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Abstract

In robotics, one of the main areas of interest for the research community is the creation
of environments where machines and humans can safely coexist. This brings to two
main issues: training and testing of robots in a controlled but realistic setting, and their
correct navigation in social spaces, while causing no harm to people. Virtual reality
allows the simulation of such environments, ensuring safety and allowing the training of
robots in areas where errors are controlled and confined. This way, robot behavior can
be supervised and demonstrated by the operator, able to enter the training environment
with the use of a Virtual Reality headset.

This thesis explores this type of simulation by training a ROS-based four-wheel robot
model tasked with navigating a laboratory-like area to reach a specified target, respecting
social constraints. This process is carried on using human behavior as a reference, imple-
menting Imitation learning using behavioral Cloning (BC) and Generative Adversarial Im-
itation Learning (GAIL), and confronting it with Reinforcement learning approaches, in
particular Proximal Policy Optimization (PPO). Additionally, a hybrid learning pipeline
that combines demonstrations with reinforcement learning is considered. Unity is used as
the virtual development platform, alongside ML-Agents toolkit for Neural Network train-
ing. The objective is to assess which learning strategy achieves safer and more efficient
navigation, and to evaluate the potential benefits of combining human demonstrations
with autonomous exploration. The VR framework realized for this thesis can be adapted
for future applications and different tasks, that can integrate human robot collaboration
or more complex environments.
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Chapter 1

Introduction

The development of robots capable of carrying out tasks autonomously is one of the
main subjects of study and research in modern robotics. Robots are increasingly re-
quired to operate without humans intervening on their actions to perform complex tasks
and to adapt them to different environments. Learning algorithms such as Reinforcement
Learning (RL) and Imitation Learning (IL) are widely used to train agents to behave in
a desired manner, allowing them to learn from experience or imitate expert demonstra-
tions. These algorithms require training environments where the agent can interact and
learn through several trials, receiving feedback on its actions. The specific environment
where the robot has to operate is often unknown, not reachable or too dangerous for
humans. In these cases, it is fundamental to create safe and controlled environments
that allow the developers to test, train and get insights on the robot behavior. For this
purpose, simulated environments are widely used in robotics, since they allow creating
virtual scenarios where the robot can interact and learn without risks or restrictions.

This thesis focuses on the creation of an environment for training robots using Unity
ML-agents, a framework that integrates the Unity game engine with machine learning
algorithms. The main goal is to analyze the potential of the algorithms provided by the
framework, such as Proximal Policy Optimization (PPO), Behavioral Cloning (BC), and
Generative Adversarial Imitation Learning (GAIL), in training a four-wheeled robot to
navigate in a simulated social environment. The combination of reinforcement learning
and imitation learning techniques is also explored, integrating prior training with IL algo-
rithms followed by further training with RL algorithms. The performance of the various
algorithms is evaluated through a series of tests that measure their ability to enable ef-
fective robot navigation with obstacles and people avoidance.

Following an introduction to the related work on the use of Unity for robot training
in Chapter 2, this thesis analyzes in Chapter 3 the algorithms used for training the robot
and the tools provided by Unity ML-agents. Chapter 4 describes the components of
the training environment with the settings thereof. Finally, Chapter 5 shows the results
obtained from the training sessions, analyzing the performance of the different algorithms
according to a certain set of tests. Other configurations that have been first tested and
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then discarded during the development of the environment are reported in the Appendix
7 in order to show the evolution of the project and the performance with different settings.



Chapter 2

Related work

2.1 Introduction to the topic

Simulation plays a crucial role in both robot programming and testing, as well as in
integrating robots into social contexts. Modern software tools such as game engines allow
researchers to create virtual environments that can recreate settings as close to reality as
possible, providing safe and flexible training grounds for robotic systems. In this thesis,
Unity game engine is employed to simulate and test a robotic system operating in a social
environment. The work combines the capabilities of ROS2, a widely used framework for
robotic control, with Unity’s powerful simulation features. The goal is to train and assess
models capable of exhibiting socially acceptable behavior within realistic virtual scenarios.
Developing such training environments is essential for the safe and effective integration
of robots into everyday human settings. Simulations allow testing complex behaviors
without physical risk, accelerating development, and improving the reliability of human-
robot interactions. The use of Unity as a simulation platform has gained significant
attention in recent years due to its flexibility, visual realism, and compatibility with
robotic frameworks. The following section reviews key studies exploring how Unity has
been employed to create virtual environments for robot training, testing, and behavior
validation.

2.2 Unity as a Simulation Platform

The main challenge in creating simulation environments is achieving a high degree of
realism, which often leads to complex and cumbersome interfaces. Many existing tools
provide only approximate physical simulations and offer limited flexibility in modelling
diverse environments, such as lunar landscapes or underwater scenarios. A more modern
perspective suggests that game engines are particularly suitable for research and robot
development, as they provide user-friendly interfaces, customizable physics parameters,
built-in animation tools, texture options, and other features that facilitate realistic and
adaptable simulations.

Juliani et al. [1] disclose Unity as a suitable platform for the simulation and training
of intelligent agents, highlighting its training capabilities and flexibility for Al research.
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As they note, "many of the existing environments provide either unrealistic visuals, in-
accurate physics[..]. We argue that modern game engines are uniquely suited to act as
general platforms'. Among the advantages of using Unity, the most important are the
ability to create multi-agent scenarios that allow developers to test multiple models in
the same context, and the support for VR/AR applications, which enables interactive
engagement between users and agents.

Unity also allows implementing the concept of "social complexity" referred to by Juliani
et al. [1], achieved through the interaction of AI agents in shared virtual spaces. These
environments provide the conditions for the emergence of complex behaviors and the
study of how agents learn to react appropriately in social or collaborative situations. It
provides a foundation for research focused on human-robot interaction and socially aware
robotic systems, through both the use of human animations to simulate human presence
and virtual reality applications that enable real user interaction within the simulated
scene. Cleaver et al. [2] followed this approach by developing the HAVEN framework,
a Unity-based environment designed to study human-robot interaction using augmented
and virtual reality, allowing users to directly engage with virtual robots in socially mean-
ingful scenarios.

Moreover, Unity’s flexibility enables the replication of a wide variety of environments with
specific physical properties and environmental conditions. For example, Seyyedhasani et
al. [3] used Unity-based virtual reality to simulate vineyard terrains for evaluating the
navigation and performance of agricultural robots in complex natural settings. Similarly,
El-Miiftt and Giir [4] developed a Unity-based underwater simulation framework that al-
lows testing robotic systems under fluid dynamics and low-visibility conditions. Finally,
Franchini et al. [5] suggested a comprehensive virtual reality framework for lunar explo-
ration that integrates Unity and ROS2, thus enabling both human and robotic agents
to perform mission-oriented tasks and cooperative behaviors in simulated extraterrestrial
environments.

Collectively, these works highlight the versatility of Unity as a simulation platform
capable of accurately reproducing a wide range of diverse and realistic environments.
They also demonstrate its growing importance as a research tool for robotics, not only
for motion and control but also for studying perception, learning, and social interaction
in complex, dynamic scenarios.

2.3 Unity and ROS/ROS2 integration

Another characteristic that makes Unity a suitable environment for research and robotic
development is its ability to integrate with the Robot Operating System (ROS) and its
successor, ROS2. ROS provides a standardized framework for controlling robotic systems,
managing communication between sensors, actuators, and control nodes. Integrating
ROS with Unity allows virtual robots to be operated using the same software employed
on physical robots, enabling testing and debugging in a safe environment. Robotic mod-
els can be designed in detail using external modelling software, such as Blender, then
imported into Unity. ROS or ROS2 control nodes can run either locally or on an ex-
ternal device and connect to the simulation through dedicated communication protocols.
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This setup enables researchers to simulate realistic robotic behavior and test robots in
environments that are difficult or impossible to access under real-word conditions.

The HAVEN environment [2] is an example of such an integration. It employs a
Turtle-Bot2 robot model connected to a ROS control system that uses Unity’s NavMesh
for autonomous navigation and interaction with the user in collaborative tasks. Like-
wise, Franchini et al. [5] used a Jackal robot model to simulate a lunar rover capable of
performing autonomous missions such as navigating towards a target or following a user
avatar within a virtual environment.

El-Miftii and Giir [4] integrated a ROS system in the URSULA robot simulator, where
“each of the four soft robotic limbs in URSULA is represented as a series of connected
rigid objects to simulate continuous flexible motion. The position and rotation of the
virtual limb segments are continuously updated on the basis of data received from ROS
via a WebSocket connection.” This illustrates how ROS-Unity integration supports the
real-time synchronization of physical models and simulated kinematics.

Ye et al. [6] further validated the Unity-ROS2 integration by reproducing behaviors tested
in simulation on a physical robot platform. Their results show that behaviors trained
within the Unity environment can be successfully transferred to real-world scenarios.
This sim-to-real capability highlights the reliability of Unity-based simulations for devel-
oping and validating robotic behaviors prior to deployment.

In brief, the integration of ROS and ROS2 with Unity provides a powerful infrastruc-
ture for the simulation, testing, and training of softwares, transferable to real robotic
Systems.

2.4 ML-Agents for robotic training

The Unity ML-Agents Toolkit provides a robust framework for training intelligent agents
within simulated environments. It enables robotic systems to acquire complex behav-
iors through repeated interaction with their surroundings, using learning algorithms such
as Reinforcement Learning (RL) and Behavioral Cloning (BC). When integrated with
ROS2, ML-Agents allows robots to learn through trial and error in safe and controlled
environments, reducing the risks and costs associated with physical testing.

Ye et al. [6] analyzed the use of ML-Agents to show how the Unity’s package can be em-
ployed to train multiple different robotic behaviors. In their work, many reinforcement
learning policies were trained in simulation using Unity’s physics and perception mod-
els, and then deployed through ROS2 interfaces to real-world robots. The consistency
observed between virtual and physical executions validates the reliability of simulation-
based reinforcement learning and confirms Unity’s potential as a platform for simulation-
to-reality applications. Ye et al. [6] utilized Unity’s multi-agent capabilities to simulate
human-robot interactions, where agents learned appropriate social responses through
reward-based adaptation. This framework not only supports learning navigation and ma-
nipulation skills but also extends to context-aware behaviors, essential for human-robot
interaction research. Beyond robotic tasks, game engine-based reinforcement learning also
finds application in a wide range of other domains. For example, Murdivien and Um [7]
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used a Unity simulation to train agents for a three-dimensional bin packing task, demon-
strating how reinforcement learning can solve spatial logistics problems. While their focus
is not strictly on robotics, their work highlights how ML-Agents-like approaches can be
used for tasks that require spatial reasoning, physics interactions and environment dy-
namics, which features are shared by robotic simulation.

Overall, the ML-Agents toolkit is a bridge between simulation and real-world deploy-
ment. By combining reinforcement learning capabilities with the ROS2 communication
layer, it allows for efficient, safe, and repeatable training of robotic agents before their
deployment in physical and social environments.

2.5 Thesis Positioning

Considering all the studies discussed above, it becomes apparent that Unity, in combi-
nation with ROS2 and the ML-Agents Toolkit, offers a robust environment for robotic
simulation, training, and validation. Grounded on these premises, this project aims to
address a Unity-ROS2 framework designed to train and evaluate robotic agents capable
of exhibiting socially acceptable behaviors within human-centered virtual environments.
Both Reinforcement Learning and Imitation Learning algorithms from the ML-Agents
toolkit are implemented and analyzed in scenarios where human presence is either simu-
lated or incorporated through virtual reality interactions.
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Chapter 3

Theory

3.1 Learning Algorithms

Learning algorithms in machine learning are sets of rules that allow an agent or model
to assimilate a behavior towards a task based on experience or data. Unlike traditional
programming where instructions are provided for every possible scenario, machine learn-
ing enables systems to discover patterns and strategies from the data received. These
methods can be classified as follows:

e Supervised Learning, where models learn from labelled datasets given by the
user;

e Unsupervised Learning, which aims to identify patterns in unlabeled data;

¢ Reinforcement learning, where an agent interacts with an environment to max-
imize cumulative reward over time;

e Imitation Learning, where an agent learns to replicate expert behavior from
demonstration data, without manually designed reward signals.

In particular, Reinforcement Learning (RL) is suitable for robot learning and training. It
allows learning how complex tasks can be carried out without the user’s manual control,
but it requires an environment in which the agent can explore and learn through the
interaction with its surroundings. Virtual simulation fits well into this approach since it
allows safe trial and error learning and realistic replication of any type of environment.

In RL, the agent observes a state s;, chooses and takes action a;, receives the corre-
sponding reward r; and then transitions to a new state s;1. The objective of the agent is
to learn a policy m(als) that maximizes the expected (average) cumulative reward J(7),
expressed as

J(m)=E li 'ytn] (3.1)
t=0

where 7 is the discount factor. This value determines how much future rewards are
important compared to immediate rewards, and takes a value between 0 and 1.
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In order to determine the quality of a state or action during training, four functions
are defined in RL:

o Value function V7 (s): is the expected benefit starting from state s and following
policy

VT(s) =Ex [Z 'Ytrt
t=0

S0 = s] . (3.2)

o Action-Value Function Q7(s,a): is the expected benefit of choosing action a
being in state s and following policy :

Q" (s,a) =E, li yire | s0 = s, ag = a] : (3.3)
=0

« Optimal Value Function V*(s): is the expected benefit from starting from state
s and always acting according to the optimal policy

Vi(s) = max E:[R(T) | so =s] (3.4)

o Optimal Action-Value Function Q*(s,a): is the expected benefit from starting
from state s, taking action a, and after that action always acting according to the
optimal policy

Q*(s,a) = max E[R(T)|so=s, ap=a] (3.5)

The value functions need to satisfy the Bellman equations, which define a recursive struc-
ture to make the function consistent step by step. The concept underlying the Bellman
equations is that the value of the starting point needs to be at any time the reward ex-
pected from staying in that point, increased by the value of the point where the agent
will move next. The Bellman equations are defined as

V7(8) = Equn(s), s'~P(ls,a) [ 7(5,0) + 7 VT(s')], (3.6)
Q"(s,a) = Egp(sa), amn(|s) [T(s,0) +7Q7(s,a") |. (3.7)
while the optimal Bellman equations are defined as
V*(s) = max Egp(joa [r(s,0) +7 V()] (3.8)
Q*(s5,0) =Egp(lsa)[T(s,a) +7 max Q*(s',d")]. (3.9)

The difference between the Bellman equations and their optimal counterpart is that in
the second ones the maximum over actions is taken. This is justified since the agent needs
to take the action that leads to the highest result in order to act optimally.

Types of RL algorithms are Proximal Policy Optimization algorithm (PPO)(3.1.1)
and Soft Actor-Critic algorithm (SAC) [8].

12



3.1 — Learning Algorithms

On the other hand, Imitation Learning (IL) aims to learn by observing demonstrations
given by experts. It offers an alternative to reinforcement learning when designing a
reward function is complex, and instead a demonstration by an expert is available.

IL uses a demonstration dataset collected from an expert policy mg, in the form of
trajectories of state—action pairs. Its objective is to find a policy m(a|s) that from state
s brings to action a, matching expert’s policy mg(a|s).

