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Abstract 

The computational efficiency of artificial intelligence is becoming more and more 

constrained by the so called Von Neumann bottleneck causing the transition toward 

analog Compute-in-Memory (CIM) architectures. This requires synaptic devices capable 

of combining non-volatile storage, high resolution and as linear as possible conductance 

modulation. This thesis investigates the potential of ultra-thin (43 nm) Y-36 Lithium 

Niobate (𝐿𝑖𝑁𝑏𝑂3) films to address these requirements, through devices characterization 

and system-level benchmarking.  

Through electrical characterization of Metal-Ferroelectric-Metal devices an optimized 

pulse protocol was developed to handle the switching dynamics. This approach was able 

to set 102 distinct conductance states (more than 6-bit precision) within an analog 

window operating at currents as low as 3 𝜇A.  

System-level benchmarking via NeuroSim software on an MNIST set classification task 

showed that high synaptic resolution and acceptable linearity is necessary for training 

stability. The optimized configuration achieved an accuracy of 77.61%. Hardware 

analysis highlighted a performance duality: while the device exhibits remarkable read 

energy efficiency (~435 µJ), the write energy is currently high due to long pulse duration 

and high device area. Theoretical projections on future works indicate that overcoming 

these limits by optimizing switching dynamics to faster regimes can reduce consumption 

to the femtojoule level, validating Y-36 𝐿𝑖𝑁𝑏𝑂3 as a scalable platform for next generation 

neuromorphic computing. 
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Introducion 

Rapid ascent of Artificial Intelligence and Von Neumann 

bottleneck 

The fast growth of artificial intelligence, especially deep learning, has sharply increased 

the need for computing memory and power[1]. Because modern neural networks (NN) 

involve billions of parameters, their training often depends on a huge amount of data 

along with powerful hardware implementation. Such demand has worsened existing 

limits in system design, especially constraints from the classic von Neumann model. In 

standard setups, processing units and storage stay apart; this forces constant movement 

of data across a common channel linking the processor and the memory through buses[2]. 

Although that structure once supported flexibility, expansion and scalability, it now 

struggles under AI workloads needing wide memory throughput and quick responses 

during computations. 

The von Neumann bottleneck occurs since instructions and data move slowly due to 

limited connection capacity between chip (for example the CPU) and memory. When 

models grow larger, moving data takes more time and can drive most of the energy use 

instead of actual calculations. For neural networks, constantly transferring weights during 

trainings, outputs and temporary values may consume a big portion of total power, far 

exceeding what math operations require. Limited memory access doesn't just delay 

processing, it leaves processors in an idle state as they wait for inputs, wasting resources 

and time. While newer AI chips handle math and internal storage much quicker, moving 

data outside the chip remains slow and inefficient by comparison. 

Also, the typical sequential flow of von Neumann architectures makes simultaneous and 

parallel computations harder to handle[3]. Instead, multi-core designs try reducing delays 

by adding more cores; however, problems such as energy use and growing shared memory 

demands are still present. Devices built for speed, like GPUs, reduce certain limits using 

tailored memory management and hierarchical caching, though their performance is still 

held back due to slow buses and access to the main memory block.[4] 
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Compute-in-memory 

To address this issue, new design approaches, such as compute-in-memory (CIM) and 

neuromorphic computing, merge processing and calculations with storage, so information 

is handled right where it resides. Instead of moving data through buses, devices like 

memristors, resistive RAM and phase-change elements allow both storing and calculating 

within the same array structure. These methods use analog computations across array-like 

structures, running many calculations at once to cut down delays and power 

consumption[5]. Modern hardware solutions now take advantage of localized computing, 

showing major improvements in performance and energy savings when dealing with 

artificial intelligence tasks. 

With AI expanding into areas like self-driving cars and health diagnostics, demand rises 

sharply for fresh and efficient hardware designs. Moving past the von Neumann limit 

sparks joint advances across material research, chip design development and 

computational methods, setting the stage for leaner learning machines.[4] 

 

Academic effort in Neuromorphic Computing 

Over the past ten years, studies in neuromorphic computing have grown fast, fueled by 

demand for hardware that uses less power while supporting advanced AI tasks. Taking 

inspiration from Neuroscience, these systems take cues from how neurons connect, using 

dense interconnectivity, dynamic learning patterns and continuous adaptation. Because of 

this shift, experts from electronics, materials science and cognitive research now work 

together, making joint efforts that push forward novel circuit designs and system layouts. 

Major academic work has led to a variety of different hardware designs. Key cases 

involve digital systems such as IBM TrueNorth, Intel Loihi, or SpiNNaker, these use 

special chips to run thousands of artificial spiking neurons and synapses at once, enabling 

fast parallel computation.[4] At the same time, research community is testing novel 

materials and devices like memristors, phase-change memory units, spin-based tools and 

photonic circuits[3] to build analog and mixed signal architectures that mimic the 

behavior of real synapses. 

Recent studies point out potential uses of neuromorphic computing. For instance, systems 

using event-based vision, robotics, sensors, brain implants, and compact AI for on-site 
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tasks requiring minimal energy and real time responsiveness[5]. Still, hurdles exist; one 

major issue is connecting scalable, software-friendly digital designs with the high 

efficiency of new neuromorphic chips. 

 

Different types of Neuromorphic Computing devices 

Neuromorphic computing uses different devices and physical methods to create hardware 

that mimics brain-like functions. One leading approach relies on electric charge, 

especially in materials with ferroelectric properties, thanks to stable data retention, fast 

switching, while possibly supporting multiple states storage per unit. 

 

Ferroelectric RAM 

Ferroelectric RAM (FRAM) is widely used especially for non-volatile digital memory 

applications relying on the bistable polarization of ferroelectric layers such as PZT or 

HfZrO2 and typically operates with the two binary states 0 and 1. For example, FRAM 

devices show remanent polarization of around 20–100 µC/cm² and high endurance 

exceeding 10¹² cycles, but their use in neuromorphic computing is generally limited by 

the sharp switching and binary nature of the response making it difficult to behave like a 

memristor, also due to non-linear polarization curves, although some architectures and 

advanced pulse schemes can achieve more than two conductance states in lab 

conditions.[4] 

Non-binary ferroelectric systems are drawing more interest in neuromorphic computing, 

especially where or multi-level tuning supports synaptic behavior. Instead of full 

switching, using controlled pulses or engineered domains helps reach various resistive 

states reliably. As an example, thin-film MFM units built from LiNbO₃ achieved 40 

conductance levels, equal to around 5 bits, while certain HfO₂ setups reached up to 8 

levels (roughly 3 bits)[6]. Even so, differences between individual devices, data stability 

over time, and endurance during repeated use remain key challenges before wide 

integration. 
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Ferroelectric tunnel junctions 

Ferroelectric tunnel junctions (FTJs) employ ultrathin ferroelectric barriers (typically less 

than 5 nm) where the resistance state is determined by the barrier's polarization 

orientation via quantum tunneling. Researchers have observed stable and robust ON/OFF 

ratios, often exceeding two orders of magnitude and have found that tunneling current 

can be almost continuously modulated through controlled polarization and pulse 

dynamics.[7] Although FTJs utilizing materials such HfZrO2 or BaTiO3 show impressive 

retention operating with very low energy (requiring only fJ to pJ per bit)[8], challenges 

remain regarding device uniformity and integration with well established CMOS logics. 

 

Ferroelectric field effect transistors 

Ferroelectric field effect transistors (FeFETs) incorporate a ferroelectric layer directly as 

the gate dielectric, in this way the transistor's channel conductance can be tuned by its 

own polarization state. FeFETs are well known for their extremely fast sub-nanosecond 

switching capabilities, multiple analog threshold states and, like FTJs, compatibility with 

CMOS logic. In the context of neuromorphic computing, FeFET synapses are particularly 

valuable as they can represent a decent dynamic range of weights while operating at high 

speeds and low voltages. Currently, state-of-the-art FeFET arrays have successfully 

demonstrated synaptic behavior with up to 32 analog states.[8] 

Overall, charge-driven ferroelectric systems like FRAM, FTJs, MFM capacitors and 

FeFETs are becoming key for neuromorphic computing, offering analog tuning plus 

compact and scalable design. Although multi-level function is now more achievable 

thanks to better materials and fabrication methods, maintaining stable performance across 

large arrays continues being an active area of research development. 
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Resistive based neuromorphic memories provide other options instead of charge-driven 

systems, each using distinct physical principles and design approaches. Among them, 

three main types stands out: RRAM, PCM (also called PcRAM), while magnetic variants 

include STT-RAM and MRAM. 

 

Resistive RAM 

Resistive RAM (RRAM), sometimes called memristor arrays, uses a thin insulating layer, 

made from materials like HfO₂, TiO₂, or Ta₂O₅ placed between two metal contacts. Instead 

of bulk changes, it works through tiny conductive paths that form or break; these filaments 

rely on missing oxygen atoms (oxygen vacancies) or moving metal ions to shift resistance 

levels between high resistance state (HRS) and low resistance state (LRS). From the 

performance standpoint, they support tight scaling, reaching about 4F² per cell, along with 

rapid switching under 10 nanoseconds and efficient energy usage around 0.1 to 10 pJ per 

write cycle. By precisely adjusting voltage pulses, multiple conductance steps can 

emerge, one setup manages up to 128 levels (equaling 7 bits)[5], [8], with ON/OFF ratio 

commonly above 100. Advanced RRAM setups allow IMC using crossbar grids for 

efficient vector-matrix multiplication, this boosts appeal for brain-inspired systems. Still, 

issues like inconsistent performance, limited lifespan, or difficulty tuning weights 

accurately persist. 

Figure 1. Classification of conventional and non-convention memories.  

