P4 73 ~

y AA_ ‘* Polltecnlco

&"ll Liii Qi

“.mll i .iiiiumllll I|||| 'I d | To rl no

o
N\ 1859 s
“‘-\e\ ﬁ“‘#"'

Politecnico di Torino

Msc in Data Science and Engineering

Retrieval-Augmented Generation

for Technical Documentation:
A Domain-Specific Chatbot for
Firmware Manuals

Candidate: Teresa Argnani

Supervisor: Prof. Elena Maria Baralis

December 2025

Contents

Introduction 2
(1 Background and Theoretical Foundations| 4
LI _Chathofs o 4
[1.L1.1 Chatbots Overviewl.)

[1.1.2 Evolution of Chatbotsl 5

[1.1.3 Chatbot Applications| 8

1.2 Large Language Models|, 9
[1.2.1 Word Embeddings and Representation Learningl 10

[1.2.2 Transformer Architecturel 11

[1.2.3 Training Process of LLMs| 12

[1.2.4 Applications and Limitations| 13

1.3 Retrieval-Augmented Generation| 14
[1.3.1 Motivation and Background| 0000 14

[1.3.2 RAG: Advantages, Challenges, and Comparison with Fine-Tuningl 14

[1.4 Prompt Engineering] 16
[1.4.1 Definition and Motivationl oL 16

[1.4.2 Common Prompting Techniques| 17

[1.4.3 Challenges and Future Directions|. 17

2 Development and Implementation| 19
[2.1 Preliminary Research and Feasibility Study| 19
2.2 Data Preparation|. 22
[2.2.1 Data Description| L 22

[2.2.2 Data Preprocessing|. 0oL 23

CONTENTS

[2.2.3 Chunking and Vector Store Construction|

2.3 Prompt Engineering]
2.4 System Integration|

[3 Evaluation and Analysis|
3.1 Evaluation Methodology and Metrics|.
[3.2 Test Set and Experimental Setup|
[3.3 Quantitative Results|

13.4 Representative Examples and Observed Behaviors|

/Conclusions

(Bibliography|

25
27
29

31
31
32
33
34
37

40

41

Introduction

This thesis was developed in collaboration with Brain Technologies, an engineer-
ing consulting company specializing in software engineering, firmware development, and
control systems. Within this professional context, one recurring challenge emerged:
firmware developers frequently need to consult extensive technical documentation, such
as reference manuals, datasheets, and application notes, to correctly configure micro-
controllers and ensure proper hardware-software integration. These documents are of-
ten long and complex, with information distributed across multiple sections, tables, and
diagrams, or even across different manuals that may use inconsistent notation. As a
result, finding a specific configuration detail or parameter can be a slow and error-prone
process, consuming time that could otherwise be dedicated to actual development.

To address this difficulty, this work investigates the use of modern language technolo-
gies to help developers navigate such documentation more efficiently. In recent years,
Large Language Models (LLMs) have gained remarkable attention for their ability to
understand and generate natural language. Their rapid development and increasing ac-
cessibility have made them widely available tools for diverse applications, from creative
writing to software assistance. However, despite their versatility, general-purpose LLMs
often struggle with specialized or highly technical content, where precision, contextual
understanding, and terminology consistency are crucial.

To address this limitation, the Retrieval-Augmented Generation (RAG) paradigm
has emerged as a promising approach. By combining the generative capabilities of LLMs
with the retrieval of relevant information from external knowledge sources, RAG systems
are able to produce more accurate and contextually grounded responses. This strategy
is particularly suitable for interacting with technical material, where factual correctness
and traceability are essential.

The objective of this thesis is to explore the use of Retrieval-Augmented Generation

INTRODUCTION 3

for developing a domain-specific chatbot designed to assist firmware engineers in con-
sulting microcontroller manuals. The proposed system retrieves relevant sections from
device documentation and generates concise, well-referenced answers to technical queries.
Its development required addressing several key aspects of the problem. A significant
part of the work focused on document preprocessing and structuring, as microcontroller
manuals contain valuable information not only in text but also in tables and figures. Pre-
serving this heterogeneous data required a robust and adaptable preprocessing pipeline
capable of handling diverse document layouts. Subsequent steps involved the creation
of semantic embeddings and a vector database for efficient information retrieval, the
design of targeted prompts to guide the model’s reasoning, and the evaluation of the re-
sulting chatbot through case-based testing that measured its correctness, completeness,
and usability. These experiments provided insights into the effectiveness of the RAG
approach in managing technical documentation and highlighted practical challenges and
directions for future improvement.

The thesis concludes with a discussion of the main findings and considerations for
industrial application, including the challenges related to data preprocessing complexity,

model accuracy, and computational cost.

Chapter 1

Background and Theoretical

Foundations

This chapter provides the theoretical background necessary to understand the con-
cepts and technologies behind the system developed in this thesis. It begins with an
overview of chatbots, tracing their evolution from early rule-based programs to modern
conversational systems powered by Large Language Models (LLMs). The discussion then
introduces the main principles of LLMs, including their architecture, training process,
and current limitations. Building on these foundations, the chapter presents the concept
of Retrieval-Augmented Generation (RAG), a framework designed to improve factual
accuracy and adaptability in domain-specific contexts. Finally, it explores the role of
prompt engineering in guiding model behavior and ensuring that generated responses
remain consistent with the source documentation. Together, these sections establish the

conceptual basis for the development and evaluation presented in the following chapters.

1.1 Chatbots

Chatbots represent one of the most visible applications of artificial intelligence in
everyday life. This section introduces their fundamental principles and traces their
evolution from early rule-based systems to modern language-model-based assistants. It
concludes with an overview of the main application domains where chatbots are employed
today, establishing the background necessary to understand their role within the context

of this thesis.

1.1. CHATBOTS)

1.1.1 Chatbots Overview

According to the Oxford English Dictionary, a chatbot is defined as “A computer pro-
gram designed to simulate conversation with a human user, usually over the internet” [IJ.
Over the years, various terms have been used interchangeably with “chatbot”, including
machine conversation system, virtual agent, dialogue system, and chatterbot [2]. De-
spite these variations in terminology, the underlying principle remains the same: enabling
machines to interact with users in a way that resembles natural communication.

The earliest chatbots were rule-based, relying on predefined scripts, question-answer
pairs, and pattern-matching techniques. These systems identified certain keywords in
the user’s input and returned predefined responses, thus creating the illusion of conver-
sation. However, such systems were highly constrained and often produced repetitive or
irrelevant replies when user inputs deviated from expected patterns [3].

A significant step forward was the introduction of intent-based chatbots, which lever-
age Natural Language Understanding (NLU) techniques to capture the underlying intent
of a user’s query rather than reacting only to surface-level keywords. This shift enabled
more robust and flexible interactions, as responses could be dynamically selected based
on the recognized intent [4]. For example, an intent-based system could interpret the
inputs “What’s the weather like tomorrow?” and “Will it rain tomorrow?” as expressing
the same request for weather information and provide an appropriate answer.

Meanwhile, the exponential growth of digital data and advances in machine learning
paved the way for more sophisticated conversational systems. The emergence of Large
Language Models (LLMs) has been especially transformative. Trained on vast corpora
of text, these models demonstrate a remarkable ability to understand linguistic nuances,
maintain conversational context, and generate coherent, contextually appropriate re-
sponses [0]. LLM-based chatbots represent the most advanced stage of conversational
Al to date, although challenges such as hallucinations, outdated knowledge, and com-

putational cost remain open issues [6].

1.1.2 Evolution of Chatbots

The history of chatbots reflects the broader evolution of artificial intelligence and
computational linguistics. Early conversational systems relied entirely on handcrafted
rules, while modern chatbots employ data-driven and generative models. This progres-

sion has been shaped by advances in natural language processing, computing power, and

1.1. CHATBOTS 6

human-computer interaction.

The conceptual foundation for conversational agents is often traced to Alan Turing’s
1950 paper Computing Machinery and Intelligence [7], which introduced the idea later
known as the “Turing Test”. Although not a chatbot itself, this thought experiment
provided an early framework for evaluating machine intelligence in text-based commu-
nication.

A major milestone occurred in 1966 with the development of ELIZA by Joseph
Weizenbaum [§]. ELIZA simulated a psychotherapist using simple pattern-matching
rules and demonstrated how scripted responses could create the illusion of understanding.
Soon after, PARRY (1972) [9] extended this idea by incorporating a rudimentary internal
state to emulate a patient with schizophrenia, representing an early attempt to model
psychological consistency.

The following decades saw experimentation with conversational systems in both re-
search and entertainment contexts. Systems such as Jabberwacky (1988), TinyMUD
(1991), and Dr. Sbaitso (1992) explored interactive dialogue in playful or multimedia
environments. Although limited by hardware constraints and simple learning mecha-
nisms, they broadened the scope of chatbot applications [10].

A notable advance came with ALICE (1995) and the introduction of AIML (Artificial
Intelligence Markup Language) [11]. ALICE demonstrated the scalability of rule-based
systems, storing tens of thousands of conversational templates and winning multiple
Loebner Prizes [12]. However, it still lacked genuine language understanding, relying
strictly on symbolic pattern matching.

The early 2000s saw the deployment of chatbots to mainstream platforms [13].
SmarterChild (2001) integrated with messaging services and provided fast, task-oriented
responses, foreshadowing modern personal assistants. In 2008, Cleverbot popularized
learning from user interactions, although it struggled with long-term coherence.

