
POLITECNICO DI TORINO
Master Degree course in Communications Engineering

Master Degree Thesis

Performance Evaluation of HyperLogLog
for In-Network Flow Cardinality
Estimation on P4-Programmable

Switches

Supervisors
Prof. Paolo Giaccone
Prof. Andrea Bianco

Candidate
Amanj Malaei

Academic Year 2025-2026

Acknowledgements

My deepest gratitude goes to Prof. Paolo Giaccone, whose guidance, encouragement, and
dedication made this thesis possible. I am also thankful to Prof. Andrea Bianco for his
supervision throughout this research. Special thanks to Alessandro Cornacchia, whose
patience and enthusiasm kept me motivated throughout the ups and downs of this work.
My thanks also go to Zhihao Wang for his helpful contributions along the way. Finally,
to my parents and my dear brother Arman—your love and support mean everything to
me.

2

Abstract

Network traffic monitoring requires efficient cardinality estimation to count distinct flows
for applications such as anomaly detection and traffic engineering. Traditional exact
counting approaches are memory-intensive and do not scale to high-speed networks.
Probabilistic algorithms like HyperLogLog (HLL) offer memory-efficient alternatives by
trading exact accuracy for space efficiency.

This thesis presents a performance evaluation of HyperLogLog for in-network flow
cardinality estimation on P4-programmable switches. We implement an optimized HLL
variant on Intel Tofino hardware using the P416 programming language, focusing on
developing a robust monitoring framework for systematic performance assessment under
both synthetic and real network traffic.

We design an experimental methodology that includes: (1) a monitoring infrastruc-
ture with exponential random sampling for state observation, (2) ground truth validation
using hardware counters, (3) synthetic traffic generation at controlled rates, and (4) trace
replay capabilities for real-world traffic patterns. The system supports configurable mon-
itoring intervals and deterministic reset periods ensuring accurate comparison between
HLL estimates and ground truth.

This work demonstrates the practical viability of probabilistic cardinality estima-
tion in programmable network hardware, providing empirical insights into accuracy–
performance trade-offs and establishing a reproducible methodology for evaluating sketch-
based algorithms in production network environments.

Contents

1 Introduction 5

2 Background 7
2.1 Network Programmability . 7

2.1.1 Software-Defined Networking and Its Limitations 7
2.1.2 Programmable Data Planes and Intel Tofino 8

2.2 The P4 Language and Runtime . 10
2.2.1 Programming Protocol-Independent Packet Processors 10
2.2.2 P4Runtime: Control Plane Integration 13

2.3 Cardinality Estimation . 16
2.3.1 Counting Distinct Elements Problem 16
2.3.2 The HyperLogLog Algorithm . 16
2.3.3 Performance Characteristics of HyperLogLog 18

2.4 Unbiased Sampling via PASTA . 20
2.4.1 The Problem with Deterministic Sampling 20
2.4.2 Theoretical Foundation: PASTA 22
2.4.3 Solution: Exponentially Distributed Sampling Intervals 22

3 Windowed HLL (W-HLL) 23
3.1 Design Overview . 23
3.2 System Architecture Overview . 24

3.2.1 Data Plane Component . 24
3.2.2 Control Plane Component . 27
3.2.3 Data Flow . 27

3.3 P4 Data Plane Implementation . 29
3.3.1 Header Definitions and Parser . 29
3.3.2 Hash Computation . 30
3.3.3 TCAM-Based Rank Lookup . 32
3.3.4 Register Update . 32
3.3.5 Ground Truth Counter . 34

3.4 Control Plane Implementation . 34
3.4.1 BFRuntime Initialization . 34
3.4.2 TCAM Population . 35
3.4.3 Register Read Operations . 36

2

3.4.4 Counter Read Operations . 36
3.4.5 Reset Operations . 37
3.4.6 Event Scheduling and Coordination 37

3.5 HLL Estimation implementation . 38
3.5.1 Standard HLL Estimator . 38

4 Experimental Validation 41
4.1 Setup . 41

4.1.1 Testbed . 41
4.1.2 Network Configuration . 42
4.1.3 Software Environment . 43
4.1.4 Experimental Configuration . 43
4.1.5 Experimental Parameters . 45

4.2 Methodology . 45
4.2.1 Validation Approach . 46
4.2.2 Experimental Variables . 47
4.2.3 Synchronization Mechanisms . 47
4.2.4 Measurement Procedures . 47
4.2.5 Error Metrics . 48
4.2.6 PASTA Implementation . 50

4.3 Traffic Generation and Replay . 50
4.3.1 Synthetic Traffic Generation . 50
4.3.2 Real Traffic Traces . 52
4.3.3 Traffic Replay . 52

4.4 Ground Truth Measurement . 52
4.4.1 Synthetic Mode: Hardware Counter 53
4.4.2 Real Trace Mode: Software Flow Tracker 53
4.4.3 Synchronization and Verification 54

4.5 Experimental Results . 55
4.5.1 Synthetic Traffic Experiments . 55
4.5.2 Real Network Trace Validation . 65
4.5.3 Results Analysis . 74

Conclusion 75

Bibliography 77

3

4

Chapter 1

Introduction

The past twenty years have seen a significant change in network infrastructure. This
change has been driven by the rapid growth of cloud computing and a constant need for
connectivity. As hyperscale data centers have spread around the world to support various
services—such as video streaming, social networking, financial transactions, and scientific
computing—the networks linking these centers have become much larger and more com-
plicated. Service providers managing these infrastructures face a major challenge. They
need to maintain an understanding of traffic flow, track how many connections are active
at any moment, and know where resources are being used. This understanding is crucial
for functions like detecting anomalies, planning capacity, balancing loads, and meeting
service agreements. However, the size and speed of modern networks make traditional
monitoring methods less effective.

Counting distinct flows highlights the conflict between operational needs and practical
limitations. Accurately counting flows requires tracking every individual flow, which
uses memory based on the number of unique items. Given the data rates typical of
today’s networks—hundreds of gigabits per second with millions of active flows—this
method demands an impractical amount of memory and cannot keep up with processing
speeds. Researchers have long recognized this issue and have developed probabilistic data
structures that sacrifice perfect accuracy for significant reductions in memory use. One
such structure, HyperLogLog, is a particularly elegant solution. It uses only kilobytes
of memory to estimate counts in the billions, with a controlled relative error, regardless
of the actual count. Initially designed for database analytics, it has been adopted in
production systems at companies like Google and Redis. HyperLogLog offers the right
balance of accuracy and efficiency needed for network monitoring.

As researchers have made strides with probabilistic algorithms, network hardware has
also quietly evolved. Traditional network equipment—like routers and switches with fixed
functions—has been replaced by programmable data planes. These data planes allow
operators to control packet processing logic. The development of Protocol-Independent
Switch Architecture (PISA) and the P4 programming language has enabled experts to
create custom packet processing pipelines directly in switching hardware, maintaining the
same high throughput as fixed-function devices while allowing for different protocols and
in-network calculations. Intel Tofino switches, which apply this approach, include stateful

5

Introduction

memory that persists across packets. This feature makes it possible to run probabilistic
algorithms like HyperLogLog entirely within the data plane, at full speed, without needing
the control plane to process each packet.

This thesis looks into how practical it is to implement HyperLogLog for estimating flow
cardinality on P4-programmable switches. We create a complete system called Windowed
HyperLogLog (W-HLL). This system consists of a P4 data plane program running on Intel
Tofino hardware and a Python control plane that coordinates regular observations and
resets of the sketch state.

Beyond the implementation, this work sets up a formal experimental method for test-
ing sketch-based algorithms on network hardware. We understand that simple periodic
sampling can lead to systematic bias when traffic shows patterns over time. To address
this, we use exponentially distributed read intervals based on the PASTA theorem from
queueing theory. We validate our findings through two complementary scenarios: syn-
thetic traffic that establishes controlled ground truth and real network data captured
from the Politecnico di Torino campus network. Our experiments cover several window
configurations from five to one hundred seconds, allowing us to systematically assess the
accuracy-resolution trade-off.

Our results show that in-network HyperLogLog performs as well as theory predicts.
With two thousand buckets using just two kilobytes of memory, our implementation
achieves relative errors that align with theoretical expectations across various traffic
conditions. These results confirm that probabilistic cardinality estimation is not just
theoretical, but a practical tool for real-world network monitoring.

The rest of this thesis is organized as follows. Chapter 2 provides the technical foun-
dation needed to understand our implementation. It covers the development of network
programmability from Software-Defined Networking to PISA-based data planes, the P4
language and runtime environment, the HyperLogLog algorithm and its performance,
and the PASTA theorem shaping our sampling strategy. Chapter 3 details the design
and implementation of Windowed HyperLogLog, including both the P4 data plane setup
and the Python control plane managing monitoring tasks. Chapter 4 discusses our exper-
imental setup on the SUPERNET testbed at Politecnico di Torino, describes the methods
for measuring ground truth and analyzing errors, and presents comprehensive results for
both synthetic and real traffic. The thesis wraps up with a summary of contributions
and future research directions.

6

Chapter 2

Background

This chapter lays the groundwork needed to understand our Windowed HyperLogLog (W-
HLL) implementation on Intel Tofino programmable switches. We start with a look at
how network programmability has changed from traditional Software-Defined Networking
to data plane programmability in Section 2.1. Next, we explain the P4 language and
runtime environment, which allows us to express packet processing logic in simple terms in
Section 2.2. Finally, we introduce the HyperLogLog algorithm for estimating cardinality
with a probabilistic approach in Section 2.3. This algorithm serves as the basis for our
flow counting implementation.

2.1 Network Programmability

Network infrastructure has gone through several distinct phases in how much control
operators actually have over their systems. In traditional networks, the control and data
planes were tightly coupled inside proprietary hardware, which made it difficult to adapt
to new requirements or experiment with different approaches [10, 22]. Software-Defined
Networking changed this by separating the two planes—control logic moved to a central
location, though the data plane itself remained fixed in what it could do [20]. The final
piece came with programmable data planes, enabled by architectures like RMT [4] and
the P4 language [3], which made it possible to redefine how packets are actually processed.

2.1.1 Software-Defined Networking and Its Limitations

Software-Defined Networking brought a clean separation between control and data
planes [22]. Under this model, switches act as programmable forwarding elements that
maintain flow tables—each entry specifying what to match on (header fields) and what
to do about it (forward, drop, modify). A logically centralized controller keeps track of
the overall network state, figures out the forwarding behavior, and pushes rules down
to switches using protocols like OpenFlow [25]. This setup offered real benefits: having
control in one place avoids the headaches of distributed protocol convergence [20], policies
can be rolled out quickly through high-level programming, and standardized interfaces
mean you’re not locked into a single vendor [10].

7

Background

That said, SDN only made the control plane programmable—the data plane stayed es-
sentially fixed. OpenFlow switches can only match on fields and perform actions that are
baked into their specifications. When new protocols come along (VXLAN, GENEVE, cus-
tom headers), the whole ecosystem has to catch up: specification updates, ASIC redesigns
that take one to two years, and eventually replacing hardware across the network [3]. On
top of that, OpenFlow offers stateless match-action forwarding with basic counters, but
nothing more sophisticated. There are no register arrays, no atomic read-modify-write
operations like increment or max, and no way to run custom computations beyond the
predefined set [4, 31]. This rules out any network function that needs to update state
on a per-packet basis—things like sketches for traffic measurement [34], stateful firewalls
that track TCP connections [24], or token bucket rate limiters [2].

2.1.2 Programmable Data Planes and Intel Tofino

The Reconfigurable Match-Action Table (RMT) architecture [4] introduced a flexible
pipeline built from identical stages that can be configured when the switch is de-
ployed. Traditional ASICs dedicate each stage to a specific function, but RMT stages
are generic—any stage can perform table lookups (TCAM, exact match, longest prefix
match) on whatever packet fields you need, execute actions like modifying headers or
updating registers or doing arithmetic, and then hand the packet off to the next stage.
At the heart of RMT is the Packet Header Vector (PHV), essentially a wide register file
that holds the extracted headers. The parser fills in the PHV, match-action stages read
and modify its fields, and the deparser turns it back into an actual packet. By separating
packet processing (which works on the PHV) from storage (the packet buffer), this design
allows efficient memory access and the freedom to modify headers however you want [4].

