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Abstract

The computational efficiency of artificial intelligence is becoming more and more
constrained by the so called Von Neumann bottleneck causing the transition toward
analog Compute-in-Memory (CIM) architectures. This requires synaptic devices capable
of combining non-volatile storage, high resolution and as linear as possible conductance
modulation. This thesis investigates the potential of ultra-thin (43 nm) Y-36 Lithium
Niobate (LiNbOs3) films to address these requirements, through devices characterization

and system-level benchmarking.

Through electrical characterization of Metal-Ferroelectric-Metal devices an optimized
pulse protocol was developed to handle the switching dynamics. This approach was able
to set 102 distinct conductance states (more than 6-bit precision) within an analog

window operating at currents as low as 3 uA.

System-level benchmarking via NeuroSim software on an MNIST set classification task
showed that high synaptic resolution and acceptable linearity is necessary for training
stability. The optimized configuration achieved an accuracy of 77.61%. Hardware
analysis highlighted a performance duality: while the device exhibits remarkable read
energy efficiency (~435 uJ), the write energy is currently high due to long pulse duration
and high device area. Theoretical projections on future works indicate that overcoming
these limits by optimizing switching dynamics to faster regimes can reduce consumption
to the femtojoule level, validating Y-36 LINbOs as a scalable platform for next generation

neuromorphic computing.
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Introducion

Introducion

Rapid ascent of Artificial Intelligence and Von Neumann

bottleneck

The fast growth of artificial intelligence, especially deep learning, has sharply increased
the need for computing memory and power|[1]. Because modern neural networks (NN)
involve billions of parameters, their training often depends on a huge amount of data
along with powerful hardware implementation. Such demand has worsened existing
limits in system design, especially constraints from the classic von Neumann model. In
standard setups, processing units and storage stay apart; this forces constant movement
of data across a common channel linking the processor and the memory through buses[2].
Although that structure once supported flexibility, expansion and scalability, it now
struggles under Al workloads needing wide memory throughput and quick responses

during computations.

The von Neumann bottleneck occurs since instructions and data move slowly due to
limited connection capacity between chip (for example the CPU) and memory. When
models grow larger, moving data takes more time and can drive most of the energy use
instead of actual calculations. For neural networks, constantly transferring weights during
trainings, outputs and temporary values may consume a big portion of total power, far
exceeding what math operations require. Limited memory access doesn't just delay
processing, it leaves processors in an idle state as they wait for inputs, wasting resources
and time. While newer Al chips handle math and internal storage much quicker, moving

data outside the chip remains slow and inefficient by comparison.

Also, the typical sequential flow of von Neumann architectures makes simultaneous and
parallel computations harder to handle[3]. Instead, multi-core designs try reducing delays
by adding more cores; however, problems such as energy use and growing shared memory
demands are still present. Devices built for speed, like GPUs, reduce certain limits using
tailored memory management and hierarchical caching, though their performance is still

held back due to slow buses and access to the main memory block.[4]
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Compute-in-memory

To address this issue, new design approaches, such as compute-in-memory (CIM) and
neuromorphic computing, merge processing and calculations with storage, so information
is handled right where it resides. Instead of moving data through buses, devices like
memristors, resistive RAM and phase-change elements allow both storing and calculating
within the same array structure. These methods use analog computations across array-like
structures, running many calculations at once to cut down delays and power
consumption[5]. Modern hardware solutions now take advantage of localized computing,
showing major improvements in performance and energy savings when dealing with

artificial intelligence tasks.

With Al expanding into areas like self-driving cars and health diagnostics, demand rises
sharply for fresh and efficient hardware designs. Moving past the von Neumann limit
sparks joint advances across material research, chip design development and

computational methods, setting the stage for leaner learning machines.[4]

Academic effort in Neuromorphic Computing

Over the past ten years, studies in neuromorphic computing have grown fast, fueled by
demand for hardware that uses less power while supporting advanced Al tasks. Taking
inspiration from Neuroscience, these systems take cues from how neurons connect, using
dense interconnectivity, dynamic learning patterns and continuous adaptation. Because of
this shift, experts from electronics, materials science and cognitive research now work

together, making joint efforts that push forward novel circuit designs and system layouts.

Major academic work has led to a variety of different hardware designs. Key cases
involve digital systems such as IBM TrueNorth, Intel Loihi, or SpiNNaker, these use
special chips to run thousands of artificial spiking neurons and synapses at once, enabling
fast parallel computation.[4] At the same time, research community is testing novel
materials and devices like memristors, phase-change memory units, spin-based tools and
photonic circuits[3] to build analog and mixed signal architectures that mimic the

behavior of real synapses.

Recent studies point out potential uses of neuromorphic computing. For instance, systems

using event-based vision, robotics, sensors, brain implants, and compact Al for on-site
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tasks requiring minimal energy and real time responsiveness[5]. Still, hurdles exist; one
major issue is connecting scalable, software-friendly digital designs with the high

efficiency of new neuromorphic chips.

Different types of Neuromorphic Computing devices

Neuromorphic computing uses different devices and physical methods to create hardware
that mimics brain-like functions. One leading approach relies on electric charge,
especially in materials with ferroelectric properties, thanks to stable data retention, fast

switching, while possibly supporting multiple states storage per unit.

Ferroelectric RAM

Ferroelectric RAM (FRAM) is widely used especially for non-volatile digital memory
applications relying on the bistable polarization of ferroelectric layers such as PZT or
HfZrO; and typically operates with the two binary states 0 and 1. For example, FRAM
devices show remanent polarization of around 20-100 pC/cm? and high endurance
exceeding 10'? cycles, but their use in neuromorphic computing is generally limited by
the sharp switching and binary nature of the response making it difficult to behave like a
memristor, also due to non-linear polarization curves, although some architectures and
advanced pulse schemes can achieve more than two conductance states in lab

conditions.[4]

Non-binary ferroelectric systems are drawing more interest in neuromorphic computing,
especially where or multi-level tuning supports synaptic behavior. Instead of full
switching, using controlled pulses or engineered domains helps reach various resistive
states reliably. As an example, thin-film MFM units built from LiNbOs achieved 40
conductance levels, equal to around 5 bits, while certain HfO: setups reached up to 8
levels (roughly 3 bits)[6]. Even so, differences between individual devices, data stability
over time, and endurance during repeated use remain key challenges before wide

integration.
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Ferroelectric tunnel junctions

Ferroelectric tunnel junctions (FTJs) employ ultrathin ferroelectric barriers (typically less
than 5 nm) where the resistance state is determined by the barrier's polarization
orientation via quantum tunneling. Researchers have observed stable and robust ON/OFF
ratios, often exceeding two orders of magnitude and have found that tunneling current
can be almost continuously modulated through controlled polarization and pulse
dynamics.[7] Although FTJs utilizing materials such HfZrO> or BaTiO3 show impressive
retention operating with very low energy (requiring only fJ to pJ per bit)[8], challenges

remain regarding device uniformity and integration with well established CMOS logics.

Ferroelectric field effect transistors

Ferroelectric field effect transistors (FeFETs) incorporate a ferroelectric layer directly as
the gate dielectric, in this way the transistor's channel conductance can be tuned by its
own polarization state. FeFETs are well known for their extremely fast sub-nanosecond
switching capabilities, multiple analog threshold states and, like FTJs, compatibility with
CMOS logic. In the context of neuromorphic computing, FeFET synapses are particularly
valuable as they can represent a decent dynamic range of weights while operating at high
speeds and low voltages. Currently, state-of-the-art FeFET arrays have successfully

demonstrated synaptic behavior with up to 32 analog states.[8]

Overall, charge-driven ferroelectric systems like FRAM, FTJs, MFM capacitors and
FeFETs are becoming key for neuromorphic computing, offering analog tuning plus
compact and scalable design. Although multi-level function is now more achievable
thanks to better materials and fabrication methods, maintaining stable performance across

large arrays continues being an active area of research development.




Introducion
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Figure 1. Classification of conventional and non-convention memories.

[Adapted from IRDS Beyond CMOS 2023]

Resistive based neuromorphic memories provide other options instead of charge-driven
systems, each using distinct physical principles and design approaches. Among them,
three main types stands out: RRAM, PCM (also called PcRAM), while magnetic variants
include STT-RAM and MRAM.

Resistive RAM

Resistive RAM (RRAM), sometimes called memristor arrays, uses a thin insulating layer,
made from materials like HfO2, TiO:, or Ta20Os placed between two metal contacts. Instead
of bulk changes, it works through tiny conductive paths that form or break; these filaments
rely on missing oxygen atoms (oxygen vacancies) or moving metal ions to shift resistance
levels between high resistance state (HRS) and low resistance state (LRS). From the
performance standpoint, they support tight scaling, reaching about 4F2 per cell, along with
rapid switching under 10 nanoseconds and efficient energy usage around 0.1 to 10 pJ per
write cycle. By precisely adjusting voltage pulses, multiple conductance steps can
emerge, one setup manages up to 128 levels (equaling 7 bits)[5], [8], with ON/OFF ratio
commonly above 100. Advanced RRAM setups allow IMC using crossbar grids for
efficient vector-matrix multiplication, this boosts appeal for brain-inspired systems. Still,
issues like inconsistent performance, limited lifespan, or difficulty tuning weights

accurately persist.
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Phase-change memory

Phase-change memory (PCM or PcRAM) utilizes chalcogenide materials such as
Ge:Sb2Tes (GST) that can be reversibly switched between amorphous (high resistance)
and crystalline (low resistance) phases by controlled heating by using electrical pulses.
Multi-level resistance is possible by controlling the crystalline volume fraction, allowing
up to 120 stable conductance levels in experimental devices. Typical PCM features
switching speeds in the microsecond range (around 6 ps) and write energy on the order
of 100pJ per bit, with excellent scalability and retention (over 10 years at room
temperature)[9]. PCM crossbars have demonstrated highly parallel VMM for neural
networks but device-to-device variability, reset drifting, and relatively high programming

currents compared to RRAM and MRAM pose constraints for large arrays.

Magnetic RAM

Magnetic RAM, particularly spin transfer torque RAM (STT-RAM), retains data through
magnetic alignment in ferromagnetic layers divided by a slim insulating film, often MgO.
Writing happens when electric current flips the magnetization direction, producing either
low or high resistance based on whether alignments match or oppose, enabling natural
digital storage. Instead of relying on charge, this method allows quick access times,
(reaching about 10 nanoseconds), while keeping memory intact without power. Although
some studies show promise for storing more than one bit per cell using incomplete
switching or new compounds, achieving stable analog behavior at scale is difficult.
Thanks to strong durability and CMOS integration, it works well for cache and non-
volatile storage; yet data retention and scalability for brain-inspired computing need

further exploration[10].

