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Introduction

This thesis was developed in collaboration with Brain Technologies, an engineer-

ing consulting company specializing in software engineering, firmware development, and

control systems. Within this professional context, one recurring challenge emerged:

firmware developers frequently need to consult extensive technical documentation, such

as reference manuals, datasheets, and application notes, to correctly configure micro-

controllers and ensure proper hardware-software integration. These documents are of-

ten long and complex, with information distributed across multiple sections, tables, and

diagrams, or even across different manuals that may use inconsistent notation. As a

result, finding a specific configuration detail or parameter can be a slow and error-prone

process, consuming time that could otherwise be dedicated to actual development.

To address this difficulty, this work investigates the use of modern language technolo-

gies to help developers navigate such documentation more efficiently. In recent years,

Large Language Models (LLMs) have gained remarkable attention for their ability to

understand and generate natural language. Their rapid development and increasing ac-

cessibility have made them widely available tools for diverse applications, from creative

writing to software assistance. However, despite their versatility, general-purpose LLMs

often struggle with specialized or highly technical content, where precision, contextual

understanding, and terminology consistency are crucial.

To address this limitation, the Retrieval-Augmented Generation (RAG) paradigm

has emerged as a promising approach. By combining the generative capabilities of LLMs

with the retrieval of relevant information from external knowledge sources, RAG systems

are able to produce more accurate and contextually grounded responses. This strategy

is particularly suitable for interacting with technical material, where factual correctness

and traceability are essential.

The objective of this thesis is to explore the use of Retrieval-Augmented Generation
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INTRODUCTION 3

for developing a domain-specific chatbot designed to assist firmware engineers in con-

sulting microcontroller manuals. The proposed system retrieves relevant sections from

device documentation and generates concise, well-referenced answers to technical queries.

Its development required addressing several key aspects of the problem. A significant

part of the work focused on document preprocessing and structuring, as microcontroller

manuals contain valuable information not only in text but also in tables and figures. Pre-

serving this heterogeneous data required a robust and adaptable preprocessing pipeline

capable of handling diverse document layouts. Subsequent steps involved the creation

of semantic embeddings and a vector database for efficient information retrieval, the

design of targeted prompts to guide the model’s reasoning, and the evaluation of the re-

sulting chatbot through case-based testing that measured its correctness, completeness,

and usability. These experiments provided insights into the effectiveness of the RAG

approach in managing technical documentation and highlighted practical challenges and

directions for future improvement.

The thesis concludes with a discussion of the main findings and considerations for

industrial application, including the challenges related to data preprocessing complexity,

model accuracy, and computational cost.



Chapter 1

Background and Theoretical

Foundations

This chapter provides the theoretical background necessary to understand the con-

cepts and technologies behind the system developed in this thesis. It begins with an

overview of chatbots, tracing their evolution from early rule-based programs to modern

conversational systems powered by Large Language Models (LLMs). The discussion then

introduces the main principles of LLMs, including their architecture, training process,

and current limitations. Building on these foundations, the chapter presents the concept

of Retrieval-Augmented Generation (RAG), a framework designed to improve factual

accuracy and adaptability in domain-specific contexts. Finally, it explores the role of

prompt engineering in guiding model behavior and ensuring that generated responses

remain consistent with the source documentation. Together, these sections establish the

conceptual basis for the development and evaluation presented in the following chapters.

1.1 Chatbots

Chatbots represent one of the most visible applications of artificial intelligence in

everyday life. This section introduces their fundamental principles and traces their

evolution from early rule-based systems to modern language-model-based assistants. It

concludes with an overview of the main application domains where chatbots are employed

today, establishing the background necessary to understand their role within the context

of this thesis.

4



1.1. CHATBOTS 5

1.1.1 Chatbots Overview

According to the Oxford English Dictionary, a chatbot is defined as “A computer pro-

gram designed to simulate conversation with a human user, usually over the internet” [1].

Over the years, various terms have been used interchangeably with “chatbot”, including

machine conversation system, virtual agent, dialogue system, and chatterbot [2]. De-

spite these variations in terminology, the underlying principle remains the same: enabling

machines to interact with users in a way that resembles natural communication.

The earliest chatbots were rule-based, relying on predefined scripts, question-answer

pairs, and pattern-matching techniques. These systems identified certain keywords in

the user’s input and returned predefined responses, thus creating the illusion of conver-

sation. However, such systems were highly constrained and often produced repetitive or

irrelevant replies when user inputs deviated from expected patterns [3].

A significant step forward was the introduction of intent-based chatbots, which lever-

age Natural Language Understanding (NLU) techniques to capture the underlying intent

of a user’s query rather than reacting only to surface-level keywords. This shift enabled

more robust and flexible interactions, as responses could be dynamically selected based

on the recognized intent [4]. For example, an intent-based system could interpret the

inputs “What’s the weather like tomorrow?” and “Will it rain tomorrow?” as expressing

the same request for weather information and provide an appropriate answer.

Meanwhile, the exponential growth of digital data and advances in machine learning

paved the way for more sophisticated conversational systems. The emergence of Large

Language Models (LLMs) has been especially transformative. Trained on vast corpora

of text, these models demonstrate a remarkable ability to understand linguistic nuances,

maintain conversational context, and generate coherent, contextually appropriate re-

sponses [5]. LLM-based chatbots represent the most advanced stage of conversational

AI to date, although challenges such as hallucinations, outdated knowledge, and com-

putational cost remain open issues [6].

1.1.2 Evolution of Chatbots

The history of chatbots reflects the broader evolution of artificial intelligence and

computational linguistics. Early conversational systems relied entirely on handcrafted

rules, while modern chatbots employ data-driven and generative models. This progres-

sion has been shaped by advances in natural language processing, computing power, and
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human-computer interaction.

The conceptual foundation for conversational agents is often traced to Alan Turing’s

1950 paper Computing Machinery and Intelligence [7], which introduced the idea later

known as the “Turing Test”. Although not a chatbot itself, this thought experiment

provided an early framework for evaluating machine intelligence in text-based commu-

nication.

A major milestone occurred in 1966 with the development of ELIZA by Joseph

Weizenbaum [8]. ELIZA simulated a psychotherapist using simple pattern-matching

rules and demonstrated how scripted responses could create the illusion of understanding.

Soon after, PARRY (1972) [9] extended this idea by incorporating a rudimentary internal

state to emulate a patient with schizophrenia, representing an early attempt to model

psychological consistency.

The following decades saw experimentation with conversational systems in both re-

search and entertainment contexts. Systems such as Jabberwacky (1988), TinyMUD

(1991), and Dr. Sbaitso (1992) explored interactive dialogue in playful or multimedia

environments. Although limited by hardware constraints and simple learning mecha-

nisms, they broadened the scope of chatbot applications [10].

A notable advance came with ALICE (1995) and the introduction of AIML (Artificial

Intelligence Markup Language) [11]. ALICE demonstrated the scalability of rule-based

systems, storing tens of thousands of conversational templates and winning multiple

Loebner Prizes [12]. However, it still lacked genuine language understanding, relying

strictly on symbolic pattern matching.

The early 2000s saw the deployment of chatbots to mainstream platforms [13].

SmarterChild (2001) integrated with messaging services and provided fast, task-oriented

responses, foreshadowing modern personal assistants. In 2008, Cleverbot popularized

learning from user interactions, although it struggled with long-term coherence.

The 2010s marked the transition from scripted dialogue to large-scale statistical

and neural approaches. Voice assistants such as Apple’s Siri (2010), IBM’s Watson

(2011) [14], Google Now, Cortana, and Amazon’s Alexa (2014) combined speech recog-

nition, natural language understanding, and internet connectivity to provide contextual,

multimodal interaction [15].