[Adapted from IRDS Beyond CMOS 2023] 
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Phase-change memory 

Phase-change memory (PCM or PcRAM) utilizes chalcogenide materials such as 

Ge₂Sb₂Te₅ (GST) that can be reversibly switched between amorphous (high resistance) 

and crystalline (low resistance) phases by controlled heating by using electrical pulses. 

Multi-level resistance is possible by controlling the crystalline volume fraction, allowing 

up to 120 stable conductance levels in experimental devices. Typical PCM features 

switching speeds in the microsecond range (around 6 µs) and write energy on the order 

of 100pJ per bit, with excellent scalability and retention (over 10 years at room 

temperature)[9]. PCM crossbars have demonstrated highly parallel VMM for neural 

networks but device-to-device variability, reset drifting, and relatively high programming 

currents compared to RRAM and MRAM pose constraints for large arrays. 

 

Magnetic RAM 

Magnetic RAM, particularly spin transfer torque RAM (STT-RAM), retains data through 

magnetic alignment in ferromagnetic layers divided by a slim insulating film, often MgO. 

Writing happens when electric current flips the magnetization direction, producing either 

low or high resistance based on whether alignments match or oppose, enabling natural 

digital storage. Instead of relying on charge, this method allows quick access times, 

(reaching about 10 nanoseconds), while keeping memory intact without power. Although 

some studies show promise for storing more than one bit per cell using incomplete 

switching or new compounds, achieving stable analog behavior at scale is difficult. 

Thanks to strong durability and CMOS integration, it works well for cache and non-

volatile storage; yet data retention and scalability for brain-inspired computing need 

further exploration[10]. 

All these resistor-like storage units bring key benefits compared to standard charge-driven 

types: they allow gradual tuning, compute inside memory, work at lower voltage, also 

pack tightly together. While one system may last longer, another might scale better or use 

less power, each balances performance differently. Current studies aim to build stable 

multi-step control, reduce inconsistencies across cells, while linking them as artificial 

synapse nodes in real neural systems that speed up AI tasks. 
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Pitfalls of memory technologies: energy and latency efficiency 

limitations 

Although neuromorphic computing offers major improvements in hardware efficiency, 

every type of new memory tech, whether charge-driven or resistance-driven, comes with 

some drawbacks. 

 

Charge-based Memories 

Ferroelectric RAM works well over time, uses low energy, provides non-volatility, yet 

only handles binary states because it flips quickly between them. That makes it less useful 

for brain-inspired computing, which needs smooth, graded changes in memory values[4]. 

Some efforts have been tried achieving levels beyond two by tweaking how domains form 

or using incomplete switches; these show promise, but controlling many stable steps 

consistently remains hard. Variability across chips, uneven response, and shifting stored 

values complicate accurate tuning. As more analog stages become available, data may 

fade faster reducing accuracy during prolonged use. 

Ferroelectric Tunnel Junctions (FTJs) enable analog control using electron tunneling 

across extremely thin ferroelectric films, less than 5 nm thick. Although these junctions 

show strong ON/OFF performance, such as around 300 in BaTiO setups, scaling them 

down remains challenging because fabrication is complex; also, leakage currents and 

defect sensitivity interfere[7]. For instance, certain tests reveal that HfO₂-type devices, 

one widely used FTJ option, achieve just 8 distinct levels, equivalent to 3 bits.[6] 

Ferroelectric Field Effect Transistors (FeFETs) show potential for compact, quick 

performance through multi-step voltage control. When used in neuromorphic settings 

these devices support broad range of memory weights variation. Recent FeFET grids 

demonstrate 32 continuous levels mimicking synapse activity[8]: however, precise analog 

adjustments typically last around 10⁴ cycles. 
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Resistive-based Memories 

Resistive RAM works fast, speeds reach nanoseconds, with energy use as low as 0.1 to 

10 pJ; it also handles multiple resistance levels. Still, its filaments form stochastically: 

forming or breaking them varies between devices and repeated operations leading to 

substantial variability. Because of that, performance shifts over time and some states may 

blend together. For continuous analog operation, lifespan ranges from 10⁴ up to 10⁸ 

cycles[11], [12]. Even if certain tests report 128 distinct levels (about 7 bits), 

inconsistency remains a core challenge for reliable memory precision. 

Phase Change Memory supports around 100–120 steady conductance steps, using 

materials like GST, by controlling its crystallization; it offers strong data retention lasting 

over a decade along with compact design. However, operation usually demands higher 

energy per bit (~100 pJ) making it less efficient compared to RRAM. Switching is also 

relatively slow, needing pulses of about 6 microseconds. Over time, small shifts in 

partially programmed states occur because of relaxation in the crystalline structure, which 

reduces accuracy[8]. 

Magnetic RAM, particularly STT-RAM, is known for lasting a long time, plus it employs 

low energy and fast switching (about 10 ns). Although usually seen as binary, in 

neuromorphic simulations such as NeuroSim, it’s treated as having multiple states to 

mimic synapses[13]. Still, real-world use in analog mode runs into issues: data doesn't 

stay stable long enough, reading can disrupt stored values, and differences between levels 

are often too wide. 

Despite differences among types, challenges like inconsistent processes, restricted 

scalability, lack of consolidated industry standards for testing and benchmarking make 

implementation harder[11].  

 

 

Promising Aspects of Y-36 LiNbO₃ Ferroelectric Devices 

Thin-film LiNbO₃ devices, particularly with Y-36 orientation, have emerged as strong 

candidates for neuromorphic and memory applications due to their impressive material 

and switching properties. LiNbO₃ has high spontaneous polarization and robust 

ferroelectricity up to its high Curie temperature (around 1140–1210°C). Recent studies 
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on metal–ferroelectric–metal structures using 43 nm Y-36 LiNbO₃ thin films demonstrate 

remanent polarizations near 58 µC/cm² as shown in figure 3, with low coercive fields (Ec 

as low as 0.4-0.9 MV/cm. This allows polarization switching with voltages around 2 

V[14]. These characteristics offer distinct advantages for low-power, high-density 

applications. 

Endurance tests show consistent behavior beyond 10⁹ cycles; meanwhile, data stays intact 

over brief periods, Pr remains stable after 100 seconds, which makes it suitable for 

dependable storage or adaptive analog circuits. Instead of binary mode, multiple states 

are now possible, a key step toward brain-inspired computation: experiments on the 43 

nm structure reached 5-bit resolution (~40 levels)[6], achieving a conductance switch 

ratio near 6[14]. While nonlinear response and limited ON/OFF contrast still require 

investigation, the Y-36 variant enhances both ferroelectric output and mechanical 

sensitivity, while also easing incorporation into compact acoustic or light-based modules, 

useful in combined processing platforms and tunable oscillator designs. 

Overall, Y-36 aligned LiNbO₃ films show strong polarization alongside reduced 

switching voltage; they also offer solid durability and enabling new multi-state analog 

control making them a compelling option for future neuromorphic systems.[14] 

 

 

Figure 2 - MFM capacitor structure[14]  Figure 3 - Hysteresis loop of the characterized 
LiNbO₃ device[14] 
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Introduction to ferroelectric materials and LiNbO₃ 

Ferroelectric materials are intriguing solids showing natural electrical polarity. In other 

words, they carry an inner charge separation without needing outside voltage. The reason 

lies in their built-in dipole moment; polarity occurs only when ion patterns lack symmetry. 

Such asymmetry happens exclusively in crystals missing central balance. 

This reversal happens naturally. A strong outside voltage can shift it from one state to 

another in a reversible manner. Common types are oxide materials with perovskite layout, 

like BaTiO3 or PZT, also LiNbO3.  

LiNbO3 forms a trigonal crystal structure (figure 4), often called rhombohedral, part of 

the R3c space group. Its ferroelectric behavior comes from lacking symmetry around a 

central point so positive and negative charges do not align inside the unit cell. This 

misalignment results in an overall electric dipole moment. 

LiNbO3 ’s structure relies on linked oxygen octahedra. These units connect face-to-face, 

orienting parallel to the crystal's polar c-direction, also called the trigonal axis. Inside this 

network, Nb ions sit within shared corners of NbO6 groups. Meanwhile, Li ions take up 

spaces found between these clusters. Polarization happens when Li+ and Nb5+ shift along 

the c-axis, moving off-center inside their surrounding oxygen cages[15]. This setup forms 

a clear dipole along the c-axis. Being a uniaxial material, its natural polarization aligns 

strictly in one of two opposing directions on that axis. 

 

 

Figure 4, Crystalline structure of LiNbO3 (Adapted 
from: Ahellwig, Wikimedia Commons, Licence 
CC-BY-SA-2.0) 

https://commons.wikimedia.org/wiki/User:Ahellwig
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A key feature of ferroelectric materials is the PvsE curve showing a hysteresis loop.[7] 

Like magnets, these materials remember past states, this shape reveals that trait. 

Following how polarization flips by sweeping voltage helps explain the loop’s shape as 

shown in figure 5: 

1. Saturation: As the strong positive E is applied, all internal dipoles align along the 

field direction, leading to a maximum or saturation polarization. 

2. Remanent polarization (Pr): When the external field is removed, the polarization 

does not return to zero. The material remembers its previous state retaining a 

remanent polarization, Pr This non-zero polarization at zero field is the physical 

basis for non-volatile memory (data retention). 

3. Coercive field (Ec): To erase this stored polarization, a negative (reversed) electric 

field must be applied. The specific field strength required to force the material's 

polarization back to zero is called the coercive field Ec. It represents the "coercive 

force" needed to flip the state, thus the dipoles. 

4. Negative saturation and reversal: As the negative field increases, the dipoles align 

in the opposite direction reaching negative saturation. The cycle is completed by 

removing the negative field (leaving a negative Pr) and applying a positive field 

(requiring a positive Ec) to switch it back. 

 

Figure 5 - Characteristic hysteresis loop of ferroelectric materials[16] 
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The presence of two separate polarization states, positive and negative, at zero electric 

field enables binary data storage that retains information without power consumption. 

