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Abstract

Human Activity Recognition (HAR) plays an essential role in ambient assisted
living, healthcare monitoring, and smart home environments. Existing approaches
that rely on wearable sensors often face compliance limitations, while camera-based
systems raise privacy concerns and suffer from performance degradation under poor
lighting or occlusion conditions. To address these challenges, this thesis explores a
contactless, privacy-preserving sensing framework based on Frequency-Modulated
Continuous Wave (FMCW) radar.

This work investigates radar-based multi-class activity recognition and fall
detection using a 60 GHz MIMO FMCW radar and multi-dimensional feature
maps—Range-Doppler (RD), Range-Azimuth (RA), and Range-Elevation (RE). A
complete signal processing pipeline is developed to generate structured spatiotem-
poral radar representations. Unlike conventional methods that treat radar maps
as standalone images, this framework preserves their multi-dimensional structure
and leverages it directly within machine learning (ML) and deep learning (DL)
models.

Two datasets were collected in realistic indoor environments—a bedroom with
a single radar and a living room with a dual-radar setup—capturing a broad range
of daily activities and fall-related scenarios. Multiple ML and DL architectures
were evaluated, including Support Vector Machines (SVM), Multi-Layer Percep-
tron (MLP), Convolutional Neural Networks (CNN), Long Short-Term Memory
networks (LSTM), Convolutional LSTM (ConvLSTM), and hybrid CNN+LSTM
and ResNet+LSTM models. Their performance and computational cost were as-
sessed using cross-scene validation and leave-one-person-out schemes to examine
generalization across environments and subjects.

Experimental results demonstrate that integrating RD, RA, and RE feature
maps substantially improves recognition accuracy. In the bedroom dataset, the
ConvLSTM achieved a macro Fij-score of up to 98.05% for 4-class activity recog-
nition. For fall detection in the living room dataset, the proposed 3D CNN model
obtained 94.33% accuracy and a macro Fi-score of 93.5% using combined RA+RE
inputs. For 6-class activity recognition in the living room, the CNN+LSTM model
achieved an accuracy of 79.11% and an Fj-score of 76.09%, further improved to
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90.3% accuracy using a majority voting scheme.

Overall, the findings confirm that FMCW radar, combined with tailored spa-
tiotemporal DL architectures, offers an effective, privacy-preserving, and general-
izable solution for HAR and fall detection in indoor environments, supporting its
applicability in real-world ambient assisted living systems.
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Chapter 1
Introduction

Over the past decades, increasing the population of older adults has become a
significant challenge for most developed and developing countries [1]. By the end
of the year 2050, about 22% of the world population is expected to be over 65 [2].
This demographic shift leads to the emergence of diseases, such as neurodegen-
erative and non-communicable diseases, necessitating consistent patient monitor-
ing [3]. Research suggests that timely and appropriate interventions could reduce
the number of fatal incidents and hospitalizations of the elderly. However, consid-
ering existing resources and increasing demand for care, it is impossible to provide
suitable care for people in need, staying at home or other care facilities [2]. Remote
health and activity monitoring allows more people at home or nursing facilities to
access constant surveillance. Such systems can be used to measure a broad range of
physiological signs and recognize users’ activity [4]. In past studies, these systems
have been used to monitor a wide range of health issues, including Cardiovascular
and Respiratory system-related diseases, mobility-related diseases, Neurological
Disorders, and Diabetes [5].

Chronic diseases are a significant health concern for older adults, especially car-
diovascular diseases and diabetes. These conditions can significantly impact their
quality of life and healthcare needs [6]. However, these diseases can be prevented or
even mitigated through healthy lifestyle choices, including a balanced diet, regular
physical activity, and avoiding tobacco products [7,8]. These conditions signifi-
cantly limit mobility and physical activity in affected individuals, further impacting
their health and well-being [9]. Accordingly, monitoring physical activity can be
an effective way to identify potential issues and serves as a crucial indicator to de-
termine whether individuals are engaging in sufficient exercise to prevent chronic
diseases or exhibiting early symptoms of such conditions [10]. Also, previous stud-
ies highlight growing evidence that controllable factors such as physical activity,
social interaction, and cognitive engagement can delay or prevent dementia. Since
cognitive abilities are closely tied to independent living, monitoring activities that
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Introduction

boost cognitive function could be crucial for maintaining autonomy and delaying
hospitalization [11]. In other words, monitoring an individual’s physical activities
is useful across various domains, including rehabilitation, sports science, and early
detection of musculoskeletal or cognitive disorders, as well as in assessing fall risk
and balance [12]. The field of Human Activity Recognition (HAR) has emerged
as a highly active area of research over the last twenty years due to its significant
applications across various sectors, including robotics, healthcare, remote monitor-
ing, gaming, security surveillance, the educational sector, and Human-computer
Interaction (HCI) [13,14].

The activity recognition process involves identifying or detecting current activi-
ties based on data collected from various sensors [13]. Researchers divided activity
recognition into three subcategories: 1) action-based, 2) motion/gesture-based
and 3) interaction-based [14, 15]. Action refers to coordinating body movement
to accomplish a specific task, while gesture refers to moving parts of the body in
order to highlight speech. Interaction encompasses a range of activities typically
involving two or more participants. For instance, shaking one’s head to indicate
disagreement is a gesture, walking is considered an action, and having a conversa-
tion between two or people and engaging in fighting is an interaction [14].

In previous studies, various sensors were employed to capture human move-
ment. These sensors facilitate the precise and efficient recording of human activity.
Among the array of sensors available, two primary categories are commonly used
in movement analysis methods: wearable sensors and non-wearable sensors [16,17].

In the wearable category, individuals are required to carry sensors with them
as they engage in various activities. In past research, a wide range of sensors, in-
cluding accelerometer, gyroscope, barometer, and others, were utilized to measure
changes in acceleration during human body movements [2,18]. Although exten-
sive research [19-21] has been conducted on using wearable sensors for activity
recognition, there are some challenges in using such devices. For instance, some
people might refuse to wear them or need to remember to use them or recharge
their batteries. Wearable sensors can also be uncomfortable and tricky to wear all
the time, especially during activities such as bathing or sleeping, which might be
challenging for older adults. Also, slight differences in attachment sites can affect
accelerometers’ accuracy in evaluating gait parameters [22]. Although most wear-
able devices are affordable, the limitations mentioned above suggest the necessity
to explore other options for studying human activity thoroughly.

In recent years, attention has shifted towards the non-wearable approach, which
eliminates the need for individuals to carry or wear any sensors or devices. This
strategy entails installing sensors within the environment where activities occur.
These sensors then collect activity data, which can be analyzed for activity recog-
nition. This group of devices are more user-friendly since they do not impose
the burden of carrying them. Some examples of non-wearable sensors include
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infrared-based technologies, Ambient light communication technologies, computer
vision sensors, ultrasonic transmitters, and radars [6]. However, non-wearable sen-
sors face their own set of challenges [15]. For example, Video cameras can detect
and monitor the movements of elderly individuals, but concerns regarding pri-
vacy infringement may arise [17]. Additionally, Cameras for monitoring require a
clear Line of Sight (LOS) to the subject, and their performance can be affected
by environmental situations, such as light conditions [23] and clothing [24]. Other
non-wearable sensors have their limitations. For instance, Infrared sensors interfere
with sunlight, are susceptible to noise, and have limited working range [6].

It is also possible to use WiFi signals to detect and recognize human activities.
WiFi sensing leverages existing wireless communication infrastructure, thereby en-
abling cost-effective and straightforward deployment, which results in eliminating
the need for additional sensor installation and minimizing associated costs [25].
However, relying solely on WiFi for sensing presents challenges in daily life ap-
plication, robustness, and privacy. WiFi signals are sensitive to environmental
factors, leading to inaccuracies in sensing results, while privacy and security con-
cerns arise from the potential capture of sensitive information. Additionally, WiFi
is designed for wireless data transfer, not other applications. So, using this tech-
nology for other purposes can impact network quality significantly. Despite its
advantages, WiFi sensing requires careful consideration of these challenges to en-
sure reliable and secure operation [26].

Radars, on the other hand, provide enhanced privacy protection compared to
video-based methods, making them more comfortable for users. Also, radars can
capture motion even in low-light conditions [17] . Radar systems are classified into
two main types based on their waveform [27,28]: Continuous Wave (CW) radar
and impulse radar, each with distinct applications. Impulse radars are useful in
vital signs detection, gesture recognition, and human tracking. Conversely, CW
radar boasts a simpler architecture, facilitating easy system integration and lower
power consumption, making it appealing for mobile and portable applications [27].
While CW radar has been investigated for human activity classification in several
studies [29], its inability to measure absolute range and range resolution poses
challenges [30, 31].

CW radars can be further categorized into two types: Frequency Modulated
Continuous Wave (FMCW) radars and Single Frequency Continuous Wave (SFCW)
radars, also known as Doppler radars. SFCW radars operate based on the Doppler
phenomenon, where a frequency shift occurs when encountering an object. In con-
trast, FMCW radars transmit signals with varying frequencies and can also utilize
the Doppler effect [28].

Previous initiatives in crafting radar-based systems for motion analysis have
mainly concentrated on analyzing movements in a straight line to minimize the
angle of motion’s effect on micro-Doppler patterns [32-34]. However, straight-line
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movements are rare in residential environments, with individuals often moving un-
predictably. To bypass the issues related to the radar’s angle relative to the moving
subject, determining the individual’s velocity by tracking the shift in their loca-
tion over time (velocity = position/time) presents a viable solution. Employing a
Multiple Input Multiple Output (MIMO) Frequency Modulated Continuous Wave
(FMCW) radar system [35-37] offers the dual benefits of pinpointing subjects’
locations while also gathering micro-Doppler data. This dual capability makes
MIMO FMCW radar an ideal candidate for monitoring movement within homes
and recognizing a wide range of activities [38,39].