The 2010s marked the transition from scripted dialogue to large-scale statistical
and neural approaches. Voice assistants such as Apple’s Siri (2010), IBM’s Watson
(2011) [14], Google Now, Cortana, and Amazon’s Alexa (2014) combined speech recog-
nition, natural language understanding, and internet connectivity to provide contextual,
multimodal interaction [15].

A fundamental shift occurred with the emergence of LLMs. OpenAI’'s GPT-3 (2020) [16]

demonstrated that transformer-based architectures could generate coherent, context-

1.1. CHATBOTS

Year System Main contribution Main limitation

1950 Turing Test Conceptual framework for Purely theoretical; no im-
evaluating machine intelli- plementation
gence

1966 ELIZA First rule-based conversa- No semantic understand-
tional program using pat- ing; scripted responses
tern matching

1972 PARRY Introduced persona model- Still rule-based; limited
ing and internal state reasoning

1988 Jabberwacky Early learning from user No long-term coherence;
interactions; playful dia- hardware limitations
logue

1995 ALICE Introduced AIML; scalable No true language under-
template-based system standing; symbolic match-

ing

2001 SmarterChild First mass-market chatbot Narrow domains; scripted
integrated into IM plat- logic
forms

2008 Cleverbot Web-scale conversational Inconsistent replies; no
learning from users context retention

2010- Siri, Watson, Voice-based multimodal Intent-based limits; shal-

2014 Alexa assistants combining low reasoning
speech recognition, NLU,
online services

20204+ GPT-3, Chat- Generative conversational Hallucinations; high com-

GPT, Gemini, AI with broad generaliza- putational cost; knowledge
LLaMA tion and contextual reason- staleness

ing

Table 1.1: Key milestones in the evolution of chatbots

aware text without relying on predefined rules or handcrafted intent structures. This
marked a decisive departure from earlier approaches: instead of mapping queries to
fixed templates, LLMs learned broad linguistic patterns directly from large corpora,
enabling open-ended and flexible dialogue. The release of ChatGPT (2022) [17] intro-
duced conversational models capable of maintaining context, following instructions, and
reasoning across diverse topics. Subsequent models, including Google’s Gemini [I§] and

Meta’s LLaMA [19], further expanded their abilities in multilingual processing, extended

1.1. CHATBOTS 8

context windows, and more sophisticated reasoning. These developments represent the
transition from symbolic or task-specific systems to generative conversational Al and
provide the basis for the techniques explored later in this thesis.

To summarize the main milestones, Table highlights representative systems, the

innovations they introduced, and their main limitations.

1.1.3 Chatbot Applications

Chatbots have evolved from experimental systems into widely adopted tools across
many domains. Their ability to understand user intent, manage context, and generate
natural language responses has made them valuable in settings ranging from education
to business, healthcare, and everyday digital interaction. Although the specific func-
tions differ across these areas, chatbot applications share common requirements such as
reliability, contextual understanding, and the ability to process domain-specific informa-
tion [10].

In education and research, chatbots can support learners through interactive exer-
cises, personalized tutoring, and access to on-demand explanations. Language-learning
systems can provide instant feedback and adapt to a student’s proficiency level, while
accessibility features such as text-to-speech and speech-to-text assist users with disabil-
ities [20]. In academic research, conversational agents are increasingly used to summa-
rize scientific papers, identify relevant literature, and automate repetitive information
retrieval tasks.

Chatbots are also used as tools for creativity and idea generation. Their capacity to
suggest alternative perspectives, explore conceptual connections, and synthesize diverse
information makes them useful for brainstorming and early-stage design activities. In
professional environments, conversational systems assist in project planning, content
drafting, and refining initial concepts.

In software engineering and technical domains, chatbots powered by LLMs support
programmers in tasks such as code generation, debugging, documentation, and testing.
They can detect syntactic or logical errors, propose optimized algorithms, or explain
unfamiliar pieces of code, thereby reducing development time and improving productiv-
ity [21]. These capabilities illustrate how conversational interfaces can help developers
access complex technical information more efficiently, an aspect closely related to the

focus of this thesis.

1.2. LARGE LANGUAGE MODELS 9

In business and public administration, chatbots enhance communication and cus-
tomer engagement [22]. They handle frequent queries, guide users through product
selection, provide technical support, and escalate complex issues to human operators
when needed. Their continuous availability reduces response times and operational
costs. Within public institutions, chatbots help citizens navigate administrative pro-
cedures, complete digital forms, or access online services.

In healthcare, conversational agents support tasks such as appointment scheduling,
patient triage, and health education. Recent studies indicate that chatbots can provide
preliminary medical guidance or answer clinical questions with reasonable accuracy, al-
though human oversight remains essential for safety [23]. They are also employed to
promote healthy behaviors, offer reminders, and deliver basic emotional support, partic-
ularly when integrated into telemedicine platforms.

Finally, in everyday life, chatbots are embedded in personal assistants, smart home
devices, and productivity tools. Users rely on them to schedule activities, control con-
nected devices, retrieve information, or compose messages through natural language
commands. This widespread integration illustrates how conversational Al has become a
common interface for managing routine digital interactions.

Overall, chatbot applications demonstrate the transformative potential of natural
language interfaces in mediating human-computer interaction. By enabling more intu-
itive communication and reducing technical barriers, chatbots are reshaping how people
access information and perform tasks. Despite their benefits, challenges related to con-
textual understanding, privacy, reliability, and ethical use persist [24], which motivates
the use of techniques that improve robustness and factual accuracy, such as the retrieval-

based approaches discussed in the following sections.

1.2 Large Language Models

Large Language Models (LLMs) have emerged as a central paradigm in Natural
Language Processing (NLP). These models can generate contextually appropriate text,
answer questions, and perform a wide range of language-related tasks. Their capabil-
ities are made possible by advances in neural network architectures, efficient language
representations, and the availability of large-scale training data. Within conversational
systems, LLMs provide the contextual and linguistic understanding that enables modern

chatbots to produce adaptive and human-like responses.

1.2. LARGE LANGUAGE MODELS 10

This section introduces the core concepts needed to understand the role of LLMs in
conversational Al It first describes how language is represented numerically inside these
models, then examines the architectural principles that allow LLMs to capture complex
dependencies in text. The discussion continues with an overview of the training strategies
used to develop and adapt these models and concludes with their main applications
and limitations. Together, these elements provide the conceptual foundations for the

retrieval-based approach presented later in this thesis.

1.2.1 Word Embeddings and Representation Learning

A fundamental step in natural language processing is the transformation of words
into numerical representations that can be processed by machine learning models. Early
approaches such as one-hot encoding assigned each word a high-dimensional binary vec-
tor with a single active entry. Although straightforward, this representation treated
every word as unrelated to all others, making it unable to capture semantic or syntactic
similarities.

Word embeddings were introduced to address this limitation by mapping words into
dense, low-dimensional vectors in which semantically related words lie closer together in
the vector space. Methods such as Word2Vec [25] and GloVe [26] learned these vectors
from large text corpora by analyzing word co-occurrence patterns. These embeddings
also capture semantic structure in a geometric way: linguistic relationships such as
gender, verb tense, or intensity often correspond to consistent directions or offsets in
the vector space, revealing how meaningful patterns can emerge from statistical learning
rather than explicit rules.

However, fixed embeddings cannot represent words that have different meanings in
different contexts. To overcome this issue, models such as ELMo [27] and BERT [28]
introduced contextual embeddings, where the vector associated with a word depends on
the sentence in which it appears. This shift greatly improved the ability of NLP systems
to capture polysemy, grammatical structure, and long-range dependencies.

Modern LLMs build on these advances by learning embedding representations jointly
with the rest of the network during training. Instead of treating whole words as atomic
units, they typically rely on subword tokenization methods such as Byte-Pair Encoding
(BPE) or SentencePiece [29], which allow the model to represent rare words, morpholog-

ical variations, and out-of-vocabulary terms efficiently. The resulting embedding layer

1.2. LARGE LANGUAGE MODELS 11

forms the foundation upon which deeper neural components model increasingly abstract

linguistic structures.

1.2.2 Transformer Architecture

A major breakthrough in modern language modeling came with the introduction of
the Transformer architecture [30]. Transformers rely entirely on attention mechanisms
rather than sequential processing, allowing them to model dependencies between tokens
regardless of their distance in the input sequence. This design enables efficient paral-
lelization during training and improves the ability to capture long-range relationships
within text.

At the core of the Transformer is the self-attention mechanism, which determines
how much each token should attend to every other token in the sequence. Each token
is projected into three vectors: a query (@), a key (K), and a value (V). Attention
scores are computed by comparing queries with keys, and these scores determine how
the corresponding value vectors contribute to the updated token representation. The
attention mechanism compares each query with all keys, normalizes the resulting scores
through a softmax function, and uses them to compute a weighted sum of the value

vectors:

. QK”
Attention(Q, K, V') = softmax V,
Vg

where dy, is the dimensionality of the key vectors. These attention scores act as relevance
weights, allowing each token to form a context-aware representation that selectively
integrates information from the entire sequence.

Transformers employ multiple attention heads operating in parallel, enabling the
model to capture different types of linguistic relationships simultaneously. Additional
architectural components further support stable and effective learning: residual con-
nections facilitate information flow across layers, layer normalization improves training
dynamics, and position-wise feed-forward networks provide non-linear transformations
for each token.