The way ferroelectrics switch inside depends on how domains move and influence each 

other, tiny areas where dipoles point uniformly. An electric field causes these zones to 

shift or expand resulting in sudden state changes and memory effects. Between differently 

polarized regions, domain walls exist; their shape, movement, and resistance to 

displacement strongly affect performance aspects like switching rate, wear-out, and 

stability.[17] For ultra-thin and nanoscale materials, controlling domain patterns is key 

when aiming for graded, continuous switching states. 

This ferroelectric behavior changes with temperature. When heated beyond a threshold 

called the Curie point (Tc), the material no longer holds its built-in electric charge, shifting 

into a paraelectric phase. Such transition defines the highest usable temperature for these 

materials in applications. LiNbO3 it withstands much higher temperatures (around 1140–

1210°C) compared to BaTiO3, which shifts at roughly 120°C.[18] 

Ferroelectric materials show other various behaviors, like piezoelectric response, turning 

electric charges into motion; pyroelectric effect, producing voltage when heated or 

cooled; along with electro-optical control, applied in light-based data transfer. Such 

combined traits support many applications and a wide range of devices, from capacitors 

and oscillators to high-precision sensors, actuators and modulators. For storing data, 

FeRAM uses switchable polarization states to store information. At the same time, 

ongoing studies on quantum barriers, gate-controlled switches, and layered material 

systems seek to enable continuous-level behavior for neuromorphic computing and 

processing within memory structures. 

Material synthesis along with integration continues to evolve. New ferroelectric 

materials, ranging from lead-free perovskites to 2D systems, are being discovered and 

designed, broadening options for scalable tech solutions. High-performance thin films are 

made using methods like CIS, PLD, or sputtering; these allow control over crystal 

alignment and domain layout depending on device requirements.[19] 
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Memristors 

In neuromorphic systems, the memristor acts like an artificial synapse, enabling physical 

storage of synaptic weights while supporting adaptive changes. At its core, this element 

is a simple two-terminal device with resistance that shifts with applied stimulus instead 

of staying constant. Its value depends on prior electrical activity; past signals shape 

present performance. The process follows a modified version of Ohm’s law tied to 

internal states. These states shift gradually when exposed to voltage or current inputs of 

varying strength and/or length[2]. 

Instead of just on-off levels, memristors handle many conductance steps, this supports 

dense analog data storage inside their physical setup. At one end, there's the Low Resistive 

State (LRS); at the other, the High Resistive State (HRS). The LRS, also called ON mode, 

comes from the SET operation and acts like a stronger neural connection with higher 

signal efficiency. On the opposite side, the HRS, or high resistance/OFF condition, is 

formed through RESET, mirroring a weaker link where transmission drops[5]. Because 

this component can shift between these two stable states accurately, it works as a reliable 

holder for information. 

The way resistance changes works differently depending on the material. Although 

filament-based systems use moving ions or oxygen gaps to create and break a conductive 

route switching between low and high resistance states, devices using ferroelectric 

materials, often adjust Schottky barriers at interfaces or grow and spread polarized 

regions[5], [20]. Such control makes it possible for the device to mimic how synapses 

strengthen and support learning behaviors such as spike-timing-dependent plasticity. 
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Experimental Methodology 

The earlier sections showed that neuromorphic computing can effectively address 

inefficiencies in traditional Von Neumann systems, while also highlighting ferroelectric 

materials as a strong option for building analog synapses. In this context LiNbO3 stands 

out due to its unique properties. 

The experimental work described here supports a larger project focused on building a 

new kind of CIM accelerator using adjustable piezoelectric acoustic resonators. Instead 

of separate components a Y36-cut thin film serves both as memory and as the active 

material in the resonator, enabling compact signal handling. Due to the resonator’s high 

quality factor (Q), it can switch between two clear impedance levels: extremely high at 

parallel resonance, exceptionally low at series resonance. Because of these sharp 

contrasts, power consumption drops significantly during operations like vector-matrix 

multiplication (VMM), along with its reverse process (IVMM). 

To show a tunable piezoelectric resonator, two key conditions shaped the design 

approach. Firstly, so it can work inside adjustable RF front-end filters, the thin film needs 

to handle switching voltages compatible with CMOS technology. This happens using a 

43 thick, single-crystal Y36-cut layer, which switches fully at low voltage thanks to its 

low coercive field. Second, instead of just focusing on one aspect, both the useful 

electromechanical coupling coefficient (𝑘𝑡
2) and quality factor (Q) of the device are 

improved, to create strong, reversible shifts in resistance near resonance, making 

frequency control via polarization more efficient. Also, picking Y36 as the orientation 

boosts both 𝑘𝑡
2 and Q.[14] 

The setup includes a core active region, where vibrations occur, made by placing a layer 

between two tungsten (W) films. Because of this design, it can hit a target frequency in 

the FR3 range; small variations from manufacturing lead to a tuned resonance in the range 

18 ± 2 GHz. On top and beneath the center part alternating Ti and W layers form Bragg 

reflectors that trap acoustic energy, boost 𝑘𝑡
2 and Q, while reducing unwanted signals.[21] 

For electrical contact, heavy aluminum coatings act as terminals, shaped simply to carry 

signals out. 

Compared to standard designs, TBAW (Thin-film Bulk Acoustic Wave) enables vertical 

signal passage, also offering stable, adjustable impedance changes with little power 



Experimental Methodology 

15 

 

waste. Its ability to integrate memory functions alongside efficient computing in one unit, 

while working with CMOS processes, makes it a strong candidate for future analog CIM 

systems or adaptable filters. 

Still, analyzing the device under AC conditions while developing it into a high-frequency 

resonator comes later, this falls outside the focus of the present thesis. Though relevant, 

that stage follows initial groundwork and isn't addressed here. 

The work described here forms the basic work for that idea: measuring direct current 

behavior. Before changing the resonator state, it is essential to show the main part, the 43 

nm LiNbO3 layer, which works like an analog memristor.  

The next sections outline the test methods applied to confirm memristor operation. The 

goal was to show that sending repeated DC voltage signals adjusts the device’s 

conductivity across several steady levels and measures how well it mimics biological 

synapses. The DC results later served as inputs for larger system models using NeuroSim, 

estimating efficiency metrics like size, power needs, response time, and precision within 

extensive crossbar networks built from such components. 

 

Fabrication workflow 

The fabrication of the LN TBAW starts with a smooth, Y36-cut thin film bonded directly 

to a silicon substrate, supplied by NGK. After preparing this initial substrate, material 

layers are added via sputtering onto the lithium niobate top side (fabrication flow depicted 

in figure 7). A 32nm tungsten layer goes on first, this helps build the cavity structure. 

Following that, multiple pairs of titanium (77nm) and tungsten (75nm) films are sputtered 

down one after another. On top, a 1700nm aluminum layer is deposited; above it comes 

a coating of silicon dioxide SiO2. These stacked W-Ti layers work both as an acoustic 

chamber and as a reflector for resonance behavior. Meanwhile, the aluminum contributes 

to the electrode system assembly. This upper dielectric coat plays a key role: it protects 

metal parts during later bonding steps. 

To build the device stack, benzocyclobutene (BCB) acts as an adhesion layer to move the 

full stack onto a sapphire substrate. Instead of direct growth, this method forms a BAW 

structure where the piezoelectric layer sits upright between two metallic contacts. Once 

transferred, the stack is flipped upside down so the silicon support can be taken off.[19] 
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A large portion of silicon gets stripped away via reactive ion etching with gases like CF₄ 

and O₂. What’s left behind undergoes a finer removal using XeF₂[22]. Finally, an RCA-1 

wash clears leftover residues, leaving a clean, particle-free interface. 

The process goes on by depositing fresh layers of W, Ti, and Al, same thickness as before, 

onto the newly uncovered surface using sputtering (figure 6). Instead of building 

everything at once, these coatings set up the shape of the device along with its electrical 

connections via later lithography paired with ion milling, cutting away excess down to 

the lithium niobate boundary, shaping both upper contact and edge of the resonator. In a 

comparable way, another round of etching plus design work handles the lower section; 

here, ion-based removal runs until hitting the initial protective film, this step gives 

structure to the bottom electrode. 

Electrical separation along with signal paths come from adding a SiO2 spacer over the 

whole structure. This film isolates conductive parts while guiding sideways connections. 

Patterning this layer precisely uses reactive ion etching with gas mixtures, creating 

openings to touch the upper aluminum layer directly plus cutting down into material 

below so lower metal levels can electrically connect.  

 

Figure 6 - Schematic of sputtered layers arount the lithium niobate film[23] 

 



Experimental Methodology 

17 

 

An RF sputter etching removes natural oxide layers from open contact zones. Following 

this, a thick layer of aluminum is deposited across the full surface to finish connections. 

A photolithography process shapes the metal, then reactive ion etching, using a mixture 

of Cl2, BCl3, and argon cuts precise paths ensuring electrical routing. Once done, the 

lithium niobate TBAW component, built with detailed acoustic and electronic traits, is 

complete and prepared for integration and test. 

 

 

 

 

 

 

 

 

 

1. Lower Stack 

Deposition 

2. Flip Chip Bonding 3. Si Substrate Etch 

4. Upper Stack 

Deposition 

5. Upper Mirror Etch 6. Bottom Mirror Etch 
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Conductance states measurements 

To analyze the memristive behavior in LiNbO₃ thin film, a custom electrical test 

configuration was used. Measurements took place inside a LakeShore probe station so 

connections to electrode contacts stayed consistent. The core instrumentation consisted 

of a Zurich Instruments UHFLI 600 MHz lock-in amplifier for signal processing. 

Excitation voltages came from the UHFLI’s built-in AWG section, delivered via probes 

to the sample's lower terminal. Its upper contact linked to a low noise transimpedance 

amp that turned current outputs into measurable voltage levels, then fed them back into 

the UHFLI for analysis. 

