
POLITECNICO DI TORINO

Master Degree
in Mechatronic Engineering

Master Thesis

asn2c: Modern ASN.1 Compiler for
Advanced Network Messages and Data Structures

Relatori Candidato
prof. Marco Rapelli Francesco Di Gregorio
prof. Francesco Raviglione
prof. Claudio Ettore Casetti

Anno Accademico 2024-2025

Acknowledgements

Prima di iniziare mi sembra giusto dedicare qualche frase a chi durante questo percorso
mi è stato vicino e mi ha supportato.
Il primo ringraziamento va sicuramente ai professori Marco Rapelli, Francesco Raviglione
e Claudio Casetti per avermi sempre dimostrato fiducia nel corso di questo progetto
lasciandomi piena libertà su come portare avanti il lavoro ma dandomi consigli essenziali
su come portarlo a compimento.
Un ringraziamento va a tutto il team Reply che mi ha sostenuto e aiutato durante i miei
anni di studi qua a Torino, è anche grazie a voi se ho potuto portare a termine questo
percorso in parallelo al lavoro.
Un ultimo ringraziamento, non per importanza, va a Matteo e Federico, i miei due
coinquilini durante questi anni, siete stati dei perfetti compagni di viaggio. Una menzione
d’onore va però a Matteo, l’idea per il nome del progetto è stata tua e di conseguenza
questo progetto è anche un po’ tuo.

1

Abstract

The automotive field is experiencing a strong technological evolution in recent years. This
evolution is leading to the standardization of novel technologies for connected vehicles
(both cellular and Wi-Fi-based), enabling them to exchange data with other vehicles and
with the infrastructure, to make transportation safer, greener and more autonomous. All
these communication technologies define standardized messages for different purposes,
that include exchanging data between road users, but also transmitting management
information and requesting certificates for secured data transfers. These messages and
their content are usually defined as a set of data structures, in turn defined by the Abstract
Syntax Notation One (ASN.1) description language. Starting from an ASN.1 definition,
several tools enable the automatic generation of code for the encoding and decoding
of the messages. One of the most used open-source tool available is asn1c, maintained
by a vast community behind this project. In 2020 the European Telecommunications
Standards Institute (ETSI) released new ASN.1 files describing the IEEE 1609.2.1. data
structures used for certificate needed in the security application defined by IEEE 1609.2.
At the moment of writing, the only existing software that are able to compile the ASN.1
files are licensed causing an important bottleneck for research. The objective of this
thesis work is to develop an ASN.1 compiler that supports all the ETSI’s specification.
The developing processes started from the source code of asn1c. asn1c does not support
the files related to security and certificate management due to the presence of complex
structures adopted in the new release. This thesis propose a solution to overcome the
described problem, developing a free and open-source tool able to manage all the ETSI’s
files, improving also the existing code generation layer present in asn1c.

Contents

1 Introduction 4
1.1 Research Motivation and Objectives . 5
1.2 Main contributions . 6

1.2.1 ASN.1 Specification and Current asn1c Status 6
1.2.2 asn1c Implementations . 6

1.3 Outline of the Thesis . 7

2 ASN.1 Standard and ASN.1 Compilers 8
2.1 ASN.1 Format . 8

2.1.1 ASN.1 Types . 9
2.1.2 ASN.1 Constraints . 11
2.1.3 ASN.1 Encoding Rules . 11
2.1.4 ASN.1 Application Fields . 12

2.2 ASN.1 Compiler . 12
2.2.1 asn1c Working Principle . 13

3 asn1c Problem Analysis 16
3.1 Constraint limitations . 16

3.1.1 Subtype Element . 17
3.1.2 WITH COMPONENTS Constraint 23

3.2 Compilation Errors . 24
3.2.1 AVM TS 103 882 Error . 25
3.2.2 IEEE 1609.2.1 Error . 26

3.3 Error Causes . 27
3.3.1 Constraint Limitations . 27
3.3.2 AVM TS 103 882 . 28
3.3.3 IEEE 1609.2.1 . 28

4 Code Implementation 29
4.1 Constraint Validation . 29

4.1.1 asn1c Tools . 29
4.1.2 Code Generation . 32

4.2 Files Preprocessing . 39

2

4.2.1 Version Control Preprocessing . 39
4.2.2 WITH COMPONENTS Preprocessing 40

4.3 Final Code Implementation . 42
4.4 Final Test and Code Generation . 43

5 Conclusion 47

Bibliography 49

3

Chapter 1

Introduction

In recent decades, the constant growth of vehicle ownership [1], has placed an increasing
stress on road infrastructure and more complex challenges arise. [2]. To respond to
such challenges, conventional methods cannot be taken into account, and more recent
and advanced applications need to be implemented. In 2010, the European parliament
adopted the directive 2010/40/EU, which "establishes a framework in support of the
coordinated and coherent deployment and use of Intelligent Transport Systems within
the Union" [2].
Directly from the EU directive, "Intelligent Transport System (ITS) means systems in
which information and communication technologies are applied in the field of road trans-
port, including infrastructure, vehicles and users, and in traffic management and mobility
management, as well as for interfaces with other modes of transport" [2]. The European
Commission with this document recognized that to solve the increasing traffic volumes
and the correlated problems, such as a greater road congestion, energy consumption and
environmental and social problems, innovations like ITS are needed. For instance, the
road congestion economical impact to EU is estimated at €110 billion [3], and tragically
every year more than 20000 lives are taken in road accident [4].
One of the foundation on which ITS is based is the concept of Vehicular-to-Everything
(V2X) communications. V2X refers to wireless data exchange between a vehicle and
everything in its environment that may influence, or be influenced, the vehicle’s behavior.
This includes Vehicle-to-Vehicle (V2V) communication, in which autonomously two or
more vehicles exchange data between each other, Vehicle-to-Infrastructure (V2I) commu-
nication, in which the vehicle communicates with the road infrastructures (traffic lights,
road signals) to gather data about road state, Vehicle-to-Person (V2P) communication,
in which the data are exchanged between vehicles and the so called, vulnerable road user,
like pedestrian and cyclist.
V2X communications can improve situational awareness and can help reach a higher
level of autonomous driving by improving coordination between vehicles and allowing
better exchange of critical information between all the involved agents.
In Europe, the European Telecommunications Standard Institute (ETSI) is leading the
development and standardization procedure of V2X communication through its Technical

4

Introduction

Committee on ITS (ETSI TC ITS) [5]. One of the principal projects in which ETSI
is involved is the definition and of ETSI ITS-G5 standard. This new standard is the
European profile for short-range vehicular communications based on IEEE 802.11p and
adapted for ITS [6]. It operates in the 5.9 GHz frequency band specifically allocated in
Europe for road safety and traffic applications. This technology is designed to support
the exchange of standardized messages described by ETSI such as Cooperative Awareness
Message (CAM) and Decentralized Environmental Notification Message (DENM) [7], [8].
Many additional messages have been standardized by ETSI, defying information ex-
changes among different road users and providing the foundation for security protocols
that ensure safe vehicular communications.
ETSI employs Abstract Syntax Notation One (ASN.1) as the formal language to specify
the structure and content of its messages. The use of this approach, allow to describe
complex data structures, such as nested declaration, with precision. Moreover, the ASN.1
definitions are independent from both hardware and programming language, granting
developers full freedom in selecting the technologies most suited to their needs while
ensuring compliance with ETSI standard.

1.1 Research Motivation and Objectives

While ETSI’s choice of using ASN.1 files to describe their messages format allow the
developers to freely choose the platform on which build their ITS-G5 compliant appli-
cations, it also requires the use of an additional software responsible of the translation
from ASN.1 into the target programming language. These software tools are commonly
called ASN.1 compiler and they are in charge of the generation of the source code.
Given the rapid pace at which technologies evolve ,ETSI must continuously update its
specifications. As result, every few years entirely new standard or revised version of
existing ones are released, accompanied by ASN.1 files that need to follow the increasing
complexity of each new release. In addition to this factor, every few years the Interna-
tional Telecommunication Union (ITU), who standardized ASN.1 format and it is in
charge of its maintenance, release a new version of ASN.1, with the latest being described
by ITU-T X.680 released in 2021 [9]. In order to handle ASN.1 files whose complexity
increase over the years, the ASN.1 compilers need to updated so that they are able to
understand the new structures and consequentially generate the source code able to fully
represent the new requirements.
For commercial ASN.1 compilers this task is relatively straightforward, as they are
maintained by a dedicated team that ensure compliance with the latest standard, the
open-source compilers often rely on community contributions to remain up to date, which
may results in features being not partially implemented or not implemented at all. This
limitation constitutes the main motivation of the present thesis. The open source software
asn1c compiler, available on GitHub, is largely used to generate C code from ASN.1 files.
However, it still lack full support for several newly released files published by ETSI.
The object of this thesis is to analyze the current limitations of asn1c and develop a new
ASN.1 compiler that will correctly handle all the ASN.1 files included in the official ETSI

5

Introduction

repository.

1.2 Main contributions

The main object of this thesis is to analyze the asn1c compiler and its working principle
to have a better understanding on how the code generation process is implemented and
its limitations and, in the end, developing our own ASN.1 compiler. This first step is
essential to reach the core of this thesis, understanding the limitation of the asn1c project
is the foundation for identifying where the problems arises when compiling the ETSI
ASN.1 files and for determining what is required to successfully generate correct C code.
Furthermore, at the end of the thesis work various test are going to be performed to
check the performance of the modified asn1c software.
More details about the topics covered in this thesis are listed below.

1.2.1 ASN.1 Specification and Current asn1c Status

As stated above the first step of this work consist in the study of the ASN.1 specification
and how asn1c works. The main source of information on ASN.1 specification comes
directly from the latest ITU recommendation ITU-T X.680 [9]. For all the information
about asn1c, an official documentation is available on the project’s GitHub page but
only describe how to use the tool not how the main functions are implemented. For
such reason the first contribute of this thesis is to analyze the source code of the ASN.1
compiler tool to have a better knowledge of it. The second part of the study on asn1c
consist of hands on testing of the tool by generating code from both toy example and
official ASN.1 files. This procedure aims to better understand its limitations and to
identify which component of the code requires modification. Some of the issue analyzed in
this thesis are already documented in the Issue section of the project’s GitHub repository.