The Protocol-Independent Switch Architecture (PISA) builds on RMT by defining the
full switch architecture [3]. It includes programmable parsers that extract headers using
configurable state machines (capable of handling arbitrary protocol sequences), separate
ingress and egress pipelines with their own match-action stages, and programmable de-
parsers that reassemble packets from the modified headers. The "protocol-independent"
label reflects something important: the architecture itself assumes nothing about what
packets look like—that’s entirely up to the program you load [3, 13]. Adding support
for a new protocol becomes a matter of compiling and loading a new configuration, not
redesigning silicon.

Intel Tofino [19] was the first commercial switch ASIC to put RMT and PISA into
practice, achieving 6.5 Tbps of aggregate throughput with sub-microsecond latency for
packet processing. The chip organizes its work across multiple parallel pipelines, each re-
sponsible for a share of the total port bandwidth. Figure 2.1 illustrates the architecture of
a 6.5 Tbps Tofino chip, showing its four identical processing pipelines. Each pipeline im-
plements the full PISA model. The ingress path handles parsing to extract headers, runs
match-action processing in the control block, and reconstructs packets in the deparser.
The traffic manager sits in the middle, buffering packets, handling replication, manag-
ing queues, and scheduling when things get sent out. Finally, the egress path re-parses
headers, applies any port-specific operations, and finalizes the packet structure. The port
blocks are flexible in how they can be configured—you can run 100 Gigabit interfaces,

8

2.1 – Network Programmability

Figure 2.1. Intel Tofino block diagram showing four parallel processing pipelines. Each
pipeline contains ingress and egress stages with programmable parsers, match-action con-
trol blocks, and deparsers. Packets flow through ingress processing, the traffic man-
ager (which handles buffering, queueing, and replication), and egress processing before
transmission (adapted from [19]).

9

Background

split them into four independent 25 Gigabit channels, or use several other modes. One
pipeline also connects to a CPU over PCIe for control plane communication [19].

For implementing sketch-based algorithms, Tofino provides some essential building
blocks [30]. Registers give you persistent memory arrays that can be accessed across
packets. RegisterAction enables atomic read-modify-write operations, which is critical for
avoiding race conditions. And counters provide hardware-accelerated 64-bit tracking of
both packet counts and byte counts. When it comes to runtime configuration, BFRuntime
exposes gRPC-based APIs for programming tables, reading and writing registers, and
pulling statistics.

2.2 The P4 Language and Runtime

Programmable hardware provides the foundation for flexible packet processing, but taking
advantage of that flexibility requires the right abstractions. The P4 language [3] and the
P4Runtime API [26] together form a complete programming environment—P4 lets you
define data plane behavior at a high level, while P4Runtime handles runtime control
through a standardized interface that doesn’t depend on any particular protocol.

2.2.1 Programming Protocol-Independent Packet Processors

P4 was created to address a fundamental limitation of SDN: OpenFlow made the control
plane programmable, but the data plane remained fixed [3]. P4 flips this around—rather
than programming table entries on switches with predetermined functions, P4 programs
define the tables, parsers, and processing logic themselves. Figure 2.2 shows where P4
fits in the SDN architecture. Traditional SDN uses OpenFlow to populate forwarding
tables on fixed-function switches, whereas P4 works at a higher level by configuring what
the switch actually does.

The language is built on three core principles [1]. Reconfigurability means operators
can change how packets are parsed and processed on deployed switches without swap-
ping out hardware. Protocol independence allows switches to handle arbitrary packet
formats—whatever the P4 program defines. And target independence keeps programs
portable across different hardware platforms, with vendor-supplied compilers handling
the translation. Figure 2.3 shows the contrast between traditional switch architectures
and P4-programmable ones.

P4 offers a set of fundamental abstractions for describing how packets should be pro-
cessed [1,3]. Headers define the structure of packet fields. Parsers specify state machines
that extract those headers. Tables map user-defined keys to actions. Actions describe
how packets get transformed. Control flow determines the sequence of processing through
the pipeline. And extern objects provide access to architecture-specific features—hash
functions, checksums, registers—through well-defined APIs. Figure 2.4 illustrates this
abstract forwarding model: packets pass through programmable parsers, then through
multiple match-action stages, and finally through programmable deparsers.

10

2.2 – The P4 Language and Runtime

Figure 2.2. P4’s role in network programmability. While traditional SDN APIs like Open-
Flow populate predefined forwarding tables, P4 programs configure the switch data plane
itself—defining parsers, tables, and actions. The control plane then manages the P4-defined
entities through generated APIs (adapted from [3]).

Figure 2.3. Comparison of traditional and P4-programmable switch architectures. Tradi-
tional switches implement fixed data plane functions defined by manufacturers; the control
plane manages predefined tables through standard protocols. P4-programmable switches
have no built-in protocol knowledge—the loaded P4 program defines all data plane func-
tionality, and the control plane accesses dynamically generated APIs corresponding to
program-defined entities (adapted from [1]).

11

Background

Figure 2.4. P4 abstract forwarding model showing packet flow through programmable
components. The parser extracts headers into a structured representation; match-ac-
tion stages in the ingress pipeline process packets and determine forwarding; the traffic
manager handles buffering and queueing; egress match-action stages perform port-specific
operations; the deparser reconstructs packets before transmission (adapted from [3]).

12

2.2 – The P4 Language and Runtime

A P4 program describes packet processing for a specific target architecture. Man-
ufacturers supply an architecture definition that specifies what components are avail-
able—parsers, pipelines, deparsers—and how they interface with each other. Program-
mers then write P4 code that conforms to this architecture, defining the headers, parsers,
match-action logic, and control flow. Figure 2.5 shows the complete workflow from writing
a P4 program to having it run on a switch.

Figure 2.5. P4 programming workflow showing the relationship between P4 program, ar-
chitecture model, compiler, and target device. The programmer writes target-independent
P4 code; the vendor-supplied compiler translates this to target-specific configuration and
generates control plane APIs; the control plane manages runtime state through these APIs
while the data plane executes compiled packet processing logic (adapted from [1]).

The P416 specification [1] was a significant redesign from the original P414. It cut
the keyword count from over 70 down to under 40 by moving functionality into libraries,
introduced modular constructs (parser, control, package, extern) for describing both
programmable and fixed components, and was designed with forward compatibility in
mind for long-term program development [1]. Compared to programming hardware di-
rectly—writing microcode for custom ASICs, for example—P4 brings substantial ad-
vantages: it abstracts away hardware-specific details, makes programs portable across
different platforms (Tofino, software switches, FPGAs), lets compilers handle resource
management automatically, and remains expressive enough for complex algorithms. You
also get the software engineering benefits you’d expect—type checking, modularity—along
with reusable libraries from vendors and the ability to debug using software switch im-
plementations [3, 31].

2.2.2 P4Runtime: Control Plane Integration

P4 defines what the data plane does, but network applications also need runtime con-
trol—installing forwarding rules, reading counters, querying statistics, and managing de-
vice state. P4Runtime [26] provides a standardized API for the control plane to interact
with P4-programmed switches. The API has several important properties: it’s protocol
independent, meaning it adapts to whatever functionality the loaded P4 program defines;
it’s target independent, working across hardware ASICs, FPGAs, and software switches; it

13

Background

offers control plane flexibility, supporting embedded, remote, or hybrid architectures; and
it enables multi-controller support, where role-based arbitration lets multiple controllers
connect while designating one as master for write operations [26].

Figure 2.6 shows the P4Runtime reference architecture with multi-controller support.
The target device runs the P4 data plane, and one or more controllers manage its op-
eration over gRPC. The P4Runtime architecture uses Protocol Buffers [15] for message

Figure 2.6. P4Runtime API reference architecture showing multi-controller support.
Controllers communicate with the target device via gRPC. The P4 compiler generates
P4Info metadata describing all controllable entities; controllers use this metadata to
interact with tables, registers, counters, and other objects defined in the loaded P4
program. Role-based arbitration ensures only one master controller has write access
to each entity type (adapted from [26]).

serialization and gRPC [14] for transport. The key components include the P4Runtime
API itself, defined in the p4runtime.proto specification; P4Info metadata that compilers
generate to describe all controllable entities (table names, match fields, action parame-
ters, register dimensions); ForwardingPipelineConfig, which bundles compiled programs
together with their metadata; and gRPC servers on the target devices that translate
P4Runtime operations into hardware-specific commands [26].

P4Runtime supports a range of deployment scenarios. Figure 2.7 shows an embedded
controller configuration, where the control plane runs directly on the switch CPU and
communicates with the on-board ASIC through P4Runtime over a local gRPC connection.
The core operations cover table management (inserting, modifying, and deleting match-
action entries), register access (reading and writing stateful memory arrays), counter
queries (retrieving packet and byte counts), pipeline configuration (installing or querying
the ForwardingPipelineConfig), and packet I/O (sending and receiving packets between
the control and data planes) [26]. When multiple controllers are connected, arbitration
mechanisms keep state management consistent: each controller declares its role, the sys-
tem designates one master controller per entity type, and only masters can perform writes
while all controllers can read [26].

14

2.2 – The P4 Language and Runtime

Figure 2.7. Single embedded controller architecture. The P4 embedded controller runs
on the switch CPU and communicates with the switch ASIC via P4Runtime over a local
gRPC connection. This configuration is suitable for appliances not requiring external
SDN control, where P4Runtime serves as an efficient embedded API for managing the
local data plane (adapted from [26]).

15

Background

2.3 Cardinality Estimation
Network monitoring often needs to count distinct elements in large data streams—unique
source IP addresses, active TCP connections, or distinct flow identifiers [9, 21]. Doing
this exactly with hash tables becomes prohibitively expensive at scale; tracking millions
of flows can require gigabytes of memory. Probabilistic cardinality estimation algorithms
offer a practical alternative, trading perfect accuracy for dramatic reductions in space
and making measurement feasible in high-speed networks [11].

2.3.1 Counting Distinct Elements Problem

Given a stream of elements S = {x1, x2, . . . , xn} where elements may repeat, the goal is
to estimate how many unique elements there are—this quantity is called the cardinality
n. We want a method that processes each element as it arrives in a single pass, uses far
less memory than storing every element, and produces an estimate n̂ close to the true
value: |n̂− n|/n ≤ ϵ with high probability [11].

Cardinality estimation addresses a range of network measurement challenges [9,21,34].
Flow counting estimates how many active TCP/UDP flows (unique 5-tuples) are present,
which matters for capacity planning and anomaly detection. Source diversity counts
the distinct source IPs contacting a server, useful for detecting DDoS attacks or flash
crowds. Spread estimation measures how many distinct destinations a given source con-
tacts, helping identify scanning behavior. Traffic matrix estimation counts flows between
origin-destination pairs to inform traffic engineering decisions. And protocol distribution
estimates how many distinct applications are in use, guiding QoS policies. Doing any
of this exactly would mean maintaining sets of all observed identifiers—something that’s
simply not feasible at line rate when you’re dealing with millions of flows [9].

2.3.2 The HyperLogLog Algorithm

HyperLogLog (HLL) [11] is a probabilistic cardinality estimator with remarkable space
efficiency: it can estimate cardinalities up to billions using only kilobytes of memory,
with typical error rates around 2%. The algorithm takes advantage of the statistical
properties of hash functions. A uniform hash function maps elements to bit strings where
every bit pattern is equally likely. Now consider the position of the first ‘1’ bit—called
the rank or level. Patterns with k leading zeros occur with probability 1/2k+1. So if we
observe a hash with rank ρ = k, we can infer that roughly 2k distinct elements have been
hashed—seeing rare patterns (high ranks) suggests many observations [11]. Figure 2.8
illustrates this concept. A single maximum, however, makes for a poor estimator—the
variance is too high. HyperLogLog improves accuracy through stochastic averaging [11]:
divide the input space into m buckets, keep track of the maximum rank independently
for each bucket, and then combine these estimates using the harmonic mean to bring
down the variance. The algorithm works as follows: start by initializing an array of m
registers M [0], . . . , M [m−1]← 0. For each element x, compute its hash h(x), extract the
bucket index j from the leftmost b bits (where m = 2b), compute the rank ρ(w) from the
remaining bits as the position of the first ‘1’ bit, and update M [j]← max(M [j], ρ(w)) [11].