7. SiO2 Spacer 8. Via Etch 9. Interconnect 

Formation 

Figure 7 - Fabrication workflow of the 
entire resonator structure[23] 
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Figure 8 - Top view of a single device layout with metal contacts 

 

 

Figure 9 - Full chip layout showing hundreds of devices 
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Once the tools and setup were set, tests began to check how the device’s memory-like 

behavior worked. To see how the LiNbO₃ layer responds across different conditions and 

capture its full performance span, we used voltage pulse trains with different amplitudes. 

We first tested write pulses from 0.25 V up to 5 V; later adjusted that range to fit needs 

for Neurosim modeling, shown in upcoming sections. The process started with 

potentiation mode, applying rising positive pulses, then shifted into depression mode 

using negative ones growing stronger (from -0.25 V to -5 V). This way lets us track 

changes in conductivity while confirming whether the device adjusts its connection 

strength smoothly, step by step. 

The test process carefully alternated programming steps with measurement phases: 

changing the device state used varying write pulses, whereas a steady 10ms and 250 mV 

pulse measured conductance right after. A key equipment limitation appeared during these 

checks. Although writing allowed use of low transimpedance settings, offering wide 

bandwidth and minimal signal distortion, the reading step faced issues because of the 

device’s high resistance when in the off state. Detecting tiny currents from the LiNbO₃ 

layer’s HRS demanded extreme sensitivity; thus, the TIA  had to operate at maximum 

amplification (108 V/A). This limited bandwidth imposes a theoretical restriction on how 

fast the signal can change before distortions start to show up. Applying the standard 

relationship between bandwidth and rise time  

𝑡𝑟𝑖𝑠𝑒,𝑚𝑖𝑛 =  
0,35

𝐵𝑊
 

 

With this formula the theoretical minimum rise time required to avoid signal distortion 

would be approximately 29.2 µs. Using a rise time faster than that value could generate 

large transient displacement currents capable of driving the amplifier into saturation, 

thereby obscuring the resistive current of the device during the initial moments of the 

pulse. 

To check how well this setup works in practice and find the best timing, a 47 pF capacitor 

served as a test load, chosen because it matches the capacitance of the real Y-36 LiNbO₃ 

MFM device. Triangular voltage signals with steady 2us rise durations were applied, 

while switching through every available TIA gain setting so that charging effects could 
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be separated from memristor-like responses. From these lab results, key values were taken 

to set up SPICE models comparing an ideal circuit’s output with the actual limited-

bandwidth performance of the HF2TA amplifier. Then it was found that a slower 50us 

ramp-up and ramp-down period for reading would be ideal. 

 

 

Figure 10 - Spice simulation showing measurements with 1M gain (left) and 100k gain (right). Referring to the left 
plot, the blue trace is the theoretical current, dark and light green traces are the triangular applied signal and the 
measured current respectively. 

 

To examine how timing affects steady resistance changes, the study looked at different 

pulse lengths, specifically 100 microseconds, 1 millisecond, and 10 milliseconds. Instead 

of fine adjustments, a 0.25V step was used during early tuning to cover the full device 

range quickly. 

Tests showed one specific time worked best for managing multiple states. The current-

voltage graph reveals a key shift near the coercive field, marked by a sudden rise in 

current (more visible in log plot, figure 11 bottom). Still, what happens after depends 

strongly on how long the pulse lasts: just 10ms pulse duration allowed steady, smooth 

growth in current when moving from switch point toward higher voltages. Pulses such as 

100us failed to stabilize the high conductance states, leading to meaningless outputs right 

after activation. 

The response seen following polarization switching shows what could be a different 

variety of conduction processes at work. The slow rise in conductivity after the 

ferroelectric switching suggests additional effects shaped by voltage and duration. For 
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materials like lithium niobate and related ferroelectrics, researchers have proposed 

various explanations found across studies: 

 

1. Schottky Barrier Modulation: Polarization charges from the ferroelectric layer 

affect the Schottky barrier height at the metal interface. When polarization flips, 

shifts in band bending occur and this can turn the contact from blocking into a 

conductive mode: as a result, current injection rises slowly over time[24], [25]. 

2. Oxygen vacancy movement and filament formation: longer pulses could allow 

enough time for charged defects, like oxygen vacancies, to shift position. Because 

of this, they might move through a high electric field, creating narrow conducting 

channels, or small-scale electron jumps[26], over time. As a result, material’s 

inner conductivity slowly rises.[27] 

3. Space-Charge-Limited Conduction (SCLC): With extremely thin layers, charge 

flow may depend on injected carriers surpassing thermally generated levels. A 

slow increase in current might reflect traps in the energy gap capturing charges, 

shifting from limited trapping toward full saturation[28]. 

 

With this improved setup (flat timing), the unit showed reliable switching, achieving 

ON/OFF conductivity levels between hundreds and beyond 10⁴. 

It should be noted that the data shown here, with a 0.25 V increment, is mainly meant to 

confirm the device’s working range and physical response. However, for NeuroSim 

system simulations, another approach is applied. To boost synaptic precision, which 

strongly affects neural network performance, voltage steps will become finer within the 

consistent region found earlier. As a result, more LTP and LTD levels can be created, 

making better use of the device’s continuous capability instead of relying on broad steps 

used during early tuning. 
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Figure 11 - I vs pulse # measurements at different flat times showing better memristor performance for a 10ms 
pulse. Linear (top) and log (bottom). 

 

To determine the optimal signal amplitude for state readout, a preliminary screening was 

conducted on a single test device. Four distinct read voltage levels were evaluated: 10 

mV, 50 mV, 100 mV, and 250 mV. Figure 12 shows a comparison between those read 

voltage amplitudes pinpointing how the 250mV determines the best ON/OFF ratio. 

However, this test has been performed on a single device and there is not a remarkable 

distinction between the different the read voltages amplitude tested. Further experiments 

on a bigger pool of devices in necessary to better understand the mechanism behind this 

choice. 
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Following the pulse timing optimization, a set of five distinct devices was characterized 

to maximize the dynamic range. These measurements employed the final optimized 

configuration: a 10 ms flat time for both write and read pulses, with a 1 µs rise time for 

the write pulse and steady increasing voltages amplitude, and a 50 µs rise time for the 

read pulse with a 250mV constant amplitude. To achieve high-resolution state mapping, 

the voltage step was refined up to 12 mV. 

These revealed a dual operational nature enabling distinct applications based on the 

chosen voltage range. Digital Memory Regime: When utilizing the full voltage sweep 

range (2.2 V to 5 V), the device exhibits a massive Physical ON/OFF Ratio of around 

4000–6000 (figure 13). This sharp contrast is driven by the abrupt ferroelectric switching 

event. Such a large resistance margin could be highly advantageous for digital Non-

Volatile Memory (NVM) architectures, as it ensures a robust read noise margin, making 

the device a strong candidate for high-density binary storage applications[5]. Analog 

Synaptic Regime: For neuromorphic computing, where linearity is critical for training 

accuracy[8], the operational window is strictly restricted to the post switching region[17], 

[26]. In this mode the device yields an Effective Analog ON/OFF Ratio between 11 and 

15. While smaller than the digital ratio, this range represents a notable improvement over 

direct literature precedents for this material. Specifically, recent work on identical 43 nm 

Figure 12 - Comparison between 4 read voltages magnitudes 
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Y-36 LiNbO₃ capacitors (only MFM structure, without the resonator stack) reported a 

usable analog ratio of only 6[6]. Our optimized pulse protocol has therefore doubled the 

dynamic range available for synaptic weight updates for LiNbO₃. Moreover, this range 

compares favorably to standard analog candidates used in neuromorphic benchmarks, 

such as HfO₂-based synapses (typically ratio ~4.4) or TaOx/HfOx stacks (ratio ~10)[8], 

[13], proving sufficient for neural network training when coupled with appropriate weight 

update algorithms. 

 

Current levels and efficiency 

A critical advantage of this device lies in its ultra-low operating current magnitude. The 

measured OFF-state current is 730 pA and the maximum ON-state current (at 5 V write 

and 250 mV read) is 3.1 µA. These values highlight the highly insulating nature of the 

ultra-thin film and offer a substantial benefit compared to other emerging technologies, 

for example filamentary devices like RRAMs often require compliance currents in the 

range of 50 µA to more than 1 mA to maintain stable filaments. Our device operates at 

currents more than an order of magnitude lower, significantly reducing the IR drop along 

the bit-lines of large crossbar arrays[29]. FTJs can exhibit ON-currents up to ~100 µA[7] 

while our device demonstrates better static current efficiency.  

Despite the low currents, the experimental energy per write operation appears high due 

to the specific constraints of the characterization setup. The energy per spike (𝐸write) can 

be calculated as: 

𝐸write = 𝑉write × 𝐼on × 𝑡pulse 

 

Using the experimental parameters (𝑉 = 5 V, 𝐼 = 3.1 µA, 𝑡 = 10 ms), the energy 

consumption is: 

𝐸exp =  5 V × 3.1 µA × 10 ms = 155 nJ 

 

This value is significantly higher than mature technologies like Phase Change Memory 

(PCM), which consumes ~100 pJ/bit. However, this consumption is strictly an artifact of 

two experimental factors like the macroscopic device 
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area (100 µm2 since the device is a 10µmx10µm square) and the 10 ms long pulse 

width used to stabilize the analog states.  

To evaluate the technology's true potential, we project the energy consumption under 

scaled conditions: the current device area is 10 × 10 µm = 100 µm2. Scaling the device 

down to nanometric dimensions typical of high-density arrays (e.g., 300 × 300 nm) 

reduces the active area to 0.09 µm2. The scaling factor (𝑆𝐹) is ≈ 1111 and assuming a 

constant current density (𝐽 ≈ 3.1 A/cm
2), the operating current drops from 3.1 µA to ~2.8 

nA. 