1.2.2 asn1c Implementations

Once the limitations of the asn1c software are documented, the main objective of this
thesis is to implement the right modifications to fix these problems allowing the tool
to work correctly despite the ASN.1 file given as input. Moreover, this section can be
divided in two part separated by the logic applied to the corrections.
The first group consists of fixes applied directly to the source code. All the implementa-
tions included in this category are direct modification of the existing code. The majority
of these changes consist of completing functions that are already partially implemented.
The other modifications to the asn1c project consist of adding new scripts designed to
run before the compiler. This approach was selected to face certain issue in a simple
manner, as the components involved represents core elements of the asn1c tool. To avoid
introducing changes in such delicate parts, an higher level solution has been chosen.

6

Introduction

1.3 Outline of the Thesis
The present thesis is divided into sections that describe, in chronological order, the entire
course of the project. In particular:

• Chapter 2 introduces the ASN.1 standard and describe how a ASN.1 files it is
built. In this chapter are also presented the main tool used to generate C code
starting from ASN.1 files.

• Chapter 3 presents the main problems related to the project taken in analysis and
which are the causes related to them.

• Chapter 4 describes the solution implemented to solve the issue that are presented
in the previous chapter.

• Chapter 5 summarizes the activity done in this project, including the feature
implemented and what can be implemented to further improve. In this chapter are
also presented some suggestions for future works.

7

Chapter 2

ASN.1 Standard and ASN.1
Compilers

The starting project examined is the ASN.1 compiler "asn1c" from the github of
mouse07410 [10]. The main purpose of this software is to parse files provided by ETSI,
written using the Abstract Syntax Notation One (ASN.1) format, and to generate the
corresponding .c and .h source files representing the defined data structures.

2.1 ASN.1 Format

The ASN.1 format was first standardized in ITU X.208 on 1988 [11],that recommendation
is now deprecated and the official documents from International Telecommunication
Union (ITU) that describe the ASN.1 standard are X.680-683, first published on 1995
and updated to version 6.0 in 2021 [9]. "ASN.1 is a formal notation used for describing
data transmitted by telecommunications protocols" [12]. An ASN.1 file is organized in
one or more data structures called module, each module contains one or more items.
Such items are defined by standard that is composed of three main parts:

• The item name

• The characters "::="

• The type of the item.

Each module starts with its own name, followed by the header DEFINITIONS AUTOMATIC
TAGS ::=. The beginning and the end of the module are marked by the keywords BEGIN
and END, respectively. An example of module definition is shown below:

ModuleName DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

ItemName1 ::= ItemType1

8

ASN.1 Standard and ASN.1 Compilers

ItemName2 ::= ItemType2

END

This is the easiest way to declare a module. ASN.1 offers the opportunity to add more
information adding an Object identifier (OID), this OID can store different information,
in the context of the ETSI ASN.1 files, this OIDs are used, to make an example, to
specify the version of their respective modules. Below is listed an example from the
official ETSI repository:

AVM-Commons {
itu-t (0) identified-organization (4) etsi (0) itsDomain (5) wg1 (1)
ts (103882) avmCommons (5) major-version-1 (1) minor-version-1(1)

}
DEFINITIONS AUTOMATIC TAGS ::= BEGIN -- AVM-specific common data elements

2.1.1 ASN.1 Types

ASN.1 types can be divided into three main categories:

Basic Types These are the predefined basic types provided by ASN.1, used as building
blocks for defining more complex structures. They include:

• INTEGER – Represents signed integer values.

Number ::= INTEGER

• BOOLEAN – Represents a logical value, either TRUE or FALSE.

Bool ::= BOOLEAN

• IA5String – Represents a string using the ASCII character set.

ASCIIString ::= IA5String

• UniversalString – Represents a string using a 32-bit character representation for
international character sets.

UniString ::= UniversalString

9

ASN.1 Standard and ASN.1 Compilers

• BIT STRING – Represents a sequence of individual bits, often used as bitmaps
or flags.

Bit ::= BIT STRING

Constructed Types Using the basic types described above, it is possible to create
more complex structures comprising more than one object.

• SEQUENCE – Represents a list of different item types. It has a fixed length and
a predefined order.

Person ::= SEQUENCE {
name IA5String,
age INTEGER

}

• SEQUENCE OF – Represents a list of items of the same type. It does not have
a fixed length.

NameList ::= SEQUENCE OF IA5String

• SET – Represents a list of different item types. It has a fixed length, but the order
is not relevant.

PersonSet ::= SET {
name IA5String,
age INTEGER

}

• CHOICE – Represents a value that can be one of several alternative types. Only
one alternative can be chosen when instancing the object.

Vehicle ::= CHOICE {
car IA5String,
truck IA5String,
bike IA5String

}

Personalized Types ASN.1 allows the user to define new types based on the types
defined above. These newly defined types can be used directly or as a component in the
definition of more complex types.

Age ::= INTEGER (0..150)

10

ASN.1 Standard and ASN.1 Compilers

Name ::= IA5String

Person ::= SEQUENCE {
name Name,
age Age

}

2.1.2 ASN.1 Constraints

ASN.1 also allows the possibility to constraint the values that it’s possible to assign to
the object created using a specific type. The different type of constraint and how they
work will be analyzed further in this project, at this point it is important to introduce
what they are and how they work in principle. Taking as example the INTERGER type, in
the ASN.1 standard is it possible to constrain its value to a single value, or to a range of
values.

-- Range Constrain
AgeRange ::= INTEGER (0..150)
-- Single Value Constraint
AgeSingle ::= INTEGER (75)

One of the main strengths of how the constraint works in ASN.1 is that when a new type
is defined using a constrained type, it will inherit all the constraints belonging to the
parent type, this opens the path to the declarations of the new types used only declare
the constraint on that single type, allowing the files to be more readable and modular.

2.1.3 ASN.1 Encoding Rules

ASN.1 not only specifies how the data structures are defined, but also describes the
different encoding rules that can be used to transmit them. These encoding rules are
described in ITU-T X 690-696 [12] and they are:

• BER (Basic Encoding Rules)

• DER (Distinguished Encoding Rules)

• PER (Packed Encoding Rules)

• UPER (Unaligned Packed Encoding Rules)

• XER (XML Encoding Rules)

• OER (Octet Encoding Rules)

11

ASN.1 Standard and ASN.1 Compilers

The choice of which encoding rule to use depends on the context in which the ASN.1
format is used. For instance, the use of XER encoding rule facilitated the inspection
of data during the debugging phase of this project. For the purpose of this work, the
analysis of these rules and their application field is not relevant and will therefore be
omitted.

2.1.4 ASN.1 Application Fields

Due to its versatility and standardizations, ASN.1 has been used in a variety of fields.
Its first intended use was to specify the email protocol within the Open System Inter-
connection (OSI) environment [13]. Nowadays, its applications have expanded to a wide
range of domains. It is employed for transmitting different types of messages over the
internet, including audio and video, digital certificates and financial services. Both 3G
and 4G technologies rely on ASN.1 for all the interactions between mobile devices and
the carrier’s network [13].
In the context of this thesis, ASN.1 is used in vehicular application to transmit mes-
sages described by ETSI C-ITS. However, the ASN.1 format has also been adopted
in many others fields, from aviation or energy systems to security authentication and
cryptography [13].

2.2 ASN.1 Compiler
The ASN.1 files discussed above only specifies the logical structure that the items described
have and they are not ready for the use. These files need to be processed by dedicated
software that parses the ASN.1 files and produces the corresponding implementation
code for the chosen programming language. At the moment, there are commercial and
open-source alternatives for such software. In this thesis, the focus is on the open source
project asn1c which will serve as the basis for the new tool that will be developed; the
other available solutions are listed below.

• Commercial solutions

– OSS ASN.1 Tools, developed by OSS Nokalva [14]
– ASN1C Compiler , developed by Objective Systems [15]

• Open-source projects

– asn1c, the compiler used in this thesis, available on its GitHub page: https:
//github.com/mouse07410/asn1c

– ASN1SCC , developed by the European Space Agency [16]
– asn1tools, developed by Erik Moqvist and available on GitHub [17]
– Pycrate, available on its GitHub page [18]

Other projects can be found on the dedicated page of ITU https://www.itu.int/
en/ITU-T/asn1/pages/tools.aspx

12

https://github.com/mouse07410/asn1c
https://github.com/mouse07410/asn1c
https://www.itu.int/en/ITU-T/asn1/pages/tools.aspx
https://www.itu.int/en/ITU-T/asn1/pages/tools.aspx

ASN.1 Standard and ASN.1 Compilers

2.2.1 asn1c Working Principle

To fully understand the themes of this work is essential to highlight how the asn1c
software manages the .asn files. Its working flow can be divided into three main parts:
Parsing stage, Semantic Fixing and Code Generation. Fig.2.1 The backbone of

ASN.1 Files (.asn)

Parsing

Abstract Syntax Tree (AST)

Semantic Fixing

Resolved & Canonical AST

Code Generation

.h / .c files

Figure 2.1. asn1c internal workflow: processes (violet) and isolated outputs (green).

the parsing stage is made using the open-source tool "GNU Bison". During this stage,
the compiler reads the input ASN.1 files and produces an internal structure, called ASN.1
syntax tree (AST), which represents how they are understood by the compiler [19]. For
debugging purposes, it is possible to print this intermediate representation using the
command line option -E. An example is reported in the following. Given the ASN.1 file:

Shapes DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

Size ::= INTEGER (0..1000)

13

ASN.1 Standard and ASN.1 Compilers

Rectangle ::= SEQUENCE {
width Size,
height Size OPTIONAL

}

END

The output using the command asn1c -E is:

Shapes DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

Size ::= INTEGER (0..1000)

Rectangle ::= SEQUENCE {
width Size,
height Size OPTIONAL

}

END

In this phase, the created AST is equal to the input file, since the purpose of the
parser is only to read the files and to check if a particular construct is supported by
the compiler [19]. After the parsing stage the AST is passed to the Semantic Fixing
stage. During this stage the compiler performs a semantic normalization of the parsed
structures, the tagging rules are applied, the constraints are recorded and saved in a
dedicated structure that will later be used. The main purpose of this stage is to eliminate
any kind of ambiguities and transform the parsed AST into a canonical representation
which can be safely be used as the input for the code generation stage. As per the parsing
stage it is possible to see part of the generated internal structures using the command
line option -EF. An example is listed below.

