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ABSTRACT

The current research proposes a data-driven framework for predicting the deterioration of
road infrastructure, specifically modeling the growth or spread of alligator cracking in both
area and severity. This comprehensive research integrates multiple data sources including
climate variables, traffic patterns, and high-resolution images from two distinct domains: the
comprehensive U.S. Long-Term Pavement Performance (LTPP) dataset and a localized
Italian dataset with limited historical observations.

To overcome data scarcity in the Italian domain, an instance-based transfer learning strategy
was employed. A K-Nearest Neighbors (KNN) algorithm was used to locate U.S. pavement
sections with environmental and traffic conditions similar to Italy. A hybrid training dataset
was developed which consisted of the Italian training data augmented by the selected similar
U.S. observations.

This dataset was subsequently used to train and validate three machine learning models
(Random Forest, XGBoost, and LightGBM), against a Naive persistence baseline. The
findings indicate that predictive effectiveness is largely determined by the severity of distress.
While the Naive baseline was most effective for low-severity cracking, the Random Forest
(RF) model proved to be the most accurate and robust for predicting high-severity
deterioration, effectively correcting the baseline’s critical tendency to underestimate
structural failures.

This hybrid-data approach produces a viable and pragmatic approach for pavement
management in data-scarce regions. The approach provides a more reliable forecast of high-
risk segments which enables road agencies explore maintenance budgets and/or improve the

management of infrastructure from reactive to preventive management.
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INTRODUCTION

This thesis aims to develop predictive models to analyze the deterioration of road
infrastructure, focusing on the progression of alligator cracking in terms of area and severity.
Using multi-source data and transfer learning from U.S. dataset (Long-Term Pavement
Performance (LTPP) program [1]) to the Italian context, the study contributes to data-driven
approaches for pavement management. The research was carried out in collaboration with
LOKIs.r.1[2], an emerging Italian startup, within the framework of its Asfalto Sicuro project,
which combines Al space technologies, and vehicle-mounted sensors to automatically detect
and map major pavement distresses, —including potholes, linear cracks, and alligator

cracking—with the central purpose of improving road safety.

1.1 Problem Statement

Pavement deterioration resulting from aging, traffic loads, and environmental conditions is a
persistent challenge for transportation agencies worldwide [3]. The ability to predict
accurately the performance of pavements over time is required so that road infrastructure can
be maintained in a broadly affordable and timely manner. Empirical models, or mechanistic-
empirical models, based on historical data and expert knowledge, have long been used
successfully to predict the future serviceability of pavements [4], [5]. However, these
traditional empirical and mechanistic-empirical methods often struggle to capture the multi-
faceted nature of the performance of pavement and its complex, nonlinear, and
spatiotemporal nature under a range of loading and climatic conditions. To address these
limitations, the research community has increasingly adopted machine learning (ML) and

deep learning (DL) approaches for data-driven modeling of pavement deterioration [6], [7],
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[8]. These models leverage diverse data sources, including historical pavement performance
records, sensor measurements, traffic volumes and visual inspection data to learn predictive
patterns without the need for manual rule definitions. Due to their adaptability, scalability
and enhanced predictive performance, ML and DL models are already an advantageous
alternative to traditional predictive approaches [9], [10].

Despite these improvements, significant challenges remain. In many countries, historical
pavement performance data are either nonexistent or too sparse to support model
development. Therefore, it becomes necessary to transfer knowledge from data-rich regions
to data-scarce contexts [11]. However, transfer learning often yields suboptimal results due
to contextual differences, particularly climatic variations that greatly affect degradation
dynamics [12]. This emphasizes the need of domain-adapted approaches capable of bridging
gaps between source and target environments.

Moreover, regardless of the encouraging progress, there is a clear necessity of developing
machine learning models that incorporate the effects of environmental variables on the
progression of certain types of pavement distresses [13]. Although numerous studies have
used data as traffic, precipitation, temperature, and humidity to develop predictive models
for pavement condition indices (e.g., International Roughness Index (IRI), Pavement
Condition Index (PCI)), it is evident that there is more work to do in developing focus on
specific types of distress that usually evolve quickly and have a much bigger impact on
safety/experience.

Distresses such as potholes and alligator cracking cause deterioration of pavement
structural integrity and are also immediate hazards for drivers, cyclists, and pedestrians in
the system. The development of these critical distresses is always sensitive to more traditional
environmental factors; especially areas that endure freeze-thaw cycles, extreme moisture, and
similar conditions [14]. Consequently, machine learning models that monitor these high
priority distresses will support transportation agencies in prioritizing maintenance response,
improve resource allocations and earlier intervention - leading to reduced repair costs and
better road usability. High-resolution environmental data combined with the distressing
patterns can be integrated into a predictive model to change how agencies plan and

implement pavement maintenance.



1.2 Objectives
1.2.1 General Objective

The main goal of this project is to develop and implement different predictive models for
predicting the deterioration of road infrastructure, with a particular focus on the progression
of alligator cracking in terms of area and severity. By integrating multi-source data—
including climatic, traffic, and pavement condition information—this study seeks to develop
predictive frameworks trained on a U.S. historical dataset and adapted through transfer
learning strategies to the Italian context, where data availability is limited.

1.2.2 Specific Objectives

e Data characterization: To analyze and preprocess the U.S. and Italian datasets,
identifying relevant variables (climate, traffic, crack area, severity) and preparing them
for predictive modeling.

e Predictive models development: To design and train predictive models on the U.S
dataset, capturing the temporal dynamics of alligator cracking deterioration under
varying climatic and traffic conditions.

e Transfer learning / fine-tuning: To apply and compare transfer learning and fine-
tuning techniques for adapting the models trained on U.S. data to the Italian dataset,
enabling knowledge transfer despite limited target-domain data.

e Evaluation of predictive performance across domains: To assess the predictive
accuracy and generalization capacity of the adapted models in forecasting crack area and
severity in Italian road segments, and to benchmark them against baseline approaches.

e Analysis of factor influence: To analyze the relative importance of climate and traffic
variables in the deterioration process, highlighting similarities and differences between
U.S. and Italian conditions.

e Validation and application: To propose a framework for applying the models in real-
world road maintenance planning evaluating their reliability for short-term forecasts in

contexts with limited historical data (e.g., Italy 2025 predictions).



1.3 Thesis Structure

This thesis follows the next structure:

e Literature review: This section provides a systematic examination of the literature
related to the prediction of road infrastructure degradation. The discussion is organized
into two segments, the first covering a civil engineering basis by outlining the main
factors affecting the performance and deterioration of asphalt concrete pavements and
the second covering the application of machine learning and deep learning methods that
have been developed for this purpose.

e Methodology: This chapter describes the datasets used in this study, as well as the
preprocessing steps and feature engineering procedures applied. It also presents the
methodology, detailing the predictive modeling approaches employed, including
baseline models and transfer learning strategies.

e Results and Discussion: This section presents and analyzes the experimental results,
comparing model performances across datasets and examining the influence of climatic
and traffic variables on prediction accuracy. It also evaluates the transferability of
models and interprets the main findings in the context of related research. Furthermore,
it discusses their practical relevance for infrastructure management, acknowledges the
study’s limitations, and provides recommendations for future research to build on these
results.

e Conclusions: This segment concludes the thesis by synthesizing the major findings,

discussing contributions, outlining limitations, and proposing avenues of future work.



LITERATURE REVIEW

Road networks play a fundamental role in personal mobility by enabling access to services,
goods, and leisure activities, and for this reason, global economies depend on the efficient
and safe operation of transportation systems [15]. Within this context, pavement represents
one of the most critical components of modern transportation infrastructure, as its condition
directly influences both the functionality and safety of road networks.

In Italy, the maintenance and management of the national road network is primarily
entrusted to ANAS S.p.A. (Azienda Nazionale Autonoma delle Strade), a state-owned
company under the Ministry of Infrastructure and Transport and part of the Ferrovie dello
Stato Italiane Group. ANAS is responsible for the construction, rehabilitation, and
programmed maintenance of pavements and related infrastructure across the national
network, which includes state roads, expressways, and some motorways [16]. While ANAS
oversees the national network, regional and municipal authorities are in charge of
maintaining local and urban roads, reflecting the multi-level governance structure of road
infrastructure in Italy.

At the national scale, data on road infrastructure maintenance in Italy are systematically
collected and reported by the International Transport Forum of the OECD (ITF-OECD),
which compiles annual statistics on transport infrastructure investment and maintenance
across member countries [17]. These datasets provide a comprehensive view of Italy’s overall
expenditure on pavement upkeep, as they aggregate not only the resources allocated by
ANAS for the national road network but also the contributions of regional and municipal

authorities responsible for local and urban roads.
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Recent official figures show that programmatic maintenance by ANAS exceeded €1.6
billion in 2024, while total investments and maintenance works surpassed €2.9 billion [16].
At the national level, CEIC/OECD data indicate that road infrastructure maintenance
spending in 2021 was approximately €8.7 billion [17]. Despite these significant investments,
deteriorated pavements remain a major safety hazard. Defects such as potholes, surface
roughness, and alligator cracking not only accelerate structural degradation but also
contribute directly to traffic accidents, loss of vehicle control, and increased risk for
vulnerable users such as cyclists and motorcyclists. The European Road Safety Observatory
states that while human factors dominate (~95%), infrastructure factors contribute to ~30%
of crashes [18]. Thus, beyond the economic burden of maintenance, unsafe pavement
conditions have a direct societal cost in injuries and fatalities. For this reason, Italian road
agencies are increasingly prioritizing the monitoring of traffic, climatic, and structural factors
that influence pavement performance throughout its service life, with the aim of reducing

accident rates, optimizing interventions, and improving both safety and road usability.

2.1 Overview of Pavement Deterioration and Maintenance

A comprehensive pavement management model is vital to ensure the long-term performance,
safety, and cost-effectiveness of road infrastructure. Effective management systems create a
systematic approach to monitor pavement condition, forecast deterioration and prioritize
maintenance interventions. These models allow decision-makers to allocate resources more
effectively, lower lifecycle costs, reduce traffic disruption and improve road safety [19].
Pavement degradation over time is a natural and expected occurrence. Roads are subjected
to repeated loading from daily cars, trucks, and buses, which naturally causes wear and tear.
According to the AASHTO Guide for Design of Pavement Structures, the typical service life
of asphalt concrete (AC) pavements under standard traffic conditions ranges from 20 to 25
years [4] .However, in practice, pavements often show signs of considerable distress before
reaching their service life, in some cases, having failed within ten years (Figure 1). Such
premature deterioration raises a pertinent question: what underlying factors contribute to

early pavement failure?
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Figure 1 Measured alligator cracking distress for SPS-8 flexible pavement projects in North Carolina [20]

2.1.1 Factors Impacting Pavement Deterioration

Among the major factors affecting deterioration are traffic loading, especially from heavy
vehicles, which may be a contributor to accelerated structural fatigue. The stress waves
caused by repeated moving loads create permanent deformation and crack propagation that
can affect the inner layers of the pavement [21]. Climatic factors, including extreme
temperatures, freeze—thaw cycles, and moisture variations act to rapidly increase crack
propagation through the weakening of material bonding and water infiltration into the
pavement. Once cracks extend into the pavement layers, water intrusion into unbound
subgrade layers promotes rapid deterioration and loss of structural integrity, ultimately

leading to a reduction in the pavement's capacity to support future traffic loading [3], [20]

Distress Factors, Initiators & Aggravators
(Many Interactions)

Environment: s Traffic
Maisture, i e Loads
Temperature, ¢ )

F-T Cycles, Frost 6‘2& \
Heave, Wet-Dry

Structure,

Cycles, Subgrade Materials

Initiators: Stress,

Strain, Deformation

Aggravators:

Repeated loads, B

F-T Cycles, Wet-Dry : Developing

Cycles, etc. ; =Field Distress

Source: FHWA.
F-T = freeze—thaw.

Figure 2 Factors, initiators, and aggravators affecting pavement performance [20]
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In order to better understand these mechanisms, the U.S. Federal Highway Administration
(FHWA) published an extensive investigation called "Impact of Environmental Factors on
Pavement Performance in the Absence of Heavy Loads" [20]. With the basis of contributions
from the Long-Term Pavement Performance (LTPP) program [1] and focused on pavement
sections with very low traffic volumes (SPS-8 experiments), allowing researches to focus
specifically on the effects of climate and subgrade conditions. The findings indicated that
pavement deterioration results from a combination of factors, including traffic loads,
construction quality, material properties, and, importantly, environmental factors [20]
(Figure 2). Table 1 summarizes common asphalt concrete (AC) pavement distresses—
including alligator cracking, depressions, and potholes—together with their primary and
contributing causes. While, as mentioned before, it is generally accepted that traffic loads are
the primary cause of the distresses, the FHWA report revealed that, environment conditions
are in fact consistent contributors to the eventual damage and to the overall distress level of

any given pavement [20].
Table 1 Common asphalt concrete pavement distresses and their predominant causes [20]

P = primary factor, C = contributing factor, N= negligible factor

Environment
Distress Load Material Construction
Moisture Temperature Subgrade

Alligator Cracking P C C C C C
Bleeding C C C N P C
Block Cracking N C C N P C
Corrugation P C C N C C
Depression P C N C C C
Edge Cracking C C N P N C
T x : N c ‘
Lpadind c c c ‘
Potholes C C C N P c
Raveling C C C N P C
Rutting P C C C C C
Shoving P C C N C C
Swelling and Bumps N C C P C N

Statistical analyses, including GLMSELECT modeling and ANOVA, highlighted the

importance of freeze—thaw cycles, rainfall, moisture in the subgrade, and soil plasticity in
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accelerating deterioration. The study estimated that approximately 36% of all observed
damage in asphalt pavements over a 15-year period was attributable to environmental factors
alone [20]. These results underscore the importance of considering environmental variables
not just a contributing factor to performance, but one of the most significant driving
contributors to pavement performance.

The longevity of a pavement also depends on material properties, construction quality,
and maintenance practice. Pavements constructed with poor compaction, inadequate
drainage, or material that does not meet minimum specifications are particularly susceptible
to premature failures [22]. Likewise, delays in maintenance allow small-scale defects to
evolve into major distresses like alligator cracking, rutting, or potholes and increases long-
term rehabilitation costs [3].

In this context, predictive models play a crucial role. A realistic prediction model should,
in principle, represent all important parameters that are known to influence the pavement
performance, including traffic, climate, materials, and construction practices. Yet, due to the
high complexity and nonlinear interactions among these factors, fully integrating them into
a single model remains a central challenge, as evidenced by the complexities addressed in
the development of the Mechanistic-Empirical Pavement Design Guide [5]. Recently, data-
driven models and approaches, including statistical learning, machine learning, and deep
learning, have been introduced to augment empirical and mechanistic-empirical models, as
these methods have the capacity to capture multifactorial and nonlinear dynamics of
deterioration [23], [24], [25]. Predictive models and related techniques allow both short-term
condition prediction and long-term expected trajectories under different traffic and climate
scenarios, which is indicative of the likelihood of performance [26]. Including predictive
analytics into agency pavement management systems means more informed decisions for
timing and type of interventions to use, which extends service life and optimizes
infrastructure investments [27].

Taken together, the above evidence implies that there is a need for agencies to adopt some
form of a strong pavement management framework that takes advantage of empirical
knowledge and predictive modeling to anticipate deterioration and to plan maintenance

actions.
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2.1.2 Common Pavement Distresses in Asphalt Concrete Pavement

Asphalt concrete pavements incur various forms of surface and structural distresses,
adversely affecting performance, safety, and ride quality, over time. According to the most
recent ASTM D6433-24 standard, pavement distress refers to any external indicators of
pavement deterioration resulting from the influence of traffic loading, exposure to the
environment, undesirable materials and/or construction flaws [28]. In this document, a
number of distinct distress types are defined (Figure 3), each with criteria for severity and

extent. Some of the key distresses include:

o Fatigue (alligator) cracking: Cracks that are interconnected and typically located in
wheel paths; they result from cumulative loading that leads to asphalt layer fatigue, a
classic failure mode explained by flexural theory in layered systems [22]. Over time,
these cracks could develop into a network of cracks that ultimately causes localized
failure or potholes.

e Bleeding: A surface film of asphalt or bituminous binder that rises to the surface during
hot conditions, creating a slick surface. This is often a result of an unstable asphalt mix
with excessive binder or low air void content [29].

e Block cracking: Cracks that form in a relatively large rectangular pattern that are not
caused directly by car tires, but instead by shrinkage and/or temperature cycling of the
asphalt; this pattern would be considered an indication of the asphalt hardening or aging
over time [4].

e Edge cracks: Cracks located close to the edges of the pavement (generally within 0.3 to
0.5 m of the edge) that often result from weak support at the pavement edge, poor
drainage, and sometimes frost action. Once the pavement edge starts to fail, raveling can
occur adjacent to the crack [22].

e Longitudinal and transverse cracks: Cracks that are either parallel to the direction of
traffic as it was paved, or cracks with the same orientation perpendicular to the direction
of the traffic. These cracks can be caused by a number of factors including thermal
contraction, pavement shrinkage or swelling, performing reflective cracking from

underlying layers, joint between lifts or insufficient bonding, or poorly constructed joints

[4].
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e Potholes and patching: Localized surface failures when material has been lost. Failures
often proceed from some sequence of fatigue cracking, or occur due to some support
level failure. Potholes cause significant safety concerns. Patching refers to repair areas,
but many of these areas themselves can have distress [3].

e Rutting: Depressions and grooves occurring in the wheel paths as a result of
deformation of the asphalt, underlying base, or subgrade, all done under repeated wheel
loadings. Rutting tends to be a common severity concern, because it tends to collect
water and tends to be a reduction of skid resistance [3].

¢ Surface defects such as raveling, shoving, bumps & swellings, corrugation: Raveling
consists of fine or coarse aggregate loss from the surface; shoving and sags are
displacements caused by shear or unbalanced mix conditions; corrugation
(washboarding) has regular ridges peaks and valleys normal to traffic flow. Ultimately
these can will likely be caused by conditions of mix instability, insufficient compaction,

insufficient support, or temperature or frost action [29].

Bl B

Alligator cracking Bleeding Block cracking Corrugation

Depression Transverse cracking Longitudinal

cracking

Potholes Raveling Rutting Shoving Swelling and

bumps

Figure 3 Distresses in asphalt concrete pavements [28]
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2.1.2.1 Alligator Cracking

Among the numerous distresses identified in the ASTM D6433-24 standard [28], alligator
cracking (sometimes known as crocodile skin cracking) is considered one of the most
important signs of structural failure in asphalt concrete pavements. Unlike surface distresses,
such as raveling or bleeding, alligator cracking is not merely superficial. Its presence is a
classic indicator of fatigue failure, which mechanistic-empirical design principles attribute to
the tensile strain at the bottom of the asphalt layer under repeated traffic loading [22], [30].
This progressive deterioration often begins with fine cracks and may quickly lead to potholes
and eventually result in expensive rehabilitation if not corrected soon enough. Because of its
diagnostic importance, ASTM D6433-24 outlines a detailed evaluation for alligator cracking
that considers both severity and extent, a methodology aligned with major national data
collection efforts like the Long-Term Pavement Performance (LTPP) program[1], [31].