A fundamental shift occurred with the emergence of LLMs. OpenAI’s GPT-3 (2020) [16]

demonstrated that transformer-based architectures could generate coherent, context-
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Year System Main contribution Main limitation

1950 Turing Test Conceptual framework for
evaluating machine intelli-
gence

Purely theoretical; no im-
plementation

1966 ELIZA First rule-based conversa-
tional program using pat-
tern matching

No semantic understand-
ing; scripted responses

1972 PARRY Introduced persona model-
ing and internal state

Still rule-based; limited
reasoning

1988 Jabberwacky Early learning from user
interactions; playful dia-
logue

No long-term coherence;
hardware limitations

1995 ALICE Introduced AIML; scalable
template-based system

No true language under-
standing; symbolic match-
ing

2001 SmarterChild First mass-market chatbot
integrated into IM plat-
forms

Narrow domains; scripted
logic

2008 Cleverbot Web-scale conversational
learning from users

Inconsistent replies; no
context retention

2010-
2014

Siri, Watson,
Alexa

Voice-based multimodal
assistants combining
speech recognition, NLU,
online services

Intent-based limits; shal-
low reasoning

2020+ GPT-3, Chat-
GPT, Gemini,
LLaMA

Generative conversational
AI with broad generaliza-
tion and contextual reason-
ing

Hallucinations; high com-
putational cost; knowledge
staleness

Table 1.1: Key milestones in the evolution of chatbots

aware text without relying on predefined rules or handcrafted intent structures. This

marked a decisive departure from earlier approaches: instead of mapping queries to

fixed templates, LLMs learned broad linguistic patterns directly from large corpora,

enabling open-ended and flexible dialogue. The release of ChatGPT (2022) [17] intro-

duced conversational models capable of maintaining context, following instructions, and

reasoning across diverse topics. Subsequent models, including Google’s Gemini [18] and

Meta’s LLaMA [19], further expanded their abilities in multilingual processing, extended
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context windows, and more sophisticated reasoning. These developments represent the

transition from symbolic or task-specific systems to generative conversational AI and

provide the basis for the techniques explored later in this thesis.

To summarize the main milestones, Table 1.1 highlights representative systems, the

innovations they introduced, and their main limitations.

1.1.3 Chatbot Applications

Chatbots have evolved from experimental systems into widely adopted tools across

many domains. Their ability to understand user intent, manage context, and generate

natural language responses has made them valuable in settings ranging from education

to business, healthcare, and everyday digital interaction. Although the specific func-

tions differ across these areas, chatbot applications share common requirements such as

reliability, contextual understanding, and the ability to process domain-specific informa-

tion [10].

In education and research, chatbots can support learners through interactive exer-

cises, personalized tutoring, and access to on-demand explanations. Language-learning

systems can provide instant feedback and adapt to a student’s proficiency level, while

accessibility features such as text-to-speech and speech-to-text assist users with disabil-

ities [20]. In academic research, conversational agents are increasingly used to summa-

rize scientific papers, identify relevant literature, and automate repetitive information

retrieval tasks.

Chatbots are also used as tools for creativity and idea generation. Their capacity to

suggest alternative perspectives, explore conceptual connections, and synthesize diverse

information makes them useful for brainstorming and early-stage design activities. In

professional environments, conversational systems assist in project planning, content

drafting, and refining initial concepts.

In software engineering and technical domains, chatbots powered by LLMs support

programmers in tasks such as code generation, debugging, documentation, and testing.

They can detect syntactic or logical errors, propose optimized algorithms, or explain

unfamiliar pieces of code, thereby reducing development time and improving productiv-

ity [21]. These capabilities illustrate how conversational interfaces can help developers

access complex technical information more efficiently, an aspect closely related to the

focus of this thesis.
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In business and public administration, chatbots enhance communication and cus-

tomer engagement [22]. They handle frequent queries, guide users through product

selection, provide technical support, and escalate complex issues to human operators

when needed. Their continuous availability reduces response times and operational

costs. Within public institutions, chatbots help citizens navigate administrative pro-

cedures, complete digital forms, or access online services.

In healthcare, conversational agents support tasks such as appointment scheduling,

patient triage, and health education. Recent studies indicate that chatbots can provide

preliminary medical guidance or answer clinical questions with reasonable accuracy, al-

though human oversight remains essential for safety [23]. They are also employed to

promote healthy behaviors, offer reminders, and deliver basic emotional support, partic-

ularly when integrated into telemedicine platforms.

Finally, in everyday life, chatbots are embedded in personal assistants, smart home

devices, and productivity tools. Users rely on them to schedule activities, control con-

nected devices, retrieve information, or compose messages through natural language

commands. This widespread integration illustrates how conversational AI has become a

common interface for managing routine digital interactions.

Overall, chatbot applications demonstrate the transformative potential of natural

language interfaces in mediating human-computer interaction. By enabling more intu-

itive communication and reducing technical barriers, chatbots are reshaping how people

access information and perform tasks. Despite their benefits, challenges related to con-

textual understanding, privacy, reliability, and ethical use persist [24], which motivates

the use of techniques that improve robustness and factual accuracy, such as the retrieval-

based approaches discussed in the following sections.

1.2 Large Language Models

Large Language Models (LLMs) have emerged as a central paradigm in Natural

Language Processing (NLP). These models can generate contextually appropriate text,

answer questions, and perform a wide range of language-related tasks. Their capabil-

ities are made possible by advances in neural network architectures, efficient language

representations, and the availability of large-scale training data. Within conversational

systems, LLMs provide the contextual and linguistic understanding that enables modern

chatbots to produce adaptive and human-like responses.
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This section introduces the core concepts needed to understand the role of LLMs in

conversational AI. It first describes how language is represented numerically inside these

models, then examines the architectural principles that allow LLMs to capture complex

dependencies in text. The discussion continues with an overview of the training strategies

used to develop and adapt these models and concludes with their main applications

and limitations. Together, these elements provide the conceptual foundations for the

retrieval-based approach presented later in this thesis.

1.2.1 Word Embeddings and Representation Learning

A fundamental step in natural language processing is the transformation of words

into numerical representations that can be processed by machine learning models. Early

approaches such as one-hot encoding assigned each word a high-dimensional binary vec-

tor with a single active entry. Although straightforward, this representation treated

every word as unrelated to all others, making it unable to capture semantic or syntactic

similarities.

Word embeddings were introduced to address this limitation by mapping words into

dense, low-dimensional vectors in which semantically related words lie closer together in

the vector space. Methods such as Word2Vec [25] and GloVe [26] learned these vectors

from large text corpora by analyzing word co-occurrence patterns. These embeddings

also capture semantic structure in a geometric way: linguistic relationships such as

gender, verb tense, or intensity often correspond to consistent directions or offsets in

the vector space, revealing how meaningful patterns can emerge from statistical learning

rather than explicit rules.

However, fixed embeddings cannot represent words that have different meanings in

different contexts. To overcome this issue, models such as ELMo [27] and BERT [28]

introduced contextual embeddings, where the vector associated with a word depends on

the sentence in which it appears. This shift greatly improved the ability of NLP systems

to capture polysemy, grammatical structure, and long-range dependencies.

Modern LLMs build on these advances by learning embedding representations jointly

with the rest of the network during training. Instead of treating whole words as atomic

units, they typically rely on subword tokenization methods such as Byte-Pair Encoding

(BPE) or SentencePiece [29], which allow the model to represent rare words, morpholog-

ical variations, and out-of-vocabulary terms efficiently. The resulting embedding layer
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forms the foundation upon which deeper neural components model increasingly abstract

linguistic structures.