Assume 7 = (sg, ag, $1,4a1,--.,S7,ar) to denote a trajectory generated by the expert
policy mg(als) interacting with the environment according to the transition dynamics
P(s¢41|8¢,a¢). The imitation learning problem can be defined as minimizing the difference
between the trajectory distributions of the expert and that learned by agent:

n;lrgn L(mg,mg) such that L(mp, 7g) = Ddiv(Dry (T) || Drg (7)) (3.10)
where Dgiy(-||) is a statistical divergence measure such as Kullback-Leibler divergence,
Jensen-Shannon divergence, or Wasserstein distance. This formulation expresses IL as a
distribution matching problem, where the goal for the learned policy is to visit similar
state-action visitation frequencies as the expert.

The advantage of IL lies in its ability to add prior knowledge in the form of expert
demonstrations, reducing the amount of exploration required compared to reinforcement
learning. This is particularly useful in domains where random exploration is unsafe,
expensive, or time consuming, such as robotics, autonomous driving, or human-robot
interaction. By directly imitating demonstrated behaviors, an agent can quickly achieve
optimal performance without the need to autonomously discover reward structures.

However, IL introduces several theoretical and practical challenges. Since demonstra-
tion data are typically collected under the expert policy, the learner is trained on a fixed
distribution of states pr,(s). When the learned policy mg deviates from this distribution,
it may encounter unseen states, leading to prediction errors. This phenomenon is known
as covariate shift or distributional shift. In order to mitigate this issue, many modern
1L approaches integrate reinforcement learning or adversarial training components that
allow the agent to refine its behavior through interaction with the environment and explo-
ration of unknown states. Types of IL algorithms are behavioral Cloning (BC)(3.1.2)and
Generative Adversarial Imitation Learning (GAIL)(3.1.3).

Deep Learning extends traditional machine learning by integrating deep Neural Net-
works (NN) as function approximators. NN can approximate complex inputs such as
images, big data, or joint positions to actions or value estimates. Using NN, the learning
process can handle continuous structured environments and therefore high complexity ob-
servations. All algorithms implemented by ML-agents package use Neural Networks, with
characteristics that can be modified and tailored around a specific training (as described
in chapter 3.3.1).

3.1.1 PPO - Proximal Policy Optimization Algorithm

PPO (Proximal Policy Optimization) is a family of Reinforcement Learning (RL) algo-
rithms based on policy-gradient methods. They are model-free reinforcement learning
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algorithms, i.e., they learn a policy by interacting with an environment and gathering
data, rather than trying to first build a model of the environment dynamics. PPOs try
to improve the policy mg(als) by tuning parameters 6 in the direction that increases the
expected reward. The base algorithm is an on-policy actor-critic method, i.e., it simul-
taneously learns a policy (the actor) and a value function (the critic) using trajectories
generated by the current policy, rather than from previously stored experiences. The
main feature of the PPOs algorithms is that they improve stability by limiting the devi-
ation between distributions of updated and old policies.

PPO derives from TRPO [9], Trust Region Policy Optimization. The common objective
of these two types of algorithms is to find the biggest improvement on a policy using the
data collected and without causing performance collapse. TRPO and PPO are on-policy
algorithms, i.e., all pieces of data used to update the policy are collected using the same
policy.

TRPO aims to maximize an objective function, considering a size constraint on the
policy update in order to avoid the new policy from being too distant from the previous
one. For this purpose, it needs to solve a constrained optimization problem, too complex
and not suitable for noisy systems or policies that share parameters with auxiliary tasks.
PPO keeps the reliability and data efficiency of TRPO using only first-order optimization,
making the algorithm simpler, faster, and more scalable. There are two main variants of
the PPO algorithm: the PPO-Penalty and PPO-Clip.

PPO-Penalty algorithm keeps the constraint of TRPO, but instead of making it a
hard constraint it defines a soft, variable constraint to keep the distance between policies
near a target value. It is referred to as a penalty method since it regulates the penalty
coefficient to scale the statistical distance (KL-divergence) in the objective function.

On the other hand, PPO-Clip completely removes the update constraint and bases its
algorithm on clipping the objective function to keep the new policy from moving too far
away from the old one. ML-Agents package implements PPO-Clip, which will generally
be referred to as PPO hereafter in this thesis.

The PPO clipped surrogate objective is defined as
LEMP (9) = By [min (ry(60) Ay, clip(ri(0), 1 — ¢, 1+ ¢) 4;)] (3.11)
where:

e 0 - policy parameters, weights of the neural network that defines the policy

o B, - empirical expectation over timesteps, i.e., the average of this expression over
all the timesteps in the collected batch.

o 7(0) - probability ratio between new and old policies:

re(0) = mg(ag | s¢)

= 7 3.12
AL (3:12)

It is an index of how much the new policy differs from the old one, i.e., how much
the probability of taking an action a; in state s; has changed.
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o A, - estimated advantage function at time step t, representing how much better
(or worse) an action a; was compared to the expected value. It is calculated as
the difference between the actual reward (]%t) and the expected value of the value
function Vy, computed starting form state s;

Ay =Ry — Vy, (s1) (3.13)

When multiplied by r.(6), it forms the normal policy gradient term (r;(6)A;), that
indicates the scaled term to update the policy.

o ¢ - hyperparameter controlling the clipping range (usually 0.1 or 0.2). It limits the
change in () preventing large policy updates that could destabilize learning.

e The clip function in PPO is defined as:

1+e ifr () >1+e,
clip(ry(f), 1 —¢, 1+¢€) =<1 —¢, ifr(f) <1—p¢, (3.14)

r¢(0), otherwise.

Clipping aims to limit the extent to which the probability ratio () is allowed to
change. The clip function enforces the constraint:

l—e<mr0) <1l+e (3.15)

preventing updates that would move the new policy too far from the old policy.

Since PPO chooses the minimum between the policy gradient term and its clipped ver-
sion, the update is limited by the clipping range, preferring small updates on big ones.
Expanding the expectation calculation and starting from the initial policy parameters
(Ap) and the initial value function parameters (¢o) as inputs, the pseudocode is
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Algorithm 1 PPO-Clip
1: for k=0,1,2,... do
2: Run the policy 7, = m(0g) into the environment and collect the trajectories

Dy = {r}
3: Compute the discounted rewards

R ZTt+77”t+1+727“t+2+737“t+3+---

4: Compute advantage estimates
Ay =Ry —Vy,
5: Update the policy by maximizing the PPO-Clip objective:

1

T
DA [T Z Zmin (Tt(ﬂ) Ay, clip(re(0), 1 —¢€, 14 ¢) At) ’

€Dy, t=0

Op+1 = arg max

typically via stochastic gradient ascent with Adam [10].

6: Update the value function Vy, by regression on mean-squared error:
1 ) L
$k+1 = arg min 1Dx|T Z Z (V¢(3t) - Rt) )
¢ k5 reDy t=0

typically via some gradient descent algorithm. [11]
7: end for

Since expression 3.11 is complex to implement and to read, an easier simplified version
has been designed:

L(s,a,0,0) = min (m Ay, gl flt)> (3.16)

where

9(67 At) =

N (1 + E)Ah At Z 07
(3.17)

(1—e)A;, A <o.

By analysing the sign of the advantage, when A; > 0, the agent has taken a beneficial
action. Increasing 7() is desirable, since it indicates the probability ratio of the new
policy with respect to the old one. However, if r(6) becomes greater than 1 + ¢, the
clipped objective prevents further improvement of the loss.
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PPO Clipping Behavior for Positive Advantage
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Figure 3.1: PPO-Clip positive advantage
On the other hand, if A, < 0, the action performed worse than expected and the
optimization decreases (). Once r(6) falls below 1 — €, the objective again is stopped

providing additional benefit, preventing an overly aggressive reduction in probability.

PPO Clipping Behavior for Negative Advantage
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Figure 3.2: PPO-Clip negative advantage

In summary, the clipping term shapes the objective so that policy updates are encour-
aged when they remain within a trust region around the old policy, but their influence
is capped once they exceed a safe deviation. At each timestep, the actions chosen by the
agent are sampled on their probability based on the output of the policy distribution.
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The agent can thus explore different actions to discover other potentially better strate-
gies, instead of following fixed trajectories. The randomness of the actions is influenced
by the agents initial conditions, the type of training performed, and the magnitude of the
updates on the policy.

Since with the PPO algorithm the policy gradually becomes more deterministic, it
has the risk to converge to local optima, with no more additional positive exploration.
To solve this problem, parallel environments and multiple experiences are a good strat-
egy, since they increase the diversity of the explored trajectories, reducing the probabil-
ity to be trapped in suboptimal regions. Overall, PPO has become one of the leading
reinforcement-learning algorithms due to its positive performance, easy implementation
and tuning, and its ability to handle complex environments.

3.1.2 BC - Behavioral Cloning Algorithm

Behavioral Cloning (BC) is one of the basic applications of imitation learning, in which a
policy is learnt taking expert demonstrations as an example. A dataset D = {(s;,a;)}}¥,
is collected by the expert executing trajectories into the environment, and then is used
by the agent as a supervised learning set of state-action pairs. The goal is to find the
policy parameters 6 that minimize the difference between the predicted actions and the
expert actions. BC typically solves:

max E(s,0)~D [logmg(a | s)] (3.18)

or equivalently minimizes the negative log-likelihood (NLL) loss:
1N
Lpc(0) = -~ Zlogﬂg(ai | si) (3.19)
i=1
Similarly, BC can be seen as minimizing a surrogate cost function:
mein E(s,a)ND [C(Sa a)] (320)

where ¢(s,a) is a 0-1 cost (i.e. 1 if mp(s) # a, 0 otherwise) or a more smooth loss.

In the case of full-state feedback, where the full environment state s; is observable,
the optimal policy can be represented as a function of the current state:

ar = mo(st) (3.21)

This corresponds to a supervised regression or classification problem, depending on
whether the action space is continuous or discrete.

Although BC provides an effective framework for the implementation of imitation
learning, its training only based on the expert demonstration leads to a distributional
shift, also referred to as the covariate shift problem. When the learned policy my is
deployed, it may visit different states from those seen during training, leading to great
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performance losses between the training and test distributions. The small errors made
by the agent take it to other states than those of the expert, causing a loss in the quality
of the agent actions. Ross et al. [12] formalized this issue by showing that if the per-step
classification error of the learned policy is €, then the total expected error after a horizon
T can grow linearly as O(T'¢) under BC. This is because each error can push the agent
into unseen regions of the state space, increasing the probability of further mistakes.

In practical terms, distributional shift occurs as a gradual divergence of the agent be-
havior from that of the expert, particularly in long-horizon or safety-critical tasks. The
agent may behave correctly for a few steps but quickly accumulates deviations that lead
to unstable trajectories or failure to complete the task. This limitation formed the basis
for the development of interactive imitation learning methods, such as the Dataset Ag-
gregation (DAgger) algorithm [12], which iteratively collects expert corrections on states
visited by the learned policy, aligning the training and on-policy state distributions:

D1 =D U{(s,mu(s)) | s ~ pry(s)} (3.22)

By augmenting the dataset with these additional samples, DAgger reduces the covariate
shift and ensures more robust policy generalization.

More recently, the sample complexity of BC has been revisited; for example, Foster
et al. [13] show that BC’s worst-case dependence on horizon can be quadratic in horizon
in some settings. Thus, BC is often insufficient per se in tasks requiring long-horizon
generalization; many practical implementations combine BC with other techniques (e.g.,
DAgger [12], GAIL (3.1.3), or RL fine-tuning). In the context of the Unity ML-Agents
Toolkit, BC is typically employed as a pre-training stage or as an auxiliary objective
in combination with reinforcement learning. This hybrid setup mitigates distributional
shift to some extent since reinforcement learning allows the policy to refine its behavior
in unseen states beyond the expert demonstrations.

The pseudocode for BC is:

Algorithm 2 Behavioral Cloning

Require: Expert dataset D = {(s;, a;)}, learning rate «, number of training epochs F,
batch size B
1: Initialize policy parameters 6
2: for epoch = 1 to F do
3: Shuffle dataset D
4: for each mini-batch B C D of size B do
5 Compute loss

L= —% Z log mp(a | s)
| ’(s,a)EB

6: 0+ 0—aVyl
7: end for
8: end for

9: return learned policy 7y

This simple algorithm treats the imitation problem as supervised learning. BC is
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equivalent to training a classifier or regressor that maps states to actions:
fo:s—a.

For discrete actions, the network outputs a categorical probability distribution over all
possible actions where the target is the expert action. For continuous actions, the output
layer represents either the mean or the parameters of a Gaussian distribution, allowing the
network to model stochastic policies. In both cases, the optimization seeks to minimize
the expected discrepancy between predicted and expert actions.

3.1.3 GAIL - Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) [14] is a model-free imitation learn-
ing algorithm inspired by Generative Adversarial Networks (GANs). It directly learns
a policy from expert behavior without the need to retrieve a cost function as this is
done in Inverse Reinforcement Learning (IRL) [15]. In GAIL, a discriminator network is
trained to distinguish expert state-action pairs from those produced by the agent, while
the agent policy is simultaneously trained to maximize the reward signal. The objective
of the agent policy is to cause the discriminator to detect its actions as those of the
expert. The theoretical strength of GAIL lies in its minimization of the Jensen-Shannon
divergence between the expert and agent occupancy measures (augmented by an entropy
regularization term). This leads to the potential to achieve close imitation in large action-
space domains.

Given the expert trajectories 7 = {(s¢, at)}, sampled from an expert policy mg(als),
the objective is to learn a policy mp(als) such that the occupancy measure pr,(s,a) ap-
proximates the one of the expert:

o0
Pro(8,a) = mg(als) Z’ytP(st = s|mg) (3.23)

t=0
The occupancy measure is the expected number of times a state-action pair is visited
under a specific policy, calculated as a probability distribution. In traditional IRL, we
first recover a cost function c¢(s, a) such that the expert minimizes the expected cumulative

cost. GAIL bypasses this step by directly solving:

min max E;_[log D,(s,a)] + Er,[log(1 — Dy(s,a))] — AH (mg) (3.24)

T D,
where

e Outer Optimization min,,: 7y is the policy to be learned, parametrized by neural
network weights 6.

e Inner Optimization maxp : D, is the discriminator network parametrized by
weights w. It is a binary classifier that tries to distinguish between the expert
behavior (D, (s,a) ~ 1) and the learner behavior (D,(s,a) ~ 0). It maximizes the
objective function with respect to discriminator parameters w to accurately classify
which state-action pairs come from expert and which from the learner.
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Expert Policy ng: The expert’s policy that we want to imitate.

First Expectation E,, [log D,(s,a)]: Expected log-probability of the discrimi-
nator identifying correctly the expert state-action pairs. When discriminator sees
expert data, the best outcome is D, (s,a) =~ 1, since log(D,(s,a) = 1) = 0 is the
maximum value.