16

2.3 – Cardinality Estimation

Figure 2.8. HyperLogLog conceptual workflow. Input elements are hashed to 32-bit val-
ues, partitioned into bucket index (11 bits) and rank bits (21 bits). The rank ρ represents
the position of the first ‘1’ bit—high ranks occur rarely (probability 1/2ρ) and indicate
many distinct observations. Each bucket maintains the maximum rank observed. The
final cardinality estimate combines all bucket values using the harmonic mean, providing
robustness against outlier buckets with unusually high ranks.

17

Background

Table 2.1. HyperLogLog Algorithm (Pseudocode)

Input: Stream S = {x1, x2, . . . , xn}, number of buckets m = 2b

Output: Cardinality estimate n̂

1. Initialize M [0 . . . m− 1]← 0
2. For each x in S:

a. h← hash(x)
b. j ← leftmost b bits of h (bucket index)
c. w ← remaining bits of h
d. ρ← position of leftmost ‘1’ in w (rank)
e. M [j]← max(M [j], ρ)

3. Z ←
∑︁m−1

j=0 2−M [j]

4. Eraw ← αm ·m2/Z
5. If Eraw ≤ 2.5m and V > 0 (empty buckets):

E ← m · log(m/V) (small range correction)
Else if Eraw > 2L/30:

E ← −2L · log(1− Eraw/2L) (large range correction)
Else: E ← Eraw
6. Return E

Once the stream has been processed, the cardinality is estimated using the harmonic
mean [11]:

Z =
m−1∑︂
j=0

2−M [j] (2.1)

Eraw = αm ·m2 · 1
Z

(2.2)

where αm is a bias correction constant that depends on m. For large m, it’s approxi-
mately αm ≈ 0.7213/(1+1.079/m). The harmonic mean provides robustness against out-
liers—buckets with unusually high values contribute less weight to the final estimate [11].

The raw estimate is biased at extreme ranges and needs correction [17]. When Eraw ≤
2.5m and there are empty buckets (count V > 0), a small range correction is applied:
E = m · log(m/V), based on linear counting [9]. When Eraw > 2L/30 for L-bit hashes, a
large range correction handles hash collisions: E = −2L · log(1−Eraw/2L) [17]. Figure 2.9
shows how these corrections keep the bias near zero across the full range of cardinalities.
Table 2.3.2 summarizes the complete HyperLogLog algorithm in pseudocode form.

2.3.3 Performance Characteristics of HyperLogLog

HyperLogLog with m buckets and ℓ-bit registers uses m · ℓ bits of memory—a constant
amount regardless of how large the stream cardinality gets [11]. The relative standard
error is σHLL = 1.04/

√
m, which doesn’t depend on the actual cardinality [11]. With

m = 2048 buckets and 8-bit registers, for example, you get 2 KB of memory usage

18

2.3 – Cardinality Estimation

Figure 2.9. HyperLogLog median relative bias versus true cardinality. The raw
HLL estimator exhibits significant bias peaking around intermediate cardinalities,
while the bias-corrected estimator maintains near-zero bias across all ranges through
empirical corrections (reproduced from [17]).

19

Background

and roughly 2.3% error. This scale invariance sets HLL apart from sampling-based
approaches, where error tends to grow with cardinality [9, 21].

The accuracy of HyperLogLog depends heavily on the quality of the hash function [11].
It needs uniformity (hash values spread evenly), independence (different inputs produce
independent hashes), and the avalanche property (small changes in input lead to drasti-
cally different hashes). Common choices include MurmurHash3 and xxHash for software
implementations, or hardware-accelerated CRC32 for switches [17]. One particularly use-
ful property of HyperLogLog is that sketches can be merged: given two HLL sketches
HLLA and HLLB, you can compute HLLA∪B simply by taking the element-wise maxi-
mum, MA∪B[j] = max(MA[j], MB[j]) [11]. This makes distributed cardinality estimation
possible across multiple switches without needing to exchange raw data.

HyperLogLog grew out of earlier probabilistic counting methods [7, 12]. Flajolet-
Martin introduced probabilistic counting based on bit patterns [12]. Linear Probabilistic
Counting used bit vectors but required O(n) space. LogLog brought in stochastic averag-
ing, though it relied on the arithmetic mean [7]. HyperLogLog’s switch to the harmonic
mean dramatically improved accuracy [11]. Later, HyperLogLog++ [17] added improved
empirical bias correction and a sparse representation, and is now deployed in production
systems like Google BigQuery, Redis, and Elasticsearch.

In short, HyperLogLog offers a practical solution for cardinality estimation in
resource-constrained, high-throughput environments. A few kilobytes can estimate bil-
lions of elements, the error is bounded and independent of cardinality, the operations are
simple enough for hardware implementation, sketches can be merged for distributed es-
timation, and single-pass constant-time updates allow line-rate operation [11,17]. These
properties make HLL well suited for implementation on programmable switches, where
memory is limited to megabytes of SRAM and per-packet processing has to fit within
pipeline stage constraints measured in nanoseconds [31,34].

2.4 Unbiased Sampling via PASTA

Accurate network monitoring requires periodically reading statistics from data plane reg-
isters, but how you decide when to sample has a significant impact on measurement
accuracy. This section examines why naive approaches tend to fail and how the PASTA
property (Poisson Arrivals See Time Averages) leads to unbiased observation.

2.4.1 The Problem with Deterministic Sampling

A natural approach to periodic monitoring is fixed-interval sampling—reading registers
every ∆t seconds. The problem with this deterministic strategy is that it risks phase-
locking with periodic traffic patterns, consistently observing the same phase of the system
rather than capturing all phases representatively [29,32].

Figure 2.10 illustrates this phenomenon. Consider periodic bursty traffic that al-
ternates between high-rate bursts and low-rate idle periods. If the sampling interval
happens to align with the traffic period, observations will systematically capture only
one phase—always the idle periods, for instance—which severely biases the estimated

20

2.4 – Unbiased Sampling via PASTA

average. This synchronization problem is especially concerning in networks, where traffic
often follows diurnal patterns, periodic application behavior, or regular protocol timers.

Figure 2.10. Deterministic sampling can synchronize with periodic traffic pat-
terns, leading to biased observations that capture only specific phases rather than
representative system behavior.

The fundamental issue is that deterministic sampling effectively “anticipates” when
its future observations will happen. When those times correlate with periodicity in the
system, the observations no longer reflect the true time-average behavior.

21

Background

2.4.2 Theoretical Foundation: PASTA

The solution to the phase-locking problem comes from a classical result in queueing
theory. The PASTA property, established by Wolff [32], states that for Poisson arrivals,
the fraction of arrivals that find a system in a particular state equals the fraction of time
the system spends in that state.

More formally, consider a stochastic process {N(t), t ≥ 0} representing the system
state, and let {A(t), t ≥ 0} be a Poisson process with rate λ. Define:

• V (t): the fraction of time during [0, t] that N is in some state B

• Z(t): the fraction of Poisson arrivals in [0, t] that find N in state B

The PASTA theorem says that V (t)→ V (∞) almost surely if and only if Z(t)→ V (∞)
almost surely.

What makes this result possible is the Lack of Anticipation Assumption (LAA): future
increments of the arrival process must be independent of the system’s past history. The
Poisson process satisfies this naturally because of its memoryless property—each arrival
time tells you nothing about when the next one will occur. Deterministic sampling, by
contrast, violates the LAA since future observation times are entirely predictable from
the current time.

2.4.3 Solution: Exponentially Distributed Sampling Intervals

Applying PASTA to our monitoring problem, we replace fixed intervals with random
intervals drawn from an exponential distribution:

∆t ∼ Exp(λ), where λ = 1
µread

(2.3)

Here, µread is the desired mean interval between observations.
This creates a Poisson process of observation times, directly satisfying the LAA. By

PASTA, these randomized observations yield the same time-averaged statistics as contin-
uous monitoring, regardless of underlying traffic patterns. The exponential distribution’s
memoryless property [29] ensures that each observation time is statistically independent
of previous observations and any system periodicities—breaking the synchronization that
causes phase-locking in deterministic sampling.

22

Chapter 3

Windowed HLL (W-HLL)

A variety of sketch-based algorithms have been proposed for network monitoring [5,8,21].
Our work builds on these foundations by implementing HyperLogLog directly in pro-
grammable switch hardware. The implementation adapts the HyperLogLog algo-
rithm [11] for windowed cardinality estimation in high-speed programmable switches.
Unlike traditional HLL deployments that maintain a single continuous sketch, we im-
plement a windowed variant (W-HLL) that periodically resets register states to provide
cardinality estimates over fixed time intervals. This enables temporal traffic analysis [23]
and anomaly detection while preserving the memory efficiency of probabilistic counting.

3.1 Design Overview

The windowed design introduces two key operational parameters:

• Reset interval (Treset): This defines how long each monitoring window lasts.
Registers are cleared at exact multiples of Treset to establish deterministic temporal
boundaries.

• Read interval (µread): This controls the mean time between register observations.
Reads follow an exponential distribution to avoid periodic sampling artifacts.

The system supports two operational modes for validation:

• Synthetic traffic mode: Uses generated PCAP files where each packet has a
unique source IP, allowing rapid validation with the hardware counter serving as
ground truth.

• Real trace mode: Replays actual network captures, enabling comprehensive ac-
curacy assessment with realistic traffic patterns where multiple packets may share
the same source IP.

This chapter details the W-HLL implementation, beginning with the overall system
architecture (Section 3.2), then covering data plane design (Section 3.3), control plane
implementation (Section 3.4), and HLL estimation (Section 3.5).

23

Windowed HLL (W-HLL)

Comparison with existing P4-based HLL implementations: Unlike existing P4
sketch libraries such as SketchLib [33], which use two separate hash functions—one for
bucket selection and another for rank computation—our implementation uses a single 32-
bit CRC hash that gets partitioned into two fields through bit indexing (Section 3.3.2).
This reduces computational overhead by eliminating one hash operation per packet while
still maintaining the statistical independence that HyperLogLog requires, since different
bit ranges of a well-distributed hash function remain independent [11].

3.2 System Architecture Overview
The W-HLL monitoring system has two main components: the P4 data plane [3] running
on the Intel Tofino switch [19], and a Python control plane that communicates through
the BFRuntime API. Figure 3.1 shows the complete system architecture.

3.2.1 Data Plane Component

The P4 program implements the core packet processing pipeline through the following
stages:

1. Parsing: Extracts Ethernet and IPv4 headers using SwitchIngressParser, with
optional VLAN tag support.

2. Hashing: Computes a 32-bit CRC hash of the source IPv4 address using polyno-
mial 0x790900f3.

3. Index splitting: Partitions the hash into an 11-bit bucket index (h[31 : 21]) and
a 21-bit rank value (h[20 : 0]).

4. TCAM lookup: Maps the rank value to a level (leading zero count + 1) using
longest prefix match.

5. Register update: Updates the HLL bucket in the cs_table register array us-
ing the max operation—if level > cs_table[index], then cs_table[index] ←
level.

6. Counter increment: Increments a 64-bit hardware packet counter.

The pipeline processes packets at line rate [4, 22] with deterministic single-pass up-
dates. Figure 3.2 illustrates how packets flow through these stages.

24

3.2 – System Architecture Overview

Figure 3.1. W-HLL system architecture showing the interaction between data plane
processing and control plane monitoring.

25

Windowed HLL (W-HLL)

Figure 3.2. Packet processing pipeline showing the sequential stages.

26

3.2 – System Architecture Overview

3.2.2 Control Plane Component

A Python monitoring script orchestrates the monitoring cycle using event-driven schedul-
ing. It performs five key operations:

1. Counter reads: Retrieves the 64-bit packet counter value

2. Register reads: Retrieves all 2048 register values, completing in approximately
245 ms

3. HLL estimation: Computes cardinality estimate using the standard HLL estima-
tor with small-range correction and large-range correction as needed

4. Data logging: Appends measurements (timestamp, HLL estimate, counter value)
to CSV file

5. Reset operations: Clears all HLL registers and the packet counter at fixed inter-
vals Treset

The control plane connects to the switch over gRPC (port 50052). Read intervals follow an
exponential distribution with mean µread to implement Poisson sampling, which avoids
synchronization with periodic traffic patterns. Priority-based scheduling ensures that
when a read and reset coincide, the read executes first (priority 1) before the reset (priority
2). Figure 3.3 illustrates the control plane monitoring loop.