With this area scaling alone and still maintaining the 10ms pulse, the energy becomes: 

𝐸area_scaled ≈ 5 V × 2.8 nA × 10 ms ≈ 140 pJ 

 

This value is already comparable to the energy consumption of PCM technology and 

demonstrates that the material's intrinsic high resistivity is a key factor for scaling. 

Hypothetical Temporal Scaling: while a 10ms pulse was necessary in this work in order 

to get stable conductance states, future optimization and engineering of the material stack 

and surfaces may allow for faster switching speeds. If the pulse width could be reduced 

to 100 ns (a standard for integrated memory), the energy consumption would decrease 

linearly: 

𝐸fully_scaled ≈ 5 V × 2.8 nA × 100 ns ≈ 1.4 fJ 

 

This projection indicates that the high experimental energy is not a fundamental material 

limit since, with geometric scaling alone, the device becomes competitive with PCM. 

Furthermore, if future research accelerates the analog switching dynamics, the device has 

the potential to reach the femtojoule regime becoming competitive with the most efficient 

devices. 
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Figure 13 - Log plot (top) and linear plot (bottom) pinpointing the considerable ON/OFF ratio using the previously 
determined pulsing parameters 
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Figure 14 - Plots of all the 5 devices tests overlapped 

 

To find the exact settings for NeuroSim system tests three distinct devices have been 

tested. This step aimed to record how conductivity changes in the linear range found 

during tuning. Voltage levels were set precisely to avoid sudden ferroelectric shifts and 

improve smoothness. During strengthening mode, signals went from 2,2 V up to 5 V while 

in weakening mode they swept between -0,25 V and -1,85 V in order to ensure the best 

linearity.  

To assess how synaptic precision affects accelerator efficiency, measurements used two 

voltage steps, 25 mV or 50 mV. Such difference altered the number of available 

conductance levels noticeably. With the smaller step, resolution improved and this led to 
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102 LTP states alongside 61 LTD states. In contrast, when applying the larger step, fewer 

states emerged: only 57 for LTP yet 33 for LTD as shown in figure 15. Notably, limiting 

the voltage range to the one mentioned brings the ON/OFF ratio down to 11–14.This 

compromise is necessary, for enabling steady weight adjustments during network 

learning. Each of the three devices showed similar responses here, supporting the stability 

of chosen settings. 

 

 

 

Figure 15 - Higher and lower number of states measurements (top and bottom plot respectively) 
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In figure 16, slightly displaced ON current values can be observed among the three tested 

devices even though the OFF current shows better consistency. This will be taken into 

account when calculating non idealities for the Neurosim measurements. 

 

 

Figure 16 - Comparison between the higher number of states measurements of three devices 
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Neurosim simulations 

Overview 

NeuroSim is a tool made to assess how well in-memory and neuromorphic computing 

systems work at the hardware level. Rather than acting like typical AI simulators, this one 

looks closely at physical behavior inside the chips. It mimics memory blocks, such as 

RRAM, SRAM, eNVM, FeFET, and includes flaws that appear in reality, together with 

needed digital and analog peripheral circuits. Because of this detail, users gain solid 

estimates not only on speed or power use, but also pinpoint trouble spots like delays, chip 

area, energy, or side effects from imperfect components during actual neural network 

execution. For researchers, NeuroSim links lab-measured device data with projected full-

system results, serving as an effective tool for initial design testing and practical 

evaluation of novel neuromorphic ideas. 

 

How Neurosim operates 

It accounts for non idealities in analog synapses by applying simple math models based 

on experimental data. Rather than relying on steady, straight-line changes in conductance 

values when the devices are excited, NeuroSim lets users add unique response patterns, 

often curved, that match what’s seen in physical hardware, using data fitting.[29] 

For LTP and LTD, changes in device conductance across programming pulses are 

modeled using these formulas: 

 

• Potentiation (LTP): 

𝐺𝐿𝑇𝑃(𝑃) = 𝐵(1 − 𝑒−
𝑃
𝐴) + 𝐺𝑚𝑖𝑛 

 

• Depression (LTD): 

𝐺𝐿𝑇𝐷(𝑃) = −𝐵(1 − 𝑒
𝑃−𝑃𝑚𝑎𝑥

𝐴 ) + 𝐺𝑚𝑎𝑥 
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where: 

• 𝐺𝑚𝑖𝑛: minimum conductance 

• 𝐺𝑚𝑎𝑥: maximum conductance 

• 𝑃: number of applied pulses 

• 𝑃𝑚𝑎𝑥: maximum number of pulses (i.e. the number of programmable states) 

• 𝐴: fitting parameter controlling the curvature (nonlinearity) 

• 𝐵 =
𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛

1−𝑒−𝑃𝑚𝑎𝑥/𝐴
: scale factor that ensures the conductance swings between the 

desired range. 

 

Setting those properties requires enabling nonlinearWrite=true in the input code. The 

degree and asymmetry of nonlinearity are quantified by two parameters: NL_LTP for 

potentiation and NL_LTD for depression which are obtained from fitting experimental 

data with a MATLAB code provided by Neurosim. 

 

 

 

Figure 17 - Schematic of non idealities that is possible to take into account in the Neurosim environment[13] 
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In place of a linear update, NeuroSim allows extra non-ideal effects to be added; instead 

of perfect behavior, real world deviations can also be modeled by considering the 

following non idealities (figure 17): 

 

• Limited accuracy: The total number of stable conductance steps affects how well 

a system learns. In NeuroSim, these ranges are defined separately, 

maxNumLevelLTP sets upward changes, whereas maxNumLevelLTD handles 

downward changes; when using digital hardware, the bit count specified in 

numWeightBit within Param.cpp (one of the source codes) determines weight 

detail. 

• Device-to-device deviations: actual arrays show variability in conductance across 

cells, represented by sigmaDtoD: if it is zero, the variation is turned off; when it’s 

not zero, it reflects measured, often normal-distributed discrepancies among cells. 

A higher value means greater divergence in performance between units. 

Experimental data usually determines the magnitude of this parameter. 

• Cycle-to-cycle variation: the same device might show slightly different 

conductance after every pulse. This inconsistency within a single device, called 

intra-device variability, is set by sigmaCtoC, which stands for part of the full 

conductance range. Setting it to zero turns off such variations; higher values make 

updates more unpredictable. To stay on the safe side it is necessary to consider the 

higher value observed during either LTP or LTD phases (worst case scenario). 

• Dynamic range (ON/OFF ratio) depends on maxConductance and 

minConductance, these reflect actual device limits. Since no additional setting is 

required, the range comes from those two values alone. However, if someone 

wants to skip this behavior, using minConductance = 0 gives a perfect, unlimited 

ON/OFF ratio. 

• Conductance changes: To mimic state-dependent variations that occur at certain 

levels. The users can turn this by setting conductanceRangeVar=true while 

defining maxConductanceVar along with minConductanceVar, these reflect 

standard deviations at highest and lowest conductance points. When devices show 

high ON/OFF contrast, setting just maxConductanceVar tends to work well. 

• Read noise refers to fluctuations in conductance measurements, especially 

noticeable with weak signal levels. Is enabled via readNoise=true and the extent 
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depends on sigmaReadNoise. This value sets the spread of the Gaussian 

distribution applied. Effects become more apparent under low-conductance 

conditions. Control requires adjusting this parameter carefully.[13] 

 

The fitting process in Matlab extracts device settings from measurements weight changes 

for use in simulation. Instead of using raw measurements, the script nonlinear_fit.m 

adjusts them to match NeuroSim’s model equations, based on recorded conductance shifts 

during strengthening (LTP) or weakening (LTD). Before analysis, data needs some 

adjustments: align both LTP and LTD starts at pulse zero, flip LTD values left-to-right per 

fit requirements (figure 18). Although Pmax defines upper state limits, it's scaled to one 

here, this normalization lets the A factors adjust curve shape accurately when plotted 

against relative conductance steps. 

The fitting procedure happens in two stages: initially, optimal A values for LTP and LTD 

are identified by ignoring fluctuations, update variability is set to zero; next, actual 

variation levels, which mimic cycle-to-cycle changes via pseudorandom seeds, are added 

to refine accuracy. Within the script, these parameters appear as A_LTP and A_LTD. 

Afterward, the final values, along with conductance range and state count, are extracted 

and set as an input into NeuroSim as device settings.[13] 

 

Figure 18 - Visualization of how the A parameter models nonlinearity.[13] 
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NeuroSim allows multiple methods to model real-world memory setups in synaptic 

hardware, enabling users to define not only perfect crossbars but also mixed designs such 

as 1T1R (a type of pseudo-crossbar). Configuration relies on settings like cmosAccess, 

while resistanceAccess accounts for transistor effects when simulating 1T1R units. Such 

detailed modeling matters, since physical circuits face issues from unwanted parasitic 

resistances and switching elements that alter current paths, delay responses, and reduce 

effectiveness. Different array layouts along with operational approaches are explained 

further in the following section. 

Most significant here is NeuroSim’s ability to model varying programming pulses. 

Enabled via the nonIdenticalPulse setting, it allows separate configuration, such as 

VinitLTP, VstepLTP, PWinitLTP, for up and down states. These settings adjust amplitude 

or width differently per pulse as shown in figure 19. Realistic coding often uses such 

varied signals. 

 

 

Figure 19 - Non identical pulse scheme[13] 
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Synaptic Arrays in Neuromorphic Hardware: Crossbar and Pseudo-

Crossbar Architectures 

In neuromorphic systems, memory and processing rely on synaptic arrays, structured 

grids linking inputs (axons) to outputs (neurons) using adjustable memory units as 

weights. Various setups can arrange these components, including dynamic CMOS RAM, 

content-addressable storage, FeFET-driven blocks However, the crossbar layout along 

with its 1T1R variant stand out as key models explored for in-memory operations. 