All these resistor-like storage units bring key benefits compared to standard charge-driven
types: they allow gradual tuning, compute inside memory, work at lower voltage, also
pack tightly together. While one system may last longer, another might scale better or use
less power, each balances performance differently. Current studies aim to build stable
multi-step control, reduce inconsistencies across cells, while linking them as artificial

synapse nodes in real neural systems that speed up Al tasks.
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Pitfalls of memory technologies: energy and latency efficiency
limitations

Although neuromorphic computing offers major improvements in hardware efficiency,
every type of new memory tech, whether charge-driven or resistance-driven, comes with

some drawbacks.

Charge-based Memories

Ferroelectric RAM works well over time, uses low energy, provides non-volatility, yet
only handles binary states because it flips quickly between them. That makes it less useful
for brain-inspired computing, which needs smooth, graded changes in memory values[4].
Some efforts have been tried achieving levels beyond two by tweaking how domains form
or using incomplete switches; these show promise, but controlling many stable steps
consistently remains hard. Variability across chips, uneven response, and shifting stored
values complicate accurate tuning. As more analog stages become available, data may

fade faster reducing accuracy during prolonged use.

Ferroelectric Tunnel Junctions (FTJs) enable analog control using electron tunneling
across extremely thin ferroelectric films, less than 5 nm thick. Although these junctions
show strong ON/OFF performance, such as around 300 in BaTiO setups, scaling them
down remains challenging because fabrication is complex; also, leakage currents and
defect sensitivity interfere[7]. For instance, certain tests reveal that HfO:-type devices,

one widely used FTJ option, achieve just 8 distinct levels, equivalent to 3 bits.[6]

Ferroelectric Field Effect Transistors (FeFETs) show potential for compact, quick
performance through multi-step voltage control. When used in neuromorphic settings
these devices support broad range of memory weights variation. Recent FeFET grids
demonstrate 32 continuous levels mimicking synapse activity[8]: however, precise analog

adjustments typically last around 10* cycles.
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Resistive-based Memories

Resistive RAM works fast, speeds reach nanoseconds, with energy use as low as 0.1 to
10 pJ; it also handles multiple resistance levels. Still, its filaments form stochastically:
forming or breaking them varies between devices and repeated operations leading to
substantial variability. Because of that, performance shifts over time and some states may
blend together. For continuous analog operation, lifespan ranges from 10* up to 108
cycles[11], [12]. Even if certain tests report 128 distinct levels (about 7 bits),

inconsistency remains a core challenge for reliable memory precision.

Phase Change Memory supports around 100-120 steady conductance steps, using
materials like GST, by controlling its crystallization; it offers strong data retention lasting
over a decade along with compact design. However, operation usually demands higher
energy per bit (~100 pJ) making it less efficient compared to RRAM. Switching is also
relatively slow, needing pulses of about 6 microseconds. Over time, small shifts in
partially programmed states occur because of relaxation in the crystalline structure, which

reduces accuracy|8].

Magnetic RAM, particularly STT-RAM, is known for lasting a long time, plus it employs
low energy and fast switching (about 10 ns). Although usually seen as binary, in
neuromorphic simulations such as NeuroSim, it’s treated as having multiple states to
mimic synapses[13]. Still, real-world use in analog mode runs into issues: data doesn't
stay stable long enough, reading can disrupt stored values, and differences between levels

are often too wide.

Despite differences among types, challenges like inconsistent processes, restricted
scalability, lack of consolidated industry standards for testing and benchmarking make

implementation harder[11].

Promising Aspects of Y-36 LiNbOs Ferroelectric Devices

Thin-film LiNbOs devices, particularly with Y-36 orientation, have emerged as strong
candidates for neuromorphic and memory applications due to their impressive material
and switching properties. LiNbOs; has high spontaneous polarization and robust

ferroelectricity up to its high Curie temperature (around 1140-1210°C). Recent studies

8



Introducion

on metal—ferroelectric—metal structures using 43 nm Y-36 LiNbO:s thin films demonstrate
remanent polarizations near 58 uC/cm? as shown in figure 3, with low coercive fields (Ec
as low as 0.4-0.9 MV/cm. This allows polarization switching with voltages around 2
V[14]. These characteristics offer distinct advantages for low-power, high-density

applications.

Endurance tests show consistent behavior beyond 10? cycles; meanwhile, data stays intact
over brief periods, Pr remains stable after 100 seconds, which makes it suitable for
dependable storage or adaptive analog circuits. Instead of binary mode, multiple states
are now possible, a key step toward brain-inspired computation: experiments on the 43
nm structure reached 5-bit resolution (~40 levels)[6], achieving a conductance switch
ratio near 6[14]. While nonlinear response and limited ON/OFF contrast still require
investigation, the Y-36 variant enhances both ferroelectric output and mechanical
sensitivity, while also easing incorporation into compact acoustic or light-based modules,

useful in combined processing platforms and tunable oscillator designs.

Overall, Y-36 aligned LiNbOs films show strong polarization alongside reduced
switching voltage; they also offer solid durability and enabling new multi-state analog

control making them a compelling option for future neuromorphic systems.[14]
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Figure 2 - MFM capacitor structure[14] Figure 3 - Hysteresis loop of the characterized
LiNbO, device[14]
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Introduction to ferroelectric materials and LiNbQO3

Ferroelectric materials are intriguing solids showing natural electrical polarity. In other
words, they carry an inner charge separation without needing outside voltage. The reason
lies in their built-in dipole moment; polarity occurs only when ion patterns lack symmetry.

Such asymmetry happens exclusively in crystals missing central balance.

This reversal happens naturally. A strong outside voltage can shift it from one state to
another in a reversible manner. Common types are oxide materials with perovskite layout,

like BaTiOs or PZT, also LiNbOs.

LiNbOs3 forms a trigonal crystal structure (figure 4), often called rhombohedral, part of
the R3c space group. Its ferroelectric behavior comes from lacking symmetry around a
central point so positive and negative charges do not align inside the unit cell. This

misalignment results in an overall electric dipole moment.

LiNbOs3 ’s structure relies on linked oxygen octahedra. These units connect face-to-face,
orienting parallel to the crystal's polar c-direction, also called the trigonal axis. Inside this
network, Nb ions sit within shared corners of NbOg groups. Meanwhile, Li ions take up
spaces found between these clusters. Polarization happens when Li+ and Nb5+ shift along
the c-axis, moving off-center inside their surrounding oxygen cages[15]. This setup forms
a clear dipole along the c-axis. Being a uniaxial material, its natural polarization aligns

strictly in one of two opposing directions on that axis.

Figure 4, Crystalline structure of LINbOs (Adapted
from: Ahellwig, Wikimedia Commons, Licence
CC-BY-SA-2.0)
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Introduction to ferroelectric materials and LiNbO3

A key feature of ferroelectric materials is the PvsE curve showing a hysteresis loop.[7]

Like magnets, these materials remember past states, this shape reveals that trait.

Following how polarization flips by sweeping voltage helps explain the loop’s shape as

shown in figure 5:

1.

4.

Saturation: As the strong positive E is applied, all internal dipoles align along the

field direction, leading to a maximum or saturation polarization.

Remanent polarization (Pr): When the external field is removed, the polarization
does not return to zero. The material remembers its previous state retaining a
remanent polarization, P; This non-zero polarization at zero field is the physical

basis for non-volatile memory (data retention).

Coercive field (Ec): To erase this stored polarization, a negative (reversed) electric
field must be applied. The specific field strength required to force the material's
polarization back to zero is called the coercive field Ec. It represents the "coercive

force" needed to flip the state, thus the dipoles.

Negative saturation and reversal: As the negative field increases, the dipoles align
in the opposite direction reaching negative saturation. The cycle is completed by
removing the negative field (leaving a negative P;) and applying a positive field

(requiring a positive Ec) to switch it back.

Polarization

----- Saturation polarization

Non-remanent polarization

Remanent polarization

>
Electric field

Figure 5 - Characteristic hysteresis loop of ferroelectric materials[16]
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Introduction to ferroelectric materials and LiNbO3

The presence of two separate polarization states, positive and negative, at zero electric

field enables binary data storage that retains information without power consumption.

The way ferroelectrics switch inside depends on how domains move and influence each
other, tiny areas where dipoles point uniformly. An electric field causes these zones to
shift or expand resulting in sudden state changes and memory effects. Between differently
polarized regions, domain walls exist; their shape, movement, and resistance to
displacement strongly affect performance aspects like switching rate, wear-out, and
stability.[17] For ultra-thin and nanoscale materials, controlling domain patterns is key

when aiming for graded, continuous switching states.

This ferroelectric behavior changes with temperature. When heated beyond a threshold
called the Curie point (T¢), the material no longer holds its built-in electric charge, shifting
into a paraelectric phase. Such transition defines the highest usable temperature for these
materials in applications. LiNbOs3 it withstands much higher temperatures (around 1140—

1210°C) compared to BaTiOs, which shifts at roughly 120°C.[18]

Ferroelectric materials show other various behaviors, like piezoelectric response, turning
electric charges into motion; pyroelectric effect, producing voltage when heated or
cooled; along with electro-optical control, applied in light-based data transfer. Such
combined traits support many applications and a wide range of devices, from capacitors
and oscillators to high-precision sensors, actuators and modulators. For storing data,
FeRAM uses switchable polarization states to store information. At the same time,
ongoing studies on quantum barriers, gate-controlled switches, and layered material
systems seek to enable continuous-level behavior for neuromorphic computing and

processing within memory structures.

Material synthesis along with integration continues to evolve. New ferroelectric
materials, ranging from lead-free perovskites to 2D systems, are being discovered and
designed, broadening options for scalable tech solutions. High-performance thin films are
made using methods like CIS, PLD, or sputtering; these allow control over crystal

alignment and domain layout depending on device requirements.[19]
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Introduction to ferroelectric materials and LiNbO3

Memristors

In neuromorphic systems, the memristor acts like an artificial synapse, enabling physical
storage of synaptic weights while supporting adaptive changes. At its core, this element
is a simple two-terminal device with resistance that shifts with applied stimulus instead
of staying constant. Its value depends on prior electrical activity; past signals shape
present performance. The process follows a modified version of Ohm’s law tied to
internal states. These states shift gradually when exposed to voltage or current inputs of

varying strength and/or length[2].

Instead of just on-off levels, memristors handle many conductance steps, this supports
dense analog data storage inside their physical setup. At one end, there's the Low Resistive
State (LRS); at the other, the High Resistive State (HRS). The LRS, also called ON mode,
comes from the SET operation and acts like a stronger neural connection with higher
signal efficiency. On the opposite side, the HRS, or high resistance/OFF condition, is
formed through RESET, mirroring a weaker link where transmission drops[5]. Because
this component can shift between these two stable states accurately, it works as a reliable

holder for information.