3.2.3 Data Flow

The W-HLL monitoring workflow proceeds as follows:

1. Traffic enters the Tofino switch through the ingress port.

2. The data plane processes each packet: it computes the hash, updates the HLL
bucket, and increments the counter.

3. The control plane periodically reads the counter value.

4. The control plane reads all 2048 HLL registers.

5. The control plane computes the HLL estimate and logs the tuple (time, HLL esti-
mate, counter) to a CSV file.

6. At each interval Treset, the control plane clears all registers and the counter.

7. The monitoring cycle repeats with exponentially distributed read intervals.

This architecture ensures deterministic window boundaries and unbiased sampling of
the HLL state throughout each monitoring interval.

27

Windowed HLL (W-HLL)

Figure 3.3. Control plane monitoring loop coordinating reads, estimation, and resets.

28

3.3 – P4 Data Plane Implementation

3.3 P4 Data Plane Implementation
The P4 data plane is organized into five main components: header definitions, parser
logic, hash computation, TCAM-based rank lookup, and register update primitives.

3.3.1 Header Definitions and Parser

The headers.p4 file defines standard Ethernet and IPv4 headers:

Header Definitions (headers.p4)

1 // Type definitions for network addresses
2 typedef bit<48> mac_addr_t; // MAC: 48-bit address (6 bytes)
3 typedef bit<32> ipv4_addr_t; // IPv4: 32-bit address (4 bytes)
4

5 // Ethernet header structure (14 bytes total)
6 header ethernet_h {
7 mac_addr_t dst_addr; // Destination MAC (6 bytes)
8 mac_addr_t src_addr; // Source MAC (6 bytes)
9 bit<16> ether_type; // Protocol type (2 bytes)

10 }
11

12 // IPv4 header structure (20 bytes minimum)
13 header ipv4_h {
14 bit<4> version; // IP version = 4
15 bit<4> ihl; // Header length in 32-bit words
16 bit<8> tos; // Type of Service / DSCP
17 bit<16> total_len; // Total packet length (bytes)
18 bit<16> identification; // Fragment ID
19 bit<3> flags; // Fragmentation flags
20 bit<13> frag_offset; // Fragment offset (8-byte units)
21 bit<8> ttl; // Time To Live counter
22 bit<8> protocol; // Upper layer protocol (TCP=6, UDP=17)
23 bit<16> hdr_checksum; // Header integrity checksum
24 ipv4_addr_t src_addr; // Source IP - HLL hash input
25 ipv4_addr_t dst_addr; // Destination IP
26 }

The SwitchIngressParser extracts these headers using a state machine:

Parser Logic (SwitchIngressParser)

1 parser SwitchIngressParser(...) {
2 state start {
3 pkt.extract(hdr.ethernet); // Extract 14-byte Ethernet header
4 transition select(hdr.ethernet.ether_type) {
5 ETHERTYPE_IPV4: parse_ipv4; // If EtherType=0x0800, parse IPv4
6 default: accept; // Skip non-IPv4 (VLAN, ARP, etc.)
7 }
8 }
9

10 state parse_ipv4 {

29

Windowed HLL (W-HLL)

11 pkt.extract(hdr.ipv4); // Extract 20-byte IPv4 header
12 transition accept; // Parsing complete, go to ingress
13 }
14 }

This parser handles Ethernet and IPv4 only. VLAN tags and other L2/L3 protocols
are not processed in the current implementation, but support can be added as needed.

3.3.2 Hash Computation

HyperLogLog requires a hash function that uniformly distributes flow identifiers across
the output space. We use Tofino’s hardware CRC unit configured with polynomial
0x790900f3, which provides good uniformity [27] and can be computed in a single pipeline
stage.

The hash function is defined in API_common.p4:

Hash Computation Control

1 // P4 macro defining hash computation for IPv4 source addresses
2 #define HASH_COMPUTE_SRCIP_32_32(polynomial) \
3 control HASH_COMPUTE_SRCIP_32_32(\ // Control block

name
4 in ipv4_addr_t srcAddr, \ // Input: 32-bit

source IP
5 out bit<32> result)(bit<32> polynomial) \ // Output: 32-bit

hash value
6 { \
7 Hash<bit<32>>(HashAlgorithm_t.CUSTOM, polynomial) hash; \ // CRC hash with

custom polynomial
8 apply { result = hash.get({srcAddr}); } \ // Compute hash of

source IP
9 }

10

11 HASH_COMPUTE_SRCIP_32_32(32w0x790900f3) full_hash; // Instantiate with
polynomial 0x790900f3

In the main ingress control block, the hash is applied and partitioned:

Hash Application and Partitioning

1 bit<32> hash_val; // 32-bit CRC hash output
2 full_hash.apply(hdr.ipv4.src_addr, hash_val); // Compute hash of source IP
3

4 bit<11> index = hash_val[31:21]; // Extract upper 11 bits for bucket selection
5 bit<21> sampling_hash = hash_val[20:0]; // Extract lower 21 bits for rank computation

The 11-bit index selects one of 2048 HLL buckets. The 21-bit rank value determines
the leading zero count via TCAM lookup. Figure 3.4 illustrates this partitioning.

30

3.3 – P4 Data Plane Implementation

Figure 3.4. Hash partitioning: 32-bit hash split into 11-bit index and 21-bit rank value.

31

Windowed HLL (W-HLL)

3.3.3 TCAM-Based Rank Lookup

To compute the leading zero count of the 21-bit rank value efficiently, We use a TCAM
table with longest prefix match (LPM) [16] to map the 21-bit rank value to its leading
zero count in O(1) time.

The lpm_optimization_32 control implements this mapping:

TCAM-Based Rank Lookup Control

1 control lpm_optimization_32(
2 in bit<21> sampling_hash, // Input: 21-bit hash value from lower bits
3 out bit<8> ret_level) // Output: leading zero count + 1
4 {
5 action tbl_act(bit<8> level) {
6 ret_level = level; // Assign matched level to output
7 }
8

9 table tbl_select_level {
10 key = {
11 sampling_hash : lpm; // Longest prefix match on hash bits
12 }
13 actions = {
14 tbl_act; // Single action: return level
15 }
16 const default_action = tbl_act(0); // Default: level 0 (no match)
17 }
18

19 apply {
20 tbl_select_level.apply(); // Execute TCAM lookup
21 }
22 }

The control plane populates this table with 21 entries at startup.The TCAM’s LPM
logic ensures correct operation: when a hash matches multiple entries, the longest match-
ing prefix wins, correctly identifying the first ‘1’ bit position. Figure 3.5 illustrates the
TCAM structure.

3.3.4 Register Update

The HLL state is implemented as a Tofino register array:

HLL Register Definition

1 Register<bit<8>, bit<11>>(2048) cs_table;

Each of the 2048 buckets stores an 8-bit value representing the maximum level ob-
served for that bucket. The register is updated using a RegisterAction that implements
the HLL max operation:

32

3.3 – P4 Data Plane Implementation

Figure 3.5. TCAM-based rank lookup mapping 21-bit values to levels in O(1) time.

33

Windowed HLL (W-HLL)

HLL Register Update Action

1 RegisterAction<bit<8>, bit<11>, void>(cs_table) cs_action = {
2 void apply(inout bit<8> curr_val) {
3 if (level > curr_val) { curr_val = level; }
4 }
5 };

In the ingress pipeline, the action is invoked for each IPv4 packet:

HLL Register Update Invocation

1 cs_action.execute(index); // index = hash_val[31:21]

This ensures that each bucket correctly tracks the maximum rank (rarest hash pat-
tern) observed, as required by the HyperLogLog algorithm.

3.3.5 Ground Truth Counter

To enable validation, we include a hardware packet counter:

Ground Truth Counter Definition

1 Counter<bit<64>, bit<1>>(1, CounterType_t.PACKETS) ground_truth_counter;

This 64-bit counter increments for every IPv4 packet processed:

Ground Truth Counter Increment

1 ground_truth_counter.count(1w0); // Single counter at index 0

The counter provides a hardware-based packet count that serves as a reference for
validation. In synthetic traffic experiments where each packet has a unique source IP,
the packet count equals the true cardinality directly. The control plane reads the counter
through BFRuntime and resets it along with the HLL registers at each window boundary.

3.4 Control Plane Implementation
The Python control plane (hll_gt_monitor_switch_rs.py) manages the monitoring life-
cycle through the BFRuntime API. TCAM initialization is handled separately at startup
by bfrt_populate.py (Section 3.4.2).

3.4.1 BFRuntime Initialization

The script connects to the Tofino switch via gRPC [14] and retrieves table references
using BFRuntime APIs [18]:

34

3.4 – Control Plane Implementation

BFRuntime Initialization

1 import bfrt_grpc.client as gc
2

3 # Create client interface
4 interface = gc.ClientInterface(grpc_addr=’localhost:50052’, # gRPC server address
5 client_id=4, # Unique client ID
6 device_id=0) # Target device
7

8 # Bind compiled P4 program
9 interface.bind_pipeline_config(PROGRAM_NAME) # Load P4 program

10

11 # Create target object
12 target = gc.Target(device_id=0, pipe_id=0xFFFF) # All pipes
13

14 # Get table references
15 hll_table = bfrt_info.table_get("SwitchIngress.update.cs_table") # HLL registers
16 counter_table = bfrt_info.table_get("SwitchIngress.update.ground_truth_counter") #

Packet counter

The grpc_addr specifies the BFRuntime server address on port 50052. The
client_id distinguishes this control plane instance from any concurrent clients. Set-
ting pipe_id to 0xFFFF targets all pipes.

3.4.2 TCAM Population

At startup, the TCAM is populated by running "bfshell -b bfrt_populate.py":

TCAM Population

1 # Populate TCAM table with 21 entries for leading zero detection
2

3 for level in range(1, 22): # Levels 1-21 map to 0-20 leading zeros
4 prefix_value = (1 << (21 - level)) # Binary pattern: ’0...01xxx...x’ for level
5 prefix_len = level # Match the first ’level’ bits
6 tcam_table.add_with_tbl_act(
7 sampling_hash=prefix_value, # Pattern to match(e.g., 0x100000 for level

=1)
8 sampling_hash_p_length=prefix_len, # Prefix length for LPM
9 level=level) # Return value: leading_zeros + 1

10

11 # Example entries created by this loop:
12 # level=1: prefix=0x100000/1 -> matches ’1xxxxx...’ -> 0 leading zeros
13 # level=2: prefix=0x80000/2 -> matches ’01xxxx...’ -> 1 leading zero
14 # level=21: prefix=0x00001/21 -> matches ’0...01’ -> 20 leading zeros
15 # The TCAM performs longest prefix match (LPM): when multiple entries match,
16 # the one with the longest prefix wins, correctly identifying the position
17 # of the first ’1’ bit in O(1) hardware time.

The TCAM uses longest-prefix-match to detect the first ‘1’ bit position. The table

35

Windowed HLL (W-HLL)

encoding is:
level = (leading zeros) + 1 (3.1)

This encoding is crucial for the HLL register update logic. The RegisterAction
performs max(current_val, level), correctly tracking the maximum rank observed in
each bucket.

3.4.3 Register Read Operations

Register reads retrieve all 2048 HLL bucket values using a bulk grpc read operation with
retry logic for robustness:

HLL Register Read Function

1 def read_registers(max_retries=3):
2 """Read all 2048 HLL register values"""
3 for attempt in range(max_retries): # Retry loop
4 try:
5 registers = [0] * NUM_REGISTERS # Init 2048-element list
6 for entry, key in hll_table.entry_get(target): # Fetch all entries
7 index = key.to_dict()[’$REGISTER_INDEX’][’value’] # Get index
8 value = entry.to_dict()[’SwitchIngress.update.cs_table.f1’][0] #

Get level
9 registers[index] = value # Store at position

10 return registers # Return complete array
11 except Exception as e: # Handle errors
12 if attempt == max_retries - 1: # Last attempt
13 print(f"Read failed: {e}") # Log failure
14 return None # Indicate error

The call hll_table.entry_get(target) returns a generator yielding all table entries,
completing in approximately 245 ms.

