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Summary

Recent advances in Deep Neural Network (DNN) optimization enable the
deployment of these models on resource-constrained embedded devices to
perform various tasks. Multiple techniques, such as quantization and pruning,
have been successfully applied to reduce the memory, energy, and latency
requirements on edge devices. While these improvements enable edge infer-
ence, training directly at the edge remains a challenging task, despite its
potential benefits for robust and adaptive Al systems. At the same time,
low-resolution infrared (IR) cameras have numerous applications as these
unobtrusive, privacy-preserving and inexpensive sensors can capture enough
information to perform various tasks. By coupling a microprocessor to such
IR sensors, it is possible to enable a rich collection of applications that would
benefit from DNN inference and training directly on device.

This thesis explores the feasibility of deploying and training a convolutional
neural network (CNN) on a severely memory-constrained microcontroller
(MCU) coupled to an IR array to classify the pose of a human being filmed
by the sensor. The classification algorithm is executed on a bare-metal MCU
with less than 32 kB of available memory, where just 14.5 kB can be used to
store the model weights and all necessary data. Under such constraints, the
usual backpropagation and gradient descent algorithms cannot be applied to
update the weights and biases of the model.

In this work, an alternative solution, called Nearest Class Mean (NCM), is
explored. Traditional classification algorithms rely on the features extracted
in the last layer to compute probabilities for a fixed number of classes. NCMs
use a DNN to encode the infrared image in a low-dimensional embedding
space. Then, a sample is classified by comparing the distances with the
average encoding (so-called prototypes) of each class.

The Convolutional Neural Network (CNN) undergoes a traditional training
phase in which the Triplet loss is used to separate the embedding of different
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classes. After quantization and a few epochs of quantization-aware training,
the model is exported and compiled to be executed at the edge.

The algorithm can reach an accuracy on par with traditional CNN-based
classification approaches when classifying classes it has been trained on,
with varying accuracy loss when using prototypes of new classes. With a
memory footprint fitting the hardware limit, its execution on the edge device
is possible. On top of that, the DNN can be trained at the edge, either by
updating the prototypes of selected classes to real-world data distributions
or by creating a new prototype for a new class. Both without catastrophic
forgetting and minimal memory overhead.

This work may lead to the exploration and application of similar algorithms
embedded on devices as memory-constrained as 32kB to perform inexpensive,
privacy-preserving classifications.
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Chapter 1

Introduction

Thanks to the continually improving performance of modern hardware, Deep
Learning (DL) algorithms have been successfully applied to perform various
tasks, from computer vision and speech recognition over the last decade
to the current state-of-the-art generative Artificial Intelligence (AI) algo-
rithms, such as Large Language Models. Because of their important memory;,
computation and energy requirements, DNNs have been mainly deployed
in high-performance servers. Recently, multiple optimization techniques,
such as pruning and quantization [1], have been developed to enable the
deployment of DNNs on resource-constrained edge devices. These techniques
allow for the performance of DNN workloads on data streamed from one
or multiple sensors, thereby preserving privacy and reducing bandwidth
requirements within the local network and energy consumption. While these
optimization methods can reduce the memory, latency and energy footprint
of the algorithm, the training algorithm remains offline, on a powerful server,
as the traditional backpropagation algorithm cannot be optimized enough to
run on severely constrained devices. Multiple alternatives have been tested
by researchers and engineers, enabling task-adaptation of DNNs deployed on
embedded devices, without the need to rely on servers [2].

In the meantime, Infrared (IR) sensors show multiple applications [3].
Non-obstrusive and energy-efficient, low-resolution arrays are inexpensive
and privacy-preserving devices able to capture IR images that can be used
to perform various tasks. By coupling a Micro Controller Unit (MCU) to
such sensors, face, pose or hand sign recognition tasks can be tackled by an
optimized, embedded DNN with minimal economic and energetic cost. Such
applications will benefit from on-device learning, as each sensor, environment
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1 — Introduction

and target task may present unique attributes that can even vary over time.

This thesis explains the training, deployment and on-device adaptation
of a Convolutional Neural Network (CNN)-based algorithm embedded on a
MCU with less than 32 kB of memory. The algorithm receives data from
a 16x16 IR thermal array and performs pose recognition by classifying the
input into one of five classes. Among the five classes, a selection has been
used to train the DNN, while others are completely new to the algorithm
and learned online.

Under such constraints, the traditional training algorithm relying on
backpropagation and gradient descent cannot be applied because of the
required memory overhead. In this document, an alternative solution, called
NCM [4], is applied. NCMs are protonets [5]; they rely on the average
encoding (produced by a quantized CNN) of each class (prototypes) to classify
new samples, as described in Sec. 4.3.1. The prototypes can be updated
online with minimal memory overhead and no catastrophic forgetting, usually
caused by the training of new classes without reviewing already known classes
in an online training setup. This thesis explores the feasibility of executing
an NCM algorithm on a constrained device to perform efficient classifications,
while being trainable online. The main focuses of this work are:

e Training the CNN to get competitive performance with traditional
classification algorithms

e Implementing the algorithm to run on a severely constrained MCU,
satisfying memory availability both for data and code instructions.

o Performing training of a new class on the MCU with few streamed data.

After providing the necessary background to understand IR sensors and
DNN algorithms, challenges, optimizations and applications in smart sensors
(Chapter 2), this thesis reviews some works related to efficient DNNs, smart
IR sensors and on-device learning algorithms (Chapter 3). Then, particular
attention is given to the methodology, explaining the algorithm, its training
and testing (Chapter 4). Finally, the algorithm’s performance and memory
requirements will be displayed and discussed Chapter 5 before concluding on

the work carried out and the potential future works this thesis may lead to
(Chapter 6).
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Chapter 2

Background

2.1 Infrared array sensors

2.1.1 Technology

IR cameras consist of multiple sensors placed in a grid or a row to produce
multiple pixels of IR images. Two technologies dominate the market: thermal
detectors and photon detectors.

On one hand, thermal detectors measure the heat transmitted by the IR
upon contact. The heat is measured through a bolometer or a thermopile [6],
producing a voltage that is amplified, conditioned, and converted into digital
signals using an analog-to-digital converter. On the other hand, photon
detectors are photodiodes that utilize the photoelectric effect to absorb
photons within a target frequency range, producing a current. This current
is also conditioned, amplified and converted into voltage and digital signals
[6]. Thermal detectors are more sensitive to local temperature and have a
slower response time than photon detectors, but are less expensive.

Both sensors will ultimately produce an array of digital signals that can be
interpreted as infrared images, the highest values corresponding to high IR
lighting, while the lowest correspond to the absence of IR beam. IR beams
are produced by a specific device, with customized frequencies, or by any
warm body. In the second case, IR sensors can be used to see heat.

In this thesis, a thermal array with a resolution of 16 by 16 is used.
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2 — Background

2.1.2 Applications

Unlike normal cameras, thermal IR arrays are low-power, inexpensive and
reliable sensors not limited by light conditions. Low-resolution IR cameras
are also privacy-preserving (see Fig. 4.1 for example). IR sensors find multiple
applications. In the industry, they are used as contactless monitoring tools
[7] for predictive maintenance and quality control. In smart homes, to
measure occupancy and automatically adjust climate and light [8]. Infrared
arrays are also used for face recognition [9] and inside medical devices, for
their contactless capacity to localize irregularities and measure heat [10],
[11]. Environment monitoring leverages IR arrays to detect wildfires [12]
and thermal pollution [13]. Finally, modern cars use IR sensors to detect
obstacles and pedestrians [14], helping drivers when the visibility is not
optimal.

2.2 Deep Neural Networks

The basic unit of neural networks, the perceptron, was introduced as early
as 1958 by Frank Rosenblatt [15]. Mathematicians and computer scientists
worked on developing algorithms based on this perceptron until their usage
surged with the increase of hardware performance and appearance of chal-
lenges, such as the ImageNet recognition [16], in the early 2010s. DNN are
the heart of DL, a branch of Machine Learning (ML), and are known to be
able to tackle an important variety of tasks. Unlike traditional algorithms,
which rely on rules explicitly programmed by humans, ML algorithms, and es-
pecially DNNs, leverage the usage of data to learns patterns and relationships
between inputs and outputs.

DNNSs are today’s state-of-the-art algorithms in most Al fields, including
generative Al, and are still widely used in computer vision, speech recognition,
timeseries analysis and many more. Their ability to handle noisy and complex
data without requiring knowledge of the data’s nature, combined with their
ability to automatically learn, has rocketed their usage across all fields of
engineering.

2.2.1 Layers

DNNs are algorithms consisting of multiple steps, called layers, connected to
form a network. Multiple types of layers exist; in this thesis, the following
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2.2 — Deep Neural Networks

are used:

Input and output layers

Input and output layers are the first and last layers of a DNN. They are
tensors of real numbers. The input layer hosts data samples, which are to be
turned into outputs to be interpreted. For classification tasks, these outputs
are interpreted as probabilities and the index of the highest component of
the tensor represents the predicted class. For regression, the tensor does not
need to be interpreted, as it represents exactly the output of the algorithm.

Fully connected layers

Fully connected layers, also called Linear layers, are very simple layers
composed of nodes inspired by real neurons [17]. Each artificial neuron
is connected to every node of the previous layer x; (for example, every
component of the input tensor X) and produces an output y = vazl riw; + b,
where b is the bias and w; are the weights of the neurons, NV is the size of
the input. Placed side by side to form a layer, the combination of each of
the J neurons will produce an output tensor

N
Y = (y))j=1..7 = Q_ @iwij + bj)j=1...s
=1

which can be written as the matrix-tensor product

Y=WX+B

where W is the matrix of weights and B the tensor of biases.