The way resistance changes works differently depending on the material. Although
filament-based systems use moving ions or oxygen gaps to create and break a conductive
route switching between low and high resistance states, devices using ferroelectric
materials, often adjust Schottky barriers at interfaces or grow and spread polarized
regions[5], [20]. Such control makes it possible for the device to mimic how synapses

strengthen and support learning behaviors such as spike-timing-dependent plasticity.

13



Experimental Methodology

Experimental Methodology

The earlier sections showed that neuromorphic computing can effectively address
inefficiencies in traditional Von Neumann systems, while also highlighting ferroelectric
materials as a strong option for building analog synapses. In this context LiNbO3 stands

out due to its unique properties.

The experimental work described here supports a larger project focused on building a
new kind of CIM accelerator using adjustable piezoelectric acoustic resonators. Instead
of separate components a Y36-cut thin film serves both as memory and as the active
material in the resonator, enabling compact signal handling. Due to the resonator’s high
quality factor (Q), it can switch between two clear impedance levels: extremely high at
parallel resonance, exceptionally low at series resonance. Because of these sharp
contrasts, power consumption drops significantly during operations like vector-matrix

multiplication (VMM), along with its reverse process (IVMM).

To show a tunable piezoelectric resonator, two key conditions shaped the design
approach. Firstly, so it can work inside adjustable RF front-end filters, the thin film needs
to handle switching voltages compatible with CMOS technology. This happens using a
43 thick, single-crystal Y36-cut layer, which switches fully at low voltage thanks to its
low coercive field. Second, instead of just focusing on one aspect, both the useful
electromechanical coupling coefficient (k?) and quality factor (Q) of the device are
improved, to create strong, reversible shifts in resistance near resonance, making
frequency control via polarization more efficient. Also, picking Y36 as the orientation

boosts both kZ and Q.[14]

The setup includes a core active region, where vibrations occur, made by placing a layer
between two tungsten (W) films. Because of this design, it can hit a target frequency in
the FR3 range; small variations from manufacturing lead to a tuned resonance in the range
18 £+ 2 GHz. On top and beneath the center part alternating Ti and W layers form Bragg
reflectors that trap acoustic energy, boost k? and Q, while reducing unwanted signals.[21]
For electrical contact, heavy aluminum coatings act as terminals, shaped simply to carry

signals out.

Compared to standard designs, TBAW (Thin-film Bulk Acoustic Wave) enables vertical

signal passage, also offering stable, adjustable impedance changes with little power

14



Experimental Methodology

waste. Its ability to integrate memory functions alongside efficient computing in one unit,
while working with CMOS processes, makes it a strong candidate for future analog CIM

systems or adaptable filters.

Still, analyzing the device under AC conditions while developing it into a high-frequency
resonator comes later, this falls outside the focus of the present thesis. Though relevant,

that stage follows initial groundwork and isn't addressed here.

The work described here forms the basic work for that idea: measuring direct current
behavior. Before changing the resonator state, it is essential to show the main part, the 43

nm LiNbO3 layer, which works like an analog memristor.

The next sections outline the test methods applied to confirm memristor operation. The
goal was to show that sending repeated DC voltage signals adjusts the device’s
conductivity across several steady levels and measures how well it mimics biological
synapses. The DC results later served as inputs for larger system models using NeuroSim,
estimating efficiency metrics like size, power needs, response time, and precision within

extensive crossbar networks built from such components.

Fabrication workflow

The fabrication of the LN TBAW starts with a smooth, Y36-cut thin film bonded directly
to a silicon substrate, supplied by NGK. After preparing this initial substrate, material
layers are added via sputtering onto the lithium niobate top side (fabrication flow depicted
in figure 7). A 32nm tungsten layer goes on first, this helps build the cavity structure.
Following that, multiple pairs of titanium (77nm) and tungsten (75nm) films are sputtered
down one after another. On top, a 1700nm aluminum layer is deposited; above it comes
a coating of silicon dioxide SiO,. These stacked W-Ti layers work both as an acoustic
chamber and as a reflector for resonance behavior. Meanwhile, the aluminum contributes
to the electrode system assembly. This upper dielectric coat plays a key role: it protects

metal parts during later bonding steps.

To build the device stack, benzocyclobutene (BCB) acts as an adhesion layer to move the
full stack onto a sapphire substrate. Instead of direct growth, this method forms a BAW
structure where the piezoelectric layer sits upright between two metallic contacts. Once

transferred, the stack is flipped upside down so the silicon support can be taken off.[19]
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A large portion of silicon gets stripped away via reactive ion etching with gases like CFa4
and O2. What’s left behind undergoes a finer removal using XeF2[22]. Finally, an RCA-1

wash clears leftover residues, leaving a clean, particle-free interface.

The process goes on by depositing fresh layers of W, Ti, and Al, same thickness as before,
onto the newly uncovered surface using sputtering (figure 6). Instead of building
everything at once, these coatings set up the shape of the device along with its electrical
connections via later lithography paired with ion milling, cutting away excess down to
the lithium niobate boundary, shaping both upper contact and edge of the resonator. In a
comparable way, another round of etching plus design work handles the lower section;
here, ion-based removal runs until hitting the initial protective film, this step gives

structure to the bottom electrode.

Electrical separation along with signal paths come from adding a SiO, spacer over the
whole structure. This film isolates conductive parts while guiding sideways connections.
Patterning this layer precisely uses reactive ion etching with gas mixtures, creating
openings to touch the upper aluminum layer directly plus cutting down into material

below so lower metal levels can electrically connect.

Al (1700 nm)

W (75 nm)
Ti (77 nm)
Bragg | |W(75nm)
Mirror Ti (77 nm)
W (75 nm)
|| Ti (77 nm)
Main W (32 nm)
Cavity { Y36 LN (43 nm)
- W (32 nm)
Ti (77 nm)
W (75 nm)
Bragg _J Ti (77 nm)
Mirror W (75 nm)
Ti (77 nm)
W (75 nm)

Al (200 nm)

Substrate

Figure 6 - Schematic of sputtered layers arount the lithium niobate film[23]
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An RF sputter etching removes natural oxide layers from open contact zones. Following
this, a thick layer of aluminum is deposited across the full surface to finish connections.
A photolithography process shapes the metal, then reactive ion etching, using a mixture
of Cl,, BCl3, and argon cuts precise paths ensuring electrical routing. Once done, the
lithium niobate TBAW component, built with detailed acoustic and electronic traits, is

complete and prepared for integration and test.

1. Lower Stack 2. Flip Chip Bonding 3. Si Substrate Etch

Denosition

4. Upper Stack 5. Upper Mirror Etch 6. Bottom Mirror Etch
Deposition
| | |
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7. SiO2 Spacer 8. Via Etch 9. Interconnect
Formation
[ | |

D s Al

Y36 LN Sio,
w [l Bce
Ti Sapphire

Figure 7 - Fabrication workflow of the
entire resonator structure[23]

Conductance states measurements

To analyze the memristive behavior in LiNbOs thin film, a custom electrical test
configuration was used. Measurements took place inside a LakeShore probe station so
connections to electrode contacts stayed consistent. The core instrumentation consisted
of a Zurich Instruments UHFLI 600 MHz lock-in amplifier for signal processing.
Excitation voltages came from the UHFLI’s built-in AWG section, delivered via probes
to the sample's lower terminal. Its upper contact linked to a low noise transimpedance
amp that turned current outputs into measurable voltage levels, then fed them back into

the UHFLI for analysis.
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Figure 8 - Top view of a single device layout with metal contacts
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Figure 9 - Full chip layout showing hundreds of devices
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Once the tools and setup were set, tests began to check how the device’s memory-like
behavior worked. To see how the LiNbOs layer responds across different conditions and
capture its full performance span, we used voltage pulse trains with different amplitudes.
We first tested write pulses from 0.25 V up to 5 V; later adjusted that range to fit needs
for Neurosim modeling, shown in upcoming sections. The process started with
potentiation mode, applying rising positive pulses, then shifted into depression mode
using negative ones growing stronger (from -0.25 V to -5 V). This way lets us track
changes in conductivity while confirming whether the device adjusts its connection

strength smoothly, step by step.

The test process carefully alternated programming steps with measurement phases:
changing the device state used varying write pulses, whereas a steady 10ms and 250 mV
pulse measured conductance right after. A key equipment limitation appeared during these
checks. Although writing allowed use of low transimpedance settings, offering wide
bandwidth and minimal signal distortion, the reading step faced issues because of the
device’s high resistance when in the off state. Detecting tiny currents from the LiNbOs
layer’s HRS demanded extreme sensitivity; thus, the TIA had to operate at maximum
amplification (10® V/A). This limited bandwidth imposes a theoretical restriction on how
fast the signal can change before distortions start to show up. Applying the standard
relationship between bandwidth and rise time

0,35
trise,min = W

With this formula the theoretical minimum rise time required to avoid signal distortion
would be approximately 29.2 ps. Using a rise time faster than that value could generate
large transient displacement currents capable of driving the amplifier into saturation,
thereby obscuring the resistive current of the device during the initial moments of the

pulse.

To check how well this setup works in practice and find the best timing, a 47 pF capacitor
served as a test load, chosen because it matches the capacitance of the real Y-36 LiNbOs
MFM device. Triangular voltage signals with steady 2us rise durations were applied,

while switching through every available TIA gain setting so that charging effects could

20



Experimental Methodology

be separated from memristor-like responses. From these lab results, key values were taken
to set up SPICE models comparing an ideal circuit’s output with the actual limited-
bandwidth performance of the HF2TA amplifier. Then it was found that a slower 50us

ramp-up and ramp-down period for reading would be ideal.

Figure 10 - Spice simulation showing measurements with 1M gain (left) and 100k gain (right). Referring to the left
plot, the blue trace is the theoretical current, dark and light green traces are the triangular applied signal and the
measured current respectively.

To examine how timing affects steady resistance changes, the study looked at different
pulse lengths, specifically 100 microseconds, 1 millisecond, and 10 milliseconds. Instead
of fine adjustments, a 0.25V step was used during early tuning to cover the full device

range quickly.

Tests showed one specific time worked best for managing multiple states. The current-
voltage graph reveals a key shift near the coercive field, marked by a sudden rise in
current (more visible in log plot, figure 11 bottom). Still, what happens after depends
strongly on how long the pulse lasts: just 10ms pulse duration allowed steady, smooth
growth in current when moving from switch point toward higher voltages. Pulses such as
100us failed to stabilize the high conductance states, leading to meaningless outputs right

after activation.