Second Expectation E ,[log(1 — D, (s,a))]: Expected log-probability of the dis-
criminator identifying the learner state-action pairs as non-expert. When discrimi-
nator sees learner data, the best outcome is Dy (s, a) = 0, since log(1 — Dy (s,a) =
1) = 0 is the maximum value

Entropy Regularization —\H(mg): H(my) is the entropy of the policy 7y and it
measures the randomness in the policy’s action selection. It is calculated as

H(mg) = Er,[—log mg(als)]. (3.25)

High entropy indicates that the policy is more stochastic (explores more), while a
low entropy indicates that the policy is more deterministic (exploits more).

Regularization Term A\: A > 0 is the entropy coefficient or temperature param-
eter. During the minimization, subtracting entropy encourages higher entropy and
thus more exploration. Large A indicates strong exploration and the policy stays
stochastic longer, while small X indicates less exploration, with the policy becoming
deterministic faster. A = 0 indicates no entropy regularization and pure imitation.

The 3.24 formulation directly minimizes the Jensen-Shannon divergence between expert
and learner occupancy measures. The discriminator acts as a learned reward function:

r(s,a) = —log(1 — D, (s,a)) (3.26)

which encourages the policy to visit states and actions similar to those of the expert.

The GAIL training loop alternates between updating the discriminator and the agent

policy. The discriminator is trained using samples from both the expert and the policy,
while the policy is updated using any reinforcement learning algorithm (e.g., PPO or
SAC) with the discriminator-derived rewards.
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Algorithm 3 Generative Adversarial Imitation Learning (GAIL)

1: Initialize policy mp(als) and discriminator D, (s, a)
2: for each iteration do

3: Sample trajectories 7; using my

4: Update discriminator by ascending its gradient:

Vo (En[log Du(s, @)] + Er, [log(1 — Du(s,))])

5: Compute pseudo-rewards for policy updates:
r(s,a) = —log(l — Dy (s,a))
6: Update policy mp using RL on r(s, a), maximizing:
Ex, [Z Y (r(st, as) — Alog 7T9(at|8t))]
t
7: end for

3.2 ROS2 System and the Jackal

In this project, the simulated robot is the Jackal [16], a four-wheeled ground vehicle
developed by Clearpath Robotics. The Jackal is equipped with a LIDAR sensor that
provides 360-degree environmental scanning for navigation and obstacle avoidance. In
the simulated environment, this sensor data is emulated within Unity and transmitted
to ROS2 through the TCP/IP interface, ensuring a realistic representation of perception
and movement within the virtual scene.

The Robot Operating System 2 (ROS2) is an open-source robotics middleware frame-
work designed for the development of robot applications [17]. Unlike its predecessor ROS,
ROS2 offers improvements in real-time capabilities, security, and cross-platform support.
ROS2 allows the creation of robotic nodes that use a publish/subscribe communication
paradigm. In this project, ROS2 is one of the main components of the training environ-
ment: the simulated robot nodes subscribe to control commands received by an agent
perceiving the virtual scene, enabling the integration of Unity simulation with actual
robotic systems.
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Figure 3.3: Jackal robot model

The Jackal UGV is a compact, rugged mobile robot platform intended for research
and development. According to Clearpath Robotics [16], the Jackal features an onboard
PC, GPS/IMU integration, and out-of-the-box ROS compatibility. The external dimen-
sions are approximately 508 mm X 430 mm x 250 mm, with a weight of about 17 kg,
and maximum payload of about 20 kg. The maximum speed is approximately 2.0 m/s
in typical usage scenarios. The Jackal operates as a differential drive (or skid steered)
vehicle which simplifies integration of velocity commands (linear and angular) in ROS2
topic interfaces. From an application perspective, the Jackal UGV has been used in
autonomous exploration, multi-objective planning, terrain navigation, and human-aware
robotics. For example, a team at Massachusetts Institute of Technology (MIT) outfitted
a Jackal to navigate among crowds of pedestrians and perform socially-aware motion [18].

The robot model is imported in the simulation using a URDF file. The Unified
Robot Description Format (URDF) is an XML-based format used by ROS to describe
the physical and kinematic structure of a robot. A URDF file defines geometry, joints,
sensors, and other components of a robot, enabling the visualization and simulation of
its behavior in a virtual environment. By importing a URDF into Unity, a copy of the
physical robot can be created.

3.3 ML-Agents

ML-Agents (Machine Learning Agents) [19] is a toolkit developed by Unity Technologies
that allows developers to integrate machine learning into Unity environments. To cite
directly the ML-Agents package documentation: "ML-Agents enables games and simu-
lations to serve as environments for training intelligent agents in Unity" [19]. It allows
using various machine learning frameworks, along with the training of behaviors through
reinforcement learning, imitation learning, or other AI techniques. By connecting the
simulated scene to a learning algorithm, ML-Agents allows virtual entities referred to as
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Agents to learn different behaviors, applying suitable actions to achieve the best outcome.
The ML-Agents Toolkit has five high-level components:

e The Learning Environment, which contains the training scene and all simulation
elements. The configuration of the scene should be built on the type of behavior the
agent needs to learn. The ML-Agents Toolkit includes an ML-Agents Unity SDK
(com.unity.ml-agents package [20]) that allows the user to transform any Unity
scene into a learning environment. By virtue of this SDK, agents and behaviors can
be defined and customized, and attached to the game objects of the scene.

e The Python Low-Level API, which contains a low-level Python interface that
makes interaction and manipulation of the learning environment possible. This ele-
ment works outside Unity and communicates with the project through the Commu-
nicator. It is contained in a dedicated Python package referred to as mlagents enw,
and it is used by the Python training process to control the Academy during the
training (further details on the Academy will be given below).

e The External Communicator, which connects the Learning Environment and
the Python API. It forms part of the Learning Environment and is created in Unity.

e The Python trainer, which contains the machine learning algorithms that can
be implemented to carry out the training of the agents. ML-Agents package has
a single command utility mlagents-learn, that supports all the training methods
supported by the package. The trainer communicates with the Python API only
and is outside Unity.

e The Gym Wrapper and the PettingZoo Wrapper, which allow the users to
work with their python Training algorithms within the ML-Agents package. These
elements will not be used in this thesis since all the additional code will be directly
defined in C# and inside the Unity project.

Multiple components are defined within the learning environment. The first one is the
Academy, a C# class part of the ML-Agents package that serves as a controller for the
learning components inside the Unity simulation. It initializes the simulation environ-
ment, controls the training steps, manages the observations, and tracks the episode com-
pletion, rewards, and environment resets. The Academy calls the methods OnEpisodeBe-
gin(), CollectObservations(), OnActionReceived() and OnEpisodeBegin() for each Agent
in the scene. In this thesis, since a single agent is present, the methods to reset the
environment are defined inside the Agent script without modifying the Academy class.

In the ML-Agents framework, an Agent is the main learning entity. Once the script
defining the Agent is attached to a GameObject, this element interacts with the environ-
ment getting information, taking actions, and receiving feedback in the form of rewards.
The combination of this data sets the way for the creation of the Agent behavior. The
Agent can apply different learning algorithms that can be specified by the user, together
with the various parameters of the specific algorithm. It is based on three major entities:
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e Observations: The observations are the data received from the agent about the
environment. They can be numeric or visual, measuring what the Agent can per-
ceive about the surrounding scene. The observations are a subset of the so-called
environment state, which contains all information on all object present in the scene.
Observations can be associated with the data obtainable by a physical robot with
the use of sensors, such as a camera or laser.

o Actions: The actions that the Agent can take. They can be discrete or continuous,
in accordance with the type of environment and complexity of the task. They can
be mapped to be direct forces applied in the Unity environment, or commands to
be sent to the robot to move or act.

e Rewards: A reward is a scalar value received by the agent that can indicate the
quality of the action performed or the general quality of the behavior exhibited.
The reward function needs to be set so that the maximization of the total reward
in the episode generates the desired behavior.

Once these entities are defined, the Agent can be trained through several trials within the
environment, where it will learn a behavior (policy) that maps observations to actions.
Each trial corresponds to an episode that ends when a win or loss condition occurs.

In the code, an agent is defined by creating a class that inherits from the Agent base
class provided by the ML-Agents API. In this class there are key methods that define the
agent learning loop:

e The OnEpisodeBegin() method is called at the start of each training episode and
is used to reset the environment and agent state, ensuring that each episode begins
under controlled or randomized conditions.

e The CollectObservations () method is responsible for collecting information about
the environment. These observations are then passed to the neural network to guide
the decision making process.

e The OnActionReceived () method defines what happens when the agent performs
an action. It interprets the output from the policy model and applies it to the
environment, for example by causing robot movement, rotating a robot joint, or
adjusting a parameter.

e The Heuristic() method is used for the definition of the heuristic actions. It
allows the user to manually define actions for the agent by mapping keyboard or
joystick inputs to action values. When the Agent’s behavior is set to Default, in the
presence of a model its actions are used. If the model is absent, the control switches
to the heuristic commands. When the behavior of the agent is set to Heuristic only,
the actions from the NN-model are ignored and only the actions from the user are
received by the agent. This feature is the base for the recording of demonstrations
since it allows the user to utilize the Agent action directly to show the correct
behavior in the various states.
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The other major component for the ML-Agents package is the Behavior. It defines
the characteristics of the Agent, such as the type and number of actions it can take. Each
Behavior is identified by a Behavior Name field. The Behavior receives the observations
and rewards of the Agent and returns actions. The Behavior can be

e Learning: The Behavior is still to be trained and is not defined yet.
e Heuristic: The Behavior is defined by deterministic actions defined in the code.

e Inference: The Behavior includes a NN model and its actions are defined by the
latter. An Inference Behavior is a trained Learning Behavior.

Learning Environment Learning Environment Learning Environment

Behaviour Behaviour Behaviour

Communicator Heuristic Inference

- A N

[ Python API H Python Trainer }

Figure 3.4: Learning, Heuristic and Inference Behavior structure

Rewards play a central role for the agent learning process. After an action or at
the resolution of a certain event, the agent receives a value through reward signals that
indicate whether its behavior was correct or not. Positive rewards encourage repeating
similar actions, while negative rewards discourage them. The reward value is typically
defined by the environment, where reaching the goal corresponds to a positive instance,
while crashing or failing corresponds to a negative one. Rewards can also be defined out-
side of the environment to encourage certain behaviors or help learning complex tasks.
While the rewards inside the environment are referred to as extrinsic, those defined ex-
ternally are referred to as intrinsic. GAIL algorithm (3.1.3) is used as a intrinsic reward
mechanism, introducing a discriminator Dg(s, a). The agent receives a reward therefrom,
which is proportional to the extent to which the agent actions match those of the expert.
On the other hand, BC (3.1.2) is not an intrinsic reward but an auxiliary supervised
objective and adds a loss term to the policy optimization.

The four reward signals provided by Ml-Agents are

e cxirinsic: enabled by default, they represent the rewards received into the environ-
ment and are specified by the developer.

e gail: the reward signal received by the GAIL discriminator.
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o curiosity: together with rnd, it is defined inside the Curiosity module. It is an
intrinsic reward signal that encourages exploration in sparse-reward environments.

o rnd: Random Network Distillation (RND) [21] is defined inside the Curiosity mod-
ule and is an intrinsic reward signal that encourages exploration in sparse-reward
environments.

For the definition of the reward function for this project, various rewards have been
taken into account:

e Social distance: a reward has been designed for keeping distance from people in
the scene. The reward is calculated as

R (minSafeDistance — minPersonDist) (3.27)

minPersonDist

where minSafeDistance is a parameter indicating the safety distance from people
and objects, while minPersonDist is the minimum current distance from people
measured by the robot. R, is then clamped to the range

-2, it R, < -2,
R,=3R,, if —2<R,<2, (3.28)
2, ifR,>2.

The reward for people distance has weight c,, that is set to 1 to highlight the
importance of people distance and social behavior.

Person Reward: Rp = -(1.0 - d)/d
Clamped between -2.0 and +2.0

= Person Reward (Rp)
----- Safe distance = 1.0m
Reward limits (+2.0)

@ Zero point at 1.0m

Person Reward (Rp)
o

H Behaviour:

-2 : * Penalty when distance < 1.0m

* Zero reward at exactly 1.0m

* Positive reward when distance > 1.0m

0 1 2 3 4 5
Person Distance [meters]

Figure 3.5: Social Distance Reward with minSafeDistance =1
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e Obstacle distance: the same concept for keeping distance from people has been
applied to obstacles. The reward is calculated as

_ (minSafeDistance — minObstacleDist)
Ho = minObstacleDist (3:29)

where minSafeDistance is a parameter indicating the safety distance from people
and objects, while minObstacleDist is the minimum current distance from objects
measured by the robot. R, is then clamped to the range

—2, if Ry < —2,
Ro={R,, if —2<R,<2, (3.30)
2,  if R,>2.

The reward for obstacle distance has weight ¢, that has been kept below one during
testing, usually set to a value of 0.8.

Obstacle Reward: Ro = -(1.0 - d)/d
Clamped between -2.0 and +2.0

= Obstacle Reward (Ro)
----- Safe distance = 1.0m
Reward limits (£2.0)

@® Zero point at 1.0m

Obstacle Reward (Ro)
o

1 Behaviour:

24 H + Penalty when distance < 1.0m

H + Zero reward at exactly 1.0m

* Positive reward when distance > 1.0m

0 1 2 3 4 5
Obstacle Distance [meters]

Figure 3.6: Obstacle Distance Reward with minSa feDistance = 1

« Wall distance: since a good social behavior for robots is to move along walls and
not in the middle of the room, a reward for keeping a certain distance from the wall
has been designed. It is calculated as

de = |minWallDist — optimalWallDistance| (3.31)

G = e (3.32)
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The reward R,, is then defined as
—(1 - G), if minWallDist < optimalWallDistance,
R, = (3.33)
G, otherwise.

Finally, the reward is clamped to the range

—1, if Ry < —1,
Ry =< Ry, if —1<R,<1, (3.34)
1, if Ry>1.

The reward for wall distancing has weight ¢, less than 1 since the target could be
anywhere in a room and not always close to a wall.