Because self-attention alone does not encode sequence order, positional encodings
are added to give the model information about the relative or absolute position of to-
kens. These encodings allow the Transformer to incorporate ordering information while
maintaining full parallelization.

The original Transformer architecture follows an encoder-decoder structure. The

1.2. LARGE LANGUAGE MODELS 12

encoder reads the input sequence and produces contextual representations for each token.
The decoder then generates the output one token at a time, attending both to previously
generated tokens (through self-attention) and to the encoder representations (through
cross-attention). This framework is particularly effective for sequence-to-sequence tasks
such as machine translation or abstractive summarization. Many modern LLMs, such
as GPT and its successors, instead adopt a decoder-only architecture optimized for
autoregressive text generation, whereas models such as T5 [31] and BART [32] retain
the full encoder-decoder design for tasks that require processing an input sequence and

generating a separate output.

1.2.3 Training Process of LLMs

LLMs are trained using self-supervised learning, a paradigm in which the model
learns directly from raw text without requiring manually annotated labels. In this set-
ting, the training objective is derived from the text itself. Two main formulations are
commonly used. In autoregressive language modeling, the model predicts the next token
given all previous ones, as in the GPT family of models [33]. In masked language mod-
eling, some input tokens are replaced by a special mask symbol, and the model learns to
recover them from the surrounding context, as in BERT [28]. These objectives allow the
model to acquire broad linguistic and world knowledge from large corpora in a scalable
manner.

After this pre-training stage, models can be adapted to specific applications through
fine-tuning. In supervised fine-tuning, the model is trained on labeled datasets so that it
learns to perform a particular task, such as sentiment analysis, classification, or dialogue
management. More recently, instruction tuning has been introduced, where models are
fine-tuned on collections of task descriptions paired with expected responses to improve
their ability to follow user instructions [34]. A further refinement is Reinforcement
Learning from Human Feedback (RLHF) [35], in which human evaluators compare model
outputs and these preferences are used to optimize the model toward more helpful and
aligned behavior.

Although effective, full fine-tuning is computationally demanding and often imprac-
tical for large models. To reduce the cost, parameter-efficient fine-tuning techniques such
as adapters or LoRA (Low-Rank Adaptation) [36] modify only a small subset of param-

eters while keeping most of the network frozen. These approaches significantly reduce

1.2. LARGE LANGUAGE MODELS 13

training demands but still require model updates and do not address the limitations of
static knowledge.

A central challenge remains that fine-tuned models internalize information in their
parameters, making it difficult to update or correct their knowledge without retraining.
This is particularly problematic in domains where accuracy, traceability, and frequent
updates are essential, such as technical documentation. These constraints motivate the
exploration of approaches that can incorporate external knowledge without modifying

model weights, which is the focus of the next section.

1.2.4 Applications and Limitations

LLMs have demonstrated remarkable versatility across a wide range of applications,
including conversational agents, machine translation, text summarization, information
retrieval, and code generation [37]. Their ability to generalize from examples enables
few-shot and zero-shot learning, allowing them to perform tasks for which they have
never been explicitly trained. In conversational systems, LLMs provide the generative
and reasoning capabilities that support context-aware dialogue, intent understanding,
and flexible interaction.

Despite these strengths, LLMs also present important limitations. Because they op-
timize for the likelihood of generating plausible text, they may produce incorrect or
fabricated information, a phenomenon commonly referred to as hallucination. Their
knowledge is bounded by the data used during pre-training, which makes it difficult to
update or correct specific facts without retraining. Furthermore, inference with large
models is computationally intensive, raising concerns related to scalability, environmen-
tal impact, and deployment cost. Additional challenges include biases inherited from
training data, risks of misinformation, and privacy considerations when interacting with
sensitive content.

These limitations are particularly relevant in domains where accuracy, traceability,
and up-to-date information are essential. To address these issues, hybrid approaches
such as Retrieval-Augmented Generation integrate external knowledge sources directly

into the generation process and are discussed in the following section.

1.3. RETRIEVAL-AUGMENTED GENERATION 14

1.3 Retrieval-Augmented Generation

This section introduces Retrieval-Augmented Generation (RAG), a framework that
extends LLMs by integrating external information retrieval into the generation pro-
cess [38]. Instead of relying solely on the knowledge encoded in model parameters, RAG
retrieves relevant evidence from an external corpus and incorporates it during inference.
The following subsections outline the main concepts behind this approach, its advan-
tages and challenges, and explain why RAG was particularly suitable for the system
developed in this thesis.

1.3.1 Motivation and Background

LLMs rely on knowledge encoded in their parameters during pre-training, which
limits their ability to incorporate new or domain-specific information. Updating this
knowledge through fine-tuning is possible, but it is computationally expensive, requires
labeled data, and offers limited flexibility when information must be refreshed frequently.

Retrieval-Augmented Generation offers an alternative approach by integrating an
external retrieval mechanism into the generation process. Instead of relying solely on
internal model parameters, RAG retrieves relevant information from an external corpus
and uses it to guide the response generated by the language model. A schematic overview
is presented in Figure|1.1

The pipeline typically involves embedding the user query, searching for semantically
similar vectors within a vector store, which is a specialized database that indexes docu-
ments as high-dimensional embeddings, and returning the most relevant passages. These
retrieved contexts are then provided to the language model, enabling it to generate out-
puts grounded in explicit evidence.

The motivation behind RAG lies in extending LLMs beyond the constraints of a fixed
training corpus while keeping inference efficient. This approach is particularly advanta-
geous in scenarios where information evolves rapidly or where accuracy and traceability

are essential, making it well suited for technical and domain-specific applications.

1.3.2 RAG: Advantages, Challenges, and Comparison with Fine-Tuning

Fine-tuning and Retrieval-Augmented Generation both extend the capabilities of

pre-trained language models, but they do so in fundamentally different ways. Fine-

1.3. RETRIEVAL-AUGMENTED GENERATION 15

Query Embedding
model
{ LLM }(—[Retrieved H Vector DB }
contexts
{ Response J

Figure 1.1: High-level diagram of a RAG pipeline.

tuning internalizes new information into the model parameters through gradient-based
optimization, which makes it effective for stable and well-defined tasks but costly to
update when data changes. RAG instead externalizes knowledge: relevant information
is retrieved from an external corpus at inference time and used to condition the model’s
output. This separation between knowledge storage and generation enables flexible and
lightweight adaptation to new domains without modifying model parameters.

RAG offers several practical advantages. By grounding responses in retrieved evi-
dence, it improves factual accuracy and reduces the risk of hallucinations. Its modular
design allows the underlying knowledge base or retrieval component to be updated in-
dependently of the language model, and the retrieved passages provide transparency by
making supporting evidence directly inspectable. These properties make RAG suitable
for scenarios that require up-to-date, domain-specific, or verifiable information.

In addition to these advantages, RAG offers important benefits from a data safety
perspective. Because the retrieval component operates on a locally stored document
corpus, sensitive or proprietary manuals can be indexed and queried without exposing
their full contents to the language model provider. Only the user query and the retrieved
text fragments need to be processed by the model, which reduces the amount of inter-
nal documentation transmitted outside the organization. This separation between the

knowledge base and the model improves privacy, facilitates compliance with company

1.4. PROMPT ENGINEERING 16

policies, and enables on-premise or hybrid deployments where the retrieval pipeline is
fully controlled by the engineering team. Nevertheless, although grounding answers in
retrieved evidence mitigates hallucinations, it does not eliminate them entirely; there-
fore, critical configuration decisions should always be validated by the engineer.

RAG also introduces specific challenges. Its effectiveness depends on retrieval qual-
ity: irrelevant or noisy results can degrade the final output. Current language models
are constrained by finite context windows, which limit how much retrieved information
can be incorporated at once. In addition, real-time retrieval may introduce latency,
and maintaining large vector databases requires careful data management and indexing
strategies.

For these reasons, RAG represents an effective compromise between adaptability, effi-
ciency, and factual reliability. Its ability to combine the generative strengths of language
models with the precision of retrieval-based methods makes it particularly suitable for
the chatbot developed in this thesis, which must operate on technical and frequently

updated documentation.

1.4 Prompt Engineering

The behavior of LLMs is strongly influenced by how the input prompt is formulated.
Prompt engineering refers to the design of prompts that guide the model toward produc-
ing relevant, accurate, and context-aware responses. It has become an essential technique
for adapting general-purpose models to specific tasks without additional training and it

plays a complementary role to retrieval-based methods such as RAG [39)].

1.4.1 Definition and Motivation

Although LLMs are capable of performing a wide range of linguistic and reasoning
tasks, their outputs depend heavily on the clarity and structure of the provided input.
Prompt engineering aims to reduce ambiguity, encourage appropriate reasoning, and
improve factual reliability by shaping the model’s internal processing through carefully
designed instructions. This approach aligns with the broader paradigm of in-context
learning, in which a model adapts its behavior based on the examples, constraints, or

stylistic cues contained within the prompt itself.

1.4. PROMPT ENGINEERING 17

1.4.2 Common Prompting Techniques

Several prompting strategies have been developed to improve model performance

depending on the task:

e Zero-shot prompting: the model receives only a direct instruction. This is

effective for well-defined tasks where the expected format is clear.

e Few-shot prompting: one or more input-output examples are included in the
prompt to illustrate the desired behavior. This helps the model infer the task

structure and response style.

e Instruction-based prompting: explicit instructions are added to shape the

response, such as “Explain step by step” or “Summarize in short bullet points.”

e Chain-of-thought prompting: the model is encouraged to generate intermedi-
ate reasoning steps before providing the final answer, which can improve perfor-

mance on tasks that require structured reasoning.

e Role-based prompting: the model is assigned a specific persona or role (for
example, “You are a technical assistant”), which influences tone, style, and focus.