The response seen following polarization switching shows what could be a different
variety of conduction processes at work. The slow rise in conductivity after the

ferroelectric switching suggests additional effects shaped by voltage and duration. For

21



Experimental Methodology

materials like lithium niobate and related ferroelectrics, researchers have proposed

various explanations found across studies:

1. Schottky Barrier Modulation: Polarization charges from the ferroelectric layer
affect the Schottky barrier height at the metal interface. When polarization flips,
shifts in band bending occur and this can turn the contact from blocking into a
conductive mode: as a result, current injection rises slowly over time[24], [25].

2. Oxygen vacancy movement and filament formation: longer pulses could allow
enough time for charged defects, like oxygen vacancies, to shift position. Because
of this, they might move through a high electric field, creating narrow conducting
channels, or small-scale electron jumps[26], over time. As a result, material’s
inner conductivity slowly rises.[27]

3. Space-Charge-Limited Conduction (SCLC): With extremely thin layers, charge
flow may depend on injected carriers surpassing thermally generated levels. A
slow increase in current might reflect traps in the energy gap capturing charges,

shifting from limited trapping toward full saturation[28].

With this improved setup (flat timing), the unit showed reliable switching, achieving

ON/OFF conductivity levels between hundreds and beyond 10*.

It should be noted that the data shown here, with a 0.25 V increment, is mainly meant to
confirm the device’s working range and physical response. However, for NeuroSim
system simulations, another approach is applied. To boost synaptic precision, which
strongly affects neural network performance, voltage steps will become finer within the
consistent region found earlier. As a result, more LTP and LTD levels can be created,
making better use of the device’s continuous capability instead of relying on broad steps

used during early tuning.
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Figure 11 - | vs pulse # measurements at different flat times showing better memristor performance for a 10ms
pulse. Linear (top) and log (bottom).

To determine the optimal signal amplitude for state readout, a preliminary screening was
conducted on a single test device. Four distinct read voltage levels were evaluated: 10
mV, 50 mV, 100 mV, and 250 mV. Figure 12 shows a comparison between those read
voltage amplitudes pinpointing how the 250mV determines the best ON/OFF ratio.
However, this test has been performed on a single device and there is not a remarkable
distinction between the different the read voltages amplitude tested. Further experiments
on a bigger pool of devices in necessary to better understand the mechanism behind this

choice.
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Figure 12 - Comparison between 4 read voltages magnitudes

Following the pulse timing optimization, a set of five distinct devices was characterized
to maximize the dynamic range. These measurements employed the final optimized
configuration: a 10 ms flat time for both write and read pulses, with a 1 ps rise time for
the write pulse and steady increasing voltages amplitude, and a 50 us rise time for the
read pulse with a 250mV constant amplitude. To achieve high-resolution state mapping,

the voltage step was refined up to 12 mV.

These revealed a dual operational nature enabling distinct applications based on the
chosen voltage range. Digital Memory Regime: When utilizing the full voltage sweep
range (2.2 Vto 5 V), the device exhibits a massive Physical ON/OFF Ratio of around
4000-6000 (figure 13). This sharp contrast is driven by the abrupt ferroelectric switching
event. Such a large resistance margin could be highly advantageous for digital Non-
Volatile Memory (NVM) architectures, as it ensures a robust read noise margin, making
the device a strong candidate for high-density binary storage applications[5]. Analog
Synaptic Regime: For neuromorphic computing, where linearity is critical for training
accuracy[8], the operational window is strictly restricted to the post switching region[17],
[26]. In this mode the device yields an Effective Analog ON/OFF Ratio between 11 and
15. While smaller than the digital ratio, this range represents a notable improvement over

direct literature precedents for this material. Specifically, recent work on identical 43 nm
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Y-36 LiNbO:s capacitors (only MFM structure, without the resonator stack) reported a
usable analog ratio of only 6[6]. Our optimized pulse protocol has therefore doubled the
dynamic range available for synaptic weight updates for LiNbOs. Moreover, this range
compares favorably to standard analog candidates used in neuromorphic benchmarks,
such as HfOz-based synapses (typically ratio ~4.4) or TaOx/HfOx stacks (ratio ~10)[8],
[13], proving sufficient for neural network training when coupled with appropriate weight

update algorithms.

Current levels and efficiency

A critical advantage of this device lies in its ultra-low operating current magnitude. The
measured OFF-state current is 730 pA and the maximum ON-state current (at 5 V write
and 250 mV read) is 3.1 pA. These values highlight the highly insulating nature of the
ultra-thin film and offer a substantial benefit compared to other emerging technologies,
for example filamentary devices like RRAMs often require compliance currents in the
range of 50 pA to more than 1 mA to maintain stable filaments. Our device operates at
currents more than an order of magnitude lower, significantly reducing the IR drop along
the bit-lines of large crossbar arrays[29]. FTJs can exhibit ON-currents up to ~100 pA[7]

while our device demonstrates better static current efficiency.

Despite the low currents, the experimental energy per write operation appears high due
to the specific constraints of the characterization setup. The energy per spike (Ey i) can

be calculated as:

Ewrite = Vwrite X Ion X tpulse

Using the experimental parameters (V. =5V,I = 3.1 uA,t = 10 ms), the energy

consumption is:

Eep= 5V Xx3.1pAXx10ms =155n]

This value is significantly higher than mature technologies like Phase Change Memory
(PCM), which consumes ~100 pJ/bit. However, this consumption is strictly an artifact of

two experimental factors like the macroscopic device
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area (100 um? since the device is a 10pmx10pm square) and the 10 ms long pulse

width used to stabilize the analog states.

To evaluate the technology's true potential, we project the energy consumption under
scaled conditions: the current device area is 10 X 10 um = 100 pm?. Scaling the device
down to nanometric dimensions typical of high-density arrays (e.g., 300 X 300 nm)
reduces the active area to 0.09 pum?. The scaling factor (SF) is & 1111 and assuming a
constant current density (J ~ 3.1 A/cm?), the operating current drops from 3.1 pA to ~2.8
nA.

With this area scaling alone and still maintaining the 10ms pulse, the energy becomes:

Eqrea scaled ® 5V X 2.8 nA X 10 ms = 140 pJ

This value is already comparable to the energy consumption of PCM technology and
demonstrates that the material's intrinsic high resistivity is a key factor for scaling.
Hypothetical Temporal Scaling: while a 10ms pulse was necessary in this work in order
to get stable conductance states, future optimization and engineering of the material stack
and surfaces may allow for faster switching speeds. If the pulse width could be reduced
to 100 ns (a standard for integrated memory), the energy consumption would decrease

linearly:

Efully_scaled ~5VX28nAX100ns =~ 1.4 1]

This projection indicates that the high experimental energy is not a fundamental material
limit since, with geometric scaling alone, the device becomes competitive with PCM.
Furthermore, if future research accelerates the analog switching dynamics, the device has
the potential to reach the femtojoule regime becoming competitive with the most efficient

devices.
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Figure 14 - Plots of all the 5 devices tests overlapped

To find the exact settings for NeuroSim system tests three distinct devices have been
tested. This step aimed to record how conductivity changes in the linear range found
during tuning. Voltage levels were set precisely to avoid sudden ferroelectric shifts and
improve smoothness. During strengthening mode, signals went from 2,2 Vup to 5 V while
in weakening mode they swept between -0,25 V and -1,85 V in order to ensure the best

linearity.

To assess how synaptic precision affects accelerator efficiency, measurements used two
voltage steps, 25 mV or 50 mV. Such difference altered the number of available

conductance levels noticeably. With the smaller step, resolution improved and this led to
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102 LTP states alongside 61 LTD states. In contrast, when applying the larger step, fewer

states emerged: only 57 for LTP yet 33 for LTD as shown in figure 15. Notably, limiting

the voltage range to the one mentioned brings the ON/OFF ratio down to 11-14.This

compromise is necessary, for enabling steady weight adjustments during network

learning. Each of the three devices showed similar responses here, supporting the stability

of chosen settings.
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In figure 16, slightly displaced ON current values can be observed among the three tested

devices even though the OFF current shows better consistency. This will be taken into

account when calculating non idealities for the Neurosim measurements.
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Figure 16 - Comparison between the higher number of states measurements of three devices
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Neurosim simulations

Overview

NeuroSim is a tool made to assess how well in-memory and neuromorphic computing
systems work at the hardware level. Rather than acting like typical Al simulators, this one
looks closely at physical behavior inside the chips. It mimics memory blocks, such as
RRAM, SRAM, eNVM, FeFET, and includes flaws that appear in reality, together with
needed digital and analog peripheral circuits. Because of this detail, users gain solid
estimates not only on speed or power use, but also pinpoint trouble spots like delays, chip
area, energy, or side effects from imperfect components during actual neural network
execution. For researchers, NeuroSim links lab-measured device data with projected full-
system results, serving as an effective tool for initial design testing and practical

evaluation of novel neuromorphic ideas.

How Neurosim operates

It accounts for non idealities in analog synapses by applying simple math models based
on experimental data. Rather than relying on steady, straight-line changes in conductance
values when the devices are excited, NeuroSim lets users add unique response patterns,

often curved, that match what’s seen in physical hardware, using data fitting.[29]

For LTP and LTD, changes in device conductance across programming pulses are

modeled using these formulas:

o Potentiation (LTP):

P
Grp(P) =B(1—e A) + Gpin

e Depression (LTD):

P—Pmax

GLTD(P):_B(l_e A )+Gmax
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where:
e Gin: minimum conductance
e Gpax: maximum conductance

e P:number of applied pulses

e Pjax: maximum number of pulses (i.e. the number of programmable states)

e A: fitting parameter controlling the curvature (nonlinearity)

Gmax—Gmi .
e B =TE T gcale factor that ensures the conductance swings between the

T 1—e—Pmax/A’

desired range.

Setting those properties requires enabling nonlinearWrite=true in the input code. The

degree and asymmetry of nonlinearity are quantified by two parameters: NL LTP for

potentiation and NL LTD for depression which are obtained from fitting experimental

data with a MATLAB code provided by Neurosim.

