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Abstract

Joint Communication and Sensing (JCS) is a key feature of 6G networks. Multi-point
localization using Wi-Fi Channel State Information (CSI) is a prime example of JCS.
However, deploying such applications at the network edge is complex. It requires fusing
CSI data collected by multiple access points (APs) and managing significant computa-
tional workloads on resource-constrained devices. This creates a two-fold challenge: 1)
At the application level, how much does collaboration (using multiple APs) actually im-
prove performance, and how robust is this performance to sensor (AP) failure? 2) At the
system level, how can we deploy these collaborative applications (which have different
strategies, like model splitting or data fusion) in a dynamic and efficient way, instead of
using static, manual configurations?

This thesis addresses both challenges. First, we implement and evaluate a complete
indoor localization pipeline, we train this pipeline on a dataset of CSI traces collected from
a multi-antenna, multi-anchor real-world scenario, creating two distinct versions: one for
regression (predicting coordinates) and one for classification (predicting location labels).
We use this pipeline to conduct a detailed robustness analysis. Our results provide a
key finding: data fusion is not just beneficial, it is essential for reliable localization. We
show that performance in a surveyed environment collapses from 99.99% accuracy (with
5 APs) to 55.64% (with 1 AP). Similarly, for regression task, the Mean Absolute Error
(MAE) increases significantly from 3.62 cm (with 5 APs) to 73.59 cm (with 1 AP). Second,
to manage such applications, we design and implement a novel distributed control-layer
solution, the Collaborative Inference Manager (CIM). This is an orchestration service that
uses cloud-native tools (Docker, Kubernetes) to simulate a distributed edge environment,
where each container represents an independent computing node. It can take API requests
and automatically deploy the CSI localization pipeline using two different strategies: one
based on model partitioning and the other based on data-fusion.

The contribution of this thesis is therefore two-fold: we provide both a quantitative
analysis that proves the necessity of multi-point data fusion for CSI localization, and a
dynamically reconfigurable framework to deploy and manage such collaborative sensing
applications efficiently within a simulated environment.

Keywords: Joint Communication and Sensing, Collaborative Inference, Wi-Fi CSI
Localization, Edge Intelligence
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Chapter 1

Introduction

1.1 Background and Motivation

As fifth-generation (5G) and emerging sixth-generation (6G) communication networks
continue to evolve, the architecture and functionality of modern networks are under-
going a fundamental transformation. This evolution is defined not only by significant
performance gains—such as higher data rates, ultra-low latency, and massive device
connectivity—but also by a strategic shift in network capability. Traditionally, com-
munication networks have primarily served as data transmission channels, responsible
for delivering information between endpoints. However, with the rapid advancement
of network technologies like massive MIMO, beamforming, and network slicing [1], this
paradigm is expanding toward intelligent, context-aware platforms that integrate Joint
Communication and Sensing (JCS) capabilities. [2, 3]. In this model, the same network
infrastructure and wireless signals are used not only for data transmission but also for
actively sensing the surrounding physical environment.

This dual JCS capability, combined with the performance of 5G/6G, enables a new
class of sophisticated, real-time applications such as autonomous driving, immersive
AR/VR, and Industrial IoT (IIoT). However, these applications cannot function by
merely relying on a distant, centralized cloud, as the latency of round-trip data transmis-
sion is prohibitive. This limitation has given rise to Edge Intelligence (EI) [4], a paradigm
that leverages Machine Learning (ML) execution directly at the network edge, closer to
the source of data.

The motivation for Edge Intelligence is multi-faceted and represents a direct response
to the failures of the traditional, centralized ML model in this new context. First, central-
ized models face an insurmountable bandwidth and latency bottleneck; requiring count-
less edge devices (e.g., sensors, vehicles, cameras) to stream raw, high-dimensional data
to a central server for processing is both technically infeasible and economically unsus-
tainable, while also failing to meet the millisecond-level latency requirements of real-time
control loops. Second, the centralized approach introduces severe privacy and security
risks. Transmitting raw, often sensitive, sensor data across the public internet to a third-
party cloud creates a large attack surface and forces users to relinquish control of their
data. Edge Intelligence directly addresses these challenges by processing data locally,
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Introduction

enhancing privacy, minimizing bandwidth consumption, and enabling near-instantaneous
inference.

However, the practical realization of Edge Intelligence introduces its own fundamental
tension: the applications that benefit most from it, such as real-time video analytics
or radio-frequency sensing, increasingly rely on large, computationally expensive Deep
Neural Network (DNN) models. This requirement stands in stark contrast to the defining
characteristic of edge devices (like Wi-Fi Access Points, routers, or IoT gateways), which
are, by design, resource-constrained in terms of computational power, memory, and energy
budget.

Wi-Fi Channel State Information (CSI) localization emerges as a prime exemplar of
this exact challenge. As an application, it is a compelling use case for JCS, offering high-
precision, "device-free" indoor positioning. The high-dimensional nature of CSI data,
which captures a detailed "fingerprint" of the multipath wireless environment, makes it
ideal for sophisticated DNN-based analysis. However, this same data richness presents
two distinct problems. First, it reinforces the computational challenge, as the DNNs
required to process these complex inputs are too demanding for a single, low-power edge
device. Second, robust localization in complex indoor spaces inherently requires a multi-
point, collaborative approach; relying on data from a single Access Point (AP) often leads
to significant ambiguity and poor performance due to signal fading and "blind spots."

This dual requirement—the need for computationally intensive models combined with
the necessity for multi-point data collection—renders the traditional monolithic deploy-
ment (one large model on one node) infeasible. It directly necessitates the development
of new Collaborative Inference (CI) paradigms. These paradigms are designed to allow
multiple, geographically distributed, resource-limited devices to work in concert. This
collaboration, however, is not monolithic itself; it presents a complex trade-off, forcing a
choice between distinct strategies—such as model partitioning (splitting a single model)
versus data fusion (combining multiple results). The design and management of these
strategies, represent a necessary step for integrating advanced AI services into future
communication networks.

1.2 Problem Statement
Achieving multi-point collaborative inference in an edge environment is essential. This
high-level goal, however, introduces two distinct and often competing low-level problems:

1. The Computational Problem: How can the significant computational work-
load of a large DNN model be executed on edge devices that individually lack the
necessary resources (CPU, memory)?

2. The Fusion Problem: How can data (or results) from multiple, distributed sen-
sors (APs) be effectively and efficiently combined? For complex sensing tasks like
CSI localization, relying on a single sensor’s perspective is insufficient, often lead-
ing to signal ambiguity and a catastrophic collapse in performance. Therefore, a
multi-point fusion strategy is not just beneficial, but essential for achieving robust
and accurate predictions.
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To address these problems, different competing strategies have emerged, each with its
own significant trade-off.

• Solution A: Model Partitioning (Split Computing) This strategy directly
addresses the Computational Problem. It involves vertically splitting a large, mono-
lithic DNN model into sequential partitions (e.g., splitting at an intermediate layer),
which are then distributed across different nodes to be executed in a pipeline se-
quence.

– Trade-off: This solves the computation bottleneck but introduces a new com-
munication bottleneck. Large intermediate tensors (the output from a layer)
must be sent over the network between each split, which can add significant
latency, especially on wireless links.

• Solution B: Data Fusion (Ensemble Methods) This strategy directly ad-
dresses the Fusion Problem for multi-source tasks like CSI localization. However,
it forces a choice between three sub-strategies:

– Early Fusion: Combine raw data at the input. This requires all APs to
send their high-dimensional sensor data (such as unprocessed CSI subcarrier
information) to a central node for aggregation.

∗ Trade-off: This approach suffers from unacceptable communication over-
head.

– Intermediate Fusion (Mid-Fusion): A hybrid approach where each de-
vice locally processes raw data to extract intermediate feature representations.
These features (which are significantly smaller than raw data but richer than
a final prediction) are then sent to a central node for fusion before the final
inference stage.

∗ Trade-off: This offers a balance, reducing the high communication over-
head of Early Fusion while avoiding the full computational redundancy of
Late Fusion, but requires careful model design.

– Late Fusion (Ensemble): Combine results at the decision layer. Each data
source performs a full prediction by running a local version of the model. It
then sends only a low-dimensional output (e.g., a coordinate or probability
map) to a shared fusion server, which aggregates the individual results using
a consensus algorithm to produce the final decision.

∗ Trade-off: This solves the communication overhead but introduces high
computational redundancy, as multiple nodes are all running the same full
model.

Gap Analysis
This highlights the central problem addressed in this thesis: the choice between strategies
such as model partitioning and early, intermediate, or late fusion is currently static and
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manually defined. Implementations are usually hard-coded to a single strategy, making
them unable to adapt to changing conditions.

However, the optimal strategy—a quantifiable trade-off between latency, accuracy,
and computational resource usage—is not fixed. It strongly depends on real-time factors:

• Network Conditions: A high-bandwidth link makes Model Partitioning or Ear-
ly/Intermediate Fusion more viable. A high-latency, low-bandwidth link makes
Late Fusion preferable.