Wall Reward: Penalty when < 0.5m, Reward when = 0.5m

1.0 4 [

Behaviour:

* Maximum reward (1.0) at 0.5m distance
* Negative reward when closer than 0.5m
* Positive reward when farther than 0.5m
+ Gaussian falloff with collision penalties

054

0.0 1

Wall Reward (Rw)

= Wall Reward (Rw)
e Optimal distance = 0.5m
104 1 Reward limits (£1.0)

: ® Maxreward at 0.5m

0.0 0:5 l.IO l:S 210 2:5 3.0
Wall Distance [meters]

Figure 3.7: Wall Distance Reward with optimalW all Distance = 0.5

e Velocity reward: a reward for keeping a target linear velocity. This reward can
help the robot to complete the task more quickly. It is calculated as

Utarget

Rspeed =10-— Cl&mp[oﬂ ("Ucurrent - Utarget|> (335)

where Veurrent is the current speed of the robot, viarget is the desired target speed,
and Clampyg () is a clamping function that restricts the value of z to the range
[0,1]. The weight of the velocity reward is ¢,, usually less than 1 since the robot
may need to stop to avoid collisions with people passing nearby.
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Velocity Reward: Rv = 1 - Clamp01(|speed - 2.0|/2.0)

Velocity Reward (Rv) :
----- Target speed = 2.0 m/s ‘\
Max reward = 1.0 N
® Maxreward at 2.0 m/s 3
@ Zero reward at 0 m/s
[ ]

Zero reward at 4 m/s H T~
0.8 / H Optimal speed: 2.0 m/s -» Rv = 1.0

0.6

Velocity Reward (Rv)

Behaviour:

* Maximum reward at target speed (2.0 m/s)
* Linear decrease as speed deviates

* Zero reward when speed error = 100%

* Encourages maintaining optimal speed

0.0 05 10 15 2.5 3.0 35 4.0

2.0
Current Speed [m/s]

Figure 3.8: Velocity Reward with targetSpeed = 2.0

« Heading reward: a reward for heading in the right direction towards the target.
It is calculated as

0 = Angle(robotForward, toTarget) - % (3.36)

where 6 is the angular difference (in radians) between the forward direction of the
robot and the target direction. The reward is then calculated as

Rp=1-2 ‘9’ (3.37)
™

so that the agent receives the maximum reward (Rj, = 1) when perfectly aligned
with the target (0 = 0), and a minimum reward (R; = —1) when facing directly
away from it (§ = 7). The heading reward has weight ¢, that usually is lower than
1 since the robot could need to turn to avoid obstacles for reaching its target.
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Heading Reward: Rh = 1 - 2\/(|9/n|)

= Heading Reward (Rh)

O S S Facing target (0°)

----- Facing away (180°)
Max reward = 1.0
Min reward = -1.0

@® Max reward at 0°

® Minreward at 180°
05

AL 90°; Rh =-0.414

0.0 1

Heading Reward (Rh)

Behaviour:
* Maximum reward (+1.0) when facing target
* Minimum reward (-1.0) when facing away
-1.0 4 * Encourages robot to turn toward target

0 Zb 4‘0 Sb 80 160 12‘0 1)m 160 180
Heading Angle [degrees]

Figure 3.9: Heading Reward

Distance reward: The distance to the target is one of the most important rewards
to be designed. Two main configurations have been designed. In the first one, the
distance reward is calculated as

Ad = dprev - dtarget (338)
Ad
OinitalDistance (3.39)

Since the movement for each action is very small, the 20 factor makes it more
consistent. The value is then normalized with respect to the starting distance of
the episode. The final reward is then clamped to the range [—1, 1] as follows:

~1, if R, < —1,
Ri=3 R, if —1<R,<1, (3.40)
1, ifR,>1
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Distance Reward: Rd = Clamp(Ad x 20 / initial_distance, -1, 1)

—— Initial Distance = 1.0m
104 Initial Distance = 2.0m
—— Initial Distance = 3.0m
No distance change
Reward limits (+1.0)
® Zero reward (no change)

054

0.0 1

Distance Reward (Rd)

Behaviour:
* Rewards getting closer to target

* Penalizes moving away from target

* 20x amplification for responsiveness

—0.20 70115 70110 70“05 O.bl) 0.b5 O.iO O.iS 0.20
Distance Change per Step (Ad) [meters]

Figure 3.10: Examples of first type of Distance Reward with different initial distances

The second form for the distance reward is normalized with respect to the maxi-
mum distance from the target between the starting point and the end point of the
movement. It is calculated as:

Rd . dprev - dcu'rrent
Max(dprev, dcurrent)

(3.41)

The distance reward has weight c¢g. Tuning this parameter poses a significant chal-
lenge, since higher values encourage faster task completion, whereas lower ones
may prompt the robot to take alternative routes rather than the straight one to the
target, which are necessary to avoid obstacles.
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. . e — d )
Normalized Distance Reward: Ry = % with dprey = 10.0m
orevs Geumren

: = R_d with d_prev = 10m

: === d_current = d_prev (10m)
|
1
1

0.8 d_current = 5m @ Nochange:R d=0

(moved closer)

Behaviour:

* Positive reward when getting closer (d_current < d_prev)
0.6 - Negative reward when moving away (d_current > d_prev)
« When d_current < d_prev: R_d € [0, 1]

* When d_current > d_prev: R_d € [-1, 0]

* Asymmetric: easier to get high positive reward

0.4 4

1
]
1
1
|
1
0.2 4 1
1
I
1
1

0.0 4

Distance Reward R_d

0.0 2.‘5 5.‘0 7.‘5 16.0 12‘.5 15'.0 17‘.5 20.0
Current Distance d_current [meters]

Figure 3.11: Second type of Distance Reward with previous distance equal to 10

e Proximity reward: this reward is assigned to the robot when it enters a cer-
tain range from the target. In curriculum training, the required distance from the
goal for earning this reward gradually decreases as the robot performs the task
successfully. This reward has a fixed value, usually

Rprox =1 (3.42)

that can be tuned using its weight cproz.

o Time penalty: a time penalty has been set to cause the robot to complete its task
as quickly as possible. It is calculated as

t
Ry = —-psed p o (3.43)

tmax

where telapsed is the current episode time, tyax is the episode timeout, and Rpax
represents the maximum penalty value (set to 2). The time penalty has weight
Ctime, Which approaches 1 as the robot learns how to perform its task.
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Time Penalty Function

—0.25 4

—0.50 4

—0.75 1 Time Penalty

~—- Episode Start (0 min)

——- Episode Timeout (5 min)

—- Maximum Penalty (-2.0)

@ Episode Start, no penalty

@ Episode Timeout, max penalty

—1.00 4

Time Penalty

-1.25 4

—1.50

=1.75 {

—2.00 -

[} 1 2 3 4 5
Episode Time [minutes]

Figure 3.12: Wall Distance Reward with timeout = 5 minutes

« Event-based rewards and penalties: if the robot collides with an object or
reaches the target, a fixed value reflecting the event is added to the reward calcu-
lation.

— If the robot has an unobstructed line of sight to the target (blocked =
false), a small positive reward is added (e.g., reward = 1)

— When the robot reaches the target, a large reward is added (e.g., reward = 20)

Collisions with obstacles or walls cause a small penalty (e.g., reward = —5)

Collisions with people result in a bigger penalty, to highlight the importance
of social correct behavior (e.g., reward = —10)

— If the episode ends because of a timeout, a small penalty is applied (e.g.,
reward = —5)

When the learning objective for the current episode is achieved or failed, the function
EndEpisode() is called. This method terminates the current episode and starts a new
one, allowing the agent to learn through multiple trials.

3.3.1 ML-Agents and Algorithm Configuration

Within the context of the Unity ML-Agents Toolkit, both reinforcement learning (Prox-
imal Policy Optimization PPO, 3.1.1) and imitation learning (Behavioral Cloning BC
3.1.2 and Generative Adversarial Imitation Learning GAIL 3.1.3) methods are supported.
These algorithms can be combined to train agents efficiently in simulation environments.
In order to start and customize the training, the creation of a configuration file .yaml is
required. Multiple parameters can be defined, along with their variation during training
to tune the exploration level and the learning speed of the Agent, for example. ML-agents
integrates TensorBoard, a visualization tool for monitoring and analyzing machine learn-
ing experiments. TensorBoard provides insights into the training process, allowing users
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to track metrics such as rewards, losses, and other performance indicators. By visualizing
these metrics, developers can better understand how their agents are learning and make
decisions about hyperparameter tuning and model adjustments. The full list of parame-
ters is available in the Ml-Agents Documentation [19]. In particular, the parameters used
in this thesis are:

o trainer_type: It allows specifying the type of trainer to be used. It can be ppo, sac
or poca, with default value ppo.

e time__horizon: It indicates the number of experiences that the agent needs to col-
lect before adding its experience to the buffer. When the horizon limit is reached
before the end of an episode, the overall expected reward is predicted using value
estimation. This indicates that a long-time horizon causes a higher variance but a
less biased estimate, while a smaller horizon causes a less varied but more biased
one. The choice of the time horizon needs to balance this trade-off, considering that
bigger values can sequentially capture the important behavior of the agent actions,
while a smaller number can help with frequent rewards and longer episodes. The
default value is 64, but it typically ranges from 32 to 2048.

o summary_freq: It indicates how many steps must be collected before adding the
performance to the graphs in TensorBoard.

e mazx_steps: It specifies the maximum number of steps that the agent takes within
the environment during training. Once this limit is reached, the training is stopped
and the model will be created.

e keep checkpoints: It indicates the maximum number of checkpoints to be held
during training. By virtue of the creation of checkpoints, if the training crashes or
performance drops, the training can be resumed from the last checkpoint instead of
starting from the beginning. If even_ checkpoints is false, a checkpoint is saved every
checkpoint__interval steps. Once the maximum number of checkpoints is reached,
the oldest checkpoint is deleted to make space for the new one.

e even_ checkpoints: It specifies whether checkpoints need to be saved every check-
point__interval steps (when set to false) or whether they must be evenly distributed
during training (when set to true). By default, such a parameter is set to false.

e checkpoint__interval: It indicates the number of steps before a checkpoint is saved.

o hyperparameters: batch__size: It specifies the number of experiences required in
each iteration of gradient descent optimization. It should be multiple times smaller
than the buffer size in order to collect experience before updating the policy model.

e hyperparameters: buffer size: It indicates the number of experiences collected be-
fore the policy model is updated. In order to have a more stable training, updates
are usually obtained using bigger buffer sizes.
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o hyperparameters: learning rate: It specifies the initial learning rate for gradient
descent. It is usually denoted as a before the policy model is updated. In order to
have a more stable training, updates are usually obtained using bigger buffer sizes.
Its value ranges between le — 5 and le — 3, with default value as 3e — 4.

o hyperparameters: learning rate schedule: It determines how the learning rate
changes during training. It can be constant or linear, in which case it decays over
time.

o hyperparameters: hidden__units: It indicates the number of hidden layers in the neu-
ral network. It should be increased as the complexity of the observations increases.
It typically ranges from 32 to 512.

e hyperparameters: num__layers: It specifies the number of hidden layers in the neural
network. It increases in the case of complex models. It usually ranges from 1 to 3.

e hyperparameters: normalize: It indicates if normalization is applied to the observa-
tion vector. Normalization can be helpful in the case of complex and high variance
observations to avoid values that are large in magnitude from dominating the learn-
ing signal. The normalization is applied as

T —p
g

Tnorm =

where (4 is the running mean of the observation (x) dimension, and o is the running
variance.

When a certain trainer is chosen, additional configuration parameters can be added.
The PPO-specific ones are:

o hyperparameters: beta: It specifies the strength of the entropy regularization term
to encourage exploration while penalizing overly deterministic policies. Increasing 5
increases randomness in the policy, while decreasing it causes greater exploitation.
This value needs to be tuned so that entropy decreases slowly while the reward
increases. It ranges from le — 4 to le — 2.

e hyperparameters: beta__schedule: It determines how the value of beta decays during
training. It can be constant or linear.

e hyperparameters: epsilon: It controls the clipping range in the surrogate loss func-
tion limiting the extent to which the new-policy probability ratio () can deviate
from 1. Smaller e values maintain conservative updates for stability, while larger
values allow for a faster policy evolution but risk instability. Its value typically
ranges from 0.1 to 0.3.

e hyperparameters: epsilon__schedule: 1t determines how the value of epsilon decays
during training. It can be constant or linear.
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o hyperparameters: lambd: Used in computing the Generalized Advantage Estimation
(GAE) [22], it balances bias and variance in the advantage estimator:

o
2GAE(v,\
AFAPON ST Siys, 6=+ 4V (s641) — V(se).
=0
When A — 1, the estimator heavily relies on long-term rewards (low bias, high
variance); when A — 0, it depends mostly on immediate value predictions (high
bias, low variance). Typical values are between 0.9 and 0.95.

e hyperparameters: num__epoch: It indicates the number of times needed to go
through the experience buffer before performing gradient descent optimization.

Tuning such parameters is fundamental for enhancing the performance and stability of
training using reinforcement learning.

For the integration of imitation learning, Unity ML-Agents provides a game object
component referred to as Demonstration recorder, enabling developers to record expert
demonstrations within a Unity scene. The demonstrations consist of state-action trajec-
tories stored in .demo files, which serve as training data for the agent. It can be recorded
by playing the scene in the Unity editor, and giving the robot commands using a controller
or the computer keyboard. Imitation learning can be configured via the .yaml trainer
configuration file, where reward signals and behavioral cloning settings are specified. As
highlighted above in chapter 3.3, imitation learning is implemented in different ways for
GAIL (3.1.3) and BC (3.1.2). GAIL algorithm is used as an intrinsic reward mechanism,
while BC is an auxiliary supervised objective.

Since the very first versions of the package, ML-Agents has been removing offline
BC training, forcing the imitation learning to be integrated with RL algorithms such as
PPO or SAC. However, in the configuration files, it is possible to set the strength of the
influence of BC to the maximum 1 to see its effect on the training. BC remains effective
when demonstration data covers most of the possible state distributions; otherwise, dis-
tributional shift may still occur if the policy encounters unseen states during training or
deployment [23]. In the Unity ML-Agents framework, BC operates under the full-state
feedback assumption that the agent receives complete numerical observations such as po-
sitions, velocities, and target coordinates that represent the full environment state. The
policy network learns to map these observations directly to actions by minimizing the
BC loss on the demonstration dataset. In practice, BC is implemented as an auxiliary
objective combined with reinforcement learning updates:

Liotal = LRL + ABc L£BCs

where Agc is the parameter that controls the strength of the imitation objective. In order
to implement Behavioral Cloning, the addition of a behavioral cloning section to the
configuration .yaml file is required. The parameters used to tune the BC implementation
are:

e demo__file: It specifies the path to the .demo file where the demonstration is stored.
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strength: It correspond to Apc and indicates how much the BC learning influences
the policy.

steps: It defines the amount of steps on which the BC influence is active during
training. It can be used to create hybrid trainings, with first experience and rewards
collected under the BC objective, then generalized under reinforcement learning.

samples _per _update: It defines the amount of steps on which the BC influence
is active during training. It can be used to create hybrid trainings, with first
experience and rewards collected under the BC objective, then generalized under
reinforcement learning.

GAIL extrinsic reward signal can also be tuned using parameters in the .yaml con-
figuration file. Its influence in conjunction with the strength of the extrinsic reward
can be tuned, together with the network specification of the GAIL discriminator. The
parameters for the gail section are:

demo__path: It specifies the path to the .demo file where the demonstration is stored.

strength: It is a factor that multiplies the raw reward. It varies from 0.1 to 1
and should be kept smaller in the case of human demonstration to leave space to
reinforcement learning improvements and optimization.

gamma: It is the discount factor for future rewards. It indicates how far in the
future the Agent should think about possible rewards. It must be strictly smaller
than 1, with a default value of 0.99.

learning rate: It indicates the learning rate for the GAIL discriminator. If the
training is unstable, it should be decreased. The default value is 3e — 4 and it
ranges from le — 5 to le — 3

network__settings: This section for GAIL contains the same parameters as that for
PPO. The parameters of this section have been set to match those of PPO to allow
for performance comparison under the same settings.