1.2.2 Transformer Architecture

A major breakthrough in modern language modeling came with the introduction of

the Transformer architecture [30]. Transformers rely entirely on attention mechanisms

rather than sequential processing, allowing them to model dependencies between tokens

regardless of their distance in the input sequence. This design enables efficient paral-

lelization during training and improves the ability to capture long-range relationships

within text.

At the core of the Transformer is the self-attention mechanism, which determines

how much each token should attend to every other token in the sequence. Each token

is projected into three vectors: a query (Q), a key (K), and a value (V ). Attention

scores are computed by comparing queries with keys, and these scores determine how

the corresponding value vectors contribute to the updated token representation. The

attention mechanism compares each query with all keys, normalizes the resulting scores

through a softmax function, and uses them to compute a weighted sum of the value

vectors:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V,

where dk is the dimensionality of the key vectors. These attention scores act as relevance

weights, allowing each token to form a context-aware representation that selectively

integrates information from the entire sequence.

Transformers employ multiple attention heads operating in parallel, enabling the

model to capture different types of linguistic relationships simultaneously. Additional

architectural components further support stable and effective learning: residual con-

nections facilitate information flow across layers, layer normalization improves training

dynamics, and position-wise feed-forward networks provide non-linear transformations

for each token.

Because self-attention alone does not encode sequence order, positional encodings

are added to give the model information about the relative or absolute position of to-

kens. These encodings allow the Transformer to incorporate ordering information while

maintaining full parallelization.

The original Transformer architecture follows an encoder-decoder structure. The
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encoder reads the input sequence and produces contextual representations for each token.

The decoder then generates the output one token at a time, attending both to previously

generated tokens (through self-attention) and to the encoder representations (through

cross-attention). This framework is particularly effective for sequence-to-sequence tasks

such as machine translation or abstractive summarization. Many modern LLMs, such

as GPT and its successors, instead adopt a decoder-only architecture optimized for

autoregressive text generation, whereas models such as T5 [31] and BART [32] retain

the full encoder-decoder design for tasks that require processing an input sequence and

generating a separate output.

1.2.3 Training Process of LLMs

LLMs are trained using self-supervised learning, a paradigm in which the model

learns directly from raw text without requiring manually annotated labels. In this set-

ting, the training objective is derived from the text itself. Two main formulations are

commonly used. In autoregressive language modeling, the model predicts the next token

given all previous ones, as in the GPT family of models [33]. In masked language mod-

eling, some input tokens are replaced by a special mask symbol, and the model learns to

recover them from the surrounding context, as in BERT [28]. These objectives allow the

model to acquire broad linguistic and world knowledge from large corpora in a scalable

manner.

After this pre-training stage, models can be adapted to specific applications through

fine-tuning. In supervised fine-tuning, the model is trained on labeled datasets so that it

learns to perform a particular task, such as sentiment analysis, classification, or dialogue

management. More recently, instruction tuning has been introduced, where models are

fine-tuned on collections of task descriptions paired with expected responses to improve

their ability to follow user instructions [34]. A further refinement is Reinforcement

Learning from Human Feedback (RLHF) [35], in which human evaluators compare model

outputs and these preferences are used to optimize the model toward more helpful and

aligned behavior.

Although effective, full fine-tuning is computationally demanding and often imprac-

tical for large models. To reduce the cost, parameter-efficient fine-tuning techniques such

as adapters or LoRA (Low-Rank Adaptation) [36] modify only a small subset of param-

eters while keeping most of the network frozen. These approaches significantly reduce
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training demands but still require model updates and do not address the limitations of

static knowledge.

A central challenge remains that fine-tuned models internalize information in their

parameters, making it difficult to update or correct their knowledge without retraining.

This is particularly problematic in domains where accuracy, traceability, and frequent

updates are essential, such as technical documentation. These constraints motivate the

exploration of approaches that can incorporate external knowledge without modifying

model weights, which is the focus of the next section.

1.2.4 Applications and Limitations

LLMs have demonstrated remarkable versatility across a wide range of applications,

including conversational agents, machine translation, text summarization, information

retrieval, and code generation [37]. Their ability to generalize from examples enables

few-shot and zero-shot learning, allowing them to perform tasks for which they have

never been explicitly trained. In conversational systems, LLMs provide the generative

and reasoning capabilities that support context-aware dialogue, intent understanding,

and flexible interaction.

Despite these strengths, LLMs also present important limitations. Because they op-

timize for the likelihood of generating plausible text, they may produce incorrect or

fabricated information, a phenomenon commonly referred to as hallucination. Their

knowledge is bounded by the data used during pre-training, which makes it difficult to

update or correct specific facts without retraining. Furthermore, inference with large

models is computationally intensive, raising concerns related to scalability, environmen-

tal impact, and deployment cost. Additional challenges include biases inherited from

training data, risks of misinformation, and privacy considerations when interacting with

sensitive content.

These limitations are particularly relevant in domains where accuracy, traceability,

and up-to-date information are essential. To address these issues, hybrid approaches

such as Retrieval-Augmented Generation integrate external knowledge sources directly

into the generation process and are discussed in the following section.
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1.3 Retrieval-Augmented Generation

This section introduces Retrieval-Augmented Generation (RAG), a framework that

extends LLMs by integrating external information retrieval into the generation pro-

cess [38]. Instead of relying solely on the knowledge encoded in model parameters, RAG

retrieves relevant evidence from an external corpus and incorporates it during inference.

The following subsections outline the main concepts behind this approach, its advan-

tages and challenges, and explain why RAG was particularly suitable for the system

developed in this thesis.

1.3.1 Motivation and Background

LLMs rely on knowledge encoded in their parameters during pre-training, which

limits their ability to incorporate new or domain-specific information. Updating this

knowledge through fine-tuning is possible, but it is computationally expensive, requires

labeled data, and offers limited flexibility when information must be refreshed frequently.

Retrieval-Augmented Generation offers an alternative approach by integrating an

external retrieval mechanism into the generation process. Instead of relying solely on

internal model parameters, RAG retrieves relevant information from an external corpus

and uses it to guide the response generated by the language model. A schematic overview

is presented in Figure 1.1.

The pipeline typically involves embedding the user query, searching for semantically

similar vectors within a vector store, which is a specialized database that indexes docu-

ments as high-dimensional embeddings, and returning the most relevant passages. These

retrieved contexts are then provided to the language model, enabling it to generate out-

puts grounded in explicit evidence.

The motivation behind RAG lies in extending LLMs beyond the constraints of a fixed

training corpus while keeping inference efficient. This approach is particularly advanta-

geous in scenarios where information evolves rapidly or where accuracy and traceability

are essential, making it well suited for technical and domain-specific applications.

1.3.2 RAG: Advantages, Challenges, and Comparison with Fine-Tuning

Fine-tuning and Retrieval-Augmented Generation both extend the capabilities of

pre-trained language models, but they do so in fundamentally different ways. Fine-
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Query
Embedding

model

LLM
Retrieved
contexts

Vector DB

Response

Figure 1.1: High-level diagram of a RAG pipeline.

tuning internalizes new information into the model parameters through gradient-based

optimization, which makes it effective for stable and well-defined tasks but costly to

update when data changes. RAG instead externalizes knowledge: relevant information

is retrieved from an external corpus at inference time and used to condition the model’s

output. This separation between knowledge storage and generation enables flexible and

lightweight adaptation to new domains without modifying model parameters.