• Node Status: High CPU load on edge nodes makes the computational redundancy
of Late Fusion an inefficient choice.

Therefore, the research gap is not merely the absence of a final automatic selection
algorithm, but the absence of the foundational enabling technologies required to support
such an algorithm. The field remains constrained by static, hard-coded implementations.
A unified control framework that can dynamically manage, deploy, and reconfigure these
competing strategies (CI vs. DF) on demand is a necessary prerequisite. This thesis aims
to fill this specific gap by designing and implementing such an orchestration framework,
moving the field away from static configurations and providing the essential groundwork
for future, fully adaptive systems.

1.3 Research Objectives
Based on the problems identified, the core objective of this thesis is to design, implement,
and evaluate a Collaborative Inference Manager. This is a distributed control-layer solu-
tion designed to fill the previously mentioned research gap.

The specific goals to achieve this objective are defined as follows:

1. Design a Dynamic Orchestrator: To implement a control service that can
receive high-level inference tasks (e.g., perform CSI localization) and a set of con-
straints (e.g., prioritize latency). It must then dynamically generate all necessary
deployment files to set-up the localization service.

2. Support Dual-Strategy Deployment: The manager must be able to automate
the deployment of two different collaborative strategies:

• CI Strategy (Model-Parallelism): Automatically split a given DNN at
specified cut-points and deploy it as a K8s service chain.

• DF Strategy (Data-Parallelism): Automatically deploy a variable number
of model instances as parallel K8s workers, with a late-fusion server.

3. Implement using Cloud-Native Tools for Simulation: The solution must use
containerization (Docker) and orchestration (Kubernetes, specifically using k3d) as
cloud-native technologies. The main goal here is to simulate a realistic, multi-node
edge environment on a local machine. This approach allows us to deploy and test
our distributed services (CI and DF) in a controlled way, where each container
(Pod) acts like a separate edge device (e.g., an AP or edge server).
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4. Evaluate and Validate the System and its Trade-offs: We must validate
the system using a real-world CSI localization use case. This evaluation will be
two-fold:

• Application-Level Justification: First, we must provide the fundamental
justification for a multi-point sensing approach (which is the premise for this
entire thesis) by measuring how localization accuracy degrades as data from
collaborating APs is lost.

• System-Level Evaluation: Second, we must quantify the deployment trade-
offs of the two strategies (CI vs. DF) managed by our orchestrator. This will be
achieved by deploying the system in the simulated environment and measuring
its online performance metrics, such as end-to-end latency, throughput, and
resource consumption.

1.4 Contributions
In this thesis, our main goal was to design, implement, and evaluate a dynamic control-
layer solution for collaborative inference, which we call the Collaborative Inference Man-
ager. We wanted to move beyond static, manually-configured deployments and create
a system that could automatically deploy different collaborative strategies (CI vs. DF)
based on high-level API requests.

To achieve this goal, we developed several key components. First, we implemented
a complete, multi-point CSI localization pipeline to serve as a realistic and complex
reference application. We trained this pipeline CSI traces collected from a real-world
scenario. This involved processing raw sensor data, aligning multi-node timestamps, and
implementing a feature extraction and training workflow.

More importantly, we designed and implemented the orchestration system itself. This
core contribution includes a novel orchestration service that acts as the "brain" managing
API requests, and a templating engine (using Jinja2) that automatically generates all
necessary Dockerfile and Kubernetes YAML manifests. This system is capable of de-
ploying the two core collaborative strategies discussed in this thesis: a model-split (CI)
pipeline and a late-fusion (DF) ensemble, the latter of which includes an asynchronous
fusion server.

Finally, these tools allowed us to perform a quantitative analysis of these collaborative
strategies. We provide a core trade-off analysis that evaluates system robustness against
sensor (AP) failures. This analysis validates the necessity of our DF strategy and provides
a strong baseline for future research into dynamic, adaptive orchestration.

1.5 Thesis Outline
This thesis is organized as follows:

• Chapter 2: Background and Related Work reviews related work in edge
AI, collaborative inference (CI/DF), Wi-Fi CSI sensing, and cloud-native network
orchestration.
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• Chapter 3: System Design and Methodology details the architecture of the
Collaborative Inference Manager and analyzes the automated deployment workflows
for the CI and DF strategies.

• Chapter 4: Experimental/numerical evaluation describes the implementa-
tion of our reference CSI application (the data pipeline and models) and our eval-
uation methodology. It then presents and analyzes our key experimental findings,
focusing on the AP robustness analysis (which quantifies the value of DF, showing
a performance increase from 55.64 % to 99.99 %) and the performance trade-offs of
the CI pipeline strategy.

• Chapter 5: Conclusions and Future Work summarizes the contributions,
identifies current limitations, and proposes future research directions towards a
proactive orchestrator.
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Chapter 2

Background and Related Work

This chapter provides the technical background needed to understand this thesis. We
review four key areas: machine learning at the network edge, the main collaborative
inference methods, Wi-Fi CSI sensing as our use case, and cloud-native orchestration as
our implementation base. Finally, we identify the research gap that this thesis aims to
fill.

2.1 Machine Learning at the Network Edge

Traditionally, Machine Learning (ML) relied on powerful, centralized cloud data centers
for training and inference. However, this model is not suitable for modern applications
that need very low latency, data privacy, and efficient bandwidth use. As a result, Edge
Intelligence has emerged. The goal of Edge Intelligence is to move AI computation away
from the distant cloud [5] and closer to the data source, such as on 5G base stations, edge
servers, or the devices themselves.

Federated Learning (FL) [6] is a well-known paradigm in Edge AI. It focuses on
distributed training. Devices train models locally and only share the model updates
(gradients), not their private raw data.

This thesis, however, focuses on a different but equally important area: Distributed
Inference. We do not focus on how the model is trained. Instead, we study how a large,
pre-trained model can be deployed across multiple resource-limited devices so they can
work together to perform an inference task. Our Collaborative Inference Manager is a
solution for this distributed inference problem.

2.2 Collaborative Inference Paradigms

Distributed inference can be done using different collaborative strategies. When multiple
nodes in an edge network want to solve one task, they can choose to collaborate by
"splitting" the model or by "fusing" their data.

10



Background and Related Work

2.2.1 Model Partitioning (Split Computing)
Split Computing, or model partitioning, is a model-parallel strategy. The main idea is to
split a single, large DNN (like a large, complete model) vertically into several sequential
parts, or "shards".

For example, a model can be split into a "head" and a "tail". The device (like a
mobile phone) runs the head (the first few layers). It then sends the output, called an
intermediate tensor, over the network to an edge server, which runs the tail (the remaining
layers) to get the final result [7].

Figure 2.1. Visualization of Model Partitioning (Split Computing). The DNN is vertically
split into a Head (executed on the limited device) and a Tail (executed on the edge server),
transmitting an intermediate tensor over the network.

• Pros: This method reduces the computation and memory load on a single device,
especially the one with the most limited resources.

• Cons: It creates a new communication overhead. The intermediate tensor can be
very large. Sending it over the network (especially a wireless one) adds significant
latency. This delay can cancel out the time saved by splitting the computation.

The CI (Collaborative Inference) strategy in this thesis is an implementation of this
split computing paradigm.

2.2.2 Ensemble Methods and Data Fusion
Data Fusion (DF) is a data-parallel strategy. It is used when multiple sensors (like
multiple Wi-Fi APs) are observing the same target. Combining their information can
produce a single estimate that is more accurate and reliable than any single sensor. For
CSI localization, fusing data from multiple APs is essential [8]. The main fusion strategies
are:
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• Early fusion: This is fusion at the input (or feature) level. All APs send their
raw CSI data (or extracted features) to a central node. This node concatenates
all features into one very large vector and feeds it into a single, large model.

– Pros: Allows the model to find complex, low-level correlations between the
data from different APs.

– Cons: Creates a massive communication overhead because the raw, high-
dimensional CSI data must be transmitted over the network.

• Intermediate Fusion (Mid-Fusion): This is a hybrid strategy where fusion oc-
curs at the feature representation level. Each AP locally processes the raw data
through the initial layers of a neural network to extract abstract intermediate fea-
tures. These feature tensors are then transmitted to a central node, which aggre-
gates them and executes the remaining layers of the model to produce the final
prediction.

– Pros: Offers a distinct balance in the trade-off spectrum. It significantly
reduces communication overhead compared to Early Fusion (as extracted fea-
tures are often more compact than raw data) while avoiding the full compu-
tational redundancy of Late Fusion.

– Cons: Requires complex model design to identify the optimal "split point" for
feature extraction. The communication cost, while lower than raw data, is still
significantly higher than transmitting simple probability maps (Late Fusion).