This common distress is categorized into three levels of severity - low, medium, and high
based on the density of the crack pattern, the width of the cracks, and the amount of surface
disintegration occurring. These indicators represent an overall measure of the condition and
seriousness of the potential structural failure and can be classified into three main categories:
the geometric pattern, crack width, and surface condition.

e Crack Pattern and Density
The progression from isolated cracks to a dense, interconnected network is the visual
manifestation of the fatigue damage modeled in laboratory studies[32]
o Low Severity: Hairline cracks that are widely spaced, do not link together, and are
showing early fatigue, and no structural damage.
o Medium Severity: A denser pattern of interconnected cracks that will make closed
polygons.
o  High Severity: Extensive crack networks, linked, & tight, multiple crack polygons,
like chicken wire, deep structural failure.
e Crack Width
The width of individual cracks—from hairline cracks to wide-open cracks—provides an
important sign of the severity of distress and the degree of degradation of the structure.

o Low Severity: Cracks < 1/8 inch (3 mm), surface-only.
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o Medium Severity: Cracks 1/8—1/4 inch (3—6 mm), may show minor edge wear or
opening.
o High Severity: Cracks > 1/4 inch (6 mm), often with edge spalling, raveling, or
material loss.
e Surface deterioration
The condition of the pavement surface around the cracks, from intact to severely raveled,
provides critical information on the stage of failure and the loss of structural integrity
[29].
o Low severity: Pavement surface remains smooth and intact.
o  Medium Severity: Slight surface roughness or flaking at crack edges.
o High Severity: Severe deterioration that may contain loose materials, potholes, or
deformations under load.
e Area Extent
While severity captures the intensity of the cracking, extent refers to the percentage of
the pavement area affected. This dimension can also give important detail to machine
learning algorithms about how to weight predictions over area. Modern approaches to
automated pavement management leverage image processing and deep learning to

precisely quantify these exact features—pattern, width, and extent—at scale [33], [34].

2.2 Traditional Predictive Models for Pavement Performance

Models for predicting pavement performance are essential in pavement engineering, as they
allow engineers to make predictions about pavement behavior over time under defined traffic
and environmental conditions. Three primary categories of traditional predictive models have
been developed: empirical models, mechanistic models, and mechanistic-empirical (M-E)
models, with the latter two being most widely used.

Empirical models, historically the foundation of pavement design, are primarily derived
from the analysis of extensive field and experimental data, establishing statistical
relationships between observed pavement performance and influential design variables such
as traffic loading, material properties, and climatic factors [22]. A notable example is the
AASHTO 1993 Pavement Design Guide, based on the results of the AASHO Road Test,

which links key variables—such as traffic (often expressed as cumulative equivalent single
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axle loads, ESALSs), subgrade support, and desired reliability—to pavement thickness and
performance predictions [4]. The World Bank’s HDM-4 system is another example, which
also relies heavily on empirical deterioration models that agencies often calibrate to local
conditions [35]. Although empirical models are straightforward and data-efficient, they lose
accuracy when applied to conditions differing from those for which they were developed.
[4], [22]

The mechanistic-empirical (M—E) approach was created to overcome the limitations
associated with purely empirical methods by integrating them with engineering mechanics.
M-E models simulate the three-dimensional responses of pavements to traffic and climate
(i.e., stresses, strains, and deflections) and link the responses to actual field performance
through transfer functions [5].The AASHTO Mechanistic-Empirical Pavement Design Guide
(MEPDG) is a premier example that incorporates detailed traffic, climate, and materials
inputs into pavement performance predictions [5]. Despite being more adaptable and
scientifically sound than their purely empirical predecessors, M-E models require extensive

high-quality data and localized calibration to ensure accurate predictions [36].

2.3 Applications of Machine Learning in Pavement Evaluation

Employing Machine Learning (ML) and Deep Learning (DL) have significantly advanced
flexible pavement evaluation by uncovering complex, non-linear relationships in large
datasets from non-destructive testing (NDT) and historical performance records [9]. Unlike
traditional statistical approaches, these models characterize complex patterns influencing
pavement deterioration and overall performance over time.

ML models such as Random Forest (RF), Gradient Boosting (e.g., XGBoost, LightGBM),
and Support Vector Machines (SVM) have been widely applied to predict pavement
condition indicators like the International Roughness Index (IRI), Pavement Condition Index
(PCI), cracking, rutting, and faulting [9], [10], [24]. Using databases such as the U.S. Long-
Term Pavement Performance (LTPP) [1], these models have demonstrated strong accuracy
and interpretability [23].

RF models, for instance, have illustrated the ability to learn nonlinear interactions and
identify important predictors such as annual average daily truck traffic (AADTT),

temperature, and thickness of the layers across multiple distress mechanisms [9]. A recent
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study of continuously reinforced concrete pavements presented a random forest framework
for predicting multi-distress [37]. Results showed that RF successfully models cracking,
faulting, and roughness distress at the same time, generated interpretable rankings of variable
importance for different, transferable to flexible pavements [37].

Likewise, Gradient Boosting techniques like XGBoost and LightGBM have displayed
greater predictive accuracy through an iterative process of correcting the previous model’s
mistakes [38], [39]. In PCI prediction studies, boosting algorithms have continually
outperformed linear and single tree baselines as well. One example is the FCM-XGBoost
model in predicting PCI, which applied a fuzzy c-means clustering method in which the
pavement sections were grouped into homogenous clusters before training the XGBoost
model, resulting in better predictive robustness and interpretability than traditional methods
[40]

These ensemble and hybrid machine learning methods are able to achieve not only high
predictive performance, but also provide insight into the relative impacts of design,
environmental, and traffic attributes, providing useful feedback for pavement management

and design validation.

2.4 Applications of Deep Learning in Pavement Evaluation

Deep learning techniques have remarkably improved flexible pavement assessment by
analyzing complex spatial and temporal dependence across a variety of data types. Deep
Neural Networks (DNNs) have been utilized to forecast key condition metrics such as the
Pavement Condition Index (PCI) and International Roughness Index (IRI), using
heterogeneous data from pavement management systems, including traffic, climate,
materials, and maintenance data. Boonsiripant et al. [41] demonstrated that DNNs can
achieve comparable accuracy to graph convolutional models for IRI prediction, and Radwan
et al. [42] demonstrated improved prediction for PCI over traditional regression methods.
Temporal models such as Long Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU) are effective for predicting deterioration by learning sequential dependencies in
historical condition data. For example, it was developed a robust, interpretable, and high-
accuracy LSTM + Multi-Head Attention framework [26] that outperforms traditional

machine learning and standard deep learning models in predicting pavement IRI.
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Similarly, convolutional and object-detection architectures—such as CNNs, U-Net, Mask
R-CNN, and YOLO—have revolutionized visual inspections of pavements through
automated crack detection, classification, and quantification with excellent accuracy based

on pavement imagery [33], [43].

2.5 Transfer Learning in Pavement Performance Prediction

Conventional ML models, including sophisticated deep learning architectures, require
substantial quality historical datasets for training to achieve acceptable accuracy and
generalizability. This requirement clearly limits their feasibility in several real-world
contexts, particularly for developing countries or newly developed road networks where
historical datasets are scarce or non-existent [11], [12].

To mitigate this issue, Transfer Learning (TL) is a contributing paradigm that enables
knowledge to be transferred from a data-rich (source) to a data-scarce (target) domain. The
fundamental concept is to leverage the knowledge and experience gained solving one
problem (the source task, typically with abundant data) to a problem that is different but
related (the target task, typically with limited data) [44]. This approach effectively transforms
traditional " learning from scratch" to performing cumulative learning, thereby reducing the
need for large target-domain datasets [12].

A key methodology in this area is instance-based transfer learning. Algorithms such as
TrAdaBoost.R? [45] and its enhanced version, the Two-Stage TrAdaBoost.R? [46] that
operates by iteratively re-weighting data from the source domain during training, assigning
higher weights to source instances that are similar to the target data while reducing the weight
of dissimilar ones. Successful applications have demonstrated the high potential of this
approach, such as using the extensive U.S. Long-Term Pavement Performance (LTPP)
database [1] to accurately predict the International Roughness Index (IRI) for highways in
China [12] and Portugal [11], in both cases significantly outperforming models trained on
local data alone.

However, transferring pavement performance models across different geographic
contexts (e.g., from the U.S. to Italy) faces several challenges. First, climatic differences that
include variations in temperature and precipitation drive unique mechanism of deterioration

that may not be fully captured by models trained on source data. Second, differences in
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pavement design standards, materials, and construction methods create a fundamental
mismatch in how input features relate to performance outcomes. Lastly, these climatic and
design variations result in a data distribution shift, where the key variables, such as IRI values
and traffic loads, may no longer have the same statistical properties in the source and target
domains leading to reduced model generalizability if adaptation is not properly handled.
Recent reviews emphasize the importance of TL and domain adaptation techniques for
improving pavement performance modeling [11], while newer methods such as ISTRBoost
propose advanced re-weighting strategies to further mitigate negative transfer effects [47].
These developments underscore TL’s growing importance as a feasible approach to address

data scarcity in pavement performance prediction.

2.6 Data sources in Pavement Performance Modeling

Reliable predictions of pavement deterioration require complete and systematically
organized datasets, and predicting alligator cracking progress in terms of initiation and
deterioration will depend on climate, traffic load, material properties, and construction
practices [48]. Because the process of alligator cracking initiation and deterioration occurs
over time, predictive models need to incorporate and account for these factors over multiple
years and within local contexts. It is also essential to collect repeated observations on the
same road segments, as even roads within the same area are likely to experience different
traffic compositional loads and subsequent aging behaviors[49]. However, temporally
consistent and regularly updated datasets remain scarce despite the existence of large-scale
databases such as the Long-Term Pavement Performance (LTPP) program [1]. Recently,
private initiatives like LOKI [2]have begun addressing this gap by developing georeferenced
databases that document distress types, images, and affected surface areas in regions such as

Piedmont, Italy.
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METHODOLOGY

This study follows a methodological framework that takes a multi-source, data-driven
approach to model and predict the progression of alligator cracking in terms of area and
severity on asphalt pavements. The approach integrates heterogeneous datasets from two
geographic domains - United States (source domain) and Italy (target domain) - and applies

machine learning and transfer learning techniques to account for contextual differences.

3.1 Overall Methodological Framework

The methodological pipeline proceeds through five key stages:

e Data acquisition and integration
The study combines pavement performance data, climatic variables, and traffic
information from two distinct sources: the Long-Term Pavement Performance (LTPP)
database for the United States [1] and a proprietary Italian dataset developed by LOKI
s.r.l. under the 4sfalto Sicuro project [2].

e Exploratory data analysis
Because the data originate from different formats and collection methodologies, some
preprocessing was needed to ensure a consistent structural framework. Duplicated values
were eliminated, missing values imputed and the logical process of deterioration was
revised. Then, the data structure was inspected, using histograms and violin plots to
evaluate the shape, skewness and the outliers of the variables; correlation heatmaps to

identify potential dependencies among variables,
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e Comparison between datasets
This section gives a side-by-side examination of the U.S. (LTPP) and Italian datasets in
terms of differences in scale, degradation states, environmental and traffic
characteristics, and statistical relationships, to help gain insights into how the
characteristics of data influences our modeling results.

e Experimental setup and modeling framework
In this chapter, the experimental design and modeling framework utilized in the thesis is
described. It discusses how data is organized into subseries, how training/testing sets are
organized, and how cross-domain standardization and KNN-based similarity mapping
bring the LTPP context to Italy. It describes the supervised one-step, multivariate
regression task, elaborates on methodological obstacles (limited target data, domain shift
and inter-severity dependence) and model selection criteria. The chapter ends with the
candidate models (RF, XGBoost, LightGBM, KNN), baseline Naive approach, multi-
output approach, and evaluation protocol (R?, RMSE, MAE) and overfitting checks
(AR?) being presented.

e General methodological limitations
In this part, it is discussed the main methodological constraints encountered during the
labeling of alligator cracking severity. It highlights the practical difficulties of applying
standardized assessment criteria—such as subjectivity in expert judgment, image
redundancy, perspective distortions, lack of georeferencing, and variability in pavement
structures—that collectively limit the consistency and reproducibility of severity

classification.

3.2 Data acquisition and integration
3.2.1 United States (LTPP) Dataset

The Long-Term Pavement Performance (LTPP) program is one of the most comprehensive
pavement monitoring initiatives ever conducted. It was established by the Federal Highway
Administration (FHWA) in cooperation with the American Association of State Highway
and Transportation Officials (AASHTO) to improve understanding of pavement behavior

under varying environmental, structural, and traffic conditions across North America [1].

24



The LTPP program systematically collects, processes, and publishes long-term data from
more than 2,500 pavement test sections distributed across the United States and Canada. Each
section is monitored continuously to record variables concerning related to:

e Pavement structure, including layer thicknesses and material properties.

e Traffic loading (usually denoted by Average Annual Daily Truck Traffic, or AADTT).

¢ Climatic conditions (precipitation, temperature, and freeze-thaw cycles, among others).

e Surface distress, covering types and severities of cracks (including alligator cracking,
block cracking, rutting, and potholes).

e Roughness and deflection measurements, through indices like the International

Roughness Index (IRI) and Falling Weight Deflectometer (FWD) tests.

This large amount of data is valuable because it enables the development of models that can
derive relationships between the parameters collected and the evolution of the network
condition. For this research, the LTPP database was employed as the source domain for
training and calibration of machine learning models. Specifically, pavement sections
containing records of alligator cracking between the years 1980 - 2021 were extracted as this
distress type reflects the progression of load-associated fatigue failure in asphalt layers. The
selected data include:
e Pavement distress variables: area of alligator cracking classified into low, medium, and
high severity (m?).
e Environmental variables: mean annual temperature (°C), total annual precipitation
(mm).
e Traffic variables: (AADTT) annual average daily truck traffic (trucks/day).

e Temporal variable: survey year.

3.2.2 Italy — San Sebastiano da Po, Piemonte

The target domain corresponds to and Italian dataset focused on the municipality of San
Sebastiano da Po, located in the Piemonte region. It was developed using data from the
Asfalto Sicuro project provided by LOKI S.r.l.[2], combined with regional climatic and

traffic information from Piemonte [50], [51].
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3.2.2.1 Visual Inspection Data

The Asfalto Sicuro system, created by LOKI S.r.1.[2], automates the manual visual inspection
process to detect pavement defects with an Al-based system. The inspection is performed
using a plug-and-play hardware system mounted on a regular vehicle, which employs high-
resolution cameras and IMU sensors, as well as authenticated GNSS (Galileo HAS/OSNMA)
technology, to collect data. This allows for the acquisition of geolocated images at normal
driving speeds, up to 90 km/h, without causing traffic delays. The images that were acquired
are processed with deep learning algorithms to detect and classify road damages. The system
distinguishes:

e Potholes (low, medium, high severity, determined by depth and diameter thresholds;)

e Cracks (linear)

e Alligator cracks (fatigue-related patterns on asphalt)

e Other anomalies (manholes, road markings, architectural barriers.)

When identified and localized automatically, each defect has coordinates confirmed by the
GNSS module and stored with the image frame containing the area in cm?. In the Figure 4 it
is shown an example of the Asfalto Sicuro system interface displaying a Multi Crack defect

on Via Rigonda with its localization, surface area, and photographic evidence.

Map Report About Logout San_Sebastiano_da_Po-06-2024

sle - Low Pothole - Medium Pothole - High Cracks Multi Cracks Crosswalks Vertical Signs
I A

ga
(g9

Type: Multi Cracks

Status: Defect to be evaluated

Figure 4 Example of Asfalto Sicuro system interface [2]
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3.2.2.2 Labeling Methodology and Severity Classification

As mentioned before, the alligator cracking defect was selected as the focus of analysis in
this study. Although this defect is included in the Asfalto Sicuro project, unlike the potholes,
it does not currently have a defined severity rating classification system. To address this, the
pavement sections that were identified with multicrack campus failures, were sampled, and
the images of the sections collected.

Using Roboflow [52] as instance segmentation and dataset management platform, along
with the engineering experience and subject matter expertise, the images were manually
outlined and based on the distress severity, a low, medium or high severity level label was
assigned to that area (see Figure 5). The outcome of this feature is a structured dataset with
the areas of the alligator cracking by severity that can now be used to enable machine

learning—based predictive modeling for pavement distress.

Annotations

o

Unused Classes

- 70% & + ReseT

Figure 5 Example of annotations in Roboflow.

3.2.2.3 Environmental and Climate Data

The environmental variables applied in this study - total annual precipitation and mean annual
temperature - were obtained from the ARPA Piemonte meteorological database (Agenzia
Regionale per la Protezione Ambientale del Piemonte) through the MeteoWeb interactive
map service [50] which provides long-term time series data from the regional weather station
network. For the area under study, the Castagneto Po meteorological station is selected as the

nearest and most representative source of climatic data. Annual aggregated values are
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extracted for the period 2002-2024, and since no data are available for 2025, this value is
extrapolated based on the historical trend observed over the 2002-2024 series.
This process ensures that all climatic inputs provided to the predictive model during

analysis are uniform, spatially representative, and aligned with the temporal resolution values

in the Asfalto Sicuro dataset.
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Figure 6 2024 Multicracks map given by Asfalto Sicuro [2]
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Figure 7 The closest meteorological station to the segments [50]

3.2.2.4 Traffic Data

The traffic variable, represented by AADTT (Average Annual Daily Truck Traffic), is
obtained from the Geoportale Piemonte database, which contains open-access geospatial
datasets on regional mobility and infrastructure. In particular, the variable is drawn from the
dataset entitled "Traffico Giornaliero Medio" through the GeoNetwork portal of Regione

Piemonte [51]. The dataset contains georeferenced measurements of traffic intensity across
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the regional road network, comprising the average daily flow of light vehicles, the average
daily flow of heavy vehicles, and the total average daily flow of both. The data is downloaded
in GeoPackage (GPKG) format (see Figure 8) and subsequently processed using QGIS to
convert and organize them into a tabular format suitable for integration with the road distress

dataset.
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Figure 8 GeoPackage data from QGIS

The chosen traffic variable is the average daily traffic flow of heavy vehicles. It is an
important parameter in the pavement performance evaluation since heavy trucks produce
considerably greater axle loads and cyclical stress on the pavement structure than light
vehicles. These axle loads result in quicker fatigue damage, particularly in flexible
pavements, and are a primary contributor to load-associated distresses such as alligator
cracking and rutting [4], [22]. Thus, the AADTT is a representative for total mechanical
demand applied to the pavement surface, which allows the model to include the direct effects
of traffic loading on the rates of distress.