Convolution

Convolution layers are primarily used to detect patterns within a three-
dimensional tensor, such as images with RGB channels, abstracting the
position of the pattern in the image. Even if they can be applied to tensors
of any dimension, we focus on tridimensional layers. Convolution layers
use kernels, which are three-dimensional tensors (made of weights) that are
multiplied element-wise with a section of the input. The products are then
summed to produce one single value. Then, another part of the input is used
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2 — Background

to produce a new value, as shown on Fig. 2.1. The mathematical equation
behind convolutions is:

k—1k-1 Z

Opyn =, > > Ili+z,j+z,h)K,(i,j,h)

i=0 j=0 h=0

where the input tensor I has a dimension of (X,Y, Z) and N convolution

kernels K of size (k, k, Z) are used to produce an input tensor O of dimension
(X —kY —FkN)

Source layer
5|26 ?“‘r—--a__ 1] 2 Convolutional
alalals|:]ale]3 kernel
Destination layer
3j9j2|a|7]|7|6]|9 alol1
13-4 /6|8|2(2]1 21112
Bl4|6|2|31+8]8 N :
s|B|s|lo|j1|of|2]|3
g|l2|6|6|3|6|2]1
9|8|8|2|0|[3|4]|5

[-1x5) + [0=2) + (1=6) +
(2x4) + [1x3) + (2x4) +
(1x3) + [-2x9) + [0x2) =5

Figure 2.1: Convolution layer (image from [18])

Maxpool

Maxpool layers are used to reduce the size of tensors. Usually applied to
three-dimensional tensors, they compute the maximum value of a section of
the input, channel-wise.

Activations

Activation layers apply a non-linear function to a tensor. Most of the time,
this function is applied component-wise, such as with ReLLU, sigmoid, or
tanh [19], but some functions are applied to the entire tensor, like softmax,
which is used to compute probabilities. These layers are often fused with the
preceding layer. Activations are used to learn non-linear relations between
inputs and outputs, as all other layers (except max pools) are linear.
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2.2 — Deep Neural Networks

Dropout

Dropout layers are layers used to reduce overfitting during training. They
randomly set a fraction of the input units to zero at each update step,
which prevents the model from relying too heavily on specific neurons. This
encourages redundancy and improves generalization performance.

Batch-normalization

Batch-normalization layers are used to normalize the values based on the
mean and standard deviation of the input batch (multiple inputs given at
the same time to the DNN) [20]. They are used to stabilize and accelerate
the training by ensuring the input of the next layer is normalized. During
training, given an input z in a batch B, the normalization is performed as

T — [ .
= Y=7T+0,
\Jop T €

where pp and 0% are the mean and variance computed over the batch B, €
is a small constant for numerical stability, and ~, 3 are learnable parameters.

To allow consistent predictions at inference, running estimates of the
mean and variance are maintained during training, typically with exponential
moving averages:

T =

p (l—a)p+apg, o> 1—-a)o®+aocs,
where a is a momentum parameter (usually close to 0.1).
During inference, these running estimates are used instead of batch statis-

tics:

T —p R
. y=ni+4

e YT B
These estimates are used to ensure consistency throughout multiple inputs.
In reality, during inference, the batch-normalization layer can be fused with
the preceding fully connected or convolutional layer by adjusting its bias and
weights.

T =

2.2.2 Training

For DNNs to perform, they need to be trained with known, controlled data.
During this process, the model will learn how to map inputs and outputs
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2 — Background

by updating the weights and biases of its layers to make the predictions as
reliable as possible. The well-known algorithm used to update the DNN
is called backpropagation and relies on the gradient descent algorithm and
the chain rule [21]. To produce a gradient, a loss function L is used to give
an image of the error the DNN is producing. Examples of losses are the
cross-entropy loss [22] for classification tasks and the mean absolute error
and mean square error for regression tasks. Because each function used in
each layer is known and differentiable, it is possible to compute, for every
parameter (weights and biases) 6, the gradient of L with respect to 6, %’;.

Using this gradient, each weight is then updated with the following equation:
oL
0+ 0—n—
T o0

where 7 is the learning rate, a hyperparameter with an order of magnitude
usually below le — 3. Different update equations can be used, called opti-
mizers, and implement momentum and/or regularization, such as ADAM or
ADAGRAD [23]. This algorithm is repeated until the loss reaches a minimum
(early-stopping, in this case, the loss is measured on a dataset unused during
training) or until a maximum number of iterations (epochs) is reached. The
performance of the DNN is usually measured in a more human-readable
way, like the accuracy for classification tasks or the mean square error for
regression. Other metrics can be used depending on the specific case.

2.2.3 Applications

Deep learning founds a large number of applications. First, computer vision
relies heavily on CNN [24] to classify images, identify objects, identify images
or locate objects on images. Those algorithms are massively applied in
healthcare [25] to diagnose diseases in early stage, in autonomous driving [26]
to detect cars, pedestrians and signs, in manufacturing [27] etc. DNNs are
also widely used in speech recognition and natural language processing [28],
primarily used by voice assistants and are today fundamental in generative
AT and its applications. Other applications include anomaly detection [29],
fraud detection [30], scientific research in many fields as biology [31] and
history [32], recommendation systems [33], predictive maintenance [34] and
trading [35].
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2.2 — Deep Neural Networks

2.2.4 Challenges

Despite being very powerful, DNNs present many challenges described below.

Overfitting

Overfitting is the phenomenon in which the model not only learn the pattern
but also the noise and outliers, resulting in strong performances on training
data but poor ones on data never seen by the model during training. Over-
fitting occurs when the model is too complex for the assigned task and can
be addressed through early stopping, regularization, and dropout [36].

Data Quality

Data quality is very important in deep learning, as it needs to represent as
accurately as possible the inputs used during the usage of the DNN. If the
training data are noisy, wrongly labeled, biased, restricted to a subset of real
tasks, or imbalanced, the model’s accuracy will not be as good as it could be.

Hyperparameters and layer choice

Hyperparameters and layers are to be taken seriously as they can change
the behavior or training of the model. For example, a too low learning rate
will lead to slow learning and a performance being trapped close to a local
minimum, while a learning rate too high can make the model struggle to
reach the minimum. The number of neurons in each layer, the size of kernels,
the choice of activation and the number of layers themselves can be seen as
hyperparameters that should be tuned.

Memory

The Memory footprint of a deep learning model tends to be very high. For
example, a fully connected layer with an input of size I and an output of size
O contains a matrix of size I x O (for the weights) and a vector of size O (for
the biases), which can reach thousands of parameters. With I = 0 = 64, the
layer contains 4160 parameters, which is approximately 16 kB. Recent best
models used to perform object classification on the Imagenet dataset [16]
reach millions of parameters, a few of them are shown on Fig. 2.2a. On top
of these parameters, memory is necessary to store intermediate activations
and store and compute gradients.
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2 — Background

Energy consumption and latency

Energy consumption, similar to memory, can be very high for big models.
The same fully connected layer as previously will execute approximately
(2 x I + 1) x O floating-point operations (FLOP) to compute the output
(which is 8256 operations). More complex models can reach hundreds of
millions of FLOP, as shown on Fig. 2.2b. While one single flop consumes
energy, it also needs time. Finally, the data used to compute the output
needs to be moved from the memory to the cache and registers, which also
takes time. Running a DNN on a low-power MCU, generally fuelled by a
battery, or with a high frequency, is a challenge. Data transfer and frequency
can be solved by computing outputs in batches, layer by layer, or by using
specific accelerated hardware.

78 78
774 0 774 (F’o
76 AmoebaNet-C __}3x 76 JREN AmoebaNet-C
75 / ‘J;rwé;adsyr\hegu ’};gprNet_c/____/— 754 (,:,;1,00 A%nasNet.-IF\é.Net_c -
= roxyless .-~ PNASNat -~~~ 3 roxyless g e
2\; 741 ors NASNet-A E; 74 4 NASNeth &
o6 " "ShuffleNet 2x(g=3) ShuffleNet 2x(g=3)
8 731 PeleeNet ,oARTS 8 731 PeleeNey ~ DARTS
2 724 5 JoplleNet V2 .” 272 obileNet V2
o] / A o]
< ondenéeNet(G=C<8) < 54 ondenseNet(G=C=8)
- 711 & s I,’i’\oblleNetVl -7 & MobileNet Vly
S 70 4 § 70 4
2
% 691 £ 691
=
E] 68 —e— EfficientNet-eLite 0 681 —s=— EfficientNet-eLite
E 67 4 —=— EfficientNet-HF(r256) g 67 4 —e=— EfficientNet-HF(r256)
~ 661 —=— EfficientNet-HF(r128) ~ 664 —e— EfficientNet-HF(r128)
9 er?;sssmall --e-- MobileNet V3 P “O'j\nnasrsman ---- MobileNet V3
651 =~ GhostNet -+~ GhostNet
641 e~ AmoebaNet 64 4 e AmoebaNet
63 T T T T T T T T T T T T 63 T T T T T T T T T T T T
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Number of Parameters(Millions) Number of Flops(Millions)
(a) Number of parameters for various (b) Number of FLOPS for various

Figure 2.2: Memory and computation requirement for various DNN (images

from [37])

2.2.5 Optimizations

To tackle the memory and resource challenges, several tricks can be imple-
mented.