• Late fusion: This is fusion at the decision (or probability) level. Each AP (or a
nearby node) independently runs a full inference model locally. It produces its own
low-dimensional output (e.g., a location probability map). A fusion server (like a
central fusion server) then collects only these small outputs and combines them. It
can use simple methods like average or Bayesian methods like conflation to get
the final decision.

– Pros: Has very low communication overhead (only the final results are sent).
It is also very robust; if one node fails, the system can still work.

– Cons: Causes high computational redundancy, as every node has to run the
same complete model.
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Figure 2.2. Overview of Data Fusion strategies in collaborative inference. (a) Early
Fusion aggregates raw data; (b) Intermediate Fusion aggregates feature tensors; (c)
Late Fusion aggregates local decisions.

The DF (Data Fusion) strategy in this thesis implements the late fusion paradigm.

2.3 Joint Communication and Sensing with Wi-Fi CSI

Joint Communication and Sensing (JCS), also known as Integrated Sensing and Commu-
nications (ISAC), represents a paradigm shift in the evolution of modern wireless networks
towards 6G [2]. Unlike traditional architectures where data transmission and environ-
mental radar sensing operate as distinct functionalities requiring separate hardware and
frequency bands, JCS integrates both operations into a single unified platform. In this
model, wireless signals serve a dual purpose: they carry data payloads for communication
while simultaneously probing the surrounding physical environment. By analyzing the
propagation characteristics of these signals—such as reflection, scattering, and multipath
fading—the network can extract rich environmental information (e.g., object presence
or location) without compromising communication performance. This integration maxi-
mizes spectral and hardware efficiency, effectively transforming standard communication
infrastructure into a ubiquitous sensing network [9].

To effectively evaluate the trade-offs between the CI and DF paradigms defined above,
a realistic and complex application use case is required. Sensing with Wi-Fi CSI serves
as an ideal application for this purpose.
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2.3.1 Background and Principles

Commercial Wi-Fi devices (based on IEEE 802.11n and later standards) use Orthogonal
Frequency Division Multiplexing (OFDM). In OFDM, a wideband channel is divided into
many orthogonal narrowband subcarriers. Channel State Information (CSI) [10] provides
a detailed, fine-grained description of the signal’s amplitude and phase on each of these
subcarriers.

In an indoor room, signals travel from the transmitter (AP) to the receiver (UE) on
multiple paths. This "multipath effect" includes the direct line-of-sight path and many
reflection paths from walls, furniture, and people. The received CSI is the complex sum
of all these signals arriving at the receiver at slightly different times.

This makes CSI extremely sensitive to any changes in the environment. If a person
walks into the room or even just moves their arm, they alter the signal paths. This
causes measurable changes in the CSI amplitude and phase values across the subcarriers.
Because of this, the CSI data acts like a unique "fingerprint" of the environment and the
objects within it. A machine learning model can be trained to learn the mapping between
these complex CSI "fingerprints" and specific locations or activities.

2.3.2 Applications

This sensitivity of CSI allows for "device-free sensing," where a system can detect a user’s
presence and activities without the user needing to carry any special device. The potential
applications are vast and privacy-preserving (as they do not use cameras), including:

• Indoor Localization and Tracking: To enable high-accuracy indoor navigation
(e.g., in shopping malls, airports, or hospitals) [11].

• Activity Recognition: To identify human postures (e.g., fall detection for elderly
care), activities (e.g., walking, sitting), or even vital signs like breathing (for health
monitoring).

• Intrusion Detection: Used in smart homes and security systems to detect an
unauthorized presence without using cameras.

2.3.3 Relevance to This Thesis

CSI-based localization is an ideal use case to validate our collaborative inference frame-
work for three main reasons:

1. Data Richness: CSI data from even a single AP is high-dimensional. For example,
in our data processing pipeline, we process the signal into 1024 subcarriers. This
creates a large input vector for a DNN, making the model computationally expensive
and suitable for our study.

2. Multi-point Advantage: Indoor localization naturally benefits from multi-point
observations. A single AP may suffers from "blind spots" and ambiguity (where
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two different locations might have similar CSI fingerprints). Fusing data from mul-
tiple APs (like the 5 APs in our setup) greatly improves localization accuracy and
reliability.

3. Necessity of Collaboration: This directly creates the central problem of this
thesis. To get the multi-point advantage, we must decide how to fuse the data.
We must choose between early fusion (high communication cost) and late fusion
(high computation cost). This is the exact trade-off that our Collaborative Inference
Manager is designed to manage.

2.3.4 State-of-the-Art: Transformer-based CSI Sensing

With the rapid advancement of Deep Learning, the research focus in CSI sensing has
shifted from traditional Multi-Layer Perceptrons (MLPs) and Convolutional Neural Net-
works (CNNs) toward Transformer-based architectures. These models leverage self-
attention mechanisms to effectively capture long-range dependencies and subtle features
within complex channel data.

Recent studies have demonstrated the superior performance of Transformers in han-
dling indoor multipath effects. For instance, Xu et al. proposed Swin-Loc [12], a frame-
work based on the Swin Transformer for MIMO ISAC systems. By utilizing hierar-
chical attention, Swin-Loc effectively addresses CSI fingerprint distortion and achieves
decimeter-level localization accuracy while reducing computational overhead compared
to traditional CNNs.

Furthermore, the rise of Generative AI has influenced wireless sensing. Bhatia et
al. introduced WiFiGPT [13], exploring the use of Decoder-only Transformers (similar to
GPT architectures) to process raw Wi-Fi telemetry data (including CSI, RSSI, and FTM).
By treating wireless signals as a sequence language, this approach directly regresses spatial
coordinates, demonstrating the potential of Large Language Model (LLM) architectures
in interpreting RF spatial patterns.

Beyond localization, Transformers also excel in fine-grained feature extraction. Avola
et al. [14] designed a Dual-branch Transformer to separately process CSI amplitude and
phase perturbations for person identification. This work highlights the structural advan-
tage of Transformers in fusing multi-modal CSI features to build robust sensing systems.

While these SOTA approaches show promise, this thesis adopts a lightweight MLP-
based baseline (described in the next section) to focus on the system-level trade-offs of
distributed inference rather than model architecture optimization.

2.3.5 A Reference Pipeline for Probability-Based Fusion

A prominent and advanced approach for multi-point CSI localization was proposed by
Gönültaş et al. [15]. The core idea of this method is to avoid having the Neural Network
(NN) directly regress (x, y) coordinates. Instead, it employs a more robust, two-stage
probabilistic method that is particularly effective for collaborative multi-AP scenarios.

The architecture of this pipeline is illustrated in Figure 2.3, which consists of three
key stages:
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Figure 2.3. A reference pipeline architecture for probability-based fusion. (a) A single AP
computes a probability map. (b) Multiple APs perform Late Fusion on their respective
probability maps to derive a final position.

1. Feature Extraction: The pipeline first extracts robust features from the raw CSI
that are insensitive to hardware impairments like phase offsets. This is achieved
by converting the frequency-domain CSI to the time-domain (Channel Impulse Re-
sponse) and then computing an "instantaneous autocorrelation" across both the
delay and antenna domains. The final feature vector is normalized to be insensitive
to path loss and amplifier gains.

2. Probability Map Generation: This is the core of the method. Instead of pre-
dicting a single (x, y) coordinate, the NN is trained to estimate a probability distri-
bution over the localization area. A K×K grid (e.g., 22×22 = 484 cells) is defined,
and the NN’s output layer is a Softmax with K2 neurons, producing a Probability
Mass Function (PMF). To train this, "soft targets" are created by mapping the true
(x, y) coordinate to the four nearest grid points, and a cross-entropy-based loss is
used.

3. Probability Fusion (Late Fusion): The pipeline’s advantage becomes clear in
the multi-AP case (Figure 2.3(b)), where it employs a Late Fusion strategy. Each
AP independently computes its own probability map (p(u)[1], p(u)[2], etc.). It is
important to note that while the original work assumed centralized data collection,
this thesis adapts the architecture for a distributed inference scenario. In such a dis-
tributed adaptation facilitated by our framework, these low-dimensional probability
vectors are transmitted over the network to a central fusion node, where they can
be combined using algorithms like Probability Conflation. This adaptation lever-
ages the algorithm’s robustness while drastically reducing communication overhead
compared to early fusion, as only the small probability vectors are transmitted, not
the high-dimensional CSI features.
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2.4 Using Cloud-Native Tools for Simulation
As discussed in Section 2.2 and 2.3, collaborative strategies inherently involve multiple
distributed nodes. A major challenge in testing distributed systems (like our proposed
CI and DF strategies) is the need for a multi-node environment. In a real-world scenario,
this would require setting up multiple physical edge devices (like multiple single-board
computers or dedicated servers), which is complex and difficult to manage.

To solve this problem, we use modern cloud-native tools to simulate a multi-node
edge environment [16] on a single machine.