(1) Nonlinear
weight update

Conductance

,'ldeal linear
.. weight

Conductance

(3) Device-to-device

variation /‘_ . T

(5) Dynamic range
(ON/OFF ratio)

(2) Precision

Write Pulse #

Write Pulse #

Figure 17 - Schematic of non idealities that is possible to take into account in the Neurosim environment[13]
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In place of a linear update, NeuroSim allows extra non-ideal effects to be added; instead
of perfect behavior, real world deviations can also be modeled by considering the

following non idealities (figure 17):

e Limited accuracy: The total number of stable conductance steps affects how well
a system learns. In NeuroSim, these ranges are defined separately,
maxNumLevelLTP sets upward changes, whereas maxNumLevelLTD handles
downward changes; when using digital hardware, the bit count specified in
numWeightBit within Param.cpp (one of the source codes) determines weight
detail.

e Device-to-device deviations: actual arrays show variability in conductance across
cells, represented by sigmaDtoD: if it is zero, the variation is turned off; when it’s
not zero, it reflects measured, often normal-distributed discrepancies among cells.
A higher value means greater divergence in performance between units.
Experimental data usually determines the magnitude of this parameter.

e Cycle-to-cycle variation: the same device might show slightly different
conductance after every pulse. This inconsistency within a single device, called
intra-device variability, is set by sigmaCtoC, which stands for part of the full
conductance range. Setting it to zero turns off such variations; higher values make
updates more unpredictable. To stay on the safe side it is necessary to consider the
higher value observed during either LTP or LTD phases (worst case scenario).

e Dynamic range (ON/OFF ratio) depends on maxConductance and
minConductance, these reflect actual device limits. Since no additional setting is
required, the range comes from those two values alone. However, if someone
wants to skip this behavior, using minConductance = 0 gives a perfect, unlimited
ON/OFF ratio.

e (Conductance changes: To mimic state-dependent variations that occur at certain
levels. The users can turn this by setting conductanceRangeVar=true while
defining maxConductanceVar along with minConductanceVar, these reflect
standard deviations at highest and lowest conductance points. When devices show
high ON/OFF contrast, setting just maxConductanceVar tends to work well.

e Read noise refers to fluctuations in conductance measurements, especially

noticeable with weak signal levels. Is enabled via readNoise=true and the extent
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depends on sigmaReadNoise. This value sets the spread of the Gaussian
distribution applied. Effects become more apparent under low-conductance

conditions. Control requires adjusting this parameter carefully.[13]

The fitting process in Matlab extracts device settings from measurements weight changes
for use in simulation. Instead of using raw measurements, the script nonlinear fit.m
adjusts them to match NeuroSim’s model equations, based on recorded conductance shifts
during strengthening (LTP) or weakening (LTD). Before analysis, data needs some
adjustments: align both LTP and LTD starts at pulse zero, flip LTD values left-to-right per
fit requirements (figure 18). Although Pmax defines upper state limits, it's scaled to one
here, this normalization lets the A factors adjust curve shape accurately when plotted

against relative conductance steps.

The fitting procedure happens in two stages: initially, optimal A values for LTP and LTD
are identified by ignoring fluctuations, update variability is set to zero; next, actual
variation levels, which mimic cycle-to-cycle changes via pseudorandom seeds, are added
to refine accuracy. Within the script, these parameters appear as A LTP and A _LTD.
Afterward, the final values, along with conductance range and state count, are extracted

and set as an input into NeuroSim as device settings.[13]
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Figure 18 - Visualization of how the A parameter models nonlinearity.[13]
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NeuroSim allows multiple methods to model real-world memory setups in synaptic
hardware, enabling users to define not only perfect crossbars but also mixed designs such
as ITIR (a type of pseudo-crossbar). Configuration relies on settings like cmosAccess,
while resistanceAccess accounts for transistor effects when simulating 1T1R units. Such
detailed modeling matters, since physical circuits face issues from unwanted parasitic
resistances and switching elements that alter current paths, delay responses, and reduce
effectiveness. Different array layouts along with operational approaches are explained

further in the following section.

Most significant here is NeuroSim’s ability to model varying programming pulses.
Enabled via the nonldenticalPulse setting, it allows separate configuration, such as
VinitLTP, VstepLTP, PWinitLTP, for up and down states. These settings adjust amplitude
or width differently per pulse as shown in figure 19. Realistic coding often uses such

varied signals.

VstepL TP
VinitLTP PWinitLTD
+— -
PWinitLTP V'"'tLTDI
VstepLTD

Non-identical pulse width scheme
PWstepLTF’

VinitLTP | PWinitLTD
Ln AR LR o

< O oo
PWinitLTP VinitLTD

PWstepLTD

Figure 19 - Non identical pulse scheme[13]
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Synaptic Arrays in Neuromorphic Hardware: Crossbar and Pseudo-
Crossbar Architectures

In neuromorphic systems, memory and processing rely on synaptic arrays, structured
grids linking inputs (axons) to outputs (neurons) using adjustable memory units as
weights. Various setups can arrange these components, including dynamic CMOS RAM,
content-addressable storage, FeFET-driven blocks However, the crossbar layout along

with its 1T1R variant stand out as key models explored for in-memory operations.

Analog eNVM Crossbar Array (1R)

The analog eNVM crossbar array offers a dense, straightforward design for building
synaptic weights in neuromorphic systems. At every junction between a word line (WL)
and a bit line (BL), one memory unit, like RRAM or PCM is placed (figure 20). Because
of this layout, space use is optimal, reaching just 4F? per cell, with F standing for the
smallest fabrication dimension. During matrix-vector operations, voltage inputs go across
all WLs at once; meanwhile, output currents form on BLs in a parallel fashion. Instead of
sequential steps, multiple calculations happen together through analog signals inside

memory units.

Yet without separation between memory units, missing selectors or transistors at
junctions, issues arise, particularly when updating values. When voltage signals are sent
to adjust weights, inactive cells might still face accidental shifts due to leakage currents
or stray writes. To lower such risks, a specific voltage setup is applied: unselected WLs
and BLs usually rest at half the supply level (V/2), instead of zero, limiting disturbances
on idle components. During every update phase, one entire line gets activated, with
controlled pulses delivered via bit lines, enabling simultaneous adjustments across
multiple locations within that line, the system detects this matrix layout automatically if

cmosAccess=false.
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Analog eNVM Pseudo-Crossbar Array (1T1R)

To tackle interference from unwanted paths and unintended writes, the 1T1R setup uses
a transistor linked in sequence with every storage unit (figure 21), allowing individual
selection. This design links the transistor’s control terminal to a word line (WL), its input
side to a source line (SL), while the upper contact of the memory element attaches to a
bit line (BL). Instead of direct routing, the output end connects via an underlying vertical
link under the cell. Now, chip space depends more on the transistor footprint, often
exceeding 6F? per unit, particularly when greater programming current demands broader

switching elements.

A standard IT1R setup cannot run fully parallel analog computations since access
transistors disrupt the inherent grid balance. Instead, the modified crossbar design shifts
BLs by 90 degrees ash depicted in figure 20, this activates every transistor along an
addressed WL at once, applying inputs through BLs while outputting summed currents

via source lines (SLs) in unison.

Cell Cell
- WL - -

S J SEVVVE LIS ) EVYTS _iw-“_j_r—m-l n
:'i_qu- J_L_Law- => T T
L B !

L

WL

S

Figure 20 - Rotated BLs ensures a better paralelization of VMMs operations[13]

With weight programming, just the WLs tied to specific rows turn on, activating certain
transistors so only designated cells obtain programming voltage. This setup greatly
reduces unwanted interactions during writes while boosting energy efficiency over basic
crossbar designs. During simulation, selecting cmosAccess=true in the surce code enables
this configuration. Other supported architectures in NeuroSim include digital eNVM

arrays, SRAM-based arrays and FeFET-based arrays.[29]

37



Neurosim simulations

| BLSwitchMatrix | [ sLswitchmatrix |
[ WC—1, == WO [
5 [ I 5
S}"J-Lap b | 1 8 1 9 | [ o
S ESersar 2 |12 || Hemer ik
5 \1"\ xa‘ \‘&‘\ s Synapse sL i3
3 i ARESInE= 1 3
0 Crgssbar |Array BL g ’}—Lw—l J—Lmj "
= * - - o [ [ -
= @ @
L L s o Pseudo-crossbar Array ]
CH v ] CH W ]
|5 Read Read l'a‘: Read Read
3 | Circuit Circuit =32 | _Circuit Circuit
=0 | 1 =0 1 1
8 | Adder Adder 8 | Adder Adder
Shift Shift Shift Shift
Register Register Register| Register
(a) (b)

Figure 21 - Schematic of crossbar array (a) and pseudo-crossbar array (b) architectures

along with the peripherals.[13]

Array Peripheral Circuits

The peripheral circuits in NeuroSim help run real tasks in synaptic arrays, like crossbar
or pseudo-crossbar setups, by making them work efficiently. These components support
functionality through control and signal handling across different array types, depending

on design needs.

e Switch matrix: In the bit line switch setup, transmission gates, guided by register-
stored signals, link BLs either to read voltage or ground. When computing
weighted sums, input patterns become control commands, turning on array
sections at once. If a higher bit accuracy is needed, inputs roll out across several
clock phases instead of relying on analog levels. Source line, bit line, and word
line switching units come from the SwitchMatrix template; meanwhile, digital
blocks use a unique WL-BL variant for simultaneous data reading.

e Crossbar WL Decoder: it adjusts the classic word line design. Instead of just one
path, it uses separate routes to turn on specific lines via address input. When full
concurrency matters, like during analog computation, a signal called ALLOPEN

triggers every line together. Its layout pairs a standard row decoder with added
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follow-up stages. These additions allow dynamic adjustment depending on task

needs. During testing, this unit combines specialized decoding blocks with output

modules.
B,
Bi0] B[] B1[2] Bilk-1]
__ i i — V
BL, B
ALLOPEN Vin Follower J_\—l_l' - J_l- 0
i— i By y—+— Vrean
' Be Ba[0] B2[1] B4(2]) Balk-1]
! WLIO] —GND ~— 'y
ADDR[0] — | B ° _l_l_u. ﬂn
ADDR[1] — T
By
n:2" .
Decoder | :
ADDRI[n-1]— : & B, [0 Bi[1] Bil2] Bi[k-1]
| N - - V
WL[2"1] B i
| - :E a1,
|
i (a) & (b)  Digitized Input Vector
Figure 22 - Crossbar WL decoder (left) and switch matrix (right)[13]
Other Peripherals:

e Multiplexer with Mux Decoder: shares costly readout circuits across array
columns reducing space use but adding delay from time-sharing needs. It is
possible to tune the degree of resource sharing from the source codes.

e Analog-to-Digital Read Circuit: Once analog processing finishes, a spike-driven
read unit converts summed current into digital form, spike frequency reflects input
magnitude, setting ADC resolution through dynamic response.

e  WL/Column Decoders & Drivers: Standard decoding units pick rows or columns,
while driver stages allow accurate voltage setup when writing data.

e Adder, Register, or Shift Register: these components gather, hold, besides manage

weighted sums, key when working with multi-bit inputs.
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MLP Neural Networks overview

After highlighting the Neurosim’s hardware capabilities, in these subsequent paragraphs
are presented theory concepts regarding neural networks and how the software assesses

training.