3.4.4 Counter Read Operations

The packet counter is read using a similar approach:

Counter Read Function

1 def read_ground_truth_counter(max_retries=3):
2 """Read the 64-bit packet counter"""
3 for attempt in range(max_retries):
4 try:
5 for entry, key in counter_table.entry_get(target):
6 packets = entry.to_dict()[’$COUNTER_SPEC_PKTS’]
7 return packets
8 except Exception as e:
9 if attempt == max_retries - 1:

10 print(f"Counter read failed: {e}")
11 return None

36

3.4 – Control Plane Implementation

3.4.5 Reset Operations

Reset operations clear both HLL registers and the packet counter using bulk deletion:

Reset Function

1 def perform_reset(sched):
2 """Clear all HLL registers and packet counter"""
3 hll_table.entry_del(target) # Clear all 2048 registers
4 counter_table.entry_del(target) # Clear counter
5 print(f"[{int(time.time() - start_time)}s] Reset")
6 sched.enter(RESET_INTERVAL, 2, perform_reset, (sched,))

Calling entry_del(target) without specific keys deletes all entries, resetting all reg-
isters to their default value (0). Resets are scheduled at deterministic intervals that are
exact multiples of RESET_INTERVAL.

3.4.6 Event Scheduling and Coordination

The monitoring loop uses Python’s sched.scheduler to coordinate operations:

Event Scheduling

1 scheduler = sched.scheduler(time.time, time.sleep)
2

3 def perform_read(sched):
4 """Execute monitoring cycle"""
5 ground_truth = read_ground_truth_counter() # Read counter
6 registers = read_registers() # Read HLL registers
7 estimate = calculate_hll(registers) # Compute estimate
8 log_estimate(estimate, ground_truth) # Log to CSV
9

10 # Schedule next read with exponential delay
11 delay = random.expovariate(1.0 / MEAN_READ_INTERVAL)
12 sched.enter(delay, 1, perform_read, (sched,))
13

14 # Queue initial events
15 scheduler.enter(random.expovariate(1.0 / MEAN_READ_INTERVAL), 1,
16 perform_read, (scheduler,))
17 scheduler.enter(RESET_INTERVAL, 2, perform_reset, (scheduler,))
18

19 # Start event loop
20 scheduler.run()

Read interval randomization: Read operations use exponentially distributed inter-
vals, forming a Poisson process [29] with mean rate λ = 1/µread. This provides statistical
independence, avoids synchronization with periodic traffic, and enables unbiased sam-
pling.

37

Windowed HLL (W-HLL)

Priority-based scheduling: Read operations are assigned priority 1 and reset oper-
ations priority 2. When events coincide, the lower priority number executes first, so the
final window state is captured before the reset clears it.

Error handling: Both read operations include retry logic with graceful error handling
to ensure robustness against transient gRPC failures or network issues.

3.5 HLL Estimation implementation
The control plane computes HLL cardinality estimates using the standard estimator [11]
with small-range correction. Large-range corrections [17] can also be implemented if the
cardinality is expected to be very large (beyond 232).

3.5.1 Standard HLL Estimator

Given 2048 register values M [0], M [1], . . . , M [2047], the raw HLL estimate is:

Z =
m−1∑︂
j=0

2−M [j] (3.2)

Eraw = αm ·m2 · 1
Z

(3.3)

where m = 2048 and α2048 ≈ 0.721347 is the bias correction constant:

α2048 = 0.7213
1 + 1.079

2048
(3.4)

Implementation:

HLL Estimation Function

1 def calculate_hll(registers):
2 """Compute HyperLogLog cardinality estimate"""
3 if not registers:
4 return -1 # Error case
5

6 # Compute harmonic sum
7 harmonic_sum = sum(2**(-x) for x in registers)
8 if harmonic_sum == 0:
9 return 0 # Avoid division by zero

10

11 # Bias correction constant
12 alpha = 0.7213 / (1 + 1.079 / NUM_REGISTERS)
13

14 # Standard HLL estimator
15 estimate = alpha * (NUM_REGISTERS ** 2) / harmonic_sum
16

17 # Small range correction
18 if estimate <= 2.5 * NUM_REGISTERS:

38

3.5 – HLL Estimation implementation

19 zeros = registers.count(0)
20 if zeros:
21 return int(NUM_REGISTERS * math.log(NUM_REGISTERS / zeros))
22

23 return int(estimate)

The harmonic sum Z gives higher weight to buckets with larger values, which cor-
respond to rarer hash patterns. The level values stored in registers are used directly as
M [j] = level = leading_zeros + 1. Small-range correction is applied when the estimate
falls below 2.5×m and there are empty buckets.

39

Windowed HLL (W-HLL)

Figure 3.6. HLL estimation flowchart showing standard formula with small-range correction.

40

Chapter 4

Experimental Validation

This chapter presents the experimental validation of the W-HLL implementation de-
scribed in Chapter 3. We evaluate accuracy under both synthetic and realistic traffic
conditions, comparing HLL estimates against ground truth across a range of operational
parameters.

4.1 Setup

Our experimental testbed uses the SUPERNET infrastructure at Politecnico di Torino,
which provides dedicated high-speed programmable switching hardware with separate
dataplane and management networks [28]. This section describes the testbed architecture,
network configuration, and experimental parameters.

4.1.1 Testbed

The SUPERNET testbed provides a research platform for P4-programmable networking
experiments, featuring two Intel Tofino switches connected by a 100 Gbps dataplane
network [28].

Hardware Components

• Tofino P4 Switches:

– rest-bfsw01.polito.it

– rest-bfsw02.polito.it

– Architecture: Intel Tofino ASIC with programmable pipeline

• Control Plane Server:

– restsrv01.polito.it

– Role: SSH bastion host for remote access to switches

41

Experimental Validation

• Network Infrastructure:

– Cisco Catalyst 9200/9500 switches for management network
– 100 Gbps dataplane network with QSFP DAC cables
– Management network for SSH access and control

4.1.2 Network Configuration

The SUPERNET testbed uses a dual-network architecture to isolate experimental traffic
from control operations. Figure 4.1 shows the complete network topology.

Figure 4.1. SUPERNET testbed logical architecture. The dataplane network (100 Gbps,
VLAN 100) carries experimental traffic, while the management network handles control
operations. The control plane server (restsrv01) provides SSH bastion access to both
Tofino switches (adapted from [28]).

Dataplane Network The dataplane network provides high-speed connectivity for ex-
perimental traffic:

• Link speed: 100 Gbps using QSFP DAC cables

42

4.1 – Setup

• Purpose: Traffic generation, packet forwarding, and experimental data flows

Management Network The management network enables control plane access and
switch configuration:

• Purpose: SSH access, BFRuntime gRPC (port 50052), configuration management

• Access: Available within Politecnico di Torino network or via VPN

Figure 4.2 illustrates the components and connectivity of the SUPERNET testbed.

4.1.3 Software Environment

P4 Development Tools

• P4 language: P416 specification

• Compiler: Intel P4 Studio compiler for the Tofino architecture

• Runtime API: BFRuntime gRPC interface on port 50052

• Switch OS: Ubuntu 20.04 LTS with Intel SDE (Switch Development Environment)

Control Plane Software All monitoring scripts—register reads, packet counter access,
state resets, and traffic injection—run locally on the Tofino switch (rest-bfsw02) CPU:

• Python version: Python 3.8+

• BFRuntime client: bfrt_grpc Python library for switch state access

• Data processing: Pandas and NumPy for post-experiment analysis

Traffic Generation and Validation Tools

• Packet replay: tcpreplay for controlled PCAP injection

• PCAP generation: Scapy library for synthetic traffic creation

• Ground truth computation: tshark for trace analysis

• PCAP processing: tshark, editcap, and capinfos for trace manipulation

4.1.4 Experimental Configuration

Our experiments use a single Tofino switch (rest-bfsw02), with all experimental compo-
nents running locally on the switch itself. Traffic is injected from the switch CPU directly
into the Tofino ASIC pipeline through an internal interface, enp4s0f0.

43

Experimental Validation

Figure 4.2. SUPERNET testbed components and connectivity (adapted from [28]).

44

4.2 – Methodology

Traffic Injection Architecture Our setup takes advantage of the switch’s integrated
CPU to inject packets directly into the Tofino ASIC:

• Traffic source: PCAP files stored on the switch’s local storage

• Injection method: tcpreplay sends packets from the CPU to the ASIC via
enp4s0f0

• HLL monitoring: A BFRuntime client reads switch registers over gRPC

• Remote access: All components are accessed via SSH through the restsrv01
bastion host

Traffic Flow The experimental workflow proceeds as follows:

1. A PCAP file is stored on rest-bfsw02 local storage.

2. tcpreplay, running on the switch CPU, injects packets to the ASIC via the internal
interface enp4s0f0.

3. Packets traverse the P4 pipeline: hash computation, HLL register update, and
counter increment.

4. The HLL monitor, also running on the switch CPU, reads switch state through
BFRuntime gRPC on port 50052.

5. All measurements are logged to CSV files for post-experiment analysis.

6. At each interval Treset, both the HLL registers and packet counter are cleared.

7. A ground truth tracker running on restsrv01.polito.it computes the true car-
dinality of the injected traffic for accuracy evaluation.

4.1.5 Experimental Parameters

Table 4.1 summarizes the key experimental parameters used across all validation tests.
This configuration provides a controlled environment for systematic accuracy evalua-

tion while still being realistic enough for practical validation.

4.2 Methodology

This section describes the experimental methodology used to validate W-HLL accuracy.
We cover the validation approach, measurement procedures, synchronization mechanisms,
and error metrics used to assess HLL performance under both controlled conditions and
real traffic patterns.

45

Experimental Validation

Table 4.1. Experimental Parameters

Parameter Value Description
Data Plane Configuration
HLL buckets (m) 2048 Register array size
Bucket size 8 bits Maximum level value: 255
Hash function CRC32 Polynomial: 0x790900f3
Hash bits (index) 11 bits Selects bucket (0–2047)
Hash bits (rank) 21 bits For leading zero detection
TCAM entries 21 Maps rank to level (LPM)

Control Plane Configuration
Reset interval (Treset) 5s,10s,50s,100s Accumulation period
Mean read interval (µread) 0.5s,1s,5s,10s Average sampling period
Read distribution Exponential Poisson process sampling

Traffic Configuration
Traffic type Synthetic/Real Two validation modes
Synthetic traffic Unique IPs Controlled cardinality
Real trace CAMPUS Realistic IP distribution
Traffic rate 100 pps Controlled replay rate
Real trace rate Variable Matches original timing
Synthetic/Real duration 1320 s 132K packets synthetic / 5M packets

real mode
Interface enp4s0f0 CPU-to-ASIC interface
Flow definition Source IP 5-tuple not used

Table 4.2. Comparison of Validation Modes

Characteristic Synthetic Mode Real Trace Mode
Traffic source Scapy-generated PCAP Campus network traces
IP distribution One unique srcIP per packet Realistic
Ground truth source Packet counter (hardware) Flow tracker (software)
GT computation Direct (count = cardinality) Set maintenance
Components 2 processes (replay + monitor) 3 processes (replay + monitor + tracker)
Use case Controlled accuracy testing Real-world validation

4.2.1 Validation Approach

Our validation methodology uses two distinct modes to assess HLL accuracy under con-
trolled and realistic conditions. Table 4.2 summarizes the key characteristics of each
approach.

46

4.2 – Methodology

Synthetic Traffic Mode generates PCAP files where each packet has a unique source
IP address. This allows rapid validation using the hardware packet counter and is useful
for parameter tuning under known conditions.

Real Trace Mode replays realistic network captures where multiple packets may share
the same source IP. This mode evaluates performance with bursty traffic, non-uniform
IP distributions, and the temporal correlations typical of production networks.

4.2.2 Experimental Variables

We systematically vary the following parameters to evaluate their impact on HLL accu-
racy:

• Reset interval (Treset): Window duration ranging from 5 to 100 seconds

• Mean read interval (µread): Average time between HLL observations, from 0.5
to 10 seconds

• Traffic type: Synthetic (controlled) versus real network traces

• Cardinality range: From tens to tens of thousands of unique flows

4.2.3 Synchronization Mechanisms

Accurate validation requires precise synchronization between HLL monitoring and ground
truth computation:

• Window boundaries: Both systems reset at exact multiples of Treset, keeping
monitoring windows aligned.

• Composite key matching: The tuple (window_id, packet_count) uniquely iden-
tifies each system state, enabling post-experiment log merging.

• Read-before-reset priority: When read and reset events coincide, priority-based
scheduling ensures the read executes first (priority 1) before the reset (priority 2),
capturing the final window state.