The output using the command asn1c -EF is:

Shapes DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

Size ::= INTEGER (0..1000)

Rectangle ::= SEQUENCE {
width [0] IMPLICIT Size,
height [1] IMPLICIT Size OPTIONAL

}

END

14

ASN.1 Standard and ASN.1 Compilers

In this example, the tags [0], [1] are generated by the compiler to unequivocally identify
all the items inside the sequence.
The compiler final stage is the code generation stage. In this phase, the canonical AST
is processed and all the necessary source code files are produced. The generated files
includes both the C representations of the declared ASN.1 structures and the supporting
functions that are required to encode and decode them, as well as to validate the data
consistencies and the constraint validations.
This stage will be discussed in the following chapters, as the core of this thesis focuses on
modifying the code generation component in order to implement the required changes.

15

Chapter 3

asn1c Problem Analysis

As mentioned different time in this thesis, the work is centered around the asn1c tool
publicly available on the GitHub repository mouse07410/asn1c. The version employed in
this work corresponds to the master branch, with the latest commit pushed on May 22,
2020 (commit hash 9925dbb).
In this chapter, the analysis is focused on the asn1c compiler with the objective of
identifying its limitations. The adopted approach consist of two steps. Fist, a set of toy
ASN.1 files have been designed and compiled in order to test the main functionalities
of the tool in a controlled environment. This will allow a complete verification of the
features that are correctly supported by the compiler. Second, the compiler is tested on
real ASN.1 files provided by ETSI, which are know to produce compilation errors. The
investigation of these errors makes it possible to understand the root causes of the failure
and to highlight the limitations of the current build of the asn1c tool.

3.1 Constraint limitations

One of the most notable feature of the ASN.1 standard is the possibility to add constraint
to a type. From the ITU X.680 definition, the ConstrainedType is defined as follow :
"The "ConstrainedType" notation allows a constraint to be applied to a (parent) type,
either to restrict its set of values to some subtype of the parent or (within a set or
sequence type) to specify that component relations apply to values of the parent type
and to values of some other component in the same set or sequence value" [9].
The real strength of the constrained type is that once the type is defined, all of its
constrained are linked to it and all the new declared types that have the constrained one
as parent will inherit all the constrains. This allow the ASN.1 files to be cleared and
even more modular. For instance, is very common in ETSI’s file to see at the begging of
a module these declarations:

AVM-Commons {
itu-t (0) identified-organization (4) etsi (0) itsDomain (5) wg1 (1)
ts (103882) avmCommons (5) major-version-1 (1) minor-version-1(1)

16

asn1c Problem Analysis

}
DEFINITIONS AUTOMATIC TAGS ::= BEGIN

/**
* This DE represents with an unsigned interger value.
* Size: 8 bit, 1 Byte
*

*/
UInt8 ::= INTEGER (0..255)

/**
* This DE represents with a signed interger value.
* Size: 16 bit, 2 Bytes
*

*/
Int16 ::= INTEGER (-32768..32767)

[...]

END

These is a portion of the file AVM-Commons.asn, available on the ETSI official repository
inside the folder containing the modules for Automated Vehicle Marshalling (AVM) [20].
In the reported example, the type shown represent an unsigned 8-bit integer and a signed
16-bit integer. Since the ASN.1 specifications do not define these types as native, the
most efficient approach is to constrain the generic INTEGER using the so-called Value
Range constraint, and then use the new defined types.
Given the importance constituted by the constraints, the first tests performed on the
asn1c were about its ability on handle the different constraint types.

3.1.1 Subtype Element

One of the most common constraint types are the Subtype elements. The common feature
of all these constraint is that they define a subset of the native type to which they are
applied. As seen in the instance above, the Value range constraint defines a new subset
of integer values that are contained between the lower and the upper bound.
The existing Subtype elements are described in the chapter 51 of the ITU X.680 and they
are:

17

asn1c Problem Analysis

SubtypeElements ::=
SingleValue

| ContainedSubtype
| ValueRange
| PermittedAlphabet
| SizeConstraint
| TypeConstraint
| InnerTypeConstraints
| PatternConstraint
| PropertySettings
| DurationRange
| TimePointRange
| RecurrenceRange

Not all of them can be applied to every type, and below is provided a table, taken directly
from the X.680 specification, in which are listed the different compatibilities between
types and subtypes constraints [9].

18

asn1c Problem Analysis

Table 3.1. Applicability of “SubtypeElements” to types other than the Time type from [9]

Type (or derived
from such a type by

tagging or subtyping)

Single
value

Contained
subtype

Value
range

Size
constraint

Permitted
alphabet

Type
constraint

Inner
subtyping

Pattern
constraint

Bit string Yes No No Yes No No Yes No
Boolean Yes No No No No No No No
Choice Yes No No No No No Yes No
Embedded-pdv Yes No No No No No Yes No
Enumerated Yes No No No No No No No
External Yes No No No No No Yes No
Instance-of Yes No No No No No No No
Integer Yes No Yes No No No No No
Null Yes No No No No No No No
Object class field type Yes No No No No No No No
Object descriptor Yes No No Yes Yes No No No
Object identifier Yes No No No No No No No
Octet string Yes No No Yes No No Yes No
OID internationalized
resource identifier Yes No No No No No No No

Open type No No No No No Yes No No
Real Yes No Yes No No No Yes No
Relative object identifierb Yes Yes No No No No No No
Relative OID intl. resource
identifierb Yes Yes No No No No No No

Restricted character string
typesa Yes Yes Yesc Yes Yes No No Yes

Sequence Yes No No No No No Yes No
Sequence-of Yes No No Yes No No Yes No
Set Yes No No No No No Yes No
Set-of Yes No No Yes No No Yes No
GeneralizedTime and
UTCTime Yes No No No No No Yes No

Unrestricted character string
types Yes No No Yes No No Yes No

a Restricted character string types include NumericString, PrintableString, IA5String, UTF8String, etc.
b Relative object identifier and relative OID internationalized resource identifier accept both Single value and

Contained subtype.
c Value range is applicable only to certain restricted character string types (e.g., NumericString).

Table 3.2. Applicability of “SubtypeElements” to the Time type from [9]

Type (or derived
from such a type by

tagging or subtyping)

Single
value

Contained
subtype

Property
settings

Duration
range

Time point
range

Recurrence
range

Inner
subtyping

Time type Yes Yes Yes Yes Yes Yes (Note)
NOTE – Only allowed if all the abstract values of the parent type have the property settings
"Basic-Interval Interval-type=D" (see 38.4.4).

19

asn1c Problem Analysis

Before talking about the constraint that have been found without a counterparts in
the code generation, it could helpful to better understand this work to have a look at
what are we expecting too see as output.
Each module in the ASN.1 specification generates its own .c file, which contains all the
functions and data structures required to represent and manage it. Below it is reported
the function in charge of validating the constraint generated from the declaration of Int16
shown above.

1 int
2 Int16_constraint (const asn_TYPE_descriptor_t *td , const void *sptr ,
3 asn_app_constraint_failed_f *ctfailcb , void * app_key) {
4 long value;
5

6 if (! sptr) {
7 ASN__CTFAIL (app_key , td , sptr ,
8 "%s: value not given (%s:%d)",
9 td ->name , __FILE__ , __LINE__);

10 return -1;
11 }
12

13 value = *(const long *) sptr;
14

15 if ((value >= -32768L && value <= 32767L)) {
16 /* Constraint check succeeded */
17 return 0;
18 } else {
19 ASN__CTFAIL (app_key , td , sptr ,
20 "%s: constraint failed (%s:%d)",
21 td ->name , __FILE__ , __LINE__);
22 return -1;
23 }
24 }

Listing 3.1. Constraint code validation for Int16 module

The created function in figure 3.1 has 4 arguments:

• const asn_TYPE_descriptor_t *td: Structure created by asn1c to represent the
type and all its characteristics, in this example it is used to get the name of type
(td->name)

• const void *sptr: Pointer to the value instance associated with the type. It is
declared as void pointer to be more generic as possible and provide a valid interface
for all the constraint functions. Within this function (line 13), it is cast to a pointer
to long to access the actual integer value.

• asn_app_constraint_failed_f *ctfailcb: Application callback that is invoked
whenever the constraint is violated or an error occurs. Its invocation is wrapped
the ASN__CTFAIL macro, that standardized the call and manage the formatting
and display of the error message.

20

asn1c Problem Analysis

• void *app_key: Pointer defined by the application. It is not interpreted by the
constraint function, but it is used inside the ASN__CTFAIL macro.

The validation function for the Value Range constraint is simple but effective. It checks if
the instanced value is contained in the range specified in the ASN.1 file, if the validation
is successful the function return a positive feedback, otherwise if the constraint is not
respected or the instanced value is void the function returns an error using the dedicated
ASN__CTFAIL macro.
For brevity, in this thesis, only the constraint found to be lack of code implementation
will be examined.

Single Value Constraint

The first constraint taken in exam is the single value constraint. This constraint restricts
the possible values that a type can take to one or more values. One example of this
constraint can be found inside the file "MSDASN1Module.asn" available in the ETSI
repository: [21]

MSDASN1Module DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

CurrentVersion ::= INTEGER (2)

[...]
END

This is an example of single value constraint applied to an integer type, in such example
the new declared type "CurrentVersion" is limited to the value 2.
As it is possible to see in the table 3.1, the single value constraint can be applied also
to others types, such as the strings type. The application of this constraint to these
types is unusual e we were not able to find some official documents in which it is applied.
Instead of using a sequence of single value constraint, it is more common to use the
"Enumerated" type and provide a list of the possible value that the new type can take.
Below an example, taken from the file "MSDASN1Module.asn", which shows how it is
implemented.

21

asn1c Problem Analysis

VehicleType ::= ENUMERATED {
passengerVehicleClassM1(1),
busesAndCoachesClassM2(2),
busesAndCoachesClassM3(3),
lightCommercialVehiclesClassN1(4),
heavyDutyVehiclesClassN2(5),
heavyDutyVehiclesClassN3(6),
motorcyclesClassL1e(7),
motorcyclesClassL2e(8),
motorcyclesClassL3e(9),
motorcyclesClassL4e(10),
motorcyclesClassL5e(11),
motorcyclesClassL6e(12),
motorcyclesClassL7e(13)
, ...

}

Despite being poorly used, since the constraint is present for the strings type, the
capability of asn1c in generating the C code was tested. The example used for testing
are taken from the quick start guide page of OSS Nokalva, one of the main supplier of
ASN.1 compiler [22].

TextResponse ::= PrintableString ("Success" | "Failure")
WarningColors ::= IA5String ("Red" | "Yellow")
InfoColors ::= UTF8String ("Blue" | "White")

In the case regarding the INTEGER single value constraint asn1c did generate the
constraint check code, meanwhile for the strings the compiler did not generate any code
functions to check if the restrictions are respected. Although, the use of the single value
constraint is rare its implementation was decided to be carried out in order to improve
the capacities of this new version of asn1c.