The available records cover the period 2015-2023; therefore, a linear extrapolation was
used to predict the values for 2024 and 2025 ensuring temporal alignment with the Asfalto
Sicuro observations. Since not all road sections included direct traffic measurements, a
further feasibility check was undertaken through Google Maps, where the road hierarchy
(main, secondary, local) was identified to assign the most representative traffic flow to each
segment (see Figure 9), maintaining spatial consistency of AADTT across the dataset. The
extrapolated results in Table 2 represent the projected AADTT values for the analyzed road

sections, extending the historical trend of truck flow in the study area.
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Figure 9 The road hierarchy identified by using Google Maps

Table 2 AADTT given by Geoportale and predictions for 2024 and 2025 years

Type i:;e: 2018 2019 2020 2021 2022 2023 2024 2025
1 Ricca 10 12 19 11 3 8 13 18
2 Bertola 20 24 30 11 6 20 34 48
3 Chivasso 210 233 721 713 568 737 906 1075
4 Casale 930 948 1634 1577 1515 1397 1316 1310

3.3 Exploratory Data Analysis
3.3.1 Data Preprocessing

Prior to model development and data analysis, a thorough data preprocessing step was
performed to check for internal consistency and reliability of the dataset. First, duplicate
records were removed and missing values were eliminated to avoid inconsistencies in values.
In the case of Italian dataset there weren’t missing values, on the contrast, for the LTPP

dataset, for the distress variables, the number of missing values was very low, comprised of
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six and seven missing values for low and medium severity, and five for high severity, and
hence, those records were eliminated without compromising the overall representativeness
of the dataset. Conversely, the traffic variable (AADTT) contained 363 records for zero
values, which are implausible given that they represent average daily truck traffic. As a result,
the 363 zero values were addressed by applying an interpolation procedure, using the
sequential temporal values separately for each road segment, allowing the ability to substitute
within realistic estimates that maintained the temporal continuity of the series.

Considering the time series nature of the data, where each record corresponds to a specific
year of observation, it was also necessary to verify the logical evolution of pavement
deterioration. The total area of cracking (calculated as the sum of low, medium, and high
severity) was examined to confirm that it was non-decreasing over time within each subseries
(indicating a physically plausible progression of damage). In addition, transitions from one
severity level to another were explored to check if the patterns were markedly reasonable:
when low severity area decreased, the medium severity area increased; when the medium
severity area decreased, the high severity area increased. Verifying these logical process
checks was critical in assuring that the data represented plausible processes of deterioration

without anomalies that would threaten inference in later modeling tasks.

3.3.2 Descriptive statistics

This phase includes several descriptive statistics, which outlines the characters of tendencies,
variability, and the distribution of major variables of interest including traffic intensity
(AADTT), total annual precipitation, mean annual temperature, and distressed areas by
severity level (low, medium, high). Through this analysis, potential outliers, data
inconsistencies, and underlying trends were identified, supporting the understanding of the
physical and environmental factors influencing pavement deterioration. The descriptive
analysis includes graphical representation tools such as histograms, boxplots, scatterplots,
and time-series visualizations that supplemented the numerical analyses and prioritization of
observations of interest for cross comparison of variable relationships among the U.S. and

Italian datasets.
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3.3.2.1 United States (LTPP) Dataset

e Statistical Summary
The descriptive statistics of the variables from LTPP dataset are shown in the Table 3, which
includes a total of 11,993 annual observations of pavement sections across 49 U.S. states,
spanning the years 1980 to 2021. The variable construction number (cons num) takes on
values between 1 and 14, indicating multiple maintenance, or reconstruction events for some
sections. However, the median is 2, suggesting that moderate number of segments

experienced only one or two interventions during the monitoring period.

Table 3 Descriptive statistics of LTPP dataset.

cons

state year num = rea _low  area_med area_high precip temp  AADTT
count 11993 11993 11993 11993 11993 11993 11993 11993 11993
mean | 24.89  2000.18 2.47 17.34 9.63 7.24 900.43 14.47 929.76
std 15.67 7.41 1.49 39.85 35.06 44.7 437.11 4.9 1071.97
min 1 1980 1 0 0 0 59.06 -2.18 2.33
25% 10 1994 2 0.12 0 0 474.67 10.44 284
50% 26 1999 2 2.4 0 0 1011.05 = 14.53 531
75% 39 2005 3 15.5 0.9 0 12314 18.63 1170
max 49 2021 14 564.3 471.1 816.6 1824.82 | 24.26 10234

For the deterioration indicators, the mean area of alligator cracking with low, medium, and
high severity (area low, area med, area high) is 17.34 m? 9.63 m? and 7.24 m?
respectively, with relatively large standard deviations—especially for high severity (44.70
m?). The 75th percentile indicates that in most instances the observations are low, with high-
severity cracking absent in a large portion of records (median = 0).

In terms of environmental conditions, the mean annual temperature averages 14.47 °C
ranging from —2.18 °C to 24.26 °C and in terms of total annual precipitation it averages
around 900 mm demonstrating the climatic diversity of the monitored sites. The traffic
variable (AADTT) has a mean of 930 heavy vehicles per day a standard deviation of 1071 —
indicating a large amount of dispersion in traffic loading across the network. Overall, the data

set has a wide range of climate and operational conditions.
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e Univariate distributions

Figure 10 illustrates the frequency distribution or histogram of the target variables including
alligator cracking area for low, medium, and high severity level in the LTPP dataset. All three
histograms are clearly right-skewed having a very large portion of sections with small values
of cracking area, and only a few sections with very large values of cracking area (over 200
m?).

The plots for low and medium severity level are very tight and concentrated around zero,
representing both the reasonably good condition and the limited historical timeframe (2024-
2025). The high severity level distribution is right-skewed as well, but exhibits a slightly

longer tail which indicates that there are some serious levels of distresses on a few sections.
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Figure 10 Distribution of the Alligator Cracking areas for LTPP Dataset a) Low severity b) Medium severity c) High severity

¢ Violin Plots
As shown in Figure 11, the violin plots shows that the low-severity group has the largest
variability, with a wider distribution of values and a few extreme observations. This indicates
early-stage cracking is the most prevalent and variable form of deterioration. Compared to
low-severity, the medium- and high-severity violins are much narrower, indicating advanced

cracking is less frequent and occurs within a narrower distribution of values.
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In the case of total annual precipitation, mean annual temperature, and Average Annual
Daily Truck Traffic (AADTT), the violin plots in Figure 12 illustrate that the precipitation
values are mainly concentrated between 500 and 1500 mm, with a relatively symmetric
distribution centered around 1000 mm that means the rainfall is consistent for most of the
road sections. The annual average temperature followed a bell-shaped distribution, with most
data points between 5 °C and 20 °C and a median around 15 °C, signifying a predominantly
mild climate. The AADTT distribution on the other hand exhibits a strong right-skewed
distribution with most values below 2000 trucks per day, while the highest values exceeded

9000 trucks per day, meaning there is a large variability in traffic intensity.
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Figure 11 Violin plot of alligator cracking areas for LTPP Dataset
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e Bivariate analysis
The correlation heatmap for the LTPP dataset (U.S.) in Figure 13, evidences a generally weak

linear relationship with the examined variables. The three severity levels of alligator cracking
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(low, medium, and high) show very weak correlations between each other, with their
correlation coefficients very close to zero.

AADTT (Average Annual Daily Truck Traffic) exhibits a weakly positive, and minimal
correlation with high severity cracking (0.09). The data suggests that there is little
relationship between the traffic class intensity and the deterioration of the pavement at the
more severe levels observed. Environmental variables such as total annual precipitation and
average annual temperature also showed weak or negligible correlations with the distress
variables.
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Figure 13 Correlation heatmap of LTPP dataset

3.3.2.2 Italian Dataset

e Statistical Summary
The descriptive statistics of the Italian dataset shown in the Table 4, contains 170
observations corresponding to pavement sections monitored during the years 2024 and 2025.
All records come from San Sebastiano da Po and have the same construction number equal
to 1, indicating that all sections belong to the same maintenance cycle and no rehabilitation

event was recorded for these sections.
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Table 4 Descriptive statistics of Italian dataset.

cons_

state year area _low area_ med area_high precip temp AADTT

num

count 170 170 170 170 170 169 170 170 170
mean 100 2024.5 1 0.33 1.18 1.92 1173.42 13.52 361.74

std 0 0.5 0 0.95 1.8 1.75 62.86 0.25 548.67
min 100 2024 1 0 0 0 1110.75 13.28 13
25% 100 2024 1 0 0 0 1110.75 13.28 34
50% 100 2024.5 1 0 0 1.71 1173.42 13.52 48
75% 100 2025 1 0 1.71 2.98 1236.1 13.77 906
max 100 2025 1 5.97 8.59 7.89 1236.1 13.77 1316

Regarding pavement deterioration, the average areas of cracking indicate that low-severity
cracking is nearly absent (mean = 0.33 m?), while medium and high severities have slightly
elevated average areas (1.18 m? and 1.92 m?, respectively), implying that most of the
surveyed sections present moderate to advanced stages of deterioration. However, the high
standard deviations (especially for medium and high severities) indicate a high level of
variability for segments, even increasing cracking areas up to 8.6 m? in some cases.
Environmental variables display relatively stable conditions, including an annual average
precipitation of approximately 1173 mm and a mean temperature of 13.5 °C, both with
minimal dispersion, indicating a consistent climatic regime across the analyzed network. The
traffic variable (AADTT) displays high variability (mean = 362; std = 549), ranging from
very low to more than 1300 heavy vehicles per day, and it may help explain some of the

heterogeneity in the observed levels of deterioration.

e Univariate distributions
Figure 14 shows the distribution of alligator cracking areas for Italian dataset low, medium,
and high-severity levels. Each distribution shows a significant right skew, indicating a
predominance of pavement sections having a small area of cracking and a much fewer
number of pavement sections showing significant cracking area. For the low-severity
cracking, values aggregated near to zero, which indicates that the deterioration in the
pavement is mostly early-stage. For medium-severity, the alligator cracking distribution
shows wider variability, which provides an indication that there is a growing area of surface

area damaged as alligator cracking develops. Lastly, the high-severity cracking produces the
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widest distributed values, including a few examples that exceeded 6 m?, which would imply

that more advanced structural damage has occurred in these pavements.
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e Violin Plots
The distributions illustrated in Figure 15 show a fairly continuous behave across three
severities, with the majority of the observations concentrated at small areas of cracking, but
still having noticeable density progressively extending towards the higher values. Cracking
of medium- and high-severity is also larger shape, which indicates more variability in
extending damage in the inspected sections. The overall value range is still limited, remaining
below 10 m?, which is tied to localized fading patterns for shorter road sections and since a

recent inspection on the network.

In the case of total annual precipitation, mean annual temperature, and Average Annual Daily
Truck Traffic (AADTT) the distributions are notably narrow and demonstrate low variability
within the dataset, as evidenced in Figure 16. Total annual precipitation is centered around
1100 to about 1250 mm, implying even precipitation across the regions assessed. While mean

annual temperature is similarly clustered about 13.2°C to roughly 13.8°C, indicating a similar
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climate. On the other hand, AADTT presents slightly greater dispersion, with most values
below 1500 trucks per day but a small portion approaching that upper bound.
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Figure 15 Violin plot of alligator cracking areas for Italian Dataset
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e Bivariate analysis

The correlation heatmap for the Italian dataset evidenced in Figure 17 displays a more
heterogeneous correlation structure. The three severity levels of alligator cracking show
moderate intercorrelations with low and high severity (r =—0.24) and with medium and high
severity (r =—0.53), which may suggest a compensatory process in which an increase in one
level of severity corresponds with a decrease in another, which is a possible outcome of the
visual inspection classification process.

The AADTT variable shows a stronger positive correlation with low severity cracking (r
= 0.42), suggesting that sections with heavier traffic loads have a tendency to develop initial
damage at the surface. In the case of the environmental variables: total annual precipitation

and mean annual temperature are almost perfectly and negatively correlated with an r =
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—1.00, which indicates the limited variability and inverse seasonal relationship among both
of these variables in the Italian sample.
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Figure 17 Correlation heatmap of Italian dataset

3.3.3 Comparison between datasets
¢ In contrast to the broad LTPP dataset, the Italian dataset is limited in scope and more
uniform. It covers only two years (2024 — 2025) and one construction event, while the
LTPP dataset consists of more than 11,000 observations across 49 U.S. states from 1980
— 2021, including multiple maintenance cycles. The mean areas of the deterioration
levels in Italy are much lower (0.33 m? low, 1.18 m? medium, 1.92 m? high) than any of
the corresponding deterioration levels in LTPP (17.34 m?, 9.63 m?, 7.24 m?),
demonstrating limited degradation over a short monitoring time. Environmental
conditions are also more homogeneous in Italy (=13.5°C, 1173 mm) whereas LTPP
covers a wide climatic range. Both datasets show significant variability in traffic
characteristics, but the average AADTT in Italy is 362, which is significantly lower than
AADTT in LTPP of 930. Overall, LTPP represents long-term, diverse deterioration
patterns, while the Italian dataset offers a localized and recent snapshot of pavement

conditions.
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e When comparing the distribution of the alligator cracking areas between Italian and
LTPP datasets, both reveal a right-skewed distribution pattern whereby the majority of
sections fall within smaller damage areas, and decreasing percentage frequency with
increasing damage area. However, the extent of deterioration varies significantly
between the datasets. The LTPP dataset displays a wider range of damage area to several
hundred square meters, reflecting the larger scale and greater range of heterogeneity in
the U.S. pavement network. By comparison, the damage area for the Italian dataset, was
limited to areas of less than 10 m? which can indicate that the sections surveyed in Italy
were in better condition or in an earlier stage of deterioration.

e The violin plots of the datasets from the U.S. (LTPP) and Italy reveal marked differences
in variability and distribution of environmental conditions as well as traffic conditions.
For environmental conditions, the LTPP dataset depicts a broad range in total annual
precipitation and in mean annual temperature, as this dataset represent different climates
across several regions, some of which may be extreme. On the other hand, the Italian
dataset generally has narrower distributions in both measures suggesting a more uniform
environment with steady rainfall and moderate temperatures. In terms of traffic
conditions, the LTPP dataset shows a very skewed AADTT distribution, where specific
road segments exceed 8,000 trucks per day, showing that traffic intensity is highly
heterogeneous across road segments. Alternatively, the Italian dataset shows a small
AADTT variation, with most values being under 1,500 trucks per day, indicating that
traffic is more uniformly lower in volume. In summary, this leads to the parallel
conclusion that while the U.S. dataset captures more diverse ranges in climatic and
operational conditions than the Italian dataset, the Italian dataset represents a more
uniform setting, geographically and environmentally.

e After comparing the heatmaps of the two different datasets, it is observed that in the
LTPP dataset the correlations between the variables tend to be weak, likely due to the
considerable spatial and climatic diversity across the dataset, which minimizes the
potential for observing linear relationships between all distress, traffic, or environmental
factors. In contrast, the Italian dataset suggests stronger and clearer associations due to
its small size and homogeneity. For instance, the nearly perfect negative correlation (r =

—1.00) between mean annual temperature and total annual precipitation simply
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exemplifies the local seasonal climate. Meanwhile, the moderate positive relationship
between AADTT and low severity cracking suggests that heavier traffic is linked to
earlier surface-related damage. Overall, these differences highlight how dataset scale and

regional uniformity influence the observed statistical relationships.

3.4 Experimental Setup and Modeling Framework

3.4.1 Data Structuring and Preparation
3.4.1.1 Definition of Subseries

To capture the temporal progression of deterioration, the data are organized into subseries,
each representing the continuous evolution of pavement condition after a maintenance event.
Both datasets contain the construction number variable which serves to distinguish
maintenance or reconstruction activities on each road segment. Each time an intervention
occurs, the construction number increases by one, and the alligator cracking areas referenced
within each road segment resets back to zero, marking the beginning of a new pavement life
cycle. The construction number thus allows tracking patterns of deterioration from the time
a pavement section is renewed until the next maintenance action. Each subseries obtains its
unique identity from the corresponding states, road segments, and construction number,
represented in (1).
subseries = state_name + segment_id + cons_number (1)

Utilizing subseries is important for preserving the chronology of the data itself, and to
ensure that deterioration models are written using data that has been captured under the same
structural and operational conditions. This approach prevents the mixing of pre- and post-
maintenance observations, allowing the model to learn deterioration dynamics that are both

temporally coherent and physically meaningful.

3.4.1.2 Data Division, Domain Standardization and Similarity Mapping

It is crucial in any predictive modeling task to split the data into training and testing subsets,
as it allows for the estimation of the model’s generalization ability—its capacity to perform

accurately on new, independent data rather than memorizing patterns from the training set.
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This is important because if the datasets are not divided, performance metrics could be
artificially inflated, leading to overfitting and poor real-world applicability.

In this study, the data splitting procedure was designed to ensure methodological rigor
and to avoid information leakage between the training and testing phases. The datasets were
divided following a subseries-based approach rather than a random record-level split. As
explained in section 3.4.1.1, each subseries represents a continuous temporal evolution of
pavement condition for a specific road segment between two maintenance events, identified
by the combination of state, segment, and construction number.

For the Italian dataset, 60 % of the subseries were randomly assigned to the training set
thus 51 subseries and the remaining 40 % to the testing set (34 subseries), guaranteeing that
all observations from the same segment remained within the same partition. This strategy
prevents temporal or spatial overlap between training and testing samples, thereby ensuring
that the model is evaluated on truly unseen data.

This split served as the foundation for the domain adaptation strategy. The 40% test set
remained separate as the last measure of performance. The 60% training set measured a dual
purpose: it was not only used in the final training dataset but was also the "template" for the
K-Nearest Neighbors algorithm that allowed the model to find and learn from the most
similar subseries within the larger US dataset in a way that augmented the training data with
comparable, relevant examples from the source domain.

The division of 60/40 was chosen as a compromise between the learning capacity of the
model and reliability of the evaluation. Given the limited temporal observations possible in
each segment, this proportion of data provides sufficient subseries to allow for reasonably
robust cross-validation while still providing a large enough and diverse testing set to develop
a set of consistent and generalizable performance scores.

To validate the optimality of this choice, sensitivity analyses were conducted by over
multiple train/test splits (90/10, 80/20, 70/30,60/40). For each split, the complete pipeline,
including KNN selection and model tuning using Group K-Fold Cross-Validation was
executed confirming that the final 60/40 proportion was judged to be the strongest, as it
yielded the lowest Mean Absolute Error (MAE) on the independent test set.