Data reuse and batching

While computation can be the limiting factor for latency, data transfer is also
very costly, both in terms of energy and time. In fact, transferring data from
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2.2 — Deep Neural Networks

the memory to the registers to compute an operation is hundreds of times
less efficient than using a datum already stored in a register [38]. A solution
involves using temporal layer tiling [39], an optimized method for moving
data between different storage locations, from the processor’s registers to
caches and main memory. Some hardware optimization implements this [40]

Another solution that is widely used during training but can be problematic
during inference is the usage of batching. In this case, instead of performing a
forward pass on inputs one by one, all inputs are used together and each layer
is used only once. This is very helpful as it allows the layers to be loaded
only once for the whole batch. During inference, this method assumes that
multiple inputs are collected, which might not be true for systems requiring
real-time computation, like autonomous driving or biosignal processing. In
those cases, if we wait 1 second to collect samples, the result for the first
element of the batch will be 1 second late, which can be catastrophic as
decisions must be taken quickly.

Hardware optimization

Most of the computations realised by DNN are Multiply—Accumulate (MAC)
operations, which are the operations used to compute a matrix-vector or
matrix-matrix product. Most modern Central Processing Units (CPUs)
contains a few MAC units, specialized in MAC operations; however, Graphic
Processing Units (GPUs) and Tensor Processing Units (TPUs) can have
thousands of them [41]. They are optimized to perform vector-vector product
(GPU) and matrix-matrix product (TPU) as fast as possible and leverage
parallelization to compute as many operations as possible. These proces-
sors also have optimized memory configurations and a very high memory
bandwidth to limit the data transfer cost [42]. Current works also focus on
accelerators for edge devices [43]. Other hardware accelerations can be used
together with some of the following software optimisations, as compatibility
between both may be required.

Convolutions as GEMM and depthwise-pointwise

Convolution layers are computationally expensive but also require the loading
and unloading of a lot of data if not implemented correctly. One way to
reduce this phenomenon is by organising and duplicating the data in memory
in such a way that the convolution becomes a matrix-matrix product, which,
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2 — Background

as seen previously, can be optimized in multiple ways [44] [45]. This process
is called im2col.

The second optimisation can be done by replacing a normal convolution
with spatially separable convolutions [46]. Spatial separable convolutions
can be used if the convolution’s kernel can be written as a product of two
1D tensors, for example,

—1
—2
—1

x (-1 0 1)

o O O

1
92| —
1

— N =

By multiplying the input by the unidimensional tensors instead of the
matrix, you can save some computation while getting the same result. More-
over, less memory is necessary to store the kernel. Unfortunately, not all
matrices can be written as a product of two vectors. In this case, it is possible
to separate the convolution into a depthwise and a pointwise convolution.
The depthwise convolution will create an output having the same number of
channels as the inputs, then the pointwise convolution will use this output
to create an image with the expected number of channels. Doing this, the
input is only really transformed once [47].

Double buffer

A very simple, effective way to reduce the memory footprint of a DNN is
to allocate only the memory necessary to store the two largest activations.
One part of this is used to store the output of odd layers, and is then
used to be the input of the even layers. The other part does the opposite.
While this method is efficient, it has an important drawback: the activations
are overwritten and thus cannot be used to compute a gradient, making it
impossible to perform the backpropagation algorithm to train the model.

Neural Architecture Search

Neural Architecture Search (NAS) is a technique used to optimize the choice
of hyperparameters and layers [48]. As explained in Sec. 2.2.4, choosing the
best hyperparameters and architecture can be difficult. Usually, this choice
is made by exploration, trials and errors, by comparing the performance
(through the loss or another metric) of different combinations of parameters.
While this technique works to find the best-performing model, it does not
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consider the complexity, energy consumption, latency or memory footprint of
the model. As [48] shows, one way to consider it is by adding a cost term to
the metric. For example, instead of relying on accuracy for the final choice of
model, we can rely on the difference between the accuracy and the number
of parameters, or the average execution time plus the F1l-score, with some
scaling factors to balance the importance of both components.

NAS can also allow the engineer to find the best model more efficiently.
In reality, finding the best architecture is not easy and every layer can be
replaced with another, some layers can be added, some can be removed,
the number of neurons can be changed etc. A solution is to use multiple
options at the same time, and to select the best one based on a parameter
that will be trained. This parameter, called a gate, will tend to 0 if its
corresponding layer is not better than another layer whose gate will tend to 1.
This technique can be used with every other technique presented, including
the cost term in loss functions.

Pruning

Pruning is a technique used to reduce the number of weights and connections
in a layer. Pruning techniques are multiple, as DNNs are purposely too
complex for the task it is assigned, multiple parts of the algorithm may be
skipped with minimal loss of performance [49].

The three main pruning algorithms consist of replacing selected weights
by 0, skipping computations by disconnecting neurons or skipping the com-
putation of activations that are usually equal to 0. This occurs regularly
when using a ReLLU activation.

Pruning weights and connections has multiple benefits. First, using sparse
matrices can be beneficial in terms of memory. Then, skipping computation
makes the model faster. However, we need the hardware to be able to manage
matrix-vector products when the matrix has a sparse representation.

There are multiple ways to prune weights. Replacing values inside of a
tensor can be done in a structured way, by removing blocks of values, an
unstructured way, by removing values without taking into account their
position in the matrix, or by using a balanced structure to keep the number
of non-removed values constant across blocks, rows, or columns.

The weights to be pruned can be determined with multiple criteria. The
simplest is magnitude, as we can expect that replacing values close to zero
with exact zeros will have minimal impact on the performance. For regression
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tasks, a very small difference in the output may appear, but for classification
tasks, it is very unlikely. If the probabilities are slightly different, the class of
maximum probability is unlikely to change. The weights can also be pruned
based on their impact on performance [49] or on latency [50].

The pruning process can be scheduled in multiple ways. One option
is to prune a given percentage of weights after the final training epoch.
This "train-then-prune" algorithm can lead to performance losses and a few
training epochs can be added, in which the remaining weights are updated.
The pruning can also be done progressively, according to a pruning schedule,
at the end of each epoch [49].

Quantization

The most important optimization technique discussed in this document is
quantization, which aims at using fewer bits to represent each weight and
bias.

Weights are usually represented by 32 bits (4 Bytes, float32 format) but can
be approximated with 16 bits (float16 format). Applying this approximation
to all layers will divide the memory footprint and data transfer latency and
energy consumption of the whole DNN by approximately 2. It can also
be applied to activations and does not lead to a significant performance
loss. This float format can be used during training and inference [51], but
representing weights in an 8-bit (or even less [52], [53]) format is also possible.

Focusing on integer format, which is the main format usually supported
by edge devices, representing weights and activations this way allows an
important memory footprint reduction, as well as reduced latency and energy
consumption. In this format, we represent weights by integers in the range
[0,255] or [—128,127]. In reality, weights can have a much different range and
quantizing does not correspond to rounding. A few different transformations
can be used to efficiently transform a 32-bit floating-point value into an 8-bit
integer

The simplest quantization process is called affine quantization [54], where
an affine transformation is applied to the real weights to fit the expected
range, before being clamped to the expected range, as follows:

A = clamp(|A/s]| + z,m, M)
where A is a value to be quantized and A its quantized version, m and M the
minimum and maximum of the range, s a scale factor and z an integer called
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zero-point, used to align the range of A/s to [m, M]. Then, the dequantized
A equivalent to A can be computed as

A=sx(A-2)

which in theory should be as close as possible to A.

In practice, the statistical distribution of the weights is symmetric, which
means that the signed range [—128, 127] is used to store the quantized weights,
setting z to 0 and s to max(|WW])/127, where W is a set of weights. Using
a single scale factor for the whole layer allows for limiting the number of
parameters, but the actual range of the weight can be completely different
between two channels of the same convolutional layers. For this reason,
multiple scale factors can be used for different blocks, rows or columns of a
fully connected layer’s weight matrix or for different channels of a convolution
matrix. In this case, the clamping is actually unnecessary, as the scale factor
is made to map the largest weight to 127.

Activations, however, are using asymmetric quantization. Focusing on
ReLU functions, the output of a layer is always positive, which means we
can set z to 0 and s to max(X)/255, where max(X) is the maximum value
an activation can assume. Unlike for weights, this max(X) is not known as
activations are not stored inside the DNN, only weights are. To compute
this maximum, a batch of representative examples is needed. Outliers can
still appear and the clamping will restrict the value.

In fact, outliers can also be part of the set of representative inputs. For
weights and activations, the scale can be set to a lower value, which will force
the highest of them to be clamped but can actually improve performance, as
a smaller scale implies a greater precision for weights and activations closer
to 0. For this reason, the scale can be computed, or learned, to minimize the
approximation error > ,cw |w — w|, where W is the set of all weights of a
layer. The same principle applies for activations [54].

The quantization described previously will be more efficient for uniformly
distributed weights, but in reality, weights usually follow a Gaussian dis-
tribution, which means that most weights close to 0 will get approximated
by the same integer, while most of the highest half of [0,256] will not be
assigned to any weight, which is a suboptimal approach. Mapping the weight
distribution to [—128,127] can be done in a more optimized way to spread the
weight in the range and achieve better precision [55] [56] using the logarithm,
which can be computed on edge devices with a scale and a shift.
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As for pruning, quantizing a DNN can be done after or during the train-
ing. On one hand, quantizing after training consists only of computing the
new weights, scale and zero point (or other parameters necessary for the
algorithm), based on the current value of the weights and on a represen-
tative sample of inputs. On the other hand, quantizing during training
consists of a training phase, a quantization and another training phase, called
Quantization-Aware Training (QAT). In this third phase, the backpropa-
gation algorithm cannot be applied as usual. The gradient descent used
to update the weights assumes the weights can take any value, not only
integers. This is solved by using fake quantization. During the forward pass,
an approximation of the real value:

W=sx(W-=z2)

During the forward pass, the gradient of W is propagated to W [54] (removing
the rounding) to obtain a new value for W, then the scales and zero-point
are recomputed, or can also be trained.