Pattern Constraint

Another other important constraint that was found without a C code implementation
was the pattern constraint. The patter constrain it is applicable only to strings type and
it declares a specific format that the string to which it is applied must follow. Below an
example taken from the module Uds2 defined inside the ITU-T F.515 [23]:

NumericString-1 ::= IA5String(FROM ("0".."9"))(PATTERN "[0-9]")

Here the pattern constraint it is used to declare that the string will be only composed
from the digit 0 to 9 and it is accepted only if it matches with the regular expression
"[0-9]".

22

asn1c Problem Analysis

3.1.2 WITH COMPONENTS Constraint

One important constraint, that is widely used in the ETSI’s ASN.1 file is the "WITH
COMPONENTS" constraint. This constraint it is applicable on constructed types to add
a more rigid restriction on the elements that compose the type. Below an example take
from the ETSI’s module "ETSI-ITS-CDD.asn" from CDD TS 102 894-2 [24].

VruClusterInformation ::= SEQUENCE {
clusterId Identifier1B OPTIONAL,
clusterBoundingBoxShape Shape (WITH COMPONENTS{...,

elliptical ABSENT, radial ABSENT, radialShapes ABSENT}) OPTIONAL,
clusterCardinalitySize CardinalNumber1B,
clusterProfiles VruClusterProfiles OPTIONAL,
...

}

Shape::= CHOICE {
rectangular RectangularShape,
circular CircularShape,
polygonal PolygonalShape,
elliptical EllipticalShape,
radial RadialShape,
radialShapes RadialShapes,
...

}

In this example the WITH COMPONENTS it is used to specify that "clusterBound-
ingBoxShape" will inherit the Shape type but without the possibility to take the values
"elliptical", "radial" nor "radialShapes". This gives the opportunity to declare a more
generic type, like Shape, and then use it in different situations modifying which values it
can assume depending from the context in which it is used.
Another use of the "WITH COMPONENTS" constraint is the follow:

23

asn1c Problem Analysis

Schema DEFINITIONS AUTOMATIC TAGS ::= BEGIN

Address ::= SEQUENCE {
street-address UTF8String,
country UTF8String -- see a note below,
postal-code UTF8String

} ((WITH COMPONENTS {
...,
country ("USA"),
postal-code (PATTERN "[0-9]#5(-[0-9]#4)?")

}
| WITH COMPONENTS {

...,
country ("Canada"),
postal-code (PATTERN "[0-9][A-Z][0-9]

[A-Z][0-9][A-Z]")
}

| WITH COMPONENTS {
...,
country ("Netherlands"),
postal-code (PATTERN "[0-9]#4 [A-Z]#2")

}
))

END

This example, also taken from the site of OSS Novalka [22], shows how this constraint
can also be use to apply new sets of constraints. In this specific case it is used to links
the value that the type "country" can take to the relative "postal-code" value. Although
the use of "WITH COMPONENTS", despite being flexible and with a significant space
optimization capabilities, the alternative would have been to declare the three new
different types based on the "Address" type, it is not employed in ETSI’s ASN.1 files.
Still its implementation is not complete and this feature is not present in asn1c.

3.2 Compilation Errors

The previous discussed missing features in asn1c where not blocking problems. The
reason that move this thesis is the presence of some folder, inside the ETSI’s official
repository, that the actual version of the tool is not able to compile correctly. The main
difference between the prior problems and the ones that will be discussed in this section
is that in the first one asn1c does not generate the constraint validation code, but it does
generate the all the core functions needed for the type representations and transmission.
In the upcoming issues, asn1c is not able to generate the code at all for different reasons.

24

asn1c Problem Analysis

3.2.1 AVM TS 103 882 Error

At the execution of the command for generating the code from ETSI’s folder "AVM TS
103 882" [20] a list of errors are shown.

Listing 3.2. Asn1c output when compiling the AVM TS files
...
FATAL: Cannot find external module "ETSI -ITS -CDD" mentioned for

" VehicleMass " at line 263.
Obtain this module and instruct compiler to process it too.
in MVM -PDU - Descriptions .asn
...

The output displayed in 3.2 is only a part of the error logs, but since the error are all
similar only this message is shown.
The error messages are clear, one or more modules are missing and for this reason asn1c
is not able to correctly interpret the definitions. The problem in this case is that the
module searched are effectively present inside the file but they are not recognized due to
a error with the OID.

From MVV-PDU-Description.asn:

IMPORT
...

ItsPduHeader, TimestampIts, VehicleMass, VelocityComponentValue
FROM ETSI-ITS-CDD {

itu-t (0) identified-organization (4) etsi (0) itsDomain (5) wg1 (1)
102894 cdd (2) major-version-4 (4) minor-version-1 (1)

} -- WITH SUCCESSORS
;

From ETSI-ITS-CDD.asn:

ETSI-ITS-CDD {itu-t (0) identified-organization (4) etsi (0)
itsDomain (5) wg1 (1) 102894 cdd (2) major-version-4 (4)
minor-version-2 (2)}

DEFINITIONS AUTOMATIC TAGS ::=

BEGIN
...

VehicleMass ::= INTEGER {
outOfRange (1023),
unavailable(1024)

} (1..1024)
...
END

25

asn1c Problem Analysis

As it shown above, in both the importer and exporter, the type "VehicleMass" is correctly
define. The issue in this case is caused by a missing interpretation of the tag WITH
SUCCESSORS. This tag should give the information to asn1c that the accepted module
are not only the one with the exactly OID, but also the one with a version greater or
equal that the one declared in the import section.

3.2.2 IEEE 1609.2.1 Error

When compiling the IEEE 1609.2.1 folder from the ETSI’s repository another error
occurs, different the one discussed above.

Listing 3.3. Asn1c output when compiling the IEEE 1609.2.1 files
...
FATAL: Type ScmsPdu - Scoped expects specialization from ScmsPdu -

Scoped at line 448 in Ieee1609Dot2Dot1Protocol .asn
FATAL: Cannot find type "<Type >" in constraints at line 452 in

Ieee1609Dot2Dot1Protocol .asn
FATAL: Type ScmsPdu - Scoped expects specialization from ScmsPdu -

Scoped at line 453 in Ieee1609Dot2Dot1Protocol .asn
FATAL: Cannot find type "<Type >" in constraints at line 457 in

Ieee1609Dot2Dot1Protocol .asn
FATAL: Type ScmsPdu - Scoped expects specialization from ScmsPdu -

Scoped at line 458 in Ieee1609Dot2Dot1Protocol .asn
FATAL: Cannot find type "<Type >" in constraints at line 462 in

Ieee1609Dot2Dot1Protocol .asn
FATAL: Type ScmsPdu - Scoped expects specialization from ScmsPdu -

Scoped at line 463 in Ieee1609Dot2Dot1Protocol .asn
FATAL: Cannot find type "<Type >" in constraints at line 468 in

Ieee1609Dot2Dot1Protocol .asn
...

In this case, the error is caused because asn1c is not able to fully understand the structure
present in the file "Ieee1609Dot2Dot1Protocol.asn" and this causes a series of error that
prevent the code from being generated.
The section of the ASN.1 file that causes the problem is the following:

26

asn1c Problem Analysis

ScopedCertificateRequest ::= ScmsPdu (
ScmsPdu-Scoped {

AcaRaInterfacePdu (WITH COMPONENTS {
raAcaCertRequest

})
} |
ScmsPdu-Scoped {

EcaEeInterfacePdu (WITH COMPONENTS {
eeEcaCertRequest

})
} |
ScmsPdu-Scoped {

EeRaInterfacePdu (WITH COMPONENTS {
eeRaCertRequest

})
} |
ScmsPdu-Scoped {

EeRaInterfacePdu (WITH COMPONENTS {
eeRaSuccessorEnrollmentCertRequest

})
}

)

The error caused from this file is a known limit of asn1c and it is reported in the issue
#225 of the official repository of asn1c. For this problem there are solutions around, like
the one proposed by vanetza team in the pull request #223 of their project [25].
This solution, despite it works, it only a workaround that does not fix the problem.
Instead of working directly on asn1c, they modified the ASN.1 files that causes the issue
not changing its meaning. This solution was initially considered but in the end it was
discarded because, in case of new ASN.1 files with a similar structure, the compiler would
fail again.

3.3 Error Causes
Once that all the problems are listed, the next step is to investigate the causes behind
such problems.

3.3.1 Constraint Limitations

As mentioned before, all the issue related to the constraint problem are not blocking
problem since the asn1c tool is able to generate all the essential functions. The success
of the compiling procedure can give as an hint on where the problem is situated. As
described in figure 2.1, the compiling process can be divided in three steps, if one between

27

asn1c Problem Analysis

the parsing or the fixing stage fails, the entire process fail, so it is reasonable to search
the problems’ root inside the part that is in charge of the code generation. Luckily the
asn1c project is well divided and all the functions related to the code generation are
inside its folder "libasn1compiler". Inside this folder there are all the asn1c functions
related to the code generation.
Inside this folder we can find the file "asn1c_constraint.c", given the file name it was the
first file that was inspected to understand where the constraint code generations fails.
Inside this file is present the function "asn1c_emit_constraint_checking_code" that is
the one in charge of generate the C code for the constraint. Inspecting the code it is
clearly visible that there are no functions that handle the constraint discussed above.
A possible solution, that will be discussed in deep in the next chapter, is to write the
constraint generation code following the example of the already existing one to create an
homogeneous final C code.

3.3.2 AVM TS 103 882

After a careful analysis of the error presented in 3.2, the reason of the error can be possible
be found in the "WITH SUCCESSOR" tag. This tag is used in the "IMPORT" section of
the module "MVV-PDU-Description.asn" and its purpose it’s to declare that the module
accepts the required module, in this case "ETSI-ITS-CDD", with the required version or
a more recent one. In this case the request version is the 4.1 [3.2.1] and the reported
version in "ETSI-ITS-CDD.asn" file is 4.2 that should be supported. The solution that is
implemented in this thesis is to delegate the version check to other functions, improving
also the log messages to provide a better user experience.

3.3.3 IEEE 1609.2.1

Since the issue withe the IEEE 1609.2.1 files is known, it is possible to have a more
detailed explanation on its causes. For the code maintainer, the problem is related to
the complexity of the structures cited in 3.2.2. Such complexity generate various error
when the tool tries to include the type header in the right order inside the its own data
structures. The proposed solution in this thesis aims to reduce the complexity of such
structures so that asn1c can properly processes them.