3.4 Reward Engineering Challenges

On of the main challenges in reinforcement learning systems is the definition of a suitable
reward function that optimizes the learning process of the Agent. Although the design of
the rewards seems an easy task since it should reflect the desired behavior, it hides several
issues. This process, also referred to as reward engineering, has recently attracted more
attention due to the increasing importance of reinforcement learning. The first challenge
is the actual transformation of the desired behavior into a reward function. Reinforcement
learning rewards can vary in structure and distribution, from being constantly fed to the
Agent every step to being event-driven. The same behavior can be coded in different
ways, from a single reward for the completion of the task to complex rewards consisting
of sums of different conditions experienced by the Agents.
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The navigation task that can be translated as reach the target without collisions with
other entities, for example, can be designed in numerous different ways. An example of
an easy implementation and an example of a complex one are given hereinbelow:

e The reward function can be null in the whole environment, with only positive value
when the robot reaches the target position. When the robot collides with other
objects, reset the episode.

e The reward function adds a value to the reward at each step, which is the sum of
several components:

— a value proportional to the proximity of walls,

— a value proportional to the progress of the robot from the previous step,

a value proportional to the velocity of the robot that is compared with a target
velocity,

— a value proportional to the robot heading error relative to the robot-to-target
direction,

— etc.

More complex reward functions can speed up the training processes, guiding interme-
diate behavior instead of blind objective seeking. However, this type of function shaping
can increase the risk of introducing unintended incentives that can cause the robot to
have different behaviors from that designed. The balance between complexity and train-
ing speed becomes another challenge in reward function engineering.

The magnitude of the rewards assigned for the various events within the environment
gives rise to a further problem. For example, in navigation tasks an agent may receive a
reward for having reduced the distance to a goal and a separate reward for having avoided
obstacles. If the penalty assigned for the obstacle avoidance is too heavily weighted, the
agent may minimize collisions but never attempt to reach the goal. In the results accord-
ing to Ibrahim et al. [24] it is emphasized how actual intentional reward components can
dominate optimization and lead to degeneration of behaviors. Since the agent optimizes
what it is rewarded for and not necessarily what is intended, every component of the
reward must be checked for unplanned influence.

Another issue concerns the non-stationarity of the environment, even more when a
social scene in simulated. As an agent improves, the states it visits shift, along with
the feedback from the reward signal. If the reward design does not account for this,
then the optimization may converge prematurely or settle into a local optimum. In
particular, algorithms such as PPO greatly suffer from the settlement to local optima,
with small room for improvement. Once the agent has discovered a behavior that reliably
brings moderate reward and avoids major penalties, it may cease exploring and refine this
strategy. Avoiding poor exploration and acceptable partial policy is part of a good reward
design.

Since the same task can be carried out in different environments with different com-
plexities, it is possible that the reward function needs to evolve with the environment.
For example, the navigation of an empty room involves other needs in the robot behavior
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than those needed by a room with people or a room with fixed obstacles, etc. Whereas a
reward for traveling straight to the target in an empty room may result in optimal train-
ing, avoiding possible intermediate walls or objects can fail the same reward function in
a room with obstacles. Each configuration needs a properly tailored reward function,
without modifying the environment characteristics.

Reward functions can also become overly specialized to the environment in which the
Agent operates. Most of the time, it is necessary to train a model in different environ-
ments to ensure that the learning process is not biased towards a specific environment
but adapted to any setting. The generalization and adaptability of a model adds even
more difficulty in connection with the reward engineering problem.

In the context of robot navigation, the above reward engineering challenges result in
concrete risks:

e The robot may learn that remaining stationary is safer than reaching the goal if
the penalties for collisions are too high.

e Sparse goal-based rewards may cause highly slow learning or lack of progress.

o Auxiliary rewards (e.g., maintaining a heading) may inadvertently dominate the
goal reward, causing strategy drift, such as a stationary behavior while oriented
towards the target.

o High time penalties to encourage fast completion may overcome collision penalties
and cause early collisions.

e Rewards for keeping distance from obstacles may cause dangerous navigation in
social environments.

e Wrong reward function designs can create repeated actions, for example exiting a
proximity reward zone and entering it in a loop fashion to accumulate rewards.

Therefore, when designing a reward for the robot to navigate into a room with people
and walls, rewards for reached targets, penalties for obstacles, progress shaping, and
exploration incentives must be carefully balanced. It is often preferable to start with
simpler scenarios such as an open space without walls, and gradually increase complexity,
monitoring the mean reward, standard deviation, episode length, and actual behaviors.

A good solution to the reward engineering challenges is the use of imitation learning
as intrinsic reward structure (as GAIL is used in Ml-Agents package), where the reward
function is implicitly defined by expert demonstrations, reducing the need for explicit
reward design. This compensates for sparse rewards and complex behaviors, as the agent
learns and is rewarded based on expert behavior. Its performance is analyzed in chapter
5, along with that of Behavioral Cloning, confronting the two imitation learning methods
with pure reinforcement learning.

After several trials with different reward functions, the one chosen for the tests was
an event-based reward system, where the agent receives a positive reward of +20 for
reaching the target, a negative reward of —10 for colliding with people, a negative reward
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of —5 for colliding with obstacles or causing a timeout, and a small negative reward
of —0.02/timeout for each time step taken to encourage faster navigation. This reward
structure aims to balance the need for efficient navigation with the importance of avoiding
collisions. Other structures were tested (shown in the Appendix 7, along with their
results), but the reward function described above was found to be the most effective.
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Chapter 4

Environment setup

4.1 Unity Game Engine

The Unity Real-Time Development Platform [25] is a cross-platform game engine that
enables the creation of 2D, 3D, virtual, and augmented reality environments in real time.
Originally developed by Unity Technologies in 2005, it has evolved into one of the most
widely adopted real-time 3D (RT3D) engines. Although primarily known as a game en-
gine, Unity has increasingly been used in fields such as research, robotics, simulation,
and application development. It features characteristics that make it suitable for intu-
itive user interaction, including an integrated editor and a component-based architecture,
which make the environment highly customizable and flexible.

Unity provides the foundation for the training environment developed in this thesis.
Once a project is created, the virtual environment can be customized according to the
specific requirements of the training scenario. This customization can be achieved either
by adding 3D models designed for the particular context or by using prefabs - reusable
virtual components that can be instantiated across multiple scenes. Unity also offers a
set of basic 2D and 3D primitive objects (such as cubes, spheres, and planes) that can
be directly created within any scene, while more complex assets — including prefabs,
textures, and models obtained from external sources — must first be imported into the
project directory structure. Within the Assets folder, Unity organizes files into subdirec-
tories according to their function: for example, Prefabs stores reusable object templates,
Scripts contains the C# code controlling object behavior, and Scenes hold the different
environments that form the project. Once the virtual environment is properly configured,
it can be saved as a scene. Each scene represents a self-contained environment within
the project and can later be reused, modified, or combined with others, allowing for the
creation of multiple training scenarios within the same Unity project.
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(a) Example of a hospital environment (b) Example of a supermarket environment

Figure 4.1: Examples of virtual environments created with Unity

A simple scene has been created for our training environment. The walls in the scene
consist of cubes with dimensions that have been properly modified. A tag Wall has been
added to these objects. The floor is a plane referred to as Floor in the hierarchy. Both
these tags and names will be important since they are used by the code controlling the
Agent. Since the task is complex, multiple scenes have been designed to make the train-
ing gradual with increasing difficulty. The first scene has no walls, the second one has
one wall in the middle of the room, the third one presented moving animations while the
fourth one has the final configuration of the room.

Since the social context requires the presence of people, it can be simulated by in-
serting animated human models into the virtual environment. Mixamo [26] provides a
library of standard humanoid models and animations that can be imported into Unity
to simulate people moving within the scene. The animations are managed through the
use of an Animator, a Unity component that controls the transition between different
animation states based on predefined parameters.

Figure 4.2: Animator configuration

With the Animator configured as shown in 4.2 and adding two scripts ( WallDetector
and PersonDetector), the characters in the scene will begin walking, occasionally pausing
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to look at their phones before resuming movement. When they encounter a wall, they
will turn around, while interactions between two characters are handled probabilistically:
upon meeting, they may either stop to converse or exchange a wave before turning around
and keep going on their respective paths. All animations representing humans should be
tagged as Person in the simulation to ensure proper recognition. Once these are added
to the scene, the final virtual scene for training is set up.

Figure 4.3: Final virtual scene for training

4.2 Unity-Robotics-Hub

In order to import the robot model and enable ROS2 communication within Unity, the
Unity Robotics Hub [27] package must be installed. This package provides the necessary
tools to integrate Unity with robotic frameworks by allowing URDF files to be imported
and a communication to be established with a ROS2 system through a TCP /IP connector.

The TCP/IP connector included in the Robotics Hub acts as a communication bridge
between the Unity simulation and the ROS2 system. It enables real-time data exchange
between Unity and ROS2 nodes through network sockets, allowing Unity to publish sen-
sor data and receive control commands. This communication link is essential for testing
robotic algorithms to simulate the robot behavior as accurately as possible.

On the ROS2 side, the Jazzy distribution [17] has been used. In order to establish a
communication with Unity via TCP/IP, the ROS-TCP-Endpoint package [28] must be
installed within the ROS2 workspace. The complete tutorial for the installation can be
found in the Unity Robotics Hub documentation [27].

Once the package is sourced and built, the endpoint can be launched using:

ros2 run ros_tcp_endpoint default_server_endpoint --ros-args -p ROS_IP:=<IP> -p
ROS_TCP_PORT:=<PORT>

This command initializes a communication channel between Unity and ROS2 on the spec-
ified IP address and port. If both Unity and ROS2 are running on the same machine,
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the TP address can be set to 127.0.0.1. The port parameter may be omitted or explicitly
defined; if unspecified, the default port 10000 is used.

In this project, the simulated robot is the Jackal (3.2). By importing a URDF into
Unity, a copy of the physical robot can be created. A four-wheeled AGV controller must
be added to the Jackal, replacing the controller with the model. The settings for the
component are shown in the picture 4.4.

~ AGV Controller 4 Wheels (Script)

Figure 4.4: Settings for the four-wheeled AGV controller attached to the Jackal robot

Although the URDF model of the Jackal robot already includes a LIDAR system that
publishes data through the topic |scan and provides a visualization suite displaying the
sensor readings as point clouds, an additional custom LIDAR module has been developed
for this project. This method allows the user to configure both the number of laser points
generated by the sensor and the number of points rendered in the visualization, offering
greater flexibility and control over the perception process.

4.3 Agent’s implementation

The agent is added to the scene thus creating an empty GameObject that will be referred
to as the Agent. Multiple components must be attached thereto:

e Behavior Parameters: This component contains all parameters related to the be-
havior of the agent. In particular, the following items must be specified:
— Behavior Name: This value needs to match the one in the configuration file.

— Space Size and Stacked Vectors: These values determine the characteristics of
the observation vector.
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— Actions: This section contains the information on the action branches. In par-
ticular, whether the action used are continuous or discrete, how many branches
for each type of action, and the values the actions can take.

— Model: In the case of inference mode, the model of the trained NN must be
inserted into this section. For this purpose, the model needs to be in the
project files and can be dragged from the Assets window to this section.

— Behavior Type: 1t can be set to Default, Inference Only or Heuristic Only, and
determines what type of behavior the Agent carries on.

to target (NN Model)

Default

bute Handlin lgnore

Figure 4.5: Settings for the Behavior Parameters component

e RobotAgent: This script is the center of this project and is used to define the Agent.
Multiple parameters must be specified in this section to appropriately set the Agent
on the environment in which it is found.

— Max Step: It indicates how many steps the Agent can take before the end of the
training. If set to 0, it is ignored and the value specified in the configuration
file is used.

— Root Articulation Body: In this section the ArticulationBody component of the
Jackal robot must be specified. The Agent can thereby follow the movements
of the robot and perceive any collisions.

— Multiplier and Angular Multiplier: These parameters can be modified to change
the value of the twist message sent on the ROS topic \ emd_vel.

— Simulation LIDAR Settings section: In this section, through the use of the
various parameters, it is possible to indicate the characteristics of the LIDAR
system to be simulated. Perception Radius determines the maximum distance
objects are detected by the LIDAR system, Angle Span indicates the angle
in front of the robot where the rays are spread, and Ray Count parameter
determines how many rays are casted.
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— Camera People Detection Settings section: Like the one for the LIDAR, this
section contains the parameters for the simulated camera on the robot. Camera
Range indicates the maximum distance people can be detected, Camera Angle
Span determines the angle in front of the robot that the camera can see,
whereas Maz People To Detect specifies how many people can be recognized by
the robot at the same time. If this last parameter is increased, it is necessary
to increase the observation vector size as well, since each additional person
detected carries a 3 observation vector.

— Navigation Settings section: This section contains the parameters that specify
how the robot should navigate the environment. Optimal Wall Distance pa-
rameter allows the user to specify the distance at which the robot must be kept
from the walls when it navigates. Target Reached Distance indicates the dis-
tance at which the robot must be from the target position in order to consider
the task completed. Target Position indicates the position of the first target
to be reached: if left to values [0,0,0], the position will be chosen randomly. It
is mainly used for development debug.

+ Robot Agent (Script)

Max Step

_link {Articulation Body)

Figure 4.6: Settings for the Robot Agent component

e Decision Requester: This component specifies the characteristics of the decisions
taken by the model. Here the Decision Period can be specified and whether the
Agent can take actions between decisions can also be chosen.
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Decision Requester

Figure 4.7: Settings for the Decision Requester component

o Demonstration Recorder: This component allows recording demonstrations. It has
a Record button that activates the demonstration recording. Here, the name and
the directory for the demonstration can be specified.

Demonstration Recorder

emptyroom

Figure 4.8: Settings for the Demonstration Recorder component

Once these components are attached to the Agent GameObject, the Agent is ready
to be used.

To complement this, a new visualization system referred to as the Visualization Suite
has been designed. In order to add it to the scene, the scripts of the suite need to be in
the Assets directory of the project. In particular, to keep the project organized it is sug-
gested to place them in the Scripts folder. Once the scripts are in the project, a new Tool
option will appear in the top bar of the Unity window, referred to as the Visualization
Suite. In order to add the visualization tool, simply open this new window and create a
new visualization manager.

Clear All Dots Refresh Agents

Figure 4.9: Visualization suite tool
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Detected points are rendered in the Unity scene with a color coding that reflects the
object type and distance: red, yellow, and green indicate walls and obstacles (with red
representing the farthest detections and green the closest ones), and white corresponds
to detected human tags. The target is visualized in the scene as a white sphere, denoting
the point in space that the robot has to reach. Additionally, a dynamic line is drawn be-
tween the robot and its target, changing color from red to green when the target becomes
directly visible for the robot, allowing the user to easily track the navigation of the robot
during simulation. Detected people are surrounded by a visible white cube, as they are
perceived by the robot in its observations. All visualization components can be displayed
or not by toggling a button in the Visualization Suite window.

lization Suite

ast Dots

/ Target Ray

w Detected People

Clear All Dots

Figure 4.10: Visualization suite window in game mode

Once the environment has been created, the user can record a demonstration, train
the Agent, or play a trained model to see its behavior.

