in the nominal, non-singular tests (the face dots are not
perfectly aligned with the gripper fingers), but the task is completed safely and without
the large, spurious wrist motion observed with the undamped inverse. This illustrates the
expected trade-off of DLS: improved robustness to singularities at the cost of a small loss
in asymptotic accuracy.

Figure 6.9. Arrival poses for pure inverse (left) and DLS (right).

73

Results

6.3.4 Admittance-like branch test

The virtual mass and damping used in the admittance-like branch were tuned iteratively
in real time, by varying the entries of the matrices and observing the resulting behaviour
of the robot. The final choice was a diagonal, isotropic configuration

L -0 100 --- 0
M = . . D= : t. :
0 --- 1 0 --- 100
which provides a relatively light virtual mass and a strongly damped response in all
controlled directions. The force and torque thresholds that trigger the admittance mode
were set to
fe=05N, Te = 0.5 Nm,

and a small deadband v, = 1 x 10~* was introduced on the commanded admittance
velocity to prevent the robot from reacting to sensor noise and very small contact forces.

Figure 6.10 illustrates a typical experiment. Initially, the CNN branch is active and
controls the robot exactly as in the previous tests: images from the endoscopic camera are
fed to the network, which outputs the desired task—space twist later mapped into joint
velocities. When the operator applies a horizontal force on the end-effector such that
£l > fs = 1 N, the logic switches to the admittance branch. At that moment, image
processing is effectively paused and the commanded velocity is generated solely by the
admittance law driven by the measured wrench.

The robot yields compliantly in the direction of the applied force, allowing safe physical
interaction. As soon as the external force drops below the threshold and the admittance
velocity falls inside the deadband, the controller hands control back to the CNN branch,
which resumes visual servoing from the new configuration.

Figure 6.10. Sequence of robot configurations during a motion with an applied force.

The corresponding endoscopic view at the nominal arrival configuration is reported
in Figure 6.11. The final pose is qualitatively correct, but less accurate than in the
pure CNN tests: the face dots are not perfectly aligned with the gripper fingers. This

74

6.3 — Tests

is consistent with the design objective of the admittance branch, which prioritizes safety
and compliance during physical interaction over sub-millimetric positioning accuracy.

Figure 6.11. Camera view at the arrival configuration with the admittance-like branch.

It is worth noting that the torque threshold 7¢ was not included in the current switching
logic, which relies only on the norm of the linear force || f||; large wrist torques with small
net force therefore do not, by themselves, trigger the admittance mode. Incorporating g
in a combined effort measure is left as future work.
Moreover, the admittance parameters were tuned manually; more refined, direction—dependent
tuning (for example stiffer normal to the table and softer tangentially) could further im-
prove interaction quality and operator comfort.

75

76

Chapter 7

Future work

The controller developed in this thesis demonstrates that a convolutional network can
successfully drive a robot toward a visual target using only image-based predictions
of task—space velocities. However, several extensions and research directions naturally
emerge from the current framework.

A first limitation concerns the treatment of orientation. Throughout all experiments,
the end—effector orientation has been kept fixed, and the CNN has never been exposed to
rotations of the tool or to different viewing angles of the target. Exploring trajectories
in which the orientation is deliberately varied, both during data collection and during
loop control, would make it possible to evaluate whether the learned mapping remains
consistent under rotational changes, and whether the controller can be extended to predict
full six—dimensional twists reliably.

The CNN architecture itself could also be enhanced. The current design is intention-
ally lightweight to guarantee real-time performance, but deeper or more structured models
may improve generalization if paired with a suitably enlarged dataset. Data augmentation
represents a simple but effective intermediate step: small rotations, translations, bright-
ness perturbations, or synthetic noise injected before the shuffling phase could increase
robustness to variations not seen during collection.

A more fundamental constraint of the present approach is that the dataset was con-
structed for a single specific target: a die. As a consequence, although the model general-
izes well across different spatial placements of that object, its predictions are not expected
to remain accurate for targets with different shapes, textures, or visual characteristics.
Extending the dataset to include multiple objects, or introducing a dedicated classifica-
tion stage that identifies the target before regression, would allow the system to handle a
wider range of tasks.

Finally, the controller does not explicitly reason about the absolute position of either
the robot or the target. All decisions are based solely on the appearance of the image, with-
out incorporating geometric priors or state estimates. Integrating position measurements,
either through classical visual servoing formulations or through learned state estimators,
could significantly improve stability, accuracy, and predictability of the motion, especially
in regions where the visual information alone becomes ambiguous.

Overall, the present work provides a complete and functional pipeline, but also opens

(i

Future work

the way to numerous extensions that combine learning, geometry, and control to achieve
a more robust image—based robotic behaviour.

Below, two objectives for future improvements are examined in greater detail, together
with the corresponding solution strategies proposed to address them.