28

Chapter 4

Code Implementation

Given the issues presented in chapter 3, the adopted solutions for such issues will be
discussed in this chapter. The proposed solution will be divided in two parts, one for
each problem type that was previously discussed.

4.1 Constraint Validation
In this section, the code implemented to allow the correct constraint validation will be dis-
cussed. All the solutions here proposed are implemented inside the file "asn1c_constraint.c"
which is the responsible for generate the code related to the constraint validation.//
Before exploring the newly implemented functions, it is crucial to understand how asn1c
handles the code generation and how it represent internally the ASN.1 structures, as this
knowledge constitutes the foundation for the implementation of the proposed code.

4.1.1 asn1c Tools

The most important tools given by asn1c are the macros defined inside the file ans1c_out.h.
These macros are used to help invoke the function asn1c_compiled_output defined in
the file asn1c_out.c. This function takes as input a string and a pointer referencing the
current position in the output stream. All the macros here presented are realized with
the aim to facilitate the use of the above mentioned function, here some of the most used:

• OUT: This is the most used macro in the project, it allows to print in the output
stream easily, it will accept a string as input and it will pass all the needed arguments
to the asn1c_compiled_output.

• INDENT: This macro is mainly used to control the indentation level of the generated
code. It accepts positive integer to increase indentation, negative to decrease it.

• REDIR: This macro is used to redirect the pointer that references to the current
position in the output stream. Several redirection point, that can be called inside
this macro, are defined in the code to easily move the output stream to specific
sections of the.

29

Code Implementation

• GEN_INCLUDE: This macro is used to generate the library include area. It takes as
input the desired library and it will redirect the output stream to the library area,
print the code related to the library, and come back to the original output stream
point.

Another important aspect to present before exploring the proposed solutions is the
internal representation of the constraint. For each type is created a struct called
asn1p_constraint_t which contains the relevant information about the constraint and
its surrounding context. Below it is shown an example of such representation from the
pattern constraint presented in chapter 3.
The constraint structure is defined as a tree structure. For each type when a constraint
is present the root element is created, this root is always defined as a ACT_CA_SET.
The set is always created, even if only a single constraint is present. The information
about the real constraint are stored inside the elements array. This is an array in which
all the constrain applied to the type are listed, in the parent constraint is also listed
the number of elements under the field el_count. Another important filed is the module
field. In this field are stored all the data about the current module in which the type is
defined such as the module name and path, the module which is going to be imported or
exported and other information not relevant for the scope of this thesis.
One notable detail of this structure is the presence of several empty field. Despite this,
the structure operates correctly, allowing a high level of modularity and enabling the
representation of constraint with different characteristic using the same structure. In
box 4.1 it shown the root constraint generated for this example. After presenting the
structure of the root constraint, below it is presented the structure one of the elements
presents in the structure above. Several difference can be spotted, the first one is the
presence of pointer referencing to the parent constraint. The other main difference is
that, in this case, the value field is populated with the string contained in the pattern
defined in the ASN.1 file.
In box 4.2 is shown the structure taken from the pattern constraint discussed above.

30

Code Implementation

Listing 4.1. Constraint root ct

asn1p_constraint_t *ct (0x555555622140)
|-- type = ACT_CA_SET
|-- presence = ACPRES_DEFAULT
|-- parent_ct = NULL
|-- containedSubtype = (asn1p_value_t *) NULL
|-- value = (asn1p_value_t *) NULL
|-- range_start = (asn1p_value_t *) NULL
|-- range_stop = (asn1p_value_t *) NULL
|-- elements = (asn1p_constraint_t **) 0x555555622350
| |-- [0] -> asn1p_constraint_t *result (see below)
| \-- [1] -> asn1p_constraint_t *...
|-- el_count = 2
|-- el_size = 4
|-- module = (asn1p_module_s *) 0x555555620680
| |-- ModuleName = "Uds2"
| |-- source_file_name = "preprocessed_temp/Uds2.asn"
| |-- module_oid = NULL
| |-- module_flags = MSF_AUTOMATIC_TAGS
| |-- exports = {...}
| |-- imports = {...}
| |-- members = {...}
| |-- members_hash = 0x5555556624a0
| |-- mod_next = {...}
| |-- asn1p = 0x555555678090
| |-- _tags = 0
| \-- _lineno = 54
|-- _lineno = 3
\-- pattern_data = (void *) NULL

31

Code Implementation

Listing 4.2. Child constraint result (PATTERN)

asn1p_constraint_t *result (0x555555622380)
|-- type = ACT_CT_PATTERN
|-- presence = ACPRES_DEFAULT
|-- parent_ct = (asn1p_constraint_t *) 0x555555622140 -> ct
|-- containedSubtype = (asn1p_value_t *) NULL
|-- value = (asn1p_value_t *) 0x5555556223e0
| |-- type = ATV_STRING
| \-- value (union)
| |-- constraint = (asn1p_constraint_s *) 0x555555561e820
| |-- v_type = (asn1p_expr_s *) 0x555555561e820
| |-- reference = (asn1p_ref_t *) 0x555555562e0
| |-- v_integer = 9223338411933540818976
| |-- v_double = 4.6355705792682058e-310
| |-- string
| | |-- buf = (uint8_t *) 0x555555561e820 "[0-9]"
| | \-- size = 5
| |-- binary_vector = {...}
| \-- choice_identifier = {...}
|-- range_start = (asn1p_value_t *) NULL
|-- range_stop = (asn1p_value_t *) NULL
|-- elements = (asn1p_constraint_t **) NULL
|-- el_count = 0
|-- el_size = 0
|-- module = (asn1p_module_s *) 0x555555620680
|-- _lineno = 3
\-- pattern_data = (void *) NULL

4.1.2 Code Generation

With all the necessary background introduced, the implementation code is now pre-
sented. The first modification concerns how the constraint are accessed, inside the
asn1c_emit_constraint_checking_code, after the existing code validation part, a simple
but functional code was designed to access all the different constraint.

32

Code Implementation

1 if (ct ->type == ACT_CA_SET && ct -> elements != NULL) {
2 for (unsigned int i = 0; i < ct -> el_count ; i++) {
3 // Pattern constraint implementation
4 if(ct -> elements [i]->type == ACT_CT_PATTERN) {
5 emit_regex_include (arg);
6 emit_pattern_constraint (arg , ct , i);
7 }
8

9 // Single value string constraint implementation
10 if(ct -> elements [i]->type == ACT_EL_VALUE && etype &

ASN_STRING_MASK) {
11 emit_regex_include (arg);
12 emit_single_value_string_constraint (arg , ct ,i);
13 }
14 ...
15 if(ct -> elements [i]->type == ACT_CA_UNI) {
16 // Union constraint handling
17 ...
18 }
19 }
20 }

Listing 4.3. Constraint access code

This code is based on the principle that every constraints representation has a root set
constraint that contains all of them as described above. Exploiting this principle, with a
simple iteration over all the elements of the set, is it possible to access all constraint.//
As shown in Listing 4.3, the proposed implementation concerns the pattern constraint
and the single value constraint for the string types. On notable detail is that, for the
single value constraint, in addition to checking the constraint type, an additional check
is performed on the element type. The variable etype stores the type of the object to
which the constraint is applied, and is it possible to perform a bitwise AND operation
with a mask containing the string type information.
At the end there is also a space for the so called Union constraint, this constraint will be
discussed later.

Single Value Constraint

The first constraint that will be discussed is the Single value constraint. The code
implementation is shown in Listing 4.4. The working principle is simple but functional,
the first step is to obtain the string value contained in the constraint. Before using it,
the obtained string needs to be processed by new function escape_for_c_string. This
function receives a string as input and inserts the appropriate escape sequences, ensuring
that the resulting string can be safely handles by the generated C code.
Once the string is correctly managed the function generated the code that is in charge
for the constraint validation. This operated is managed by using the strcmp function,
comparing the escaped string with the actual value of the string contained in the object.
The structure that manage the error (lines 14-18) is a structure native of asn1c that here

33

Code Implementation

is used only changing the error message that should be displayed in case of error.

1 static void
2 emit_single_value_string_constraint (arg_t *arg , asn1p_constraint_t

*ct , int i) {
3 if(ct -> elements [i]->value ->value. string .buf != NULL) {
4 const char * raw_constraint_value = (const char

*)ct -> elements [i]->value ->value. string .buf;
5 char * escaped_constraint_value =

escape_for_c_string (raw_constraint_value);
6

7 // Field name for error messages (if available)
8 const char * field_name_for_error = (arg ->expr &&

arg ->expr -> Identifier) ? arg ->expr -> Identifier : "field";
9

10 // Generate C code for validation
11 OUT(" char * actual_runtime_value = strndup ((const

char *)st ->buf , st ->size);\n");
12 OUT(" if(! actual_runtime_value) {\n");
13 INDENT (+1);
14 OUT(" ASN__CTFAIL (app_key , td , sptr , \"%%%% s:

strndup failed for component ’%s’ (%%%%s:%%%%d)\", td ->name ,
__FILE__ , __LINE__);\n", field_name_for_error);

15

16 OUT(" return -1;\n");
17 INDENT (-1);
18 OUT(" }\n");
19

20 if (escaped_constraint_value) {
21 OUT(" const char * expected_constraint_literal

= \"%s\";\n", escaped_constraint_value);
22 OUT(" if (strcmp (actual_runtime_value ,

expected_constraint_literal) != 0) {\n");
23 INDENT (+1);
24 OUT(" ASN__CTFAIL (app_key , td , sptr ,

\"%%%% s: component ’%s’ value (’%%s ’) does not match constraint
’%%s’ (%%%%s:%%%%d)\",\n", field_name_for_error);

25 OUT(" td ->name , actual_runtime_value ,
expected_constraint_literal , __FILE__ , __LINE__);\n");

26 OUT(" free(actual_runtime_value);\n");
27 OUT(" return -1;\n");
28 INDENT (-1);
29 OUT(" }\n");
30 OUT(" free(actual_runtime_value);\n");
31 } else {
32 // If there was an error escaping the constraint value ,

this is an asn1c internal issue.
33 // Generate code to free actual_runtime_value and fail.
34 OUT(" ASN__CTFAIL (app_key , td , sptr , \"%%%% s:

internal error escaping constraint value for component ’%s’
(%%%%s:%%%%d)\", td ->name , __FILE__ , __LINE__);\n",
field_name_for_error);