Multilayer perceptron (MLP) is a basic type of neural network that includes an input
layer, at least one hidden layer, and an output layer, each made up of linked processing
units called neurons (figure 23). In this setup, every neuron gets signals from all neurons
in the previous layer, where those inputs are scaled by weights; then a bias value is
included before combining them. Instead of just adding values, the total passes through a
nonlinear function like sigmoid. Because of this transformation step, the model gains the

ability to capture intricate patterns, not limited to straight-line trends.[29]

Hidden Layer

Figure 23 - Simple schematic of an MLP[30]

The functioning of one neuron inside a MLP takes a feature vector, computes weights
multiplied by inputs, then adds a bias before passing the result through a non-linear

activation function.

More formally, given inputs x4, X5, ..., X,, €ach associated with a weight w;, the neuron

calculates the pre-activation output as in the formula:
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n
zZ = z W;X; + b
i=1

where b is the bias. This linear combination is then fed through an activation

function o(z) to produce the neuron's final output:

a=oad(z)

Common choices for g(z) include the sigmoid function, which squashes the output to the

open interval (0, 1)

o(2) = 1+e2

Other activation methods like tanh or ReLU appear frequently, based on how deep the

network is and what kind of task it manages.

In MLPs, the simple neuron action scales up through various layers. While one layer
works, its neurons take inputs from every output of the prior level, creating full
connectivity. By linking many layers that use nonlinear activation, the model can mimic

intricate patterns, making it far more capable than linear approaches.

After defining a neuron’s math, those steps easily apply to practical jobs like spotting
what digit appears in a picture using collections sets such as MNIST. This dataset holds
70,000 black and white pictures of numbers written by hand; every measuring 28 by 28
pixels and carries a label from 0 up to 9 that represent the “true” value that is the expected
to be recognized from the neural network.[8] To get an image ready for use in a basic
neural net, the flat square grid turns into a straight-line list holding 784 entries, one per
dot on screen. That line-up feeds data into earlier explained processing: individual dots

multiply their assigned weights, add offsets afterward, then shift results via simple curves.

In a standard MNIST setup, the MLP uses ten output neurons, one per output digit. These
outputs show how strongly each digit is predicted. As data moves forward through layers,

predictions are compared to correct labels using a loss measure, then errors flow
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backward to adjust weights and biases. Repeating this on many samples helps the model

link pixel patterns to actual digits.

MNIST's layout, consistent image size and straightforward labels make it well suited for
showing how matrix-driven networks function. Through the math outlined earlier, the
MLP turns basic pixel data into correct number identifications, linking theoretical steps

to a real-world, familiar task.

The learning process in an MLP involves adjusting the weights and biases in an iterative
manner to minimize the error between the predicted output and the actual target label
associated to every MNIST dataset training picture. This process typically consists of two

phases:

1. Forward Propagation: Input data is fed through the network and layer by layer
produces an output. A loss function (for example the Mean Squared Error or

Cross-Entropy) calculates the difference between this output and the true target.

2. Backpropagation: The error is propagated backward from the output layer to the
input layer. Using the chain rule, the algorithm computes the gradient of the loss
function with respect to each weight while these gradients indicate the direction

and magnitude by which each weight should be adjusted to reduce the error.

In hardware-based neuromorphic computing, learning methods fall into two types:

e Online learning: the neural net trains straight on the chip. As fresh data comes in,
synaptic strengths adjust instantly. Hardware synapses, like memristors, must
allow balanced, steady changes. These adjustments follow LTP and LTD rules so
training stays stable over time.

e Offline Training (Classification Only): Another option is to train the network
separately with precise software tools. After finding the best weights, these values
get transferred and set into the physical chip. From that point, the system runs just
forward passes to label incoming data. Since weights stay fixed while running,

this method reduces demands on how linear or durable the components must

be[8].
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Once the basic ideas of MLP are set, we turn to how NeuroSim shifts theory into real-
world hardware tests. This tool evaluates memory-focused computing systems built for

neural nets like MLPs, by mimicking software logic alongside physical device behavior.

In practice, NeuroSim uses a two-layer MLP, counting only hidden and output layers, for
adjusted versions of datasets such as MNIST. To improve speed and match real-world
devices, it resizes input images to 20x20 pixels and turns them into black and white
leading to 400 input neurons instead of 784. Normally, the setup follows 400-100-10: 400
inputs link to 100 hidden nodes; these connect to 10 outputs standing for digit

categories[8].

NeuroSim works with both online learning and offline (classification-only) operation.
When using online training, it acts like a chip learning in real time, images come in one
by one at random, while the system adjusts connections step by step through basic
optimization rules. It does not just simulate neurons; it includes physical limits like low-
precision values and pulse-driven changes that convert abstract negative-or-positive
weights into actual non-negative hardware equivalents. For pre-set use, connection
strengths are calculated ahead of time in code, then loaded directly into the model. Once
set, these do not change, the circuit runs recognition tasks only, which eases requirements

on stability and accuracy.

A main part of NeuroSim's training involves epochs, each meaning a full cycle through
the whole dataset, so forward and back propagation. With every round, the model sees all
samples one time adjusting its weights step by step. For NeuroSim, users can set how
many cycles to run and how many images to use per cycle. These settings appear in files
like Param.cpp, where they’re open to changes. This lets users manage training time along
with batch setup, while watching how the network improves step by step during the
simulation. For instance, using standard values like totalNumEpochs = 125 and
numTrainlmagesPerEpoch = 8000 (adding up to 1 million images), the tool outputs per-
epoch results, giving clear insights into model development and overall system

behavior[13].
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MATLAB Fitting

The extraction of synaptic device parameters for the simulation was performed using the
standard behavioral model integrated into the NeuroSim framework. This model
mathematically describes the weight update curve shape (conductance change vs pulse
number) using the exponential function seen in the previous paragraphs, defined by the
nonlinearity parameters a;p and a;p. A fundamental mathematical property of this

specific model is that it enforces a constant concavity throughout the entire range; in

. . . . . d%*G .
analytical terms the sign of the second derivative of the fitting function —pz femains

constant.

Unfortunately, the experimental characterization of the LiNbOs devices revealed complex
conductance curve dynamics that deviate from this ideal mono curvature behavior.
Specifically, the measured LTP and LTD curves exhibit inflection points: regions where
the curvature transitions from convex to concave or vice versa. Because the standard
NeuroSim model lacks the degrees of freedom characteristic of higher-order functions
like polynomial equations necessary to map these inflection points, a perfect fit across the
entire synaptic window was hard to obtain, especially for LTP. Consequently, the fitting
curves generated by the script represent a "best-fit" approximation that intersects the
experimental data at multiple points, capturing the average non-linear trend while
inevitably deviating in regions where the intrinsic device curvature inverts as shown in
figure 24. Despite this limitation, the extracted parameters provide a representative
estimation of the device's average update behavior suitable for the statistical

benchmarking of the accelerator.
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Figure 24 - The performed fitting clearly shows the inflection points and the displacement from the experimental
data, especially for LTP

The previously discussed parameters extracted from the experimental data using the
MATLAB fitting procedure, are summarized in the following tables showing both the

higher and lower number of states measurements tested.

Nonlinear weight update

Limited precision

Device-to-device weight
update variation

Cycle-to-cycle weight
update variation
Dynamic range (ON/OFF

ratio)

Conductance variation

Read noise

nonlinearWrite=True (to turn on)
Provide NL_LTP and NL_LTD

Number of conductance states
maxNumLevelLTP and maxNumLevelLTD

sigmaDtoD (standard deviation of d-2-d variation)
Set to 0 if not considered

sigmaCtoC (standard deviation of c-2-c variation)
Multiplied with maxCond - minCond
User encouraged to select higher

maxCond and minCond are used, minCond = 0 for inf ON/OFF
ratio

ConductanceRangeVar = true, then provide values for
maxConductanceVar and minConductanceVar

Standard deviation of conductance at max and min conductance
states

readNoise = True, then provide the standard deviation of read noise
in gaussian distribution

Table 1 - Lower number of states measurements parameters

NL_LTP=-3.36, NL_LTD=-1.58
maxNumLevellTP = 57

maxNumLevellLTD =33
sigmaDtoD =0.81

Var_amp =0.005 from Matlab

Max_G (avg) = 2.69e-6, Min_G (avg) = 2.43e-7

ON/OFF =11.07

maxConductanceVar (sigma)= 0.41
minConductanceVar (sigma)= 0.47
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Nonlinear weight update nonlinearWrite=True (to turn on) NL_LTP=-1.5,NL_LTD =-1.29
ghtup Provide NL_LTP and NL_LTD
T .- Number of conductance states maxNumLevellLTP = 102
P maxNumLevelLTP and maxNumLevelLTD maxNumLevellLTD =61

sigmaDtoD (standard deviation of d-2-d variation) sigmaDtoD =0.325

Device-to-device weight Set to 0 if not considered

update variation
sigmaCtoC (standard deviation of c-2-c variation) Var_amp =0.005 from Matlab

Cycle-to-cycle weight

T Multiplied with maxCond - minCond
update variation

User encouraged to select higher

Dynamic range (ON/OFF maxCond and minCond are used, minCond = 0 for inf ON/OFF Max_G (avg) = 2.98e-6, Min_G (avg) = 2.26e-7
ratio) ratio ON/OFF =13.19
ConductanceRangeVar = true, then provide values for maxConductanceVar (sigma)= 0.59
maxConductanceVar and minConductanceVar minConductanceVar (sigma)= 0.46

Cenductanceariaton Standard deviation of conductance at max and min conductance

states

readNoise = True, then provide the standard deviation of read noise  /

HERE—. ! ) Lo
ead noise in gaussian distribution

Table 2 - Higher number of states measurements parameters

To accurately model the stochastic behavior of the considered devices, three key
variability parameters have been calculated: Device-to-Device (DtD) variation, Cycle-to-
Cycle (C2C) variation, and conductance variation. All these parameters are represented

by the standard deviation (o) of the experimental data.

Since the experimental dataset consists of a limited number of samples (3 devices), the
sample standard deviation formula (using N — 1) was employed instead of the population
standard deviation. This approach is known as Bessel's correction, is essential to correct
the bias in the estimation of the population variance when using a small sample size. The

formula used is the following:

N -
Zizl(xi - x)Z
N-1

g =

where:

e x; represents each individual data point (for example a nonlinearity value or a
conductance value).
e X is the sample mean.

e N is the total number of samples.
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As an example, ap,p Was calculated by analyzing the fitting parameters (a;rp and a;7p)
extracted from 3 distinct devices. First, the sigma of the nonlinearity parameter was
calculated for the LTP curves of the 3 devices (o;rp) and similarly, the standard deviation
was calculated for the LTD curves (o;7p). Since NeuroSim V3.0 accepts a single input

for DtD variation, the final op:,p, Was computed as the average of these two values:

__ Orp T Oprp
Optop = - 5

Simulations results

To evaluate the impact of the experimental device characteristics on neural network, two
distinct simulation scenarios were defined and tested on NeuroSim. The first one, denoted
as "high states," used the optimized configuration (25 mV step) which yielded 102 LTP
and 61 LTD states characterized by moderate nonlinearity (a;rp = —1.5) and controlled
variability (opp = 0.325). The second scenario, "low states" represented a coarser
programming regime (50 mV step) resulting in reduced resolution (57 and 33 states for
LTP and LTD respectively), higher nonlinearity (a;rp = —3.36) and higher device-to-

device variability (opip = 0.81).