This technique is particularly useful in domain-specific applications.

Other prompting strategies exist, such as self-consistency prompting, which samples
multiple reasoning paths and selects the most coherent one, although such methods are
typically used in specialized settings.

Different prompting techniques can also be combined. For instance, a role-based
prompt may be paired with explicit instructions and a short example, allowing the

model to better understand both the expected behavior and the output format.

1.4.3 Challenges and Future Directions

Despite its utility, prompt engineering presents several challenges. Models can be
highly sensitive to small changes in phrasing or structure, which may lead to variations
in output quality. Long prompts consume more tokens, increasing computational cost
and sometimes approaching context length limits. Moreover, evaluating prompt quality

remains difficult, as no standard metrics exist beyond task-specific performance.

1.4. PROMPT ENGINEERING 18

Recent research has explored automated methods such as prompt tuning or reinforcement-
based optimization, in which prompts are refined through data-driven procedures rather
than manual design. While these approaches aim to provide more systematic control
over model behavior, prompt engineering remains a practical and widely used technique
for guiding LLM outputs and complements retrieval-based approaches by further shaping
how external knowledge is used during generation.

In the context of this thesis, prompt engineering is employed to steer the model’s use
of retrieved information, ensure consistency with the technical domain, and improve the

overall quality of the chatbot’s responses.

Chapter 2
Development and Implementation

This chapter describes the practical development of the chatbot system for interacting
with microcontroller manuals. It presents the preliminary feasibility study, the data
preparation and preprocessing pipeline, the tools and libraries adopted, the strategies for
chunking and prompting, and the final integration of these components into a functional

Retrieval-Augmented Generation (RAG) architecture.

2.1 Preliminary Research and Feasibility Study

Before developing a custom pipeline, a preliminary phase of exploratory research
was carried out to assess whether existing no-code platforms could serve as a practi-
cal starting point for building a domain-specific chatbot. These platforms have become
increasingly popular because they allow users to create Al assistants by uploading doc-
uments and configuring simple workflows, without requiring programming experience.
Since this approach could be appealing for organizations interested in experimenting
with Al solutions without introducing new technical expertise, it was useful to evaluate
their capabilities and limitations in the context of microcontroller manuals. Although
exploratory only and not part of the final system, this phase helped shape several choices
later adopted in the implementation, including prompt design strategies and the selection
of the large language models used.

MindStudi(ﬂ was selected as the primary platform for this feasibility study due to

its intuitive interface, workflow-oriented design, and free availability during the summer

"https://mindstudio.ai/

19

https://mindstudio.ai/

2.1. PRELIMINARY RESEARCH AND FEASIBILITY STUDY 20

of 2024, when these experiments were conducted. The platform supports the creation of
Retrieval-Augmented Generation (RAG) pipelines by automating key operations such
as document ingestion, text chunking, embedding creation, and similarity search. This
made it suitable for rapid prototyping and for exploring different configuration options
without the need to develop a custom backend. An example of the workflow interface

used during this phase is shown in Figure [2.1

Explorer Errors Debugger #0, \Welcome S Main.flow

) m Board games assistant Automations System Prompt Model Settings Evaluations Profiler

~ B Data Sources

> B Board games rules [9)
> 4
> Functions G User Input

v [User Inputs
£ game
v & Workflows

S Main.flow @

K]
o

Chat

& Generate Agent D R4 H @ — 67% +

Figure 2.1: Workflow interface in MindStudio used during the feasibility study.

An initial challenge emerged immediately: evaluating the correctness of the chatbot’s
responses using microcontroller manuals was difficult without substantial domain exper-
tise. These documents contain highly specialized and interdependent information, and
an incorrect answer can have different degrees of “incorrectness”: it may be completely
wrong or inappropriate, partially correct but missing essential details, or factually cor-
rect yet incomplete in a way that does not affect the final configuration. Distinguishing
between these cases requires technical knowledge, which made the manuals unsuitable
as a first environment for systematically exploring model behavior and configuration
choices. To obtain clearer and more immediate feedback on model behavior, the first
tests were therefore conducted using board game manuals.

Board game manuals provided a simpler and more familiar environment for exper-
imenting with no-code workflows. Their limited length and accessible content made it
easier to evaluate the accuracy, completeness, and consistency of the answers across dif-

ferent prompts, LLMs, and platform settings. At the same time, they share structural

2.1. PRELIMINARY RESEARCH AND FEASIBILITY STUDY 21

similarities with technical documentation, including tabular data, hierarchical rules, and
references to specific cases that must be followed precisely. This made them a suitable
proxy for exploring the capabilities of a RAG-based pipeline under controlled conditions,
without the confounding effect of domain complexity.

The feasibility study produced several insights. As expected, models equipped with
retrieval provided more accurate and grounded answers compared to generic chatbots
without external documents. More importantly, the study highlighted clear limitations
in the automated preprocessing performed by the platform. When PDFs were uploaded
directly, the extraction stage occurred entirely inside MindStudio and could not be con-
figured or inspected. Tables were often misinterpreted, with misaligned or missing rows
and columns, and in some cases they were completely omitted during text conversion.
Since tables often contain critical register descriptions and configuration parameters in
microcontroller manuals, reliable extraction is essential, and these issues significantly
motivated the development of a dedicated preprocessing pipeline in later stages.

Different prompting strategies were also evaluated during this phase. Role-based
instructions, concise formulations, and prompts requiring explicit reference to the source
consistently produced more stable and grounded outputs. These observations guided the
design of the system prompt later used in the final implementation.

Several LLMs available in MindStudio were compared during the experiments, in-
cluding GPT-3.5 Turbo, Gemini-1.5 Pro, Claude 3 Sonnet, and Mixtral 8x7B. When
answers depended on a single, clearly identifiable rule or paragraph, the models be-
haved similarly. For queries requiring cross-referencing multiple sections, Gemini-Pro
consistently produced the most reliable and conservative responses in this controlled
test domain. At the time of experimentation (summer 2024), Gemini 1.5 Pro offered
a favorable balance between quality, stability, and available free credits, which made
it the most suitable choice for the subsequent development phase. It is worth noting
that several of the models used during this exploratory phase are no longer available in
the same form, as model releases evolve rapidly. However, the conclusions drawn from
these experiments remain valid for the period in which the project was carried out, and
the same considerations apply to the implementation and evaluation presented in the
following chapters.

In summary, the feasibility study showed that while no-code platforms offer accessible

and rapid experimentation, they lack the precision and control required for processing

2.2. DATA PREPARATION 22

complex technical manuals, particularly in the handling of tables and cross-references.
The insights gained from this phase informed key design choices in the custom pipeline,
including the selection of the LLM, the design of prompts, and the need for a transparent

preprocessing stage, which are described in the next sections.

2.2 Data Preparation

This section describes the preparation of the documentation used to build the chat-
bot’s knowledge base. The project relies on two microcontroller reference manuals,
selected to represent the type of technical material commonly consulted by firmware
developers. After introducing their main characteristics, the section describes the pre-
processing steps required to transform the original PDF files into structured text suitable

for retrieval and embedding.

2.2.1 Data Description

The data used for this project consist of two microcontroller reference manuals from
different manufacturers. These documents were selected because they represent the
type of technical material that firmware developers routinely consult, and they form
the knowledge base on which the chatbot must operate. Both manuals contain detailed
descriptions of device architecture, peripherals, memory organization, and configuration
registers, expressed through a combination of text, tables, diagrams, and numerical
specifications.

The first document is the STM32G0B1xB/xC/xE reference manual published
by STMicroelectronics (revision 3, January 2022) [40]. It describes a family of 32-bit
Arm® Cortex®-M0O+ microcontrollers running at up to 64 MHz. With approximately
160 pages, it combines explanatory text with a moderate number of tables and figures. Its
compact structure and manageable complexity made it suitable for the early development
and testing of the preprocessing workflow.

The second document is the Kinetis KE17Z /13Z /12Z reference manual from NXP
Semiconductors (revision 1, June 2021) [4I]. It covers another family of 32-bit Arm
Cortex-M0+ microcontrollers, operating at up to 72 MHz, and exceeds 1000 pages.
Compared to the STM32 manual, it presents a much denser layout with a higher con-

centration of tables, register descriptions, and functional diagrams. This level of detail

2.2. DATA PREPARATION 23

made it useful for evaluating how well the pipeline scales to long and heterogeneous
documents and for demonstrating that the preprocessing strategy can adapt to different
documentation formats.

Both manuals were used in their entirety and were available only in PDF format,
exhibiting common characteristics of industrial technical documentation. These include
multi-column layouts, nested and wide tables, repeated headers and footers, and cross-
references spread across multiple chapters. Such formatting complicates automatic ex-
traction and requires careful processing to preserve the relationships between text and
tables; For these reasons, the manuals offer realistic examples of the challenges en-
countered when preparing technical documents for downstream retrieval and question
answering.

To give a visual sense of their structure and layout, Figure shows an example
page from each manual. The images are not meant to be fully readable, but to give an
idea of the type of formatting, the information density, and the usage of tables across
the two documents.