Additionally, the training data was enriched with information from the United States

Long-Term Pavement Performance (LTPP) database through a K-Nearest Neighbors
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(KNN)-based selection process aimed at identifying U.S. subseries that exhibit
environmental and traffic conditions similar to those in Italy. To achieve this, an embedding
representation was built for both the Italian training subseries and all U.S. subseries, defined
as the mean of total annual precipitation, mean annual temperature, and average annual daily
truck traffic (AADTT) within each subseries as evidenced in equation (2).

e(sub) = (precip (sub),temp (sub), AADTT (sub)) (2)

Where:

e precip (sub) is the mean total annual precipitation across all years of subseries sub.

e temp (sub) is the mean annual temperature across all years of subseries sub.

e AADTT (sub) is the mean average annual daily truck traffic across all years of subseries

sub.

Then, a standardization process was applied to ensure that the three variables used for the
subseries embeddings were expressed on a comparable scale before computing Euclidean
distances in the KNN similarity search. This procedure guarantees that the computed
distances are meaningful and not biased by differences in variable magnitude or units. For
this project, the StandardScaler [53] was chosen because it centers each variable by
subtracting its mean and scales it to unit variance, thereby preserving the distribution shape
while ensuring equal contribution of all features to the distance metric. In this
implementation, the StandardScaler was fitted exclusively on the U.S. embeddings (source
domain), meaning that the mean (u ) and standard deviation (oy5) were calculated using
only the U.S. data.

Subsequently, both the U.S. and Italian embeddings were transformed using these same
parameters and the equations (3)(4)(5). This approach ensures that the Italian data (target
domain) is projected into the same standardized feature space defined by the U.S. domain,
facilitating a fair and unbiased comparison of the two geographic regions. Importantly, by
computing the normalization parameters solely from the source domain (U.S.), the procedure
avoids any potential data leakage from the Italian dataset, maintaining the integrity of the
transfer learning setup.

precip (Sub) — Hprecip us

Oprecip US

precip (sub) = (3)
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temp (sub) — HUtemp US

Gtemp us (4)

temp(sub) =

T AADTT (sub) —
AADTT (sub) = (GAAD)TT U:‘AADTT us o

Where:

e precip (sub),temp (sub), AADTT (sub) represent the components of the embedding
vector.

® Uprecip Us»> Mtemp us> Maaprr us denote the mean values of each corresponding variable
calculated from all U.S. subseries, establishing the reference scale of the source domain.

® Oprecip Us> Otemp US> OaapTT Us Tepresent the standard deviations of those same variables
across the U.S. dataset, used to normalize the spread of each feature.

o precip (sub), temp(sub), AADTT (sub) are the standardized (z-score) values of each

feature for subseries sub.
The standardized embeddings were then used to fit a KNN model on the U.S. subseries,
which was then queried to find, for each Italian training subseries, its K most similar
counterparts in the U.S. dataset using the Euclidean distance [53] evidenced in equation (6).

d(x,y) = (6)

Where:

¢ 17 is the number of variables, in this case, 3: precipitation, temperature, and AADTT
e x; and y; are the standardized values of the i-th feature for the two points being
compared.
The union of all identified neighboring U.S. subseries was collected to form the us_train
pool. Finally, the selected U.S. subseries (us_train) were joined with the Italian training

subset (it_train) to produce the "final training dataset" (train_all). This combined dataset gave
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the model broader and more diverse representation of pavement deterioration patterns,
enhancing its ability to generalize to the Italian context by utilizing structurally similar
examples from the U.S. source domain. In contrast, the Italian test set remained completely
separated and only used for evaluating performance to uphold the integrity of an independent

testing phase.

3.4.2 Problem Formulation and Modeling Goals
3.4.2.1 Predictive Task Definition

The predictive modeling task in this research is setup as a supervised multivariate one-step
regression problem, focused on estimating the annual progression of pavement deterioration
associated with alligator cracking on asphalt pavements across three severity levels: low,
medium and high.

Given the limited temporal availability of Italian data, currently restricted to the years
2024 and 2025, the prediction is set to one year ahead. The multivariate nature of the task
addresses the interdependence among severity levels, as low-, medium-, and high-severity
cracking areas often evolve jointly through nonlinear deterioration processes.

For each subseries i, defined as a unique combination of state, road segment and

construction number (see subsection 3.4.1.1), the objective is to predict the cracking area of

severity level s at year ¢, denoted as yl.(’i)

. This is achieved by learning a mapping function
fs(-) that relates both exogenous and endogenous explanatory variables to the target
deterioration area.
e Dependent Variables
The modeling framework aims to predict the annual extent of alligator cracking foreach
severity level. Accordingly, three dependent variables were defined y™", y™® and
y™&" each corresponding to the area of alligator cracking (in m?) of its severity level.
e Independent Variables
The independent variables are categorized into two overall categories -exogenous and
endogenous- that jointly capture the physical and temporal dynamics of pavement
deterioration.

o Exogenous variables: are external factors that affect the pavement but are not

influenced by it such as the Average Annual Daily Truck Traffic (AADTT), Total

45



Annual Precipitation (Precip) and Mean Annual Temperature (Temp) which refer
to traffic loading and climatic conditions observed at year .
o Endogenous variables: represent the internal state of the pavement, captured

through the lagged cracking areas of all severity levels from the previous year

low med Ahigh
i,t—1>41it—1- it—1"

e Mathematical Formulation
The relationship between the dependent and independent variables can be expressed in
the equation (7).

. high
yif? = fS(AADTTl-,t,Tem'pi,t,Preapl-,t,Aﬁf’t‘i’l,Aﬁe_dl,Aiﬁ 1)+ sgst),

(7)
s € {low,med, high}
The function f;(-) denotes the regression function learned for each severity level s, and

(s)

g;; represents the model’s random error term, capturing unobservable effects. The i

identifies the subseries, while ¢ denotes the year of observation.

e Conceptual Integration
The formulation incorporates both exogenous influences (traffic and climate stressors)
and endogenous deterioration mechanisms (prior cracking conditions), allowing the
predictive model to account for nonlinear, dynamic, and interdependent processes
controlling the development of pavement distress. The framework models these
relationships with annual resolution and multiple severities and will enable data-driven
forecasting of pavement cracking trajectories to support proactive maintenance planning

and infrastructure management.
3.4.2.2 Main Methodological Challenges

The model selection process was guided by several methodological and practical challenges

identified during preliminary data analysis:

e Limited Data in the Target Domain (t=2)
The Italian dataset contains only two temporal observations for every road segment,
which severely limits the option of training data-hungry models. Limited data increases

the risk of overfitting and limits the model’s capability to learn temporal deterioration
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behavior from only local data. Because of this, it becomes necessary to exploit the richer
LTPP dataset as a complementary information source.

e Domain Shift Between Source and Target Data
As evidenced in subchapter 3.3.2, the statistical properties of the independent variables
(temperature, precipitation, traffic) as well as their relationship with the distress response
differ significantly between the U.S. and Italian contexts. Such domain shift restricts the
capability of a model trained solely on LTPP data, because it is unreasonable to apply
the model to Italian conditions without modifications. Differences in climate zone and
traffic create distributional shifts that need to be adjusted using domain adaptation or
transfer learning techniques.

e Multi-Severity Interdependence
The three categories of severity (low, medium, and high) are not independent, but instead
represent a spectrum of deterioration. Capturing this interdependence might require
multivariate modeling strategies that can jointly model the evolution across multiple

severity classes.

3.4.3 Model Design and Selection

3.4.3.1 Criteria for Model Selection

In order to respond to the issues identified above, —namely, limited data availability, domain
mismatch between source and target datasets, and the inherent non-linearity of pavement
deterioration processes—the predictive model selection was grounded in five main

principles:

¢ Performance on Tabular Data: The modeling inputs—environmental variables, traffic
variables, and historical deterioration measurements—are tabular data. Hence, models
that have been demonstrated to work well on such data, namely tree-based ensemble
models, are preferred based on their proven effectiveness and scalability.

e Non- linearity and Interactions: Pavement deterioration occurs due to complex, non-
linear physical and environmental processes, where the interactions of various factors
(e.g., traffic load, temperature, and precipitation) are crucial. Therefore, the chosen
models are required to represent non-additive dependencies without requiring explicit

manual specification of interaction terms.
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¢ Robustness: Due to real-world infrastructure datasets being subject to significant
measurement error, missing observations, and noise, robustness was another critical
selection factor. Ensemble methods such as Random Forest, XGBoost, and LightGBM
explicitly reduce variance through an averaging operation while improving stability to
outliers and noisy observations.

e Interpretability: While predictive performance is essential, interpretability is still a
major concern for engineering and decision-making purposes. Knowing the most
influential factors in the deterioration process brings about actionable insights and
corresponds to smart maintenance planning.

¢ Suitability to Transfer Learning Situations: Due to the short time span of the Italian
dataset (2024-2025), the models are also tested for their potential to be used in cross-
domain transfer learning scenarios. Instance-based methods like KNN exploit direct
feature similarity between domains, while ensemble methods can be reweighted or fine-
tuned to correct for distributional shifts, providing complementary strategies for

knowledge extraction from richer source domains like the U.S. LTPP dataset.

In support of these principles, several modeling strategies were evaluated, including Random
Forest, XGBoost, LightGBM and a K-Nearest Neighbors (KNN) instance-based transfer
Learning approach. Additionally, a MultiOutputRegressor configuration was employed to
model the interdependence between severity levels (low, medium, high) within a unified
predictive framework. The intention of this comparative evaluation is to identify the model
that appropriately balances predictive performance, interpretability, and transferability to
another domain, supporting both methodological rigor and practical utility for data-deficient

pavement management scenarios.

3.4.3.2 Candidate Models
e Classical Time-Series Models (ARIMA, PVAR)
These models were first considered due to the value of the PVAR to capture
interdependencies between the three levels of severity. However, they were discarded
because having t = 2 it is statistically impossible to estimate their parameters reliably.

e Sequential Deep Learning Models (e.g., LSTM, GRU)
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Although powerful for sequences, the standard TL strategy (fine-tuning) is inapplicable.
A re-training attempt on the target domain with a single sample per subseries would
induce massive overfitting and forgetting of the source knowledge.

Baseline Model

In order to measure the improvements made by the forecasting models, a baseline model
is necessary. For time-series forecasting problems, the most common basis is the naive
model (or persistence model) [54], which assumes that the best prediction for the state
at time ¢ is simply the state observed at time #-/. This model does not include any
explanatory variables as traffic or climatic variables, but relies completely on the concept
of time-based persistence, which suggests that for deterioration, the most recent
measurement is the best predictor of the next measurement.

Formally, for a given subseries i and severity s, the naive prediction is expressed as:

yi(’i) = Agi)_l for s € {low, med, high} ®)

Where 371.(;) denotes the predicted deterioration area for subseries i at time t and severity

©)

level s, while Al't_ "

is defined as the observed deterioration area from the previous year.

Random Forest (RF)

It is an ensemble ML model composed of combining several decision trees to achieve a
more accurate and stable prediction. The term derives its name from producing a "forest"
of randomly built decision trees [55]. The algorithm is a versatile design for many types
of tasks, including both classification and regression.

o Performance on tabular data: RF performs very well on structured tabular
datasets with hardly any pre-processing and will naturally handle mixed scales of
data types and feature distributional information.

o Non-linearity and interactions: RF creates complex nonlinear relationships and
high-order feature interactions automatically through its tree-based structure.

o Robustness: Bagging (bootstrap aggregating) with random feature selection
provides strong guarding against overfitting and outliers, regardless of noise or
data availability, helping produce stable results when handling a noisy dataset or

having limited data.
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Interpretability: RF can provide global interpretability through assessment of
variable importance and local interpretability through partial dependence plots,
promoting engineering understanding and insights into the mechanisms behind
deterioration.

Suitability to transfer learning situations: Due to the ensemble and stability of
RF across domains or locations, it is a very versatile and adaptable machine
learning model. It can generalize patterns learned in the source domain (U.S.) to
the target domain (Italy) with minimal fine-tuning, especially when used with

instance-based sampling from similar subseries.

¢ XGBoost (Extreme Gradient Boosting)

It is an efficient and scalable version of gradient-boosted decision trees (GBDT). It

constructs trees in succession, where each tree is constructed specifically to address the

prediction errors of its predecessor(s)[56].

©)

Performance on tabular data: It is usually labeled as state-of-the-art when it
comes to predictive accuracy on tabular data.

Non-linearity and interactions: Strong capability to represent multi-dimensional,
highly complex non-linearity and interactions through its methodical, gradient
learning format.

Robustness: The sequentiality of boosting can introduce weaknesses regarding
sensitivity to outliers and therefore robustness unless checked. However, it does
come with L1 and L2 regularization parameters, which are powerful techniques
used to inhibit overfitting and increase robustness.

Interpretability: Although more complex than RF, it offers some interpretability
by measuring feature importance metrics, SHAP (SHapley Additive exPlanations)
values, and gain for the variable contributions.

Suitability to transfer learning situations: The regularization and flexible
structure of XGBoost provides utility in adaptation across domains, specifically
when there is a change in the feature distribution between the source and target
domains. Its strong generalization ensures reliable transfer when embedded with

instance-based selection as KNN.
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LightGBM (Light Gradient Boosting Machine)
It is a more recent framework based on GBDT, and is, on average, faster and more
memory efficient than XGBoost. It grows trees lealf-wise (best-first) rather than

level-wise, which can result in faster convergence and improved accuracy [57].

Performance on tabular data: The performance is similar to or better than
XGBoost, but with the added benefit of much faster training.

Non-linearity and interactions: It has the same excellent power as XGBoost for
capturing complicated relationships. Leaf-wise growth may in some cases capture
more complicated patterns.

Robustness: Like XGBoost, it includes regularization to help with overfitting.
Leaf-wise growth is sometimes more likely to overfit with smaller datasets, but
this is easy to manage with hyperparameter tuning (e.g., num_leaves).
Interpretability: Like XGBoost, LightGBM allows for ranking, or importance,
and interpretability using SHAP, allowing for the ability to understand variable
contributions across domains.

Suitability to transfer learning situations: Possesses the same high potential as

XGBoost.

e K-Nearest Neighbors (KNN) Instance-Based Transfer Learning

This is an instance-based learning algorithm that is non-parametric in nature. It creates

access to domain adaptation through identifying, for each Italian subseries, the k most

similar U.S. subseries based on standardized embeddings (precipitation, temperature,

AADTT) [58].

@)

Performance on tabular data: The KNN performance is dependent on a well-
chosen distance metric and is sensitive to the “curse of dimensionality", where
observations perform worse if there are more observations added that do not
contain relevant information. Requires careful feature scaling.

Non-linearity and interactions: KNN performs well to learn complex and
localized non-linear relationships under the assumption that similar inputs lead to

similar outputs.
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o Robustness: Despite its sensitivity to noise, KNN uses careful attention to scaling
(StandardScaler) and optimal neighbor selection (K). KNN operates by averaging
over neighboring observations, making local variability smoother, improving
generalization.

o Interpretability: KNN is naturally interpretable - predictions can be traced
backwards to observations or ensembles of specific source subseries back to
origin.

o Suitability for cross-domain transfer learning: KNN was intentionally
developed in this study as a transfer learning bridge by utilizing distance in the
embedding space to find the closest U.S. instances relevant for making predictions
about Italian instances. This logically combines the efforts and keeps domain
correspondence without requiring retraining. Additionally, it serves as an

interpretable data-based adaptation mechanism.

3.4.4 Performance Metrics

To assess the performance of the regression models, three standard error metrics were used:
the coefficient of determination (R?), the root mean square error (RMSE), and the mean
absolute error (MAE). These metrics give various viewpoints on the predictive accuracy and

reliability of the model.

e C(Coefficient of Determination (R?)

In this case, R? is utilized as an adjustment index comparing the model to the naive
predictor that always returns the sample mean, rather than as a variance decomposition
as is done with ordinary least squares and an intercept[59]. This interpretation is defined
by equation (9), where SSres is the residual sum of squares and SStot is the total sum of
squares. It holds for arbitrary predictive models and allows for below zero values when
the model fits worse than the mean predictor. In the case of nonlinear and tree-based
models using the classical “proportion of variance explained” interpretation has proved
to be unreliable, so R? better regarded as a general goodness-of-fit measure, and is
interpreted along with error metrics, such as MAE and RMSE.

SSreS (9)
SStot

RZ=1-
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e Root Mean Square Error (RMSE)
The RMSE indicates the average difference between the predicted and actual alligator
cracking areas, penalizing large errors more severely than smaller ones due to the
quadratic term. A lower RMSE indicates higher model accuracy and better fit to the data
[60].

(10)

n
1
RMSE = |~ (= 5)?
i=1

It is computed using equation (10) where y; is the actual alligator cracking area of the i-
th sample, ¥, is the predicted alligator cracking area of the i-#4 sample and 7 is the number

of samples.

e Mean Absolute Error (MAE)
This metric denotes the average absolute difference between the actual alligator cracking
areas and the alligator cracking area that was predicted. Unlike RMSE, the MAE treats
all errors equally and does not penalize larger errors more. A lower MAE means that the
model is more accurate [60].
1< (11)
MAE ==y, - )
i=1
MAE is defined by equation (11) where y; is the actual alligator cracking area of the i-th
sample, ¥, is the predicted alligator cracking area of the i-#4 sample and 7 is the number

of samples.

3.4.5 Hyperparameters selection

3.4.5.1 Randomized Search CV and Group K-Fold Cross-Validation

In order to obtain a valid measure of model performance, the cross-validation was based on
the natural grouping of the data. Because observations within a subseries temporally and
spatially correlated, it was important to ensure that no information leaks from the training
subset to the validation subset of the cross-validation. For this reason, a Group K-Fold Cross-
Validation strategy was applied where all samples from the same subseries remained together

in a single fold. This assured the model was not trained and validated on a time period that
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was overlapping for segments of the same road, allowing for an honest performance metric
of the model generalization.

The cross-validation was implemented directly as part of the hyperparameter
optimization process using the RandomizedSearchCV function in scikit-learn, it samples a
fixed number of parameter combinations from the specified distributions, which has been
shown to find very good combination of parameters in less time, especially when dealing
with a large search space. This function was chosen over a traditional GridSearchCV because
it is far more computationally efficient.

In this case, the tuning process involved a randomized search of 50 different
combinations of hyperparameters for the models. In all separated evaluations for each
hyperparameter combination, the GroupKFold procedure was performed with five folds. The
number of folds was selected because it provides a robust and stable estimation of the model's
true generalization error maintaining a computational efficiency. In each iteration, the model
was trained on four of these folds (80% of the subseries) and validated on the one remaining
fold (20 % of the subseries), which guaranteed validation on segments that were not seen
during the training period.