RAG offers several practical advantages. By grounding responses in retrieved evi-

dence, it improves factual accuracy and reduces the risk of hallucinations. Its modular

design allows the underlying knowledge base or retrieval component to be updated in-

dependently of the language model, and the retrieved passages provide transparency by

making supporting evidence directly inspectable. These properties make RAG suitable

for scenarios that require up-to-date, domain-specific, or verifiable information.

In addition to these advantages, RAG offers important benefits from a data safety

perspective. Because the retrieval component operates on a locally stored document

corpus, sensitive or proprietary manuals can be indexed and queried without exposing

their full contents to the language model provider. Only the user query and the retrieved

text fragments need to be processed by the model, which reduces the amount of inter-

nal documentation transmitted outside the organization. This separation between the

knowledge base and the model improves privacy, facilitates compliance with company
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policies, and enables on-premise or hybrid deployments where the retrieval pipeline is

fully controlled by the engineering team. Nevertheless, although grounding answers in

retrieved evidence mitigates hallucinations, it does not eliminate them entirely; there-

fore, critical configuration decisions should always be validated by the engineer.

RAG also introduces specific challenges. Its effectiveness depends on retrieval qual-

ity: irrelevant or noisy results can degrade the final output. Current language models

are constrained by finite context windows, which limit how much retrieved information

can be incorporated at once. In addition, real-time retrieval may introduce latency,

and maintaining large vector databases requires careful data management and indexing

strategies.

For these reasons, RAG represents an effective compromise between adaptability, effi-

ciency, and factual reliability. Its ability to combine the generative strengths of language

models with the precision of retrieval-based methods makes it particularly suitable for

the chatbot developed in this thesis, which must operate on technical and frequently

updated documentation.

1.4 Prompt Engineering

The behavior of LLMs is strongly influenced by how the input prompt is formulated.

Prompt engineering refers to the design of prompts that guide the model toward produc-

ing relevant, accurate, and context-aware responses. It has become an essential technique

for adapting general-purpose models to specific tasks without additional training and it

plays a complementary role to retrieval-based methods such as RAG [39].

1.4.1 Definition and Motivation

Although LLMs are capable of performing a wide range of linguistic and reasoning

tasks, their outputs depend heavily on the clarity and structure of the provided input.

Prompt engineering aims to reduce ambiguity, encourage appropriate reasoning, and

improve factual reliability by shaping the model’s internal processing through carefully

designed instructions. This approach aligns with the broader paradigm of in-context

learning, in which a model adapts its behavior based on the examples, constraints, or

stylistic cues contained within the prompt itself.
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1.4.2 Common Prompting Techniques

Several prompting strategies have been developed to improve model performance

depending on the task:

• Zero-shot prompting: the model receives only a direct instruction. This is

effective for well-defined tasks where the expected format is clear.

• Few-shot prompting: one or more input-output examples are included in the

prompt to illustrate the desired behavior. This helps the model infer the task

structure and response style.

• Instruction-based prompting: explicit instructions are added to shape the

response, such as “Explain step by step” or “Summarize in short bullet points.”

• Chain-of-thought prompting: the model is encouraged to generate intermedi-

ate reasoning steps before providing the final answer, which can improve perfor-

mance on tasks that require structured reasoning.

• Role-based prompting: the model is assigned a specific persona or role (for

example, “You are a technical assistant”), which influences tone, style, and focus.

This technique is particularly useful in domain-specific applications.

Other prompting strategies exist, such as self-consistency prompting, which samples

multiple reasoning paths and selects the most coherent one, although such methods are

typically used in specialized settings.

Different prompting techniques can also be combined. For instance, a role-based

prompt may be paired with explicit instructions and a short example, allowing the

model to better understand both the expected behavior and the output format.

1.4.3 Challenges and Future Directions

Despite its utility, prompt engineering presents several challenges. Models can be

highly sensitive to small changes in phrasing or structure, which may lead to variations

in output quality. Long prompts consume more tokens, increasing computational cost

and sometimes approaching context length limits. Moreover, evaluating prompt quality

remains difficult, as no standard metrics exist beyond task-specific performance.
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Recent research has explored automated methods such as prompt tuning or reinforcement-

based optimization, in which prompts are refined through data-driven procedures rather

than manual design. While these approaches aim to provide more systematic control

over model behavior, prompt engineering remains a practical and widely used technique

for guiding LLM outputs and complements retrieval-based approaches by further shaping

how external knowledge is used during generation.

In the context of this thesis, prompt engineering is employed to steer the model’s use

of retrieved information, ensure consistency with the technical domain, and improve the

overall quality of the chatbot’s responses.



Chapter 2

Development and Implementation

This chapter describes the practical development of the chatbot system for interacting

with microcontroller manuals. It presents the preliminary feasibility study, the data

preparation and preprocessing pipeline, the tools and libraries adopted, the strategies for

chunking and prompting, and the final integration of these components into a functional

Retrieval-Augmented Generation (RAG) architecture.

2.1 Preliminary Research and Feasibility Study

Before developing a custom pipeline, a preliminary phase of exploratory research

was carried out to assess whether existing no-code platforms could serve as a practi-

cal starting point for building a domain-specific chatbot. These platforms have become

increasingly popular because they allow users to create AI assistants by uploading doc-

uments and configuring simple workflows, without requiring programming experience.

Since this approach could be appealing for organizations interested in experimenting

with AI solutions without introducing new technical expertise, it was useful to evaluate

their capabilities and limitations in the context of microcontroller manuals. Although

exploratory only and not part of the final system, this phase helped shape several choices

later adopted in the implementation, including prompt design strategies and the selection

of the large language models used.

MindStudio1 was selected as the primary platform for this feasibility study due to

its intuitive interface, workflow-oriented design, and free availability during the summer

1https://mindstudio.ai/
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of 2024, when these experiments were conducted. The platform supports the creation of

Retrieval-Augmented Generation (RAG) pipelines by automating key operations such

as document ingestion, text chunking, embedding creation, and similarity search. This

made it suitable for rapid prototyping and for exploring different configuration options

without the need to develop a custom backend. An example of the workflow interface

used during this phase is shown in Figure 2.1.

Figure 2.1: Workflow interface in MindStudio used during the feasibility study.

An initial challenge emerged immediately: evaluating the correctness of the chatbot’s

responses using microcontroller manuals was difficult without substantial domain exper-

tise. These documents contain highly specialized and interdependent information, and

an incorrect answer can have different degrees of “incorrectness”: it may be completely

wrong or inappropriate, partially correct but missing essential details, or factually cor-

rect yet incomplete in a way that does not affect the final configuration. Distinguishing

between these cases requires technical knowledge, which made the manuals unsuitable

as a first environment for systematically exploring model behavior and configuration

choices. To obtain clearer and more immediate feedback on model behavior, the first

tests were therefore conducted using board game manuals.

Board game manuals provided a simpler and more familiar environment for exper-

imenting with no-code workflows. Their limited length and accessible content made it

easier to evaluate the accuracy, completeness, and consistency of the answers across dif-

ferent prompts, LLMs, and platform settings. At the same time, they share structural
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similarities with technical documentation, including tabular data, hierarchical rules, and

references to specific cases that must be followed precisely. This made them a suitable

proxy for exploring the capabilities of a RAG-based pipeline under controlled conditions,

without the confounding effect of domain complexity.

The feasibility study produced several insights. As expected, models equipped with

retrieval provided more accurate and grounded answers compared to generic chatbots

without external documents. More importantly, the study highlighted clear limitations

in the automated preprocessing performed by the platform. When PDFs were uploaded

directly, the extraction stage occurred entirely inside MindStudio and could not be con-

figured or inspected. Tables were often misinterpreted, with misaligned or missing rows

and columns, and in some cases they were completely omitted during text conversion.