4.2.4 Measurement Procedures

Measurement Loop Each loop follows this sequence:
1. Wait for an exponentially distributed interval with mean µread.

2. Read the hardware packet counter via BFRuntime.

3. Read all 2048 HLL registers via BFRuntime.

4. Compute the HLL estimate using the standard estimator with corrections.

5. Log the tuple: (time, window_id, ground_truth, estimate).

6. For real trace mode, ground truth is computed from the injected PCAP to produce:
(time, window_id, packet_count, ground_truth_flows).

47

Experimental Validation

Critical Timing Consideration The packet counter is read before the HLL registers
to prevent synchronization bias. Since reading all registers takes approximately 245 ms,
reading them first would allow new packets to arrive during the operation. At 100 pps, this
would result in roughly 245×10−3×100 ≈ 24 extra packets being counted but not reflected
in the HLL state. By reading the counter first—which is fast—both measurements refer
to approximately the same set of packets.

4.2.5 Error Metrics

We use multiple error metrics to comprehensively assess HLL accuracy:

Relative Error The primary metric is relative error, defined as:

ϵrel = n̂− n

n
(4.1)

where n̂ is the HLL estimate and n is the true cardinality. Positive values indicate
overestimation, negative values underestimation.

Absolute Relative Error For aggregate statistics, we use absolute relative error:

|ϵrel| =
⃓⃓⃓⃓
n̂− n

n

⃓⃓⃓⃓
(4.2)

Theoretical Comparison HLL with m = 2048 buckets has a theoretical standard
error of:

σHLL = 1.04√
2048

≈ 0.023 = 2.3% (4.3)

We compare our empirical error statistics against this theoretical benchmark.

Figure 4.3 summarizes the complete workflow from setup through analysis. Post-
experiment analysis merges logs based on synchronized window IDs for accuracy eval-
uation.

48

4.2 – Methodology

Figure 4.3. Experimental workflow showing the two validation modes, with parallel pro-
cesses for HLL monitoring, traffic replay, and optional ground truth tracking.

49

Experimental Validation

4.2.6 PASTA Implementation

W-HLL uses exponentially distributed read intervals to ensure unbiased time-averaged
measurements. This design is grounded in the PASTA theorem (Poisson Arrivals See
Time Averages) [32], which guarantees that observations from a Poisson process yield the
same statistics as continuous monitoring (Section 2.4). The key implementation details
are as follows:

Exponential Interval Generation

1 import random
2

3 MEAN_READ_INTERVAL = 1.0 # seconds
4

5 def schedule_next_read(scheduler):
6 """Schedule next read with exponentially distributed delay"""
7 delay = random.expovariate(1.0 / MEAN_READ_INTERVAL)
8 scheduler.enter(delay, priority=1, action=perform_read,
9 argument=(scheduler,))

Deterministic Reset Intervals

While read intervals are randomized for unbiased observation, reset intervals remain
strictly deterministic, occurring at exact multiples of Treset. This ensures reproducible
experimental conditions and clear window boundaries for analysis. Combining Poisson
reads with deterministic resets provides both statistical validity through PASTA and the
experimental control needed for rigorous evaluation.

4.3 Traffic Generation and Replay
This section describes traffic preparation and replay procedures for both validation modes.

4.3.1 Synthetic Traffic Generation

Synthetic traffic provides controlled conditions for initial validation, where the ground
truth is known by construction. Each packet has a unique source IP address, so the
packet count equals the flow cardinality directly.

Our synthetic traffic generator creates PCAP files with the following specifications:

• Experiment duration: 1320 seconds (22 minutes) by default

• Target rate: 100 packets per second by default

• Total packets: 1320× 100 = 132,000 packets

• Unique flows: 132,000 (one per packet)

• IP range: 10.0.0.0/8 with random allocation

50

4.3 – Traffic Generation and Replay

The synthetic traffic generator uses Scapy to create PCAP files with randomized unique
source IPs:

Synthetic Traffic Generator (generate_pcap.py)

1 #!/usr/bin/env python3
2

3 from scapy.all import wrpcap, Ether, IP, TCP
4 import random
5

6 EXPERIMENT_DURATION = 1320 # Seconds
7 PACKETS_PER_SECOND = 100 # Target rate
8 TOTAL_PACKETS = EXPERIMENT_DURATION * PACKETS_PER_SECOND
9 OUTPUT_FILE = "synthetic_traffic_random.pcap"

10

11 print(f"Generating {TOTAL_PACKETS} packets with RANDOM unique IPs...")
12

13 packets = []
14 used_ips = set() # Track used IPs
15

16 for i in range(TOTAL_PACKETS):
17 # Generate unique random IP in 10.0.0.0/8
18 while True:
19 src_ip = f"10.{random.randint(0,255)}." \
20 f"{random.randint(0,255)}." \
21 f"{random.randint(1,255)}"
22 if src_ip not in used_ips: # Ensure uniqueness
23 used_ips.add(src_ip)
24 break
25

26 dst_ip = "10.0.0.2" # Fixed destination
27

28 # Create packet with explicit MAC addresses
29 pkt = Ether(dst="f6:22:3b:a1:3a:fb",
30 src="f6:e9:be:5f:4f:0b") / \
31 IP(src=src_ip, dst=dst_ip) / \
32 TCP()
33

34 packets.append(pkt)
35

36 # Progress indicator
37 if (i + 1) % 10000 == 0:
38 print(f" Generated {i + 1}/{TOTAL_PACKETS} packets...")
39

40 # Write PCAP file
41 print(f"Writing to {OUTPUT_FILE}...")
42 wrpcap(OUTPUT_FILE, packets)
43 print(f"Done! Created {OUTPUT_FILE}")
44 print(f"Total unique flows: {len(used_ips)}")

Before using the generated PCAP, we verify its properties:

51

Experimental Validation

PCAP Verification

1 # Basic file info
2 capinfos synthetic_traffic_random.pcap
3

4 # Count total packets
5 tshark -r synthetic_traffic_random.pcap | wc -l
6 # Expected: 132000
7

8 # Count unique source IPs (should equal packet count)
9 tshark -r synthetic_traffic_random.pcap -T fields -e ip.src | \

10 sort -u | wc -l
11 # Expected: 132000
12

13 # Verify no duplicate IPs
14 tshark -r synthetic_traffic_random.pcap -T fields -e ip.src | \
15 sort | uniq -d
16 # Expected: (empty - no duplicates)

4.3.2 Real Traffic Traces

Real network traces are obtained from the Politecnico di Torino Jupyter-based cluster
environment (https://jupyter.polito.it/expert/), capturing actual campus network
traffic with bursty behavior, non-uniform IP distributions, and temporal correlations.

4.3.3 Traffic Replay

Both traffic types are replayed using tcpreplay on the CPU-to-ASIC interface
(enp4s0f0). Synthetic traffic uses fixed rate control (--pps=100), while real traces can
either preserve their original timing or use rate limiting for controlled experiments:

Traffic Replay Commands

1 # Synthetic traffic replay (100 pps)
2 python3 hll_gt_monitor_switch_rs.py & sudo tcpreplay --intf1=enp4s0f0 --pps=100

synthetic_traffic.pcap
3

4 # Real trace replay (preserve timing)
5 python3 hll_gt_monitor_switch_rs.py & sudo tcpreplay --intf1=enp4s0f0 Real_1320.

pcap

4.4 Ground Truth Measurement

Ground truth measurement strategies differ between validation modes based on traffic
characteristics.

52

https://jupyter.polito.it/expert/

4.4 – Ground Truth Measurement

4.4.1 Synthetic Mode: Hardware Counter

In synthetic mode, the hardware packet counter (Section 3.3.5) provides ground truth
directly, since each packet has a unique source IP. The HLL monitor reads the counter
synchronously with the registers, logging (window_id, packet_count, estimate) tuples
where the packet count equals the true cardinality.

4.4.2 Real Trace Mode: Software Flow Tracker

Real traces require explicit flow counting since multiple packets may share the same source
IP. A software flow tracker maintains a set of observed unique source IPs, updating it
within each window. The tracker logs the packet count and window ID, which are used
to synchronize with the HLL estimates.

Software Flow Tracker (compute_GT.py)

1 #!/usr/bin/env python3
2

3 import csv
4 import subprocess
5 import sys
6

7 # Configuration
8 PCAP_FILE = "Real_1320.pcap"
9 RESET_INTERVAL = 100.0

10 OUTPUT_FILE = "ground_truth.csv"
11

12 print(f"Processing PCAP: {PCAP_FILE}")
13

14 # Open CSV for writing
15 csv_file = open(OUTPUT_FILE, ’w’, newline=’’)
16 csv_writer = csv.writer(csv_file)
17 csv_writer.writerow([’time’, ’window_id’, ’packet_count’, ’ground_truth_flows’])
18

19 # State
20 flow_set = set()
21 packet_counter = 0
22 window_id = 0
23 start_time = None
24 new_reset_time = RESET_INTERVAL
25

26 try:
27 # Run tshark with streaming output
28 process = subprocess.Popen(
29 [’tshark’, ’-r’, PCAP_FILE, ’-T’, ’fields’,
30 ’-e’, ’frame.time_epoch’, ’-e’, ’ip.src’,
31 ’-Y’, ’ip’, ’-E’, ’separator=,’],
32 stdout=subprocess.PIPE, text=True, bufsize=1
33)
34

35 # Process line by line
36 for line in process.stdout:

53

Experimental Validation

37 parts = line.strip().split(’,’)
38 if len(parts) < 2:
39 continue
40

41 timestamp = float(parts[0])
42 src_ip = parts[1].strip()
43

44 if start_time is None:
45 start_time = timestamp
46

47 current_time = timestamp - start_time
48

49 # Reset if needed
50 if current_time > new_reset_time:
51 flow_set.clear()
52 packet_counter = 0
53 new_reset_time += RESET_INTERVAL
54 window_id += 1
55

56 # Update state
57 flow_set.add(src_ip)
58 packet_counter += 1
59

60 # Write row
61 csv_writer.writerow([f"{current_time:.3f}", window_id,
62 packet_counter, len(flow_set)])
63

64 csv_file.close()
65 print(f"Done! Output: {OUTPUT_FILE}")
66

67 except Exception as e:
68 print(f"Error: {e}")
69 csv_file.close()
70 sys.exit(1)

4.4.3 Synchronization and Verification

Both validation modes rely on synchronized window boundaries at Treset intervals. Real
trace mode additionally requires composite keys (window_id, packet_count) for match-
ing HLL estimates with ground truth. After the experiment, logs are merged using
merge_gt_hll.py:

Log Merging and Error Calculation

1 import pandas as pd
2

3 # Read CSV files
4 hll_df = pd.read_csv(’hll_log.csv’)
5 gt_df = pd.read_csv(’ground_truth.csv’)
6

7 # Rename column for consistency

54

4.5 – Experimental Results

8 hll_df = hll_df.rename(columns={’ground_truth’: ’packet_count’})
9

10 # Merge on composite key (window_id, packet_count)
11 merged = pd.merge(
12 hll_df,
13 gt_df[[’window_id’, ’packet_count’, ’ground_truth_flows’]],
14 on=[’window_id’, ’packet_count’],
15 how=’inner’
16)
17

18 # Calculate error metrics
19 merged[’relative_error’] = (
20 (merged[’estimate’] - merged[’ground_truth_flows’])
21 / merged[’ground_truth_flows’]
22)
23 merged[’absolute_error’] = abs(merged[’relative_error’])
24

25 # Save results
26 merged.to_csv(’verification.csv’, index=False)

This aligns each HLL estimate with its corresponding ground truth measurement at
the exact system state, enabling plotting and statistical analysis of accuracy.

4.5 Experimental Results
We evaluate the accuracy of our HyperLogLog implementation on the Intel Tofino switch
through two experimental scenarios: synthetic traffic generation and real network trace
validation. Each scenario tests four window configurations with mean read intervals
(µread) of 0.5s, 1s, 5s, and 10s, paired with reset intervals (Treset) of 5s, 10s, 50s, and 100s
respectively, maintaining a consistent 10:1 ratio. All experiments follow the methodology
described in Section 4.2 using the SUPERNET testbed [28].