The mean absolute error (MAE) served as a performance measure through the folds, and
the average MAE determined the overall quality of each hyperparameter configuration. This
metric was selected due to its robustness to outliers in comparison with the RMSE, which is
affected more by large residuals.

The process of combining cross-validation with randomized hyperparameter search
results in a strong and unbiased estimate of model performance, since the same model is
trained and validated numerous times on different subsets of data. This effectively addresses
overfitting to one subset and ensures performance remains consistent over folds, while the
grouping method maintains temporal ordering and prevents leakage between correlated
observations. Once the optimal hyperparameters—those resulting in the smallest average
MAE—were selected, the model was trained again on the full training set to enable maximum

learning while still maintaining the rigor and reliability achieved through cross-validation.
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e Random Forest Model (RF) with Transfer Learning (KNN)
For the Random Forest Model that includes transfer learning, the search space included
parameters governing the shape of the tree, the sampling of features, and regularization

at the nodes as summarized in Table 5.

Table 5 Hyperparameter search space for Random Forest with transfer learning tuning.

Hyperparameter Range explored Description
n_estimators [200, 400, 600, 800, 1000] Number of trees in the ensemble
max_depth [5,9,13,17,21, None] Maximum depth of individual trees
min_samples_split [2,5,10,20] Minimum samples to split a node
min_samples_leaf [1,2,3,5,10] Minimum samples at a leaf
max_features [0.5,0.75, 1.0] Fraction or method for feature selection

e XGBoost Model (XGB) with Transfer Learning (KNN)
For the XGBoost Model that includes transfer learning, the search space included
parameters to control model complexity, learning behavior, and regularization. The

range explored for each hyperparameter is evidenced in Table 6.

Table 6 Hyperparameter search space for XGBoost with transfer learning tuning.

Hyperparameter Range explored Description
n_estimators [300, 600, 900, 1200] Number of boosting trees in the ensemble
max_depth [3,4,5,6, 8] Maximum depth of individual trees
learning_rate [0.01, 0.03, 0.05, 0.1] Shrinks the contribution of each tree
subsample [0.6, 0.8, 1.0] Fraction of training data used per tree
colsample_bytree [0.6, 0.8, 1.0] Fraction of features sampled per tree for diversity.
min_child_ weight [1,3,5,7] Minimum sum of instance weights needed in a leaf node.
reg_alpha [0.0, 0.001, 0.01, 0.1] L1 regularization term
reg_lambda [0.5, 1.0, 2.0] L2 regularization term

e LightGBM Model (LGBM) with Transfer Learning (KNN)
The hyperparameter search for the LightGBM model with transfer learning concentrated
on the aspects of controlling tree complexity, learning dynamics, and regularization force
to ensure stable generalization across levels of severity. The ranges that were examined

for each parameter, are provided in Table 7.
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Table 7 Hyperparameter search space for LightGBM with transfer learning tuning.

Hyperparameter Range explored Description
n_estimators [400, 800, 1200, 1600, 2000] Number of boosting trees in the ensemble
max_depth [-1,5,7,9,11,13] Maximum depth of individual trees
learning_rate [0.01, 0.03, 0.05, 0.07, 0.1] Shrinks the contribution of each tree
subsample [0.6,0.7,0.8,0.9, 1.0] Fraction of training data used per tree
colsample_bytree [0.6,0.7,0.8,0.9, 1.0] Fraction of features sampled per tree for diversity.
min_child_samples [5, 10, 20, 30, 50] Minimum number of data points required in a leaf
reg_alpha [0.0, 0.1, 0.5, 1.0] L1 regularization term
reg_lambda [0.0,0.1, 0.5, 1.0] L2 regularization term
num_leaves [15,31, 63,95, 127] Maximum number of leaves per tree

3.4.5.2 Number of Nearest Neighbors (K)

In this framework, the K-Nearest Neighbors (KNN) approach was utilized (see section
3.4.1.2) to find the most comparable pavement subseries from the U.S. dataset to each Italian
subseries, creating the transfer set that was used in model training. The parameter K governs
the number of neighbors that are included from the source domain. It can be thought of as a
mediation between the correlation and diversity of transferred knowledge.

e [f K is too small, the selected subseries can only include a very narrow piece of the
source data, thus limiting variability and generalization capabilities of the model.

e If K is too large, the selected subseries can include dissimilar subseries that add noise
and domain mismatch that reduces the prediction accuracy of the model for the end target
domain.

An optimal K value (Kopt) was identified using a Group K-Fold cross-validation procedure
on the training data generated from Italian training. For each candidate value of K, in a
predefined grid (K=3, 5, 8, 10, 15, 20, 30), it was selected the closest U.S. subseries based
on the Euclidean distance of features that had been standardized within the space of the
features (precipitation, temperature, and AADTT). Each model was then trained and
validated for each K, and performance was averaged across folds and the K that yielded the
lowest MAE was chosen as Kopt ensuring a data-driven and robust choice that enhances the

effectiveness of transfer learning.
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3.4.6 Presentation of Graphical Results

Several plots are used to describe and analyze the results produced by the models. This
subsection provides a detailed description of these plots by using some examples.

3.4.6.1 Model Performance Overview

The predictive performance of each model is evaluated across the three severity levels (low,
medium, high) and compared against the baseline model (see section 3.4.3.2), using the
metrics of coefficient of determination (R?), root mean square error (RMSE), and mean
absolute error (MAE) metrics explained in the section 3.4.4.

The bar chart in Figure 18 presents an example of the coefficient of determination (R?)
values achieved by a model and the baseline model across three levels of pavement
deterioration severity — Low, Medium, and High. The x-axis represents the severity levels,
while the y-axis indicates the R? value. Violet bars correspond to the model on the training
set, indicate how well the model fits known data; green bars represent the model on the test
set and indicate how well the model generalizes to unseen data; and orange bars show the
baseline mode, it is the benchmark for comparison; what can be obtained with a very simple
approach.

R? by severity (Train/Test/Baseline) - XGBoost
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Figure 18 Example of coefficient of determination (R?) results by severity

In Figure 19 and Figure 20 there are shown the bar charts of the Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) values for a model and baseline models in low,
medium, and high levels of deterioration severity. The x-axis indicates the severity, which

has three categories, Low, Med, and High. The y-axis shows the RMSE and MAE. The green
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bars correspond to the model’s RMSE on the test set and the orange bars correspond to the

baseline model’s RMSE on the test set.

RMSE by severity (Test/Baseline) - XGBoost
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Figure 19 Example of RMSE results by severity
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Figure 20 Example of MAE results by severity

3.4.6.2 Feature Importance Analysis

The bar chart in Figure 21 shows an example of the feature importance values of a model
that was built to predict the variable area gator med (the area of alligator cracking in a
medium severity state).

On the x-axis there is the importance score or numerical value of how much each input
variable contributed to the predictions made by the model. On the y-axis are the input features
selected in subchapter 3.4.2.1. The length of each horizontal bar represents the relative
weight/influence of that feature in a prediction, highlighting which inputs are most

informative for estimating the target output
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area_gator_high: Feature importance (RF Tuned)
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Figure 21 Example of feature importance plot

3.4.6.3 Predicted vs Observed comparison

The scatter plot in Figure 22 visualizes an example of the relationship between the observed
and predicted high-severity alligator cracking area (area_gator high) in the test data.

The x-axis depicts the actual area of deterioration, while the y-axis displays the values
predicted through the model. The green circles represent predictions from the example model
and the orange circles represent predictions from the baseline model. In addition, a black
dashed line is provided to represent the perfect prediction reference in which predicted values
are equal to observed values. The distance of the points from this line reflects the prediction

error — the closer the points are to the line, the more accurate the prediction.
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Figure 22 Example of predicted vs observed plot
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3.4.6.4 Error Distribution Analysis

The Figure 23 illustrates the error distribution for a model and for the baseline model when
predicting the medium-severity alligator cracking area (area_gator med) on the test dataset.
The x-axis shows the prediction error, calculated as the difference between the ground truth
and predictive value (Error = y real - y predicted). This value reflects how far every
prediction was from the actual value. Negative errors correspond to overestimations
(predicted value was greater than the ground truth), while positive errors correspond to
underestimations (predicted value was less than the ground truth). The y-axis depicts the
frequency (number of test samples that fall within each error range).

Two overlapping histograms are shown: the green histogram represents the example model
and the orange is the baseline model. The height of each bar indicates how many predictions
generated an error value in that specific interval. This figure allows the reader to compare the
shape, spread, and symmetry of the prediction errors from model to model, thus, evaluate
which model's errors are the smallest and normally distributed around zero, suggesting better
generalization to unseen data.
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Figure 23 Example of error distribution plot

3.4.6.5 Learning Curve (MAE)

The line chart in Figure 24 presents the learning curve of a model for predicting the high-
severity alligator cracking area (area_gator high), using the Mean Absolute Error (MAE) as

the evaluation metric.
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The x-axis displays training size - that is, the number of training samples used in successive
iterations to fit the model. The y-axis shows MAE (Mean Absolute Error) explained in
section 3.4.4. Greater accuracy occurs when the MAE value is lower.

The violet line with circular markers indicates the CV training MAE, demonstrating how the
model's error behaves on the data it was trained on as the sample size increases. The green
line with square markers shows CV validation MAE, indicating the performance of the model
on unseen data (validation folds) across different training sizes.

This type of graph is typically used to diagnosis learning behavior in models, helping to
evaluate the performance of a model when data is increased in size, and to use inferences
about its learning efficiency, bias—variance balance, and potential overfitting or underfitting
behavior.

area_gator_high: Learning Curve (MAE) - XGBoost
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Figure 24 Example of learning curve plot
3.5 General Methodological limitations
3.5.1 Challenges in Severity Assessment

A labeling scheme was established for the purpose of classifying alligator cracking severities
based on established civil engineering protocols. However, practical implementation

revealed several constraints:

e Subjectivity: While the ASTM standards identify the criteria for assessment of severity,
the practical ability to rate severity is consistently subjective and random depending on

the professional.
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e Redundant Frame Capture: One major limitation during the process was identifying the
method of image capture. Since the imagery was collected from a camera facing forward
to capture sequential images from the carriageway, it's possible that the same section of
pavement was captured more than once. Therefore, labeling the severity is also
redundant, whether similar areas are scoring variability based on strict uniformity or
measuring independently through the sequential frames from such redundant
observations.

e Perspective Distortion: All conversions for pixel to metric were based on a standard 3.5
meters lane width. However, variations in the camera angle and height may affect the
geometric proportions of the pixel when relating it to the spatial measurements.

e A further complication stems from the inherent difficulty of reproducing identical
imaging conditions during future data collection. With the original imaging not
georeferenced or tightly controlled, the odds of replicating the exact spatial positions and
camera orientations in future surveys is low.

e Pavement Structural Variability: Surveyed roads varied in design, not all of them are
consistent with typical multilayer structurally asphalt pavement, particularly some rural
roads, such as San Sebastiano da Po seem to have only the bituminous surface treatment
(BST) layer and no structural base course. This variability may affect the form of surface
cracking and obstruct the direct applicability of severity criteria developed for more

robust urban pavements.
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RESULTS AND DICUSSION

This chapter provides a thorough analysis of the developed predictive models used in the
deterioration problem of alligator cracking, investigating the individual and comparative
performance of Random Forest, XGBoost, and LightGBM, each augmented with an instance-
based transfer learning approach (KNN), at different severities of pavement deterioration
(low, medium and high). Building on the methodological descriptions presented in Chapter
3, the outcomes are organized to emphasize not only the characteristics of each model, but
more importantly, cross-model comparisons. The chapter begins by assessing each
algorithm’s predictive accuracy, generalizability, feature importance, and error structure for
each severity level. It then synthesizes these findings to determine the best performing model
within each level of pavement deterioration and discussing the implications for model

stability, operational use, and pavement management.

4.1 Model Evaluation
4.1.1 Random Forest (RF) Applying Transfer Learning (KNN)

e Random Forest Hyperparameters
The optimal hyperparameters shown in Table 8 and obtained through cross-validation
explained in 3.4.5, were consistent across the three severity levels (low, medium, and
high), suggesting that the Random Forest model converged toward a stable configuration

regardless of the prediction target.
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Table 8 Optimal Random Forest hyperparameters after tuning.

Hyperparameter Low severity Medium severity High severity
n_estimators 800 800 800
max_depth None None None
min_samples_split 2 2 2
min_samples_leaf 2 2 2
max_features 1 1 1

e Selection of K in KNN
As explained in section 3.4.5, after applying the procedure and obtaining the results of
Table 9, the optimal K value is 8. Although K =5 yielded the lowest MAE (MAE =
0.302), the K= 8 achieved better R? value (R = 0.806) and a comparable MAE (MAE =

0.304). Therefore, K = 8 was selected as the final configuration.

Table 9 K values evaluated and its results

K value MAE R?
3 0.321 0.685
5 0.302 0.765
8 0.304 0.806
10 0.321 0.743
15 0.319 0.751
20 0.325 0.727
30 0.546 -1.141

e Model Performance Overview
The predictive performance results for Random Forest Model applying transfer learning are

summarized in Figure 25, Figure 26 and Figure 27
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Figure 25 Random Forest R? results by severity

The R? values evidenced in Figure 25 show that the Random Forest offers a strong goodness-
of-fit at all levels of severity. On the training set, the R? values range from 0.895 (medium
severity) to 0.945 (high severity), indicating that the model does a good job of capturing the
underlying relationships present in the data. The R? values on the test set are consistently
high (0.876 for low, 0.851 for medium, 0.892 for high), indicating stable generalization. The
narrow gap between train and test performance (within +£0.05 across all severities) suggests
that the Random Forest captures the main nonlinear patterns without over-specializing to the
training data without strong signs of overfitting.

When comparing to the baseline model, the Random Forest model had a consistently
better performance for high severity events (0.892 vs. 0.735) with an implied increase of
~0.16 of capturing the variability. While the baseline is still comparable for low severity
(0.838) and medium severity (0.891), the Random Forest has a slight advantage, emphasizing
the durability of the model across severity levels.

RMSE by severity (Test/Baseline)
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Figure 26 Random Forest RMSE results by severity
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By looking at the error metrics (MAE and RMSE) for the RF model evidenced in the Figure
26 and Figure 27, in terms of severity levels, there is an obvious pattern. Both MAE (Low:
0.26, Med: 0.28, High: 0.42) and RMSE (Low: 0.47, Med: 0.67, High: 0.73) increase
monotonically with severity. Essentially, tasks are more difficult to predict as severity
increases. On average, the model's predictions remain less accurate and less precise with
respect to variability for high-severity programs to those of low-severity reviews. The jump
in RMSE from Low to Med (0.47 to 0.67) was especially pronounced, which is in agreement
to the observed drop in performance observed in the R? metric per this group.

MAE by severity (Test/Baseline)

0.76

N Test (RF)

0.7 Baseline (Test)

0.6 4

0.5

E 0.4
0.35
0.3 o 028
0.23

0.2

0.1 4

0.0 -

Low Med High

Severity
Figure 27 Random Forest MAE results by severity

Comparing with the baseline model, in the low severity group, the findings are somewhat
mixed but directionally, the RF model is better. The RF model has a better fit (R?: 0.876 vs.
0.838), and a lower RMSE (0.47 vs. 0.54) showing that it is less likely to make large errors.
Conversely, the baseline model performs better on average (MAE: 0.23 vs. 0.26).

In the case of medium severity group, the baseline outperformed the RF on R? (0.891 vs.
0.851) and RMSE (0.57 vs. 0.67). The RF only slightly exceeded baseline on MAE (0.28 vs.
0.35). This performance indicates that while the RF’s average error is lower it is a poorer-fit
overall, while baseline is most likely to avoid large errors penalized heavily in RMSE metric
for this subgroup.

Conversely, in the high severity model, the RF model has its greatest advantage where it
clearly outperforms the baseline on every metric: a vastly greater R? (0.892 vs. 0.735),
substantially less MAE (0.42 vs. 0.76), and considerably less RMSE (0.73 vs. 1.15). This

means the RF model is much more capable than the baseline, and importantly (given the large
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RMSE reduction), it is also better at avoiding large, erroneous predictions for this important
subgroup.
e Feature Importance Analysis

The feature importance values derived from the tuned Random Forest models (see Figure 28,
Figure 29, Figure 30) supply insights into the relative role of each predictor towards the
estimation of deteriorated area by severity class (low, medium, and high). The analysis
highlights a clear hierarchical structure among predictors, revealing that previous
deterioration states (area_low prev, area_med prev, area_high prev) play a dominant role
in forecasting future conditions.

Feature importance - RF: area_gator_low
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Figure 28 Random Forest feature importance for low severity model

For the low-severity deterioration model (Figure 28), the feature area low prev dominates
the prediction almost completely, generating nearly all the explanatory power (importance =
0.86), indicating that the extent of previously observed low-severity cracking is the most
reliable predictor of its future progression.

Minor contributions of the climatic and traffic variables suggest that while having an
environmental exposure may still modify the rate of deterioration, the short-term temporal

persistence of low-severity cracking is primarily driven by its condition in the past.
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Feature importance - RF: area_gator_med
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Figure 29 Random Forest feature importance for medium severity model

The medium severity model (Figure 29) exhibits the most complicated feature interaction.
The previous medium severity area (area_med prev) and previous high severity area
(area_med prev) are the most influential predictors (about 0.5 and 0.35), suggesting that the
presence of medium severity deterioration tends to occur in previously medium and high
severity cracking sections, indicating an evolution from mild to more severe pavement
fatigue progression. The two potential points of dependence may be contributing to the
model's unusual performance features (e.g., larger RMSE) in the previous model, as it is
learning a more involved relationships involving a feedback loop that is nonlinear.

The increased relevance of mean annual temperature and total annual precipitation in this
case, indicates the growing role of environmental factors as the pavement condition worsens

and becomes more sensitive to external stresses.

Feature importance - RF: area_gator_high
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Figure 30 Random Forest feature importance for high severity model
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The feature importance structure in the high severity model (Figure 30) shows a clear logic
of persistence and escalation. There is an appreciable contribution from both area_high prev
(=0.57) and area_med prev (=0.3), severe cracking evolves not only from its own prior
extent but also from medium-level deterioration zones that escalate over time. Climatic and
traffic variables (total annual precip, AADTT) remain low in relative importance while still
increasing slightly above that of the lower severity models. This result suggest that once
damage reaches a critical level, increased climatic and traffic loading promotes progression,

whereas earlier time steps are predominantly shaped by prior conditions and persistence.

e Predicted vs Observed comparison
Figure 31, Figure 32 and Figure 33 illustrate the relationship between actual and predicted

deteriorated areas for the Random Forest (RF) and the baseline (Naive) models.
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Figure 31 Low severity predictive vs real values for Naive and Random Forest models

In low-severity cracking, the scatterplot (see Figure 31) indicates a generally good
relationship between the predicted and observed values, especially for smaller areas of
deterioration. Most of the points are close to the origin, indicating that both models are able
to characterize minor cracking patterns, which are the most typical in the data. However, the
RF model displays a slightly closer clustering around the 45-degree line, indicating better
predictability than the Naive approach, model that evidences under-prediction, particularly

in actual areas in the range of 2 to 6.
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Real vs Predicted - RF: area_gator_med
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Figure 32 Medium severity predictive vs real values for Naive and Random Forest models

In the medium severity condition, the RF model reveals a strong relationship between
predicted and actual areas (Figure 32), as the majority of the observations cluster around the
1:1 reference line. The slight vertical variability at higher actual values illustrates that some
model uncertainty remains, however, the strong correlation trend exhibited validates the
robustness of the model's performance and its ability to generalize the temporal progression
of moderate severity cracks.