Since tables often contain critical register descriptions and configuration parameters in

microcontroller manuals, reliable extraction is essential, and these issues significantly

motivated the development of a dedicated preprocessing pipeline in later stages.

Different prompting strategies were also evaluated during this phase. Role-based

instructions, concise formulations, and prompts requiring explicit reference to the source

consistently produced more stable and grounded outputs. These observations guided the

design of the system prompt later used in the final implementation.

Several LLMs available in MindStudio were compared during the experiments, in-

cluding GPT-3.5 Turbo, Gemini-1.5 Pro, Claude 3 Sonnet, and Mixtral 8×7B. When

answers depended on a single, clearly identifiable rule or paragraph, the models be-

haved similarly. For queries requiring cross-referencing multiple sections, Gemini-Pro

consistently produced the most reliable and conservative responses in this controlled

test domain. At the time of experimentation (summer 2024), Gemini 1.5 Pro offered

a favorable balance between quality, stability, and available free credits, which made

it the most suitable choice for the subsequent development phase. It is worth noting

that several of the models used during this exploratory phase are no longer available in

the same form, as model releases evolve rapidly. However, the conclusions drawn from

these experiments remain valid for the period in which the project was carried out, and

the same considerations apply to the implementation and evaluation presented in the

following chapters.

In summary, the feasibility study showed that while no-code platforms offer accessible

and rapid experimentation, they lack the precision and control required for processing
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complex technical manuals, particularly in the handling of tables and cross-references.

The insights gained from this phase informed key design choices in the custom pipeline,

including the selection of the LLM, the design of prompts, and the need for a transparent

preprocessing stage, which are described in the next sections.

2.2 Data Preparation

This section describes the preparation of the documentation used to build the chat-

bot’s knowledge base. The project relies on two microcontroller reference manuals,

selected to represent the type of technical material commonly consulted by firmware

developers. After introducing their main characteristics, the section describes the pre-

processing steps required to transform the original PDF files into structured text suitable

for retrieval and embedding.

2.2.1 Data Description

The data used for this project consist of two microcontroller reference manuals from

different manufacturers. These documents were selected because they represent the

type of technical material that firmware developers routinely consult, and they form

the knowledge base on which the chatbot must operate. Both manuals contain detailed

descriptions of device architecture, peripherals, memory organization, and configuration

registers, expressed through a combination of text, tables, diagrams, and numerical

specifications.

The first document is the STM32G0B1xB/xC/xE reference manual published

by STMicroelectronics (revision 3, January 2022) [40]. It describes a family of 32-bit

Arm® Cortex®-M0+ microcontrollers running at up to 64 MHz. With approximately

160 pages, it combines explanatory text with a moderate number of tables and figures. Its

compact structure and manageable complexity made it suitable for the early development

and testing of the preprocessing workflow.

The second document is the Kinetis KE17Z/13Z/12Z reference manual from NXP

Semiconductors (revision 1, June 2021) [41]. It covers another family of 32-bit Arm

Cortex-M0+ microcontrollers, operating at up to 72 MHz, and exceeds 1000 pages.

Compared to the STM32 manual, it presents a much denser layout with a higher con-

centration of tables, register descriptions, and functional diagrams. This level of detail
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made it useful for evaluating how well the pipeline scales to long and heterogeneous

documents and for demonstrating that the preprocessing strategy can adapt to different

documentation formats.

Both manuals were used in their entirety and were available only in PDF format,

exhibiting common characteristics of industrial technical documentation. These include

multi-column layouts, nested and wide tables, repeated headers and footers, and cross-

references spread across multiple chapters. Such formatting complicates automatic ex-

traction and requires careful processing to preserve the relationships between text and

tables; For these reasons, the manuals offer realistic examples of the challenges en-

countered when preparing technical documents for downstream retrieval and question

answering.

To give a visual sense of their structure and layout, Figure 2.2 shows an example

page from each manual. The images are not meant to be fully readable, but to give an

idea of the type of formatting, the information density, and the usage of tables across

the two documents.

A summary of their main characteristics is shown in Table 2.1. The substantial dif-

ferences in length, structure, and information density provided a useful basis for testing

the robustness and adaptability of the preprocessing and retrieval methods developed in

this thesis. It is worth noting that the density values may appear higher than what one

might expect from a simple ratio of tables and figures per page. This is because both

manuals contain many long tables that span multiple pages. As a result, density reflects

not only the number of distinct tables but also their physical distribution across pages.

Manual Pages Tables Figures Density*

STM32G0B1 series (ST) 160 96 66 1.28

Kinetis KE17Z series (NXP) 1103 ∼ 250 212 0.98

Table 2.1: Main characteristics of the reference manuals used in the project.

* Density values express the approximate ratio of tables and figures per page.

2.2.2 Data Preprocessing

Since the reference manuals were only available in PDF format, a dedicated prepro-

cessing pipeline was developed to convert them into a structured and machine-readable
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Figure 2.2: Example page layouts from the STM32G0B1 reference manual (left) and the
Kinetis KE17Z reference manual (right).

corpus suitable for embedding and retrieval. The entire workflow was implemented in

Python and designed to preserve the logical order of the documents while extracting

both descriptive text and tabular information in a consistent format. Although prepro-

cessing large manuals is computationally expensive, it must be performed only once per

document, and the resulting corpus can be reused for all subsequent retrieval operations.

As a first step, each manual was automatically divided into chapters based on its

table of contents. This segmentation reduced the computational load associated with

processing large documents and simplified quality inspection by allowing extraction to

be carried out and validated chapter by chapter.

The core of the preprocessing pipeline relied on a hybrid strategy combining two

complementary tools. The unstructured library was used to parse each chapter and

identify elements such as titles, paragraphs, tables, and figures, providing metadata for

each extracted component. However, while it was effective at recognizing element types,

its table extraction was not always reliable for the complex register tables commonly
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found in microcontroller documentation. To obtain precise cell-level structures, the

Camelot library was applied in lattice mode to extract grid-based tables. Camelot

alone, however, occasionally misclassified figures or diagrams as tables. For this reason,

the pipeline integrated both tools: unstructured indicated which elements were tables,

while Camelot provided structured table content. Additional filtering removed spurious

tables by discarding Camelot outputs with a high proportion of empty cells.

To illustrate the challenges involved in parsing complex technical tables, Figure 2.3

shows a representative page from the STM32G0B1 reference manual together with the

structural elements identified by Camelot. The example highlights how the tool re-

constructs ruling lines, localizes text regions, and combines these signals to infer the

underlying table layout. In this particular case, the table contains multiple nested head-

ers, irregular subcells, and non-uniform column groupings. Camelot is able to recover

the structure with a high degree of accuracy, but certain fine-grained elements are not

captured perfectly due to the complexity of the layout. Such cases demonstrate that,

while automated extraction is generally reliable, highly irregular tables may still require

additional inspection or manual correction during preprocessing.

After extraction, text and tables were recombined in reading order to reconstruct

each chapter in a linear format. Tables were inserted as HTML-like representations

to preserve their structure and cell relationships. This choice is consistent with recent

research on applying LLMs to tabular data [42], where structured textual encodings are

commonly used to make row and column relationships explicit for downstream models.

Retaining this structure ensured that register tables were preserved faithfully and could

be interpreted consistently within a text-based retrieval pipeline.

Relevant metadata such as chapter titles, table titles, and page markers was preserved

to support traceability and facilitate later debugging. The final output consisted of

a clean text representation for each chapter, containing both narrative content and

structured tables. These chapter files were merged into a single corpus for each manual,

forming the basis for the chunking and embedding procedures described in the next

section.