A summary of their main characteristics is shown in Table The substantial dif-
ferences in length, structure, and information density provided a useful basis for testing
the robustness and adaptability of the preprocessing and retrieval methods developed in
this thesis. It is worth noting that the density values may appear higher than what one
might expect from a simple ratio of tables and figures per page. This is because both
manuals contain many long tables that span multiple pages. As a result, density reflects

not only the number of distinct tables but also their physical distribution across pages.

Manual Pages Tables Figures Density"
STM32G0B1 series (ST) 160 96 66 1.28
Kinetis KE17Z series (NXP) 1103 ~ 250 212 0.98

Table 2.1: Main characteristics of the reference manuals used in the project.

" Density values express the approximate ratio of tables and figures per page.

2.2.2 Data Preprocessing

Since the reference manuals were only available in PDF format, a dedicated prepro-

cessing pipeline was developed to convert them into a structured and machine-readable

2.2. DATA PREPARATION 24

Electrical characteristics STM32GOB1XB/XC/XE

Chapter 33 FlexTimer (FTM)
51.7 Current consumption measurement 334322 Function
SC contains the overflow status flag and control bits used to configure the interrupt
enable, FTM configuration, clock source, and prescaler factor.

Figure 16. Current scheme

This register also contains the output enable control bits and the reload opportunity flag
control.

These controls relate to all channels within this module.

33.4.3.2.3 Diagram

5.2 Absolute maximum ratings w l ‘ 2 EEEIEEEE
Stresses above the absolute maximum ratings listed in Table 21, Table 22 and Table 23 LS § E & § a § §

may cause permanent damage to the device. These are stress ratings only and functional Rest 0 0 0 o0 o0 o0 ©0 o0jo0 o o0 o0 o0 o0 o0 O
operation of the device at these conditions is not implied. Exposure to maximum rating

conditions for extended periods may affect device reliability. The device mission profile B 5 4 0w 1 w0 e e |7 6 85 4 3 2
(application conditions) is compliant with the JEDEC JESD47 qualification standard. R o 5w e 2 [y
2 |4 bl P <
° gw | |3 ao
Al voltages are defined with respect to Vs, w oo | HEE
Table 21. Voltage i R 0 0 o 0 o0 0 0 0|0 o 0 0 0 o0 0 o0
Symbol Ratings Min Max nit
Voo | External supply voltage 03 40 v
Vooioz | Extemnal supply voltage for selected II0s 03 40 v 33.4.3.2.4 Fields
Vear | External supply voltage on VBAT pin 03 40 v o E—
Vegr. | External voltage on VREF+ pin 03 Min(Vpp + 04,40) | v 3128 |Resenved
Input voltage on FT_xx pins except FT_c 03 Vpp + 40989 _
Vi [Input voltage on FT_c pins 03 55 v 2724 |Reserved
Input voltage on any other pin 03 40 —
23 Channel 7 PWM enable bit

PWMEN? | This bit enables the PWM channel output. This bit should be set to 0 (output disabled) when an input

INOTE: This fled s not supported in every The 9
Table 22. Current gisters.
Symbol Ratings Max Unit Field supported in Field not supported in
Ivooivooa m FTM0_SC -
Gurrent into VDD/VDDA and VDDIOZ power pins (source) 100 ma
oDio2 - FT1_sc
lussvasa | Current out of VSSIVSSA and VSS ground pins (sink)(100 mA - Fve_so
Table continues on the next page.
66/160 DS13560 Rev 5 IS73

Kinetis KE172/132/12Z with up to 256 KB Flash Reference Manual, Rev. 1, 06/2021
NXP Semiconductors. Preliminary 651

Figure 2.2: Example page layouts from the STM32GO0BI1 reference manual (left) and the
Kinetis KE17Z reference manual (right).

corpus suitable for embedding and retrieval. The entire workflow was implemented in
Python and designed to preserve the logical order of the documents while extracting
both descriptive text and tabular information in a consistent format. Although prepro-
cessing large manuals is computationally expensive, it must be performed only once per
document, and the resulting corpus can be reused for all subsequent retrieval operations.

As a first step, each manual was automatically divided into chapters based on its
table of contents. This segmentation reduced the computational load associated with
processing large documents and simplified quality inspection by allowing extraction to
be carried out and validated chapter by chapter.

The core of the preprocessing pipeline relied on a hybrid strategy combining two
complementary tools. The unstructured library was used to parse each chapter and
identify elements such as titles, paragraphs, tables, and figures, providing metadata for
each extracted component. However, while it was effective at recognizing element types,

its table extraction was not always reliable for the complex register tables commonly

2.2. DATA PREPARATION 25

found in microcontroller documentation. To obtain precise cell-level structures, the
Camelot library was applied in lattice mode to extract grid-based tables. Camelot
alone, however, occasionally misclassified figures or diagrams as tables. For this reason,
the pipeline integrated both tools: unstructured indicated which elements were tables,
while Camelot provided structured table content. Additional filtering removed spurious
tables by discarding Camelot outputs with a high proportion of empty cells.

To illustrate the challenges involved in parsing complex technical tables, Figure
shows a representative page from the STM32GO0B1 reference manual together with the
structural elements identified by Camelot. The example highlights how the tool re-
constructs ruling lines, localizes text regions, and combines these signals to infer the
underlying table layout. In this particular case, the table contains multiple nested head-
ers, irregular subcells, and non-uniform column groupings. Camelot is able to recover
the structure with a high degree of accuracy, but certain fine-grained elements are not
captured perfectly due to the complexity of the layout. Such cases demonstrate that,
while automated extraction is generally reliable, highly irregular tables may still require
additional inspection or manual correction during preprocessing.

After extraction, text and tables were recombined in reading order to reconstruct
each chapter in a linear format. Tables were inserted as HTML-like representations
to preserve their structure and cell relationships. This choice is consistent with recent
research on applying LLMs to tabular data [42], where structured textual encodings are
commonly used to make row and column relationships explicit for downstream models.
Retaining this structure ensured that register tables were preserved faithfully and could
be interpreted consistently within a text-based retrieval pipeline.

Relevant metadata such as chapter titles, table titles, and page markers was preserved
to support traceability and facilitate later debugging. The final output consisted of
a clean text representation for each chapter, containing both narrative content and
structured tables. These chapter files were merged into a single corpus for each manual,
forming the basis for the chunking and embedding procedures described in the next

section.

2.2.3 Chunking and Vector Store Construction

Once the manuals had been transformed into structured text files, the next step was

to divide the corpus into smaller textual units and convert them into vector representa-

2.2. DATA PREPARATION

Description STM32G0B1xB/xC/XE.
Table 2. F
STuzc081_
Perpherat o | o] _car | conn rwr | o[wer | ver
e | komn| oo coww e | Thoi |Tnoaw| e | el
T e e e | e
e @
Fc 3
i USART 0
HETT z
P ;
Ha W e [[] z
Focan B
e .
e Ve
Taroer s 3
VODI0zpn VS pn | Nomo | veato | Mot | Yeunes | Yewves | oo | vesres | vesrves | vesres
Fandom e gewrtr o
aes o
Por E I N B O O B B
Wereup o s . s 7%
3 res] 3 IEZE e

AOG anannet (et +int) | 1142 | 10+

DAC charnsls

Tntermatvoage reerence
bt o Yes

‘Analog comparators B

Max CPU requency s

Operatng votage 1738V

- Amblent 401085 °C/ 4019105 °C/ 40 125 C

Operatg temperatre Junchon. 401 105 °C/ 4010 125°C /40 130°C.

Nurber ofpns = @ [=] w | ® [w
b
2
s
121159 DS13560 Rev 3 (573

26

(a) Original page.

(c) Text regions.

(b) Line detection.

STM32G0BIXBIXCIXE

ble 2. Features and peripheral counts (continued)

IR
Ve

UsART

PUART

Use

12180

(d) Line intersections.

Figure 2.3: Example of a complex register table page and the corresponding structural

interpretation produced by Camelot.

tions suitable for semantic retrieval. This operation, commonly referred to as chunking,

determines the granularity at which information can be indexed and retrieved by the

RAG system.

Because the manuals contain heterogeneous content—including descriptive text, HTML-

2.3. PROMPT ENGINEERING 27

like representations of tables, parameter summaries, and configuration notes—special
attention was required to avoid fragmenting coherent technical units. In particular,
splitting register tables across chunks would significantly reduce retrieval quality. For
this reason, an adaptive chunking strategy was adopted. Instead of using fixed-size seg-
ments or relying on section boundaries, the chunk size was computed dynamically as
a function of the total document length, ensuring that each manual was divided into a
comparable number of large chunks. A substantial overlap between consecutive chunks
was maintained to preserve continuity and reduce the risk of breaking tables or separat-
ing related explanations. This approach provided a practical balance between retrieval
accuracy and computational efficiency.

Each chunk was then encoded into a numerical vector using the text-embedding-004
model from Google, which was selected for its robustness across heterogeneous chunk
types and its consistent behavior when processing both textual descriptions and table-
derived content.

All embeddings were stored in a vector database implemented with FAISS (Facebook
AT Similarity Search), which enables efficient nearest-neighbor search even for large col-
lections. For each user query, the system retrieves the top-5 most semantically similar
chunks, which are then passed to the language model to support grounded answer gen-
eration. Metadata associated with each chunk, such as chapter identifiers and manual
source, allows retrieved passages to be traced back to the corresponding sections in the
original documents.

The entire chunking, embedding, and retrieval workflow was implemented using the
LangChain framework, which provides a unified interface for text splitting, embedding
creation, and vector store management. This modular structure ensures that individual
components can be reconfigured or replaced if new tools become available.