Even though the plot displays good predictive accuracy, the model performance overview
evidenced poor behave in the R* and RMSE values. This may indicate that a few large
prediction errors or limited variance in the observed data overly accounted for the numerical
values. In this way, while the model depicts the overall trend well, its quantitative
performance at this severity level remains watered down by outlier behavior and the non-

uniform magnitudes of deterioration within this severity category.
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Real vs Predicted - RF: area_gator_high
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Figure 33 High severity predictive vs real values for Naive and Random Forest models

The high severity condition demonstrates the clearest benefit from the RF model over the
baseline (Figure 33). There is a bit of dispersion for larger deterioration areas but the RF
predictions are still consistently closer to the actual values than the Naive model predictions,
which shows a clear tendency to underestimate the deterioration area. These performance
results indicate that the RF model can adequately account for the cumulative and non-linear
characteristic of more severe cracking processes, where large and divided damaged areas are
likely to grow in a path dependent manner. The observed deviation at extreme values could
be due to data sparseness since these types of high-severity areas are infrequent, but overall,

the model generalizes their consistent behavior.

e Error Distribution Analysis
Figure 34, Figure 35 and Figure 36 present the distribution of prediction errors for both the
tuned Random Forest (RF) model and the Naive baseline, across the three severity levels by

showing the frequency with which each model makes errors of different magnitudes.
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Error Distribution - RF: area_gator_low
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Figure 34 Error distribution for the Random Forest model in low severity

For the low severity case, the analysis of error distribution reveals contrasting patterns of
behavior between the Naive and RF models, as evidenced in Figure 34. In the first one, errors
are heavily concentrated at zero, indicating a high level of overall accuracy across many of
the predictions, and a consistent tendency toward reproducing previous years' values with
little deviation. However, the distribution contains notable asymmetry with a tail extending
toward positive errors (1.5-2), indicating underestimation of actual deterioration in select
instances.

In contrast, the RF model exhibits a wider and more dispersed error distribution
compared to the Naive model. Although this model has a concentration of zero-error
predictions, this frequency is notably lower. Its errors are more evenly distributed between -
-1 and 1.5 and some larger errors are also observed near 2.0. The RF modeling demonstrates
more symmetry around zero and suggests that this model is less biased.
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Figure 35 Error distribution for the Random Forest model in medium severity
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When focusing on medium severity (see Figure 35), the RF model produces a narrow and
centered error distribution predictions, with most values clustering closely around zero. This
reaffirms that the model is generating accurate and consistent predictions for the majority of
observations. By contrast, the Naive model generates a wider and more skewed error
distribution with a long right tail, identifying it with an inherent bias in under-predicting
deterioration. The single large negative error attributed to the RF model appear to be due to
isolated cases of sudden deterioration not included in the training dataset, but unfortunately
it penalizes the RF model in the RMSE calculation. Overall, the RF model exhibits less
dispersion and a symmetrical presentation, validating its superior generalizability to the
baseline method with less inference bias.
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Figure 36 Error distribution for the Random Forest model in high severity

For the high severity model, the error distribution demonstrates an evident difference in
predictive consistency between the RF methodology and the Naive approach. The Naive
model shows a significantly wider and more asymmetric spread, reaching up to about +3.5.
This long positive tail illustrates that the model has a systemic tendency to underestimate
observed deterioration, meaning the Naive approach is often more likely to predict lower
values than were actually observed. Such behavior suggests that the Naive approach struggles
to capture the accelerated and nonlinear progression typical of advanced pavement failure,
where damage propagation intensifies rapidly once the structural integrity of the material is
compromised.

In contrast, the RF model has a more compact and symmetric error distribution that is
centered around zero, with most residuals being from —1 to +1.2. This shape shows less bias

and large errors than the Naive approach, and the small negative tail leads to the conclusion
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that in some instances the RF model does slightly overestimate the observed deterioration,

but on aggregate, the residuals are centered around zero.

e Learning Curve (MAE)
Figure 37, Figure 38 and Figure 39 present the learning curve for the low, medium and high
severity models.
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Figure 37 Random Forest Learning curve for low severity model

The learning curve for the low severity model (Figure 37) shows a high-variability, or
overfitting, pattern. Both, the validation and training errors steadily decreased with increasing
sample size. In the case of training curve, it reached a low MAE of around 2.8, which
demonstrates that the model learned the training data very well. Comparatively, the
validation error remained much higher overall sample sizes, and ultimately plateaued near
5.6 MAE. The large and sustained gap between the two curves demonstrates that the model
did not generalize well to unseen data, likely indicating it has not learned the underlying
patterns of deterioration, and instead, partially memorized the noise and details of the training
dataset. The flattening trend in validation curve also suggests that simply adding more data
won't be sufficient to close the gap. Rather, in order to improve the generalization, it is
necessary to consider reducing model complexity with additional regularization or enhanced
feature representation to help reduce overfitting and achieve a stronger generalization

performance.
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Learning Curve (MAE) - RF: area_gator_med
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Figure 38 Random Forest learning curve for medium severity model

For the case of medium severity, the learning curve (Figure 38) it shows a relatively unstable
pattern. The training MAE is low for all training sizes but the validation MAE shows marked
variability, including a spike for samples at the mid-range training sample size. This volatility
in performance signifies differences in model performance depending upon the specific data
used for validation which indicates high variability in data, or outliers that determine
validation error. Additionally, there is a noticeable gap between the two curves which
suggests overfitting behavior wherein the model is trained on the training dataset and are not
able to generalize. This behavior may stem from the limited representation of medium-
severity cases or from the heterogeneous nature of this category, where transitions between
low and high severity create mixed signal patterns. Increasing the sample size, introducing
regularization, or incorporating more representative features could help smooth these

fluctuations and enhance generalization stability.
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Learning Curve (MAE) - RF: area_gator_high
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Figure 39 Random Forest learning curve for high severity model

The learning curve of high severity model shows that at smaller training sizes, the training
MAE is extremely low (nearly zero), while the cross-validated MAE is much higher (around
1.9) indicating preliminary overfitting — the model learns the limited training examples
almost perfectly, but performs poorly on unseen data. However, as the size of the training
increases, both curves move closer together: the validation error decreases, and the training
error makes a small increase up to around 0.3. This is typical and healthy behavior for a well-
learning model.

The consistent downward trend of the validation MAE indicates that the Random Forest
model benefits from having larger training sets and that its predictive performance for high-
severity cracking continues to improve with additional data. Additionally, the convergence
of both curves toward lower MAE values also means that variance has been reduced and the
model has improved stability, implying that the model has captured the main patterns in the
data without overfitting excessively.

In summary, this curve reflects effective learning and good potential for generalization
for the high severity, where increasing the training data size leads to progressively better and

more reliable predictions.

e Discussion and Interpretation
This thorough evaluation indicates the speculative performance of the Random Forest (RF)
model is highly variable and dependent upon the specific severity class. The evaluation

suggests that the model is not simply better or worse; it instead ranges from distinctly
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excellent to inaccurately poor depending on the complexity and nature of the prediction task
associated with each severity level.

For the high severity class, the model performs clearly best. It consistently outperforms
the baseline along all metrics, and most clearly on R? (0.892 vs. 0.735) and RMSE (0.73 vs.
1.15). The feature importance analysis clearly supports this, revealing that the model
considers previous levels of persistence (area high prev) and even escalation
(area_med prev). The error distributions show that the RF model is unbiased, with errors
centered at zero, while the Naive baseline shows a systematic under-prediction bias.
Furthermore, the learning curve for this model is also healthy, showing convergence,
suggesting that predict rate would be improved with increased training data all of which
supports the claim.

Conversely, the model specific to medium-severity deterioration exhibits a notable,
somewhat surprising anomaly, as it performs worse than the baseline on key performance
metrics (R? = 0.851 compared to 0.891 and RMSE = 0.67 relative to 0.57). This discrepancy
is unusual, as it may be a reflection of the model encountering a particularly difficult
interaction of features where it must learn simultaneously from two different paths of
deterioration (i.e., persistence, area med prev, and de-escalation, area high prev). This
overlapping of dependencies creates a structural instability, as evinced by the error
distribution, which contains one large negative residual that punishes the model's RMSE
through squared error accumulation. Furthermore, the learning curve reflects this instability
as there are sharp variances and spikes in the learning curves instead of convergence, which
suggests a heightened sensitivity to the respective data subsets used for training and
validation.

Likewise, the low-severity model seems to be overfitting, probably based on complexity
of model not matching simplicity of task. The feature importance plot shows that prediction
in this regime can almost entirely be attributed to the area_low prev variable, as it carries a
value of about 86% of the total implicitly weight. This indicates that the modeling process is
being conducted by a very simple persistence process, which needs not the representational
depth of an ensemble model such as the Random Forest. The corresponding learning curve

supports this interpretation, showing typical high-variance signs of overfitting where the
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model is able to obtain a very low training error but does not generalize to new data
effectively.

In conclusion, the efficacy of the Random Forest (RF) model using transfer learning
(KNN) seems to be highly context-dependent. It is substantially more valuable when
modeling the complicated, nonlinear properties of the high-severity regime, in which its
ensemble model captures the more complicated structures of deterioration. However, it does
not perform well when modeling the more unstable and dual-path interactions associated
with the medium-severity condition, summing the fact that performance could have been
penalized by the presence of few influential outliers that affected the error-based metrics like
RMSE. In the low-severity regime, the RF model exhibits tendencies toward overfitting, as

its own complexity is greater than the simple persistence-driven relation it needed to model.

4.1.2 XGBoost (XGB) Applying Transfer Learning (KNN)

e XGBoost Hyperparameters
Following Randomized Search with Group K-Fold cross-validation explained in section
3.4.5, the best-performing configuration of hyperparameters was found for each set of
severity levels. The results, presented in Table 10, revealed that a unique set of
hyperparameter values is required for each of the three target classes: low, medium, and
high severity. This suggests that model structure must be specialized to effectively

capture the different relationships in the data across each target variable.

Table 10 Optimal XGBoost hyperparameters after tuning.

Hyperparameter Low severity Medium severity High severity

n_estimators 300 300 300
max_depth 4 8 4

learning_rate 0.03 0.01 0.01
subsample 1 1 1
colsample_bytree 1 1 1
min_child_weight 1 5 5

reg_alpha 0.1 0.01 0.1
reg_lambda 2 2 2
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e Selection of K in KNN
As explained in section 3.4.5, various K values were analyzed to identify the most
appropriate number of neighbors for the KNN-based instance selection. The results
indicate that although K = 3 resulted in the lowest MAE (MAE = 0.345), K = 8 performed
almost equally as well (MAE=0.354) with a higher R? (R?= 0.298) showing that K = 8
would yield slightly more stable and accurate predictions with adequate model

generalization. Thus, K=8 was selected as the ideal value for future analyses.

Table 11 K values evaluated in XGBoost and its results

K value MAE R2
3 0.345 0.239
5 0.364 0.342
8 0.354 0.298
10 0.370 0.282
15 0.389 0.380
20 0.428 -2.765
30 0.519 0.229

e Model Performance Overview
The predictive performance results for XGBoost (XGB) model across the three severity
levels are shown in Figure 40, Figure 41 and Figure 42.
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Figure 40 XGBoost R?results by severity
The integration of XGBoost and KNN-based instance selection delivered consistently good
predictive performance across all severity levels (see Figure 40). Regarding the goodness-of-

fit, the XGBoost model shows substantial predictive power across all severities, with R?
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values ranging from 0.866 up to 0.998 for train and values from 0.850 up to 0.932 for test
case. For low severity the model achieves near-perfect training fit (R? = 0.998) but a much
more moderate test performance (R? = 0.858), only very slightly better than the baseline (R?
= (0.838). This indicates overfitting in the lower range, where variability in deterioration is
naturally low. At medium severity, the model achieves lower generalization (R train = 0.866;
R? test = 0.932) outperforming the baseline (R? = 0.891) and confirming its ability to model
non-linear dependencies between climate, traffic and historical deterioration. For high
severity, XGBoost continues to outperform the baseline (R? test = 0.850 vs. 0.735),
highlighting its strength in capturing threshold effects and accelerated deterioration typical
of advanced cracking stages.
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Figure 41 XGBoost RMSE results by severity

According to the Root Mean Squared Error (RMSE) in Figure 41, the XGBoost model
demonstrates better predictive accuracy across all levels of severity. It consistently achieves
better RMSE values (Low: 0.50, Medium: 0.45, High: 0.87) than the baseline model (low:
0.54, medium: 0.57, high: 1.15). The greatest improvement takes place in the high severity
level where XGBoost reduces its RMSE by roughly 24% from baseline. This indicates
significantly better capacity to handle complex prediction tasks and to restrain large
deviations from the predicted value, which is deemed heavily through the RMSE.
Conversely, the Mean Absolute Error (MAE) in Figure 42 shows a more complex story.
Different from RMSE, the baseline model achieves lower (and thus better) MAE values at
the low (0.23 vs. 0.34) and medium (0.35 vs. 0.38) severity level while XGBoost is only
better at predicting the high severity case (0.54 vs. 0.76). This disjunction of RMSE and
MAE results suggests that while the XGBoost model is better at diminishing large prediction
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errors (congruent with its best RMSE), its average deviation at predicting low and medium
severity was higher, on average, than the baseline. That said, the high severity level remains
the area in which the XGBoost promotes a discernible advantage, resulting in strong
predictions in both RMSE and MAE.

MAE by severity (Test/Baseline) - XGBoost

0.76
Bl Test (XGB)

0.7 Baseline (Test)
0.6 4
0.5 4
£ 04 - 028 s
0.2

0.1 1

0.0 -

Low Med High
Severity

Figure 42 XGBoost MAE results by severity

Comparing with the baseline model, with regard to low-severity scenarios, results are
somewhat mixed. The baseline model is better on average, it yields a lower MAE of 0.23
compared to the 0.34 obtained by XGBoost. However, the XGBoost model does slightly
better at avoiding large errors—that is, with a lower RMSE of 0.50 versus 0.54 but
unfortunately it shows the most significant signs of overfitting; that is, 0.998 R? on train
versus 0.858 R? on test.

In the medium-severity group, the baseline model again has a slight advantage for
average error (0.35 versus 0.38). However, the XGBoost model is clearly superior at
minimizing large errors, with RMSE of 0.45 (versus the baseline at RMSE of 0.57), and it
does a better job capturing the variability in the data (0.932 versus the baseline at 0.891).

The high-severity category is the clear strength of the XGBoost model. It outperforms
the baseline in all three metrics: average error (MAE of 0.54 versus 0.76), large errors (RMSE
of 0.87 versus 1.15), and providing a much better model fit (R? of 0.850 versus 0.735). This

means that the model is probably most valuable when predicting the most critical outcomes.
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e Feature Importance Analysis
An analysis of feature importance was conducted using the tuned XGBoost models (Figure
43, Figure 44 and Figure 45) to quantify the relative influence of each predictor on the
estimated deteriorated area per severity class.
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Figure 43 XGBoost feature importance for low severity model

For low-severity deterioration, the area of low-severity cracking in the prior year
(area_low_prev), dominates the model by far contributing to over 74% of the total predicted
gain, indicating that the existing condition itself is the greatest prerequisite for later
deterioration. However, the second most dominant attribute is a key environmental factor:
total annual precip (contributing almost 16%) specifies that while area low prev is a clear
indicator of the potential for deterioration, precipitation is the main external forcing element
driving deterioration, which is consistent with engineering principles. At this moment, it is
early enough, the pavement is still structurally sound, then when the water infiltrates the
cracks, it freezes and expands acting as a wedge expanding the existing cracks and enabling

crack propagation that causes the area deterioration.
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Feature importance - XGB: area_gator_med
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Figure 44 XGBoost feature importance for medium severity model

In the medium-severity model (Figure 44), the variable area med prev is by far the
strongest predictor, with an importance score of about 0.82 indicating that the extent of
previously observed medium-severity cracking is the most reliable predictor of its future
progression. In contrast, the climate and traffic variables contribute only marginally to the

prediction.

Feature importance - XGB: area_gator_high
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Figure 45 XGBoost feature importance for high severity model

In the case of the high-severity deterioration, the feature importance graph presented in
Figure 45, reveals the area med prev as the overwhelmingly dominant predictor,
contributing approximately 86% of total gain. On the other hand, the variables related to
climate and traffic, have weights that are close to zero. Although this seems inconsistent with
engineering principles that establish them as the key physical accelerators of deterioration, it
likely reflects how the model interprets the data rather than an absence of causal influence.

Two main explanations support this interpretation:
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o Structural irreversibility: The model may consider area med prev a structural
"point of no return" that once the cracking reaches this point, the pavement
integrity is already compromised and it is certain to go on to high severity, making
area_med prev a much stronger predictor than the original, causal predictors.

o Proxy limitations: Input variables like total annual precip are low-quality proxies
for the actual failure mechanisms and it does not account for specific events that
are damaging (e.g., severe storms, freeze-thaw cycles), and therefore the model

assigned zero predictive weight.