1.1 Motivation

The growing demand for continuous, reliable, and privacy-preserving monitoring
of older adults—particularly in indoor settings such as care facilities—necessitates
unobtrusive and scalable solutions. Although wearable sensors and vision-based
systems have been extensively explored for HAR, they often encounter challenges
related to user compliance, comfort, privacy concerns, and sensitivity to environ-
mental factors.

Radar-based HAR, especially with MIMO FMCW technology, presents a com-
pelling alternative. This research is driven by the potential of radar systems to
deliver accurate, contactless, and privacy-respecting activity recognition in realis-
tic indoor environments.

1.2 Research Goals

The overarching goal of this thesis is to investigate the feasibility, design consider-
ations, and practical limitations of human activity recognition using FMCW radar
in realistic indoor environments.

To achieve this, the work is guided by the following specific research goals:

e Design and implement a radar signal processing pipeline capable of converting
raw FMCW radar data into structured and informative feature representa-
tions.

e Develop and collect two realistic radar-based activity datasets in indoor en-
vironments, enabling the study of challenging and underexplored activity
classes.

o Evaluate and compare various ML and DL models—including classical clas-
sifiers, temporal models, and hybrid architectures—for both activity recogni-
tion and fall detection.
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o Analyze the generalization ability of trained models across spatial variations
and viewing angles to assess their robustness and transferability.

o Investigate model efficiency, computational complexity, and the feasibility of
ensemble techniques in the context of real-time or embedded system deploy-
ment.

1.3 Contributions

The publications listed below were derived from the research conducted in this
thesis. Some titles link directly to the main page of the corresponding paper.

o Fall Detection in Ambient-Assisted Living Environments Using FMCW
Radars and Deep Learning
Proceedings of the IEEE International Radar Conference (RADAR), 2025.

« FMCW Radar-Based Human Activity Recognition: A Machine
Learning Approach for Elderly Care
Proceedings of the IEEE Wireless Communications and Networking Confer-
ence (WCNC), 2025.

o Lightweight FMCW Radar Framework for Human Activity Recog-
nition under Limited Data Conditions
Submitted to Nature Scientific Reports, under review.

« Exploring Multi-View FMCW Radar Early-level Feature Fusion for
Human Activity Recognition
Submitted to 22nd Workshop on Context and Activity Modeling and Recog-
nition with AI - CoMoRe-AI 2026, under review.

1.4 Organization

The remainder of this thesis is structured as follows:

o Chapter 2: Provides background on radar fundamentals and human activity
recognition, including a literature review. It also includes a literature review
covering FMCW radar systems and ML and DL approaches relevant to the
field.

o Chapter 3: Describes the system methodology, including preprocessing, fea-
ture extraction, dataset collection, and ML /DL model design.
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Introduction

o Chapter 4: Presents the experimental evaluation results across the two
datasets, comparing ML and DL models across multiple activity recognition
tasks.

o Chapter 5: Summarizes the contributions, highlights remaining research
challenges, and discusses future research directions.
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Chapter 2

Background

This chapter provides an overview of the essential concepts and technologies that
underpin radar-based HAR. We begin by introducing radar fundamentals, includ-
ing the key principles and mechanisms that allow for the detection and tracking of
motion. This is followed by a detailed examination of Frequency Modulated Con-
tinuous Wave (FMCW) radar systems, which form the basis for the radar setup
employed in this research. Additionally, we review the existing body of work in
radar-based HAR, highlighting significant advancements in the field and how they
relate to the methods and objectives of this work.

2.1 Radar Basics

RADAR is the abbreviation of Radio Detection And Ranging [40]. Originally de-
veloped for military applications, radar technology has since been adopted across
numerous non-military domains, including HAR [23], human gait analysis [38],
vital sign monitoring [41], and the automotive industry [42], such as vehicle oc-
cupancy detection [43] and Door Open Warning Technology [44]. Radar is also
widely used in Unmanned Aerial Vehicles (UAVs) applications [45].

The fundamental principle of radar is to transmit electromagnetic waves and
receive their reflections from surrounding targets. By measuring the time delay
between the emitted and received signals, the system can determine the range
(distance) to the target. Additionally, if the target is moving, radar can estimate
its velocity by exploiting the Doppler effect [46].

In the following sections, we introduce the technical concepts needed to un-
derstand radar operation and classification. We then categorize radars based on
their operating frequency and signal type. This is followed by a detailed review of
key FMCW radar parameters, such as chirp structure, intermediate signals, and
bandwidth, along with explanations of how FMCW radar can measure distance,
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velocity, and angle with high precision. We also introduce important definitions
such as range resolution, velocity resolution, maximum detectable velocity, maxi-
mum angular field of view, and angular resolution [40].

2.1.1 Doppler Effect

The Doppler effect refers to the change in the frequency of a received signal com-
pared with the originally transmitted signal, caused by the relative motion between
the target and the radiation source. The direction of motion determines whether
the frequency shift is positive or negative. When the target moves toward the
radar, the perceived wavelength becomes shorter, resulting in a higher received
frequency. Conversely, when the target moves away from the radar, the reflected
signal has a longer wavelength and therefore a lower frequency [40]. Fig. 2.1 illus-
trates the Doppler effect.

closing target
o

ﬂ\

G

Radar

moving away target
O

//G\

Transmitted

Radar

Refelected

Figure 2.1: Ilustration of Doppler effect.

2.1.2 Millimeter Wave Radar

Radars can be classified based on various criteria, one of which is the frequency
band of the emitted signal. Millimeter Wave (mmWave) refers to electromagnetic
waves with wavelengths ranging from 1 mm to 10 mm, corresponding to frequencies
between 30 and 300 GHz [47]. One of the key advantages of mmWave technology
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is its ability to support compact radar designs. Because shorter wavelengths allow
for smaller antennas and electronic components, high-frequency mmWave systems
can be integrated more easily into constrained spaces or embedded within smart
furniture [48].

2.1.3 Pulsed-Radar Systems

Conventional pulsed radars emit a periodic sequence of pulsed waveforms. These
radars can determine the range (distance) of an object by measuring the time delay
between the transmitted and received signals [49]. Although pulsed radars offer
long operating ranges and are capable of measuring both the target’s range and
velocity [50], they are generally unsuitable for short-range measurement applica-
tions [49]. Moreover, they require high peak power to achieve sufficient average
transmitted power, which increases system complexity and limits their practicality
for low-power or compact sensing scenarios [50].

2.1.4 Single Frequency Continuous Wave (SFCW)

Unlike pulsed radars, this radar continuously emit electromagnetic signals with a
fixed frequency. CW radar can measure the radial velocity of the object by mea-
suring changes in the frequency of the received signal [28]. In order to calculate the
range of the object, it is necessary to calculate the time delay between transmit-
ting and receiving signals. As a result, unlike pulsed radar, SFCW radar cannot
measure the object’s distance [40].

2.1.5 Frequency Modulated Continuous Wave (FMCW)

In FMCW radars, the transmitted signal increases linearly in frequency over a fixed
duration. This is the key distinction between traditional pulsed radar systems and
SFCW radars, which continuously transmit a constant-frequency waveform [41].
As a result, FMCW radars can simultaneously measure the range, velocity, and
angle of a target [51]. Fig. 2.2 illustrates different radar waveform types. A typical
FMCW radar consists of several functional blocks, as shown in Fig. 2.3.

The ability to deploy multiple FMCW radars with only small spatial displace-
ment is another advantage of this technology [52]. This feature is particularly
beneficial in scenarios requiring full coverage of indoor spaces such as residen-
tial environments or long-term care facilities where multiple radar units must be
installed throughout the area.
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Figure 2.2: Various radars waveform illustration.
2.1.6 Range Measurement

In pulsed radar systems, the range of the object is calculated by measuring the
delay between the transmitted and received signal by the device. However, it is
impossible to determine the target’s velocity with this type of radar. In SFCW
radars, the frequency shift between transmitted and received signals is measured
by the device, and by using that, the speed can be calculated.

Despite SFCW Radars, FMCW radars can also measure the target’s distance [43].
In FMCW radars, each transmitted signal is a sinusoidal wave that starts at a
specific frequency (f.), then sweeps up to a higher frequency (f.) over a specific
duration (7). This signal is called a ‘chirp signal’, and a specific number of chirp
signals make one chirp frame [53,54]. Fig. 2.4a illustrates a sample chirp signal
amplitude over time and Fig. 2.4b shows the frequency versus time plot of a chirp
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Figure 2.3: FMCW radar block diagram.
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Figure 2.4: FMCW radar signal illustration in various domains.

We can calculate the slope of the sweep S, which is the rate of increase in the
frequency of chirp and is a constant parameter. It can be computed using the
following formula:

S=57 (2.1)

FMCW radar transmits a chirp signal through the transmitting antenna (7°X)
and captures signal reflected by objects with receiving antennas (RX). Fig. 2.5
displays the principle of a radar system.

these signals can be expressed with equations 2.2 and 2.3 [55]:

Xrx = sin (wrx + ¢rx) (2.2)

Xpx = sin (wpx + ¢rx) (2.3)

where Xrx and Xgx are transmitted and received signals, wrx and wgrx are
their initial frequencies, and ¢rx and ¢rx are their initial phases, respectively.
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Figure 2.5: Basic principle of a radar.