4.5.1 Synthetic Traffic Experiments

Overview

We generated synthetic traffic at 100 pps with uniformly distributed flow identifiers, fol-
lowing the procedure in Section 4.3.1. Ground truth was obtained directly from the
hardware packet counter (Section 4.4), since each packet contains a unique source IP
address by construction. Table 4.3 summarizes the accuracy metrics across all configura-
tions, showing consistent improvement with longer monitoring windows.

55

Experimental Validation

Read Reset Avg. Error Median Error Samples Max Card.
(s) (s) (%) (%) (flows)
0.5 5 3.42 1.46 1,654 500

1 10 2.65 1.32 1,066 1,000

5 50 1.47 1.21 273 5,000

10 100 1.41 1.16 133 10,000

Table 4.3. HyperLogLog accuracy for synthetic traffic experiments at 100 pps.
Results show consistent improvement in estimation accuracy as monitoring win-
dow duration increases.

56

4.5 – Experimental Results

Results Across Window Configurations

Configuration 1: 0.5s Read, 5s Reset With the shortest monitoring window (Fig-
ures 4.4 and 4.5), the system tracks cardinalities up to 500 flows with an average relative
error of 3.42% and a median error of 1.46% over 1,654 measurements. The higher average
error reflects outliers at low cardinalities where small-range correction is active. Scatter
plots show that estimates closely follow the ideal diagonal line, with increased scatter at
lower cardinalities.

Figure 4.4. HyperLogLog estimates vs. ground truth for synthetic traffic with 0.5s read
interval and 5s reset interval (linear scale). The system tracks cardinalities up to 500 flows
with average relative error of 3.42% and median error of 1.46% over 1,654 measurements.

57

Experimental Validation

Figure 4.5. HyperLogLog estimates vs. ground truth for synthetic traffic with 0.5s read
interval and 5s reset interval (log scale). The logarithmic representation reveals estimation
behavior across the full dynamic range, with some scatter visible at lower cardinalities.

58

4.5 – Experimental Results

Configuration 2: 1s Read, 10s Reset Doubling the window duration (Figures 4.6
and 4.7) extends cardinality tracking to 1,000 flows with improved accuracy: average
error of 2.65% and median error of 1.32% over 1,066 measurements. The tighter clustering
around the ideal line shows that longer accumulation periods reduce variance by collecting
more samples per bucket, reflecting the trade-off between temporal resolution and per-
window accuracy.

Figure 4.6. HyperLogLog estimates vs. ground truth for synthetic traffic with 1s read
interval and 10s reset interval (linear scale). The extended monitoring window improves
accuracy to 2.65% average error and 1.32% median error over 1,066 measurements, with
cardinality range extending to approximately 1,000 flows.

59

Experimental Validation

Figure 4.7. HyperLogLog estimates vs. ground truth for synthetic traffic with 1s read
interval and 10s reset interval (log scale). Tighter clustering around the ideal line compared
to the 0.5s configuration demonstrates improved accuracy with longer observation periods,
approaching the theoretical HLL standard error of 2.3%.

60

4.5 – Experimental Results

Configuration 3: 5s Read, 50s Reset Performance improves substantially with 50s
windows (Figures 4.8 and 4.9): average error of 1.47% and median error of 1.21% across
273 measurements tracking up to 5,000 flows. Both metrics fall well below the theoretical
bounds which is 2.3%. With 5,000 flows across 2048 buckets, virtually all buckets capture
observations, providing robust harmonic mean estimates (Equation 3.3). Tight clustering
at both scales confirms excellent accuracy throughout the range.

Figure 4.8. HyperLogLog estimates vs. ground truth for synthetic traffic with 5s read
interval and 50s reset interval (linear scale). Substantially improved performance with
1.47% average error and 1.21% median error across 273 measurements, accurately tracking
cardinalities up to 5,000 flows.

61

Experimental Validation

Figure 4.9. HyperLogLog estimates vs. ground truth for synthetic traffic with 5s read
interval and 50s reset interval (log scale). Excellent accuracy maintained throughout the
entire cardinality range with very tight clustering around the ideal diagonal line.

62

4.5 – Experimental Results

Configuration 4: 10s Read, 100s Reset The longest window achieves near-optimal
performance (Figures 4.10 and 4.11): average relative error of 1.41% and median error
of 1.16% over 133 measurements tracking up to 10,000 flows. The remarkably tight
clustering across the full dynamic range shows that the implementation is well within
theoretical HyperLogLog accuracy bounds.

Figure 4.10. HyperLogLog estimates vs. ground truth for synthetic traffic with 10s
read interval and 100s reset interval (linear scale). Best accuracy achieved with 1.41%
average error and 1.16% median error over 133 measurements, accurately estimating
cardinalities up to 10,000 flows.

63

Experimental Validation

Figure 4.11. HyperLogLog estimates vs. ground truth for synthetic traffic with 10s
read interval and 100s reset interval (log scale). Remarkably tight clustering across
the full dynamic range is observed.

64

4.5 – Experimental Results

4.5.2 Real Network Trace Validation

Overview

We validate implementation accuracy under realistic conditions using traces from Polito
campus network provided at https://jupyter.polito.it/expert/. Approximately 5M
packets were replayed at 3,769 pps over 1,320 seconds, following the procedure in Sec-
tion 4.3.2. We apply the same window configurations as in the synthetic experiments.
Ground truth is computed using the software flow tracker (Section 4.4) with window syn-
chronization and composite key matching (window_id, packet_count). Table 4.4 shows
significant accuracy improvement with longer windows, though short-window errors are
higher than in the synthetic case due to traffic burstiness and non-uniformity.

Read Reset Avg. Error Median Error Samples Max Card.
(s) (s) (%) (%) (flows)
0.5 5 8.51 2.56 1,620 2,000
1 10 5.34 2.63 984 2,800
5 50 2.32 2.05 244 7,000
10 100 1.69 1.40 135 10,000

Table 4.4. HyperLogLog accuracy for real network trace. Longer monitoring windows
significantly reduce estimation errors and approach synthetic traffic performance.

Results Across Window Configurations

Configuration 1: 0.5s Read, 5s Reset The shortest window (Figures 4.12 and 4.13)
tracks up to 2,000 flows over 1,620 measurements. The average error is 8.51% and the
median error is 2.56%, both exceeding the theoretical bound of 2.3%. Compared to
synthetic traffic (3.42% average, 1.46% median), real traffic shows 2.5 times higher av-
erage error and 1.75 times higher median error. This disparity stems from burstiness
and non-uniform IP distributions in real traffic, which cause uneven bucket occupancies
and increased variance. Scatter plots reveal significant deviation from the ideal line,
particularly at lower cardinalities where bursts lead to overestimation.

Configuration 2: 1s Read, 10s Reset Doubling the window duration (Figures 4.14
and 4.15) yields substantial improvement: average error of 5.34% and median error of
2.63% over 984 measurements tracking up to 2,800 flows. The gap between real and
synthetic traffic narrows to 2.0 times for the average error, down from 2.5 times, indicat-
ing that longer windows begin to average out burstiness, though occasional bursts still
produce outliers. The median error remains slightly above the theoretical bound.

65

https://jupyter.polito.it/expert/

Experimental Validation

Figure 4.12. HyperLogLog estimates vs. ground truth for real network trace with 0.5s
read interval and 5s reset interval (linear scale). Testing with real traffic at 3,769 pps
yields 8.51% average error and 2.56% median error over 1,620 measurements, tracking
cardinalities up to 2,000 flows.

66

4.5 – Experimental Results

Figure 4.13. HyperLogLog estimates vs. ground truth for real network trace with 0.5s
read interval and 5s reset interval (log scale). Increased scatter compared to synthetic
traffic reflects the complex and variable nature of real network traffic patterns, leading to
higher estimation errors, particularly at lower cardinalities.

67

Experimental Validation

Figure 4.14. HyperLogLog estimates vs. ground truth for real network trace with
1s read interval and 10s reset interval (linear scale). Improved accuracy with 5.34%
average error and 2.63% median error over 984 measurements, extending cardinality
range to approximately 2,800 flows.

68

4.5 – Experimental Results

Figure 4.15. HyperLogLog estimates vs. ground truth for real network trace with 1s
read interval and 10s reset interval (log scale). While visible scatter remains due to traffic
burstiness, estimates generally follow the ideal line well across the dynamic range, showing
reduced outlier frequency compared to shorter windows.

69

Experimental Validation

Configuration 3: 5s Read, 50s Reset Significant improvement appears at 50s win-
dows (Figures 4.16 and 4.17): average error of 2.32% and median error of 2.05% across
244 measurements tracking up to 7,000 flows. The gap between real and synthetic traf-
fic nearly closes, reaching 1.58 times for average error and 1.69 times for median error,
demonstrating that longer windows effectively average out temporal variability.

Figure 4.16. HyperLogLog estimates vs. ground truth for real network trace with 5s
read interval and 50s reset interval (linear scale). Significant accuracy improvement to
2.32% average error and 2.05% median error across 244 measurements, accurately tracking
cardinalities up to 7,000 flows.

70

4.5 – Experimental Results

Figure 4.17. HyperLogLog estimates vs. ground truth for real network trace with 5s read
interval and 50s reset interval (log scale). Much tighter clustering compared to shorter
monitoring windows demonstrates that extended observation periods effectively mitigate
realistic traffic variability, approaching theoretical HLL performance bounds.

71

Experimental Validation

Configuration 4: 10s Read, 100s Reset Excellent performance is achieved at the
longest window (Figures 4.18 and 4.19): average error of 1.69% and median error of 1.40%
(0.61×σHLL) over 135 measurements tracking up to 10,000 flows. Real and synthetic per-
formance converge to within 1.20 times for average error and 1.21 times for median error,
validating the hypothesis that sufficiently long windows make HLL performance largely
independent of short-term traffic characteristics. Over 100 seconds, the system observes
approximately 10,000 flows, providing enough samples for all 2048 buckets. The median
error at 61% of theoretical closely matches the synthetic result (50%), demonstrating that
W-HLL (Chapter 3) achieves near-optimal accuracy for realistic traffic when appropriate
window sizes are chosen.

Figure 4.18. HyperLogLog estimates vs. ground truth for real network trace with 10s
read interval and 100s reset interval (linear scale). Excellent performance with 1.69%
average error and 1.40% median error over 135 measurements, approaching synthetic traffic
accuracy across cardinalities up to 10,000 flows.

72

4.5 – Experimental Results

Figure 4.19. HyperLogLog estimates vs. ground truth for real network trace with 10s
read interval and 100s reset interval (log scale). Very tight clustering throughout the full
dynamic range demonstrates that longer observation periods allow the implementation
to achieve high accuracy even with complex real-world traffic patterns, converging with
synthetic traffic performance.

73

Experimental Validation

4.5.3 Results Analysis

Tables 4.3 and 4.4 reveal a clear pattern: as monitoring windows increase, real traffic
performance converges toward synthetic traffic performance. The synthetic-to-real error
ratio improves systematically:

• 5s window: Real traffic shows 2.5 times higher average error (8.51% vs. 3.42%)

• 10s window: The gap narrows to 2.0 times (5.34% vs. 2.65%)

• 50s window: Further narrows to 1.6 times (2.32% vs. 1.47%)

• 100s window: Nearly converged at 1.2 times (1.69% vs. 1.41%)

At the longest window (100s), both traffic types achieve similar accuracy: real traf-
fic has a median error of 1.40% compared to 1.16% for synthetic, demonstrating that
sufficient observation time makes HLL performance largely independent of traffic charac-
teristics.

The HyperLogLog algorithm has a theoretical standard error of σHLL = 1.04/
√

2048 ≈
2.3% for our 2048-bucket implementation [11]. Our experimental results validate this
bound:

• Synthetic traffic, 100s: Median error of 1.16% (50% of theoretical)

• Real traffic, 100s: Median error of 1.40% (61% of theoretical)

Both cases achieve sub-theoretical performance, confirming that our P4 implementa-
tion correctly realizes the HLL algorithm without introducing additional error sources.

This experimental validation shows that windowed HyperLogLog on P4-programmable
switches achieves practical accuracy for in-network flow cardinality estimation. The im-
plementation handles both controlled synthetic traffic and complex real-world patterns
effectively.

Key findings:

1. Longer windows improve accuracy. Average error drops from 8.51% to 1.69%
for real traffic and from 3.42% to 1.41% for synthetic traffic as windows increase
from 5s to 100s.