4.3.1 Demonstration recording

In order to record a demonstration, the button Record in the Demonstration Recorder
must be active before the play mode is started. The demonstration name and the direc-
tory to store it can be specified in the component. For a demo recording, the heuristic
behavior must be set in the Behavior Parameters section and then, once the scene is
started, the user can demonstrate the desired behavior using an input method (e.g., the
keyboard or a joystick). The demo will end as soon as the scene is stopped, then it will
be stored either in the specified directory or in the directory Demonstrations that will be
created in the project files.

Longer demos are indicated to show the correct behavior in the maximum number of
states possible. The demonstration will map directly each state to an action and can be
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used by imitation learning algorithms to make training faster and more performing. All
demonstrations recorded for this project have been done using the VR headset (4.4).

4.3.2 Model training

In order to train a new model, the Python package mlagents needs to be installed. This
package requires Python 3.10.12. To isolate the ambient for the package, a virtual en-
vironment has been created. Once inside the environment and python is installed, the
package can be installed using the commands

cd /<path to ml-agents>
python -m pip install ./ml-agents-envs
python -m pip install ./ml-agents

Once this is done, it will be possible to run the mlagents commands. In particular, in
order to start the training, the command mlagents-learn will be required. The next step
is the creation of a .yaml configuration file containing the parameters indicated in section
3.3.1. The parameters will have to be tuned to mirror the training needs and contain the
same behavior name as the Agent present in the Unity scene. The training can then be
started using the command

mlagents-learn <path to .yaml file> --run-id=<name>

exclusively from inside the directory of ml-agents package. Additional settings can be
added to the training command

e —force, used when a training name has already been used, but it is intended to
overwrite the model;

o —initialize-from=<name>, that allows specifying another model as the starting
point of the training;

e —env=<path to environment>, to use a specific environment for the training. If
this is not specified, the training can still be carried out in the editor by calling the
training command in the terminal and then pressing the play button in the editor;

e —resume, to resume an interrupted run;

In order to interrupt a training, press CTRL+C and wait for the process to terminate.
Once the training is completed, the package will generate a new folder in the results
directory, named after the run and containing three elements:

e The summaries containing the training metrics that can be used to analyze the
training performance and identify the changes to be made in the configuration
parameters. This metrics can be displayed using TensorBoard.

e The models with extension .onnx created at each checkpoint by training. A final
model is also created when the training ends or is stopped.

e The timer files that contain aggregated metrics on the training, indicating the time
taken for decisions and algorithms updates, for example.
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4.3.3 Model running in the environment

Once a model has been trained, it can be run into the environment to verify the behavior
that it has learnt. From the results folder, the .onnz file needs to be copied into the
project files. The model needs then to be placed in the Model section of the Behavior
Parameters component. Next, the Behavior Type must be set to Inference Only to show
the actions received only by the model.

By pressing play, the scene will switch to the play mode, and the robot will be under
the control of the trained model, moving accordingly with its actions.

4.4 VR headset

The use of a VR headset is indicated for demonstration recording and training or model
supervision. The user can enter the scene either to impersonate the robot in order to show
the right actions to perform or to modify the scene for inserting randomicity and checking
the behavior of the model. The VR headset can be introduced into the environment using
the Interaction SDK.

The Meta Quest 2 is a virtual-reality (VR) headset developed by Meta Platforms
Inc. [29]. It is equipped with an integrated Snapdragon XR2 processor, 6 GB of RAM,
and two high-resolution LCD displays (1832 x 1920 pixels per eye) running at refresh rates
up to 120 Hz. The headset features six degrees of freedom tracking through integrated
cameras, which allows users to move within a tracked space without requiring external
sensors. It supports PC' VR mode, where rendering is performed on an external computer
and transmitted to the headset via cable or Air Link connection.

The Interaction SDK [30] provided by Meta is a high-level library that extends Unity’s
XR Integration Toolkit. It offers pre-built components for hand-tracking, controller input,
grab interactions, and movement management. The Interaction SDK integrates typical
VR interactions into modular prefabs such as HandInteractionController, RayInteractor,
and XR Grab Interactable. This greatly simplifies the development of interactive scenes
and allows developers to manage easily the possible user actions into the scene.

During the development of the training environment, the Meta Quest 2 headset has
been integrated to allow the user to enter the scene and record the demonstrations. In
order to utilize the Meta Quest 2 headset and its controllers into the Unity environment,
the following steps must be carried out:

1. Install the Meta XR SDK from the Unity Asset Store. Enable XR Plugin Man-
agement in the Project Settings and select Oculus as the provider for both desktop
and Android platforms.

2. Scene configuration. Add to the scene the building block Camera Rig. This
object contains the camera and the controllers, managing their position and ori-
entation in the virtual environment. In order to make the user enter the scene it
with the point of view of the robot, a new component Attach Camera Rig has been
created. This script attaches the camera rig to the robot position, updating its
position and rotation in each frame.
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3. Record demonstration. When the headset is connected (via cable or Air Link
connection) and the scene is played, the Unity Game View mirrors the user’s per-
spective. The joystick on the right hand is mapped automatically in Unity to send
horiziontal and vertical inputs. These are read by the Agent script like keyboard
inputs and transformed into ROS commands to the robot. The user can then nav-
igate the environment and record demonstrations to show the robot the desired
behavior.

4.5 The code

The most important part for the training of an Agent is the script defining the agent itself.
In this section the different functions will be described in terms of structure and purpose.
The Agent code, as already said in section 3.3, must define the functions OnEpisodeBe-
gin(), CollectObservations(), OnActionReceived() and Heuristic(). Unity functions like
Start() and Update() have been modified to set up the agent. Other functions have been
defined to modularize the code and make it clearer. The functions in the code are:

o ResetRobotPosition(): This function resets the robot to the position it had at the
beginning of the episode, taking its velocity to 0.

o moveTarget(): This function calls a new type of class, the TargetMover, that moves
the target to a new position to be reached by the robot. The user can create a
new instance of this class, modifying the rules for the positioning of the target. If
no mover is specified, the Agent creates and utilizes a component referred to as
the Normal Target Mover. With this script, the position of the target is randomly
chosen on the object in the scene referred to as the Floor. The code also checks that
the target is not positioned where other objects are present, avoiding unreachable
objectives. The position of the target is also limited to certain areas depending on
the point in the training at which the agent is found. The training process has been
divided into difficulty steps, each with its own rules for the possible positions of the
target:

— Very Fasy Mode: The target can be placed at a maximum distance of 4 units,
such that there are no objects between it and the robot, and in an angle of
180 degrees in front of it.

— Fasy Mode: The target can be placed at a maximum distance of 4 units from
the robot.

— Medium Mode: The target can be placed at a maximum distance of 8 units
from the robot.

— Hard Mode: The target can be placed anywhere in a valid position.
o Awake(): In this function, the ROS connection is initialized. This process is placed

in the Awake() function instead of the Start() function since it is of maximum
importance that the ROS connection is immediately established.
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e Start(): This function initializes the environment for the training. Since the Jackal
model consists of multiple components, each with its own collider, a component
ArticulationCollisionForwarder created for this project is added to each of the child
objects of the model. If the position of the target has not been changed in the Unity
editor, the moveTarget() function is called to place it randomly.

o Update(): This function is called in every step of the training and is used to update
the scene. First, it keeps the position of the Agent anchored to that of the robot.
It then checks if the robot fell or flipped to reset its position in such cases. The
timeout for the episode is checked, thus ending the episode if the robot took too
much time to reach the target. Since the target is not a physical object, the task
is considered completed when the robot reaches a certain position close enough to
the target position. This function also carries out this check, ending the episode if
the task has been successfully completed.

o SetTargetPositionFromCurrentPosition(): This function lies behind the component
section Target Position. This function allows the user to visualize the position of
the target in the edit mode as well.

o OnEpisodeBegin(): This function is called each time an episode starts. The number
of episodes is increased and the episode timer reset. If the target is reached, it
is moved to another position. The current position becomes the start and reset
position for the robot, until a new target is reached. If the episode ends for other
causes, the robot position is reset to try again to carry out the task. If animations
are present in the scene, their position is reset every 10 episodes to make the start
of each episode different in configuration.

o CollectObservatons(VectorSensor sensor): This function collects the observations to
define the state of the Agent. The information added using sensor. AddObservation ()
must describe the environment so that the agent can learn how to behave depending
on the state in which it is found. The observations added are:

— The linear and angular velocity of the robot, overall 3 + 3 = 6 observations.
— The direction to the target, normalized, adding 3 observations.

— The direction in which the robot is oriented, 3 more observations.

— The distance to the target, one additional numerical observation.

— The observations of the simulated LIDAR, using the function addSimulationL-
idarObservations(sensor). The LIDAR will add raycount3 observations. This
value can be changed in the Ray Count parameter of the Agent component.

— The observations of the simulated camera, using the function addPeopleCam-
eraObservations(sensor). The camera will add maxPeopleToDetectx3 observa-
tions.This value can be changed in the Max People To Detect parameter of the
Agent component.

The final number of observations is calculated as
34+ 3+3+3+ 1+ raycount x* 3 + maxPeopleToDetect x 3
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Using the default values rayCount = 36 and max PeopleT oDetect = 10, the number
of observations is in total 154. This value need to be put in the behavior Parameters
component, in the section Space Size of the Vector Observations.

addSimulationLidarObservations(VectorSensor sensor): This function simulates a
LIDAR sensor. It casts rayCount rays at an angle angleSpan in front of the robot
to detect any other object inside the perception range, with maximum distance
perceptionRadius. All parameters can be indicated in the Agent component in the
Simulation LIDAR Settings. Since the robot model consists of many GameObjects,
the perception is designed to ignore the objects that are children of the robot and
perceive only those that are external. For each ray, one vector with three coordinates
indicating the relative position of the detected object from the robot’s point of view
is passed as an observation.

addPeople CameraObservations(VectorSensor sensor): This function simulates the
work of a camera in people recognition. In the simulation, it is still based on the
casting of rays and detection of people around the robot. The animations and the
user with the VR set in the scene need to have assigned the tag Person in order to
make them recognizable for the simulated camera. People can be recognized once
they enter the camera range with maximum distanccameraRange and angle span
cameraAngleSpan. Both parameters can be modified in the Agent component in the
Camera People Detection Settings. Once a person is detected, a vector with three
coordinates indicating the relative position of the person is passed to the Agent as an
observation. The camera is designed to perceive a maximum of mazPeople ToDetect
to make the number of observation not variable. If fewer people are detected, the
remaining observation will be passed as zero vectors.

GetDetectedPeoplelnView(): This function is necessary to pass the people GameOb-
jects that are perceived by the robot to the Visualization Suite. A white box sur-
rounding the person in the camera view will thus appear in the scene when a person
is detected.

Calculate Reward(bool TargetCollision, bool ObstacleCollision, bool PersonCollision,
bool Timeout): This function computes the reward to be sent to the Agent. When
testing the performance of the Agent, the reward function takes different forms:

— Event-based reward: The function is called only when an event occurs,
such as collision, reached targets, or timeouts. A reward value is assigned for
each event, taking its importance into account. In general terms, the highest
penalty is given to a collision with a person, while timeout and wall collision
can have smaller penalties. If the target is reached, a substantial reward is
assigned.

— Event-based reward with periodic rewards: By maintaining the rewards
assigned to the events, some periodic rewards have been added to stimulate and
provide guidance to the robot for faster task performance. Periodic rewards
are given to the robot every rewardTimeout and can be rewards/penalties for
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the distance travelled towards or away from the target, or penalties on the
time elapsed without reaching the goal to speed up the task.

— Event-based reward with on action rewards: Rewards can also be as-
signed to each action taken by the Agent, in order to give an immediate feed-
back of the consequences of that action. This method can be too heavy with
respect to the computational power and the hardest to tune, since the number
of actions during each episode is very high.

The possible rewards that have been tested are described in section 3.3. The reward
structure chosen for carrying on test is instead described in chapter 3.4.

OnActionReceived(ActionBuffers actionBuffers): This function maps the actions
sent by the Agent with the actual commands sent to the ROS system. Discrete
actions have been chosen over continuous actions to make the training easier and
allow the robot to make a limited range of movements. During testing, two different
configurations have been analyzed:

— One Discrete Branch: Only one branch per action has been defined. The
Action can take values from 0 to 3, each corresponding to move forward, turn
left, or turn right. The robot is limited to take these actions one at the time.
This limits the possibilities of the robot and can help with action rewards.
The command is sent to the ROS system using the SendTwist(forward,turn)
function.

— Two Discrete Branches: Two branches are defined, one for the forward
command and one for the turning one. To avoid backwards movement, the
forward branch has been limited to only two values, 1 and 0, indicating going
forward and staying still. For the turning branch, three values are possible, 0
for not turning, 1 for turning left, and 2 for turning right. The command is
sent to the ROS system using the SendTwist(forward,turn) function.

SendTwist(float forward, float turn): This function receives the forward and twisting
intended movements and encodes them in a TwistMsg, suitable for ROS messages.
This command is then sent on the |cmd_vel topic.

CheckAndResetIfTipped(): This function uses the rotation of the robot body to
check if the robot has flipped upside down.

OnRobotCollision(GameObject other): This function has been defined to replace the
OnCollisionEnter(Collision collision) since the Jackal model consists of multiple
objects. In the initialization, the component ArticulationCollisionForwarder has
been attached to each child object of the robot. This components carries a script
that calls the Agent’s function OnRobotCollision(GameObject other) whenever the
OnCollisionEnter(Collision collision) function is called on any of these objects.
Therefore, when any part of the robot collides with another external object, the
Agent will be updated. Collisions are seen as final events, so this function calls the
Calculate Reward(bool TargetCollision, bool ObstacleCollision, bool PersonCollision,
bool Timeout) method and ends the current episode.
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o Heuristic(in Actionuffers actionsOut): This function maps the users inputs to the
Agent actions. As for the OnActionReceived(ActionBuffers actionBuffers) method,
two configurations have been tested:

— One Discrete Branch: Both vertical and horizontal inputs from the user are
mapped on the same branch. In particular, using the keyboard, the upwards
arrow corresponds to value 1, the left arrow to value 2, the right arrow to value
3, and no key pressed correspond to value 0.

— Two Discrete Branches: When two branches are defined, the vertical com-
mands are given to the first branch while the horizontal ones go to the second
one. The upwards arrow corresponds to value 1 in the first branch, while the
downwards arrow can indicate value 2, depending if backwards movement is
allowed. No vertical key pressed indicates no linear movement. The left ar-
row corresponds to value 1 on the second branch, while the right arrow to
command 2. No horizontal key pressed corresponds to no turning movement.
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Chapter 5

Results

In order to visualize and confront the results obtained from the different training methods
described in chapter 3, this chapter presents the training performance and test outcomes
for each method. The focus is on the agent’s ability to navigate to targets placed at
various distances and orientations, while avoiding obstacles and people animations in the
environment.