• Docker is a containerization technology [17]. It allows us to package our Python
applications (like a fusion server or a partial deep neural network) and all their
dependencies into a lightweight, isolated container.

• Kubernetes (K8s) is a container orchestration platform [18] that automates the
deployment, management, and networking of large numbers of containers.

• k3d is a lightweight tool that runs a complete, multi-node K8s cluster inside a single
Docker container.

In this thesis, we use K8s and k3d not to build a 5G-integrated system, but as a
powerful and practical simulation tool. As defined in our Research Objectives, this ap-
proach allows us to easily deploy and test our distributed services. Each Kubernetes pod
(running a container) effectively acts as a separate, independent edge device (e.g., an AP
or an edge server), allowing us to model the entire collaborative system in a controlled
and repeatable way.

2.5 Gap Analysis
From the related work, we identified the core trade-offs that define our problem:

1. The CI Trade-off (Split Computing): As discussed in Section 2.2.1, this strat-
egy trades reduced computation on one node for increased communication latency
between nodes.

2. The DF Trade-off (Data Fusion): As discussed in Section 2.2.2, we must choose
between early fusion (high communication cost) or late fusion (high computational
redundancy).

The best choice in any given situation depends on real-time factors. For example,
if the network link between APs is fast and stable, CI (splitting) or early fusion might
be preferable choices. If the network is slow, late fusion is better, but only if the edge
devices have enough CPU power to handle the redundant computation.

Most existing research papers pick one static strategy (e.g., they only test late fusion)
and do not provide a way to adapt. This reveals a key gap in the state of the art: the
absence of a unified, dynamic control layer. No existing system can assess network and
compute resources and automatically select the most appropriate strategy—whether CI,
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DF, or even a simple baseline. As a result, researchers must currently make this choice
manually.

This thesis addresses that gap through the Collaborative Inference Manager, a tool
capable of dynamically deploying both CI and DF strategies within a simulated Kuber-
netes environment. This lays the groundwork for future systems that can autonomously
determine and deploy the optimal strategy.
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Chapter 3

System Design and Methodology

This chapter details the architecture and design of the proposed system. We present
the Collaborative Inference Manager, a control-layer solution designed to address the
challenges of deploying distributed AI tasks in edge environments.

We first provide a high-level overview of the modular architecture, followed by a
detailed description of its three core components: the Request Manager, the Optimizer,
and the Actuator. Next, we discuss the containerization strategy and the templating
engine used for service definition. Finally, we describe the implementation of the multi-
point CSI localization pipeline.

3.1 System Architecture Overview
The proposed system is designed as a modular control framework that decouples the high-
level inference intent from the low-level infrastructure deployment. Unlike traditional
monolithic deployments, our architecture separates service request handling, strategic
decision-making, and deployment actuation.

As illustrated in Figure 3.1, the Collaborative Inference Manager comprises three
logical sub-modules:

1. Inference Service Request Manager: This module serves as the API gate-
way. It exposes a standardized RESTful interface to receive high-level inference
tasks (e.g., specifying a model and a preferred strategy) from users or upper-layer
applications, masking the complexity of the underlying infrastructure.

2. Collaborative Inference Optimizer: This is the decision engine of the system.
Its role is to translate the user’s request into an optimal Deployment Plan based
on available resources and constraints. While designed to support advanced op-
timization algorithms (e.g., Reinforcement Learning), the current implementation
operates in a pass-through mode, respecting the user’s explicit strategy selection.

3. Inference Deployment Actuator: This module acts as the execution engine. It
translates the abstract Deployment Plan into concrete infrastructure configurations
(Dockerfiles and Kubernetes manifests) and applies them to the cluster using a
templating engine.
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Figure 3.1. High-level system architecture showing the interaction between the User, the
three internal modules of the Collaborative Inference Manager, and the Kubernetes Cluster.

The workflow follows a “Sense-Decide-Act” cycle: the Request Manager parses the
input, the Optimizer determines the topology, and the Actuator deploys the corresponding
microservices (Worker Pods, Fusion Servers, or Pipelines) into the Kubernetes simulation
environment (k3d).

3.2 Inference Service Request Manager
The Inference Service Request Manager constitutes the interface layer of the system.
Built upon the Python FastAPI framework, it implements a strict schema validation
mechanism to ensure that all incoming requests contain the necessary metadata for valid
deployment.

The component exposes two primary API endpoints corresponding to the two collab-
orative strategies investigated in this thesis: Model Partitioning (CI) and Data Fusion
(DF). The specifications for these APIs are defined in Table 3.1.

Table 3.1. Definition of Inference Deployment APIs

Endpoint Method Description & Payload
/deploy POST Triggers CI (Model Pipeline) Strategy

Payload Schema: PipelineDeployRequest
• model_name (str): Unique identifier.
• cut_points (List[str]): Layer names for splitting.

/deploy_ensemble POST Triggers DF (Data Fusion) Strategy
Payload Schema: EnsembleDeployRequest
• ensemble_name (str): Unique service ID.
• workers (List[WorkerConfig]): List of AP-specific
model configurations.
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Request Processing Logic: Upon receiving a request, the manager performs static
type checking against the defined Pydantic schemas. It then extracts the high-level con-
figuration parameters—such as the list of cut-points or the worker map—into a structured
Deployment Context. This context object serves as the standardized input for the down-
stream Optimizer, ensuring that the core logic is isolated from API-level parsing errors.

3.3 Collaborative Inference Optimizer
The Collaborative Inference Optimizer is architecturally positioned to bridge the gap
between user intent and system execution. Its primary responsibility is to accept the
Deployment Context from the Request Manager and generate a specific Deployment Plan.

In a fully autonomous system, this module would employ optimization algorithms
to dynamically select the best strategy (CI vs. DF) based on real-time metrics such as
network latency or node CPU utilization. However, in the current version of the system
implementation, this module functions as a strategy-agnostic pass-through. It respects the
user’s explicit choice (implied by the API endpoint called) and forwards the configuration
directly to the Actuator.

Despite this simplification, explicitly modeling this component is crucial. It provides
the necessary architectural hook for future work, allowing advanced decision logic (e.g.,
RL agents) to be plugged in without refactoring the API or the deployment backend.

3.4 Inference Deployment Actuator
The Inference Deployment Actuator contains the core business logic for generating and
applying infrastructure configurations. It utilizes a Jinja2-based templating engine to
dynamically generate Dockerfiles and Kubernetes YAML manifests.

The actuation logic varies depending on the selected strategy. We detail the orches-
tration workflow for the Data Fusion (Ensemble) strategy in Algorithm 1.

The orchestration workflow, formalized in Algorithm 1, proceeds in three distinct
phases to ensure a consistent deployment.

First, the process initiates by generating a unique BuildTag based on the current
timestamp. This versioning is critical to force the container runtime to recognize updates
and avoid using cached, outdated image layers.

Step 1 (Lines 4–11) focuses on the parallel worker nodes. The Actuator iterates
through the list of workers defined in the request. For each worker, it prepares the build
context and dynamically renders a Dockerfile using the Jinja2 template. The container
image is then built and immediately imported into the local cluster simulation, ensuring
the node is ready for deployment.

Step 2 (Lines 12–16) repeats the containerization process for the central Fusion Server,
tagging it with the same build version to maintain consistency across the ensemble.

Finally, Step 3 (Lines 17–20) handles the service orchestration. The system renders
the complete Kubernetes manifest (ensemble_deployment.yaml) by injecting the specific
image tags and service names generated in the previous steps. The deployment is then
executed by applying this manifest via a kubectl command.
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Algorithm 1 Ensemble (Data Fusion) Deployment Logic
Require: Request: User configuration (workers, fusion strategy)
Require: Templates: Set of Jinja2 template files (Worker, Fusion, K8s)

1: BuildTag ← CurrentT imestamp() {Ensure unique image versioning}
2: WorkerImages← List()
3: // Step 1: Build and Push Worker Images
4: for all worker in Request.workers do
5: ContextDir ← PrepareContext(worker.model_path)
6: DockerF ile← Render(Templates.Worker, worker)
7: ImageTag ← Format(”%s−%s”, worker.name, BuildTag)
8: RunCommand(”docker build − t ” + ImageTag + ” .”, ContextDir)
9: RunCommand(”k3d image import ” + ImageTag)

10: WorkerImages.append({name : worker.name, image : ImageTag})
11: end for
12: // Step 2: Build Fusion Server Image
13: FusionContext← PrepareFusionContext()
14: FusionImage← Format(”fusion− server −%s”, BuildTag)
15: RunCommand(”docker build − t ” + FusionImage, FusionContext)
16: RunCommand(”k3d image import ” + FusionImage)
17: // Step 3: Generate and Apply K8s Manifests
18: Manifest← Render(Templates.K8sEnsemble, WorkerImages, FusionImage)
19: WriteFile(”ensemble_deployment.yaml”, Manifest)
20: RunCommand(”kubectl apply − f ensemble_deployment.yaml”)
21: return Success
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This automated process eliminates the need for manual configuration of individual
nodes, ensuring that the distributed system is deployed consistently and can be scaled
(e.g., from 2 to 5 workers) simply by modifying the API request.