2. Real and synthetic performance converge. At 100s windows, the accuracy
gap nearly closes (1.69% vs. 1.41%), indicating that sufficient observation time
overcomes traffic variability.

3. Theoretical bounds are met. Both traffic types achieve errors below the 2.3%
theoretical bound, confirming implementation correctness.

74

Conclusion

Modern network infrastructures carry traffic at unprecedented scales. Hyperscale data
centers and service provider networks handle millions of concurrent flows at aggregate
throughputs measured in terabits per second. Operating such networks requires con-
tinuous visibility into traffic dynamics—understanding how many distinct flows traverse
network elements, detecting anomalies that may signal attacks or failures, and plan-
ning capacity to meet evolving demands. Traditional exact counting approaches, which
maintain per-flow state, cannot scale to these requirements: memory consumption grows
linearly with flow count, and the processing overhead of maintaining hash tables or trees
cannot sustain line-rate operation. Probabilistic data structures offer a compelling alter-
native, trading perfect accuracy for dramatic reductions in memory and computational
complexity. Among these, HyperLogLog stands out for its ability to estimate cardinali-
ties in the billions using only kilobytes of memory, with bounded relative error that does
not depend on the actual count.

This thesis investigated the practical deployment of HyperLogLog for flow cardinal-
ity estimation directly within programmable network hardware. Rather than sampling
packets to external collectors or processing flows in software, our approach executes the
complete HyperLogLog algorithm in the data plane of Intel Tofino switches, achiev-
ing line-rate processing without per-packet control plane involvement. We argued that
this method could provide memory-efficient cardinality estimation suitable for high-speed
network monitoring, and that the emergence of P4-programmable switches makes such
implementations feasible with current technology.

We began by introducing the necessary background. We reviewed the evolution of
network programmability from Software-Defined Networking through PISA-based archi-
tectures, the P4 language and its runtime environment, and the HyperLogLog algorithm
with its theoretical performance characteristics. We also presented the PASTA theo-
rem, which guides our sampling strategy to avoid systematic bias. In Chapter 3, we
presented our Windowed HyperLogLog (W-HLL) implementation, detailing the P4 data
plane architecture that employs TCAM-based rank computation and atomic register up-
dates, alongside the Python control plane that coordinates exponentially distributed ob-
servations and deterministic resets. We proposed a methodology based on synchronized
window boundaries and composite key matching, enabling accurate comparison between
HLL estimates and ground truth measurements.

We then assessed system performance through comprehensive experimental valida-
tion on the SUPERNET testbed. Our implementation achieves excellent accuracy across

75

Conclusion

diverse traffic conditions. For synthetic traffic with controlled ground truth, median es-
timation errors ranged from 1.46% at 5-second windows down to 1.16% at 100-second
windows—the latter representing just 50% of the theoretical 2.3% standard error. Real
network traces from the Politecnico di Torino campus network exhibited higher variabil-
ity at short windows (8.51% average error at 5 seconds) due to traffic burstiness, but
performance converged toward the synthetic results as window duration increased. At
100-second windows, real traffic achieved 1.40% median error, demonstrating that suffi-
cient observation time largely overcomes the effects of non-uniform flow distributions and
temporal correlations.

We confirmed that the accuracy gap between synthetic and real traffic narrows sys-
tematically with longer windows: from 2.5 times at 5 seconds to just 1.2 times at 100
seconds. This convergence validates the fundamental soundness of deploying probabilis-
tic cardinality estimation in production environments, where traffic patterns inevitably
differ from idealized distributions. The sub-theoretical error rates achieved in both sce-
narios confirm that our P4 implementation correctly realizes the HyperLogLog algorithm
without introducing additional error sources from hardware constraints or pipeline limi-
tations.

This research could be valuable in several network monitoring contexts. Flow car-
dinality estimation supports anomaly detection systems that identify distributed denial-
of-service attacks through sudden increases in source diversity, network forensics that
characterize traffic composition, and capacity planning that tracks connection density
across network segments. The memory efficiency of HyperLogLog—two kilobytes for
our 2048-bucket implementation—enables deployment at scale across many monitoring
points without straining switch resources. Furthermore, the mergeable property of Hy-
perLogLog sketches opens possibilities for hierarchical aggregation, where estimates from
multiple switches combine to provide network-wide cardinality views.

We conclude by outlining further developments reserved for future work. A partic-
ularly promising direction involves implementing Staggered HyperLogLog (ST-HLL) [6],
which extends the windowed approach developed in this thesis to enable near-continuous-
time cardinality rate estimation. Rather than resetting all registers simultaneously as in
our current W-HLL design, ST-HLL resets registers in a staggered fashion—one register
per time slot—allowing the system to track flow arrival rates rather than absolute counts
while maintaining the same memory footprint as vanilla HLL. This extension would be
particularly valuable for anomaly detection applications where tracking the dynamics
of flow spreading behavior—such as sudden increases in source diversity indicating dis-
tributed denial-of-service attacks—matters more than absolute cardinality counts.

Beyond ST-HLL, the methodology established here for HyperLogLog evaluation could
be extended to other sketch-based algorithms—Count-Min Sketch for frequency estima-
tion, or Bloom filters for membership queries—building toward a comprehensive toolkit
for in-network traffic analysis on programmable switches.

76

Bibliography

[1] P4 language and related specifications. https://p4.org/wp-content/uploads/
sites/53/2024/10/P4-16-spec-v1.2.5.html, 2025. Accessed: November 24,
2025.

[2] M. Bonola, I. Drago, G. Petralia, S. Pontarelli, D. Rossi, G. Siracusano, G. Ventre,
and G. Bianchi. Poise: Practical software defined intelligent ethernet switch. In
Proceedings of the 2018 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), pages 1–7. IEEE, 2018.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, et al. P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer Communication Review, 44(3):87–
95, 2014.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,
and M. Horowitz. Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn. ACM SIGCOMM Computer Communication Review,
43(4):99–110, 2013.

[5] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[6] A. Cornacchia, G. Bianchi, A. Bianco, and P. Giaccone. Staggered hll: Near-
continuous-time cardinality estimation with no overhead. Computer Communica-
tions, 193:168–175, 2022.

[7] M. Durand, P. Flajolet, and P. Nicodème. Loglog counting of large cardinalities.
Algorithmica, 37(1):59–80, 2003.

[8] C. Estan and G. Varghese. New directions in traffic measurement and accounting.
In Proceedings of the 2002 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 323–336, 2002.

[9] C. Estan and G. Varghese. New directions in traffic measurement and accounting.
IEEE Network, 17(3):40–48, 2003.

[10] N. Feamster, J. Rexford, and E. Zegura. The Road to SDN: An Intellectual History
of Programmable Networks. ACM SIGCOMM Computer Communication Review,
2014.

[11] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the analysis of a
near-optimal cardinality estimation algorithm. In Proceedings of the 2007 Confer-
ence on Analysis of Algorithms (AofA), pages 137–156. Discrete Mathematics and
Theoretical Computer Science, 2007.

77

https://p4.org/wp-content/uploads/sites/53/2024/10/P4-16-spec-v1.2.5.html
https://p4.org/wp-content/uploads/sites/53/2024/10/P4-16-spec-v1.2.5.html

Bibliography

[12] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base appli-
cations. Journal of Computer and System Sciences, 31(2):182–209, 1985.

[13] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown. Design principles for packet
parsers. In Proceedings of the Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), pages 13–24. IEEE, 2013.

[14] Google. grpc: A high performance, open source universal rpc framework. https:
//grpc.io/, 2015.

[15] Google. Protocol Buffers: Google’s Data Interchange Format. https://
developers.google.com/protocol-buffers, 2024. Accessed: 2025-11-15.

[16] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Network,
15(2):24–32, 2001.

[17] S. Heule, M. Nunkesser, and A. Hall. Hyperloglog in practice: Algorithmic engineer-
ing of a state of the art cardinality estimation algorithm. In Proceedings of the 16th
International Conference on Extending Database Technology, pages 683–692, 2013.

[18] Intel Corporation. Barefoot runtime (bfruntime) api. Barefoot SDE Documentation,
2020.

[19] Intel Corporation. Intel tofino: World’s fastest p4-programmable eth-
ernet switch asics. https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch.html, 2020.

[20] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings of the
IEEE, 103(1):14–76, 2015.

[21] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li. Data streaming algorithms for
efficient and accurate estimation of flow size distribution. In ACM SIGMETRICS
Performance Evaluation Review, number 1, pages 177–188. ACM, 2004.

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. Openflow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[23] M. Mitzenmacher and E. Upfal. Measuring and mining the internet: Methods,
applications, and future challenges. ACM SIGCOMM Computer Communication
Review, 44(5):49–55, 2014.

[24] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Flowradar: A better netflow for
data centers. In Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 311–324, 2016.

[25] Open Networking Foundation. OpenFlow Switch Specification. Technical report,
ONF, 2015. Accessed: 2025-11-15.

[26] P4.org API Working Group. P4Runtime Specification. Technical report, P4 Lan-
guage Consortium, 2025. Version 1.5.0-dev, dated 2025-10-16. Accessed: November
24, 2025.

[27] W. W. Peterson and D. T. Brown. Cyclic codes for error detection. Proceedings of
the IRE, 49(1):228–235, 1961.

[28] Politecnico di Torino. Supernet. http://restsrv01.polito.it/supernet, 2024.
Accessed: 2024-11-22.

[29] S. M. Ross. Introduction to probability models. Academic press, 11th edition, 2014.

78

https://grpc.io/
https://grpc.io/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
http://restsrv01.polito.it/supernet

Bibliography

[30] M. Shahbaz, J. H. Choi, B. Pfaff, C. Kim, N. Feamster, J. Rexford, and R. Clark.
Pisces: A programmable, protocol-independent software switch. In Proceedings of
the 2016 ACM SIGCOMM Conference, pages 525–538, 2016.

[31] A. Sivaraman, A. Cheung, M. Kim, G. Varghese, M. Budiu, M. Alizadeh, H. Balakr-
ishnan, S. Chole, G. Covington, A. Fingerhut, et al. Packet transactions: High-level
programming for line-rate switches. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 15–28, 2016.

[32] R. W. Wolff. Poisson arrivals see time averages. Operations Research, 30(2):223–231,
1982.

[33] Z. Xiong, Q. Liu, T. Wang, D. Li, and T. Zhang. Sketchlib: Enabling efficient sketch-
based monitoring on programmable switches. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 1689–1706, 2023.

[34] M. Yu, L. Jose, R. Miao, J. Rexford, and M. J. Freedman. Software defined traffic
measurement with opensketch. Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages 29–42, 2013.

79

	Introduction
	Background
	Network Programmability
	Software-Defined Networking and Its Limitations
	Programmable Data Planes and Intel Tofino

	The P4 Language and Runtime
	Programming Protocol-Independent Packet Processors
	P4Runtime: Control Plane Integration

	Cardinality Estimation
	Counting Distinct Elements Problem
	The HyperLogLog Algorithm
	Performance Characteristics of HyperLogLog

	Unbiased Sampling via PASTA
	The Problem with Deterministic Sampling
	Theoretical Foundation: PASTA
	Solution: Exponentially Distributed Sampling Intervals

	Windowed HLL (W-HLL)
	Design Overview
	System Architecture Overview
	Data Plane Component
	Control Plane Component
	Data Flow

	P4 Data Plane Implementation
	Header Definitions and Parser
	Hash Computation
	TCAM-Based Rank Lookup
	Register Update
	Ground Truth Counter

	Control Plane Implementation
	BFRuntime Initialization
	TCAM Population
	Register Read Operations
	Counter Read Operations
	Reset Operations
	Event Scheduling and Coordination

	HLL Estimation implementation
	Standard HLL Estimator

	Experimental Validation
	Setup
	Testbed
	Network Configuration
	Software Environment
	Experimental Configuration
	Experimental Parameters

	Methodology
	Validation Approach
	Experimental Variables
	Synchronization Mechanisms
	Measurement Procedures
	Error Metrics
	PASTA Implementation

	Traffic Generation and Replay
	Synthetic Traffic Generation
	Real Traffic Traces
	Traffic Replay

	Ground Truth Measurement
	Synthetic Mode: Hardware Counter
	Real Trace Mode: Software Flow Tracker
	Synchronization and Verification

	Experimental Results
	Synthetic Traffic Experiments
	Real Network Trace Validation
	Results Analysis

	Conclusion
	Bibliography