FMCW radars utilize a ‘mixer’, a 3-port device with two inputs and one output,
to combine the transmitted and received signals. The mixer creates a new signal
with a new frequency, which is the Intermediate Frequency (IF) or Beat Signal.
The maximum value of the intermediate frequency ( f;rmaz) depends on the radar’s
hardware [50]. The beat frequency is equal to the difference in the frequency
between two input signals, and the IF phase is equal to the difference between the
two input signal phases. So, the IF is a sinusoidal wave, which can be expressed
with the equation 2.4 [55]:

Xip = sin ((wrx — wrx) + (érx — Orx))

= Asin (27 fot + ¢o) (24)

Also, the IF signal can be seen only in the interval where transmitted and
received signals overlap (T). Fig. 2.6 illustrates transmitted, received, and IF signal
and its frequency:

In FMCW radars, a portion of the transmitted chirp is mixed with the received
signal by radar to produce a beat signal [56]. Also, the initial phase of IF signal

S

¢p equals to ¢y = 27 for, where the initial frequency is fy = ST = %i. In these
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Figure 2.6: Transmitted and received signal in FMCW radar.

formulas, 7 is the time delay between transmitting signal and receiving its reflection

by radar, d is the distance between the object and the radar, and C refers to the

propagation speed of the electromagnetic wave or speed of light, which is equal to
c

3% 10% and ) is the wavelength which can be computed using \ = o So, we can

rewrite the equation 2.4 as follows [50, 55]:

2d . 4rnd
X]F = Asin <27T8t+ ﬂ-)

= (2.5)

So, once the frequency of the received signal by radar is known, we can calculate
the distance d between the detected object and the radar using the following
formula [50, 53]:

d=" (2.6)

The above explanation pertains to the case of a single detected object. The
signal travel time varies if multiple objects are located at different distances. This
results in different frequencies for the IF signals from each object, allowing us
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to separate and calculate their respective distances easily [55]. This situation
necessitates using the Fast Fourier Transformation (FFT) for separating different
peaks, commonly known as range-FFT [55]. Fig. 2.7 illustrates multiple detected
objects by radar, resulting in multiple strikes in the IF frequency spectrum.

Frequency
A

£ +B

fC
y» Time
Objects at different
A distances
Frequency Spectrum
Transmitted Signal Reflected Signals from Different Objects

Figure 2.7: Multiple object detection using FMCW radar.
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Range Resolution

Range resolution is the minimum detectable distance between two objects [40].
Based on the FFT theorem, the minimum distinguishable frequency component in
an observation window T equals 1/7.. [50,55]. For FMCW radar with a bandwidth
(B), range resolution Rg.s can be determined using equation 2.7 [43,50,55]:

C
= — 2.7
RRes 2B ( )
So, if we increase the bandwidth, we will have a higher range resolution [57].
In BGT60TR13C radar, ultra-wide bandwidth of 5.5 GHz results in a very good

range resolution of approximately 3 cm [58].

2.1.7 Velocity Measurement

In order to classify the activity the subject is doing, it is necessary to calculate
the velocity of the subject, as well as its position. In the velocity measurement
process using a FMCW radar, the system must emit two chirps separated by a time
interval T = T + 7. Each chirp’s reflection is subjected to an FFT to determine
the target’s distance (range-FFT). While each chirp’s range-FFT will highlight
peaks at identical locations, the phases of these peaks will differ. The change in
phase between these two peaks is directly linked to the target’s motion over the
period T [55]. As a target moves a distance d in a time frame of T¢, the phase
of the reflected signal from this object will change, which can be calculated from
the equation 2.8:

AnV'ie
A

where V' is the velocity, and X is the wavelength. So, the velocity can then be
extracted using the formula 2.9 [53,55]:

Ay

 AnTe

However, this velocity measurement method relies on the phase difference be-
tween received chirps by radar and has inherent ambiguities. Accurate measure-
ment is possible only if |[A¢| < w. Beyond this range, the phase difference be-
comes unclear, leading to potential errors in velocity calculation. By rearranging

the formula above, we can find a condition for an unambiguous velocity measure-
ment (equation 2.10) [43,55]:

Ap = (2.8)

(2.9)

V< — (2.10)
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Furthermore, equation 2.11 informs us about the highest relative velocity (Vyaz)
that can be effectively measured within this system. It indicates that higher ve-
locities demand shorter intervals between chirp emissions [43].

A
- 2 2.11

This relationship underscores the trade-off between the measurement range and
the temporal resolution in chirp-based radar velocity detection systems.

The two-chirp velocity measurement technique has limitations when dealing
with scenarios involving multiple moving objects with varying velocities at the
same distance from the radar. Since these objects share the same range, their
reflected chirps exhibit identical IF. Consequently, the range-FF'T produces a single
peak representing the combined signal from all these objects at the same range.
It is impossible to differentiate their velocities using a simple phase comparison
technique [55]. To overcome this limitation and enable velocity measurement for
multiple targets, the radar system employs a set of chirps transmitted in sequence,
forming a chirp frame. This frame typically consists of N equally spaced chirps
(N > 2). This approach allows the system to differentiate between targets with
different velocities despite their identical range [50].

The processing involves using range-FFT on the reflected chirps, producing
N peaks with different phases corresponding to each object’s contribution. A
second FF'T, called Doppler-FFT, is then applied to the N phasors to distinguish
the objects (Fig. 2.8), with w; and w, representing the phase differences between
chirps [55].

Velocity Resolution

Velocity resolution is the minimum detectable change in the velocity of the object.
Discrete Fourier Transform (DFT) indicate that two frequencies, w; and ws, can be
resolved if Ap = ¢y — 1 > %’r N is the number of chirps in each frame, and T =
NT,. Given A¢ = WfTC, the velocity resolution (V.s) can be derived, showing it
is inversely proportional to the time frame (7%), as per equation 2.12 [50,55].

A
A 2.12
V> Vies o, (2.12)

2.1.8 Angle Detection

It is necessary to have the angle of the object, along with its range, to locate it
in a 3D space. An FMCW radar can estimate the Angle of Arrival (AoA) of a
reflected signal using at least two RX antennas separated by distance [. The angle
of arrival estimation relies on the principle that a slight change in the distance of
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] V)

Figure 2.8: Doppler-FFT to separate two objects.

an object causes a phase shift in the range-FFT or Doppler-FFT peak. A chirp
is transmitted from the TX antenna, and all antennae will receive its reflection.
Since there is the distance between two RX antennas equal to [, the reflected signal
must travel more distance equal to Ad = [sin(f) to reach the next antennas. This
difference results in a phase change between received signals. This phase change
is mathematically described in 2.13. Fig. 2.9 illustrates AoA and how distance
between RX antennas results in phase difference.

2w Ad
Ap =" (2.13)
A
Finally, the AoA (6) can be calculated from using equation 2.14:
Ao
0= i 2.14
arcsin — (2.14)

In this research, the distance between each two antennas is set as %, SO we can

modify the equation 2.14 and rewrite it as follows (equation 2.15):

§ = arcsin = (2.15)
7r

Similarly, and considering antenna placement in this radar, AoA relative to
the horizontal plane can be calculated by measuring the phase difference between
RX1 and RX3, denoted as azimuth, and AoA relative to the vertical plane is
called elevation, which can be estimated using the phase difference between RX1
and RX4 antennas.
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Figure 2.9: Phase difference between RX antenna.

The dependency of A¢ on sin(f) introduces nonlinearity, approximated by
sin(f) = @ for small §. This approximation improves estimation accuracy when 6
is small, as shown in Fig. 2.10.

Angle Estimation is most accurate at 6 close to zero

.. Estimation accuracy decreases as 6 approaches to 90°

Radar

Figure 2.10: Angle of arrival estimation in FMCW radar.

In other words, radar is more sensitive to changes in the AoA when the object
is placed precisely in front of the radar 6 = 0.

29



Background

2.1.9 Maximum Angular Field of View and Angular Res-
olution

The radar’s maximum angular field of view corresponds to the largest AoA it can
estimate, as illustrated in Fig. 2.11.

Radar

Figure 2.11: Maximum angular field of view.

The equation 2.16 provides the maximum field of view for two antennas spaced
apart:

A
Omaz = sin™' (= 2.16
sin () (216)
Usually, we choose | = % to get the largest possible angular field of view equal to
+90° [50]. Also, the angle resolution fg.s depends on the number of RX antenna,
and it is derived from the following equation [59]:

2
0p. . = —— 2.17
Res NRX ( )
where Ngx is the number of receiver antennas. However, an increasing num-
ber of RX antennas results in greater mathematical complexity and higher radar

costs [60].
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2.2 Related Works

Human activity recognition using radar technologies, particularly FMCW radar,
has emerged as a robust solution for capturing human motion without needing
wearable sensors. Recent advancements leverage sophisticated Machine Learning
(ML) techniques, ranging from Deep Learning (DL) architectures to innovative fea-
ture extraction methods, to enhance the accuracy and efficiency of HAR systems.
This section reviews pivotal studies that have contributed to the field.

Table 2.1: Summary of Research Papers.

Ref | Year | Radar Sample | # Activities | Features Model Best
Type Size Result
2020 | University - - Range-Doppler, 1D CNN-LSTM, | 93.4%
[61] o Cleegeny Range-Time, 2D CNN
Doppler-Time
2020 | TI 15 6 Micro-Doppler LSTM, Bi-LSTM 91%
[62] [TWR1642 Spectrograms,
Range-Time
Profiles
2021 | TI 8 6 Extract Range, | 2D-CNN, 3D-CNN | 7
[63] IWRG843ISK Doppler, and An- | (+ LSTM)
gle features with
Neural Network
2022 | University - - Micro-Doppler SVM 99.77%
[17] of Glasgow features con-
sidered as 2D
images
[2] | 2022 | University - - Time—Velocity im- | Improved VGG16 | 96.34%
of Glasgow ages fed to VGG16 | model
2022 | TI AWR | 19 3 Micro-Doppler im- | SVM, KNN 73.7%
[64] 1642 ages
2022 | TIWR1843 | 17 6 Point Cloud, | 3D CNN + LSTM 97.26%
[65] Range-Doppler
2022 | TI 10 4 Doppler, Range, | Transformer- 95.2%
[66] AWR1642 and Angle sig- | sequential-decoder
BOOST
natures as 2D | model
features, Range-
Doppler-Time
and Range-Angle-
Time signatures
as the 3D features
2022 | PulsON 14 9 Time-Velocity im- | 2D-CNN, GRUs 90.8%
[67] IPEID ages
2022 | TI 4 7 Spatial-Temporal | CNN 97.6%
[68] TWRG843ISK Point Clouds
2022 | University = - Range-Doppler- RD-CNN 96.5%
[69} of Glasgow Time
2022 | TI 60 GHz | 15 4 Time-Range- CNN-LSTM 76%
[70] FMCW Doppler
2023 | University - - Doppler Time | KNN 96.40%
[71} of Glasgow Map
2023 | AWR 1642 | 13 5 Micro-Doppler Residual-bi- 99.86%
[72] single-chip characteristic LSTM-attention
Hybrid Multi-
Network
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Ref | Year | Radar Sample | # Activities | Features Model Best
Type Size Result
2023 | University - - Doppler-time map | ResNet50, VGG16, | 93%
[73] of Cllesgery VGG19, Mo-
bileNetV2
2023 | TI 5 5 Range—-Angle, KNN, SVM, Ran- | 98.07%
[74] IWR6843ISK Angle-Doppler, dom Forest, Bayes,
Range-Doppler- Decision Tree
Angle
2023 | TI 5 5 Range-Velocity, DyLite-RADHAR 97.5%
[75] IWR6843A0) Range-Elevation,
Range-Azimuth
2023 | Infineon 14 1 Range-Doppler CNN+LSTM 96%
[76] BGT60TR13 Image
2023 | 5.8 GHz | 6 6 Micro-Doppler SimpleNet, 95.4%
[77] FMCW Images MobileNet-V2,
ResNet, DINN,
DIATRadHAR
Net, SqueezeNet
2023 | 5.8 GHz | 6,10 6, 5 Micro-Doppler Lightweight Hy- | 99.7%
(78] FMCW Images brid Vision Trans-
former
2023 | T1 1TWR | 10 4 Raw data, Dy- | LSTM, DTW 82%
[79] ) namic Time
Warping,
Unsupervised-
Encoded Level,
Supervised-
Encoded Level
2023 | TI 10 5 Micro-Doppler Transformer net- | 85-97%
[80] AWR1843 Time-Frequency work
map
2023 | University - - Time-Range Map, | CNN, Transformer | 97.5%
[81] of Cleegeny Micro-Doppler (parallel)
Map