The configuration for the models has been kept constant to ensure the same conditions
for all methods. The default hyperparameters provided by Unity ML-agents for the PPO,
BC and GAIL algorithms were used, changing some parameters to improve training
performance:

e time_horizon: 128: This parameter was increased from the default 64 to allow
the agent to collect more experience before each policy update, which can help in
environments with delayed rewards. Since the rewards are event-based and sparse, a
longer time horizon allows the agent to better associate actions with their outcomes.

e batch_size: 64 and buffer size: 1024: These values were kept small since discrete
actions are used, allowing for more frequent updates to the policy.

o hidden__units: 256: The size of the neural network’s hidden layers was increased
from the default 128 to provide the model with more capacity to learn complex
patterns in the environment. The high number of observations justifies a larger
network.

e beta: 1.0e-2: This value was increased from the default 5.0e — 3 to encourage more
exploration during training, which is beneficial in sparse reward settings. In tests
with smaller values, the agent tended to converge to suboptimal behaviors due to
insufficient exploration.

e beta__schedule: constant: The exploration parameter was kept constant to maintain
a high level of exploration throughout the training process.

e epsilon__schedule: constant: The clipping parameter for PPO was kept constant
instead of making it decrease linearly over time. This helps to maintain stable
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updates to the policy, avoiding making the policy converge too quickly to suboptimal
solutions.

e gamma: 0.995: The discount factor for future rewards was set slightly higher than
the default 0.99 to focus on long-term rewards, which is important in navigation
tasks where the goal is reached after a sequence of actions.

For the configuration of imitation learning methods, both Behavioral Cloning (BC)
and Generative Adversarial Imitation Learning (GAIL) were trained using four dataset of
300 demonstrations collected by manually controlling the robot in the environment using
the VR headset. The demonstrations were recorded in the same four environments used
for training, to provide the models with experience in all scenarios they would encounter.
Both BC and GAIL trainings used the same configuration of PPO, with strenght of the
imitation learning reward signal set to 1.0. The reward structure chosen for carrying on
the trainings and the tests is described in chapter 3.4.

5.1 Trainings

Each model has been trained for 500000 steps in four different environments, to ensure the
same amount of training time for all methods. Each training session took approximately
4 hours for environment. The first environment (Figure 5.1a) is an empty room with
only the perimeter walls, to train pure navigation skills. The second environment (Figure
5.1b) included a static obstacle between the area where the agent starts navigating and
the target location, to encourage obstacle avoidance behavior. The third environment
(Figure 5.1¢) added moving people animations to simulate a crowded environment, while
the fourth environment (Figure 5.1d) combined both static obstacles and moving people.
The results presented in this chapter show the performance of the models in various test
scenarios after training in these environments.

In order to evaluate the effect of reinforcement learning applied on a imitation learning
model, tests were also conducted on models trained firstly with BC or GAIL, followed by
further training with PPO (again of additional 500000 steps). The results are compared
with models trained solely with PPO, BC, and GAIL.

After each training session, its performance was evaluated observing the reward curve
and the episode length graph obtained in the TensorBoard logs.
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(a) Empty room environment (b) Obstacle avoidance environment

(c) People avoidance environment (d) Full environment

Figure 5.1: Training environments used for the training sessions

5.1.1 Empty room training

Training Performance Comparison Episode Length Comparison

—— PPO from GAIL

Episode Length

200

1) 100000 200000 300000 00000 500000 100000 200000 500000 400000 500000
Training Steps Training Steps

(a) Cumulative reward curve for training in  (b) Episode length curve for training in empty
empty room environment room environment

Figure 5.2: Training metrics for empty room environment

Observing the cumulative reward and confronting with the episode length it is possible to
derive what kind of behavior the robot had during the training. In the empty room envi-
ronment (Figure 5.2) the agent learned to navigate to the target with almost all methods.
PPO shows a good exploration with initial longer episodes, that get shorter as the agent
learns to reach the target faster. GAIL also shows a good performance, with a steady

61



Results

increase in cumulative reward and decreasing episode lengths. BC shows a better start,
with a quick rise in cumulative reward due to the imitation of expert demonstrations,
but then plateaus, indicating limited further learning. The combined methods (BC+PPO
and GAIL4+PPO) show mixed results, with GAIL+PPO improving greately over GAIL
alone, while BC+PPO shows a drastic drop in performance. Observing the behavior
learned by the model, the BC4+PPO made no additional exploration and converged to
a suboptimal behavior, bumping into walls as soon as possible to avoid additional time
penalties.

5.1.2 Obstacle avoidance training

Training Performance Comparison - Obstacle avoi Episode Length C: ison - Obstacle avoi

Cumulative Reward
Episode Length

(a) Cumulative reward curve for training in the  (b) Episode length curve for training in the ob-
obstacle avoidance environment stacle avoidance environment

Figure 5.3: Training metrics for the obstacle avoidance environment

The addition of obstacles in the robot’s path (Figure 5.3) made the training more challeng-
ing. An obvious drop in performance was made by all methods, with sporadic successful
navigation from GAIL methods. The general behavior learned by all other methods is a
standing one, to avoid penalties for bad exploration and obstacle collisions. This is veri-
fied by the steep increase of the episode length and constant negative cumulative reward.
The only method that keeps positive exploration is GAIL method, moved by the intrinsic
rewards to act similarly to the expert actions. Generally, all methods encounter great
difficulties moving around big size objects, not having any reward system to guide their
obstacle avoidance learning.
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5.1.3 People avoidance training
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Figure 5.4: Training metrics for the people avoidance environment

People avoidance training (Figure 5.4) showed better results than obstacle avoidance,
with PPO, BC and GAIL methods learning to navigate around moving people. PPO+BC
method kept long episodes and constant rewards, converging again to a standing behav-
ior. Since the person animation can be seen as a narrow moving obstacle, the possibility
to avoid such obstacle with less actions with respect to an extended wall explains the
better performance. Observing the model behavior with GAIL, the robot is able to wait
for the obstacle to go out of its path and then reach its goal, as it was shown in the
demonstrations. The other two successful methods tend to avoid people animations by
moving through them.

5.1.4 Full environment training

Training Performance Comparison - Complete scene Episode Length Comparison - Complete scene
151 — o 00
8
— aaL
—— PPO from BC
—— PO from GAIL
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Episode Length

—— PPO from GAIL
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(a) Cumulative reward curve for training in the  (b) Episode length curve for training in the
complete environment complete environment

Figure 5.5: Training metrics for the complete environment
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As expected from the obstacle avoidance training, the complete environment (Figure 5.5)
presented the greatest challenge for all methods. The agent struggled to learn effec-
tive navigation strategies, with all methods showing long episode lengths and negative
cumulative rewards. GAIL method showed some positive exploration, but still failed
to consistently reach the target. The other methods converged to standing behaviors,
avoiding movement to minimize penalties. This indicates that the combination of static
obstacles and moving people created a complex environment that was difficult for the
agent to navigate without more sophisticated learning strategies or reward structures.

5.2 Tests

Several tests have been conducted to evaluate the performance of the different training
methods described in Chapter 3.1. The tests focus on the agent’s ability to reach targets
placed at various distances and orientations, behind obstacles or in the presence of people
animations. Each test consists of 10 trials per configuration, and success is defined with
the agent reaching the target before timeout. All tests were conducted in a controlled
environment, with the agent starting from a fixed position and orientation.

5.2.1 Orientations tests

For the first batch of tests, the target was placed at various distances (5, 10, and 15 units)
and orientations (0°, 45°, 90°, 135°, 180°, 225° 270°, and 315°) relative to the agent’s
starting position. Each configuration was tested 10 times to account for variability in
performance. The agent’s success rate was recorded for each method and configuration.

Figure 5.6: Target placements used in the orientation tests
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Table 5.1: Performance Across Angular Target Orientations, 5 units distance

Method 0°  45° 90° 135° 180° 225° 270° 315°
PPO 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
GAIL 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
GAIL+PPO 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
BC 5/10 3/10 0/10 0/10 0/10 0/10 0/10 2/10

BC+PPO  1/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10

Performance Across Angular Target Ori i (5 units di

10 = PPO

- GAIL
W GAIL+PPO
m— BC

= BC+PPO

IS o ©

Success Rate (out of 10)

0 a5° 90° 135° 180° 225° 270° 315°
Target Orientation

Figure 5.7: Performance Across Angular Target Orientations, 5 units distance

While PPO, GAIL, and GAIL4+PPO methods demonstrated perfect performance
across all target orientations at a distance of 5 units, BC and BC4+PPO methods strug-
gled significantly. BC managed to reach the target only when it was directly in front of
the agent (0°) or slightly moved, while BC+PPO showed almost no success. This poor
navigation ability of BC-based methods can be attributed to the limits of BC training,
which relies heavily on the quality and diversity of the demonstration data. Since the
problem analyzed is very complex, the demonstrations didn’t cover all possible scenar-
ios. As a result, the BC-trained models failed to identify a good policy for a consistent
positive navigation, converging to suboptimal behaviors when the target was not directly
in front of them. The addition of PPO training after BC did not improve performance,
likely because the initial policy learned from BC was too weak to benefit from further
reinforcement learning.

5.2.2 Distance tests

The second batch of tests focused on the ability of the agent to reach targets placed at
varying distances (5, 6, 7, 8, 9, and 10 units) from its starting position. The targets were
placed in the four cardinal directions to evaluate performance across different orientations.
Each configuration was tested 10 times, with best performance expected when the target
is in front of the agent and worst performance when the target is behind the agent.
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Figure 5.8: Target placements used in the distance tests

Table 5.2: Performance Across Distance variations, 0° target orientation

Method 5 units 6 units 7 units 8 units 9 units 10 units
PPO 10/10 10/10 10/10 10/10 10/10 10/10
GAIL 10/10 10/10 10/10 10/10 10/10 10/10
GAIL+PPO  10/10 10/10 10/10 10/10 10/10 10/10
BC 6/10 3/10 7/10 10/10 2/10 10/10
BC+PPO 0/10 0/10 0/10 0/10 0/10 0/10

Table 5.3: Performance Across Distance variations, 90° target orientation

Method 5 units 6 units 7 units 8 units 9 units 10 units
PPO 10/10 10/10 10/10 10/10 10/10 10/10
GAIL 10/10 10/10 10/10 10/10 10/10 10/10
GAIL+PPO  10/10 10/10 10/10 10/10 10/10 10/10
BC 0/10 0/10 0/10 0/10 0/10 0/10
BC+PPO 0/10 0/10 0/10 0/10 0/10 0/10

Table 5.4: Performance Across Distance variations, 180° target orientation

Method 5 units 6 units 7 units 8 units 9 units 10 units
PPO 10/10 10/10 10/10 10/10 10/10 10/10
GAIL 10/10 10/10 10/10 10/10 10/10 10/10
GAIL+PPO  10/10 10/10 10/10 10/10 10/10 10/10
BC 0/10 0/10 0/10 0/10 0/10 0/10
BC+PPO 0/10 0/10 0/10 0/10 0/10 0/10
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Table 5.5: Performance Across Distance variations, 270° target orientation

Method 5 units 6 units 7 units 8 units 9 units 10 units
PPO 10/10 10/10 10/10 10/10 10/10 10/10
GAIL 10/10 10/10 10/10 10/10 10/10 10/10
GAIL+PPO  10/10 10/10 10/10 10/10 10/10 10/10
BC 0/10 0/10 0/10 0/10 0/10 0/10
BC+PPO 0/10 0/10 0/10 0/10 0/10 0/10
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Figure 5.9: Tests results across distance variations at different target orientations

Similar to the orientation tests, PPO, GAIL, and GAIL+PPO methods demonstrated
optimal performance across all distances and orientations. BC method showed inconsis-
tent performance, managing to reach the target only at certain distances when it was
directly in front of the agent (0° orientation). The performance dropped to zero for BC
at other orientations, indicating poor exploration and navigation capabilities. BC+PPO
method remained consistent on the standing behavior, failing to reach the target in any
configuration. These results further highlight the limitations of BC-based methods in
complex tasks, where it is difficult to provide a set of demonstrations covering all possi-
ble scenarios the agent might encounter.
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5.2.3 Obstacle avoidance tests

Next, the obstacle avoidance scenario has been analyzed. The robot needed to reach a
target distant 6 units at 0° having an obstacle on its way. The success rate with various
obstacle dimensions has been collected.

Figure 5.10: Target placements used in the obstacle avoidance tests

Table 5.6: Performance across obstacle avoidance scenarios, 0° target orientation, different
obstacle dimensions

Method 1 unit 2 units 3 units 4 or more units
PPO 8/10 8/10 3/10 0/10
GAIL 7/10 3/10 0/10 0/10
GAIL+PPO  3/10 3/10 0/10 0/10
BC 4/10 3/10 1/10 0/10
BC+PPO 1/10 0/10 0/10 0/10
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Performance Across Obstacle Avoidance Scenarios
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Figure 5.11: Performance across obstacle avoidance scenarios, 0° target orientation, dif-
ferent obstacle dimensions

The results indicate that as the obstacle size increases, the success rates for all meth-
ods drops. PPO maintains a relatively higher performance compared to other methods,
while BC and BC+PPO struggle significantly with larger obstacles. GAIL shows mod-
erate performance but also quickly declines with increasing obstacle size. Observing the
quality of the performance, BC methods learned a standing behavior in front of the ob-
stacle, while PPO and GAIL were able to navigate around, ending the episode closer to
the target with a collision or a success. These results on are probably due to the structure
of the reward function, that reinforces only behaviors that decrease the distance with the
target, without rewards or incentives for obstacle avoidance. GAIL+PPO also opted for a
more conservative behavior, navigating with success the area getting closer to the obsta-
cle and the target, but then converging a standing behavior with only slight orientation
changes. PPO reached the best performance in the obstacle avoidance tests due to the
configuration of the training. Since the exploration parameter beta was increased and set
to constant, with an higher exploration PPO was able to explore more and find paths
around the obstacles.
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5.2.4 People avoidance tests

(a) Animation configuration with 1 person (b) Animation configuration with 2 people

(¢) Animation configuration with 3 people (d) Animation configuration with 4 people

Figure 5.12: Training environments used for the people avoidance tests

Table 5.7: Performance across person avoidance scenarios, 0° target orientation, different
number of people

Method 1 person 2 people 3 people 4 people
PPO 6/10 5/10 5/10 5/10
GAIL 10/10 9/10 6/10 7/10
GAIL+PPO 1/10 1/10 0/10 1/10
BC 8/10 7/10 6/10 5/10
BC+PPO 0/10 0/10 0/10 0/10
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Performance Across People Avoidance Scenarios
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= BC+PPO

IS o ©

Success Rate (out of 10)

1 person 2 people 3 people 4 people
Number of People

Figure 5.13: Performance across person avoidance scenarios, 0° target orientation, differ-
ent number of people