35 OUT(" free(actual_runtime_value);\n");

34

Code Implementation

36 OUT(" return -1;\n");
37 }
38

39 // Free the memory allocated by escape_for_c_string in this
C function (emit_single_value_string_constraint)

40 if(escaped_constraint_value) {
41 free(escaped_constraint_value);
42 }
43 }
44 }

Listing 4.4. Single value constraint generation code

Pattern Constraint

The other constraint whose code generation will be discussed in this thesis work is the
patter constraint. The pattern validation mechanism is based on one the most established
concepts in software engineering, the validation and interpretation of regular expression.
Since this is a well know problem different libraries offers their tools to handle it. During
this work two different libraries were taken under the lens to see which of them could
better fit the needs of this application. The two libraries are the regex.h library and the
pcre2.h library.
Both libraries provide similar functionalities, one of main differences between the two
libraries is the syntax that they could support. The regex.h library is based on the
standard POSIX (Portable Operating System Interface) [26] first defined in the ISO
9945-2:1993 [27], this standard is the foundation of how the regular expression pattern
are written. Meanwhile the pcre2.h library supports the POSIX standard but it also add
some special characters that extend it, such as the "\d, \w" and many other that are also
used by the ASN.1 standard [9]. Despite being able to fully support the special character
described by in the standard ITU X680, and also being notoriously more efficient than is
counterpart, the library pcre2.h has been discard in favor of regex.h for compatibility
reason.
The library regex.h is one of the library available in the C standard library group while
pcre2.h is not. Since asn1c is a code generator tool, it is not known in which ambient
the generated code will be compiled and for such reason it is unknown if is in such
ambient the pcre2.h library is installed. Moreover, since the pattern constraint is not
commonly present in all the ASN.1 files, it would not be considerable practical to impose
the installation of an additional library that they will may not use.
After established which library will be used in this project, the code implementation can
be discussed. The proposed solution listed below in List 4.5, in this solution the regular
expression is evaluated using the regex.h functions. As for the single value constraint, a
function for handling the pattern string is created. To handle the lack of functionalities
presents in the regex.h library the original function escape_for_c_string was modified to
cover some of the most used special characters. The supported charters on this version
of the project are:

35

Code Implementation

• \d: This character will generate the equivalent in POSIX [0-9]

• \w: This character will generate the equivalent in POSIX [a-zA-Z0-9]

• #n: This character will generate the equivalent in POSIX { n } where n is an
integer

1 static void
2 emit_pattern_constraint (arg_t *arg , asn1p_constraint_t *ct , int i) {
3 if(ct -> elements [i]->value ->value. string .buf != NULL) {
4

5 OUT("const char * c_string = strndup ((const char *)st ->buf ,
st ->size);\n");

6 const char * pattern = (const char
*)ct -> elements [i]->value ->value. string .buf;

7 char * escaped_pattern = escape_for_c_string_pattern (pattern);
8

9 if (escaped_pattern) {
10 OUT("const char * string_pattern = \"%s\";\n",

escaped_pattern);
11 free(escaped_pattern); // Free memory after use
12 } else {
13 // If escaping fails , use the original pattern but it

may not work
14 OUT("const char * string_pattern = \"%s\";\n", pattern);
15 }
16

17 OUT(" regex_t regex ;\n");
18 OUT("int ret = regcomp (& regex , string_pattern ,

REG_EXTENDED);\n");
19 OUT("if (ret) {\n");
20 OUT(" ASN__CTFAIL (app_key , td , sptr ,\n");
21 OUT("\t\"%%s: constraint failed (%%s:%%d)\",\n");
22 OUT("\ttd ->name , __FILE__ , __LINE__);\n");
23 OUT(" return -1;\n");
24 OUT(" return -1;\n");
25 OUT("}\n");
26 OUT("\n");
27 OUT("ret = regexec (& regex , c_string , 0, NULL , 0);\n");
28 OUT(" regfree (& regex);\n");
29 OUT("if (ret) return -1;\n");
30 }
31 }

Listing 4.5. Patter constraint generation code

Union Constraint

As stated multiple times during this work, one of the major strength point of ASN.1 it is
its modularity. When applying a constraint to a type, ASN.1 allows applying more than
one constraint to the same type combining their value through a logical union constraint.

36

Code Implementation

Since the constraint created is a different type of constraint, called union constraint, it is
not recognized by the solution proposed above. To overcome this problem a solution,
two new different functions have been designed to implement the missing functionalities.
The proposed implementation is shown in List 4.6. The union constraint stores the
information in the same way the set constrain does and the solution adopts a similar
structure to the one described before, iterating over all the elements of the constraint
and generating the corresponding code.

37

Code Implementation

1 ...
2 if(ct -> elements [i]->type == ACT_CA_UNI) {
3 // Union constraint handling
4

5 if(ct -> elements [i]-> el_count > 0) {
6 OUT("int union_contains = 0;\n");
7 }
8 for (unsigned int j = 0; j <

ct -> elements [i]-> el_count ; j++) {
9

10

11 if(ct -> elements [i]-> elements [j]->type ==
ACT_EL_VALUE && etype & ASN_STRING_MASK) {

12 if (value_found == 0) {
13 value_found = 1;
14 emit_regex_include (arg);
15 }
16

emit_single_value_string_constraint_union (arg , ct ,i,j,
first_string);

17 first_string ++;
18 }
19

20 if(ct -> elements [i]-> elements [j]->type ==
ACT_CT_PATTERN) {

21 // printf (" DEBUG\n");
22 if (value_found == 0) {
23 value_found = 1;
24 emit_regex_include (arg);
25 }
26 emit_pattern_constraint_union (arg , ct ,i,j,

first_pattern);
27 first_pattern ++;
28 }
29 }
30 if (value_found) {
31 OUT("if (union_contains == 0) {\n");
32 INDENT (+1);
33 OUT(" ASN__CTFAIL (app_key , td , sptr ,\n");
34 OUT("\t\"%%s: constraint failed (%%s:%%d)\",\n");
35 OUT("\ttd ->name , __FILE__ , __LINE__);\n");
36 OUT(" return -1;\n");
37 INDENT (-1);
38 OUT("}\n");
39 }
40 }
41 ...

Listing 4.6. Union constraint generation code

38

Code Implementation

4.2 Files Preprocessing

After discussing the implementation of constraint handling, the remaining issues that will
be discussed in this work are related to the structure of the ASN.1 files themselves. One
possible solution to solve the errors presented in section 3.2.1 and 3.2.2 could have been
implemented modifying the core structure of asn1c that manages the creation of AST.
This alternative would have required a deeper analysis of the project and consequently
more time to implement the solution, not to the mention the potential bugs that could
arises when modifying a project of such complexity. To avoid this scenario and to keep
the complexity of this project as low as possible, another solution, openly inspired by
project vanetza, an "open-source implementation of the ETSI C-ITS protocol" [28] stack
freely available on its github repository at https://github.com/riebl/vanetza.
In project vanetza the IEEE 1609.2.1 ASN.1 files are modified before using them. This
solution was not directly taken in consideration because only manages the nominated
files and not solve the cause of the problem that could happens for other ASN.1 files.
From this idea, the proposed solution was created, consisting of adding a preprocessing
layer to asn1c. This newly defined layer will be responsible for both managing the version
control, that cause the problem seen in 3.2.1, and simplifying the complex structures
that cause the errors in 3.2.2.

4.2.1 Version Control Preprocessing

As described in 3.2.1, this specific problem is related to a missing interpretation of the
tag WITH SUCCESSOR. The proposed solution to this problem consists in replacing
the role of asn1c with a dedicated script that will check the compatibility.
This algorithm is implemented in the file import.c. First, the algorithm search and store
inside the memory for each ASN.1 file analyzed the module’s name and its OID and, if
they exist, the requested modules’ name and OIDs. This process is made easier by the
structure of the ASN.1 files themselves. In every ASN.1 file the module name and its
OID are always the first meaningful words in the file. For what regards the modules
that are requested, the rigid structure of ASN.1 files again help to gather this info. Such
modules are always declared in the first part of the file and are declared between the
word IMPORTS and the character ;. In this section are defined the requested types
followed by the word FROM which specifies the module’s name ad OID. Contextually
with the information gathering process, the scripts is also responsible for removing the
OIDs from the ASN.1 files, preventing asn1c from generating errors caused by different
OIDs.
Once all the modules information are available, the program will compare the requested
modules version with the ones available, and if there is a positive match it will pass the
ASN.1 files to the next step of the preprocessing layer that will be discussed in the next
section.
In case of negative results an error message will be shown but the process is not stopped,
the user will be notified with which modules could possibly cause an error but the choice
if continue or not will be taken by him. This choice was made because the declaration of

39

https://github.com/riebl/vanetza

Code Implementation

the OID is not mandatory in ASN.1 standard. In any case, if the user choices to continue
even if the requested modules are not present, asn1c will generate an error similar to the
one presented in 3.2.1, but this time caused by a real case of missing module or type.
To consult the complete code with all the commented functions, refer to the public
repository in which the project is uploaded.