Some researchers have focused on novel DL techniques to enhance the accuracy
and efficiency of HAR systems. Chen et al. [66] tackled the challenge of recog-
nizing continuous human motions with high similarity using a new Continuous
Human Motion Recognition (CHMR) algorithm called CHMR-HS and a modified
transformer-based learning model. By extracting and processing spectral-temporal
features as both 2D and 3D signatures, including Doppler, range, and angle sig-
natures (2D features) and Range-Doppler-time and Range-angle-time signatures
(3D features), their model achieved a 95.2% accuracy in distinguishing similar con-
tinuous motions, based on data from 10 subjects performing 3 groups of similar
activities. In this paper, authors installed a AWR1642-BOOST mmWave FMCW
radar from Texas Instruments (T1I) in the laboratory for data collection. Although
they achieved high accuracy in classifying similar activities, in order to assess the
proposed model better, it should be tested on more various activities.

Due to the power of transformer encoder-decoder networks for time-series data
analysis, researchers have increasingly focused on for HAR in recent years. Sha
Huan et al. [78] introduced a Lightweight Hybrid Vision Transformer (LH-ViT)
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that combines efficient convolution operations with the self-attention mechanism,
making it suitable for embedded applications. Using a micro-Doppler map as in-
put, they achieved an impressive 99.7% accuracy on a self-established dataset con-
taining reflected radar data of five daily activities recorded from ten subjects. This
dataset was recorded using a FMCW radar operating at 5.8 GHz with 400 MHz
bandwidth. Also, the performance of the model on a public dataset developed by
Guangzhou University was 92.1%. This dataset was collected from six subjects
performing six activities.

Another study [72] introduced a hybrid multi-network model that combines the
strengths of Residual Neural Network (ResNet), Bi-directional Long Short-Term
Memory (Bi-LSTM), and attention mechanisms. This model used micro-Doppler
features to classify five activities performed by thirteen subjects. Authors collected
data using TT AWR1642 single-chip FMCW radar in a laboratory environment,
achieving an accuracy of 99.86%. Despite its high performance, the complexity
and architecture of the model make it unsuitable for real-time implementation.

Jiang et al. [80] proposed a novel approach for HAR with transformer networks.
Their study involved a dataset collected using TI AWR1843-BOOST from 10 vol-
unteers performing five activities, including 1-Walking, 2-Standing still, 3-Standing
up, 4-Sitting down and 5-Falling down. Initially, micro-Doppler time-frequency
maps were extracted and mapped into a high-dimensional space. Then, the trans-
former multichannel attention mechanism was used to predict continuous actions.
The proposed transformer-based network utilized a feature encoding layer and an
Inception maximum pooling layer. The transformer network effectively recognized
activities, achieving the highest accuracy of 97.23% for walking, and the lowest
accuracy was 85.19% for squatting.

Gu et al. [81] present a lightweight DL model called RMPCT-Net, a multi-
channel parallel Convolutional Neural Network (CNN) and transformer network
designed for HAR applications using FMCW radar. The model architecture in-
cludes a dual-input system: one channel uses a CNN to extract spatial feature
information from the Time-Range map, while another processes temporal features
through transformer-based mechanisms from the micro-Doppler map. RMPCT-
Net achieved a remarkable average accuracy of 97.5% on the University of Glasgow
dataset.

Abdu et al. [17] used AlexNet, VGG16, and VGG19 pre-trained models to ex-
tract features from micro-Doppler signatures of the University of Glasgow dataset.
To refine the extracted features, they used a simple channel attention network.
The extracted features were fused using Canonical Correlation Analysis (CCA).
Finally, the fused features were fed to an SVM classifier, achieving a accuracy of
99.77%.

Triani et al. [73] leveraged the VGG19 architecture with transfer learning for
HAR. They compared the proposed method against traditional ML models, such as
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SVM and k-NN, and the combination of CNN and ML methods. The Doppler-time
map is extracted from a dataset provided by the University of Glasgow was fed to
various pre-trained models such as ResNet50-TL, MobileNetV2-TL, VGG16-TL,
and VGG19-TL. Then, SVM and k-NN algorithms were used as classifiers. The
best accuracy was achieved by combining VGG19 as a feature extractor and SVM
as a classifier, which was equal to 90%. The performance of the proposed model
was compared against feeding the Doppler-time map directly to SVM and k-NN
models and using solely pre-trained models for classification. Several researchers
have made innovative contributions in the preprocessing phase to improve model
performance. Nguyen et al. [77] presented a novel technique for enhancing per-
formance of HAR by separating micro-Doppler signatures associated with limb
movements from those of the torso using the ECM-Th-STFT separation algo-
rithm. This algorithm is based on the Energy Concentration Measure (ECM) and
a Th-STFT filter with a predefined threshold. They fed these novels extracted
features to six existing Deep Convolutional Neural Network (DCNN) models and
compared their performance. This method improved classification accuracy by
up to 6%, reaching 95.4% with the SqueezeNet model compared to the original
unseparated dataset.

Fei Xiang et al. [71] proposed a method that utilizes two-dimensional Principal
Component Analysis (2D-PCA) followed by two-dimensional Linear Discriminant
Analysis (2D-LDA) to process and classify human activity from FMCW radar data
efficiently. 2D-PCA is used to reduce the dimensionality of the Doppler Time map,
and the 2D-LDA algorithm is used to extract discriminant feature information. By
employing a k-NN classifier, the method achieves a recognition rate of 96.40% while
using the University of Glasgow dataset.

Senigagliesi et al. [64] explored the application of low-cost automotive radar
combined with ML techniques in HAR. First, Range-Doppler maps are extracted.
Then, authors evaluate four distinctive approaches for feature dimension reduc-
tion or further feature extraction, including 1- Using Principal Component Anal-
ysis (PCA) as feature selection followed by using SVM or k-NN as classifiers 2-
Parameter extraction from Range-Doppler maps followed by the aforementioned
ML algorithms as classifier. This step executed with and without applying a
Butterworth filter after parameters extraction step. Finally, the last approach is
feeding Range-Doppler maps to a VGG16 DL model. These methodologies were
tested using a dataset collected using FMCW TT AWR 1642 radar comprising three
different type of walking activities captured from 19 subjects who performed activ-
ities in hallway at Marche Polytechnic University. In their comparative analysis,
the parameter extraction method, particularly when augmented with a Butter-
worth filter for signal smoothing, consistently outperformed the others, achieving
a classification accuracy of up to 94.2% for activities, surpassing the more compu-
tationally intensive PCA and DL methods.
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Feature fusion, or combining features from various domains, is another approach
to increasing model performance and decreasing classifier complexity. Yu et al. [68]
proposed a framework for fall detection and HAR. First, they calculated the point
cloud of radar data. After applying the proposed denoising component, they in-
troduced a new voxelization technique. They also used a novel data augmentation
technique to address the commonly encountered issue of feature sparsity. Finally,
they employed a dual-view CNN for classification, achieving 97.61% accuracy for
fall detection and 98% for general activity classification. In this research, data were
recorded from four subjects performing seven activities using TT IWR6843ISK-
ODS evaluation board.

Huang et al. [65] recorded data from 17 subjects with IWR1843 TT FMCW
radar and proposed a method combining point cloud data with Range-Doppler
information to enhance accuracy. The authors used a 3D CNN + LSTM network
to process the point cloud data and a 3D CNN for the Range-Doppler data. This
fusion resulted in a 4D array that captures spatial and temporal features, improv-
ing model performance. Finally, they achieved a recognition accuracy of 97.26%
for classifying seven activities.

Ding et al. [61] proposed a hybrid neural network model that leverages mul-
tidomain radar information for HAR. The model combines 1D CNN, LSTM, and
2D CNN to fuse Range-Doppler, time-Doppler, and time-range maps calculated
from the University of Glasgow dataset. The authors fed Time-Range and Time-
Doppler maps to two parallel 1D CNN-LSTM models. Additionally, the Range-
Doppler map was fed to a 2D-CNN model. The output of these three models was
fused and went through classification modules consisting of a fully connected layer.
This multidomain fusion captures richer features, enhancing recognition accuracy.
The best accuracy achieved in this research was 93.3%.