 

Analog eNVM Crossbar Array (1R) 

The analog eNVM crossbar array offers a dense, straightforward design for building 

synaptic weights in neuromorphic systems. At every junction between a word line (WL) 

and a bit line (BL), one memory unit, like RRAM or PCM is placed (figure 20). Because 

of this layout, space use is optimal, reaching just 4F² per cell, with F standing for the 

smallest fabrication dimension. During matrix-vector operations, voltage inputs go across 

all WLs at once; meanwhile, output currents form on BLs in a parallel fashion. Instead of 

sequential steps, multiple calculations happen together through analog signals inside 

memory units. 

Yet without separation between memory units, missing selectors or transistors at 

junctions, issues arise, particularly when updating values. When voltage signals are sent 

to adjust weights, inactive cells might still face accidental shifts due to leakage currents 

or stray writes. To lower such risks, a specific voltage setup is applied: unselected WLs 

and BLs usually rest at half the supply level (V/2), instead of zero, limiting disturbances 

on idle components. During every update phase, one entire line gets activated, with 

controlled pulses delivered via bit lines, enabling simultaneous adjustments across 

multiple locations within that line, the system detects this matrix layout automatically if 

cmosAccess=false. 
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Analog eNVM Pseudo-Crossbar Array (1T1R) 

To tackle interference from unwanted paths and unintended writes, the 1T1R setup uses 

a transistor linked in sequence with every storage unit (figure 21), allowing individual 

selection. This design links the transistor’s control terminal to a word line (WL), its input 

side to a source line (SL), while the upper contact of the memory element attaches to a 

bit line (BL). Instead of direct routing, the output end connects via an underlying vertical 

link under the cell. Now, chip space depends more on the transistor footprint, often 

exceeding 6F² per unit, particularly when greater programming current demands broader 

switching elements. 

A standard 1T1R setup cannot run fully parallel analog computations since access 

transistors disrupt the inherent grid balance. Instead, the modified crossbar design shifts 

BLs by 90 degrees ash depicted in figure 20, this activates every transistor along an 

addressed WL at once, applying inputs through BLs while outputting summed currents 

via source lines (SLs) in unison. 

 

 

Figure 20 - Rotated BLs ensures a better paralelization of VMMs operations[13] 

 

With weight programming, just the WLs tied to specific rows turn on, activating certain 

transistors so only designated cells obtain programming voltage. This setup greatly 

reduces unwanted interactions during writes while boosting energy efficiency over basic 

crossbar designs. During simulation, selecting cmosAccess=true in the surce code enables 

this configuration. Other supported architectures in NeuroSim include digital eNVM 

arrays, SRAM-based arrays and FeFET-based arrays.[29] 
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Figure 21 - Schematic of crossbar array (a) and pseudo-crossbar array (b) architectures 

 along with the peripherals.[13] 

 

 

Array Peripheral Circuits 

The peripheral circuits in NeuroSim help run real tasks in synaptic arrays, like crossbar 

or pseudo-crossbar setups, by making them work efficiently. These components support 

functionality through control and signal handling across different array types, depending 

on design needs. 

• Switch matrix: In the bit line switch setup, transmission gates, guided by register-

stored signals, link BLs either to read voltage or ground. When computing 

weighted sums, input patterns become control commands, turning on array 

sections at once. If a higher bit accuracy is needed, inputs roll out across several 

clock phases instead of relying on analog levels. Source line, bit line, and word 

line switching units come from the SwitchMatrix template; meanwhile, digital 

blocks use a unique WL-BL variant for simultaneous data reading. 

• Crossbar WL Decoder: it adjusts the classic word line design. Instead of just one 

path, it uses separate routes to turn on specific lines via address input. When full 

concurrency matters, like during analog computation, a signal called ALLOPEN 

triggers every line together. Its layout pairs a standard row decoder with added 
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follow-up stages. These additions allow dynamic adjustment depending on task 

needs. During testing, this unit combines specialized decoding blocks with output 

modules. 

 

Figure 22 - Crossbar WL decoder (left) and switch matrix (right)[13] 

 

 

Other Peripherals: 

• Multiplexer with Mux Decoder: shares costly readout circuits across array 

columns reducing space use but adding delay from time-sharing needs. It is 

possible to tune the degree of resource sharing from the source codes. 

• Analog-to-Digital Read Circuit: Once analog processing finishes, a spike-driven 

read unit converts summed current into digital form, spike frequency reflects input 

magnitude, setting ADC resolution through dynamic response. 

• WL/Column Decoders & Drivers: Standard decoding units pick rows or columns, 

while driver stages allow accurate voltage setup when writing data. 

• Adder, Register, or Shift Register: these components gather, hold, besides manage 

weighted sums, key when working with multi-bit inputs. 
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MLP Neural Networks overview 

After highlighting the Neurosim’s hardware capabilities, in these subsequent paragraphs 

are presented theory concepts regarding neural networks and how the software assesses 

training. 

 Multilayer perceptron (MLP) is a basic type of neural network that includes an input 

layer, at least one hidden layer, and an output layer, each made up of linked processing 

units called neurons (figure 23). In this setup, every neuron gets signals from all neurons 

in the previous layer, where those inputs are scaled by weights; then a bias value is 

included before combining them. Instead of just adding values, the total passes through a 

nonlinear function like sigmoid. Because of this transformation step, the model gains the 

ability to capture intricate patterns, not limited to straight-line trends.[29] 

 

 

Figure 23 - Simple schematic of an MLP[30] 

 

The functioning of one neuron inside a MLP takes a feature vector, computes weights 

multiplied by inputs, then adds a bias before passing the result through a non-linear 

activation function. 

 

More formally, given inputs 𝑥1, 𝑥2, … , 𝑥𝑛, each associated with a weight 𝑤𝑖, the neuron 

calculates the pre-activation output as in the formula: 



Neurosim simulations 

41 

 

𝑧 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

 

 

where 𝑏 is the bias. This linear combination is then fed through an activation 

function 𝜎(𝑧) to produce the neuron's final output: 

𝑎 = 𝜎(𝑧) 

 

Common choices for 𝜎(𝑧) include the sigmoid function, which squashes the output to the 

open interval (0, 1) 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

 

Other activation methods like tanh or ReLU appear frequently, based on how deep the 

network is and what kind of task it manages. 

In MLPs, the simple neuron action scales up through various layers. While one layer 

works, its neurons take inputs from every output of the prior level, creating full 

connectivity. By linking many layers that use nonlinear activation, the model can mimic 

intricate patterns, making it far more capable than linear approaches. 

After defining a neuron’s math, those steps easily apply to practical jobs like spotting 

what digit appears in a picture using collections sets such as MNIST. This dataset holds 

70,000 black and white pictures of numbers written by hand; every measuring 28 by 28 

pixels and carries a label from 0 up to 9 that represent the “true” value that is the expected 

to be recognized from the neural network.[8] To get an image ready for use in a basic 

neural net, the flat square grid turns into a straight-line list holding 784 entries, one per 

dot on screen. That line-up feeds data into earlier explained processing: individual dots 

multiply their assigned weights, add offsets afterward, then shift results via simple curves. 

 

In a standard MNIST setup, the MLP uses ten output neurons, one per output digit. These 

outputs show how strongly each digit is predicted. As data moves forward through layers, 

predictions are compared to correct labels using a loss measure, then errors flow 
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backward to adjust weights and biases. Repeating this on many samples helps the model 

link pixel patterns to actual digits. 

MNIST's layout, consistent image size and straightforward labels make it well suited for 

showing how matrix-driven networks function. Through the math outlined earlier, the 

MLP turns basic pixel data into correct number identifications, linking theoretical steps 

to a real-world, familiar task. 

The learning process in an MLP involves adjusting the weights and biases in an iterative 

manner to minimize the error between the predicted output and the actual target label 

associated to every MNIST dataset training picture. This process typically consists of two 

phases: 

1. Forward Propagation: Input data is fed through the network and layer by layer   

produces an output. A loss function (for example the Mean Squared Error or 

Cross-Entropy) calculates the difference between this output and the true target. 

2. Backpropagation: The error is propagated backward from the output layer to the 

input layer. Using the chain rule, the algorithm computes the gradient of the loss 

function with respect to each weight while these gradients indicate the direction 

and magnitude by which each weight should be adjusted to reduce the error. 

 

In hardware-based neuromorphic computing, learning methods fall into two types: 

• Online learning: the neural net trains straight on the chip. As fresh data comes in, 

synaptic strengths adjust instantly. Hardware synapses, like memristors, must 

allow balanced, steady changes. These adjustments follow LTP and LTD rules so 

training stays stable over time. 

• Offline Training (Classification Only): Another option is to train the network 

separately with precise software tools. After finding the best weights, these values 

get transferred and set into the physical chip. From that point, the system runs just 

forward passes to label incoming data. Since weights stay fixed while running, 

this method reduces demands on how linear or durable the components must 

be[8]. 
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Once the basic ideas of MLP are set, we turn to how NeuroSim shifts theory into real-

world hardware tests. This tool evaluates memory-focused computing systems built for 

neural nets like MLPs, by mimicking software logic alongside physical device behavior. 

In practice, NeuroSim uses a two-layer MLP, counting only hidden and output layers, for 

adjusted versions of datasets such as MNIST. To improve speed and match real-world 

devices, it resizes input images to 20×20 pixels and turns them into black and white 

leading to 400 input neurons instead of 784. Normally, the setup follows 400-100-10: 400 

inputs link to 100 hidden nodes; these connect to 10 outputs standing for digit 

categories[8]. 

NeuroSim works with both online learning and offline (classification-only) operation. 