Similarly, the orchestration logic for the Model Pipeline (CI) strategy is formalized in
Algorithm 2. This process involves analyzing the Keras model structure and physically
splitting it into sequential segments.

Algorithm 2 Model Pipeline (CI) Deployment Logic
Require: Request: Model path, Cut points list
Require: Templates: Server and K8s templates

1: WorkDir ← CreateDirectory()
2: FullModel← LoadKerasModel(Request.model_path)
3: // Step 1: Split Model into Parts
4: ModelParts← SplitModel(FullModel, Request.cut_points)
5: for i← 0 to Length(ModelParts)− 1 do
6: SaveModel(ModelParts[i], WorkDir + ”/part_” + i + ”.h5”)
7: end for
8: // Step 2: Build Chain Links
9: PartImages← List()

10: for i← 0 to Length(ModelParts)− 1 do
11: NextUrl← (i < LastIndex)?Format(”part−%d− service”, i + 1) : Null
12: Context← {index : i, next_url : NextUrl}
13: ServerCode← Render(Templates.NodeServer, Context)
14: ImageTag ← BuildAndTag(”part− ” + i)
15: PartImages.append(ImageTag)
16: end for
17: // Step 3: Deploy Service Chain
18: Manifest← Render(Templates.K8sP ipeline, PartImages)
19: RunCommand(”kubectl apply − f ” + Manifest)

The deployment process for the CI strategy, detailed in Algorithm 2, follows a se-
quential logic to transform a monolithic model into a distributed service chain.

Initially, the Actuator initializes the workspace and loads the full Deep Neural Network
model into memory.

Step 1 (Lines 3–7) executes the model partitioning. The system logically splits the
loaded model layer-by-layer based on the specified cut points and serializes each resulting
segment into a separate file.

Step 2 (Lines 8–16) focuses on containerizing these segments into individual "chain
links." A critical operation here is the determination of the NextUrl. This variable defines
the routing logic, instructing the current node where to forward its intermediate tensor
output. The Actuator injects this route into the server code template and builds the
specific Docker image for that partition.

Finally, Step 3 (Lines 17–19) operationalizes the pipeline. The system renders a Ku-
bernetes manifest that defines the sequential service graph and applies the configuration
to the cluster, effectively activating the distributed inference chain.
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3.5 Containerization and Service Definition
To support the dynamic generation described in the previous section, the system relies on
a set of parameterized templates to bridge the gap between abstract model definitions and
concrete executable containers. This process consists of two stages: image construction
and service orchestration.

3.5.1 Dynamic Image Construction
For the containerization of computing nodes, we employ a unified Dockerfile.j2 tem-
plate. As illustrated in Figure 3.2, this template serves as a blueprint that is dynamically
rendered at build time.

The core innovation here is the use of the Jinja2 placeholder {{ part_index }}.
Instead of maintaining separate Dockerfiles for each partition of a split model, the Or-
chestrator injects the specific model file (e.g., model_part_0.h5) and its corresponding
server logic into the standard Python base image. This ensures that each generated con-
tainer is lightweight, containing only the specific neural network layers and dependencies
required for its assigned task, thereby optimizing resource usage at the edge.

# templates/Dockerfile.j2
# Base image pre-loaded with Python and system dependencies
FROM py-base:latest

WORKDIR /app

# Install runtime dependencies
RUN pip install flask requests numpy h5py

# --- DYNAMIC INJECTION POINT ---
# The orchestrator dynamically selects the correct model partition
# based on the assigned part_index (e.g., 0, 1, 2...)
COPY model_part_{{ part_index }}.h5 .

# Inject the corresponding server logic
COPY server_part_{{ part_index }}.py ./server.py
# -------------------------------

EXPOSE 5000
CMD ["python", "server.py"]

Figure 3.2. The Dockerfile template used for generating inference nodes. Note the Jinja2
placeholders ({{ part_index }}) which allow the Orchestrator to programmatically inject
the specific model partition and server logic for each node at build time.

3.5.2 Kubernetes Service Orchestration
Once the images are built, the Orchestrator generates the necessary orchestration mani-
fests using the k8s_ensemble.yaml.j2 template.
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A key feature of this template, shown in Figure 3.3, is the dynamic injection of
environment variables for service discovery. For the Fusion Server, the Actuator iterates
through the list of registered workers and injects their internal ClusterIP DNS names
(e.g., WORKER_AP1_URL) directly into the container’s environment. This mechanism allows
the Fusion Server to automatically discover and connect to all parallel worker nodes
upon startup without hardcoded IP addresses, enabling a loosely coupled and scalable
distributed architecture.

# templates/k8s_ensemble.yaml.j2 (Snippet for Fusion Server)
apiVersion: apps/v1
kind: Deployment
metadata:

name: {{ fusion_service_name }}-deployment
spec:

# ... (omitted for brevity)
template:

spec:
containers:

- name: fusion-server
image: {{ fusion_image_name_with_tag }}
env:

# Dynamic Service Discovery: Inject Worker URLs
{% for worker in workers %}
- name: WORKER_{{ worker.model_name | upper }}_URL

value: "http://{{ worker.service_name }}-service:5000"
{% endfor %}

Figure 3.3. Snippet of the Kubernetes Deployment template for the Fusion Server. The
template iterates through the registered workers to inject their service URLs as environment
variables, enabling automatic connectivity.

3.6 Deployment Considerations: Privacy and Topology

While the primary focus of this thesis is on orchestrating computational resources, the
proposed modular architecture has significant implications for data privacy and network
bandwidth, particularly when mapping the abstract service graph to physical devices.

3.6.1 Privacy in Split Computing (CI)

A key theoretical advantage of the Model Partitioning (CI) strategy is its potential for
privacy preservation. In a physical deployment, the first container of the pipeline (Part 0,
or the “Head”) is designed to be deployed directly on the sensing device (e.g., the Wi-Fi
Access Point or an IoT device directly connected to it).

By processing the raw CSI data locally and transmitting only the intermediate tensors
(abstract feature maps) to the subsequent nodes, the system ensures that raw user data
never leaves the edge device.
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3.6.2 Topology Constraints in Multi-Point Fusion

It is important to note, however, that the level of privacy depends on the fusion strategy:

• In Single-Stream Scenarios: The CI strategy provides full privacy as the raw
data is strictly local.

• In Early Fusion Scenarios: As our reference model relies on stacking features
from 5 APs before inference, a data aggregation step is inevitably required. In this
specific case, the CI pipeline primarily serves to distribute the heavy computational
load of the large fused model, rather than preventing raw data transmission.

• In Late Fusion Scenarios (DF): Privacy is naturally preserved across all nodes,
as each AP runs a local model and transmits only non-invertible probability maps.

Our Orchestrator is designed to support all these topologies by simply adjusting the
target_workers and cut_points configuration, allowing network administrators to bal-
ance the trade-off between model accuracy (Early Fusion) and strict privacy preservation
(Late Fusion or Single-Stream CI).

3.7 Reference Application Implementation: CSI Localiza-
tion Pipeline

To evaluate the Collaborative Inference Manager framework described in the previous
sections, we required a realistic, data-intensive application. We implemented a complete,
multi-point CSI localization pipeline based on existing literature. This setup forms the
foundation for the experimental evaluation presented in Chapter 4.

3.7.1 Dataset Collection Scenario

The core dataset used for this research was provided by the University of Brescia. This
dataset is essential as it provides the real-world, multi-point data required to evaluate
our collaborative strategies. The data was collected in an indoor office environment, with
the physical layout depicted in Figure 3.4.
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Figure 3.4. The dataset collection environment layout. Blue rectangles (AP0-AP4) de-
note the five Wi-Fi access points acting as anchors Red squares (P1-P12) denote the 12
ground-truth locations where the transmitter was placed

The experimental procedure was as follows:

• Anchors: Five Wi-Fi access points, labeled AP0 to AP4, were placed around the
room to act as CSI-receiving anchors (see blue rectangles in Figure 3.4).

• Transmitter: A commercial smartphone was used as the transmitter, placed se-
quentially at 12 distinct locations (P1 to P12, see red squares in Figure 3.4).

• Orientations: At each location, measurements were taken with the phone in two
different orientations (marked as 1 and 2 in the figure) to increase data diversity.

• Synchronization: All five anchors were synchronized using the Network Time
Protocol (NTP) to ensure a common time reference.

The Raw Data Set

The resulting raw dataset (totaling 242GB) was provided as a series of .mat.gz files,
where each file represents a chunk of data from a specific anchor (e.g., ap_0_chunk_0.mat.gz).