4.2.2 WITH COMPONENTS Preprocessing

Before presenting the implemented solution that allows asn1c to handle the IEEE 1609.2.1
ASN.1 files, the approach adopted by vanetza project will be analyzed, since it represent
the starting point for the proposed implementation.
The team behind vanetza decided to manually modify the ASN.1 files that generate the
error described in 3.2.2. Their patch can be found in their repository under this path
vanetza/asn1/patches/ieee/Ieeedot2dot1Protocol.patch. The patch, available be-
low, takes the complex structure of the type ScopedCertificateRequest, that can assume
four different types each of them constrained by a WITH COMPONENTS constraint,
and split it in two separate part. First, it will declare the four different constrained types
in a separate section. Second, it will replace the existing structure with only the four
previously declared types.
Here it is reported the full patch:

+ScmsPdu-RaAcaCertRequest ::= ScmsPdu-Scoped {
+ AcaRaInterfacePdu (WITH COMPONENTS {
+ raAcaCertRequest
+ })
+}
+ScmsPdu-EeEcaCertRequest ::= ScmsPdu-Scoped {
+ EcaEeInterfacePdu (WITH COMPONENTS {
+ eeEcaCertRequest
+ })
+}
+ScmsPdu-EeRaCertRequest ::= ScmsPdu-Scoped {
+ EeRaInterfacePdu (WITH COMPONENTS {
+ eeRaCertRequest
+ })
+}
+ScmsPdu-EeRaSuccessorEnrollmentCertRequest ::= ScmsPdu-Scoped {
+ EeRaInterfacePdu (WITH COMPONENTS {
+ eeRaSuccessorEnrollmentCertRequest
+ })
+}

40

vanetza/asn1/patches/ieee/Ieeedot2dot1Protocol.patch

Code Implementation

ScopedCertificateRequest ::= ScmsPdu (
- ScmsPdu-Scoped {
- AcaRaInterfacePdu (WITH COMPONENTS {
- raAcaCertRequest
- })
- } |
- ScmsPdu-Scoped {
- EcaEeInterfacePdu (WITH COMPONENTS {
- eeEcaCertRequest
- })
- } |
- ScmsPdu-Scoped {
- EeRaInterfacePdu (WITH COMPONENTS {
- eeRaCertRequest
- })
- } |
- ScmsPdu-Scoped {
- EeRaInterfacePdu (WITH COMPONENTS {
- eeRaSuccessorEnrollmentCertRequest
- })
- }
+ScmsPdu-RaAcaCertRequest | ScmsPdu-EeEcaCertRequest |
+ScmsPdu-EeRaCertRequest | ScmsPdu-EeRaSuccessorEnrollmentCertRequest
)

/**

This approach was improved and was designed to be compatible with all the ASN.1 files.
Since the main problem is given by the complexity of the structures, the idea is to create
an algorithm capable of finding such complex in every ASN.1 files givens as input and, if
found, substitute such structure with two different section like the patch analyzed above
did.
First, each file is analyzed individually. The research for this structure is divided in two
part. First, the algorithm search for every type declaration inside the ASN.1, then for
each type a control is performed to check if in it there is a structure similar to the one
discussed before. To be more precise, the script search for a structure of this type:

MyChoiceType ::= CHOICE (
scoped-type-A { inner-type-A (WITH COMPONENTS { component-1 }) } |
scoped-type-B { inner-type-B (WITH COMPONENTS { component-2 }) } |
scoped-type-C { inner-type-C (WITH COMPONENTS { component-3 }) }

)

If this structure is found the second phase of the algorithm is executed. In this section,

41

Code Implementation

the newly found structure is deleted and replaced with an easier structure that now is
correctly managed by asn1c. The results will have this structure:

-- Scoped type aliases, generated automatically
AliasComponent-1 ::= scoped-type-A {

inner-type-A (WITH COMPONENTS {
component-1

})
}

AliasComponent-2 ::= scoped-type-B {
inner-type-B (WITH COMPONENTS {

component-2
})

}

AliasComponent-3 ::= scoped-type-C {
inner-type-C (WITH COMPONENTS {

component-3
})

}

MyChoiceType ::= CHOICE (
AliasComponent-1 |
AliasComponent-2 |
AliasComponent-3

)

This approach, unlike the one proposed by vanetza, not only fix the issue with IEEE
1609.2.1 files, but also guarantees that asn1c can handle such complex structures au-
tonomously, allowing for a broader range of use and completely eliminating the need for
human intervention.
As for the version control algorithm, the user is constantly kept informed through debug
messages about the operations performed by the different functions and whether the
script had to intervene to modify the ASN.1 files.
To consult the complete code with all the commented functions, refer to the file prepoces-
sor.c available in the repository in which the project is uploaded.

4.3 Final Code Implementation
In the first draft of this work, the preprocessing layer was designed as a completely
separate C program to be executed before the use of asn1c. The reason behind this choice
was to reduce modifications to the original software while still providing the tools to
enable it to handle the newly released files. However, during the testing phase the clear

42

Code Implementation

division between the preprocessing layer and asn1c turned out to be more a downside
than an advantage. It was decided to fully integrate this new layer to asn1c, to do so
the main function was modified including a call to the file preprocessor.c. As mentioned
earlier, this file was initially designed to be executed as a standalone rather than being
called as a function by another main routine so there was the need to be slightly modified
to be compatible with asn1c.
The only addition that was made was the adding of another tag to asn1c. Natively asn1c
supports different tag for that enables different debug functionalities all listed in the
official documentation. The newly added tag is -Wdebug-pre, this tag enable a more
verbose output, providing detailed information about the operation performed by all the
preprocessing layer.

4.4 Final Test and Code Generation
Once the implementation phase was completed, different test were performed. The first
set of test was about the implementation of the constraint generation. In addition to
test performed on toy examples during the developing phase, the entire project was
tested with the ASN.1 files mentioned in 3.1. All the performed tests produce a positive
outcome and the expected constrain code was successfully generated. Below the results
for single value constraint 4.7 and for pattern constraint 4.8.
The second set of test were performed directly on all the available file on the official
ETSI repository. These tests have a double scope, the first is to check if the added
preprocessing layer worked as intended, allowing asn1c to correctly generate the C code
for the ASN.1 files discussed in 3.2 . The second purpose of the test session was to ensure
that the other folders, that were correctly interpreted by the base version of the software,
are still correctly managed. Also for these tests, the outcome was successful for all the
folders under the analysis.
In the end, all the meaning full tests about the code generation were performed and all of
them had a positive results. A last test was performed on IEEE 1609.2.1 files to check if
the code its actually able to decode a real packet sent by a vehicle. Using the generated
libraries, a simple code that decode a real packet has been designed. Below the function
that implement the decoding function.
The function in 4.9 rely on the tools provided by asn1c. The principal tool is the function
ber_decode that is able to decode, from a byte string encoded using the ber protocol, the
bite in input.
This last test provided a positive feedback, proving that the proposed solution effectively
solves the initial problem that motivated the thesis project.

43

Code Implementation

1 int
2 TextResponse_constraint (const asn_TYPE_descriptor_t *td , const void

*sptr ,
3 asn_app_constraint_failed_f *ctfailcb , void * app_key) {
4 const PrintableString_t *st = (const PrintableString_t *) sptr;
5

6 if (! sptr) {
7 ASN__CTFAIL (app_key , td , sptr ,
8 "%s: value not given (%s:%d)",
9 td ->name , __FILE__ , __LINE__);

10 return -1;
11 }
12

13 int union_contains = 0;
14 const char * c_string = strndup ((const char *)st ->buf , st ->size);
15 char * single_value = " Success ";
16 if (strcmp (c_string , single_value) == 0) {
17 union_contains = 1;
18 }
19 single_value = " Failure ";
20 if (strcmp (c_string , single_value) == 0) {
21 union_contains = 1;
22 }
23 if (union_contains == 0) {
24 ASN__CTFAIL (app_key , td , sptr ,
25 "%s: constraint failed (%s:%d)",
26 td ->name , __FILE__ , __LINE__);
27 return -1;
28 }
29

30 ...
31 }

Listing 4.7. Generated code for Single value constraint

44

Code Implementation

1 int
2 NumericString_1_constraint (const asn_TYPE_descriptor_t *td , const

void *sptr ,
3 asn_app_constraint_failed_f *ctfailcb , void * app_key) {
4 const IA5String_t *st = (const IA5String_t *) sptr;
5

6 if (! sptr) {
7 ASN__CTFAIL (app_key , td , sptr ,
8 "%s: value not given (%s:%d)",
9 td ->name , __FILE__ , __LINE__);

10 return -1;
11 }
12

13 const char * c_string = strndup ((const char *)st ->buf , st ->size);
14 const char * string_pattern = "[0 -9]";
15 regex_t regex;
16 int ret = regcomp (& regex , string_pattern , REG_EXTENDED);
17 if (ret) {
18 return -1;
19 }
20

21 ret = regexec (& regex , c_string , 0, NULL , 0);
22 regfree (& regex);
23 if (ret) return -1;
24

25 ...
26 }

Listing 4.8. Generated code for Pattern constraint

45

Code Implementation

1 void decode_and_print (uint8_t *buffer , size_t len) {
2 Ieee1609Dot2Data_t * dot2_data = NULL;
3 asn_dec_rval_t rval;
4

5 rval = ber_decode (0, & asn_DEF_Ieee1609Dot2Data , (void
**)&dot2_data , buffer , len);

6

7 if (rval.code == RC_OK) {
8 printf (" Successfully decoded Ieee1609Dot2Data .\n");
9 printf ("The constraint check for protocolVersion passed .\n");

10

11 /* Print the decoded structure to stdout */
12 asn_fprint (stdout , & asn_DEF_Ieee1609Dot2Data , dot2_data);
13 } else {
14 fprintf (stderr , " Decode failed . The constraint check may

have been violated .\n");
15 fprintf (stderr , "Error code: %d, bytes consumed : %zu\n",

rval.code , rval. consumed);
16 }
17

18 ASN_STRUCT_FREE (asn_DEF_Ieee1609Dot2Data , dot2_data);
19 }

Listing 4.9. IEEE 1609.2.1 decoding function

46

Chapter 5

Conclusion

ETSI employs a wide use of ASN.1 files in its repository, and having an updated open-
source software is crucial to studies possible implementation of C-ITS. This thesis project
aim was to modify the old asn1c to solve the compatibility issues that raised when the
new ETSI file was released in 2020. During the problem analysis phase, described in detail
in Chapter 3, other missing functionalities were found and decided to be implemented in
this code. To sum up, the new added functionalities in this project are

• New functionalities:

– Generation of constrain checking code for single value constraint applied to
any String type.

– Generation of constrain checking code for pattern constrain.

• Fix to asn1c version taken in analysis:

– Fix on a problem caused by the tag WITH SUCCESSOR present in the folder
AVM TS 103 882

– Fix on a problem caused by a complex structure present in the files contained
in the folder IEEE 1609.2.1

The project, that was initially intended as a fix of the original software, turned out
to include more feature than the original structure and a new layer placed before the
existing one, for such reason it was decided to create a brand new branch for this file and
calling it asn2c. Following the spirit of the main branch, this software will be available
in the repository https://github.com/DriveX-devs/asn2c for download.
The software is made available to encourage future contributions, starting from the
work described in this thesis, more addition can be made to improve the asn2c project.
The generation of WITH COMPONENTS constraint code is missing. In this work the
problem is presented and, with the described tools, an implementation can be designed for
this constraint and for other constraints that lack implementation. Beside the constraints,
this project can be enhanced developing a graphic interface that allow the user to call
the program all of its feature in an easier way, also giving a possibility to make a direct

47

https://github.com/DriveX-devs/asn2c

Conclusion

call to the ETSI official repository allowing a easier code generation procedure.
Before closing the thesis, at the moment on which this thesis ending is being written, the
owner of the original repository of asn1c integrated Microsoft Copilot in its directory.
This tool was able, in complete autonomy, to understand the open issue that describe
the problem with IEEE 1609.2.1 files, analyze the existing code and generate a working
solution. This solution was released after the develop of the one present in this work and
takes a complete different path. This event highlight the power of the generative AI and
how helpful it can be in the context of code generation, being able to fully manage the
cycle of an issue in GitHub. The entire process can be seen in detail in the pull request
#268 of the original asn1c repository.
In conclusion, the main objective that originated this thesis, together with other issues
widely described in this work, has been accomplished creating a working ASN.1 compiler
able to correctly work with all the file that implement ETSI ITS-G5 protocol.