2.2.3 Chunking and Vector Store Construction

Once the manuals had been transformed into structured text files, the next step was

to divide the corpus into smaller textual units and convert them into vector representa-
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(a) Original page. (b) Line detection.

(c) Text regions. (d) Line intersections.

Figure 2.3: Example of a complex register table page and the corresponding structural
interpretation produced by Camelot.

tions suitable for semantic retrieval. This operation, commonly referred to as chunking,

determines the granularity at which information can be indexed and retrieved by the

RAG system.

Because the manuals contain heterogeneous content—including descriptive text, HTML-
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like representations of tables, parameter summaries, and configuration notes—special

attention was required to avoid fragmenting coherent technical units. In particular,

splitting register tables across chunks would significantly reduce retrieval quality. For

this reason, an adaptive chunking strategy was adopted. Instead of using fixed-size seg-

ments or relying on section boundaries, the chunk size was computed dynamically as

a function of the total document length, ensuring that each manual was divided into a

comparable number of large chunks. A substantial overlap between consecutive chunks

was maintained to preserve continuity and reduce the risk of breaking tables or separat-

ing related explanations. This approach provided a practical balance between retrieval

accuracy and computational efficiency.

Each chunk was then encoded into a numerical vector using the text-embedding-004

model from Google, which was selected for its robustness across heterogeneous chunk

types and its consistent behavior when processing both textual descriptions and table-

derived content.

All embeddings were stored in a vector database implemented with FAISS (Facebook

AI Similarity Search), which enables efficient nearest-neighbor search even for large col-

lections. For each user query, the system retrieves the top-5 most semantically similar

chunks, which are then passed to the language model to support grounded answer gen-

eration. Metadata associated with each chunk, such as chapter identifiers and manual

source, allows retrieved passages to be traced back to the corresponding sections in the

original documents.

The entire chunking, embedding, and retrieval workflow was implemented using the

LangChain framework, which provides a unified interface for text splitting, embedding

creation, and vector store management. This modular structure ensures that individual

components can be reconfigured or replaced if new tools become available.

The resulting knowledge base is a fully searchable semantic index of the manuals:

every fragment of the documents is represented by its vector embedding, enabling the

system to efficiently locate and combine relevant information during response generation

in the RAG pipeline.

2.3 Prompt Engineering

Prompt design played an important role in controlling the chatbot’s behavior and

reducing hallucinations. In a RAG system, the prompt determines how the retrieved
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passages are interpreted and integrated into the model’s reasoning. While retrieval

selects relevant content from the vector store, the prompt specifies how the model should

use this content to produce coherent, evidence-based, and verifiable answers.

Several prompting strategies were tested during the experimentation phase to identify

which formulations produced the most accurate and concise responses. Different styles

were explored, including instruction-based prompts, role-based prompts, and variants

that explicitly required the model to cite the source of each statement. The experi-

ments showed that clear and directive formulations yielded more reliable outputs than

generic instructions. In particular, assigning the model a specific role (for example,

“expert assistant in firmware development”) significantly improved factual accuracy by

constraining the tone and scope of its responses.

The final configuration adopted a structured system prompt that defined the ex-

pected behavior of the assistant. The prompt instructed the model to act as a domain

expert, to rely exclusively on the retrieved context, and to avoid speculation. An example

is shown below:

“You are an expert assistant in firmware development. Answer questions

based strictly on the context retrieved from the manuals. If the information

is not present, clearly state that it cannot be found, and reference the relevant

section or page whenever possible.”

This formulation encouraged concise and document-grounded responses while main-

taining a cooperative conversational tone. By emphasizing transparency and explicitly

discouraging unsupported inferences, the prompt helped reduce hallucinations and im-

proved the reliability of the generated answers. The requirement to cite sections when

possible also strengthened traceability, which is essential when interacting with technical

documentation.

Overall, the prompt engineering phase established the behavioral constraints nec-

essary for consistent and verifiable outputs. The resulting configuration integrates

smoothly with the retrieval pipeline, ensuring that the model’s responses remain aligned

with the underlying documentation and suitable for the technical domain considered in

this thesis.
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2.4 System Integration

The components developed throughout the project were integrated into a unified

conversational architecture that connects data preprocessing, retrieval, and answer gen-

eration. This integration ensures that each stage of the pipeline, from document inges-

tion to response delivery, operates coherently, enabling users to query technical manuals

through natural language.

The system follows the typical structure of a Retrieval-Augmented Generation frame-

work. When the user submits a question through the command-line interface (CLI), the

query is embedded and compared against the vectors stored in the knowledge base. The

retriever identifies the top five most semantically relevant chunks, which are then passed

to the language model together with the user query and the system prompt. The LLM

generates an answer grounded in these retrieved passages, and the final output is re-

turned to the user together with references to the corresponding sections or pages of the

manuals. This approach ensures that the generated responses remain both context-aware

and traceable.

All system components were implemented using the LangChain framework, which

offers a flexible environment for connecting preprocessing, retrieval, and generation mod-

ules. The modular structure makes it possible to configure or replace individual com-

ponents independently, including the text splitter, embedding model, vector store, re-

triever, and language model. Conversation management is handled through LangChain’s

message-passing interface, which maintains dialogue history and allows interactions to

be reused for inspection or later evaluation.

The chatbot currently operates through a CLI, a choice motivated by transparency

and ease of debugging. This interface makes it possible to display retrieved passages

alongside generated answers, helping to assess retrieval quality and identify hallucina-

tions during iterative development. Although the system was prototyped in a text-based

environment, the underlying architecture is general and can be extended to graphical or

web-based interfaces without modification to the core logic.

Figure 2.4 illustrates the overall workflow of the system. The process begins with the

ingestion of the reference manuals, which are transformed by the preprocessing pipeline

into a structured corpus. These data are then chunked, embedded, and stored in the

vector database. During interaction, the user query triggers the retriever, which selects

the most relevant fragments to provide grounding for the LLM, resulting in a coherent
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and verifiable answer.

The integrated system combines data engineering and language modeling components

within a single modular framework. This design enables efficient interaction with com-

plex technical documentation and provides firmware developers with accurate, context-

aware, and traceable responses.

Original
manuals

Preprocessing
Chunking &
embeddings

Vector
storeOffline Preprocessing

User
query

Query
embedding

LLM +
prompt
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Top-5
chunksRetriever

Retrieved Context
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Figure 2.4: Overview of the chatbot architecture. Manuals are preprocessed offline to
produce embeddings stored in a vector database. At query time, the user question is
embedded, relevant chunks are retrieved from the vector store, and the language model
generates a response based on the combined query and retrieved contexts.



Chapter 3

Evaluation and Analysis

This chapter presents the evaluation of the developed chatbot system, focusing on

its accuracy, completeness, and practical usability when interacting with microcontroller

reference manuals. Since no public benchmark exists for this specific domain, the as-

sessment relied on a manually curated set of test questions prepared in collaboration

with domain experts from Brain Technologies. Each response produced by the chatbot

was compared against the official documentation and reviewed according to predefined

qualitative criteria. The chapter describes the evaluation methodology, summarizes the

obtained results, examines representative examples, and discusses the main behavioral

patterns and practical considerations that emerged from the experiments.

3.1 Evaluation Methodology and Metrics

The objective of the evaluation was to assess how accurately and reliably the devel-

oped chatbot can assist engineers in consulting microcontroller reference manuals. Since

the experiments were tailored to the specific documentation, a dedicated set of test ques-

tions was manually created in collaboration with domain experts. These questions reflect

realistic information needs encountered during firmware development, including requests

about pin functions, electrical limits, register fields, and peripheral configuration steps.