To streamline the process and ensure reproducibility, the standard NeuroSim workflow,
which typically requires manual editing of C++ source code for parameter definition was
significantly enhanced. A custom Graphical User Interface (GUI) was developed within
the Linux environment to directly interface with the simulator core. These tables allow
for the rapid setting of all critical simulation parameters without navigating the underlying
codebase. Through this tool, physical device metrics like number of conductance states,
ON/OFF conductance values, non-linearity coefficients and cycle-to-cycle variability as
well as algorithmic parameters (for example number of training epochs, array size, and

learning rate) were systematically configured for each scenario.

All simulations were conducted with the cmosAccess parameter set to true, effectively
configuring the synaptic array in a ITIR architecture rather than a passive crossbar 1R.
This architectural choice was critical for accurate performance estimation. While passive

IR arrays offer higher theoretical density, they suffer from severe sneak path currents,
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unintended leakage paths through unselected cells that degrade read margin and increase

power consumption[29].

The images below shows the customized GUI used for the presented simulations.

— 1. Algorithm & Network Configuration (Param.cpp) - — 2. Existing Device Physics (Cell.cpp) —
o Max Conductance (S): |2.98¢-6 7
Optimization Type: SGD - ?
. Min Conductance (5): IE.EEE-? ?
Hidden Neurons (nHide): [100 Read Voltage (V) 025 :
ol taoches I} Write Voltage LTP (V): B2 ?
Technology Node (nm): B2 Write Voktage LTD (V): 28 ?
Read Column Muxing Factor: [16 Pulse Width LTP (s): [10e-3 ?
— New Algorithm Parameters — Pulse Width LTD (s): [10e-3 !
Total Training Images: |soow CMOS Access: true - | ?
Total Test Images: [10000 Access Resistance (Ohm): |‘IS§3 ?
Images Per Epoch: |8000
- New Device Non.ldeality Parameters -
Batch Size: [
Printout Frequency (Epochs): 1 FeFET Structure? false = | ?
Input Neurons (ninput): !400 FeFET Gate Cap (F): |2.1717e-18 7
Output Neurons (nOutput): [10 1V Nenlinearity?: false = | ?
Learning Rate alphal (IH): [o.a
. Write Nonlinearity?: true - | ?
Learning Rate alpha2 (HO): IU.E -
Max Weight F 1-V NL Ratio (NL): [10 ?
Min Weight: |_1 D2D Variation (Sigma): !D T
C2C Variation (Fraction): 0.005 ?
- New Hardware/Precision Parameters --- LTP NL Pararn (NL_LTP): [15 =
S Dt Esuctenes S h LTD NL Peram (NL_LTD): [1.29 ?
ADC/PS Precision (bits): [16 Max LTP Levels: [102 ?
Max PS Hardware Value: 64 Max LTD Levels: 61 ?
Input Data Levels: 2
il | Consider Read Noise?: false — | i
Weight Precision (bits, Algorithm): !4
Read Noise Sigma: [0.0289 ?
B&W Threshold: [os
Hidden Layer Threshold: [os MNon-Identical Pulse?: true — | ?
Write Column Muxing Factor: |16 V_Init LTP (V): !2.5 7
Clock Frequency (Hz): |Ze9 V_Step LTP (V): |0.025 i
Array Wire Width (nm): [100 V_Init LTD (V): [-0.25 ?
HW FF in Training?: true — | ¥ Step LTD (V). -0.025 ?
PW_Init LTP (s): [10e-3 ?
HW WU in Training?: true — | PW_Step LTP (s): P 5
HW FF in Testing?: true =1 I PW_Init LTD (s): |.10e—3 ?
PW_Step LTD (s): o ?
Report Write Energy?: true — I
Symmetric LTP/LTD?: false — I ?
Report Dynamic Perf?: true — |
Relax Cell Height?: 0 — | e i = I
Relax Cell Width?: 0 —| Restore Default Settings |

Figure 25 - Tables allowing a fast and error-free parameter setting.
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A comparative analysis of the learning curves reveals a critical difference between the
higher and lower states measurements. The high states configuration demonstrated robust
convergence, with accuracy steadily increasing to a peak of 77.61% at the final epoch.
This result confirms that the device's analog modulation, when optimized for
linearity (a;tp = —1,5) is sufficient to support effective learning. Although a
performance gap remains compared to state-of-the-art LiNbOs benchmarks reaching
~95% of accuracy[26], this may be primarily attributed to the residual nonlinearity rather
than a lack of precision. Conversely, the low states configuration exhibited classic signs
of training instability driven by hardware nonidealities. While the network initially
reached a promising peak accuracy of 67.17% (at epoch 36), the severe non-
linearity (a;tp = —3,36) and high device-to-device variability (op,,p = 0.81) caused
catastrophic forgetting in subsequent epochs, driving the final accuracy down to about
38%. This drastic divergence underscores that minimizing a and ¢ is as critical as
maximizing the number of states to ensure that weight updates remain bounded and

converge towards a global minimum over time.

A key factor enabling the superior performance of the high states scenario is its high
synaptic resolution, which merits a specific comparison with existing literature.
The optimized configuration yielded 102 distinct conductance states for LTP and 61 for
LTD. In terms of digital precision (log , N), this corresponds to approximately 6.7 bits
for potentiation and about 6 bits for depression. The coarser configuration provided 57
states (LTP) and 33 states (LTD), corresponding to approximately 5.8 bits and 5 bits,

respectively.

This level of precision places the 43 nm Y-36 LiNbOs device in a highly competitive
position within the landscape of emerging memories versus standard analog memories:
The achieved 6—7 bit precision in the High States mode significantly outperforms typical
ferroelectric and resistive devices used in neuromorphic benchmarks. For instance,
standard HfO.-based RRAMs and FeFETs are often limited to 40 states (~5.3 bits) and
32 states (5 bits), respectively.

State-of-the-Art: The resolution is comparable to high-performance Ag:a-Si memristors
(97 states) and mature Phase Change Memory (PCM) technology, which typically offers
100-120 states[8].
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Comparing instead with previous LiNbOs Work it can be stated that, most importantly,
this result represents a substantial improvement over previous characterizations of the

same 43 nm Y-36 LiNbOs material, which reported a maximum of 40 states (5 bits).

This analysis leads to a fundamental conclusion for system design: while the device
possesses a capacity of 6-7 bits required for high-accuracy online learning (which
typically demands at least 6 bits), the usability of this precision is strictly gated by the
update linearity[8], [31]. The failure of the low states case—despite having a decent
almost 6-bit resolution, proves that high precision alone cannot compensate for severe
non-linearity and variability. Therefore, the high states configuration is superior not
merely because it has more states, but because it successfully pairs high resolution with

a linearized update rule that allows the neural network to effectively utilize those states.

The total estimated area for the synaptic core, including the 1T1R array and all peripheral
circuitry (e.g., ADCs, Muxes, Shift Adders), is approximately 7.44 X
107% m? (7441 um?) for a 128 x 128 crossbar array. This compact result is a direct
consequence of the high-density integration potential of the 1TIR architecture.
In standard digital neuromorphic architectures, a 6-bit synapse is typically realized using
multiple SRAM cells (e.g., 68 cells per weight), occupying a significantly larger area.
Benchmarks in the literature (e.g., Chen et al., 2018) indicate that SRAM-based synaptic
cores for similar network sizes often consume > 2 X the area of equivalent eNVM-based
cores due to the large cell size (~ 150F?) of 6T-SRAM compared to the dense 1TIR
stack (~ 4-12F?)[29].

Considering digital eNVM: While digital RRAM implementations (using multiple binary
cells per weight) are more compact than SRAM, storing information in the multi-level
conductance of a single device theoretically offers superior density, limited primarily by

the peripheral circuitry required to manage the analog signals.

Concerning write latency and energy constraints, the simulation quantified the high cost
of the conservative experimental parameters used for characterization. The total write
latency for the full training process was substantial (~ 2.7 X 10° s), and the total write
energy was approximately 103 mJ. The root cause can be that these elevated values are
not intrinsic to the material but are a direct deterministic consequence of the long 10ms
pulse width employed to stabilize the ferroelectric switching during DC testing. Since the

total latency is the sum of all write pulses, using a pulse 10° times longer than standard
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(100 ns) linearly inflates the total time and energy. For comparison, in standard
benchmarks (for example Luo et al., 2019), optimized RRAM and PCM architectures
typically report training energies in the range of 1-20 mJ and latencies in the order of
seconds or minutes. The gap between these benchmarks and the results presented here is
partly attributable to the unoptimized pulse width. This suggests that if the device could
be engineered to switch reliably at microsecond or nanosecond speeds, the performance

would align with or exceed state-of-the-art accelerators.

In contrast to the write metrics, the total read energy remained exceptionally low at
approximately 435 pJ for the entire training duration. This metric is critical because read
operations (feed-forward passes) constitute the vast majority of operations in deep
learning inference. This low read energy confirms the advantage of the device's high
resistance and low operating currents (< 3 pA). It is significantly lower than the read
energy of many filamentary RRAMs, which often suffer from high current read-out, and
is competitive with low-power FTJ implementations. This distinct asymmetry between
write and read energy consumption may suggests that while the current iteration of the
device faces challenges for real-time on-chip training it is an immediate and highly
promising candidate for inference-only applications (where weights are programmed
once and read frequently) or for architectures where the pulse width can be successfully
scaled down to the microsecond regime, potentially reducing the energy-delay product by

several orders of magnitude.