Taken together, the analysis of feature importance for all three severity indices delivers a
compelling narrative for the dynamic life cycle of pavement failure. The low severity model
demonstrates an "environmental initiation" phase in which damage progression is driven by
the existing state (area low prev), as well as an external factor, total annual precip, that
likely induces the freeze-thaw cycle. Then the mechanism transitions in the medium severity
model to a more complex "structural failure" phase, which identifies the presence of
area_high prev to be the most predominant predictor of medium severity, suggesting a
compromised pavement base is the primary driver for medium severity. Finally, the high
severity model displays the "inevitable collapse" phase; a simple, linear progression of
damage and singular predictor, area_med prev, alongside original drivers such as climate
and traffic that become irrelevant. The strong transition from an environmental driver, to a
structural driver, then to an inevitable mechanism of failure, strongly justifies the need for

three distinct models.

e Predicted vs Observed comparison
The relationship between real vs predicted deteriorated areas for the XGBoost (XGB) and

Naive models, for each severity class is shown in the Figure 46, Figure 47 and Figure 48.
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Real vs Predicted - XGB: area_gator_low
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Figure 46 Low severity predictive vs real values for Naive and XGBoost models

For low-severity deterioration areas, as evidenced in Figure 46, most of predicted values
from the XGBoost model reside very close to the 1:1 line, indicating a good fit between
predicted versus observed areas. The XGBoost model predictions also exhibited slightly
lower errors and bias in comparison to the Naive baseline predictions, especially for the lower
predicted areas of deterioration, whereas Naive baseline approaches tended to underpredict
observed low severity deterioration areas. In both cases, the models tended to diverge a bit
more at the higher observed areas (>2 m?), since there were fewer observations for larger

magnitude locations within the dataset.
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Figure 47 Medium severity predictive vs real values for Naive and XGBoost models
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The medium-severity XGBoost model (Figure 47) presents a tighter clustering of points
along the perfect prediction line, with a visible reduction in spread relative to the low-severity
case. This model performs better than the Naive baseline resulting in more reliable and
unbiased estimates throughout the full range of observed values and this is evident in the real
areas between 1 and 5, where the Naive model tends to underpredict values. This improved
correspondence demonstrates that the model successfully captures the intermediate

deterioration behavior that depend on its own historical extent and high-severity cracking.

Real vs Predicted - XGB: area_gator_high
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Figure 48 High severity predictive vs real values for Naive and XGBoost models

For high-severity deterioration and actual areas smaller than 5, the XGBoost approach
definitely surpasses the Naive baseline, which underpredicts large areas of deterioration in a
systematic way. The XGBoost results (see Figure 48), while a little more spread out, align
more closely with the overall 1:1 trend, suggesting that there is an enhanced ability to model
the nonlinear escalation patterns seen in more severe pavement distress. The variability at the
highest levels of deterioration may also reflect the processes leading to and the inherent
stochasticity behind severe cracking development, where localized structural failures and
unmonitored external factors (e.g., drainage or other construction heterogeneity) influence

the estimates.
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e Error Distribution Analysis
The histograms show the distribution of prediction errors for each of the tuned XGBoost
model and Naive baseline across the low, medium, and high severity levels (see Figure 49,
Figure 50 and Figure 51).
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Figure 49 Error distribution for the XGBoost model in low severity

In the low severity subset (see Figure 49), the Naive model contains a distribution that is
highly concentrated with a spike near zero with very little variance. That entire distribution
is still offset from zero, confined to one bin located at approximately +0.1; exhibiting a
persistent, systematic positive bias in which it tends to underestimate larger deterioration
values, leading to occasional but significant deviations. Meanwhile, the XGB model shows
a broader variance, encompassing the errors spanning from about -0.7 to 1.0. While this
distribution of errors is broader, the maximum peak is located close to zero, exhibiting less
bias overall and reflecting greater flexibility and generalization ability.
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Figure 50 Error distribution for the XGBoost model in medium severity
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For the medium severity evidenced in Figure 50, the error distributions for both models
reveal distinct and imperfect behaviors. The XGBoost (XGB) model demonstrates a clear
negative bias, with most error frequencies located between -0.75 and -0.25. This is a clear
indication that the XGB model has a consistent tendency to over-predict (i.e., predicted
values higher than real values leading to negative errors). The Naive model exhibits a positive
bias, with the errors dispersed across the positive side of the histogram, indicating a tendency
to under-predict. The Naive model does display a single, very high-frequency bin close to
zero, suggesting that it accurately predicts value directions very often, but its errors are much
more dispersed to the favorable side of the histogram (including a tail near approximately
1.4). Neither of the models shows a perfect center, but the XGB model's errors appear slightly
more concentrated even though consistently negative.
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Figure 51 Error distribution for the XGBoost model in high severity

In the high severity case, the XGBoost model demonstrates a clear and significant
performance advantage. The distribution of errors evidenced in Figure 51 is sharply peaked
and quite tight around zero, as indicated by the tallest bar (about 16) located to the left of
zero, representing an optimal error distribution, showing low bias (centered near zero) and
low variance (narrow spread). This concentration also suggests that the XGB model is
reliably accurate in predicting high-severity cases. In contrast, the Naive model's error
distribution is flatter and much more dispersed, with a noticeable positive skew. This wide
spread indicates high variance and a great deal more errors with large predictions particularly
large under-predictions (errors > 1.0). Therefore, the XGB model is demonstrably more

reliable and robust for predicting high-severity outcomes.
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e Learning Curve (MAE)
Figure 52, Figure 53 and Figure 54 present the learning curve for low, medium and high
severity XGBoost models.

Learning Curve (MAE) - XGB: area_gator low

10
—8— CV Train MAE

—8— CV validation MAE

MAE

20 40 60 80 100 120
Training size

Figure 52 XGBoost learning curve for low severity model

The low severity model exhibits a very clear and extreme case of high variance (overfitting).
The violet train MAE line illustrates this very clearly as it is flat and close to zero (ending at
~0.3), meaning the model is perfectly “memorizing” the training data, and the green CV
MAE line is extremely high (ending at =7), meaning the model has almost no ability to
generalize this memorization to new, unseen data. This creates a huge “generalization gap”
(real-world error is more than 10 times what the model thinks is its error). This diagnosis is
backed up by the R? bar chart, showing the model thinks its perfect (Train R? = 0.998) while
its real-world performance is much worse (Test R = 0.858), only barely above the simple
baseline.

Learning Curve (MAE) - XGB: area_gator med

—8— CV Train MAE

—&— CV validation MAE

| R

T T T
20 40 60 80 100 120
Training size

Figure 53 XGBoost learning curve for medium severity model
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The medium severity model, as in the RF mode, depicts an unstable behave (see Figure 53).
The training mean absolute error (MAE) is low across all training sizes (less than 2.5), and
the validation MAE oscillates, with even large jumps at mid-range training sample sizes. The
fluctuations in validation MAE indicate that performance is sensitive to the validation data
composition, possibly due to considerable variability or influential outliers. In addition, the
gap between training and validation MAE remains stable and considerable suggesting over-
fitting, meaning the model fits well on the training data, but generalizing to unseen samples
is difficult. This may occur due to medium severity observations not being very
representative, or due to medium severity being heterogeneous and including mixed
transitions from low to high severity observations, which adds yet another unstable and
mixed signal. Adding more observations, using an additional level of regularization, or
improving the representativeness of the features might alleviate some of these oscillations
and improve the robustness of generalization.

Learning Curve (MAE) - XGB: area_gator_high
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Figure 54 XGBoost learning curve for high severity model

On the other hand, the high severity model is the only model exhibiting a healthy, converging
fit. The critical diagnostic in the plot is the small violet Train MAE line, which rises from 0
to 0.5. This is good because it indicates that the model is being constrained to stop
"memorizing" and instead must learn a generalizable pattern. Simultaneously, the teal CV
MAE line continues to decline with increasing data to around 1.4, again demonstrating its
success in learning. Most notably, the two lines are converging, and the final generalization
gap is small and reasonable (i.e., 0.5 train error vs 1.4 validation error). The dimensions of
healthy learning come through effectively in the R? bar chart, which indicates the smallest

and least acceptable performance gap between Train R? (0.909) and Test R? (0.850).
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e Discussion and Interpretation

The analysis performed offers a thoughtful and meaningful examination of the XGBoost
model, surpassing a mere claim of superiority, to assess its performance by severity. The
main take away is that as in the RF model, the XGB model's main value is not in being an
overall enhancement, but that it is a testing tool that precisely predicts high-severity
outcomes. One important point of interest is that there is a notable difference between RMSE
(Root Mean Squared Error) and MAE (Mean Absolute Error). The model clearly wins on the
RMSE measure in all categories (particularly reducing RMSE by 24% in the "High" severity
grouping) in indicating a strong ability to minimize large-cost prediction errors. Although
the baseline model has a better (lower) MAE for low and medium severities, this illustrates
that the XGBoost model captures a higher average error for less severe predictions, while
preventing extreme errors.

The high severity model is clearly identified to be the best performing and most robust.
It outperforms the baseline on all three critical metrics (R?, RMSE, and MAE), confirms this
numerical excess through decisive diagnostic tests. The distribution of errors is described as
optimal due to its "peaked" and "well-clustered around zero" nature, enhancing it to low bias
and low variance. Most importantly, the learning curve demonstrates that this is a model with
a healthy, converging fit, suggesting that its strong performance is generalizable and not
attributable to overfitted behavior. This is contrasted directly by the Naive baseline, which is
demonstrated to be high variance and systematically under-predict critical failures.

In contrast, the models for low and medium severity levels are identified to have
significant issues. The low severity model experiences overfitting, exhibiting a "huge
generalization gap," or difference, between a near-perfect training R of 0.998 and a fairly
impressive test R? of 0.858, which is also substantiated by the corresponding learning curve
in the model. The medium severity model is also characterized as "unstable" and has overfit,
where error analysis suggests a somewhat consistent negative bias towards over-prediction.
These elements indicate that the model architecture generally works, but it fails to generalize
accurately under circumstances where variability is low (low severity) and / or where the data

is a heterogeneous group of transition states (medium severity).
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4.1.3 LightGBM Applying Transfer Learning (KNN)

LightGBM Hyperparameters

The process of Randomized Search with group K-Fold cross-validation, detailed in
section 3.4.5, was used to determine the best-performing set of hyperparameters for each
severity level for the lightGBM model. As Table 12 illustrates, the three severities share

the same values for most of the hyperparameters.

Table 12 Optimal LightGBM hyperparameters after tuning.

Hyperparameter Low severity Medium severity High severity

n_estimators 800 800 1200
max_depth 13 13 11
learning_rate 0.05 0.05 0.01
subsample 0.6 0.6 0.6
colsample_bytree 1.0 1.0 0.6
min_child_samples 5 5 5
reg_alpha 0.5 0.5 0.5
reg_lambda 1.0 1.0 0.5
num_leaves 15 15 95

Selection of K in KNN

Following the procedure detailed in Section 3.4.5, the metrics presented in Table 13
established k=10 as the final configuration. This selection was based on its strong

performance in MAE value (MAE=1.244).

Table 13 K values evaluated in lightGBM and its results

K value MAE R2
3 1.889 -8.925
5 2.098 -49.021
8 1.255 -1.147
10 1.244 -1.437
15 1.373 -3.584
20 2.353 -5.423
30 1.353 -3.831
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e Model Performance Overview
The predictive performance results for LightGBM (LGBM) model across the three severity
levels are shown in Figure 55, Figure 56 and Figure 57.

R? by severity (Train/Test/Baseline) - LightGBM
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Figure 55 LightGBM R? results by severity

The LightGBM model has great predictive ability for all severity levels, but to different
degrees of generalization (see Figure 55). In terms of goodness-of-fit, the model reports very
high R? values on the training set (from 0.952 to 0.995), indicating very strong internal model
fit. The test R? values ranging from 0.853 to 0.884, however, demonstrate that LightGBM
does not generalize well with different degrees of generalization. For low severity, the model
reports near perfect fit on the training set (R? = 0.995) and substantially lower performance
on the testing set (R? = 0.853) which only slightly exceeds the baseline (R? = 0.838). This
difference illustrates clear overfitting in the lower severity, further supported by the error
analysis, where the model yields a higher MAE (0.31) than the baseline (0.23). The medium
severity category results in a test R? value of 0.884 which is effectively similar to the baseline
(0.891) and indicates there was no possible gain in capturing the variability despite a high
training R? of 0.952. For high severity, LightGBM model is clearly outperforming the
baseline the strong test R* =0.870 compared to the baseline’s R? =0.735, combined with the
substantial reduction in MAE and RMSE, suggests the model is generalizing effectively and

capturing meaningful, complex patterns.
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RMSE by severity (Test/Baseline) - LightGBM
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Figure 56 LightGBM RMSE results by severity

The LightGBM model shows a clear increase in predictive error with increasing severity
level, a pattern also observed in the Baseline model (see Figure 56 and Figure 57). In the case
of high severity level and for the LightGBM model, both MAE (0.57) and RMSE (0.81) are
much larger than the errors for the low severity (MAE: 0.31, RMSE: 0.51) and medium
severity (MAE: 0.38, RMSE: 0.59) levels, indicating that the high severity data is more
difficult to predict, in general. In any severity category, the LightGBM model has mixed
results relative to the Baseline. It performs significantly better than the Baseline at the high
severity level (MAE: 0.57 vs 0.76, RMSE: 0.81 vs 1.15) which reinforces its performance
with complex, highly variable data. However, in low severity, LightGBM has larger error
than Baseline (MAE: 0.31 vs. 0.23) and mixed results at the medium severity (worse MAE,
but better RMSE).
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Figure 57 LightGBM MAE results by severity
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¢ Feature Importance Analysis
An analysis of feature importance was conducted using the tuned LightGBM models to
quantify the relative influence of each predictor on the estimated deteriorated area per

severity class.

Feature importance - LGBM: area_gator_low
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Figure 58 LightGBM feature importance for low severity model

As evidenced in Figure 58, to predict low severity areas, the model is heavily reliant on the
historical low-severity area feature area _low prev which takes the top position in the plot
with an importance score greater than 0.30, indicating that the value of the previous low-
severity area feature is the single largest predictor of low-severity for that current event. After
area_low prev, total annual precip (approx. 0.24) and AADTT (approx. 0.21) are heavily
influenced in the model, again suggesting that climate and traffic features are the next most
significant drivers, and mean _annual temp is moderately significant as well (approx. 0.18).

Feature importance - LGBM: area_gator_med
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Figure 59 LightGBM feature importance for medium severity model
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The feature importance profile for medium severity areas illustrated in Figure 59, shows a
shift to a more balanced and distributed dependence on the various features. The predictive
power is distributed much more evenly across the top four features, which are also better
differentiated than in the low severity case, all with scores of approximately between 0.18
and 0.21. AADTT now emerges as the single most important feature (approx. 0.21),
illustrating the pivotal role that traffic load plays on the occurrence of moderate severity
areas. The other two features, total annual precip (approx. 0.20) and area low prev
(approx. 0.19), also retain a high amount of importance indicating that cumulative moisture
and even smaller scale historical events continue to have an appreciable influence.
mean_annual temp (approx. 0.17) also continues to retain a strong predictive role. As a point
of interest, the historical features area_med prev and area _high prev were still of relatively
low importance (approx. 0.17 and 0.04 respectively), although greater than in the low severity
case. area_med prev's importance increased compared to the low severity case, indicating
the model is starting to pull from its own historical severity class, while other features remain

more important.

Feature importance - LGBM: area_gator_high
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Figure 60 LightGBM feature importance for high severity model

The examination of the high-severity features demonstrates the most substantial shift in the
model's predictive behavior (see Figure 60). All three of the top features (AADTT,
mean_annual temp, total annual precip) remain particularly important and are all evaluated
at very close to 0.20 for importance, but their cumulative predominance was further lessened
with the larger importance of the historical area features. Historical area features experienced
general and substantial increases in importance about the other (non-historical) area features,

and, in particular, area_high prev is especially noteworthy for increasing significantly in
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importance across all response categories, now being the fourth most important feature at an
estimation of 0.14. The historical context provided multiple years of area high and area
medium distant events that the model could use for prediction, and area_med_prev also had
the importance rise to close to 0.10. This structural change hints that, for high severity,
cumulative events are very important, and and event taken in context year before matters to
predictive behavioral signals. This high severitty model is relatively the most complex
because it incorporated traffic and climate data along with a layer of historical context of

significantly larger previous events.

e Predicted vs Observed comparison
Figure 61, Figure 62 and Figure 63 illustrate the relationship between actual and predicted
deteriorated areas for the LightGBM and the baseline (Naive) models.
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Figure 61 Low severity predictive vs real values for Naive and LightGBM models

With respect to the low severity, the results evidenced in Figure 61 show a widespread
deviation from the optimal performance for LGBM, in particular, for larger actual areas. For
areas below = 1.5, both models show modest scatter, with the Naive model occasionally
demonstrating predictions slightly closer to the line. Overall, the performance of LGBM in
the low severity grouping is notably poor, presenting significantly problematic fidelity to the

perfect line and over-predicting actual area at some points.
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Predicted area

Figure 62 Medium severity predictive vs real values for Naive and LightGBM models

The medium severity outcomes are an appreciably improved performance characterized by
a much tighter clumping of predicted points around the perfect prediction line for both
models reflected in Figure 62 . Specifically, he LGBM model, exhibits greater ability to
follow the upward trend in actual deterioration, especially for mid-range area values around
1-4. While there is still some under-prediction for LGBM around 4.5 and some over-
predictions in greater area values, it is clear that the overall trend is showing that the features
for the medium severity data are actually more informative, or less noisy and the LGBM

model is therefore able to successfully model the information better than for the low-severity

case.
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Real vs Predicted - LGBM: area_gator high
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Figure 63 High severity predictive vs real values for Naive and LightGBM models

e Error Distribution Analysis

Figure 64, Figure 65 and Figure 66 present the distribution of prediction errors for both the

LightGBM (LGBM) model and the Naive baseline, across the three severity levels by

showing the frequency with which each model makes errors of different magnitudes.

Error Distribution - LGBM: area_gator_low
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Figure 64 Error distribution for the LightGBM model in low severity

The error distribution for the low severity case exhibits a significant difference between the

two models (see Figure 64). The LightGBM error distribution shows more spread of residuals

than the naive model, most LGBM errors remain close to zero, while the model exhibits

significant positive and negative deviation from zero, indicating frequent over- and

underestimation of the true degree of deterioration.
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On the other hand, the error distribution for the Naive model is highly concentrated around
zero, indicating that a large count of predictions is very close to the actual value. It also
indicates a notable asymmetry with a tail extending toward positive errors (1.5-2), indicating

underestimation of actual deterioration in select instances.

Error Distribution - LGBM: area_gator_med
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Figure 65 Error distribution for the LightGBM model in medium severity

In the medium severity case, the LightGBM residuals (see Figure 65) are more tightly
distributed around zero than in the low severity case, indicating a more stable generalization.
The distribution still has residuals in both directions, and several moderate underestimations
and overestimations. The naive model is clustered around zero, with multiple positive errors
which indicate it systematically underpredicts medium deterioration at larger true values.
LightGBM captures more of the variability in real deterioration than the naive, but its spread
of residual is still wide and consistent with the performance metrics which did not provide
significant improvements over the baseline.