Since the animations move randomly during the tests, to get the statistics for the peo-
ple avoidance several batches of 10 episodes have been run, then the average number
of successes rounded by defect has been taken (shown in table 5.7 and figure 5.13). In
this scenario, GAIL outperforms other methods, maintaining high success rates even as
the number of people increases. PPO shows a moderate decrease in performance with
more people, while BC performs relatively well compared to its results in other scenarios.
The combined methods (BC+PPO and GAIL+PPO) show poor performance, mostly be-
cause this models learned a standing behavior to avoid large penalties. With four people
present, since the animations are programmed to stop and run a talk animation when
they meet, the agent found it slightlyeasier to navigate with all algorithms, since the peo-
ple were less likely to cross its path. The high performance of GAIL can be explained by
observing the effective behavior learned by the model. The demonstration of the expert
contained avoidance behavior alongside waiting behavior, keeping distance from the ani-
mation and moving only when the path became free. GAIL model learned this behavior,
that was applied during several of the trials in the people avoidance environment. The
improved performance of the BC method can be explained by the quality of the demon-
strations. Since the animations move randomly around the robot, each trajectory covers
many possible states, increasing the visited space. The BC method is then able to learn
successfully, having more probability to encounter demonstration states.
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Chapter 6

Future works and conclusions

This project has analyzed the possibilities to use demonstrations for training robots,
in particular to carry out navigation tasks in social environments. This idea has been
developed in a simulated environment in Unity to allow repeated testing in a safe and
confined environment, highly customizable and easy to use. Unity allows for the presence
of the user in the scene by virtue of the use of a VR headset that has allowed a more
socially focused testing. The results obtained have shown that reinforcement learning
algorithms and imitation learning algorithms suffer from convergence problems during
training, leading to suboptimal policies. While BC has shown critical flaws in terms of
successful navigation, PPO and GAIL have shown better results, even if not completely
satisfactory. With sparse rewards and complex environments, the learning process carried
out by this algorithms has been successful only in clear environments, while the presence
of large obstacles like walls has led to poor performances. The presence of people in the
environment was less decisive in affecting the performance of the agents, since the models
learned to avoid small obstacles. However, collision with people should be complitely
avoided to ensure safe navigation in social environments, so the model cannot be con-
sidered reliable. The tests demonstrated that the combination of imitation learning and
reinforcement learning, in particular PPO, enhanced the issues related to this method,
leading to convergence to standing policies and suboptimal behaviors. Considering all
tests, the most reliable algorithm for training the robot has been GAIL, which has shown
the best performance in terms of navigation success and people avoidance. The use of
demonstrations as auxiliary reward function has allowed the agent to have feedback on
its actions even in the presence of sparse rewards, leading to better exploration and more
stable learning. However, also this algorithm has shown limitations in terms of naviga-
tion success in complex scenes, leading to the conclusion that further improvements are
needed to achieve reliable navigation in social environments.

In order to extend the analysis conducted in this project, the next steps can be the
implementation of continuous actions instead of discrete ones, and the analysis of per-
formance on longer curriculum trainings. Due to the high variability in the design of
reward functions, other distributions of rewards can be analyzed to find better perform-
ing solutions. This work has considered the use of a single environment for each training,
since the connection with the ROS2 system did not support multiple robots or multiple
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Future works and conclusions

connections. The development of a way to train multiple robots with the same agent can
be an important step to speed up the training process and improve the learning perfor-
mance. To improve the quality of the trainings with sparse rewards, the implementation
of curiosity-driven exploration methods can be considered, to allow the agent to explore
the environment more efficiently and discover new strategies for navigation.

Since reinforcement learning and imitation learning navigation are not completely re-
liable for navigating, future progress in this work could be the integration of navigation
frameworks. The idea underlying the use of agents can be changed and they can be
implemented in other fashions, such as using them to learn and foresee people’s move-
ments, creating new information to improve the path planning and social behavior. The
implementation of agents would be centered on learning specific social behaviors, such
controlling velocity control or adjusting the trajectory around people, while the naviga-
tion is carried out by traditional model-based path planning algorithms.
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Chapter 7
Appendix

The code developed to create the environment and carry out the training sessions is
available at the following GitHub repository: https://github.com/PIC4SeRThesis/
AsiaFerri.

In this chapter are reported additional configurations that have been tested and discarded
during the development of the environment. More tests than the ones listed were carried
out, but these are the most significant ones that show the evolution of the project and
the performance with different settings.

e« Complex reward function with PPO: A more complex reward function has
been tested during the development of the environment, applying all rewards de-
scribed in section 3.3. This configuration included rewards for maintaining a forward
velocity, heading rewards, and other factors. However, this approach led to slower
learning and less stable policies, as the agent struggled to reach consistently the
target. For this training the timer was set at 3000 seconds, and the event based
rewards were kept the same as in the final version of the environment. The training
was carried out in the complete environment, with obstacles and people presence.

c ive Reward Episode Length

3000

Episode Length

Cumulative Reward

0 200000 300000
Training Steps Training Steps

Figure 7.1: Training metrics with complex reward function

The figure 7.1 shows the training metrics obtained with this configuration, where
it is possible to see that the average reward is lower and less stable compared to
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Appendix

the simpler reward function used in the final version of the environment. The agent
struggled to consistently reach the target, leading to a lower overall performance.

e Complex reward function with PPO using one discrete branch for Ac-
tions: In order to try making the learning process more stable using the complex
reward function, a configuration with one discrete action branch has been tested.
The action space included 4 discrete actions: move forward, turn left, turn right
and stand still. However, this approach still led to suboptimal performance, as the
agent struggled to learn smooth navigation behaviors. As in the previous configu-
ration, the timer was set at 3000 seconds, and the event based rewards were kept
the same as in the final version of the environment. The training was carried out
in the complete environment, with obstacles and people presence.

c ive Reward Episode Length

sssss

Cumulative Reward
. . )
pisode Length

Figure 7.2: Training metrics with complex reward function and one discrete action branch

The behavior learned by the agent with this configuration converged to a stand-
ing one, showed by high episode length and low rewards (figure 7.2). The agent
preferred to avoid movement to minimize penalties, resulting in poor navigation
performance.

¢ Medium complexity function with PPO: A medium complexity reward func-
tion has also been tested, including rewards for distance to target and heading, but
excluding forward velocity rewards, proximity rewards and time penalties. This
configuration aimed to balance simplicity and informativeness in the reward signal.
For this configuration the timer was set to 1500 seconds, and the event-based re-
wards were enhanced to provide more feedback on reaching the target and avoiding
collisions. The training was carried out in the complete environment, with obstacles
and people presence.
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ive Reward Episode Length

Cumulative Reward
Episode Length

Figure 7.3: Training metrics with medium complexity reward function

While the performance improved compared to the complex reward function, the
agent still exhibited instability in learning, as shown in figure 7.3. The PPO algo-
rithm struggled to consistently reach the optimal solution, finally converging to a
standing suboptimal policy.

Event-based reward function with default configuration: The final reward
function used also to retrieve the results shown in chapter 5 has been tested with
the default configuration of the Unity ML-agents framework, to test its performance
without hyperparameter tuning. This configuration included a timer set to 1500
seconds, and the training was carried out in the empty room environment.

ive Reward Episode Length

1000

Cumulative Reward
.

Figure 7.4: Training metrics with default configuration

The exploration process was drastically less efficient with default configuration than
with the tuned hyperparameters, as shown in figure 7.4. The agent struggled to
learn effective navigation behaviors, resulting in lower rewards and longer episode
lengths. This configuration highlighted the importance of hyperparameter tuning
in achieving optimal performance with reinforcement learning algorithms.

Behavioural cloning implementation with strenght parameter set to 0.1:
Since BC methods showed poor performance in the tests described in chapter 5,
additional configurations have been tested changing the strenght of the influence of
the BC method. One such configuration involved setting the strenght parameter of
the BC implementation to 0.1 instead of the full strenght. This parameter controls
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the weight given to the imitation loss during training, with lower values placing
more emphasis on matching the expert demonstrations. The timer was set to 600
seconds, and the event-based rewards were kept the same as in the final version of
the environment. The training was carried out in the empty room environment.

c ive Reward Episode Length

Cumulative Reward
i . .

Figure 7.5: Training metrics with BC strenght parameter set to 0.1

With this configuration, the agent showed a slow exploration, converging to a stand-
ing behavior as shown in figure 7.5. The reduced emphasis on imitation led to less
effective learning, as the agent struggled to generalize from the expert demonstra-
tions. Full strenght BC provided better results in terms of navigation performance
compared to this configuration, showing that the agent benefited from a stronger
focus on imitation learning in the empty room scenario.

78



Bibliography

1]

Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan
Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, and
Danny Lange. Unity: A general platform for intelligent agents, 2020.

Andre Cleaver, Darren Tang, Victoria Chen, and Jivko Sinapov. Haven: A unity-
based virtual robot environment to showcase hri-based augmented reality, 2020.
Hasan Seyyedhasani, Daniel Udekwe, and Muhammad Ali Qadri. Comparative eval-
uation of vr-enabled robots and human operators for targeted disease management
in vineyards, 2025.

Sumey El-Muftu and Berke Gur. A robot simulation environment for virtual reality
enhanced underwater manipulation and seabed intervention tasks, 2025.

Giacomo Franchini, Brenno Tuberga, and Marcello Chiaberge. Advancing lunar ex-
ploration through virtual reality simulations: a framework for future human missions,
2024.

Linqgi Ye, Rankun Li, Xiaowen Hu, Jiayi Li, Boyang Xing, Yan Peng, and Bin Liang.
Unity rl playground: A versatile reinforcement learning framework for mobile robots,
2025.

Shokhikha Amalana Murdivien and Jumyung Um. Boxstacker: Deep reinforcement
learning for 3d bin packing problem in virtual environment of logistics systems.
Sensors, 23(15), 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor,
2018.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
Trust region policy optimization, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017.
Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning, 2011.

Dylan J. Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need?
understanding horizon in imitation learning, 2024.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016.
Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning:
Challenges, methods and progress, 2020.

79



Bibliography

[16] Clearpath Robotics.  Jackal Description Package — URDF and Meshes for
Clearpath Jackal Robot. ROS Index. https://clearpathrobotics.com/
jackal-small-unmanned-ground-vehicle/.

[17] Open Robotics. ROS 2 Documentation: Jazzy Jalisco. ROS.org. https://docs.
ros.org/en/jazzy/.

[18] M. Everett, S. Chen, and J. How. “mit develops autonomous ‘socially aware’ robot
using jackal ugv”. Clearpath Robotics — Case-Study. https://clearpathrobotics.
com/customers-robot-case-stories/mit-develops-socially-aware-jackal/.

[19] Unity Technologies. Unity ML-Agents Toolkit Documentation (Version
4.0), 2024. https://docs.unity3d.com/Packages/com.unity.ml-agents@4.0/
manual/index.html.

[20] Unity Technologies. Unity ml-agents toolkit. https://github.com/
Unity-Technologies/ml-agents.

[21] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by
random network distillation, 2018.

[22] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation, 2018.

[23] Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings
of Machine Learning Research, pages 661-668, Chia Laguna Resort, Sardinia, Italy,
13-15 May 2010. PMLR.

[24] Sinan Ibrahim, Mostafa Mostafa, Ali Jnadi, Hadi Salloum, and Pavel Osinenko.
Comprehensive overview of reward engineering and shaping in advancing reinforce-
ment learning applications, 2024.

[25] Unity Technologies. Unity — real-time development platform. https://unity.com/.

[26] Adobe Systems Incorporated. Mizamo: 3D Character Animation Platform. Adobe
Inc. https://www.mixamo.com/.

[27] Unity  Technologies. Unity  Robotics  Hub. Unity  Technologies.
https://github.com/Unity-Technologies/Unity-Robotics-Hub.

[28] Unity Technologies. ROS-Unity TCP Endpoint (ROS 2 Integration Plugin). Unity
Technologies. https://github.com/Unity-Technologies/ROS-TCP-Endpoint.

[29] Meta Platforms, Inc. Meta — social technology company. https://www.meta.com/.

[30] Meta Platforms, Inc. Unity interaction sdk overview — meta hori-
ZOon. https://developers.meta.com/horizon/documentation/unity/
unity-isdk-interaction-sdk-overview/.

[31] Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan. To-
wards optimally decentralized multi-robot collision avoidance via deep reinforcement
learning, 2018.

[32] Zizhao Wang, Xuesu Xiao, Garrett Warnell, and Peter Stone. Apple: Adaptive plan-
ner parameter learning from evaluative feedback. IEEE Robotics and Automation
Letters, 6(4):7744-7749, October 2021.

[33] Jiequan Cui, Beier Zhu, Qingshan Xu, Zhuotao Tian, Xiaojuan Qi, Bei Yu, Hanwang
Zhang, and Richang Hong. Generalized kullback-leibler divergence loss, 2025.

80


https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://docs.ros.org/en/jazzy/
https://docs.ros.org/en/jazzy/
https://clearpathrobotics.com/customers-robot-case-stories/mit-develops-socially-aware-jackal/
https://clearpathrobotics.com/customers-robot-case-stories/mit-develops-socially-aware-jackal/
https://docs.unity3d.com/Packages/com.unity.ml-agents@4.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.ml-agents@4.0/manual/index.html
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://unity.com/
https://www.mixamo.com/
https://www.meta.com/
https://developers.meta.com/horizon/documentation/unity/unity-isdk-interaction-sdk-overview/
https://developers.meta.com/horizon/documentation/unity/unity-isdk-interaction-sdk-overview/

Bibliography

[34]

Mauro Martini, Noé Pérez-Higueras, Andrea Ostuni, Marcello Chiaberge, Fernando
Caballero, and Luis Merino. Adaptive social force window planner with reinforce-
ment learning, 2024.

Andrew Patterson, Victor Liao, and Martha White. Robust losses for learning value
functions, 2023.

Russ Tedrake. Underactuated Robotics. https://underactuated.csail.mit.edu.
OpenAl. Proximal policy optimization (ppo) — spinning up in deep rl. https:
//spinningup.openai.com/en/latest/algorithms/ppo.html.

OpenAl. Proximal policy optimization (ppo) — openai baselines. https://openai.
com/index/openai-baselines-ppo/.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.

81


https://underactuated.csail.mit.edu
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://openai.com/index/openai-baselines-ppo/
https://openai.com/index/openai-baselines-ppo/

	Introduction
	Related work
	Introduction to the topic
	Unity as a Simulation Platform
	Unity and ROS/ROS2 integration
	ML-Agents for robotic training
	Thesis Positioning

	Theory
	Learning Algorithms
	PPO - Proximal Policy Optimization Algorithm
	BC - Behavioral Cloning Algorithm
	GAIL - Generative Adversarial Imitation Learning

	ROS2 System and the Jackal
	ML-Agents
	ML-Agents and Algorithm Configuration

	Reward Engineering Challenges

	Environment setup
	Unity Game Engine
	Unity-Robotics-Hub
	Agent's implementation
	Demonstration recording
	Model training
	Model running in the environment

	VR headset
	The code

	Results
	Trainings
	Empty room training
	Obstacle avoidance training
	People avoidance training
	Full environment training

	Tests
	Orientations tests
	Distance tests
	Obstacle avoidance tests
	People avoidance tests


	Future works and conclusions
	Appendix
	Bibliography