Sheng et al. [75] used triple-view signal maps (Range-Velocity, Range-Azimuth,
and Range-Elevation) as input, integrating dynamic convolution and lightweight
shuffle net structures into the SlowFast framework. The study collected data
using TT IWR6843A0P evaluation board from 5 subjects in indoor and outdoor
environments while performing five different activities. The methodology showed
excellent performance, with 99.6% accuracy for outdoor and 97.5% for indoor
activity recognition.

Kim and Seo [69] introduced a novel approach, combining Range-Time-Doppler
(RTD) map with a Range-Distributed Convolutional Neural Network (RD-CNN).
This approach extends traditional 2-D time-Doppler maps to 3-D by incorporat-
ing range information, enabling the extraction of more comprehensive features re-
lated to human activities. The RTD map employs Continuous Wavelet Transform
(CWT) instead of Short-time Fourier Transform (STFT) to improve temporal and
spectral resolution, capturing both bulk motions and micromotions. The proposed
model was evaluated using the University of Glasgow radar dataset. This model
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achieved a recognition accuracy of 96.49%, significantly outperforming traditional
CNN models. Additionally, the model demonstrated robust performance even
with unknown geometries, maintaining an average accuracy of 86.96% in different
environments.

In another study on fall detection, Hsu et al. [76] introduced a light CNN model
to identify Range-Doppler images with significant speed and distance variations,
followed by a Bi-LSTM framework for fall detection. This method achieved an
accuracy rate of nearly 96%. In this paper, authors collected data from 14 individ-
uals, using Infineon BGT60TR13C radar in various locations, including an office,
a meeting room, and 3 different bathrooms.

Innovative strides in non-contact human posture detection are showcased in
the research by Liu et al. [74]. The proposed technique employs a combination
of range, Doppler, and angle information to identify and classify sitting postures
accurately. The authors proposed a novel method to correct angle measurement
errors typically caused by range FF'T bin shifts, enhancing the detection accuracy.
The extracted features from TT IWR6843ISK radar raw data of 3 subjects sitting
behind a desk were fed to various ML algorithms. Using an SVM model, they
classified five distinct sitting postures with an average accuracy of 98.07%.

Most DL models require large datasets to provide reliable results. However,
collecting data is challenging in some cases, particularly in the HAR domain.
Therefore, developing models that perform well with small datasets is necessary.
Yixin Zhao et al. [2] proposed an enhanced PCA combined with an improved
VGG16 model to improve HAR accuracy, especially with small-scale datasets.
They used a dataset from the University of Glasgow and extracted a Time-Velocity
map from the raw data. They then applied an improved PCA algorithm for feature
reduction and an enhanced VGG16 model for classification. This method achieved
an accuracy of 96.34% and reduced training time by 12.8%, demonstrating the
effectiveness of feature extraction and dimensionality reduction.

A group of researchers sought to change the data collection scenario to provide
a more realistic dataset. Zhu et al. [67] presented a HAR system using distributed
radar sensor networks combined with CNN-RNN architectures. They collected
raw radar data from 14 participants performing nine types of activities. During
the trial, participants could move along arbitrary trajectories within the specified
area, and activities were performed with seamless interactive transitions, making
it more reflective of daily human activity. The collected data were converted into
spectrograms for input into the neural network. Time-Doppler maps were fed to a
2D-CNN model for spatial feature extraction. Subsequently, a Bidirectional Gated
Recurrent (Bi-GRU) unit was used to capture the long- and short-term temporal
dependencies in the extracted features. Finally, a Fully Connected Neural Network
(FCNN) block made the final predictions. The best classification accuracy of
approximately 90.8% was achieved in this research.
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Mehta et al. [79] collected a dataset using TT IWR-1443 radar from ten sub-
jects who performed four activities (sitting, sit-to-stand, walking, and falling) ten
times each. They utilized Dynamic Time Warping (DTW) to classify activities
from an unequal series of radar frames. Two strategies were employed: using raw
radar array data and applying feature extraction with a Convolutional Variational
Autoencoder (CVAE) before classification. A gradient-based frame equalization
was applied to standardize the series length, followed by DTW for classification.
For equalized data, LSTM networks were used for post feature extraction. Various
feature extraction methods were explored, including supervised and unsupervised
CVAE, CNN, and PCA. The LSTM approach was also adapted for handling non-
equalized data, highlighting the flexibility and robustness of the method. For
unequal series, the DTW algorithm achieved a testing accuracy of 80.81% using
the Unsupervised Pixel-Level (UnSup-PLevel) method. The equalized series ap-
proach showed a slight improvement in performance due to the standardized frame
length. The LSTM models, especially when paired with supervised CVAE for fea-
ture extraction, outperformed other techniques, achieving the highest accuracy of
up to 85.74% for walking activity.
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Chapter 3

Indoor Human Activity
Recognition

Human Activity Recognition (HAR) is essential for monitoring daily activities in
long-term care facilities, as it enables detection of abnormal patterns such as pro-
longed inactivity or unexpected transitions that may indicate health issues. This
monitoring capability facilitates assessment of daily activity levels and triggers
appropriate interventions when necessary. The system provides real-time, unob-
trusive monitoring that supports timely caregiver responses, ultimately enhancing
quality of care and helping elderly individuals maintain their independence.

In order to analyze the impact of radar resolution, number of installed radars,
and environmental factors on the performance of the proposed approach for indoor
HAR, we established two distinct datasets. The first dataset was gathered using
a single radar installed in a bedroom at the Schlegel-UW Research Institute for
Aging (RIA) in Canada, collecting data from three participants performing various
activities. For the second dataset, two radars were installed in the RIA’s living
room, with data collected from eleven participants. While some activities overlap
between datasets, others are unique to each collection environment. Moreover, the
participants in the two datasets were entirely different, ensuring diversity in the
collected data.

3.1 Preprocessing

In this section, we detail the preprocessing steps applied to the raw radar data.
The data preprocessing steps are similar in both dataset. The only difference
lies in how the data from the two radars were combined in the second dataset,
which is described in the relevant section. Fig. 3.1 illustrates an overview of the
proposed preprocessing steps for radar-based HAR. In the following sections we
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provide detailed explanations of each module.
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Figure 3.1: Overview of the proposed preprocessing steps of FMCW radar-based
HAR.

In FMCW radars, a sequence of chirps is transmitted through the T'X antenna,
and each RX antenna receives the reflections of these signals. The data collected
by each antenna are stored in a vector, with dimensions C'x N x M, where C'is the
number of channels, NV is the number of chirps per frame, and M is the number of
samples per chirp. Each row, referred to as fast time, contains data from a single
chirp or range bin, while each column, referred to as slow time, contains data from
the same sample across different chirps [27]. In this study, we employ a radar with
three receivers; hence, the output raw data has 3 channels.

3.1.1 Blackman-Harris Window

To preprocess the collected data, spectral leakage in the frequency domain was
mitigated using the Blackman-Harris windowing function after removing the DC
bias [82]. The Blackman-Harris window, commonly used in signal processing for
spectral analysis and FFT, helps reduce spectral leakage by tapering the edges
of the signal before applying the Fourier Transform. This minimizes discontinu-
ities at the signal boundaries, which can otherwise introduce artificial frequency
components. Fig. 3.2 illustrates the three-term Blackman-Harris Window and
its transform [83]. The window function is defined as a sum of cosines (equa-
tion 3.1) [84]:

oo () e () oo () 00
w(n) = ag — aj cos N a9 COS i a3 COS N .

where n is the index of the sample (0 to N — 1) and N is the total number of
points in the window. The coefficients ag, a;,as and az determine the window
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Three-Term Blackman-Harris Window: M = 301
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Figure 3.2: Three-term Blackman-Harris window and transform.

shape. For the 4-term Blackman-Harris window, the default coefficient values are
set as follows [82]:

e ap = 0.35875
e« a; = 0.48829
e ay =0.14128
e a3 = 0.01168

3.1.2 Range-FFT Map

The range of an object can be determined by applying the FFT along the fast-time
axis, with the peak of the spectrum indicating the object’s distance, known as the
range-FFT [85]. In this context, let

zn] = Aej(wmn+¢m), 0<n<Nj (3.2)

be the finite-duration, discrete-time radar beat signal, where wip = ng, fir is
the beat frequency, F} is the sampling rate, and A e/?* captures the amplitude and
initial phase. Applying the discrete-time Fourier transform to z[n] in equation 3.2

yields

X(w) = Flzln]} = g_% zln)e (3.3)
= Aejd)IFPNS (w — (,L)IF> (34)



Indoor Human Activity Recognition

where

N-1 .
. sin(wN/2) . v
P — Jnw jw(N—-1)/2 3.5
(@) nzzoe sin(w/2) (3:5)

where wip = 27},@ is the discrete angular frequency, and Py(w) is the window
function with the length N, which influences the shape of the frequency response.
The Discrete Fourier Transform (DFT) converts the time-domain signal into the
frequency domain, revealing the frequencies present in the signal, which correspond
to the ranges of the objects. The DFT of the sampled signal X[n] is given by X|[k]
and is referred as range-FFT (equation 3.6):

Ns—1 _ :2mkn (25 27]']{'
X[k] = > znle™? N = Ae/"™ Py, N wr (3.6)
n=0 s
for 0 < k < N,. Each frequency bin k of the DFT corresponds to a frequency
fr = k% Since the beat frequency frp is proportional to the range (frr = %),
the corresponding range dj can be expressed as (equation 3.7):
c cF c c
dy = fo—==k—o =k—n =k— 3.7
= Jegs = Rasn, = Mast = Map (3.7

for 0 < k < N,, where T, = % is the length of the sampled IF signal in time and

B = ST. is the sweep bandwidth of chirp signal. Thus, each index k in the DFT
spectrum corresponds to a specific range d;, and is called range axis. The resulting
DFT, when plotted against the range axis, shows peaks at these indices, which
correspond to the range of detected objects.