Automatic text similarity metrics such as BLEU or ROUGE were considered, but

ultimately found unsuitable for this context. Such metrics assume the availability of large

datasets with multiple reference answers per question, enabling meaningful statistical

comparisons. In this project, the expected responses are short, technical statements that

31
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can be phrased correctly in several different ways, making similarity-based metrics a poor

indicator of factual accuracy. Constructing a sufficiently large domain-specific dataset

with validated alternative answers would have required extensive expert annotation and

was outside the scope of this work.

For these reasons, the evaluation relied on qualitative, human-interpretable criteria.

Each chatbot response was rated according to the following metrics:

• Correctness: the degree to which the answer matches the information contained

in the manual. Ratings were assigned on a five-point scale (1 = incorrect, 5 = fully

correct).

• Completeness: the extent to which the answer includes all relevant details needed

to fully address the question. Again, ratings were manually assigned on a scale

from 1 to 5.

• Citation accuracy: whether the answer provides a correct reference to a relevant

table, figure, section, or page of the manual.

• Clarity and relevance: a qualitative judgment of how understandable, concise,

and practically useful the answer is for an engineer.

All responses were reviewed by domain experts, who cross-checked them against the

official documentation. Because this process requires detailed verification of specifica-

tions and descriptions in the documentation, the size of the test set represents a practical

balance between representativeness and feasibility.

Alongside these metrics, additional aspects such as topic coverage and general re-

sponse time were also considered as part of the overall evaluation, providing complemen-

tary insight into the system’s usability and robustness.

The following sections present the test set, summarize the results, and examine rep-

resentative examples.

3.2 Test Set and Experimental Setup

The evaluation was conducted on the two microcontroller reference manuals intro-

duced in Section 2.2.1. A set of 24 test questions was manually defined in collaboration
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with domain experts, reflecting realistic information needs encountered during the con-

sultation of technical documentation.

The test set was organized into two complementary groups. The first group con-

sisted of questions whose answers correspond to precise, explicitly stated information in

the manuals, typically retrievable from tables, parameter listings, or short descriptive

paragraphs. These questions were intended to assess the chatbot’s ability to locate and

extract well-defined technical details.

The second group required combining information from multiple sections of the doc-

umentation. These questions involved multi-step reasoning or the integration of related

descriptions across different chapters, providing a more challenging evaluation scenario.

Although smaller in number, this second group offered insight into the system’s ability

to navigate dependencies and interpret more complex relationships within the manuals.

Each response was evaluated according to the criteria described in Section 3.1. While

the size of the test set was necessarily limited due to the manual validation required for

each case, the selected questions cover a representative variety of lookup-oriented and

reasoning-oriented tasks. As such, they provide a realistic indication of the system’s

expected behavior during practical interactions with technical documentation.

3.3 Quantitative Results

Table 3.1 summarizes the main quantitative outcomes of the evaluation. For each

manual, the average correctness and completeness scores reflect the qualitative ratings

described in Section 3.1, while citation accuracy indicates the proportion of answers that

included an explicit and correct reference to the relevant part of the documentation.

Manual N. Questions Correctness (avg) Completeness (avg) Citation. Acc.

STM32G0B1 19 4.0/5 4.1/5 0.79

KE17Z 5 4.4/5 4.8/5 0.80

Table 3.1: Summary of evaluation results.

The correctness score reflects how accurately each answer matched the information

contained in the manual. A score of 5 corresponds to a fully correct response, while a

score of 4 indicates generally correct information with minor imprecisions. Lower values

represent increasing levels of inaccuracy or missing details. Answers that were incorrect
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on the first attempt but corrected immediately after a follow-up prompt were assigned an

intermediate score of 2.5. This approach captures both the initial error and the model’s

ability to revise its output when prompted, highlighting the interactive nature of the

system. A similar strategy was adopted for completeness scoring, where answers that

initially omitted relevant details but recovered them during follow-up interaction were

reflected in intermediate values.

The decision to assign intermediate scores to answers that were incorrect on the first

attempt but corrected after a follow-up prompt reflects the intended usage scenario of the

system. In practical settings, engineers often possess enough domain knowledge to im-

mediately recognize an incorrect statement and ask the chatbot to re-check its reasoning.

In such cases, the model’s ability to revise its output becomes relevant to the overall user

experience. However, since not all users may detect an erroneous first answer, the initial

mistake cannot be ignored in the evaluation. The intermediate score therefore balances

the chatbot’s capacity for self-correction with the practical implications of producing an

incorrect response at first glance.

The citation accuracy metric reports the fraction of answers that included a correct

reference to a specific table, section, or page, supporting traceability during technical

consultation. Although not quantified numerically, the clarity and relevance of the re-

sponses were also considered qualitatively when interpreting the results.

Overall, the high correctness and completeness averages for both manuals indicate

that the chatbot was able to extract factual information reliably, even when the under-

lying documentation varied considerably in structure and complexity. The results also

show that, although a few answers were incorrect on the first attempt, the conversa-

tional loop often enabled the model to adjust and improve its output when prompted,

reinforcing the practical value of interactive guidance when using large language models

in technical domains.

3.4 Representative Examples and Observed Behaviors

This section presents a selection of representative examples illustrating the chatbot’s

behavior during evaluation. Each example includes the question asked, the expected

answer when applicable, and the response produced by the chatbot. A brief comment

follows each case, highlighting the relevant aspects of the observed behavior.
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Example A (STM32G0B1): Fully correct and complete answer

Question: Would the device be damaged if I have an input voltage higher than

4 V on a FT xx pin?

Expected answer: No, if the internal pull-up or pull-down resistor is disabled;

yes otherwise.

Chatbot answer: “While the absolute maximum rating for input voltage on a

FT xx pin is VDD + 4.0 V (page 66), the manual explicitly warns: ‘To sustain a

voltage higher than 4 V, the internal pull-up/pull-down resistors must be disabled.’

(Page 66, Table 21 footnote 2) Therefore, exceeding 4 V without disabling the

internal resistors could potentially damage the device. It’s crucial to carefully

manage the input voltage and resistor configuration to ensure safe operation.”

Comment: The chatbot retrieves the relevant warning from the correct table footnote

and provides a complete and technically accurate explanation.

Example B (STM32G0B1): Partially correct answer

Question: What pin should I connect to to take VREFBUF?

Expected answer: VREF+ (Table 12).

Chatbot answer: “Unfortunately, based on the provided manual alone, I cannot

definitively tell you which pin to connect to for VREFBUF. e manual mentions VREF+

several times but does not explicitly state its pin location for all package options.

[...]

Here’s what I found:

Page 17: Explains that VREF+ is delivered through the VREF+ pin. However, it also

states, ‘On packages without VREF+ pin, VREF+ is internally connected with VDD,

and the internal voltage reference buffer must be kept disabled (refer to datasheets

for package pinout description). [...]’ ”

Comment: The chatbot extracts the correct conceptual information and explicitly

signals its uncertainty. Although it does not cite the specific table, it still identifies

the correct pin and provides a valid rationale. This behavior is particularly valuable in
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practical usage: by clearly indicating its level of confidence while pointing to relevant

sections of the manual, the chatbot supports informed verification and enables the user

to continue the interaction with appropriate awareness.

Example C (STM32G0B1): Incorrect answer even after a second inter-

action

Question: Can pin PA3 be used as TIM15 CH2?

Expected answer: Yes.