The resulting knowledge base is a fully searchable semantic index of the manuals:
every fragment of the documents is represented by its vector embedding, enabling the
system to efficiently locate and combine relevant information during response generation

in the RAG pipeline.

2.3 Prompt Engineering

Prompt design played an important role in controlling the chatbot’s behavior and

reducing hallucinations. In a RAG system, the prompt determines how the retrieved

2.3. PROMPT ENGINEERING 28

passages are interpreted and integrated into the model’s reasoning. While retrieval
selects relevant content from the vector store, the prompt specifies how the model should
use this content to produce coherent, evidence-based, and verifiable answers.

Several prompting strategies were tested during the experimentation phase to identify
which formulations produced the most accurate and concise responses. Different styles
were explored, including instruction-based prompts, role-based prompts, and variants
that explicitly required the model to cite the source of each statement. The experi-
ments showed that clear and directive formulations yielded more reliable outputs than
generic instructions. In particular, assigning the model a specific role (for example,
“expert assistant in firmware development”) significantly improved factual accuracy by
constraining the tone and scope of its responses.

The final configuration adopted a structured system prompt that defined the ex-
pected behavior of the assistant. The prompt instructed the model to act as a domain
expert, to rely exclusively on the retrieved context, and to avoid speculation. An example

is shown below:

“You are an expert assistant in firmware development. Answer questions
based strictly on the context retrieved from the manuals. If the information
is not present, clearly state that it cannot be found, and reference the relevant

section or page whenever possible.”

This formulation encouraged concise and document-grounded responses while main-
taining a cooperative conversational tone. By emphasizing transparency and explicitly
discouraging unsupported inferences, the prompt helped reduce hallucinations and im-
proved the reliability of the generated answers. The requirement to cite sections when
possible also strengthened traceability, which is essential when interacting with technical
documentation.

Overall, the prompt engineering phase established the behavioral constraints nec-
essary for consistent and verifiable outputs. The resulting configuration integrates
smoothly with the retrieval pipeline, ensuring that the model’s responses remain aligned
with the underlying documentation and suitable for the technical domain considered in

this thesis.

2.4. SYSTEM INTEGRATION 29

2.4 System Integration

The components developed throughout the project were integrated into a unified
conversational architecture that connects data preprocessing, retrieval, and answer gen-
eration. This integration ensures that each stage of the pipeline, from document inges-
tion to response delivery, operates coherently, enabling users to query technical manuals
through natural language.

The system follows the typical structure of a Retrieval-Augmented Generation frame-
work. When the user submits a question through the command-line interface (CLI), the
query is embedded and compared against the vectors stored in the knowledge base. The
retriever identifies the top five most semantically relevant chunks, which are then passed
to the language model together with the user query and the system prompt. The LLM
generates an answer grounded in these retrieved passages, and the final output is re-
turned to the user together with references to the corresponding sections or pages of the
manuals. This approach ensures that the generated responses remain both context-aware
and traceable.

All system components were implemented using the LangChain framework, which
offers a flexible environment for connecting preprocessing, retrieval, and generation mod-
ules. The modular structure makes it possible to configure or replace individual com-
ponents independently, including the text splitter, embedding model, vector store, re-
triever, and language model. Conversation management is handled through LangChain’s
message-passing interface, which maintains dialogue history and allows interactions to
be reused for inspection or later evaluation.

The chatbot currently operates through a CLI, a choice motivated by transparency
and ease of debugging. This interface makes it possible to display retrieved passages
alongside generated answers, helping to assess retrieval quality and identify hallucina-
tions during iterative development. Although the system was prototyped in a text-based
environment, the underlying architecture is general and can be extended to graphical or
web-based interfaces without modification to the core logic.

Figure illustrates the overall workflow of the system. The process begins with the
ingestion of the reference manuals, which are transformed by the preprocessing pipeline
into a structured corpus. These data are then chunked, embedded, and stored in the
vector database. During interaction, the user query triggers the retriever, which selects

the most relevant fragments to provide grounding for the LLM, resulting in a coherent

2.4. SYSTEM INTEGRATION

and verifiable answer.

30

The integrated system combines data engineering and language modeling components

within a single modular framework. This design enables efficient interaction with com-

plex technical documentation and provides firmware developers with accurate, context-

aware, and traceable responses.

Ve

=

Original
manuals

Offline Preprocessing

. Chunking &
Preprocessing el dding

- Vector

A

4

- store

~

-

=

Online Interaction

User
query

Retriever

Query
embedding

A

/

Top-5
chunks

A

4

Retrieved Context

LLM +
prompt

Response

J

Figure 2.4: Overview of the chatbot architecture. Manuals are preprocessed offline to
produce embeddings stored in a vector database. At query time, the user question is
embedded, relevant chunks are retrieved from the vector store, and the language model
generates a response based on the combined query and retrieved contexts.

Chapter 3

Evaluation and Analysis

This chapter presents the evaluation of the developed chatbot system, focusing on
its accuracy, completeness, and practical usability when interacting with microcontroller
reference manuals. Since no public benchmark exists for this specific domain, the as-
sessment relied on a manually curated set of test questions prepared in collaboration
with domain experts from Brain Technologies. Each response produced by the chatbot
was compared against the official documentation and reviewed according to predefined
qualitative criteria. The chapter describes the evaluation methodology, summarizes the
obtained results, examines representative examples, and discusses the main behavioral

patterns and practical considerations that emerged from the experiments.

3.1 Evaluation Methodology and Metrics

The objective of the evaluation was to assess how accurately and reliably the devel-
oped chatbot can assist engineers in consulting microcontroller reference manuals. Since
the experiments were tailored to the specific documentation, a dedicated set of test ques-
tions was manually created in collaboration with domain experts. These questions reflect
realistic information needs encountered during firmware development, including requests
about pin functions, electrical limits, register fields, and peripheral configuration steps.

Automatic text similarity metrics such as BLEU or ROUGE were considered, but
ultimately found unsuitable for this context. Such metrics assume the availability of large
datasets with multiple reference answers per question, enabling meaningful statistical

comparisons. In this project, the expected responses are short, technical statements that

31

3.2. TEST SET AND EXPERIMENTAL SETUP 32

can be phrased correctly in several different ways, making similarity-based metrics a poor
indicator of factual accuracy. Constructing a sufficiently large domain-specific dataset
with validated alternative answers would have required extensive expert annotation and
was outside the scope of this work.

For these reasons, the evaluation relied on qualitative, human-interpretable criteria.

Each chatbot response was rated according to the following metrics:

e Correctness: the degree to which the answer matches the information contained
in the manual. Ratings were assigned on a five-point scale (1 = incorrect, 5 = fully

correct).

e Completeness: the extent to which the answer includes all relevant details needed
to fully address the question. Again, ratings were manually assigned on a scale

from 1 to 5.

e Citation accuracy: whether the answer provides a correct reference to a relevant

table, figure, section, or page of the manual.

e Clarity and relevance: a qualitative judgment of how understandable, concise,

and practically useful the answer is for an engineer.

All responses were reviewed by domain experts, who cross-checked them against the
official documentation. Because this process requires detailed verification of specifica-
tions and descriptions in the documentation, the size of the test set represents a practical
balance between representativeness and feasibility.

Alongside these metrics, additional aspects such as topic coverage and general re-
sponse time were also considered as part of the overall evaluation, providing complemen-
tary insight into the system’s usability and robustness.

The following sections present the test set, summarize the results, and examine rep-

resentative examples.

3.2 Test Set and Experimental Setup

The evaluation was conducted on the two microcontroller reference manuals intro-

duced in Section A set of 24 test questions was manually defined in collaboration

3.3. QUANTITATIVE RESULTS 33

with domain experts, reflecting realistic information needs encountered during the con-
sultation of technical documentation.

The test set was organized into two complementary groups. The first group con-
sisted of questions whose answers correspond to precise, explicitly stated information in
the manuals, typically retrievable from tables, parameter listings, or short descriptive
paragraphs. These questions were intended to assess the chatbot’s ability to locate and
extract well-defined technical details.

The second group required combining information from multiple sections of the doc-
umentation. These questions involved multi-step reasoning or the integration of related
descriptions across different chapters, providing a more challenging evaluation scenario.
Although smaller in number, this second group offered insight into the system’s ability
to navigate dependencies and interpret more complex relationships within the manuals.

Each response was evaluated according to the criteria described in Section[3.1] While
the size of the test set was necessarily limited due to the manual validation required for
each case, the selected questions cover a representative variety of lookup-oriented and
reasoning-oriented tasks. As such, they provide a realistic indication of the system’s

expected behavior during practical interactions with technical documentation.

3.3 Quantitative Results

Table summarizes the main quantitative outcomes of the evaluation. For each
manual, the average correctness and completeness scores reflect the qualitative ratings
described in Section while citation accuracy indicates the proportion of answers that

included an explicit and correct reference to the relevant part of the documentation.

Manual N. Questions Correctness (avg) Completeness (avg) Citation. Acc.
STM32G0B1 19 4.0/5 4.1/5 0.79
KE17Z) 4.4/5 4.8/5 0.80

Table 3.1: Summary of evaluation results.