3.1.3 Moving Target Indicator (MTI)

The remaining signal comprises two types of reflections. The first type is the
echo from stationary objects in the environment, known as clutter, which includes
reflections from walls, floors, beds, and chairs. The second type is the reflected
signal from a person engaged in daily activities. To eliminate the undesired effect
of clutter, a clutter removal algorithm must be applied. The MTTI algorithm uti-
lizes a linear filtering technique that effectively diminishes the signal strength of
stationary objects while preserving the signal strength of moving targets. Among
the various methods available for implementing an MTT filter in FMCW radar sys-
tems, the Finite Impulse Response (FIR) design stands out as a straightforward
and eflicient approach. At each time step, the peak absolute value across slow time
for every range bin is denoted as r; y,q,. The MTI filter output ¢; is then computed
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as a weighted average between this peak value and the previous MTI filter output
t;_1, using a weighting factor o (equation 3.8):

tl‘ = Q.7 maz + (1 - Oé).tl‘_l (38)

At the first time step o , the MTI filter output ¢; is initialized to zero. For each
range bin, the MTT filter removes the influence of stationary objects by subtracting
ti—1 from 7 ;as, producing the filtered FFT value r; fx (equation 3.9) [86]:

i pit = abs(Timar + (1 — @) .ti_1) (3.9)

This method of subtracting an estimate of the background stationary clutter
has been proven effective in eliminating stationary targets while having minimal
impact on slow-moving objects. FIR MTI filters are advantageous due to their
simple design and implementation, easily adjustable parameters, and linear phase

characteristics [86,87].

3.1.4 Range-Doppler Map

In the next step, we apply a second FFT on the vertical axis to obtain Doppler
information for each channel. Then, the information from all channels is integrated
to generate the Range-Doppler map. Fig. 3.3 illustrates range-FF'T and Range-

Doppler map.
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Figure 3.3: Range-Doppler map data processing.

3.1.5 Capon Algorithm

Multipath occurs when a signal travels through two or more distinct routes from
the transmitter to the receiver. The specific number and characteristics of these
multiple paths are influenced by the structure of the environment and the presence
of various objects [19]. Due to the characteristics of electromagnetic signals, the
amplitude of a multipath signal can sometimes become stronger than the amplitude
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of the actual reflected signal. As a result, it is impossible to accurately approximate
the accurate range profile of the object [19]. To determine the correct position
of the subject and generate an accurate range-angle map, we apply the Capon
algorithm to the Range-Doppler map.

The Capon algorithm is a filtering method that enables the estimation of the
AoA despite noisy and distorted echo signals. The Capon beamformer, also called
the Minimum Variance Distortionless Response (MVDR) beamformer, aims to
minimize the output power of an array while ensuring a distortionless response
at the desired angle. This approach is intended to improve signal detection in
environments with noise and interference. By minimizing the output power in
undesired directions, the algorithm reduces noise and interference, resulting in
improvements in the Signal-to-Interference-plus-Noise Ratio (SINR). Additionally,
this capability allows the Capon algorithm to perform as a spatial filter, focusing
on a particular direction while suppressing signals from other directions.

The Capon algorithm achieves this goal through an optimization approach to
minimize the beamformer’s output power. Capon proposed a novel approach in-
volving a constrained optimization problem. Mathematically, this is done by mini-
mizing the variance of the beamformer’s output. The objective is to determine the
weight vector W so that the signal gain of the desired direction remains below a
certain level (usually one). Also, it reduces the sidelobe effects but does not distort
or affect signal coming from the desired direction. The solution entails determin-
ing the beamforming weights that minimize the output power while satisfying the
constraint of maintaining a distortionless response. For simplicity, assuming the
target is a single point, for the transmitted signal s(¢), the received signal at the
[ antenna element, reflected by the target, z;(¢) can be modeled as follows:

vtg

ity ts) = by o2 ot e A (i 8] ety t) (3.10)

In equation 3.10, t; is fast time index and ¢, is slow time index. fast time index
refers to time delay between each chirp and slow time index is chirp cycle time.
by is channel’s mismatched magnitude, a; is channel’s mismatched phase and f;,
represents beat frequency. Also, v is radial velocity of target, \,,.. is wavelength
at start frequency, 7; is phase shift at {"* RX antenna, Aty (¢, ;) is residual phase
noise and ¢;(ty, t,) is additive noise. The frequency of the beat signal f;» generated
by an object located at a specific range in front of the radar is determined by:

fo = 5'7 (3.11)

In equation 3.11, the parameter S represents the rate of increase in chirp signal
frequency, ¢ denotes the speed of light and d is the distance of object from radar.
By rearranging the terms in equation 3.10 and combining the received signals

43



Indoor Human Activity Recognition

from all receiver channels into a column vector, it can be formulated as equa-
tion 3.12:

zi(ty,ts) =T -a(@) - y(v, fo,tr,ts) + ety ts) (3.12)

where

bl ceTn 0 0

0 0 b -eJ
eijl
a(f) =|
e_jTl

Y0, for g, 1) = IRt R A 17 )]

where 6 is AoA of the object in front of radar, I' depends on the channel gain/phase
mismatches, and a is the steering vector which depends on AoA. If there are
multiple targets at different ranges, each with a distinct beat frequency f;r , the
received vector is the sum of all individual vectors received from each target. This
can be mathematically expressed as expressed in equation 3.13:

sty ts) =T A(0) - Y (0, fortrots) + ety t) (3.13)

Here, A is an L % K matrix where K represents the number of targets, with
each column corresponding to the steering vector of a specific target. Matrix Y is
a diagonal matrix with its diagonal entries populated by elements of y(v, fy, s, %s).
In equation 3.13, the vectors A, v, and f, represent the unknown parameters as-
sociated with the targets. Among these, only the elements of A vary with receiver
channel indices, indicating that matrix y does not affect the covariance of x. Specif-
ically, the covariance matrix of x can be computed as equation 3.14, assuming the
additive noise is uncorrelated with y:

R=E{x-x"} =P.-T-A@®)-A"©0) T+ R, (3.14)

where P, denotes the power of the signals, R, represents the noise covariance
matrix, assumed to be positive definite under the assumption of independent noise
across receivers, The notation F{.} denotes the expectation, and 2" denotes the
Hermitian transpose of z, yielding the autocorrelation of the signal x.
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Autocorrelation quantifies how similar a signal is to itself at different time
points, with matrix R reflecting the self-similarity of signal z over time. the power
output ® can be formulated as equation 3.15:

® = w” Rw (3.15)

where ® represents the output power, where w denotes a complex weight vector
applied to the inputs of the array by the beamformer. The Capon beamform-
ing problem is subsequently posed as a constrained optimization task. R is the
covariance matrix of the input arrays and H is Hermitian transpose (conjugate
transpose). The Capon beamforming problem is then formulated as a constrained
optimization problem (equation 3.16):

min w? Rw, st. wa(fy) = 1. (3.16)

This problem can be solved using standard Lagrange multiplier. The La-
grangian L is defined as follows (equation 3.17):

L =w?Rw — MNwa - 1) (3.17)

where A is the Lagrange multiplier. Set differentiation L with respect to w* gives
optimal weight:

oL
ow*

Solving for W results in equation 3.19:

= 2Rw — Xa = 0. (3.18)

W=— (3.19)

In equation 3.19, R~! denotes the inverse of the covariance matrix R. The power
spectrum of the beamformer output at direction 6 represents the output power
when the array is oriented towards that direction, expressed in equation 3.20:

o) = w(G)HRw(H). (3.20)
Thus, the capon output power spectrum express as equation 3.21:

1

(f) = —— -
©) af’(0) - R=1 - a(0)

(3.21)

where 6 is a test unknown AoA.

In summary, equation 3.21 is derived from optimal beamforming principles ap-
plied to the covariance matrix R. For a comprehensive understanding, readers are
encouraged to consult textbooks or papers dedicated to array signal processing
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that delve into the Capon beamforming algorithm, such as this paper [49], as it
exceeds the scope of this study. The final 3D data structure, called the data cube,
is formed by combining the RD, RA, and RE feature maps.

3.1.6 Principal Component Analysis (PCA)

In order to simplify the models and improve activity classification performance,
we reduced the feature vector size before feeding it into the ML models. PCA
is a widely used statistical technique that transforms a set of correlated variables
into a set of uncorrelated variables, known as principal components [88]. The
primary goal of PCA is to reduce the dimensionality of the data while retaining as
much variance as possible. This process is crucial for handling high-dimensional
datasets, which are often difficult to analyze and interpret directly.

Suppose we have a dataset X = {z1,xs,...,x,} where each data point z, is
a vector in RP, and the dataset has been centered (i.e., the mean of the dataset
has been subtracted from each data point). The goal of PCA is to project these
data points onto a subspace of lower dimensionality M (where M < D) in such a
way that the variance of the projected data is maximized. The practical steps for
implementing PCA are as follows:

1. Standardize the Data
Before applying PCA, it is crucial to standardize the data (equation 3.22).
Standardization ensures that each feature contributes equally to the analysis,
particularly when features have different units or variances. This is done by
subtracting the mean and dividing by the standard deviation for each feature,
resulting in all features having a mean of zero and a standard deviation of
one.

xfjakd _ Y Hj (322)
gj

where x;; is the value of feature j for observation 7, y1; is the mean of feature

J, and p; is the standard deviation of feature j.

2. Compute the Covariance Matrix
Once the data is standardized, the next step is to compute the covariance
matrix S (equation 3.23). This matrix captures the extent to which variables
vary from their means relative to each other, summarizing the relationships
between pairs of variables in the dataset X.

1
S=—_XTX 3.23
N1 (3.23)
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where N is the number of observations, and X is the matrix of data points
with each row representing an observation and each column a feature.

. Compute Eigenvectors and Eigenvalues
Perform eigendecomposition on the covariance matrix S to obtain the eigen-
values and eigenvectors (equation 3.24):

where )\; is the eigenvalue and v; is the corresponding eigenvector.

. Sort Eigenvalues and Select Principal Components

Sort the eigenvalues in descending order and arrange the eigenvectors ac-
cordingly. The eigenvectors corresponding to the largest eigenvalues are the
directions of maximum variance.