Weight clustering

Weight clustering is a technique that can be used alongside weight pruning
and quantization to reduce the size of an DNN, but its application may
decrease the DNN’s performance. The clustering algorithm consists of
grouping weights based on the proximity of their values. Then, the tensor of
weights is turned into a tensor of groups, where each weight is replaced by
the index of the group it belongs to, and a lookup table is used to map the
index to the real value. Each weight is approximated by a value common to
the whole group.

Two techniques can be used. The first consists of spreading uniformly the
K centroids in the weight range, then regrouping all the weights closer to
one centroid together. The other consists of using the K-means algorithm
[57]. In practice, the first is used to initialize the centroids before applying
the K-means algorithm. To represent one index, only [logs(K)] bits are
necessary, when 32 were necessary to represent each weight in the float32
format, allowing a high compression ratio.

As for quantization and pruning, weight clustering can be done after
training, or during training. In both cases, during the forward pass, the
weights are replaced by the centroid of their cluster, using the lookup table,
which is less efficient computationally and in terms of performance, but allows
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a high compression. Improving the performance can be achieved through
clustering-aware training. In this case, the forward pass is performed as
described above, while the backward pass differs from the standard algorithm
only in the update of the weights. Instead of relying on the gradient of
each weight, the gradients of all weights are summed and the sum is used to
update the centroid.

The centroids may be quantized after training, allowing further compres-
sion rates.

2.3 Smart Sensor Hardware Platforms

Smart sensors are hardware devices consisting of a computation unit con-
nected to one or multiple sensors and a communication interface. The smart
sensor records data from its environment. The data are transformed and
transmitted to a control unit that communicates with multiple sensors to
make decisions.

Unlike normal sensors, which collect data and transmit them to a cloud
server, some computations are performed by the embedded algorithm, which
can be a DNN, running on an edge device. Moving the DNN to the edge
device offers multiple benefits, including improved privacy, reduced network
load, lower latency, and lower energy consumption. As an example, a
face recognition system requires a camera filming the face of a person.
Transmitting the full face image to a server can lead to multiple privacy
issues and requires the transmission of up to megabytes of data. While DNN
inferences consume energy, data transmission is known to consume even
more. Finally, relying on a server to have a response on the face recognition
task can take time. Transmitting the data and waiting for an answer can
lead to a very high latency.

DNN inference is not always possible at the edge, as complex DNNs can
require billions of operations. For low-frequency processors, it can take
seconds to compute. Processors might also not have the required hardware to
compute divisions or MAC operations for efficient inferences, or the available
memory can be too limited.

Edge devices are various; some are only slightly constrained, like smart-
phones and single-board computers, with GigaBytes of available memory,
high computation capabilities and a custom Operating System (OS) for
performance. On the opposite edge of the spectrum, some MCU only embed
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a few computation units and kiloBytes of memory, without any OS. In
between, some companies are developing specialized inference devices like
Neural Processing Units (NPUs) or embedded TPUs.

2.4 On-device Continual Learning

In most applications involving DNN, the DNN is trained offline. A powerful
machine with one or multiple GPU is used to train a model on a large amount
of data and without memory and energy constraints. The DNN is then either
deployed to an unrestrained cloud platform or optimized and deployed on
an edge device with limited memory and energy consumption requirements.
In both cases, the DNN can be used as-is, but some applications require
the algorithm to be fine-tuned after deployment. For example, a speech
recognition algorithm needs to adapt to the user’s accent, voice, or vocabulary
[58], which differs from the one used in training data.

2.4.1 Continual Learning

In an online learning setup, the training data are streamed to the DNN for
training one by one, or by very small groups, and are only seen once. It is
significantly different than offline learning, where the data are stored in the
memory of the computer to be used multiple times, and can be provided
in batches. Continual learning is the application of online learning after
deployment of the DNN. The new training data comes from the model’s
real-world environment, arriving as a stream of user interactions, sensor
readings, or contextual information. This stream can have a distribution
different than the distribution of the training data, and can even drift over
time.

The data can also come in an unbalanced stream, as the real world might
change more slowly than the data collection frequency. Unbalanced datasets
can lead to catastrophic forgetting [59], as the DNN will focus on being
correct on the last data. Some techniques, such as replay [60], which consists
of storing data samples and updating the DNN only with balanced data, can
be applied.

Finally, the training data can be scarce, either because the data collection
process is low-frequency, or because it can be time, resource or energy
consuming. This is called FSL. A setup in which the training data may not
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be representative of the real distribution.

2.4.2 On-device learning

Executing continual learning algorithms on constrained devices raises several
challenges due to computation limitations and low-memory availability. First,
the lack of memory can make it impossible to store multiple input data,
forcing the batches to be small and blocking the usage of the replay method.
The lack of memory can also lead to the need to discard activations, by using
the double buffer introduced in Sec. 2.2.5, which makes the computation of
gradients impossible. Even if these activations are stored, the computation
of the gradient is memory-intensive, and even more so if the training is
performed with batching. Finally, both the forward and backward passes are
computationally intensive. Some MCU have a clock frequency thousands, if
not millions of times lower than the current CPUs and GPUs, in some cases,
the training algorithm could require more time than the delay between two
inputs. The training algorithm will also consume energy that can be scarce
if the edge device is battery-supplied.
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Chapter 3

Related Works

3.1 Deploying Efficient Deep Neural Networks

For more than a decade, the growth in the performance of DNNs has led to
the development of an increasing number of models meant to be executed on
edge, constrained devices. To fulfill the memory and computation constraints,
multiple methods have been employed, the earliest one including quanti-
zation, pruning, and other DNN optimizations [1], which achieve extreme
compression of well-known architectures, thereby reducing the computation
and memory requirements of running such algorithms, with little to no accu-
racy loss. Other techniques include distillation, in which a powerful model
trains a lightweight model to perform a similar task [61], or deep neural ar-
chitecture search [48], where the architecture itself is encoded with trainable
parameters, and in which the training loss includes criteria such as memory
or latency. Some frameworks have been developed to help data scientists
run DNN on edge devices, such as LiteRT (formerly known as TensorFlow
Lite) [62], ExecuTorch [63] and OpenVINO [64]. Other research focuses on a
family of DNNs, called EfficientNet [37], to reduce the complexity of DNNs
without impacting the model’s performance.

These techniques have been successfully applied to run CNNs for com-
puter vision applications on smartphones, such as the multiple versions of
MobileNets [65] [66] [67] [68], or on single-board PC like Raspberry Pis [69].

CNNs have been recently deployed to severly constrained MCUs for human
activity recognition [70] and ventricular fibrillation detection [71]. Some
other algorithms are deployed on constrained hardware modified to optimize
DNN inference, for eye detection [72] and smart cameras [73], for example.
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Deploying efficient DNNs is a preferred choice in IoT applications, as it
has been successfully applied in smart homes [74] for energy management
and environment monitoring [75].

3.2 IR Sensors Applications With Deep Neu-
ral Networks

IR sensors have been used for decades to record thermal images, as a com-
munication support and for health monitoring. Recently, IR images have
been coupled with DNN to perform various health monitoring tasks [76] [77]
and tumor detection [78]. CNNs have also been applied to analyze soil [79]
and materials [80] as well as face recognition [81] or defect detection [82], by
performing classification tasks on infrared images or infrared spectra.

3.3 On-device learning

Training DNN on constrained edge devices poses a challenge even more
complex than using an embedded DNN to produce inferences, as updating
the weights requires significant memory and computational capabilities, and
the use of non-batched training input can lead to catastrophic forgetting
[59] (see Sec. 3.3.1). Over the last few years, multiple algorithms have been
successfully tested for training embedded DNNs [2].

3.3.1 Updating efficiently the model’s weights

Some of the main techniques differ slightly from the usual backpropagation
and gradient descent. Recently, [83], [84], [85] implemented sparse update
algorithms to update a few selected layers, or the biases only. With this
method, memory requirements and gradient computations are decreased,
which enables training on constrained devices. These methods need to be
coupled with replay [60] to avoid catastrophic forgetting in a FSL setup, or
other techniques, as [86] proposes restoring stochastically a subset of the
weights after training.

Other alternative algorithms have been proposed to avoid the memory
or computation overhead of backpropagation. Sparse approximation [87]
limits the memory overhead but requires extensive computation. Multiplexed
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Gradient Descent [88] fastens the training of DNNs with a first-order ap-
proximation of gradients, while [89] uses a zeroth-order approximation and
[90] uses both. Rep-Net [91] uses transfer learning to carefully update the
embedded DNN. Minilearn [92] applies on-device learning, achieves important
memory and latency requirement reductions, and even improves the model
performance.

Other techniques can be applied to avoid catastrophic forgetting. [93]
leverages meta-learning while [94] explores self-synthesized rehearsal for Large
Language Models and [95], similarly to replay [60], continuously retrains
weights with already seen (compressed) inputs.

3.3.2 Protonets

Alternative algorithms rely on prototypes, which are average representations
of an input class [5]. In the previous examples, the DNN weights were
updated to adapt the model to new classes. Now, the model will not be
updated by itself, but instead, will be used to compute prototypes, an average
representation of each class in a low-dimensional space. The prototypes will
be used to compute the class. All Protonets are efficient algorithms to tackle
the challenges of device constraints, as the update of the prototype requires
less memory than the update of the model weights, and do not suffer from
catastrophic forgetting.

Four different protonets have been benchmarked by [5] in FSL setup:
Online Perceptron (OP), NCM, Streaming Linear Discriminant Analysis
(SLDA), Streaming Gaussian Naive Bayes (SGNB).