When using online training, it acts like a chip learning in real time, images come in one 

by one at random, while the system adjusts connections step by step through basic 

optimization rules. It does not just simulate neurons; it includes physical limits like low-

precision values and pulse-driven changes that convert abstract negative-or-positive 

weights into actual non-negative hardware equivalents. For pre-set use, connection 

strengths are calculated ahead of time in code, then loaded directly into the model. Once 

set, these do not change, the circuit runs recognition tasks only, which eases requirements 

on stability and accuracy. 

A main part of NeuroSim's training involves epochs, each meaning a full cycle through 

the whole dataset, so forward and back propagation. With every round, the model sees all 

samples one time adjusting its weights step by step. For NeuroSim, users can set how 

many cycles to run and how many images to use per cycle. These settings appear in files 

like Param.cpp, where they’re open to changes. This lets users manage training time along 

with batch setup, while watching how the network improves step by step during the 

simulation. For instance, using standard values like totalNumEpochs = 125 and 

numTrainImagesPerEpoch = 8000 (adding up to 1 million images), the tool outputs per-

epoch results, giving clear insights into model development and overall system 

behavior[13]. 
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MATLAB Fitting 

The extraction of synaptic device parameters for the simulation was performed using the 

standard behavioral model integrated into the NeuroSim framework. This model 

mathematically describes the weight update curve shape (conductance change vs pulse 

number) using the exponential function seen in the previous paragraphs, defined by the 

nonlinearity parameters 𝛼LTP and 𝛼LTD. A fundamental mathematical property of this 

specific model is that it enforces a constant concavity throughout the entire range; in 

analytical terms the sign of the second derivative of the fitting function 
𝑑2𝐺

𝑑𝑃2 remains 

constant. 

Unfortunately, the experimental characterization of the LiNbO₃ devices revealed complex 

conductance curve dynamics that deviate from this ideal mono curvature behavior. 

Specifically, the measured LTP and LTD curves exhibit inflection points: regions where 

the curvature transitions from convex to concave or vice versa. Because the standard 

NeuroSim model lacks the degrees of freedom characteristic of higher-order functions 

like polynomial equations necessary to map these inflection points, a perfect fit across the 

entire synaptic window was hard to obtain, especially for LTP. Consequently, the fitting 

curves generated by the script represent a "best-fit" approximation that intersects the 

experimental data at multiple points, capturing the average non-linear trend while 

inevitably deviating in regions where the intrinsic device curvature inverts as shown in 

figure 24. Despite this limitation, the extracted parameters provide a representative 

estimation of the device's average update behavior suitable for the statistical 

benchmarking of the accelerator. 
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Figure 24 - The performed fitting clearly shows the inflection points and the displacement from the experimental 
data, especially for LTP 

 

 

The previously discussed parameters extracted from the experimental data using the 

MATLAB fitting procedure, are summarized in the following tables showing both the 

higher and lower number of states measurements tested. 

 

 

Table 1 - Lower number of states measurements parameters 
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Table 2 - Higher number of states measurements parameters 

To accurately model the stochastic behavior of the considered devices, three key 

variability parameters have been calculated: Device-to-Device (DtD) variation, Cycle-to-

Cycle (C2C) variation, and conductance variation. All these parameters are represented 

by the standard deviation (𝜎) of the experimental data. 

Since the experimental dataset consists of a limited number of samples (3 devices), the 

sample standard deviation formula (using 𝑁 − 1) was employed instead of the population 

standard deviation. This approach is known as Bessel's correction, is essential to correct 

the bias in the estimation of the population variance when using a small sample size. The 

formula used is the following: 

 

𝜎 = √∑ (𝑥𝑖 − 𝑥̄)2𝑁

𝑖=1

𝑁 − 1
 

 

where: 

• 𝑥𝑖 represents each individual data point (for example a nonlinearity value or a 

conductance value).  

• 𝑥̄ is the sample mean.  

• 𝑁 is the total number of samples. 
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As an example, 𝜎𝐷𝑡𝑜𝐷 was calculated by analyzing the fitting parameters (𝛼𝐿𝑇𝑃 and 𝛼𝐿𝑇𝐷) 

extracted from 3 distinct devices. First, the sigma of the nonlinearity parameter was 

calculated for the LTP curves of the 3 devices (𝜎𝐿𝑇𝑃) and similarly, the standard deviation 

was calculated for the LTD curves (𝜎𝐿𝑇𝐷). Since NeuroSim V3.0 accepts a single input 

for DtD variation, the final 𝜎𝐷𝑡𝑜𝐷 was computed as the average of these two values: 

 

𝜎𝐷𝑡𝑜𝐷 =
𝜎𝐿𝑇𝑃 + 𝜎𝐿𝑇𝐷

2
 

 

Simulations results 

To evaluate the impact of the experimental device characteristics on neural network, two 

distinct simulation scenarios were defined and tested on NeuroSim. The first one, denoted 

as "high states," used the optimized configuration (25 mV step) which yielded 102 LTP 

and 61 LTD states characterized by moderate nonlinearity (𝛼LTP = −1.5) and controlled 

variability (𝜎DtD = 0.325). The second scenario, "low states" represented a coarser 

programming regime (50 mV step) resulting in reduced resolution (57 and 33 states for 

LTP and LTD respectively), higher nonlinearity (𝛼LTP = −3.36) and higher device-to-

device variability (𝜎DtoD = 0.81). 

To streamline the process and ensure reproducibility, the standard NeuroSim workflow, 

which typically requires manual editing of C++ source code for parameter definition was 

significantly enhanced. A custom Graphical User Interface (GUI) was developed within 

the Linux environment to directly interface with the simulator core. These tables allow 

for the rapid setting of all critical simulation parameters without navigating the underlying 

codebase. Through this tool, physical device metrics like number of conductance states, 

ON/OFF conductance values, non-linearity coefficients and cycle-to-cycle variability as 

well as algorithmic parameters (for example number of training epochs, array size, and 

learning rate) were systematically configured for each scenario. 

All simulations were conducted with the cmosAccess parameter set to true, effectively 

configuring the synaptic array in a 1T1R architecture rather than a passive crossbar 1R. 

This architectural choice was critical for accurate performance estimation. While passive 

1R arrays offer higher theoretical density, they suffer from severe sneak path currents, 
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unintended leakage paths through unselected cells that degrade read margin and increase 

power consumption[29].  

The images below shows the customized GUI used for the presented simulations. 

 

Figure 25 - Tables allowing a fast and error-free parameter setting. 
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A comparative analysis of the learning curves reveals a critical difference between the 

higher and lower states measurements. The high states configuration demonstrated robust 

convergence, with accuracy steadily increasing to a peak of 77.61% at the final epoch. 

This result confirms that the device's analog modulation, when optimized for 

linearity (𝛼LTP = −1,5) is sufficient to support effective learning. Although a 

performance gap remains compared to state-of-the-art LiNbO₃ benchmarks reaching 

~95% of accuracy[26], this may be primarily attributed to the residual nonlinearity rather 

than a lack of precision. Conversely, the low states configuration exhibited classic signs 

of training instability driven by hardware nonidealities. While the network initially 

reached a promising peak accuracy of 67.17% (at epoch 36), the severe non-

linearity (𝛼LTP = −3,36) and high device-to-device variability (𝜎DtoD = 0.81) caused 

catastrophic forgetting in subsequent epochs, driving the final accuracy down to about 

38%. This drastic divergence underscores that minimizing 𝛼 and 𝜎 is as critical as 

maximizing the number of states to ensure that weight updates remain bounded and 

converge towards a global minimum over time. 

A key factor enabling the superior performance of the high states scenario is its high 

synaptic resolution, which merits a specific comparison with existing literature. 

The optimized configuration yielded 102 distinct conductance states for LTP and 61 for 

LTD. In terms of digital precision (log 2 𝑁), this corresponds to approximately 6.7 bits 

for potentiation and about 6 bits for depression. The coarser configuration provided 57 

states (LTP) and 33 states (LTD), corresponding to approximately 5.8 bits and 5 bits, 

respectively. 

This level of precision places the 43 nm Y-36 LiNbO₃ device in a highly competitive 

position within the landscape of emerging memories versus standard analog memories: 

The achieved 6–7 bit precision in the High States mode significantly outperforms typical 

ferroelectric and resistive devices used in neuromorphic benchmarks. For instance, 

standard HfO₂-based RRAMs and FeFETs are often limited to 40 states (~5.3 bits) and 

32 states (5 bits), respectively.  

State-of-the-Art: The resolution is comparable to high-performance Ag:a-Si memristors 

(97 states) and mature Phase Change Memory (PCM) technology, which typically offers 

100-120 states[8]. 
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 Comparing instead with previous LiNbO₃ Work it can be stated that, most importantly, 

this result represents a substantial improvement over previous characterizations of the 

same 43 nm Y-36 LiNbO₃ material, which reported a maximum of 40 states (5 bits). 

This analysis leads to a fundamental conclusion for system design: while the device 

possesses a capacity of 6-7 bits required for high-accuracy online learning (which 

typically demands at least 6 bits), the usability of this precision is strictly gated by the 

update linearity[8], [31]. The failure of the low states case—despite having a decent 

almost 6-bit resolution, proves that high precision alone cannot compensate for severe 

non-linearity and variability. Therefore, the high states configuration is superior not 

merely because it has more states, but because it successfully pairs high resolution with 

a linearized update rule that allows the neural network to effectively utilize those states. 

The total estimated area for the synaptic core, including the 1T1R array and all peripheral 

circuitry (e.g., ADCs, Muxes, Shift Adders), is approximately 7.44 ×

10−9 m2 (7441 𝜇m2) for a 128 × 128 crossbar array. This compact result is a direct 

consequence of the high-density integration potential of the 1T1R architecture. 

In standard digital neuromorphic architectures, a 6-bit synapse is typically realized using 

multiple SRAM cells (e.g., 6–8 cells per weight), occupying a significantly larger area. 