Error Distribution - LGBM: area_gator_high
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Figure 66 Error distribution for the LightGBM model in high severity
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For high severity, the error distribution (see Figure 66) shows a broadening of the error
spread for both models, which reflects increased prediction difficulty for extreme events. The
LGBM error distribution is noticeably wider than medium severity, indicating overall higher
variance with fewer extreme outliers demonstrating a relatively balanced near-zero mean
error against the Naive baseline. Conversely, while the naive model has its highest frequency
at zero error, it shows an evident bias towards positive errors which implies the model

consistently underpredicts when the deterioration is severe.

e Learning Curve (MAE)
Figure 67, Figure 68 and Figure 69 present the learning curve for low, medium and high

severity LightGBM (LGBM) models.
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Figure 67 LightGBM learning curve for low severity model

The learning curve for low-severity deterioration evidenced in Figure 67, demonstrates a
substantial and persistent gap between training and validation MAE, indicating strong
overfitting. The CV Train MAE (purple) falls sharply with greater training size, finishing at
a quite low MAE of about 1.0, which suggests that the LGBM model is able to both learn
and memorize the training data very well. On the other hand, the CV Validation MAE (teal)
begins at a really high level of about 17.5 and while it drops with more data, it eventually
gets constant at a significantly high MAE of about 10.0. The large and persistent gap between
training and validation curves is the definitive sign of overfitting. This pattern suggests the

model has trouble generalizing to new data due to low variability and noise around early
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stages of deterioration, behavior shown in the spread-out predictions depicted in the scatter

plot above.
Learning Curve (MAE) - LGBM: area_gator med
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Figure 68 LightGBM learning curve for medium severity model
The medium-severity learning curve demonstrates a more stable but still imperfect
generalization pattern. As shown in the Figure 68, the training MAE consistently remains
low at all sample sizes (MAE = 0.5-0.75), indicating a good within-sample fit. The validation
MAE fluctuates considerably: it first increases and peaks at a MAE of 8.0 around the mid-
range sample size of = 85 then decreases again with larger samples. This shows that the
model is moderately unstable and implies that the medium-severity deterioration has
complex, mixed behavior that requires sufficiently large samples. The final validation MAE
(= 4.7-4.9), while lower than the mid-range peak MAE, nonetheless remains considerably
higher than the training error (again indicating there is some overfitting). More data appears
to help with generalization, but the model still fails to completely capture the full variability

associated with medium-severity propagation.
Learning Curve (MAE) - LGBM: area_gator_high
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Figure 69 LightGBM learning curve for high severity model
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The learning curve for high-severity yields the best generalization performance of all
severities. An increase in sample size results in a slight increase in training MAE, indicating
the model is not over-memorizing and is stabilizing. Validation MAE peaks moderately
during the intermediate sample sizes but eventually decreases with larger training sets
reaching values between 1.6 and 1.8. The gap between training and validation MAE remains
the smallest across the three categories, showing much better stability of the model and low
levels of overfitting. The fact that the training and validation curves are relatively flat
suggests that simply adding more data of the same type may not, by itself, be sufficient to
close this gap.

e Discussion and Interpretation

In essence, the analysis of the LightGBM model as in the case of RF and XGBoost has
documented that its predictive performance is not homogeneous but rather, it is critically
dependent upon the severity level of the target variable. The complexity of the model, a
typical aspect of gradient boosting machines, is an advantage in the high-severity category
of the target variable, which is defined by complex, long-term interactions. However, this
same complexity has significant downsides in the low-severity category of the target variable,
being especially subject to overfitting and performing worse than a simple baseline model.

The high-severity category is where the LGBM model illustrated its highest level of
success. In this severity, the model "clearly outperformed" the baseline model, as evidenced
by a higher test R? and, more significantly, the absolute values of MAE and RMSE were
reduced. Additionally, the feature importance graphic indicates how the LGBM model
achieved these success metrics, noting this is the "most complex" and diverse model. The
LGBM model synthesizes data across various domains: climate, traffic (AADTT), and, of
greatest importance, a deep historical aspect--specifically, in terms of the importance level
of area_high prev. The diagnostic plots confirm this, as the LGBM model corrects the bias
of systemic under-prediction made by the baseline data--which produced a more balanced
error distribution. Finally, the learning curve plot shows that this is the most generalizable
model--in terms of the training and validation gap, which is the smallest, and an absolute
validation MAE that is smallest (1.6-1.8).

In contrast, the low-severity category is a definitive failure case due to "strong

overfitting," as indicated by the learning curve that shows that there is a "massive and
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persistent gap" between a nearly perfect training MAE (1.0), and a very high validation MAE
(10.0), leading to worse performance than baseline (MAE 0.31 vs. 0.23). The feature
importance plot suggests that this is due to mechanistically simpler, "heavily reliant" on only
the area low_prev feature, which the model is ill-suited to capture with its complexity. The
medium-severity case is an indifferent outcome; the model is "effectively similar" to the
baseline and adds zero benefit (R? 0.884 vs. 0.891). Its learning curve is "moderately
unstable"; it did not experience the severe failure that the low-severity model showed, yet it
also did not achieve the performance generalizability that the high-severity model
demonstrated.

In conclusion, the LGBM model is not a universally preferred approach; it will only be
valuable for a complex enough problem. The LGBM model has value in modeling the high-
severity events because, as the feature importance analysis highlights, there are multiple
interacting historical, climate, and traffic factors captured in the layer and time history of the
input, ultimately capturing or modeling complexity. For the more mechanistically simple
low- and medium-severity events, adding this complexity only serves to worsen errors in the

baseline solution.
4.2 Key Findings

This section compiles the main findings from the comparative assessment of the Naive,
Random Forest (RF), XGBoost (XGB), and LightGBM (LGBM) models. As demonstrated
in the previous model-specific evaluations, predictive performance is not consistent across
severity levels and is strongly reliant on the particular deterioration category being modeled,
in this way, this chapter first examines the model that performs best within each severity

category and then summarizes the overall comparative performance across all severities.

4.2.1 Best-Performing Model by Severity Level

The next section selects the best model for each severity class, based on the comparisons of

accuracy, generalization ability, and error behaviors evidenced in Table 14.
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Severity

Low
Medium

High

Baseline
RMSE MAE
0.54 0.23
0.57 0.35
1.15 0.76

Table 14 Model performance summary

RF +KNN XGBoost + KNN

R? RMSE MAE R? RMSE MAE R?

0.84 0.47 026 = 0.88 0.5 0.34 0.86
0.89 0.67 028  0.85 0.45 0.38 0.93
0.74 0.73 042  0.89 0.87 0.54 0.85

e Low Severity Winner: Naive Baseline

LightGBM + KNN
RMSE MAE R?

0.51 031  0.85
0.59 038  0.88
0.81 0.57  0.87

This regime is strongly dominated by the persistence dynamics of the deterioration. The

baseline already has a very low MAE and a reasonable R? leaving little room for

improvement. RF evidently helps increase the goodness-of-fit R? and reduces RMSE,

versus the baseline at the expense of slightly worse MAE but it also shows a learning

curve that reveals a clear sign of overfitting. In the XGBoost and LightGBM models

there are higher overfitting, showing near-perfect training fits but marginal gains or even

performance degradation on test errors. This suggests that adding the complexity of

gradient-boosted models does not help and, in fact, works against the performance here.

Observed vs predicted - Low severity
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Figure 70 Low severity predictive vs real values for all the models
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Model comparison - Low severity

Metric value

RMSE MAE Rz

Figure 71 Low severity predictive performance metrics for all models

e Medium Severity Winner: XGBoost (XGB)
This constitutes the most complex and troublesome predictive situation. The evolution
of the deterioration is determined by both the persistence of moderate severity and the
transitions from high severity, leading to richer non-linear interactions between the
variables. In these terms, XGBoost is the clear winner, providing the best test R? and the
lowest RMSE overall. This means it is clearly better at supporting extreme deviations
(even if its MAE is slightly worse than the baseline). On the other hand, the predictions
of the Random Forest indicated a smaller MAE than the baseline, but a lower R? and
RMSE, suggesting it was likely being penalized by outliers in the squared error.
Ultimately, LightGBM's prediction was very similar to the baseline, which meant there

did not seem to be any improvements.
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Observed vs predicted - Medium severity
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Figure 72 Medium severity predictive vs real values for all the models

Model comparison - Medium severity
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Figure 73 Medium severity predictive performance metrics for all models

e High Severity Winner: Random Forest (RF)
In this category, the variability in performance is sharper and clearly benefit the Random
Forest approach. The RF model produces the largest test R? values, the smallest MAE
and RMSE values, all above the baseline, XGBoost, and LightGBM. Additionally, the
error distribution is nearly symmetric about zero, and learning curves show a pattern of

improvement in a stable pattern, indicating solid generalization capability. XGBoost also
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clearly improves on the baseline, has healthy learning curve behavior, but is still
systematically below RF. LightGBM though an improvement on the baseline, lags
behind the other two models. Therefore, RF with KNN is the preferable operational

option for high-severity predictions.
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Figure 74 High severity predictive vs real values for all the models
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Figure 75 High severity predictive performance metrics for all models
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4.2.2 Overall Model Efficacy and Comparison

Based on a global analysis of the results, the Random Forest (RF) model with the Transfer
Learning (KNN) method stands out as the strongest and the most balanced method of those

tested in terms of overall severity prediction for deteriorating areas.
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Figure 76 Heatmaps of standardized error and accuracy profiles for all the models a) Heatmap of RMSE and MAE b)
Heatmap of R?

This overall conclusion does not suggest uniformly superior performance in every
circumstance. The comparative heatmaps (Figure 76) demonstrate that no model was
completely superior to the other model; indeed, every model had its own set of strengths and
weaknesses. The RF model demonstrated significant weaknesses in some conditions,
specifically, it displayed a clear propensity to overfit in cases of low severity, where its
complexity governed it to induce no value to the simple baseline model. In addition, it

exhibited notable instability in the medium severity regime, where it suffered from an outlier
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burden, achieving the worst RMSE performance of all the methods tested (-10% degradation

vs. baseline).

Table 15 Percentage improvement vs baseline. The positive sign (+) indicates an improvement, not an increase in the

value
RF +KNN XGBoost + KNN LightGBM + KNN
Severity
ARMSE AMAE AR? ARMSE AMAE AR? ARMSE AMAE AR?
Low +7% -3% +4% +4% -11% +2% +3% -8% +1%
Medium -10% +7% -4% +12% -3% +4% -2% -3% -1%
High +42% +34% @ +15% +28% +22% | +11% +34% +19%  +13%

Nonetheless, the RF's overall superiority is based on its clearly excellent ability to perform
on the most critical and complex task: predicting high-severity deterioration. In this task, RF
showed strong performance superiority versus the other models. As shown in the percentage
improvement table (Table 15), RF showed the largest performance advantage in this task
with a 42% RMSE improvement and a 34% MAE improvement relative to the baseline. More
importantly, the error analysis confirmed that RF was able to correct the baseline's systematic
under-prediction bias, which is the most serious error from an infrastructure management
perspective.

Therefore, while RF was not the most robust model in all circumstances, it is perhaps the
most overall robust because it better handles the most important and toughest aspect of the
prediction problem. RF can be viewed as the most reliable prediction tool for forecasting

critical structural failures.
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CONCLUSIONS AND
FUTURE WORK

This chapter synthesizes the main insights gained from the comparative modeling study and
considers their implications for pavement management practice. It also identifies several
limitations—particularly limitations in temporal depth, feature availability, and regional
variability—that compromise the robustness and generalizability of the findings. Based on
these limitations, a set of recommendations for improvements and future research directions
are made, including enhanced data collection, advanced feature engineering, cross-regional
validation, and next generation frameworks integrating probabilistic modeling and automated

visual prediction.

5.1 Practical Implications for Pavement Management

The findings of this study have direct uses for pavement management systems, especially in
contexts where historical data are limited and deterioration happens at different rates across
severity levels. Although three machine learning methods were tested, the Random Forest
(RF) model was the most useful. It was especially good at predicting high-severity alligator
cracking—the point where deterioration becomes a big structural and financial problem for

road agencies.
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5.1.1 Improved identification of high-risk segments

RF gives much more reliable predictions in the high-severity range, lowering both average
error (MAE) and large-error events (RMSE). In practice, this helps agencies to:

e Find sections at risk of structural failure sooner

e Prioritize timely repairs before expensive, full-depth repairs are needed

e Reduce unplanned maintenance and the disruptions it causes

This is very important because high-severity cracking is the most obvious sign of structural
fatigue and imminent failure. Being able to predict this failure is key for risk mitigation and
road safety, as it allows agencies to repair hazardous conditions before they cause accidents
or vehicle damage.

5.1.2 More efficient allocation of Maintenance Budgets

Since keeping up pavement costs a lot (like ANAS's €1.6 billion yearly program), even small
gains in prediction accuracy can lead to big savings. By distinguishing which sections will
likely get worse within a year, RF supports:

e Targeted interventions

e Optimized scheduling of maintenance teams,

e [ ess reactive/corrective maintenance,

¢ Budgeting for upcoming years based on predicted deterioration trends.

5.1.3 Stronger Performance Despite Environmental Changes

RF captures the interaction between historical cracking patterns and climatic stressors like
precipitation and temperature fluctuations without becoming unstable or overfitted. This lets
agencies:

e Predict where environmental conditions will cause faster cracking,

¢ Support maintenance plans that respond to the climate,

¢ Add climate trends into pavement management plans.

5.1.4 Applicability in data-scarce contexts

Because the Italian data only has two time-based observations per section, standard

deterioration models can't be reliably set up. The RF + KNN transfer learning system takes
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care of this by using similar structural patterns from the U.S. LTPP data. This has important
results:

¢ C(Cities with minimal monitoring can still get reliable forecasts,

e Not having enough data is no longer a reason not to use predictive maintenance tools,

e Agencies can slowly improve the model as they get more local data.

5.1.5 Less Uncertainty in Severity Classification and Inspection

As noted in the methods and research review, it's easy to make mistakes when labeling
distress severity due to personal opinions and image-based problems. RF mitigates these
problems by:

e Averaging results from multiple sources,

e Reducing the impact of wrongly labeled or flawed samples,

e Making more consistent year-to-year predictions.
This results in a more dependable decision-support system, even when inspection data isn't

perfect.

5.1.6 Supports Proactive and Preventive Maintenance Policies

Most importantly, the model works best in areas where engineering principles predict the
biggest structural and safety consequences: high-severity cracking. Because of this, RF
allows agencies to:

e Move from reactive to preventive maintenance,

¢ Fix issues before they reach critical levels,

e Lower risk for road users by spotting structural failures early,

e Add predictive analytics to current Pavement Management Systems (PMS).

5.2 Suggestions for Improvement

Some limitations were identified in the present study which indicate obvious avenues for
improvement. Enhancing temporal depth, incorporating additional structural and material
characteristics, and increasing cross-regional validation would support improvements in
model accuracy and transferability. The following subsections detail these important areas

for improvement.
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5.2.1 Availability of data and temporal depth

Only two temporal observations exist per road segment in the Italian dataset (t=2), thereby
limiting the model's possibility of learning the temporal dynamics of deterioration. This lack
of data increases the potential of overfitting models and restricts the opportunity of the data-
hungry models like Random Forests. More importantly, the short temporal dimensions
prevent the utilization of more complex sequential deep-learning models such as Long Short-
Term Memory (LSTM) or Gated Recurrent Unit (GRU) that were developed to represent
long-term dependency and temporal change in time series data. Therefore, an expansion of
the temporal dimensions for the Italian dataset either through continuous monitoring, or a
complementary set of data from another national sample, will be essential. Such enhancement
would not only strengthen the robustness of current models but also enable the exploration
of these deep learning architectures to evaluate their comparative performance in predicting

pavement deterioration trends.

5.2.2 Enhanced feature engineering

The present study relies on a limited set of climatic and traffic indicators. However, there are
other factors that influence the structural deterioration as well such as pavement layer
thickness, material type, subgrade attributes and climate interactions with seasonality.
Although comprehensive datasets such as the Long-Term Pavement Performance (LTPP)
program often contain this type of structural and materials related information, in most
practical pavement management databases that exist this type of information is not found.
By including these types of features, would be possible to provide models with more
physically meaningful predictors, and yield an overall more reliable predictive performance
which might reduce the predominant reliance on last year's distress level as the predictor.
Therefore, when considering data collection in the future, efforts should prioritize the
collection of structural and materials data to develop predictive models that are reliable and

transferable.

5.2.3 Validation and Cross-Regional Generalizability

The entire training and validation of the models was performed within the Italian network,

and the models shown a great generalizability but construction standards, materials,
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environmental conditions, and maintenance procedures differ considerably by country.
Future improvements should include:
e External validation using datasets from other countries.
¢ Cross-country harmonization of the distress definitions, measurement procedures, and
attributes.
¢ Domain adaptation methods (in addition to KNN), such as TrAdaBoostR2, CORAL or
adversarial adaptation to enable improved transfer of models across heterogenous

networks.

Such improvements would help ensure that deterioration models can be implemented in

operational settings across different pavement management systems.

5.3 Future Directions

In addition to immediate methodological improvements, promising research pathways
emerge from the study's limitations and findings. These pathways are aimed at expanding on
the predictive framework, improving its operational utility, and applying next generation data

collection and modeling methods.

5.3.1 Probabilistic Modeling of Severity Transitions

The existing models provide point estimates for the area of deterioration, but do not provide
any measure of the likelihood of a pavement segment transitioning from one severity class
to another, e.g., what is the probability that a segment in low severity would transition to
medium severity in one year, or what is the probability that pavement that is considered
medium severity would transition to high severity in a two-year horizon? Estimating these
transition probabilities would give pavement managers an improved basis for risk-based
planning and maintenance prioritization.

Changing from deterministic predictions to the use of probabilistic transition modeling
would allow agencies to identify segments that are at high risk of rapid deterioration and to
prioritize maintenance not only on forecasted outcomes, but also on probabilities of severe

declines in the future trajectories.
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5.3.2 Integrated Automated Visual Detection and Predictive Forecasting

A promising future direction involves developing an end-to-end automated system of
combining visual distress detection using deep-learning and forecasting deterioration one
year ahead (or multiyear, depends on data). Given the recent advancements in computer
vision, it is now feasible to recognize and characterize cracking patterns, rutting, potholes,
and other surface distresses in real-time from images taken from onboard cameras in vehicles
or drones. The combination of such models into a deterioration framework would produce a
two-step pipeline.

e Automated Distress Detection: A deep-learning visual model with the capacity to
detect and quantify distress areas directly from imagery, yielding objective high-
resolution measurements that can supplement, or even supplant, manual inspection data.
This significantly reduces the uncertainty that may stem from human subjectivity and
variability in camera angles and survey intervals.

e Short-Term Prediction of Future Deterioration: The automatically-acquired distress
metrics would be used to construct a prediction model—e.g., using Random Forest,
LSTM, or a multi-task learning architecture—that would provide a prediction of the
expected deterioration next year (e.g., next year distress area or severity class

transitions).

The integration of models would enable a pavement management organization to
automatically identify current distress conditions from image data, update the database in

near—real time, and construct one-year-ahead predictions (no human interaction required).
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