. Select the Number of Principal Components

Choose the top M eigenvectors based on the cumulative variance explained by
the eigenvalues. Typically, you choose M such that the cumulative variance
is around 90-95%.

. Project the Data onto the New Subspace
Multiply the original data matrix X by the matrix B formed by the selected
M eigenvectors.

Z=XB (3.25)
in equation 3.25, Z is the matrix of transformed data in the new subspace.

We evaluated the performance of various numbers of principal components in

PCA and selected the value that yielded the optimal performance. PCA helps to
reduce noise and handle multicollinearity by transforming correlated features into
uncorrelated principal components. This simplifies the model, speeds up training,
and reduces the chance of overfitting. It also improves computational efficiency
and model performance.

3.2 Bedroom Dataset

In the first stage of this work, we propose a framework that leverages RD, RA,
and RE feature maps extracted from FMCW radars for indoor activity recognition.
This approach addresses the growing need for innovative Ambient-Assisted Living
(AAL) solutions that utilize HAR to support independent living for older adults.
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Such tools enable remote health monitoring, facilitate rehabilitation, enhance over-
all well-being, and allow for early detection of potential health issues. The radar
data is processed using the methodology detailed in Section 3.1 to generate RD,
RA, and RE maps, which serve as input features for various ML and DL models.
Fig. 3.4 illustrates the prototype system architecture for HAR implementation.
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Figure 3.4: Overview of the proposed framework for FMCW radar-based HAR.
SVM: Support Vector Machines, MLP: Multi-Layer Perceptron, NB: Naive Bayes,
DT: Decision Tree, RF: Random Forest, KNN: K-Nearest Neighbor.

3.2.1 Materials and Method

In the first step, we utilized a single mmWave FMCW radar system, the BGT60TR13C
developed by Infineon Technologies AG. This device transmits a sawtooth wave-
form at frequencies between 58-63.5 GHz using one transmitter and three receivers,
with an adjustable chirp duration. It employs a 12-bit Analog-to-Digital Converter
(ADC), providing a 74 dB dynamic range and up to 4 Mega Samples Per Second

(MSps). The radar configuration and key parameters are summarized in Table 3.1.
Due to its L-shaped antenna array, the device can estimate the horizontal angle

(azimuth) using the RX1 and RX3 antennas, the vertical angle (elevation) using
the RX2 and RX3 antennas, and the target’s velocity [58]. Fig. 3.5 shows the
BGT60TR13C radar, its shield, and their placement on the baseboard.

BGT60TR13C Shield

BGT60TR13C MMIC

Figure 3.5: BGT60TR13C radar device.
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Table 3.1: Radar configuration and specification.

Parameters Value
Radar Model BGT60TR13C
Start Frequency 61 GHz
End Frequency 62 GHz
Transmit Output Power 1-8 dBm
ADC Sampling Rate 2 Msps (Max)
Frame Rate 10
Chirps Per Frame 128
Number of Tx Antennas 1
Number of Rx Antennas 3
Range Resolution 15 cm
Max Unambiguous Range 4.8 m

Moreover, this radar has a relatively low output power (maximum 8 dBm), pos-
ing no negative health effects on humans [89]. Several studies have demonstrated
its performance and efficiency [90-94]. Additionally, the Federal Communications
Commission (FCC) has designated the 60 GHz band as a priority frequency range
for healthcare-related applications [95]. Fig. 3.6 illustrates the antenna arrange-
ment of the BGT60TR13C radar.

6.5 mm

3.5 mm

.................. Rf( 2 TX

2.5 mm 5 mm

- RX3 RX 1

2.5 mm

Figure 3.6: BGT60TR13C top view and antenna arrangement.

3.2.2 Data Collection

For data collection, the radar sensor was installed in a bedroom environment and
positioned to ensure optimal coverage, minimizing side-lobe interference and max-
imizing detection performance. It was mounted at a height of 210 cm and angled
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downward by 30 degrees. Three healthy subjects participated in the study, com-
pleting a total of 16 trials. Two subjects performed six trials each, while the third
performed four.

Each trial began with a one-minute recording of an empty room. Participants
then carried out a set of predefined activities: walking for 2 minutes, sitting on
a bed for 2 minutes, lying on the bed for 5 minutes, and lying on the floor for 5
minutes. In some sessions, participants also sat on a chair for 2 minutes. Data
were collected continuously, capturing both steady-state activities and transitions.

All transition movements were grouped into a single “Transition” class to sim-
plify classification and maintain data balance. The dataset consists of seven activ-
ity classes: Empty Room, Walking, Sitting on the Bed, Sitting on a Chair, Lying
on the Bed, Lying on the Floor, and Transition.

The data collection protocol was approved by the University of Waterloo’s Re-
search Ethics Committee, and all procedures complied with relevant safety and
ethical guidelines. The radar system used in this study is FCC-certified, ensuring
adherence to applicable regulatory standards. Fig. 3.7 illustrates the bedroom
layout and radar installation, and Fig. 3.8 shows an example of a participant per-
forming each activity along with the corresponding feature maps.

BGT60TR13C
Radar

Figure 3.7: Bedroom layout and radar placement in the home-like data collection
environment.
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Figure 3.8: Examples of a participant performing the activities with corresponding
feature maps. (A;) walking, (As) sitting on the bed, (Aj) sitting on the chair,
(A4) lying down on the bed, (Ajs) lying down on the floor, (Ag) empty room, (Ay)
transition.

3.2.3 Activity Recognition

A ML or DL model classifies each input data vector into one of the predefined
activity categories. In this work, we implemented several classical ML classifiers
as well as multiple DL architectures, and then evaluated and compared their per-
formance in recognizing human activities.

After extracting RD, RA, and RE feature maps from the raw radar data, as
described in Section 3.1, we applied PCA before feeding the data into ML models.
This step reduces dimensionality, accelerates training, and helps mitigate overfit-
ting.

In contrast, for DL models such as CNN, LSTM, and ConvLSTM, no feature-
reduction technique was applied. Instead, the data was segmented into sets of
five consecutive data cubes to balance temporal granularity with computational
efficiency. If all five cubes shared the same activity label, they were merged into a
single segment. If the labels within a segment differed (for example, three matching
labels and two differing), the matching cubes were discarded, segmentation was
paused, and resumed starting from the next sequence of cubes corresponding to
the subsequent activity. This procedure ensures label consistency across segments
and prevents merging conflicting activity annotations.

Model hyperparameters were determined using a systematic grid search strat-
egy, ensuring an effective balance between computational efficiency and predictive
performance. Any parameters not explicitly mentioned were left at their default
values.
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Support Vector Machine (SVM):

SVM is a powerful classification algorithm that separates data using an optimal
hyperplane and can model both linear and non-linear decision boundaries through
kernel functions [96,97].

e probability=True
» C=10

e kernel=’rbf’

Multi-Layer Perceptron (MLP):

MLP is a neural network architecture composed of an input layer, one or more
hidden layers, and an output layer. It processes data through feedforward con-
nections and is trained using backpropagation to minimize prediction error via
gradient descent [98,99].

e hidden_layer_sizes=(128, 64)

e max_iter=300

Naive Bayes (NB):

NB is a probabilistic classifier based on Bayes’ theorem, assuming feature indepen-
dence given the class label. Despite this assumption, it often performs well across
various tasks due to its simplicity and efficiency [100].

Decision Tree (DT):

DT segments data based on feature values, leading to classification or prediction
at the leaf nodes. They are non-parametric and can adapt to complex datasets
without a predefined model structure [101].

Random Forest (RF):

RF is an ensemble learning method that constructs multiple decision trees during
training and outputs the mode of their predictions for classification tasks or the
mean for regression [102].

e n estimators=100
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k-Nearest Neighbor (kNN):

k-NN is an instance-based learning algorithm that classifies data points based on
the majority class of their nearest neighbors [103].

e n_neighbors=9

Convolutional Neural Network (CNN):

The implemented CNN model consists of four 3D convolutional blocks with 8,
16, 32, and 64 filters, respectively. Each block uses a (3 x 3 x 3) kernel and the
Exponential Linear Unit (ELU) activation function, followed by a 1 x 2 x 2 max
pooling layer. The network includes two fully connected layers: one with 128
neurons and another with 7, 6, 5, or 4 neurons (corresponding to the number of
activities). Dropout is applied after each layer with rates increasing from 0.2 to
0.5, excluding the output layer. The model is trained using the Adam optimizer
with a cross-entropy loss function, a learning rate of 1 x 1073, and a maximum of
100 epochs with early stopping (patience = 10, min_delta = 0). The architecture
is shown in Fig. 3.9.

Conv3D (8x8x8) . Conv3D (16x16x16) .
_r’ Activation (elu) _.Ma)((:’:;:g)g SR Dropout (0.2) Activation (elu) _»Ma)((:’;)(z):(l;)g}D Dropout (0.3)
Kernel Size =3 x3 x 3 Kernel Size =3 x 3 x 3
Dense (*) ] Conv3D (64x64x64) . Conv3D (32x32x32)
Activation Dropout (0.5) A‘:Dtie::teio(l:z(zl)u) Flatten Dropout (0.5) éMa)((r:;::;)g}D* Activation (elu) Dropout (0.4) Ma;f:;}:;)QD‘- Activation (elu)
(Softmax) Kernel Size =3 x3 x3 Kernel Size =3 x 3 x 3

Figure 3.9: Architecture of the 3D CNN model implemented for activity classifi-
cation using the bedroom dataset.

Long Short-term Memory (LSTM)

The LSTM architecture consists of two Bi-LSTM layers with 256 units and a
dropout rate of 0.5. It includes two fully connected layers: one with 128 neurons
and another with 7, 6, 5, or 4 neurons (corresponding to the number of activities).
The model is trained using the Adam optimizer with a decay factor of 0.9 and
an initial learning rate of 1 x 1073, This learning rate is reduced to 10% of its
initial value at the 200th epoch. Training proceeds for up to 400 epochs with early
stopping (patience = 40, min_ delta = 0). The architecture is shown in Fig. 3.10.