Benchmarks in the literature (e.g., Chen et al., 2018) indicate that SRAM-based synaptic 

cores for similar network sizes often consume > 2 × the area of equivalent eNVM-based 

cores due to the large cell size (∼ 150𝐹2) of 6T-SRAM compared to the dense 1T1R 

stack (∼ 4–12𝐹2)[29]. 

Considering digital eNVM: While digital RRAM implementations (using multiple binary 

cells per weight) are more compact than SRAM, storing information in the multi-level 

conductance of a single device theoretically offers superior density, limited primarily by 

the peripheral circuitry required to manage the analog signals. 

Concerning write latency and energy constraints, the simulation quantified the high cost 

of the conservative experimental parameters used for characterization. The total write 

latency for the full training process was substantial (∼ 2.7 × 105 s), and the total write 

energy was approximately 103 mJ. The root cause can be that these elevated values are 

not intrinsic to the material but are a direct deterministic consequence of the long 10ms 

pulse width employed to stabilize the ferroelectric switching during DC testing. Since the 

total latency is the sum of all write pulses, using a pulse 105 times longer than standard 
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(100 ns) linearly inflates the total time and energy. For comparison, in standard 

benchmarks (for example Luo et al., 2019), optimized RRAM and PCM architectures 

typically report training energies in the range of 1–20 mJ and latencies in the order of 

seconds or minutes. The gap between these benchmarks and the results presented here is 

partly attributable to the unoptimized pulse width. This suggests that if the device could 

be engineered to switch reliably at microsecond or nanosecond speeds, the performance 

would align with or exceed state-of-the-art accelerators. 

In contrast to the write metrics, the total read energy remained exceptionally low at 

approximately 435 µJ for the entire training duration. This metric is critical because read 

operations (feed-forward passes) constitute the vast majority of operations in deep 

learning inference. This low read energy confirms the advantage of the device's high 

resistance and low operating currents (< 3 𝜇A). It is significantly lower than the read 

energy of many filamentary RRAMs, which often suffer from high current read-out, and 

is competitive with low-power FTJ implementations. This distinct asymmetry between 

write and read energy consumption may suggests that while the current iteration of the 

device faces challenges for real-time on-chip training it is an immediate and highly 

promising candidate for inference-only applications (where weights are programmed 

once and read frequently) or for architectures where the pulse width can be successfully 

scaled down to the microsecond regime, potentially reducing the energy-delay product by 

several orders of magnitude. 

 

Table 3 – Benchmark table comparing different technologies[8] 
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Figure 26 - Snapshots showing neurosim logs after simulating both the high states (top) and low states case 
(bottom) 
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Comparing the hardware metrics of the two simulation scenarios reveals a direct trade-

off between synaptic resolution and computational efficiency. The low states 

configuration, characterized by coarser voltage steps (50 mV) and fewer conductance 

states (57 LTP / 33 LTD), resulted in a lower total write energy (~65.2 mJ) and shorter 

write latency (~2.24e5 s) compared to the optimized scenario. Specifically, the high states 

configuration (102 LTP / 61 LTD) required approximately 58% more energy (about 103.1 

mJ) and 22% more time to complete the training workload. This increase is intrinsic to 

the higher resolution: finer voltage steps (25 mV) imply that a larger number of discrete 

pulses is required to drive the synaptic weight across its full dynamic range. 

Consequently, while the high states device presents a higher cost in terms of latency and 

energy, this is strictly necessary to provide the finer weight updates required for the 

network to converge stably (77.61% accuracy). In contrast, the energy savings of the low 

states case are effectively invalidated by its failure to maintain learning stability. 

Conversely, the read energy and leakage power remained identical across both scenarios 

(~435 uJ and 123 uW, respectively), as these metrics are determined by the array 

architecture and read voltage, which were kept constant during simulation. 

 

Simulations conclusions 

The simulations conducted via NeuroSim provide a comprehensive validation of the 43 

nm Y-36 LiNbO3 device as a competitive synaptic element for neuromorphic computing. 

The benchmarking results highlight the success of the optimized high states 

configuration, which demonstrated decent on-chip learning capabilities by achieving a 

stable final accuracy of 77.61%. This performance confirms that the experimentally 

optimized pulse protocol successfully accesses a synaptic window capable of supporting 

effective weight convergence preventing the training divergence observed in the coarser 

low states case. Crucially, the achievement of 102 distinct LTP states represents a 

significant advancement in synaptic resolution, comparing favorably with state-of-the-art 

analog memories such as Ag:a-Si (about 97 states) and Phase Change Memory (about 100 

states)[8], and substantially outperforming previous reports on identical LiNbO3 

capacitors which were limited to 5 bit precision[6]. From a hardware perspective, the 

study establishes a distinct difference between the device’s write and read performance 
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that underscores its potential for specific applications. A standout feature is the ultra-low 

read energy consumption (about 435 uJ total) driven by operating currents in the low 

microampere range (<3 uA). This efficiency significantly outperforms standard 

filamentary RRAMs, which typically require higher currents for stable operation, and 

positions the LiNbO3 synapse as an ideal candidate for inference-heavy workloads where 

read operations dominate the power budget[5]. While the current write energy (about 103 

mJ) is high this is strictly a consequence of the conservative 10ms pulse width used for 

characterization rather than a fundamental material limit. Theoretical scaling projections 

indicate that by scaling the device dimensions to the nanometer regime and optimizing 

the switching speed to nanosecond regimes, the write energy can be reduced by orders of 

magnitude potentially reaching the femtojoule regime. Overall, this work confirms that 

the 43 nm Y-36 LiNbO3 successfully combines the high endurance of ferroelectrics with 

the multi-level tunability required for neuromorphic computing, holding the potential to 

evolve into a high-density, ultra-low-power solution that rivals current state-of-the-art in-

memory computing technologies. 

During the preparation of this work, the author used generative AI tools for grammar 

refinement[32] 
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Conclusions  

The exponential growth of data-centric workloads, driven primarily by Artificial 

Intelligence (AI) and Machine Learning (ML), has exposed the fundamental 

inefficiencies of the traditional von Neumann architecture. The physical separation 

between processing units and memory results in a data movement bottleneck that severely 

constrains both latency and energy efficiency. In this context, Compute-in-Memory 

(CIM) has emerged not merely as an optimization, but as a necessary change in basic 

assumptions, requiring novel hardware substrates capable of merging storage and 

computation. This thesis has explored the potential of ferroelectric materials to address 

this challenge, specifically validating ultra-thin (43 nm) Y-36 Lithium Niobate 𝐿𝑖𝑁𝑏𝑂3 as 

a high-performance analog synaptic element. 

 

Summary of Contributions and Findings 

The primary objective of this work was to experimentally validate the memristive 

behavior of Y-36 𝐿𝑖𝑁𝑏𝑂3 in the DC regime and to benchmark its system-level potential. 

Through a rigorous experimental characterization using a Metal-Ferroelectric-Metal 

(MFM) architecture, this study demonstrated that polarization of 43 nm 𝐿𝑖𝑁𝑏𝑂3 films 

can be modulated to achieve a significant amount of multi-level conductance states 

suitable for analog computing. The experimental results highlighted several key 

achievements. By optimizing the pulse programming protocol specifically through the 

use of incremental amplitude modulation with fine voltage steps (25 mV), it was possible 

to stabilize 102 distinct conductance states during potentiation (equivalent to >6-bit 

precision). This resolution represents a significant advancement over previous reports on 

similar materials, which were typically limited to approximately 40 states (5-bit). 

Furthermore, the device exhibited exceptionally low operating currents   < 3 𝜇A and a 

robust physical ON/OFF ratio exceeding 103. While the effective dynamic range for 

analog operation was restricted to a ratio of about 15 to ensure linearity, this value proved 

sufficient for neural network inference tasks, comparing favorably with standard oxide-

based analog memristors. To bridge the gap between device physics and system-level 

application, these experimental parameters were integrated into NeuroSim benchmarking 

framework. The simulations offered critical insights into the requirements for on-chip 
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learning and the comparative analysis revealed that synaptic resolution alone is 

insufficient; the linearity of the weight update trajectory is the decisive factor for training 

stability. The optimized high states configuration (102 states) achieved a stable learning 

accuracy of 77.61% on the MNIST dataset, whereas the coarser low states configuration 

suffered from catastrophic forgetting despite initial convergence. This underscores that 

future device engineering must prioritize the linearization of the potentiation and 

depression. From an energy perspective, the study identified a distinct division. The 

device demonstrated ultra-low read energy consumption, benefiting from the material's 

high intrinsic resistance. This makes the platform immediately competitive for inference-

heavy edge applications. Conversely, the write energy and latency were found to be 

elevated, a result strictly attributable to the conservative 10ms pulse width used to ensure 

experimental stability. However, theoretical scaling projections indicate that this is not an 

intrinsic material limitation. By scaling the device area to the nanometer regime and 

optimizing interface dynamics to support nanosecond pulses, the write energy has the 

potential to decrease by orders of magnitude, reaching the femtojoule regime. 

 

Future Work 

The validation of the DC memristive properties of Y-36 𝐿𝑖𝑁𝑏𝑂3 presented in this thesis 

constitutes the foundational step for the broader FEMA (FErroelectric Memory embedded 

in Acoustic resonators) project. Future research efforts should focus on some specific 

directions: a priority for immediate follow-up work is the reduction of the programming 

pulse width. Investigating the transient switching dynamics at the microsecond and 

nanosecond scales is essential to validate the theoretical projections of low-energy writing 

and to enable real-time on-chip training. At the same time, scaling of the device active 

area via advanced lithography will be crucial to verify that the current density remains 

stable at deep sub-micron dimensions. Linearity Engineering: To bridge the gap between 

the achieved accuracy (77%) and the ideal software baseline (>96%), the non-linearity of 

the weight update must be improved. This could be addressed through interface 

engineering to homogenize the field distribution or by implementing advanced write 

verification schemes in the peripheral circuitry.  
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