Each file contains a structure array holding the raw CSI data (e.g., 1024 subcarriers for
HE/80MHz), along with two critical timestamps: a hardware mactime (common across
anchors with ≤ 1µs error) and an OS-level timestamp (common across NTP-synced
anchors with ≈ 1ms error). A separate timestamp.txt file was provided to map these
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OS timestamps to the corresponding ground-truth position (P1-P12) and orientation (1
or 2).

In the following subsection, we describe how these raw files were processed to create
the final, aligned dataset used for model training.

3.7.2 Data Processing and Alignment
The first stage of our implementation was to process the raw dataset (stored as .mat.gz
files). This was handled by our data processing scripts.

• Loading and Filtering: The initial script executes in parallel, loading all .mat.gz
files. It filters for relevant 80MHz HE frames [19] and processes the raw CSI, which
includes removing pilot and null subcarriers and resampling the data to a uniform
1024 subcarriers.

• Alignment and Labeling: The script aligns the data from all 5 APs using their
mactime timestamps. Subsequently, a second script matches these aligned frames
with the ground-truth location labels from a timestamp.txt file. It applies a 1ms
error margin to account for NTP synchronization errors and fills any missing data
using the Last Observation Carried Forward (LOCF) method [20].

• Output: The result of this stage is a single, clean HDF5 file containing all aligned
CSI data and corresponding position labels. The raw CSI data is structured as
a 5-dimensional tensor with shape (N, 5, 4, 2, 1024), where N represents the total
number of synchronized samples, 5 is the number of APs, 4 is the number of receive
antennas, 2 is the number of spatial streams, and 1024 corresponds to the orthogonal
subcarriers.

3.7.3 Feature Extraction and Model Architecture
The second stage was to extract features from the clean data and define the models that
our framework will deploy.

• Feature Extraction: As implemented in our feature generation script, we apply
an Inverse Fast Fourier Transform (IFFT) to the CSI data to convert it to the time
domain. We then compute the autocorrelation of the channel impulse response
(CIR) up to 30 taps. This normalized vector serves as the input feature (X) for our
DNN.

• Model Architecture Design Choice: As discussed in Section 2.3.5, the reference
pipeline by Gönültaş et al. [15] utilizes a late fusion strategy based on Probability
Maps. This involves training a separate, smaller model for each AP to predict a
probability distribution over a grid, which are then fused.
In our preliminary analysis, we implemented both this late fusion approach and
the early fusion (or stacked feature) baseline, which concatenates all features at the
input to train a single, large model. We found that while theoretically robust, the
probability map method showed poor generalization on our specific dataset, which is
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relatively sparse (13 discrete locations). We suspect this complex, two-stage model
(features → probability map → fusion) was prone to overfitting.
Conversely, the simpler, end-to-end early fusion (stacked feature) model demon-
strated superior robustness and comparable accuracy on our data. Therefore, we
made the design choice to adopt this stacked feature model as the foundation for
our system’s Data Fusion (DF) strategy and robustness analysis.

• Model Training: We utilize a standard Multi-Layer Perceptron (MLP) architec-
ture trained on the full, stacked feature vector. The model consists of several Dense
layers with BatchNormalization and Dropout. We created two versions of this
model for our tests:

– A Classification model terminating in a softmax layer to predict one of 12
discrete position labels.

– A Regression model terminating in a linear layer to predict continuous (x,
y) coordinates.

Figure 3.5. The MLP architecture design. The model processes the input feature vector
through shared Dense layers with Batch Normalization [21] and Dropout [22], terminating
in specific output heads for either Classification (12 labels) or Regression (2 coordinates).

• Output: This stage produces the pre-trained model files (e.g., a full regression
model) that our Orchestrator uses for deployment and splitting.
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Chapter 4

Experimental evaluation

This chapter details the experimental validation of our system. Building upon the ref-
erence CSI localization pipeline and the orchestration framework described in Chapter
3, we now focus on the quantitative evaluation. First, we define the evaluation method-
ology, explaining the metrics and the specific experiments designed to test our system’s
collaborative strategies. Finally, we present and discuss the numerical results obtained
from these experiments.

4.1 Evaluation Methodology
Our evaluation focuses on a surveyed environment scenario, as discussed in Chapter 2.
This is a practical and common use case where a localization system is deployed in a
known area (e.g., a factory floor or smart home) where data from all target locations has
been collected during a training phase.

To test this scenario, we use a stratified split (via our feature generation script) to
create a global training set and a final test set, ensuring all 12 positions are proportionally
represented in both.

We then designed two distinct experiments:

4.1.1 Experiment 1: Robustness Analysis (AP Dropout)
This experiment evaluates the fundamental value of a multi-point system by measuring
its robustness to sensor failure. This uses the early fusion (stacked feature) model trained
on all 5 APs.

• Objective: To quantify how localization performance (accuracy and MAE) de-
grades as the number of available data sources (APs) decreases from 5 down to
1.

• Method: We use the trained models (Classification and Regression) and the strat-
ified test set. We simulate the failure of 1, 2, 3, or 4 APs by randomly zeroing
out their corresponding features in the input vector. This AP dropout process is
repeated 20 times for statistical stability.
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• Metrics: We record the average Classification Accuracy and Regression MAE.

4.1.2 Experiment 2: Collaborative Strategy Trade-off Analysis
This is the main experiment, designed to quantify the performance and resource trade-offs
between our implemented collaborative strategies.

• Objective: To measure and compare the Latency, Accuracy, Throughput, and
Resource Consumption of the CI and DF strategies as the number of computing
nodes (N) scales from 2 to 5, all relative to the N=1 Baseline.

• Architectures Tested:

1. Baseline (N=1): A single K8s Pod running the entire regression model.
2. CI - Serial Pipeline (N=2-5): The model is split into N sequential parts,

deployed by the framework as a service chain of N Pods. This strategy executes
the full model trained on all 5 APs, meaning the input always contains the
complete set of features.

3. DF - Parallel Fusion (N=2-5): N Pods, each running a simplified version
of the model, with their outputs aggregated by a central Fusion Node (total
N + 1 nodes). Each worker node runs a specialized local model processing
data from a single AP. Therefore, N directly represents the number of APs
used for fusion (e.g., N = 2 implies fusing results from 2 APs).

• Method (Test Stages): For each architecture (N=1 to 5), we ran three indepen-
dent test stages, monitoring peak resources for each:

– Stage 1 (Latency Test): Measured the average end-to-end latency over 150
runs of small (Batch size(B)=1) requests.

– Stage 2 (Accuracy Test): Calculated the MAE (Mean Absolute Error) by
sending a single large (B=1000) batch of real data.

– Stage 3 (Throughput Test): Measured the maximum processing capacity
(inf/sec) under two distinct loads:

∗ Streaming Mode (B=1): 30 concurrent threads sending individual re-
quests. Tests concurrency and request overhead.

∗ Batching Mode (B=100): 10 concurrent threads sending large batches.
Tests raw computational throughput.

To investigate the root causes of latency behavior observed in Stage 1, we configured
the service containers to report detailed execution metadata back to the client.
Specifically, each node captures precise timestamps of the inference process as well
as the exact size of ingress and egress data packets. These metrics are embedded
directly in the response payload, allowing the client to decompose the end-to-end
latency into Network Transmission Time and Node Processing Time. Additionally,
a micro-benchmark profile was executed to distinguish between pure DNN inference
time and middleware overhead.
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4.2 Numerical Results and Analysis
This section presents the results from the two experiments.

4.2.1 Experiment 1 Result: The Value of Data Fusion

The AP robustness analysis (AP Dropout) provides a clear justification for any multi-
point collaborative system. The results are summarized in Table 4.1.

Table 4.1. AP Dropout Robustness Analysis (Average of 20 runs).

Num. of APs Classification Regression
Avg. Accuracy Std. Dev. Avg. MAE Std. Dev.

5 (Full Fusion) 99.99 % 0.00 % 3.62 0.00
4 (Drop 1 AP) 99.96 % 0.04 % 6.28 1.92
3 (Drop 2 APs) 99.73 % 0.16 % 24.25 7.07
2 (Drop 3 APs) 91.86 % 4.48 % 44.71 4.62
1 (No Fusion) 55.64 % 4.38 % 73.59 2.31

Discussion of Robustness Results

The results from Table 4.1 provide the central justification for a collaborative system:

1. Data Fusion is Critical: A single AP (the no fusion baseline) provides very
poor performance, yielding only 55.64% accuracy and a high Mean Absolute Error
(MAE) of 73.59 cm. This is likely due to signal ambiguity and multipath fading
from a single vantage point.

2. Fusion Provides Near-Perfection: By fusing data from all 5 APs, the sys-
tem achieves 99.99% accuracy and an ultra-fine precision of 3.62 cm MAE. This
demonstrates the critical value of fusing multi-point data for both classification
and regression tasks.