The correctness score reflects how accurately each answer matched the information
contained in the manual. A score of 5 corresponds to a fully correct response, while a
score of 4 indicates generally correct information with minor imprecisions. Lower values

represent increasing levels of inaccuracy or missing details. Answers that were incorrect

3.4. REPRESENTATIVE EXAMPLES AND OBSERVED BEHAVIORS 34

on the first attempt but corrected immediately after a follow-up prompt were assigned an
intermediate score of 2.5. This approach captures both the initial error and the model’s
ability to revise its output when prompted, highlighting the interactive nature of the
system. A similar strategy was adopted for completeness scoring, where answers that
initially omitted relevant details but recovered them during follow-up interaction were
reflected in intermediate values.

The decision to assign intermediate scores to answers that were incorrect on the first
attempt but corrected after a follow-up prompt reflects the intended usage scenario of the
system. In practical settings, engineers often possess enough domain knowledge to im-
mediately recognize an incorrect statement and ask the chatbot to re-check its reasoning.
In such cases, the model’s ability to revise its output becomes relevant to the overall user
experience. However, since not all users may detect an erroneous first answer, the initial
mistake cannot be ignored in the evaluation. The intermediate score therefore balances
the chatbot’s capacity for self-correction with the practical implications of producing an
incorrect response at first glance.

The citation accuracy metric reports the fraction of answers that included a correct
reference to a specific table, section, or page, supporting traceability during technical
consultation. Although not quantified numerically, the clarity and relevance of the re-
sponses were also considered qualitatively when interpreting the results.

Overall, the high correctness and completeness averages for both manuals indicate
that the chatbot was able to extract factual information reliably, even when the under-
lying documentation varied considerably in structure and complexity. The results also
show that, although a few answers were incorrect on the first attempt, the conversa-
tional loop often enabled the model to adjust and improve its output when prompted,
reinforcing the practical value of interactive guidance when using large language models

in technical domains.

3.4 Representative Examples and Observed Behaviors

This section presents a selection of representative examples illustrating the chatbot’s
behavior during evaluation. Each example includes the question asked, the expected
answer when applicable, and the response produced by the chatbot. A brief comment

follows each case, highlighting the relevant aspects of the observed behavior.

3.4. REPRESENTATIVE EXAMPLES AND OBSERVED BEHAVIORS 35

Example A (STM32G0B1): Fully correct and complete answer

Question: Would the device be damaged if I have an input voltage higher than
4V on a FT _xx pin?

Expected answer: No, if the internal pull-up or pull-down resistor is disabled;

yes otherwise.

Chatbot answer: “While the absolute maximum rating for input voltage on a
FT xx pin is VDD + 4.0 V (page 66), the manual explicitly warns: ‘To sustain a
voltage higher than 4 V, the internal pull-up/pull-down resistors must be disabled.’
(Page 66, Table 21 footnote 2) Therefore, exceeding 4 V without disabling the
internal resistors could potentially damage the device. It’s crucial to carefully

manage the input voltage and resistor configuration to ensure safe operation.”

Comment: The chatbot retrieves the relevant warning from the correct table footnote

and provides a complete and technically accurate explanation.

Example B (STM32G0B1): Partially correct answer

Question: What pin should I connect to to take VREFBUF?
Expected answer: VREF+ (Table 12).

Chatbot answer: “Unfortunately, based on the provided manual alone, I cannot
definitively tell you which pin to connect to for VREFBUF. e manual mentions VREF+
several times but does not explicitly state its pin location for all package options.
Here’s what I found:

Page 17: Explains that VREF+ is delivered through the VREF+ pin. However, it also
states, ‘On packages without VREF+ pin, VREF+ is internally connected with VDD,
and the internal voltage reference buffer must be kept disabled (refer to datasheets

for package pinout description). [...]" ”

Comment: The chatbot extracts the correct conceptual information and explicitly
signals its uncertainty. Although it does not cite the specific table, it still identifies

the correct pin and provides a valid rationale. This behavior is particularly valuable in

3.4. REPRESENTATIVE EXAMPLES AND OBSERVED BEHAVIORS 36

practical usage: by clearly indicating its level of confidence while pointing to relevant
sections of the manual, the chatbot supports informed verification and enables the user

to continue the interaction with appropriate awareness.

Example C (STM32G0B1): Incorrect answer even after a second inter-

action

Question: Can pin PA3 be used as TIM15_CH2?
Expected answer: Yes.

Chatbot answer (first attempt): “No, PA3 cannot be used as TIM15_CH2.
Table 13 (Page 56): This table displays the alternate function mappings for Port
A, and it does not list TIM15_CH2 as an option for PA3 under any of the listed
alternate functions (AFO to AF7).”

Follow-up dialogue: User: “Can you check again?”

Chatbot: “[...] I re-examined the manual and the relevant tables, and I confirm
that:

PA3 cannot be used as TIM15_CH2. Neither Table 13 nor Table 14 lists TIM15_CH2

as an alternate function for PA3. [...]”

Comment: The chatbot cites the correct tables but misinterprets their content. Even
after prompting, it repeats the same incorrect conclusion, illustrating a stable misreading

of table entries rather than a hallucination or retrieval failure.

3.5. OBSERVED LIMITATIONS AND PRACTICAL CONSIDERATIONS 37

Example D (KE17Z): Multi-step reasoning across manual sections

First question: I need to drive a buzzer: it needs two symmetrical square-wave

signals. How do I do that?

Chatbot answer: “The provided manual excerpt does not explain how to drive
a buzzer and doesn’t mention if it’s possible to generate two symmetrical square-
wave signals. Therefore, I cannot answer your question with the information I

have.”

Refined question: I need to generate two symmetrical signals, meaning that the
output of one channel must be the inverse of the output of the other channel. How

can I implement this?

Chatbot answer: “You can achieve this by using the Complementary mode.
The Complementary mode is selected when:

- DECAPEN = 0

- COMBINE =1

- COMP (m) = 1 (where m represents a channel pair)

Page 737, Chapter 33 FlexTimer Module (FTM)

This mode uses a pair of channels (n) and (n+1), where the output of channel
(n+1) is the inverse of the output of channel (n).

You will need to configure the appropriate registers to enable this mode and set

the desired PWM characteristics for your application.”

Comment: Faced with an over-generic first query, the chatbot responds conserva-
tively. When the question is refined, it immediately retrieves the correct configuration
mechanism and provides a detailed, accurate explanation drawn from multiple sections

of the manual.

3.5 Observed Limitations and Practical Considerations

The evaluation revealed several recurring patterns in the chatbot’s behavior, which
help characterize both its strengths and its current limitations. Overall, the system
was consistently reliable when responding to factual queries whose answers were located

in short descriptive passages or clearly structured parameter listings. In these cases,

3.5. OBSERVED LIMITATIONS AND PRACTICAL CONSIDERATIONS 38

retrieval was effective, and the generated responses were accurate, concise, and often
accompanied by correct citations.

The most frequent source of inaccuracy involved the interpretation of complex tables.
The preprocessing pipeline successfully converted the majority of tabular structures into
a usable textual representation, but highly irregular or deeply nested tables remain
challenging to treat automatically. In these cases, the chatbot occasionally retrieved
the correct table but focused on the wrong entry, leading to incomplete or incorrect
conclusions. These errors stem from the inherent difficulty of navigating dense, multi-
column layouts rather than from unsupported fabrication. When processing shorter or
less complex documents, this issue was noticeably reduced, suggesting that table density
and structural complexity are significant factors influencing retrieval accuracy.

A second pattern concerned the stability of responses across longer conversational
sessions. As the dialogue progressed, the chatbot sometimes became more verbose, oc-
casionally drifting from the prompting constraints defined at the start of the interaction.
In particular, later responses tended to omit citations that were correctly provided ear-
lier in the same session. Reinserting the system prompt or keeping interactions short
proved effective in mitigating these effects.

Despite these issues, interaction itself remained beneficial. When explicitly prompted
to re-check or reconsider an answer, the chatbot could often correct misinterpretations,
especially for cases where the first attempt resulted from reading the wrong table or
section. This interactive refinement reflects an important aspect of practical use, since
engineers naturally iterate on their understanding when consulting technical documen-
tation.

From a usability standpoint, the system proved helpful in reducing the effort required
to locate information within long manuals. The ability to phrase questions in natural
language, refine them incrementally, and obtain context-aware explanations contributes
to a smoother consultation workflow compared to manual search alone. This was par-
ticularly evident in scenarios involving multi-step reasoning or cross-referencing between
different sections of a document.

Depending on the confidentiality of the documentation, organizations may also need
to consider how the system is deployed. In cases where manuals contain proprietary
information, it may be preferable to keep document embeddings and the vector store

on-premise while relying on a cloud-based model only for inference. Such hybrid setups

3.5. OBSERVED LIMITATIONS AND PRACTICAL CONSIDERATIONS 39

allow companies to benefit from high-quality language models while maintaining control
over sensitive data. Practical considerations also include the cost of using commercial
LLMs, which typically follow a token-based pricing model. While occasional use incurs
negligible expense, sustained or large-scale deployment may require strategies such as
prompt optimization, caching, or the selective use of smaller local models to balance
accuracy with operational cost.

In summary, the system performs reliably in factual retrieval tasks and provides
meaningful support for navigating technical documentation. Its main limitations are
associated with dense table interpretation and long-session consistency, especially when
working with large or highly structured manuals. Despite these challenges, the overall
behavior is robust enough to assist engineers effectively during early design exploration

and routine consultation tasks.

Conclusions

This thesis investigated the development of a domain-specific chatbot based on
Retrieval-Augmented Generation (RAG), designed to support engineers in consulting
microcontroller reference manuals. The project, carried out in collaboration with Brain
Technologies, examined how large language models can contribute to technical docu-
mentation workflows and evaluated their reliability in this context.