i § Analog a0
Analog eNVM synapses FeFET Digital synapse
T B EpiRAM .
- o R TaOx/HfOx . AlOx/HfO GST PCM g HZO 6-hit e
Device type Ag:a-Si [1] 21 PCMO [3] 4] 151 (Agi;i(-e) FeFET 7] T 6-bit STT-MRAM
L GIR T T 97 128 50 40 100-120 64 32
states
Nonlinearity
(weight 2.4/-488 0.04/-0.63 3.68/-6.76 1.94/-0.61 0.105/2.4 0.5/0.5 1.75/1.46
increase/decrease)
Rox 26 MQ 100 KQ 23 MO 16.9 KO 4.71 KQ 81 KQ 559.28 KQ - 35KQ
ON/OFF ratio 205 10 6.84 443 19.8 50.2 45 - 23
Weightimcrease | 5 yui00., | 16V/S0ns || 2W/ims | 02V/00u 0.7V (avg M 5Visps SV = 1V/10ns
pulse ] bus (avg.)/ 75ns
Weight decrease R y v/ 3V (avg. )Y AV e -2.95V _ ;
o 2.8V/300pus 1.6V/50ns 2V/1ms 1V/100us 125ns 3V/5us (av)) 7508 1V/10ns
GEEEEL 3.5% 3.7% <1% 5% 1.5% 2% <0.5%
variation (a)
LT LT ~72% ~80% ~33% ~20% 89% 92% 88% ~94% ~94% ~94%
accuracy
2 3 62924 2 3 2 2 3 5 2
Area 6292.3 pm* 8663.1 pm* o 21760 pm? 46565um” 9144.3um* 7032.6pm* 65728 pm* 70254 pm* 66632 pm*
Latency 31997s 10.15s 12218s 470425 203.0s 229,65 2.73s 5985 695 (paralle)  ~0:18 (row-
(optimized) by row)
El:lﬂlg_\" 13.44m] 4.01ml 2.53ml 15.26mJ 35.0mJ 31.01mJ 1.9m] 15.56 mJ 0.14671 0.14621
(optimized)
Leakage power 105.650W 105.650W  105.650W  105.65uW  105.65uW 105.650W 105.650W  2.80 mW 1248 yW 84.0 yW

Table 3—-Benchmark table comparing different technologies[8]
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Total SubArray (synaptic core) area=5.6126e-09 m~2
Total Neuron (neuron peripheries) area=1.8285e-09 m~2
Total area=7.4410e-89 m"2
Leakage power of subArrayIH is : 7.8864e-85 W
Leakage power of subArrayHO is : 1.7306e-85 W
Leakage power of NeuronIH is : 2.3451e-85 W
Leakage power of NeuronHO is : 3.6160e-86 W
Total leakage power of subArray is : 9.6170e-05 W
Total leakage power of Neuron is : 2.7067e-05 W
Accuracy at 1 epochs is : 67.25%

Read latency=3.2676e-02 s

Write latency=1.8345e+03 s

Read energy=3.4785e-06 ]

Write energy=7.8567e¢-04 ]
Accuracy at 2 epochs is : 63.80%

Read latency=6.5351e-02 s

Write latency=3.8847e+403 s

Read energy=6.9575e-06 J

Write energy=1.4908e-03 J

Accuracy at 125 epochs is : 77.61%
Read latency=4.0844e+00 s
Write latency=2.7295e+@5 s
Read energy=4.3491e-04 J
Write energy=1.0309e-01 J

Total SubArray (synbptic core) area=5.6126e-09 m*2
Total Neuron (neuron peripheries) area=1.8285e-09 m"2
Total area=7.4410e-09 m"2
Leakage power of subArrayIH is : 7.8864e-85 W
Leakage power of subArrayHO is : 1.7306e-05 W
Leakage power of NeuronIH is : 2.3451e-05 W
Leakage power of NeuronHO is : 3.6160e-06 W
Total leakage power of subArray is : 9.6170e-05 W
Total leakage power of Neuron is : 2.7067e-05 W
Accuracy at 1 epochs is : 60.34%

Read latency=3.2676e-02 s

Write latency=2.1873e+83 s

Read energy=3.4793e-066 J

Write energy=7.6479e-04 ]
Accuracy at 2 epochs is : 50.47%

Read latency=6.5351e-02 s

Write latency=4.3056e+03 s

Read energy=6.9593e-06 J

Write energy=1.4680e-03 J

Accuracy at 125 epochs is : 38.94%
Read latency=4.0844e+00 s
Write latency=2.2388e+05 s
Read energy=4.3505e-04 ]
Write energy=6.5206e-02 ]

Figure 26 - Snapshots showing neurosim logs after simulating both the high states (top) and low states case
(bottom)
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Comparing the hardware metrics of the two simulation scenarios reveals a direct trade-
off between synaptic resolution and computational efficiency. The low states
configuration, characterized by coarser voltage steps (50 mV) and fewer conductance
states (57 LTP / 33 LTD), resulted in a lower total write energy (~65.2 mJ) and shorter
write latency (~2.24e5 s) compared to the optimized scenario. Specifically, the high states
configuration (102 LTP/ 61 LTD) required approximately 58% more energy (about 103.1
mJ) and 22% more time to complete the training workload. This increase is intrinsic to
the higher resolution: finer voltage steps (25 mV) imply that a larger number of discrete
pulses is required to drive the synaptic weight across its full dynamic range.
Consequently, while the high states device presents a higher cost in terms of latency and
energy, this is strictly necessary to provide the finer weight updates required for the
network to converge stably (77.61% accuracy). In contrast, the energy savings of the low
states case are effectively invalidated by its failure to maintain learning stability.
Conversely, the read energy and leakage power remained identical across both scenarios
(~435 uJ and 123 uW, respectively), as these metrics are determined by the array

architecture and read voltage, which were kept constant during simulation.

Simulations conclusions

The simulations conducted via NeuroSim provide a comprehensive validation of the 43
nm Y-36 LiNbOs device as a competitive synaptic element for neuromorphic computing.
The benchmarking results highlight the success of the optimized high states
configuration, which demonstrated decent on-chip learning capabilities by achieving a
stable final accuracy of 77.61%. This performance confirms that the experimentally
optimized pulse protocol successfully accesses a synaptic window capable of supporting
effective weight convergence preventing the training divergence observed in the coarser
low states case. Crucially, the achievement of 102 distinct LTP states represents a
significant advancement in synaptic resolution, comparing favorably with state-of-the-art
analog memories such as Ag:a-Si (about 97 states) and Phase Change Memory (about 100
states)[8], and substantially outperforming previous reports on identical LiNbOs3
capacitors which were limited to 5 bit precision[6]. From a hardware perspective, the

study establishes a distinct difference between the device’s write and read performance
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that underscores its potential for specific applications. A standout feature is the ultra-low
read energy consumption (about 435 ulJ total) driven by operating currents in the low
microampere range (<3 uA). This efficiency significantly outperforms standard
filamentary RRAMSs, which typically require higher currents for stable operation, and
positions the LiNbO3 synapse as an ideal candidate for inference-heavy workloads where
read operations dominate the power budget[5]. While the current write energy (about 103
mlJ) is high this is strictly a consequence of the conservative 10ms pulse width used for
characterization rather than a fundamental material limit. Theoretical scaling projections
indicate that by scaling the device dimensions to the nanometer regime and optimizing
the switching speed to nanosecond regimes, the write energy can be reduced by orders of
magnitude potentially reaching the femtojoule regime. Overall, this work confirms that
the 43 nm Y-36 LiNbO3 successfully combines the high endurance of ferroelectrics with
the multi-level tunability required for neuromorphic computing, holding the potential to
evolve into a high-density, ultra-low-power solution that rivals current state-of-the-art in-

memory computing technologies.

During the preparation of this work, the author used generative Al tools for grammar

refinement|32]
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Conclusions

The exponential growth of data-centric workloads, driven primarily by Artificial
Intelligence (AI) and Machine Learning (ML), has exposed the fundamental
inefficiencies of the traditional von Neumann architecture. The physical separation
between processing units and memory results in a data movement bottleneck that severely
constrains both latency and energy efficiency. In this context, Compute-in-Memory
(CIM) has emerged not merely as an optimization, but as a necessary change in basic
assumptions, requiring novel hardware substrates capable of merging storage and
computation. This thesis has explored the potential of ferroelectric materials to address
this challenge, specifically validating ultra-thin (43 nm) Y-36 Lithium Niobate LiNbO; as

a high-performance analog synaptic element.

Summary of Contributions and Findings

The primary objective of this work was to experimentally validate the memristive
behavior of Y-36 LINbO; in the DC regime and to benchmark its system-level potential.
Through a rigorous experimental characterization using a Metal-Ferroelectric-Metal
(MFM) architecture, this study demonstrated that polarization of 43 nm LiNbO; films
can be modulated to achieve a significant amount of multi-level conductance states
suitable for analog computing. The experimental results highlighted several key
achievements. By optimizing the pulse programming protocol specifically through the
use of incremental amplitude modulation with fine voltage steps (25 mV), it was possible
to stabilize 102 distinct conductance states during potentiation (equivalent to >6-bit
precision). This resolution represents a significant advancement over previous reports on
similar materials, which were typically limited to approximately 40 states (5-bit).
Furthermore, the device exhibited exceptionally low operating currents < 3 puA and a
robust physical ON/OFF ratio exceeding 103. While the effective dynamic range for
analog operation was restricted to a ratio of about 15 to ensure linearity, this value proved
sufficient for neural network inference tasks, comparing favorably with standard oxide-
based analog memristors. To bridge the gap between device physics and system-level
application, these experimental parameters were integrated into NeuroSim benchmarking

framework. The simulations offered critical insights into the requirements for on-chip

55



Conclusions

learning and the comparative analysis revealed that synaptic resolution alone is
insufficient; the linearity of the weight update trajectory is the decisive factor for training
stability. The optimized high states configuration (102 states) achieved a stable learning
accuracy of 77.61% on the MNIST dataset, whereas the coarser low states configuration
suffered from catastrophic forgetting despite initial convergence. This underscores that
future device engineering must prioritize the linearization of the potentiation and
depression. From an energy perspective, the study identified a distinct division. The
device demonstrated ultra-low read energy consumption, benefiting from the material's
high intrinsic resistance. This makes the platform immediately competitive for inference-
heavy edge applications. Conversely, the write energy and latency were found to be
elevated, a result strictly attributable to the conservative 10ms pulse width used to ensure
experimental stability. However, theoretical scaling projections indicate that this is not an
intrinsic material limitation. By scaling the device area to the nanometer regime and
optimizing interface dynamics to support nanosecond pulses, the write energy has the

potential to decrease by orders of magnitude, reaching the femtojoule regime.

Future Work

The validation of the DC memristive properties of Y-36 LiNbO; presented in this thesis
constitutes the foundational step for the broader FEMA (FErroelectric Memory embedded
in Acoustic resonators) project. Future research efforts should focus on some specific
directions: a priority for immediate follow-up work is the reduction of the programming
pulse width. Investigating the transient switching dynamics at the microsecond and
nanosecond scales is essential to validate the theoretical projections of low-energy writing
and to enable real-time on-chip training. At the same time, scaling of the device active
area via advanced lithography will be crucial to verify that the current density remains
stable at deep sub-micron dimensions. Linearity Engineering: To bridge the gap between
the achieved accuracy (77%) and the ideal software baseline (>96%), the non-linearity of
the weight update must be improved. This could be addressed through interface
engineering to homogenize the field distribution or by implementing advanced write

verification schemes in the peripheral circuitry.
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