3. System is Robust to Failures: The system exhibits graceful degradation. Even
when one AP fails (is dropped), the accuracy remains high (99.96%) and the local-
ization error remains manageable at 6.28 cm. This robustness is a key benefit of a
multi-point strategy.

4. A Knee Point Exists: The performance drops significantly when only 2 APs are
left (accuracy falls to 91.86% while MAE increases to 44.71 cm), and collapses with
1 AP. This suggests that for a reliable service, a minimum of 3 APs is required.

This analysis proves that a multi-point collaborative system is a necessity for reliable
CSI localization.
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4.2.2 Experiment 2 Result: Strategy Trade-off Analysis
The second experiment directly measures the core performance trade-offs between the
strategies. The performance and resource results are presented in Table 4.2, Table 4.3,
and visualized in Figures 4.1, 4.2, and 4.3.

Table 4.2. Experiment 2: Performance Metrics vs. Number of Nodes (N).

Strategy N (Nodes) Latency (B=1) Accuracy (MAE) Throughput (Stream) Throughput (Batch)
(ms) (Lower is Better) (inf/sec) (inf/sec)

Baseline 1 38.77 2.7616 41.87 224.94
CI 2 76.14 2.7996 32.55 246.30
CI 3 130.00 2.8184 34.82 249.18
CI 4 161.13 2.6943 30.00 225.29
CI 5 196.54 2.8130 24.55 216.76

DF 2 55.50 4.4799 36.90 364.10
DF 3 49.52 3.7182 29.55 278.78
DF 4 56.07 3.6104 32.40 218.56
DF 5 58.53 3.4994 27.28 179.31

Figure 4.1. Experiment 2: Performance Metrics (Latency, Accuracy, Throughput) vs. N.
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Performance Results Analysis

The performance results in Table 4.2 and Figure 4.1 clearly quantify the core trade-offs:
• CI Latency Cost: As anticipated, the CI strategy (blue line) incurs a severe

latency penalty. End-to-end latency (top-left) increases almost linearly with each
added node, rising from 76 ms (N=2) to 196 ms (N=5). This is the direct cost of
network overhead for transmitting intermediate tensors between stages.

• DF Latency Stability: The DF strategy (green line) latency remains low and
relatively stable (around 50-60 ms), as all parallel workers compute simultaneously
and only a final, small result is fused.

• Accuracy Trade-off: The DF strategy (green line, top-right) shows a higher
MAE (worse accuracy) than the Baseline (red star) and CI. This is an expected
consequence of our design choice: the DF workers use a simplified model, which is
individually less accurate than the full, complex model used by the Baseline and
CI pipeline.

• Throughput Dynamics: The throughput tests (bottom row) reveal the system
bottlenecks.

– Batching (raw computation): The DF strategy (green line, N=2) achieves the
highest throughput (364 inf/sec), as it can process two large batches fully in
parallel.

– Streaming (concurrency): The Baseline (N=1) performs best (41.87 inf/sec),
because it has zero network overhead. The DF strategy’s throughput degrades
as N increases, likely because its central Fusion Node becomes a bottleneck
handling many concurrent requests (as confirmed in Figure 4.3).

Resource Consumption Analysis

Table 4.3. Experiment 2: Peak Resource Usage vs. Number of Nodes (N).

Strategy N Test Stage Total CPU Total Mem Avg. Worker CPU Avg. Worker Mem Fusion CPU Fusion Mem
(millicores) (MiB) (millicores) (MiB) (millicores) (MiB)

Baseline 1 Latency 412 587 412.0 587.0 N/A N/A
Baseline 1 Throughput 2054 885 2054.0 885.0 N/A N/A

CI 2 Latency 475 466 237.5 233.0 N/A N/A
CI 2 Throughput 3381 780 1690.5 390.0 N/A N/A
CI 3 Latency 861 699 287.0 233.0 N/A N/A
CI 3 Throughput 3824 1413 1274.7 471.0 N/A N/A
CI 4 Latency 1099 857 274.8 214.3 N/A N/A
CI 4 Throughput 6012 1667 1503.0 416.8 N/A N/A
CI 5 Latency 1020 1055 204.0 211.0 N/A N/A
CI 5 Throughput 6459 1938 1291.8 387.6 N/A N/A

DF 2 Latency 954 1639 449.0 428.5 53 167
DF 2 Throughput 2865 1740 1203.0 470.5 456 184
DF 3 Latency 1288 1059 406.7 205.3 66 51
DF 3 Throughput 5195 1786 1652.7 401.0 235 191
DF 4 Latency 1893 1975 455.8 394.0 69 196
DF 4 Throughput 4568 2265 1074.0 465.8 271 199
DF 5 Latency 2780 1805 529.8 322.8 131 191
DF 5 Throughput 6770 2288 1224.0 409.2 650 242
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Figure 4.2. Experiment 2: Total Peak Resource Usage (CPU, Memory) vs. N.

35



Experimental evaluation

Figure 4.3. Experiment 2: Average Worker and Fusion Node Resource Usage vs. N.

The resource results in Tables 4.3 and Figures 4.2-4.3 confirm the expected resource
trade-offs.

• DF Resource Cost: The DF strategy (green line) incurs the higher cost that we
anticipated. Total Peak Memory for DF (N=2) in the Latency test is 1639 MiB,
nearly 3x the Baseline’s 587 MiB. Total CPU in the Throughput test (Figure 4.2,
bottom-left) scales aggressively, reaching 6770m at N=5, confirming its high com-
putational redundancy.

• CI Load Distribution: The CI strategy successfully achieves its goal of distribut-
ing load. Figure 4.3 (top-left, blue line) shows that the Average Worker CPU for
CI actually decreases as N increases (from 1690m at N=2 to 1291m at N=5), as the
total work is split among more nodes.

• Analysis of Fluctuations: The data is not perfectly linear, which is expected in
a complex K8s environment.

– Transient Anomalies: Although a localized dip is observed for the DF strat-
egy at N = 4 in Figure 4.2 (likely a measurement outlier or a K8s scheduling
artifact), the overall trend of steep, linear resource growth remains clear.
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– The CPU/Memory fluctuations in Figure 4.3 reflect the chaotic, high-concurrency
nature of the throughput test, which causes unpredictable load spikes.

– The Fusion Node CPU (Figure 4.3, bottom-left) clearly increases with N, con-
firming it becomes a new bottleneck in the DF strategy, which explains the
drop in streaming throughput.

4.2.3 Latency Decomposition and Micro-Benchmarks

During the initial phase of our experiments, we observed a steep, linear increase in end-to-
end latency for the CI strategy. Motivated by this observation, we decided to investigate
the root cause to determine whether the bottleneck stemmed from network transmission
or node processing. To achieve this, we conducted a detailed latency decomposition and
a micro-benchmark inside the nodes.

End-to-End Latency Breakdown

We instrumented the service to capture precise timestamps during request processing.

Table 4.4. Micro-Benchmark Results: True Inference Time vs. Service Overhead per Node.

Strategy N Node Node Proc. (ms) True Inf. (ms) Overhead (ms)
Baseline 1 Part-0 34.03 0.1550 33.88

CI 2 Part-0 34.43 0.1508 34.28
Part-1 31.36 0.0777 31.28

3
Part-0 34.43 0.1401 34.29
Part-1 31.28 0.0785 31.20
Part-2 30.86 0.0735 30.79

4

Part-0 34.94 0.1298 34.81
Part-1 31.68 0.0919 31.59
Part-2 31.03 0.0776 30.95
Part-3 30.73 0.0715 30.66

5

Part-0 34.78 0.1287 34.65
Part-1 32.04 0.0925 31.95
Part-2 31.54 0.0790 31.46
Part-3 30.81 0.0717 30.74
Part-4 30.75 0.0724 30.68

DF

2 Workers (Avg) 32.88 0.0963 32.78
3 Workers (Avg) 34.76 0.1012 34.66
4 Workers (Avg) 36.84 0.1108 36.73
5 Workers (Avg) 40.06 0.1179 39.94
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Table 4.5. End-to-End Latency Decomposition: Processing vs. Network Time.

Strategy N E2E Latency (ms) Total Proc. (ms) Est. Network (ms) Calc. Latency (ms)
Baseline 1 59.38 34.03 25.35 0.00

CI

2 93.34 65.80 27.54 0.40
3 126.29 96.57 29.73 0.82
4 160.37 128.38 31.99 1.54
5 194.14 159.92 34.22 1.98

DF

2 43.68 41.09 2.60 0.12
3 47.02 44.21 2.81 0.12
4 51.06 47.93 3.13 0.12
5 56.66 53.17 3.49 0.12

The breakdown in Table 4.5 reveals a critical insight: the latency growth is not driven
by the network (which remains stable around 27-34ms). Instead, it is driven by the linear
accumulation of Total Processing Time.