The work combined several components into a coherent prototype system. A prepro-
cessing pipeline was developed to convert heterogeneous PDF manuals into a structured
and searchable knowledge base, preserving both descriptive text and tabular information.
The chatbot was then built to interpret user queries and generate answers grounded in
the retrieved documentation. The overall objective was to assess whether such a system
could help engineers navigate complex reference material more efficiently.

The evaluation results indicate that the proposed approach is effective for factual
retrieval and short reasoning tasks. The chatbot reliably identified technical values, con-
figuration details, and parameter constraints across different types of manuals. Its con-
servative prompting strategy contributed to stable and document-grounded responses.
At the same time, the experiments highlighted clear limitations, particularly in the in-
terpretation of dense or irregular tables and in maintaining prompt consistency during
long interactions. These findings reflect the challenges inherent in processing technical
documentation and the current capabilities of retrieval-based systems.

From a practical perspective, the prototype already offers useful support. By al-
lowing engineers to pose questions in natural language and receive concise source-based
answers, it reduces the effort needed to locate information dispersed across long man-
uals. However, a deployment-ready version would require additional features such as
the ability to store and manage larger collections of documents, support for regularly

updated data, and at least a minimal user interface to integrate the system into existing

40

CONCLUSIONS 41

engineering workflows.

Several directions for future development emerge from this work. Improving the han-
dling of complex tables, and extending preprocessing to include figures, diagrams, and
layout cues, could substantially broaden the system’s coverage. Alternative strategies
such as converting structured information into dedicated databases or exploring mul-
timodal models may also improve precision for tabular and graphical content. On the
modeling side, techniques for adaptive prompt reinforcement or the use of lightweight
local models may increase reliability and reduce operational cost. Extending the pipeline
to additional document types and designing user interfaces tailored to engineering work-
flows would further enhance its practical impact.

More broadly, this thesis was completed in a period of rapid progress in large lan-
guage models. Capabilities that were experimental only a few years ago have become
widely accessible, and models continue to improve in context handling, reasoning, and
multimodal understanding. In this evolving landscape, the approach explored here rep-
resents one of many promising ways to integrate language models into technical tasks,
and future advancements are likely to expand what such systems can accomplish.

In conclusion, the project showed that RAG-based chatbots can meaningfully assist
in navigating complex technical documentation. While limitations remain, the results
suggest that such systems can improve information accessibility, reduce manual search
time, and provide a practical starting point for more advanced intelligent documentation

tools in embedded systems engineering.

Bibliography

[1] Oxford University Press. “chatbot (n.)”. https://doi.org/10.1093/OED /2981785869,
2023. Accessed: 2025-11-15.

[2] Bayan Abu Shawar and Eric Atwell. Chatbots: are they really useful? Journal for
Language Technology and Computational Linguistics, 22(1):29-49, 2007.

[3] Kiran Ramesh, Surya Ravishankaran, Abhishek Joshi, and K Chandrasekaran. A
survey of design techniques for conversational agents. In International conference

on information, communication and computing technology, pages 336—-350. Springer,
2017.

[4] Madeleine Bates. Models of natural language understanding. Proceedings of the
National Academy of Sciences, 92(22):9977-9982, 1995.

[5] Stevan Harnad. Language writ large: Llms, chatgpt, grounding, meaning and un-
derstanding. arXiv preprint arXiv:2402.02243, 2024.

[6] Erin Sanu, T Keerthi Amudaa, Prasiddha Bhat, Guduru Dinesh, Apoorva Uday Ku-
mar Chate, and Ramakanth Kumar. Limitations of large language models. In 2024

8th International Conference on Computational System and Information Technology
for Sustainable Solutions (CSITSS), pages 1-6. IEEE, 2024.

[7] Alan M Turing. Computing machinery and intelligence. In Parsing the Turing
test: Philosophical and methodological issues in the quest for the thinking computer,

pages 23-65. Springer, 2007.

[8] Joseph Weizenbaum. Eliza—a computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9(1):36—
45, 1966.

42

BIBLIOGRAPHY 43

[9]

[10]

[13]

[14]

[18]

[19]

Kenneth Mark Colby, Sylvia Weber, and Franklin Dennis Hilf. Artificial paranoia.
Artificial intelligence, 2(1):1-25, 1971.

Eleni Adamopoulou and Lefteris Moussiades. Chatbots: History, technology, and
applications. Machine Learning with applications, 2:100006, 2020.

Richard Wallace. The elements of aiml style. Alice AI Foundation, 139:35, 2003.

Richard S Wallace. The anatomy of alice. In Parsing the Turing test: Philosophical
and methodological issues in the quest for the thinking computer, pages 181-210.
Springer, 2007.

Sumit Kumar Dam, Choong Seon Hong, Yu Qiao, and Chaoning Zhang. A complete
survey on llm-based ai chatbots. arXiv preprint arXiv:2406.16937, 2024.

D. A. Ferrucci. Introduction to “this is watson”. IBM Journal of Research and
Development, 56(3.4):1:1-1:15, 2012.

Matthew B Hoy. Alexa, siri, cortana, and more: an introduction to voice assistants.
Medical reference services quarterly, 37(1):81-88, 2018.

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and con-
sequences. Minds and machines, 30(4):681-694, 2020.

John Schulman, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi
Weng, Juan Felipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al.
Chatgpt: Optimizing language models for dialogue. OpenAI blog, 2(4), 2022.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Milli-
can, et al. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

BIBLIOGRAPHY 44

[20]

[21]

22]

[24]

Oliver Knill, Johnny Carlsson, Andrew Chi, and Mark Lezama. An artificial intel-
ligence experiment in college math education. Published online, 2004. Available at

http://www.math.harvard.edu/knill/preprints/sofia.pdf.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact
of ai on developer productivity: Evidence from github copilot. arXiv preprint
arXw:2302.06590, 2023.

Luminita Nicolescu and Monica Teodora Tudorache. Human-computer interaction
in customer service: the experience with ai chatbots—a systematic literature review.
Electronics, 11(10):1579, 2022.

Zhi Wei Lim, Krithi Pushpanathan, Samantha Min Er Yew, Yien Lai, Chen-Hsin
Sun, Janice Sing Harn Lam, David Ziyou Chen, Jocelyn Hui Lin Goh, Marcus
Chun Jin Tan, Bin Sheng, et al. Benchmarking large language models’ performances
for myopia care: a comparative analysis of chatgpt-3.5, chatgpt-4.0, and google
bard. EBioMedicine, 95, 2023.

Manoj Kumar Kamila and Sahil Singh Jasrotia. Ethical issues in the development
of artificial intelligence: recognizing the risks. International Journal of Ethics and

Systems, 41(1):45-63, 2025.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532-1543, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In Proceed-
ings of the 2019 conference of the North American chapter of the association for
computational linguistics: human language technologies, volume 1 (long and short
papers), pages 4171-4186, 2019.

http://www.math.harvard.edu/knill/preprints/sofia.pdf

BIBLIOGRAPHY 45

[29]

[31]

[35]

Taku Kudo and John Richardson. Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing. arXiv preprint
arXiw:1808.06226, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomesz, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yangi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learn-

ing with a unified text-to-text transformer. Journal of machine learning research,
21(140):1-67, 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. In Proceedings of the 58th annual meeting of the association for

computational linguistics, pages 7871-7880, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877-1901, 2020.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with
self-generated instructions. In Proceedings of the 61st annual meeting of the asso-
ciation for computational linguistics (volume 1: long papers), pages 13484-13508,
2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Train-
ing language models to follow instructions with human feedback. Advances in neural

information processing systems, 35:27730-27744, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language
models. ICLR, 1(2):3, 2022.

BIBLIOGRAPHY 46

[37]

[38]

Rishi Bommasani. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,
Jiawei Sun, Meng Wang, and Haofen Wang. Retrieval-augmented generation for

large language models: A survey, 2024.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Unleashing

the potential of prompt engineering for large language models. Patterns, 2025.

STMicroelectronics. STM32G0B1zB/C/E Reference Manual, revision 3 edition,
January 2022. RM0444.

NXP Semiconductors. KE1xZK Series Microcontrollers Reference Manual, revision
1 edition, June 2021. Document Number: KE1xZRM.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott
Nickleach, Diego Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large
language models (llms) on tabular data: Prediction, generation, and understanding—
a survey. arXiw preprint arXiw:2402.17944, 2024.

	Introduction
	Background and Theoretical Foundations
	Chatbots
	Chatbots Overview
	Evolution of Chatbots
	Chatbot Applications

	Large Language Models
	Word Embeddings and Representation Learning
	Transformer Architecture
	Training Process of LLMs
	Applications and Limitations

	Retrieval-Augmented Generation
	Motivation and Background
	RAG: Advantages, Challenges, and Comparison with Fine-Tuning

	Prompt Engineering
	Definition and Motivation
	Common Prompting Techniques
	Challenges and Future Directions

	Development and Implementation
	Preliminary Research and Feasibility Study
	Data Preparation
	Data Description
	Data Preprocessing
	Chunking and Vector Store Construction

	Prompt Engineering
	System Integration

	Evaluation and Analysis
	Evaluation Methodology and Metrics
	Test Set and Experimental Setup
	Quantitative Results
	Representative Examples and Observed Behaviors
	Observed Limitations and Practical Considerations

	Conclusions
	Bibliography