The first two algorithms directly use the prototypes and their distances to
the representation of a sample to classify it. Distances can also be normalized
to produce probabilities. They differ in the way the prototypes are trained.

In OP, an input z of class ¢ will update the prototype of class ¢ P; by
applying

P+ P+ f(z)

while the prototype P the furthest from f(z) will be updated with
P« P — f(z)

The NCM algorithm is even simpler, as the prototype is the average of all the
embeddings of inputs belonging to the same classes, it is further explained
Sec. 4.3.1. The NCM algorithm has been used for several years [4]. While
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being more accurate than OP [5], NCM requires the number of prototypes
to be stored and the possibility to compute accurate divisions.

SLDA and SGNB compute prototypes the same way NCM does, but also
rely on covariance matrices to classify embeddings. Alongside the prototypes
p;i, the SLDA algorithm stores a covariance matrix ¥ updated as

X+
c+1

with
A - G @) = p)(f() —p)"
C; -+ 1
with z an input of class ¢ and ¢; the count of inputs already used.

The matrix and prototypes are then used to produce a vector of probabil-
ities, according to [96], which requires inverting the matrix X

The SGNB is simpler, as it does not store a covariance matrix, but only
the variances (X’s diagonal).

In both cases, the matrix can be updated at each sample or computed
once. In the first case, the inverse matrix needs to be recomputed after each
update, which can be computationally expensive, while in the second case,
the matrix can be computed offline. In SGNB, the inversion is easier as it
only involves inverting each value on the diagonal. Compared to NCM, more
memory and computation are required, but performance can be better [5].
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Methods

This chapter focuses on describing the data (Sec. 4.1), device Sec. 4.2,
algorithms (Sec. 4.3), the training (Sec. 4.3.7) and testing of the DNN
(Sec. 4.3.8), and the implementation of the NCM running on the edge device.
The algorithm performance will be compared to and a traditional classifier
for accuracy and the replay algorithm [60] for continual learning, explained
in Sec. 4.4,

4.1 Dataset

The dataset used in this work consists of images recorded with the sensor
itself, to which a label representing the pose of the person being filmed by
the sensor is assigned. These poses, which are the N = 5 classes we want
our algorithm to predict, are the following:

1. Empty (the sensor is not filming anyone)

2. Standing (someone is standing in front of the sensor)

3. Right arm (someone is standing and raising the right arm)
4. Both arms (someone is standing and raising both arms)

5. Left arm (someone is standing and raising the left arm)

A sample from each class is shown on Fig. 4.1.
These data have been collected during multiple sessions of recording, in
different (but similar) environments with different ambient temperatures,
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leading to a small distribution difference between both two datasets that can
be visualized by showing the distribution of the prototypes’ and embeddings’
components.

In all recordings, the only hot object filmed is the person. The set of
training data and the set of validation data come from distinct recording
sessions, to mimic a real-life application, where the data used to train the
DNN comes from a different source than the data that will be classified or
used for training the NCM online.

Class 00_empty Class 01_standing Class 02_botharms Class 03_rightarm Class 04_leftarm

Figure 4.1: A sample from each class

4.2 Target device

The system on which the algorithm is tested, called MAUPITI, consists of a
customized IBEX core [97] and an array of 16x16 TMOS thermal sensors
measuring IR radiations at a frequency of 10 frames per second [98]. The core
has two 16 kB memories, one for instructions and one for data, from which
respectively 3.5kB and 1.5kB are used to extract the data from the sensor,
leaving 27kB available, 14.5kB for storing weights, biases, activations, etc. A
second core plays an intermediary role, receiving the code to be executed on
the IBEX core and writing its memory. This core also reads data from the
IBEX core’s memory to send them to the computer.

4.3 Algorithm

The selected algorithm to classify inputs and be on-device trainable with
high memory constraints is the NCM. It is one of the protonets presented in
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Sec. 3.3.2

4.3.1 Nearest Class Mean Classifier

The NCM is a Protonet, as described by [5]. Instead of relying directly on
the output of a DNN to classify inputs, we use the output as a representation
of the input in a space of low dimension and classify the input based on
distances to an average representation of each class (called a prototype).
Mathematically, the equations are very straightforward. For each class ¢, the
prototype F, is initialized to the null tensor 0,, and a counter n, is set to 0.
Then, for each new input z of class ¢, the prototype is updated as

. Fene+ [ (@)

P
ne+ 1

and
Ne ¢ ne+ 1

Which means that P, is the average tensor of all encoded inputs f(z).
To classify a new input z, we find the closest prototype to the encoding
of the input:

¢ = argmin(dist(P., f(x))
c=1..N

4.3.2 Distance

The NCM requires a distance metric to classify samples, but also to compute
the loss. Two distances have been tried:

1. The Fuclidean distance

N
dist(z, y) = (3 (2 — 9)*)*
i=1
For this distance, the square root can be omitted when looking for the
argmin.

2. The Angular distance

x.y

dist(z,y) =1— ————
]l {ly]
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It is in the range [0, 1]. When classifying, the computation can be
simplified as
ct = argmaxpc'f(x)
c=1...N ||Pc||
which can be computed with integers by multiplying the numerator by
a high number, for example 2'. This can be implemented in two ways:

o The first algorithm stores only the norms and the prototypes and
applies exactly the equation shown above.

15 . .
2|| P]TIC in memory and uses it
c

 The second implementation stores P, =
to fasten the computation, as

¢* = argmax(P..f(z))
c=1..N

which does not require a division to be performed.

3. The Manhattan distance:
N
dist(z,y) = > i — yi
i=1

4.3.3 The Deep Neural Network

The DNN used for this experiment has been defined by [99] and is made of
the following layers:

0. The input layer hosts a tensor of size 16x16, representing an infrared
image. Each value is an integer between 0 and 255.

1. A convolutional layer with 8 filters and a kernel of size 3x3, applied
without padding and with a stride of 1 in both directions. Its output is
a 14x14x8 tensor. It contains 80 parameters.

2. A batch-normalization layer, followed by a ReLU activation. It contains
16 parameters.

3. A convolutional layer with 8 filters and a kernel of size 3x3, applied
without padding and with a stride of 1 in both directions. Its output is
a 12x12x8 tensor. It contains 540 parameters.
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4. A batch-normalization layer, followed by a ReLU activation. It contains
16 parameters.

5. A maxpool layer with a pool size of 2x2, no padding and a stride of 2. Its
output is a 6x6x8 tensor. A Maxpool does not contain any parameters.

6. A convolutional layer with 8 filters and a kernel of size 3x3, applied
without padding and with a stride of 1 in both directions. Its output is
a 4x4x8 tensor. It contains 540 parameters.

7. A batch-normalization layer, followed by a ReLU activation. It contains
16 parameters.

8. A maxpool layer with a pool size of 2x2, no padding and a stride of 2. Its
output is a 2x2x8 tensor. A Maxpool does not contain any parameters.
The output is flattened to become a 1D-tensor of size 32.

9. A fully connected layer whose input is a tensor of size 32 and whose
output is the representation of the infrared image in the latent space,
used to compute the prototypes (if used to train the NCM) or to be
compared with them to classify the input (if used for inference). This
representation is a tensor of size p, the prototype size, which is a
hyperparameter. The layer contains 33p parameters.

Overall, the DNN contains 1208 4+ 33p parameters. The largest activations
are the outputs of the first two batch-normalization layers, with respec-
tively 1568 and 1152 components. Using the double buffer technique during
inference, removing the 48 parameters of the batch-normalization layers
fused with the preceding convolutional layers, and considering the 5(p + 1)
values reserved for the prototypes and counts, the algorithm finally requires
3885 + 38p variables.

4.3.4 Optimization

For the algorithm to run on the MCU, it needs to be optimized. To do so,
I used PLINIO [100], an open-source project developed by Politecnico di
Torino, and used to perform quantization and Neural Architecture Search.
After quantizing each layer with a PACT quantizer, some C files are created,
containing the code to execute inferences and training with the DNN. These
files are then compiled and are ready to be executed on the smart sensor.
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4.3.5 Loss

During the training phases described below, one of the two following losses
can be used. The Prototypical Loss (PL) and the Triplet Loss (TL) [101]
are both based on distances. The distance used can be either Euclidean or
Angular.

Prototypical Loss

The prototypical loss is very straightforward, as it is analogous to the
cross-entropy loss for normal classification. The main difference is in the
usage of part of the batch to compute prototypes; the other part is used to
compute the loss. For each of the N — k classes, the batch contains exactly
S support samples, used to compute the prototypes, and ) query samples.
The prototype of class ¢ is computed as:

1 S
Pczgszz:lf(fEC,S)

Then, the loss is computed over the () x M query samples as

N—k exp(dist(f<$c,qa PC))

1 Q
L=—-——— 1
(N =10 2 25 8 S5 cep(dist(f (10, PY)

Triplet Loss

The triplet loss is computed based on triplets. It’s an improvement over
the prototypical loss that explicitly tries to separate samples from different
classes. Here, the batch also contains the exact same number of samples in
each class. The triplet is selected as follows:

1. For each class ¢
2. For each combination a, p of samples from class ¢ (the positive samples)
3. For each sample n from another class (the negative sample)

4. If the distance between f(a) and f(p) is lower than the distance between
f(a) and the negative sample f(n) (minus the margin m), mark the
negative sample as a candidate
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5. Select one random negative sample f(n*) among all candidates, if None,
the pair f(a), f(p) is dismissed

Then, the loss is computed over the N; triplets with

L= > max(0.dist(f(a). f(p)) — dist(f(a). /(n)) + m)

t =1

4.3.6 Quantizer

The three linear quantization algorithms used to quantize different parts of
the DNN are presented below.