48

Bibliography

[1] Eurostat. Number of cars in the eu reached 253 million in 2021. https://ec.europa.
eu/eurostat/web/products-eurostat-news/w/ddn-20230530-1, 2023. Accessed:
2025-09-20.

[2] European Union. Directive 2010/40/eu of the european parliament and of the council
of 7 july 2010 on the framework for the deployment of intelligent transport systems
in the field of road transport and for interfaces with other modes of transport.
https://eur-lex.europa.eu/eli/dir/2010/40/oj/eng, 2010. Accessed: 2025-
09-20.

[3] Panayotis Christidis and N.I. Rivas. Measuring road congestion, 03 2012.
[4] Eurostat. Passenger cars by type of motor energy and own-

ership. https://ec.europa.eu/eurostat/databrowser/bookmark/
a66bf785-5fca-4355-8bdf-ea0658c9ff87?lang=en&createdAt=
2025-09-20T09:09:13Z, 2025. Accessed: 2025-09-20.

[5] ETSI. Intelligent transport systems (its) committee, 2025. Accessed: 2025-09-20.
[6] ETSI. Etsi en 302 663 v1.2.1 (2013-07): Intelligent transport systems (its); access

layer specification for intelligent transport systems operating in the 5 ghz frequency
band, 2013. Accessed: 2025-09-20.

[7] ETSI. Etsi en 302 637-2 v1.3.1 (2019-04): Intelligent transport systems (its); vehicu-
lar communications; basic set of applications; part 2: Specification of cooperative
awareness basic service, 2019. Accessed: 2025-09-20.

[8] ETSI. Etsi en 302 637-3 v1.2.0 (2013-08): Intelligent transport systems (its); vehicu-
lar communications; basic set of applications; part 3: Specification of decentralized
environmental notification basic service, 2013. Accessed: 2025-09-20.

[9] ITU-T. Recommendation itu-t x.680–x.693. https://www.itu.int/rec/T-REC-X.
680-X.693-202102-I/en, February 2021. International Telecommunication Union.

[10] mouse07410. asn1c: Asn.1 to c compiler. https://github.com/mouse07410/asn1c,
2025. Tag: v0.9.27-1366-g9187d2a6, to be compiled.

[11] International Telecommunication Union (ITU). Recommendation X.208: Speci-
fication of Abstract Syntax Notation One (ASN.1). https://www.itu.int/rec/
T-REC-X.208-198811-W/en, 1988. Accessed: 2025-09-05.

[12] International Telecommunication Union. Introduction to ASN.1. https://www.itu.
int/en/ITU-T/asn1/Pages/introduction.aspx, 2025. Accessed: 2025-08-11.

[13] International Telecommunication Union. ASN.1 use cases. https://www.itu.int/

49

https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20230530-1
https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20230530-1
https://eur-lex.europa.eu/eli/dir/2010/40/oj/eng
https://ec.europa.eu/eurostat/databrowser/bookmark/a66bf785-5fca-4355-8bdf-ea0658c9ff87?lang=en&createdAt=2025-09-20T09:09:13Z
https://ec.europa.eu/eurostat/databrowser/bookmark/a66bf785-5fca-4355-8bdf-ea0658c9ff87?lang=en&createdAt=2025-09-20T09:09:13Z
https://ec.europa.eu/eurostat/databrowser/bookmark/a66bf785-5fca-4355-8bdf-ea0658c9ff87?lang=en&createdAt=2025-09-20T09:09:13Z
https://www.itu.int/rec/T-REC-X.680-X.693-202102-I/en
https://www.itu.int/rec/T-REC-X.680-X.693-202102-I/en
https://github.com/mouse07410/asn1c
https://www.itu.int/rec/T-REC-X.208-198811-W/en
https://www.itu.int/rec/T-REC-X.208-198811-W/en
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/Application-fields-of-ASN-1.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/Application-fields-of-ASN-1.aspx

Bibliography

en/ITU-T/asn1/Pages/Application-fields-of-ASN-1.aspx, 2025. Accessed:
2025-08-11.

[14] OSS Nokalva, Inc. About us. https://www.oss.com/company/about-us.html,
2025. Accessed: 2025-09-05.

[15] Objective Systems, Inc. About objective systems. https://obj-sys.com/about/
company.php, 2025. Accessed: 2025-09-05.

[16] European Space Agency (ESA). Asn1scc: The asn.1 space certified compiler.
https://github.com/esa/asn1scc, 2025. Accessed: 2025-09-05.

[17] Erik Moqvist. asn1tools: Python library for asn.1 parsing and code generation.
https://github.com/eerimoq/asn1tools, 2017–2019. Accessed: 2025-09-05, Li-
censed under MIT.

[18] Pycrate Project. Pycrate: Python library for asn.1, lte, 5g and cryptographic proto-
cols. https://github.com/pycrate-org/pycrate, 2016–2025. Accessed: 2025-09-
05.

[19] Lev Walkin and contributors. Asn1c usage guide. https://github.com/
mouse07410/asn1c/blob/vlm_master/doc/asn1c-usage.pdf, 2025. Accessed:
2025-09-06.

[20] ETSI. Asn.1 modules for automated vehicle marshalling (avm) — etsi ts 103 882.
https://forge.etsi.org/rep/ITS/asn1/avp_ts103882, 2022. Repository folder
containing ASN.1 modules of ETSI AVM TS 103 882. Accessed: 2025-09-27.

[21] ETSI ITS Working Group. MSDASN1Module.asn. https://forge.etsi.org/
rep/ITS/ECall_HLAP/-/blob/b5c4e7aa3411d92fe60914c55679c3f234e230f5/
asn1/MSDASN1Module.asn, 2015. Accessed: 28 September 2025.

[22] OSS Nokalva, Inc. Advanced Constraints in ASN.1. https://www.oss.com/asn1/
resources/asn1-made-simple/advanced-constraints.html. Accessed: 2025-10-
01.

[23] ITU-T. Recommendation F.515: Multimedia communication service text conver-
sation. https://www.itu.int/rec/T-REC-F.515-200304-I/en, 2003. Accessed:
2025-10-01.

[24] ETSI ITS Working Group. CDD TS 102 894-2 ASN.1 Module Repository. https:
//forge.etsi.org/rep/ITS/asn1/cdd_ts102894_2. Accessed: 2025-10-01.

[25] Vanetza contributors. Pull Request #223: Add support for extended types in
ASN.1 compiler. https://github.com/riebl/vanetza/pull/223, 2020. Accessed:
2025-10-02.

[26] The Open Group. Regular Expression Definitions — <regex.h> (POSIX Base
Specifications, Issue 7). https://pubs.opengroup.org/onlinepubs/9799919799/
basedefs/regex.h.html, 2018. Accessed: October 2025.

[27] International Organization for Standardization. ISO/IEC 9945:2003 — Information
technology — Portable Operating System Interface (POSIX®). https://www.iso.
org/standard/17841.html, 2003. Accessed: October 2025.

[28] Riccardo Riebl and contributors. Vanetza: An open-source implementation of the
ETSI ITS-G5 protocol stack. https://github.com/riebl/vanetza, 2015. Ac-
cessed: October 2025.

50

https://www.itu.int/en/ITU-T/asn1/Pages/Application-fields-of-ASN-1.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/Application-fields-of-ASN-1.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/Application-fields-of-ASN-1.aspx
https://www.oss.com/company/about-us.html
https://obj-sys.com/about/company.php
https://obj-sys.com/about/company.php
https://github.com/esa/asn1scc
https://github.com/eerimoq/asn1tools
https://github.com/pycrate-org/pycrate
https://github.com/mouse07410/asn1c/blob/vlm_master/doc/asn1c-usage.pdf
https://github.com/mouse07410/asn1c/blob/vlm_master/doc/asn1c-usage.pdf
https://forge.etsi.org/rep/ITS/asn1/avp_ts103882
https://forge.etsi.org/rep/ITS/ECall_HLAP/-/blob/b5c4e7aa3411d92fe60914c55679c3f234e230f5/asn1/MSDASN1Module.asn
https://forge.etsi.org/rep/ITS/ECall_HLAP/-/blob/b5c4e7aa3411d92fe60914c55679c3f234e230f5/asn1/MSDASN1Module.asn
https://forge.etsi.org/rep/ITS/ECall_HLAP/-/blob/b5c4e7aa3411d92fe60914c55679c3f234e230f5/asn1/MSDASN1Module.asn
https://www.oss.com/asn1/resources/asn1-made-simple/advanced-constraints.html
https://www.oss.com/asn1/resources/asn1-made-simple/advanced-constraints.html
https://www.itu.int/rec/T-REC-F.515-200304-I/en
https://forge.etsi.org/rep/ITS/asn1/cdd_ts102894_2
https://forge.etsi.org/rep/ITS/asn1/cdd_ts102894_2
https://github.com/riebl/vanetza/pull/223
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/regex.h.html
https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/regex.h.html
https://www.iso.org/standard/17841.html
https://www.iso.org/standard/17841.html
https://github.com/riebl/vanetza

	Introduction
	Research Motivation and Objectives
	Main contributions
	ASN.1 Specification and Current asn1c Status
	asn1c Implementations

	Outline of the Thesis

	ASN.1 Standard and ASN.1 Compilers
	ASN.1 Format
	ASN.1 Types
	ASN.1 Constraints
	ASN.1 Encoding Rules
	ASN.1 Application Fields

	ASN.1 Compiler
	asn1c Working Principle

	asn1c Problem Analysis
	Constraint limitations
	Subtype Element
	WITH COMPONENTS Constraint

	Compilation Errors
	AVM TS 103 882 Error
	IEEE 1609.2.1 Error

	Error Causes
	Constraint Limitations
	AVM TS 103 882
	IEEE 1609.2.1

	Code Implementation
	Constraint Validation
	asn1c Tools
	Code Generation

	Files Preprocessing
	Version Control Preprocessing
	WITH COMPONENTS Preprocessing

	Final Code Implementation
	Final Test and Code Generation

	Conclusion
	Bibliography