Chatbot answer (first attempt): “No, PA3 cannot be used as TIM15 CH2.

Table 13 (Page 56): This table displays the alternate function mappings for Port

A, and it does not list TIM15 CH2 as an option for PA3 under any of the listed

alternate functions (AF0 to AF7).”

Follow-up dialogue: User: “Can you check again?”

Chatbot: “[...] I re-examined the manual and the relevant tables, and I confirm

that:

PA3 cannot be used as TIM15 CH2. Neither Table 13 nor Table 14 lists TIM15 CH2

as an alternate function for PA3. [...]”

Comment: The chatbot cites the correct tables but misinterprets their content. Even

after prompting, it repeats the same incorrect conclusion, illustrating a stable misreading

of table entries rather than a hallucination or retrieval failure.
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Example D (KE17Z): Multi-step reasoning across manual sections

First question: I need to drive a buzzer: it needs two symmetrical square-wave

signals. How do I do that?

Chatbot answer: “The provided manual excerpt does not explain how to drive

a buzzer and doesn’t mention if it’s possible to generate two symmetrical square-

wave signals. Therefore, I cannot answer your question with the information I

have.”

Refined question: I need to generate two symmetrical signals, meaning that the

output of one channel must be the inverse of the output of the other channel. How

can I implement this?

Chatbot answer: “You can achieve this by using the Complementary mode.

The Complementary mode is selected when:

- DECAPEN = 0

- COMBINE = 1

- COMP(m) = 1 (where m represents a channel pair)

Page 737, Chapter 33 FlexTimer Module (FTM)

This mode uses a pair of channels (n) and (n+1), where the output of channel

(n+1) is the inverse of the output of channel (n).

You will need to configure the appropriate registers to enable this mode and set

the desired PWM characteristics for your application.”

Comment: Faced with an over-generic first query, the chatbot responds conserva-

tively. When the question is refined, it immediately retrieves the correct configuration

mechanism and provides a detailed, accurate explanation drawn from multiple sections

of the manual.

3.5 Observed Limitations and Practical Considerations

The evaluation revealed several recurring patterns in the chatbot’s behavior, which

help characterize both its strengths and its current limitations. Overall, the system

was consistently reliable when responding to factual queries whose answers were located

in short descriptive passages or clearly structured parameter listings. In these cases,
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retrieval was effective, and the generated responses were accurate, concise, and often

accompanied by correct citations.

The most frequent source of inaccuracy involved the interpretation of complex tables.

The preprocessing pipeline successfully converted the majority of tabular structures into

a usable textual representation, but highly irregular or deeply nested tables remain

challenging to treat automatically. In these cases, the chatbot occasionally retrieved

the correct table but focused on the wrong entry, leading to incomplete or incorrect

conclusions. These errors stem from the inherent difficulty of navigating dense, multi-

column layouts rather than from unsupported fabrication. When processing shorter or

less complex documents, this issue was noticeably reduced, suggesting that table density

and structural complexity are significant factors influencing retrieval accuracy.

A second pattern concerned the stability of responses across longer conversational

sessions. As the dialogue progressed, the chatbot sometimes became more verbose, oc-

casionally drifting from the prompting constraints defined at the start of the interaction.

In particular, later responses tended to omit citations that were correctly provided ear-

lier in the same session. Reinserting the system prompt or keeping interactions short

proved effective in mitigating these effects.

Despite these issues, interaction itself remained beneficial. When explicitly prompted

to re-check or reconsider an answer, the chatbot could often correct misinterpretations,

especially for cases where the first attempt resulted from reading the wrong table or

section. This interactive refinement reflects an important aspect of practical use, since

engineers naturally iterate on their understanding when consulting technical documen-

tation.

From a usability standpoint, the system proved helpful in reducing the effort required

to locate information within long manuals. The ability to phrase questions in natural

language, refine them incrementally, and obtain context-aware explanations contributes

to a smoother consultation workflow compared to manual search alone. This was par-

ticularly evident in scenarios involving multi-step reasoning or cross-referencing between

different sections of a document.

Depending on the confidentiality of the documentation, organizations may also need

to consider how the system is deployed. In cases where manuals contain proprietary

information, it may be preferable to keep document embeddings and the vector store

on-premise while relying on a cloud-based model only for inference. Such hybrid setups
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allow companies to benefit from high-quality language models while maintaining control

over sensitive data. Practical considerations also include the cost of using commercial

LLMs, which typically follow a token-based pricing model. While occasional use incurs

negligible expense, sustained or large-scale deployment may require strategies such as

prompt optimization, caching, or the selective use of smaller local models to balance

accuracy with operational cost.

In summary, the system performs reliably in factual retrieval tasks and provides

meaningful support for navigating technical documentation. Its main limitations are

associated with dense table interpretation and long-session consistency, especially when

working with large or highly structured manuals. Despite these challenges, the overall

behavior is robust enough to assist engineers effectively during early design exploration

and routine consultation tasks.



Conclusions

This thesis investigated the development of a domain-specific chatbot based on

Retrieval-Augmented Generation (RAG), designed to support engineers in consulting

microcontroller reference manuals. The project, carried out in collaboration with Brain

Technologies, examined how large language models can contribute to technical docu-

mentation workflows and evaluated their reliability in this context.

The work combined several components into a coherent prototype system. A prepro-

cessing pipeline was developed to convert heterogeneous PDF manuals into a structured

and searchable knowledge base, preserving both descriptive text and tabular information.

The chatbot was then built to interpret user queries and generate answers grounded in

the retrieved documentation. The overall objective was to assess whether such a system

could help engineers navigate complex reference material more efficiently.

The evaluation results indicate that the proposed approach is effective for factual

retrieval and short reasoning tasks. The chatbot reliably identified technical values, con-

figuration details, and parameter constraints across different types of manuals. Its con-

servative prompting strategy contributed to stable and document-grounded responses.

At the same time, the experiments highlighted clear limitations, particularly in the in-

terpretation of dense or irregular tables and in maintaining prompt consistency during

long interactions. These findings reflect the challenges inherent in processing technical

documentation and the current capabilities of retrieval-based systems.

From a practical perspective, the prototype already offers useful support. By al-

lowing engineers to pose questions in natural language and receive concise source-based

answers, it reduces the effort needed to locate information dispersed across long man-

uals. However, a deployment-ready version would require additional features such as

the ability to store and manage larger collections of documents, support for regularly

updated data, and at least a minimal user interface to integrate the system into existing

40
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engineering workflows.

Several directions for future development emerge from this work. Improving the han-

dling of complex tables, and extending preprocessing to include figures, diagrams, and

layout cues, could substantially broaden the system’s coverage. Alternative strategies

such as converting structured information into dedicated databases or exploring mul-

timodal models may also improve precision for tabular and graphical content. On the

modeling side, techniques for adaptive prompt reinforcement or the use of lightweight

local models may increase reliability and reduce operational cost. Extending the pipeline

to additional document types and designing user interfaces tailored to engineering work-

flows would further enhance its practical impact.

More broadly, this thesis was completed in a period of rapid progress in large lan-

guage models. Capabilities that were experimental only a few years ago have become

widely accessible, and models continue to improve in context handling, reasoning, and

multimodal understanding. In this evolving landscape, the approach explored here rep-

resents one of many promising ways to integrate language models into technical tasks,

and future advancements are likely to expand what such systems can accomplish.

In conclusion, the project showed that RAG-based chatbots can meaningfully assist

in navigating complex technical documentation. While limitations remain, the results

suggest that such systems can improve information accessibility, reduce manual search

time, and provide a practical starting point for more advanced intelligent documentation

tools in embedded systems engineering.
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