MinMax

The MinMaxWeight is a very simple linear quantizer used to quantize weights.
To each channel of a convolution layer, or each neuron of a fully connected
layer, a scale s is assigned. The real weights W are quantized to be stored as

W=|sxW|

where |a] is the integer part of a. Then, during the forward pass of an input,
an estimation of the real weight, W /s is used. As it is slightly different than
the real value, some performance can be lost. The value of s depends entirely
on the real values of W and the precision used to store the weights, which is
8 bits for our application.

PACT

The PACT Quantizer [102] has two or three parameters: a scale s and one
or two clamping values m and M, which represent the maximum value an
input can assume. For unsigned inputs, the lower clamping value is set to 0.
The output is computed as

y = |s x clamp(z,m, M) ]|

where clamp(xz, m, M) is the clamped value of x, which is m if x < m, M if
x > M and x otherwise. m (if not set to 0) and M are trainable parameters.
s can be computed from m, M and the number n of bits used to represent
a value, as 2" = (m — M)/s. PACT is used to quantize activations, which
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are inputs of hidden layers and also the outputs of the following layers. In
our case, n = 8. They are very close to the MinMaxWeight presented above,
but differ only in the usage of clamping. The reason behind this clamping is
that we do not know the maximum and minimum values that an activation
can assume, while for weights, it is known.

Bias Quantizer

The Bias Quantizer is as simple as the weight quantizer. The biases are
stored with a precision of 32 bits and the corresponding scale is equal to the
product of the scale of the input activation and the weights.

Quantized fully connected layer equation

For a complete, quantized, fully connected layer, if s,, s,, and s, are respec-
tively the scales of input, weights, and output, and m;, M;, m, and M, are
the clamp values of the input and output PACT quantizers, we obtain

syclamp(f/, Mo, Mo) = Sajsw(W-Clamp(Xa my, Ml) + B)

where A is the quantized version of any tensor A.

4.3.7 'Training
The training process is split into multiple steps:

1. The first step is called pretraining, using backpropagation. To the
DNN described Sec. 4.3.3, a dropout with a rate of 0.44 and a fully
connected layer are added. That new final layer is used to classify
the representations, as is usually done for classification tasks. The
fully connected layer takes as input a tensor of size p and returns a
tensor of size N — k. This step is used to initialize the DNN’s weights.
The reason is that a DNN classifier uses the last layer to determine
the probability that the last hidden activation belongs to one class
or another. This activation needs to be quite different for samples of
different classes. This activation is what we use as representation in
the latent space. For this step, a maximum number of 100 epochs is
used. Early stopping is implemented, as the training stops after 20
epochs without improvement. The ADAM optimizer is used alongside a
cross-entropy loss. Training samples are drawn randomly and grouped
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by batch of 64. The learning rate starts at 0.01 and is divided by 3 after
10 epochs without improvement.

. The second step is the main training phase, where backpropagation is
also used. The dropout and fully connected layer added during step 1
are removed. The same learning rate, optimizer, and early stopping are
applied. During this phase, one of the two losses, the triplet loss or the
prototypical loss, is used. One of the two distances is also used, and will
be in the NCM algorithm.

. Then, a first quantization step is applied. To all layers, a PACT quantizer
is used to quantize the input (except the first layer) and output. In
our case, we do not use a PACT for the first convolutional layer as
the input is the infrared image itself, which is already integers between
0 and 255. Then, as all our layers end with a ReLLU activation, the
minimum value an input can assume is 0, so m is set to 0. The s
and M parameters introduced in Sec. 4.3.6 are trainable. PACT is a
linear quantizer. A PACT quantizer is also applied to the output of
each layer, following the same algorithm. Because of the integerization
of the output, performance may be worse. The weights are quantized
using a MaxMinWeight quantizer and the biases with a BiasQuantizer,
explained above.

. After having partly quantized the model, we need to train it with
backpropagation one more time. The exact same training algorithm
is applied as step 2. When a model is quantized, the weights are less
precise and approximations are made during the forward pass, which
might lead to poorer performance. The QAT is used to mitigate the
performance loss by learning proper PACT quantization parameters and
a representation of weights robust to quantization.

. Our DNN is now fully trained; the weights will not be trained anymore.
We can fully integerize our model to let it be exactly the same algorithm
it will be once run on the MCU. There are two main differences with
the MPS model. First, the PACT quantifiers do not clamp anymore,
as we make sure the inputs are in the range [0, 255], they are indeed
unsigned integers represented with 8 bits. If we simplify the forward pass
of a quantized model by removing the clipping, we obtain the following
equation:

5,(Y) = 5,8,(WX + B)
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which can be rewritten as

SzSw 15, o

(WX + B)

=

To avoid computing *2*

, and also because we need to have an integer
representation of them we replace this term by an integer scale S and a
shift n, such that *2* is as close as possible to Qn, using a binary search.
Dividing by 2" is equwalent to right-shifting the bits of a number by n

positions, which is an operation that the MCU can do efficiently.

6. Once the DNN is quantized, we use it to compute the N — k prototypes
of the classes seen during training. These prototypes will be directly
used on the device to classify inputs in the corresponding classes. The
k remaining prototypes can be computed directly on the device.

7. Finally, we export the model to C files. Several template files can be
completed by extracting the weights, scales, prototypes, biases, etc.
from the DNN trained and quantized with Python. The produced code,
written in C, can read data from the IR array and classify it, using the
NCM algorithm. The code is compiled using riscv32-unknown-elf-gcc
[103], a cross-compiler targeting MCU with a RISC-V architecture and
without an operating system.

4.3.8 Testing

At the end of each training step, the performance of the algorithm is tested
over the evaluation dataset. In each test, we create an empty NCM and
use all the training data from the N — k classes to compute a prototype for
each class. In a FSL setup, we use a fixed number of instances from each
class; otherwise, we use all the training dataset to compute the prototypes.
Then, using these prototypes, we compute the accuracy of the algorithm.
We do the same operation but using all N classes, in order to compare the
performance of the model on seen and unseen data.

In reality, two codes are exported. We use the Spike simulator [104] on
one code to simulate it running on a RISC-V architecture. This code checks
correctness by computing the accuracy of the exported network before and
after training the k remaining prototypes, with 100 samples exported from
the training dataset. The other code is meant to run on the MAUPITT device.
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It includes reading the data from the sensor, classifying it, and training the
NCM. A failure in the compilation of the code indicates too high memory
requirements.

Then, the size of the DNN is measured by computing the necessary memory
to store the weights, activations, prototype and other variables necessary
for the classification algorithm. The size of instructions required to execute
the DNN is estimated by using the size command on the compiled code, to
which the same value obtained from the compilation of a code similar but in
which the DNN is not used is subtracted.

Finally, the latency of the algorithm is measured. To do so, the algorithm
is executed on the device, but by computing 20 and 100 times the DNN’s
forward pass and classification through the NCM. The time required to do
it, plus getting the values from the sensor, is measured. The values are then
used to compute the duration of one single classification.

4.3.9 Implementation

The embedded algorithm executed on the MCU already has N — k prototypes
computed, with the memory necessary to compute the k& remaining already
allocated. The number of samples used to compute a prototype is also stored.
When a new sample is to be classified, it is stored in a buffer array, and
another empty array is used. They will store alternately the activations. The
encoding of the prototype is then returned (it is, in fact, stored in one of the
two buffers). This encoding is classified by comparing the distances between
it and the computed prototypes. During testing, the output class and the
IR image are returned to the controlling computer for visualization. In a
real-life application, this class will be sent to a control unit to interact with
another system.

To perform the training, a real system would have one or several buttons
to specify which class is created or updated, and when. In our system, such
a button is not available, so the first 32 samples are used to compute one of
the k remaining prototypes. The encodings of these samples are summed
and saved in a temporary buffer, component-wise. The buffer is then divided
by 32 (which corresponds to a right shift by 5 increments) and saved in the
pre-allocated memory.
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4.4 Baseline

4.4.1 Tradtional classifier

The algorithm described above is meant to perform classifications of an IR
on 5 classes. This task can be easily tackled with a CNN whose last layer is
used to compute probabilities. The CNN used to compare its performance
with our NCM is the one used in the pretraining phase, so with the same
hyperparameters and loss as described in Sec. 4.3. Both algorithms will be
trained on all 5 classes of the training dataset and their accuracies over a
validation dataset will be measured and analyzed. The accuracy of the NCM
will be measured before the quantization, after the finetuning step.

4.4.2 Replay

Modifying a traditional classifier to take into account new classes is not an
easy task, as it requires adding a new neuron to the last layer. Then, the
DNN needs to be trained with new samples [60]. This algorithm can be
simulated offline by updating the DNN with random data from balanced
classes. However, this algorithm cannot be executed online, as the memory
requirements exceed the available memory. This replay training will be tested
offline in a FSL setup to simulate data scarcity. 5 techniques will be tried,
and compared with the NCM.

The comparison between the two algorithms will be done for multiple
numbers of shots, which is the number of samples for the new class (and the
old classes) used to train the DNN to recognize the new class.

The 5 techniques are:

1. Retraining all layers of the DNN

2. Retraining only the last layer without replay
3. Retraining only the last layer of the DNN

4. Retraining only the bias of the last layer

5. Retraining only the new neuron
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Chapter 5

Results and discussion

5.1 Training Hyperparameter Selection

The choice of the best model will be made by comparing the performances
of the algorithm trained with different hyperparameters, on the following
class exclusion setups:

 Class n°l (empty) is not seen during backpropagation training, the other
4 classes are.

o Class n°4 (right arm raised) is not seen during training, the other 4
classes are.

o Classes n°3 and n°4 are not visible during training; the other three
classes are.