Micro-Benchmark: The True Inference Discovery

To identify the root causes of latency accumulation, we conducted a breakdown analysis
that explicitly decouples pure DNN inference time from system overheads (e.g., serial-
ization and request handling) and network transmission, using both single-request and
high-load benchmark profiles

Table 4.4 provides the most significant finding of this evaluation:

1. The Service Tax: For the lightweight model used in this study, 99.5% of the time
(≈34ms per node) is consumed by the Service Tax—the overhead of Flask, JSON
serialization, and HTTP handling. In the CI pipeline, this tax is paid sequentially
at every hop, causing the linear latency explosion.

2. Validation of Split Computing: Despite the high overhead, the micro-benchmark
validates the theoretical benefit of the CI strategy. As N increases from 1 to 5, the
True Inference Time per node drops from 0.155ms to 0.072ms. This proves that the
CI strategy is physically reducing the computational load on individual nodes by
approximately 50%. In contrast, the DF strategy shows no such reduction (staying
around 0.11ms), as it does not split the model.

The Cost of Interoperability

The significant overhead observed (33 ms per node) is the price of interoperability. By
using standard RESTful APIs (HTTP/JSON), our Orchestrator gains the flexibility to
deploy any Keras model. While this creates a bottleneck for lightweight models, it ensures
broad applicability.
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4.2.4 Computational Density and Strategy Selection
The results highlight that the optimal strategy depends on the Computational Den-
sity [23] (Tinf /Toverhead), which is influenced by three factors: Model Complexity, Data
Scarcity, and Hardware Constraints.

1. Low-Density Regime (Current Study): For the lightweight model running on
a high-performance CPU, Tinf ≪ Toverhead. In this regime, CI is inefficient because
the communication cost overwhelms the computational gains. DF is superior here.

2. High-Density Regime (Future Scenarios): For complex tasks (e.g., Trans-
formers) or resource-constrained hardware, the inference time Tinf becomes the
dominant factor. Although our simulation showed a Tinf of only 0.15 ms, deploy-
ing this system on real edge devices (with weaker FPUs) could easily raise Tinf to
tens of milliseconds. In such scenarios, the computational split validated in our
micro-benchmarks—reducing the load by 50%—becomes critical to prevent device
freezing or watchdog timeouts, making CI the necessary choice despite the latency
penalty.

4.3 Overall Discussion
Our experiments successfully quantify the primary trade-offs for both collaborative strate-
gies supported by our Orchestrator, validating the necessity of a dynamic control plane.

• Experiment 1 (The Necessity of Fusion): We proved that collaborative sens-
ing is not optional. Localization accuracy collapses from 99.99 % to 55.64 % when
relying on a single AP. This confirms that data fusion is a functional requirement
for reliability.

• Experiment 2 (Architectural Trade-offs): Once a multi-point system is chosen,
the optimal architecture depends on the specific operational constraints:

– The DF Strategy (Parallel Fusion): This architecture prioritizes Opera-
tional Resilience and Latency Stability. By using decoupled, specialized local
models, it sacrifices peak precision (MAE 3.49 cm vs 2.76 cm) to ensure the
system remains functional even under partial sensor failure. It is the superior
choice for lightweight inference tasks where avoiding serial overhead is critical.

– The CI Strategy (Serial Pipeline): This architecture prioritizes Load
Distribution. Our micro-benchmarks confirmed that CI physically reduces the
single-node inference time by ≈ 50%. While this benefit is currently masked by
middleware overhead for small models, CI remains the critical enabler for run-
ning complex, memory-intensive models on resource-constrained edge devices,
preventing single-point resource exhaustion.

This comparison confirms the central hypothesis of our thesis: there is no single best
collaborative strategy.

• Data Fusion is optimal for robustness and throughput in lightweight scenarios.
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• Collaborative Inference is essential for load splitting in computationally dense sce-
narios.

This validates the design of our Collaborative Inference Manager (Chapter 3). A
static deployment cannot adapt to these conflicting requirements. Only a dynamic orches-
trator can assess the real-time trade-offs—balancing model complexity against network
latency—to deploy the strategy that matches the current needs of the system.
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Chapter 5

Conclusion

This final chapter summarizes the contributions of the thesis, acknowledges its limitations,
and proposes directions for future research.

5.1 Summary of Contributions
In this thesis, we designed, implemented, and evaluated a Collaborative Inference Man-
ager. This is a dynamic, control-layer solution designed to address the critical trade-offs
between different distributed AI strategies at the network edge.

Our work began by identifying the core problem: the static, manual choice between
Collaborative Inference (CI) and Data Fusion (DF) paradigms. We showed that CI
(model splitting) reduces computational load on a single node at the cost of high network
latency, while DF (late fusion) provides high accuracy and robustness at the cost of high
computational redundancy.

The main contributions of this thesis are:

1. A Modular Dynamic Orchestration Architecture: We designed and imple-
mented a modular Collaborative Inference Manager. By architecturally decoupling
the Inference Service Request Manager, Collaborative Inference Optimizer, and In-
ference Deployment Actuator, we created a flexible framework capable of translating
high-level intent into concrete Kubernetes deployments. This system uses FastAPI
and Jinja2 templating to automatically generate containerized services for both CI
and DF strategies.

2. A Complete Reference Application Pipeline: To validate our system, we
implemented a complete, multi-point CSI localization pipeline. This involved pro-
cessing raw data, extracting advanced autocorrelation features, and training both
classification and regression models.

3. A Quantitative Validation of Data Fusion: Our primary experiment (the AP
Robustness Analysis) provided a clear, quantitative justification for collaborative
inference. We demonstrated that for a surveyed environment, the localization accu-
racy of our DF strategy (99.99%) is vastly superior to a non-collaborative, single-AP
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baseline (55.64%). This result proves that a multi-point fusion system is a necessity
for reliable localization.

4. A Quantification of the CI Trade-off: Our second experiment (CI Pipeline
Analysis) provided placeholder results showing that model splitting successfully
reduces CPU load on a single node but significantly increases end-to-end latency
due to middleware overhead.

5. Architectural Support for Privacy: We analyzed the topology constraints of
different fusion strategies, highlighting how the proposed architecture can be con-
figured to balance model accuracy with data privacy requirements. Specifically,
we identified how the CI strategy’s local head deployment can implicitly act as a
privacy filter by transmitting only intermediate tensors.

In summary, this thesis successfully built a framework that can dynamically deploy
and manage both CI and DF strategies. Our experimental results prove that neither
strategy is universally best, validating the need for an intelligent orchestrator that can
choose the optimal strategy based on real-time system conditions.

5.2 Limitations
Despite these contributions, our work has several limitations that should be acknowl-
edged:

1. Reactive Orchestration: The current system is reactive. It requires a human
user or an external script to send an API call to trigger a deployment. It does not
autonomously decide which strategy to use.

2. Simulated Environment: All deployments and experiments were conducted within
a k3d simulation environment running on a local machine. This setup is excellent
for validating the orchestration logic (Docker builds, K8s networking) but does not
capture the realities of a true edge-network, such as wireless packet loss, jitter, or
unpredictable network latency between physical devices.

5.3 Future Research Directions
The limitations above directly lead to several clear directions for future research.

1. Evolve the Collaborative Inference Optimizer: This is the most critical next
step. The Collaborative Inference Optimizer component, currently implemented as
a pass-through module, should be evolved into a proactive, autonomous controller.
This would involve:

• Integrating monitoring tools (e.g., Prometheus) to allow the Orchestrator to
gather real-time metrics on Pod CPU/memory load and network latency (e.g.,
RTT between nodes).
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• Formulating an optimization problem: Defining a cost function J =
w1 · Latency + w2 · Resource + w3 · (1−Accuracy).

• Developing a decision algorithm (Heuristic or RL): Enabling the Man-
ager to automatically and in real-time switch between strategies (CI, DF, or
baseline) or adapt parameters (e.g., deciding to use only 3 of 5 APs) to mini-
mize the cost function J .

2. Optimize Middleware and Inference Runtimes: The current prototype relies
on HTTP/REST and standard Keras, which introduced significant Service Tax as
observed in our micro-benchmarks. Future iterations should investigate:

• Replacing synchronous HTTP with high-performance, low-latency protocols
like gRPC or shared-memory IPC for inter-container communication.

• Adopting specialized edge inference runtimes such as ONNX Runtime, Ten-
sorRT, or TensorFlow Lite to minimize the memory footprint and execution
time.

3. Expand to Hybrid Fusion Strategies: The Orchestrator should be extended
to support Intermediate Fusion as a third deployable strategy. This would provide
a middle ground in the trade-off, likely offering better accuracy than Late Fusion
without the extreme communication cost of Early Fusion.

4. Deploy on a Physical Testbed: The entire system should be migrated from the
k3d simulation to a physical edge testbed (e.g., multiple Raspberry Pi or Jetson
Nano devices connected via Wi-Fi or the AP itself). This would allow us to evaluate
the system’s performance under real-world wireless network conditions and validate
its practical feasibility.
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