Target presence detection. To make the controller robust when the visual target
leaves the camera’s field of view or becomes heavily occluded, two simple strategies can
be considered.

o A small additional CNN can be trained to decide whether the target is present in
each frame. Its output is a confidence score in [0,1]; when this score falls below a
chosen threshold, the corresponding velocity command is set to zero instead of being
sent to the robot. The classifier is trained with both normal images (target visible)
and “negative” examples: blank views of the workspace, different backgrounds and
lighting conditions, occlusions and distractors. In this way, the controller moves only
when the target is detected with sufficient confidence.

o A lighter alternative is to keep only the regression network and extend the training
set with images in which the die is absent, assigning them a zero-velocity label. The
model then learns that, in the absence of clear visual evidence, the safest behaviour
is to remain still. The main design choice is the proportion of such blank images:
too few and the robot may still react to noise; too many and the network becomes
overly conservative. In practice, a moderate percentage of blank samples, combined
with a simple threshold on the norm of the predicted velocity, can already provide
a robust “no target, no motion” behaviour.

The two options are not mutually exclusive and could, in principle, be combined.
However, doing so would increase the computational load of the control loop, since it
would require running one or more additional networks in parallel with the regression
model.

Exploiting kinematic redundancy. Another natural extension is to exploit the kine-
matic redundancy of the 6-DoF arm in tasks where only the TCP position matters and
orientation is largely unconstrained (for example, tracking the centre of a spherical tar-
get). In this situation the visual controller specifies only a desired translational motion,
leaving several joint configurations that are equivalent from the camera’s point of view.

Classical redundancy-resolution schemes can then be layered on top of the learned
controller. The CNN output provides the primary task (move the TCP in the right direc-
tion), while an additional “null-space” component adjusts the posture without altering
the image-based behaviour. This secondary motion can be chosen to keep joints away from
their limits, avoid awkward or unsafe configurations, favour high—manipulability poses, or
enforce a preferred camera framing. In practice, this would allow the same vision—based
controller to produce safer, smoother and more natural trajectories while fully exploiting
the extra degrees of freedom of the arm.

78

Bibliography

[11]

Andrew Pierson and Michael Gashler. “Deep learning in robotics: a review of recent
research”. In: Advanced Robotics 31.16 (2017), pp. 821-835.

Heli Deliwala and Dhruv Kadia. “Deep learning in robotic applications: A review”.
In: Materials Today: Proceedings 47 (2021), pp. 163-170.

Seth Hutchinson, Gregory D Hager, and Peter I Corke. “A tutorial on visual servo
control”. In: IEEE Transactions on Robotics and Automation 12.5 (1996), pp. 651
670.

Ashvin Saxena et al. “Exploring convolutional networks for end-to-end visual ser-
voing”. In: Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2017, pp. 3817-3823.

Quentin Bateux et al. “Training deep neural networks for visual servoing”. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2018, pp. 3307-3314.

Jing Li, Hui Wang, and Ming Zhao. “A Hybrid Visual Servoing Approach Based
on CNN for Robot Manipulators”. In: Robotics 14.5 (2025), p. 66. DOL: 10.3390/
robotics14050066. URL: https://www.mdpi.com/2218-6581/14/5/66.

Fumiya Tokuda, Shuji Arai, and Kazuhiro Kosuge. “Convolutional Neural Network-
Based Visual Servoing for Eye-to-Hand Manipulator”. In: IEEE Access 9 (2021),
pp. 91820-91835. DOT: 10.1109/ACCESS.2021.3092526. URL: https://ieeexplore.
ieee.org/document/9464907.

Jia Guo et al. “Convolutional Neural Network-Based Robot Control for an Eye-in-

Hand Camera”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems
53.8 (2023), pp. 4764-4775.

Michael Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
URL: http://neuralnetworksanddeeplearning.com/.

Ravi Raj and Andrzej Kos. “An Extensive Study of Convolutional Neural Networks:
Applications in Computer Vision for Improved Robotics Perceptions”. In: Sensors
25.4 (Feb. 2025), p. 1033. pOI: 10.3390/s25041033. URL: https://doi.org/10.
3390/s25041033.

Bruno Siciliano et al. Robotics: Modelling, Planning and Control. Advanced Text-
books in Control and Signal Processing. London: Springer-Verlag London Limited,
2009. 1SBN: 978-1-84628-641-4. DOI: 10.1007/978-1-84628-642-1.

79

https://doi.org/10.3390/robotics14050066
https://doi.org/10.3390/robotics14050066
https://www.mdpi.com/2218-6581/14/5/66
https://doi.org/10.1109/ACCESS.2021.3092526
https://ieeexplore.ieee.org/document/9464907
https://ieeexplore.ieee.org/document/9464907
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.3390/s25041033
https://doi.org/10.3390/s25041033
https://doi.org/10.3390/s25041033
https://doi.org/10.1007/978-1-84628-642-1

BIBLIOGRAPHY

[12]
[13]

[14]

[20]
[21]

[22]

[25]

John J. Craig. Introduction to Robotics: Mechanics and Control. 3rd. Pearson Pren-
tice Hall, 2005.

Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot Modeling and Control.
Wiley, 2006.

Mecademic. User Manual for the Meca500 Industrial Robot (R3 €& R4). English.
For Firmware Version 9.3.x; Document Revision A. Mecademic. May 22, 2023. URL:
https://support.mecademic.com/ (visited on 10/17/2025).

Mecademic. User Manual for the Electric Parallel Grippers MEGP 25E/25LS. En-
glish. Document ID: MC-UM-MEGP25-EN; For Firmware Version 10.2; Document
Revision A. Mecademic. June 13, 2024. URL: https://support .mecademic . com/
(visited on 10/17/2025).

Rebel. RB-1140 Endoscope Camera — User Manual. English. Model RB-1140; multi-
language: DE/EN/PL/RO. Lechpol Electronics Leszek Sp.k. Mar. 10, 2023. URL:
https://www.lechpol.ro/char/RB-1140.pdf (visited on 10/20/2025).

Bota Systems AG. Rokubi / Medusa Datasheet. English. Revision A. Bota Systems
AG. 2024. URL: https://www.botasys.com/?utm_source=specificationsheet_
2021 (visited on 10/21/2025).

Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems 32. 2019.

Mecademic. Programming Manual for Mecademic Industrial Robots (for Firmware
10.3). English. Document ID: MC-PM-EN; Document Revision A; For Firmware
Version 10.3. Mecademic. Nov. 7, 2024. URL: https://www . mecademic . com/
support (visited on 10/28/2025).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Cambridge,
MA: MIT Press, 2016. URL: https://www.deeplearningbook.org.

Nitish Shirish Keskar et al. “On Large-Batch Training for Deep Learning: General-
ization Gap and Sharp Minima”. In: arXiv preprint arXiv:1609.04856 (2017).

Lutz Prechelt. “Early Stopping — But When?” In: Neural Networks: Tricks of the
Trade. Ed. by Genevieve B. Orr and Klaus-Robert Miiller. Vol. 1524. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 1998, pp. 55-69. DOI1: 10.1007/3-
540-49430-8_3.

Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference on Ma-

chine Learning (ICML). 2010, pp. 807-814.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neu-
ral Networks”. In: Proceedings of the 1jth International Conference on Artificial
Intelligence and Statistics (AISTATS). Vol. 15. JMLR Workshop and Conference
Proceedings. 2011, pp. 315-323.

Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.

In: 3rd International Conference on Learning Representations (ICLR). arXiv:1412.6980.

2015. URL: https://arxiv.org/abs/1412.6980.
80

https://support.mecademic.com/
https://support.mecademic.com/
https://www.lechpol.ro/char/RB-1140.pdf
https://www.botasys.com/?utm_source=specificationsheet_2021
https://www.botasys.com/?utm_source=specificationsheet_2021
https://www.mecademic.com/support
https://www.mecademic.com/support
https://www.deeplearningbook.org
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1007/3-540-49430-8_3
https://arxiv.org/abs/1412.6980

BIBLIOGRAPHY

[26]

[27]

Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929-1958.

Géry Casiez, Nicolas Roussel, and Daniel Vogel. “1€ Filter: A Simple Speed-Based
Low-Pass Filter for Noisy Input in Interactive Systems”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’12). ACM,
2012, pp. 2527-2530. DOI: 10.1145/2207676.2208639.

81

https://doi.org/10.1145/2207676.2208639

	Abstract
	List of Tables
	List of Figures
	Introduction
	Research Context
	Thesis Structure

	Theoretical Foundations
	Neural Networks
	Perceptrons and Sigmoid Neurons
	Sigmoid Neurons
	Stochastic Gradient Descent

	Convolutional Neural Networks
	Local Receptive Fields
	Shared Weights and Biases
	Pooling
	Summary

	Robotics
	Direct Kinematics
	Differential Kinematics

	Instrumentation
	Meca500 Manipulator
	End-Effector
	Endoscopic Camera
	Force sensor
	PyTorch

	Implementation
	Dataset construction
	One target location
	Generalization
	Two-network approach

	Training phase
	Dataset partitioning and shuffling
	Training hyperparameters
	Callbacks
	CNN model

	Jacobian Inversion
	Velocity Smoothing
	Analyzing Different Initial Conditions
	Different z-coordinate
	Different x and y coordinates

	Additional Control Branch
	Results
	One-Network Approach
	Two-Networks Approach
	Tests
	Moving the die during execution
	Different initial poses of the robot
	Damped Least Squares
	Admittance-like branch test

	Future work