In all cases, the (average) F1 score of the excluded class(es), and the
accuracy across all classes will be considered. The experiment will be
repeated several times to mitigate the effect of randomness (when sampling
batches and at initialization). The range of accuracy obtained with the best
and worst performers is measured.

The hyperparameters involved in the training of the DNN are summarized
Tab. 5.1.

Choosing the correct loss, margin, and distance is important to ensure
the NCM is as accurate as possible. The choice of prototype size will also
influence performance, but is constrained by memory requirements.
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Hyperparameter Value Analysis
Learning Rate (LR) le-2, divided by 3 after 10 epochs

without improvement
Early-stopping 20 epochs without improvement
Number of epochs max. 100
Training Phases might be skipped Sec. 5.6
Batch size 64
Support & query samples 10 & 30
Loss Triplet or Prototypical Sec. 5.1.1
Distance Euclidean or Angular Sec. 5.1.1
Margin To be tuned Sec. 5.1.1
Model architecture Described in 4.3.3
Prototype size To be tuned Sec. 5.1.2

Table 5.1: Hyperparameters

5.1.1 Loss, Margin and Distance

The selection of the loss, margin and distance has been carried out by
computing the Fl-score of the class not seen during training, if one, or the
average of the Fl-score of the classes not seen during training, if two. The
experiment was performed five times, using five different seeds to assess
robustness against randomness. The pretraining step has been skipped in all
experiments, and a prototype size of 64 has been selected.

The following combinations of loss, margin, and distances, defined in
Sec. 4.3.2 and Sec. 4.3.5, are tested:

o ATL25 is a triplet loss with a margin of 0.25 and an angular distance

metric.

« ATL50 is a triplet loss with a margin of 0.5 and an angular distance

metric.

o APLO is a prototypical loss with a margin of 0 and an angular distance

metric.

« APL50 is a prototypical loss with a margin of 0.5 and an angular

distance metric.

« EPL is a prototypical loss with an Euclidean distance metric.
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« ETL20 is a triplet loss with a margin of 20 and a Euclidean distance
metric.

o« ETL50 is a triplet loss with a margin of 50 and a Fuclidean distance
metric.

« ETL100 is a triplet loss with a margin of 100 and a Fuclidean distance
metric.

« MPL is a prototypical loss with a Manhattan distance metric.

« MTL20 is a triplet loss with a margin of 20 and a Manhattan distance
metric.

« MTL50 is a triplet loss with a margin of 50 and a Manhattan distance
metric.

The results of the experiment are shown Fig. 5.1. By comparing the results
on the 3 different setups, it is clear that the first one ("empty" class excluded
during training) is the easiest. The empty class is very different from the
other classes, so it can naturally be separated without being seen previously.
The second setup shows lower accuracy and Fl-score, as separating the "left
arm" class from the other, similar classes is harder without the DNN being
trained on. The setup with two excluded classes is even more challenging.

Fig. 5.1a and Fig. 5.1b show that the angular distance is more suited for
the task. The ATL25 achieved the best accuracy in all three setups: 89.3%,
86.2%, and 69.9%, demonstrating its ability to discriminate between classes.
The APLO, while getting lower accuracy, shows strong and consistent F1
scores for the new class(es), meaning it can classify correctly classes it has not
been trained on. However, the angular distance requires more computation
when training, as it requires computing a norm, with a square root. The
Manhattan distance with the Triplet Loss shows similar, but not robust,
performances. For these reasons, the ETL20, which shows the robustest
accuracies and Fl-scores, even if less accurate, is selected.

5.1.2 Prototype Size

The size of the prototype is very important, as it will influence the perfor-
mance of the algorithm and the memory and latency requirements. The
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Figure 5.1: Performance of different losses on 3 experiments

same experiments are performed with the ETL20 loss and various prototype
sizes, from 2 to 128. The result is shown on Fig. 5.2.
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Figure 5.2: Performance of different prototype sizes on 3 experiments

As Fig. 5.2 shows, the size of the prototypes generally increases the
accuracy and F1 score when one new class is added, from 75% to 80.6% for
the "empty" class, and from 82.0% to 85.3% for the "right arm" class. For
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the third setup, the prototype size of 32 shows the best results, with 66% of
accuracy and 56.4% of Fl-score. Unlike the various losses, all prototype sizes
lead to low accuracy ranges, as shown in Fig. 5.2c, which means the loss
choice is the factor influencing the robustness. If we consider the average
of the three setups as our selection criterion, then the prototype sizes of 64
and 32 are very close, with a difference of 0.1% on accuracy and 1.5% on
F1-score. However, using a prototype size of 64 leads to more robustness.

Finally, a DNN trained with the Euclidean Triplet Loss, with a margin of
20 and a prototype size of 64, is the best algorithm.

5.2 Influence of the datasets on the perfor-
mance

As explained in Sec. 4.1, both datasets have a slightly different distribution,
which is realistic since training an algorithm offline typically uses data from
a non-identical environment. Therefore, the algorithm needs to be accurate
even when presented with data from a different distribution. On Fig. 5.3, the
distribution of each component of the encodings obtained by a NCM with
a prototype size of 4 is shown. As explained, both distributions of training
and validation samples differ for most classes.

This distribution shift can lead to confusion among classes. Fig. 5.4a is
the confusion matrix computed with a NCM trained on all classes, clearly
showing that samples from the "right arm" class are regularly classified as
"both arms", and that samples from the "both arms"' and the 'left arm'
classes may be classified in the standing class. When the samples from
both datasets are mixed to obtain two validation and training datasets with
identical distribution, then the confusion matrix, shown in Fig. 5.4b, shows
a nearly perfect classification, with an accuracy of 98,73%.

Among the settings of the environment that influence the data distribution,
temperature plays a strong role, as 5.5 shows three images recorded in places
with 3 different temperatures. The sensor has been calibrated to give accurate
results at 20°C. If too cold, the target human is hard to see, and the image
is much darker. The arms cannot be perceived. At hotter temperatures, the
whole image tends to be red, and the target is again hard to see.
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Figure 5.5: Influence of the temperature on the recorded image

5.3 Assessing the Quality of the Separation

The confusion of the NCM when classifying similar inputs of different classes
can be visualized using the t-SNE algorithm [105]. Fig. 5.6 shows a bi-
dimensional representation of the encodings of the validation dataset and the
prototypes obtained by a non-quantized NCM trained with pretraining and
finetuning with the Euclidean Triplet Loss and a margin of 50, on two setups.
On the "empty" excluded setup, the four other classes are well separated,
leading to very little confusion. The empty class is separated too. Because
this class is much different than the other, it is not necessary to have it
during training. However, Fig. 5.6b shows that not using a class similar to
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other classes during training will lead to a poor separation of this class.
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Figure 5.6: Visualization of the encodings and prototypes using t-SNE

5.4 Memory Requirements

5.4.1 Regarding the Prototype Size

For a given distance, the only parameter that impacts the memory footprint of
the algorithm is the prototype size. The use of Euclidean or angular distance
can slightly influence the number of instructions, but this difference has not
been measured, as the angular distance has not been implemented. The
memory requirements have been plotted on Fig. 5.7 for multiple prototype
sizes p. The memory footprint can be divided into 5 parts:

o The activations correspond to the two buffers used to store alternately
the inputs and outputs of each layer. They always have the same size,
as the biggest activations are the first two, and the prototype size does
not influence the size of the activation buffers.

« Each prototype requires p values, stored on 4 bytes, which is the format
used for the output of a layer if it is not requantized. For the last layer,
it is not necessary to requantize the output.
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e The accumulator requires 8p bytes and is used to update a prototype.

o« The DNN'’s memory footprint corresponds to the weights and biases,
plus the scale factors used for quantization. The last layer’s number of
parameters is proportional to p.

o The text footprint corresponds to the compiled instructions, which are
stored in a different memory than the data on the considered platform.
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Figure 5.7: Memory requirements of the algorithm

As shown on Fig. 5.7, the critical part is the data memory, as the text
memory does not go higher than 7 kB. For p > 128, the required memory to
store the data exceeds the available 14.5kB, limiting the prototype size to 128.
The required memory is an affine function of p, as everything but the size of
activations and of the first layers is proportional to p. The shape of the text
memory requirement can be explained by inline and non-inline functions,
which is a process the compiler can use to optimize code execution. Instead
of writing a loop of instructions, it writes the same instruction multiple times.
Beyond p = 16, an inline function is likely written as a loop instead of as a
block of repeated instructions.

For small prototype sizes, it is clear that a more complex DNN, or images
with better resolution, could be used to potentially produce more accurate

results without exceeding the memory availability. This possibility will be
explored in future works.
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5.4.2 Regarding the Distance

As explained in Sec. 4.3.2, the implementations of different distances require
different variables to be stored. Tab. 5.2 shows the data memory overhead
necessary when using a distance different than the Euclidean one, with
respect to the number of classes N and the prototype size p.

Distance Name | Memory Overhead (byte)
Manhattan 0
Angular 1 AN
Angular 2 ApN

Table 5.2: Memory overhead for other distances

The Manhattan distance only requires the prototypes to be saved, like
the Euclidean distance, when the first angular implementation requires the
prototypes’ norms to be saved, and the second implementation requires
pre-computed intermediary prototypes to be stored, which have the same
memory footprint as the prototypes themselves.

5.5 Latency

5.5.1 Regarding the Prototype Size

The latency of the algorithm has been measured for several prototype sizes
and for the traditional classifier.

As Fig. 5.8 shows, the latency increases with the prototype size, with an
approximate rate of 0,023 ms per prototype size increment. Most of the time
is spent in the first layers of the DNN. The classification algorithms, whether
it is the NCM or the traditional one, have very similar latency, below 100ms.
As the sensor has a frequency of 10 measures per second, the NCM can be
used.

The latency of the training algorithm has been measured too, with a
latency overhead below 1 ms. In reality, to compute a new prototype with N
samples, then only (/N + 1)p operations are necessary on top of the DNN. If
backpropagation were used, the latency would go higher than 100 ms, as the
backward pass is usually twice to three times longer than the forward pass

[106].
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Figure 5.8: Latency of the algorithms

5.5.2 Regarding the Distance

The latency of the other distances has been measured for 5 classes and two
prototype sizes: 8 and 32. A comparison is shown Tab. 5.3. As expected,
when looking at the distance equations in Sec. 4.3.2, the latencies of the
Euclidean, the Manhattan and the second implementation of the angular
distances are almost equal, the Manhattan one being slightly faster. The
latency of the first angular implementation is only 50 to 70 ps higher than
the second implementation, so approximately 10 to 12 ps per class.

Distance | Latency when p =8 (ms) | Latency when p = 32
Euclidean 41,62 42,22
Angular 1 41,69 42,27
Angular 2 41,62 42,21
Manhattan 41,62 42,18

Table 5.3: Comparison of latencies of the classifying algorithm for multiple
distances and implementations
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5.6 Assessing the Relevance of All Training
Steps

As mentioned in Sec. 4.3.7, 3 training phases consist of updating the weights
of the DNN with the backpropagation and gradient descent algorithm. The
pretraining step utilizes a final linear classifier, while the fine-tuning step
employs the triplet loss to separate inputs of different classes. Finally, the
QAT step does the same, but after quantization. In this section, we assess
the utility of each step by comparing the accuracy achieved when skipping
one or more of them. The DNN is trained on the classes n°2, n°3, and n°4.
The accuracy of the NCM is measured on the 3 classes and on all classes,
including the classes n°1 and n°5 that are not seen during training. The
Triplet Loss is used with the Euclidean distance and a margin of 50. The
prototypes have a size of 64. Every other step is realized, so the DNN is
perfectly quantized and can be executed on the device. Each combination
of skipped phases is performed nine times to mitigate the effect of random
initialization and batches. The maximum, minimum, and average accuracy
obtained is shown Fig. 5.9.

100

A A
95 I 1 A “ -+ A A
Y 4 " 1 Y a Y 4
90 A A 4
A A
= A
S 85
>
§ 4
§ 80 Y
<
75 Y 4
v Min
\ 4 A Max
70 4 + Avg 4
—— Trained classes
—— All classes
65 T T T L1 T T
PT PT PT PT PT PT PT
FT FT f=s f= FT FT =
QAT QAT QAT QAT QAT QAT QAT

Training phases

Figure 5.9: Performance of NCMs trained by skipping one or several phases

Fig. 5.9 shows that the QAT step is essential to improve the performance of
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the DNN, however, it is not enough, as performing QAT on an untrained DNN
is not really efficient. The pretraining step, while expected to help initialize
the weights and biases of the CNN to produce class-separated prototypes,
does not actually provide any improvement in the NCM’s performance, the
performance being very similar. It even makes it less robust. Using only
pretraining is insufficient to produce a highly performant DNN, as fine-tuning
with the triplet loss yields better results.

5.7 Few Shot Learning

To verify if the algorithm can learn new classes with only a few samples, the
NCM’s prototypes are trained with different numbers of samples from each
class. The accuracy obtained by training on fewer samples should be lower
than when using all the training samples; however, this accuracy is expected
to reach its maximum above a threshold we are determining. We measure
accuracy obtained by computing prototypes from the fully integerized DNN,
using a balanced subset of data from each class. The network is trained
with the triplet loss and the Euclidean distance, with a margin of 50. The
prototype size is still set to 64. 3 exclusion setups are considered: Excluding
the class n°5, the classes n°1 and n°5, and finally excluding no classes.
The accuracy is measured across all classes, even the excluded ones. The
pretraining step is skipped.

Figure 5.10 shows the accuracy reached by the algorithm in a FSL setup,
for multiple numbers of shots and in 3 exclusion setups. In all 3 cases,
the accuracy reached in a 1-shot learning setup is lower by approximately
10%, compared to when all samples are used. In the simplest setup, where
all classes are used during training, two shots are sufficient to achieve an
accuracy comparable to that obtained with all samples. This result is also
very consistent, showing the NCM ability to perform with very few shots
on trained classes. In the more difficult setups, the performance grows until
reaching a plateau, 16 to 32 shots being enough to obtain the same results
as with all samples.

5.8 Comparison with Baseline

The algorithm we explained and analyzed is different than the traditional
CNN-based algorithm used for classification tasks. When the traditional
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Figure 5.10: Accuracy in FSL setup

algorithm uses a last layer to compute probabilities, we compute distances
to average encodings. This traditional algorithm is used as a baseline, as we
want to ensure our algorithm has performance on par with the traditional
one.

5.8.1 Performance on Classification

First, we want our NCM to be as accurate as the traditional CNN-based
classifier when trained and tested on all classes. To verify this, we trained
four different traditional classifiers, with the size of the input of the last layer
being 8, 16, 32, or 64. We also trained four NCMs with these prototype sizes.
As Tab. 5.4 shows, both algorithms reach similar performance, between 93.6%
and 95.6%, ensuring that using a NCM does not lead to lower performance.

5.8.2 Continual Learning

The algorithm used to train a new class when using a traditional classifier
seems simple, as it involves adding a new neuron to the last layer and
performing a few training epochs with data from this class. In fact, using
only data from this class can lead to catastrophic forgetting [59] and requires
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Algorithm Accuracy
NCM p=8 | 93.645%
NCM p =16 94.330%
NCM p =32 | 95.625%
NCM p =64 | 95.07%

Baseline p = 8 | 94.745%
Baseline p = 16 | 94.58%
Baseline p = 32 | 95.315%
Baseline p = 64 | 94.99%

Table 5.4: Comparison of the accuracy of the baseline and NCM algorithm

backpropagation and gradient descent, which cannot be executed on the
device, but can be executed on a computer, using Python. This method can
be applied to part of or to all of the DNN, using or not replay samples [60].
When using replay, samples from old classes are randomly chosen from the
training dataset. First, the left arm is not seen during the first training step
before being added, and then the right arm and the left arm classes are not
seen during the first training step before being added. The performance of
each of these algorithms and the NCM is shown on Fig. 5.11.

As we can see, the best algorithm in the case where two new classes are
created is training the full network with replay. When two classes are added,
this method is better than the other gradient descent-based methods, but
shows an accuracy 5 to 20% lower than the NCM’s. Anyway, it cannot be
implemented as the memory overhead of the backpropagation is too high.
Training the last layer only can be more easily applied to severely constrained
devices. The feasibility of this approach on our target device will be assessed
in future work. This algorithm gets results similar to the NCM; however,
this accuracy is reached after 20 to 30 epochs of training, which can be very
long and energy hungry on slow devices. This could be accelerated with a
better sampling algorithm for selecting the replay samples [60]. All other
algorithms are less accurate than the NCM in both cases.

66



5.8 — Comparison with Baseline

v Min + Avg A Max
—— Training full DNN —— Training bias of last layer = —— Training last layer without replay
—— Training last layer Training new neuron —— NCM

100
8 801
>
[}
C 60
3
19}
1%}
< 401 T

1 4 16 32 64
Number of shots
(a) One class added
100
' N

_. 807 A 1 A
2\2 A "“ A v A "u A
oy Y Y Y Y 4
C 60 4
=)
13
1%
<<

40 A

1 4 16 32 64
Number of shots

(b) Two classes added

Figure 5.11: Accuracy of the baseline and NCM algorithms when adding
one or multiple new classes

67



68



Chapter 6

Conclusion

This thesis focused on implementing a training algorithm for a DNN algorithm
to be executed on a severely constrained device. A NCM algorithm whose
DNN is trained using the triplet loss can be trained on a MCU with as little
as 32kB of memory. A thermal IR sensor collects an array of IR images that
are given to the DNN, whose output is used for classification, being compared
to the average output of each class. This average output, called a prototype,
can be trained and updated online, without forgetting the previously known
classes, storing replay data, or exceeding the memory availability.

The algorithm, when tested on training samples recorded from a real-life
environment, can reach up to 95% accuracy, when tested on all the classes
used to train the DNN. When tested on unseen classes, it may exceed 90%
on some specific setups, but consistently reaches more than 80% on difficult
setups. It struggles more on very difficult setups, when multiple, similar
classes are not seen during the training of the DNN. The NCM beats most
replay-based partial backpropagation algorithms that could be deployed on
constrained devices.

When this algorithm succeeds in training and classifying human poses
using a shallow CNN with four layers, this task can be considered very
easy, given what current DNN algorithms are capable of. For more complex
tasks, particularly those involving sensors with higher resolution, the memory
requirement can increase and exceed the available memory.

This work proved that performing on-device continual learning is possible
on severely constrained devices, using one specific, simple yet effective algo-
rithm, the NCM. This algorithm falls in the Protonet family, from which
similar algorithms can be used to perform similar tasks. Other losses may
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be used to train the corresponding CNN too. Training algorithms different
than Protonets, such as partial backpropagation, can also be applied on the
same device. This thesis compared their performance to the NCM on an
unconstrained device, but they may be applied on the MCU.

Finally, this work would benefit from being applied to other applications,
using the same or different sensors for other classification tasks.
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