Convolutional Long Short-Term Memory (ConvLSTM)

The ConvLSTM model includes a single ConvLSTM block with 32 filters, a (3 x 3)
kernel, and ReLU activation. This block is followed by batch normalization, 3D
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Dense (*)

_»Bidirectional LSTM (256) _Bidirectional LSTM (256)

Dropout (0.5) Dropout (0.5) Activation

(Softmax)

2 - ww——>  Flatten

........

Figure 3.10: Architecture of the LSTM model implemented for activity classifica-
tion using the bedroom dataset.

max pooling (1 x 2 x 2), and dropout (0.3). The output is then passed to a fully
connected layer with 64 neurons and ReLU activation, followed by dropout (0.5).
The final fully connected layer contains 7, 6, 5, or 4 neurons, corresponding to the
number of classes, with softmax activation. The model is trained using Stochastic
Gradient Descent (SGD) with momentum 0.9 and weight decay 1x107%, optimizing
a categorical cross-entropy loss. Training uses a learning rate of 1 x 107, a batch
size of 64, and a maximum of 100 epochs with early stopping (patience = 10,
min_ delta = 0). Fig. 3.11 shows the architecture.

i | ‘Conzlgggxgr? (§e21u>; 32) Batch MaxPooling3D 5 £ (0.3
2 s | [sna| [ N lizati (1x2x2) ropout (0.3)
N P Kernel Size =3 x 3 ormaftization

Dense (*) Dense (64)

Activation Dropout (0.5) Activation Flatten
(Softmax) (Relu)

Figure 3.11: Architecture of the ConvLSTM model implemented for activity clas-
sification using the bedroom dataset.

The ConvLSTM [104] architecture, which combines CNN [105,106] and LSTM [107]
networks, captures spatial relationships and temporal dependencies essential for
analyzing complex radar signals. Its effectiveness has been investigated in fall de-
tection [108], gesture recognition [109], and activity recognition [110]. The LSTM
component uses memory cells with gating mechanisms to regulate information
flow, enabling selective retention or discarding of state data. Conventional ML
models often struggle with the similarities between RD, RA, and RE maps, mak-
ing it hard to extract subtle patterns. DL models like CNN excel at uncovering
these features, and ConvLSTM leverages this ability to process intricate radar
data effectively [108,109].

Traditional LSTM excel at modeling temporal sequences but struggle to capture
spatial structures in radar data. Meanwhile, CNN extract spatial features but are
not designed for sequence modeling. A straightforward combination of CNN and
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LSTM models may fail to effectively capture both spatial relationships within
frames and temporal dependencies across consecutive frames [111]. ConvLSTM
addresses these limitations by integrating convolutional layers into LSTM gates,
allowing simultaneous modeling of spatial and temporal patterns. This makes
ConvLSTM particularly suited for joint spatial-temporal analysis, such as activity
recognition using FMCW radar signals [111] and human action recognition in
videos [112].

3.2.4 Experimental Setup

To validate our approach, we employed two distinct strategies. In the first strategy,
Cross-Scene Validation (CSV), we used 80% of the data from 14 of the 16 distinct
scenes (recording sessions) for training and reserved the remaining 20% for valida-
tion. The two remaining scenes were held out for testing. In the second strategy,
Leave-One-Person-Out Cross-Validation (LOPO-CV), we repeated the evaluation
three times—each time leaving one subject out—and computed the accuracy and
Fi-score. In each fold, 80% of the data from the two available subjects was used for
training, while the remaining 20% was used for validation. The unseen subject’s
data served exclusively as the test set. For example, in the first iteration, the first
subject’s data was held out for testing, while the second and third subjects’ data
were split for training and validation. In subsequent iterations, the roles were ro-
tated accordingly. Tables 3.2 and 3.3 summarize the dataset distribution for each
validation strategy.

Table 3.2: Activity sample counts under Cross-Scene-Validation approach.

Activity Training Validation Testing Total
Walking (A;) 6,495 1625 1250 9370
Sitting on the Bed (A») 5,130 1,285 705 7,120
Sitting on the Chair (Aj) 1,255 310 1,205 2,770
Lying Down on the Bed (Ay) 12,870 3,220 1,540 17,630
Lying Down on the Floor (A;) 9,810 2,455 3,040 15,305
Empty Room (Ag) 3,405 850 640 4,895
Transition (A7) 4,305 1,075 790 6,170
Total 43,270 10,820 9,170 63,260
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Table 3.3: Activity sample counts per subject in Leave-One-Person-Out Cross-
Validation approach. (A;) walking, (As) sitting on the bed, (As) sitting on the
chair, (A4) lying down on the bed, (Aj5) lying down on the floor, (Ag) empty room,
(A7) transition. (S7) subject one, (S2) subject two and (S3) subject three.

ACtiVity Sl SQ 53

Ay 3020 3800 2583
A 1800 2661 2684
As 1205 1568 -

Ay 5327 6142 6181
As 2993 6252 3082
Ag 1514 2030 1382
A; 1749 2170 2298

To evaluate the models, we applied a normalization technique in which the
mean and standard deviation were computed for each feature channel using the
combined training and validation data. These parameters were then used to nor-
malize both the training—validation subset and the test set, ensuring consistent
scaling and improving the learning process. All computations were carried out
on a high-performance laptop equipped with an AMD Ryzen 7 6800H processor,
32 GB of RAM, and an NVIDIA GeForce RTX 3060 GPU running Windows 11.
Model development was performed using Python 3.8.19, Scikit-learn 1.3.2, and
TensorFlow 2.10.

For a comprehensive evaluation, multiple metrics were reported for each valida-
tion approach. For ML models, accuracy along with weighted and macro-averaged
Fi-scores is presented. For DL models, accuracy, precision, recall, and the Fj-score
are reported.

3.3 Living Room Dataset

In the next stage of this study, two wall-mounted FMCW radars were deployed in
a realistic living room environment to monitor human activities. The radar signals
were processed using the methodology described in Section 3.1 to generate RD,
RA, and RE maps. The RA and RE feature maps were then used as input to a
3D CNN, forming the basis of a novel fall detection system designed to address
the growing need for scalable solutions in elderly care.

Although Doppler signatures are promising for fall detection, the Doppler sig-
nature of certain fall types can closely resemble other movements, such as sitting,
making differentiation challenging. Additionally, the Doppler signature of the
same activity may vary significantly when observed from different angles. Con-
sequently, relying solely on Doppler information can lead to a high rate of false
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alarms, reducing model reliability in fall detection tasks [113,114].

Beyond fall detection, the RD, RA, and RE representations were used to clas-
sify a broader set of activities performed within the living room environment. We
implemented and evaluated several DL architectures, including a 3D CNN, a mod-
ified ResNet18 combined with an Long Short Term Memory (LSTM) network, and
a hybrid CNN+LSTM model. The proposed system achieved high accuracy while
maintaining computational efficiency, making it well-suited for deployment in AAL
environments.

3.3.1 Materials and Method

In this phase, we utilized two mmWave FMCW radar systems identical to those
used in Section 3.2. To investigate the impact of deploying multiple radars, opti-
mize radar specifications, and maintain a balanced computational complexity for
the implemented DL models, we adjusted their configurations. Specifically, two
radars were installed in the living room, each positioned to capture data from a
different perspective. Table 3.4 provides a comprehensive summary of the radar
parameters employed in this phase.

Table 3.4: Radar configuration and specification.

Parameters Value
Radar Model BGT60TR13C
Start Frequency 61 GHz
End Frequency 61.5 GHz
Transmit Output Power 5 dBm
ADC Sampling Rate 2 Msps
Frame Rate 10
Chirps Per Frame 128
Number of Tx Antennas 1
Number of Rx Antennas 3
Range Resolution 30 cm
Max Unambiguous Range 4.8 m

3.3.2 Data Collection

To collect the data, two radar devices were installed at a height of 210 ¢cm above
the ground—one positioned above a window and the other above a television.
Both devices were tilted at an angle of 30° to maximize room coverage. Eleven
healthy subjects participated in the study, each performing nine specific activities
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within the living room. All participants performed every activity at each of five
predefined locations, as illustrated in Fig. 3.13.

The activities included standing, sitting on/getting up from a sofa, walking,
picking an object from a table, picking an object from the floor, sitting on a sofa,
lying on a sofa, sitting on the floor, and lying on the floor. Fig. 3.12 shows examples
of a participant performing each of the specified activities.

Data collection procedures were approved by the Schlegel-UW RIA and the
University of Waterloo. All activities adhered to the relevant safety protocols and
ethical guidelines. Sessions were segmented by both activity type and location to
ensure controlled, consistent, and reproducible data acquisition conditions.

Figure 3.12: Room layout indicating radars positions and activity locations. Ac-
tivities: (B;) lying on the floor, (Bs) lying on a sofa, (Bj) sitting on/getting up
from a sofa, (B,) picking an object from the floor, (Bs) picking an object from a
table, (Bg) sitting on the floor, (By) sitting on a sofa, (Bg) standing, (By) walking.
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Figure 3.13: The living room layout indicating radars positions and activity loca-
tions.

3.3.3 Fall Detection

As an initial step in analyzing the living room dataset, this study investigates
the binary classification of fall versus non-fall scenarios. For the non-fall class,
two activities are considered: sitting on a sofa and lying on a sofa. The fall
class is represented by lying on the floor. These activities were chosen due to the
relatively clear distinction between static and dynamic postures, compared to the
more challenging task of differentiating visually similar static activities.

Due to ethical and practical constraints, real fall data was not collected, as
inducing falls in human participants poses significant safety risks [115]. Instead,
lying on the floor is employed as a surrogate for fall events. This choice is supported
by the fact that lying on the floor is uncommon in residential care units and is often
associated with adverse incidents, including falls. Thus, detecting an individual
lying on the floor is a practical and reliable indicator of a fall [116]. Fig. 3.14
illustrates the architecture of the proposed system prototype.
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Figure 3.14: Overview of the proposed fall detection system.

Existing research supports this approach, demonstrating that the inability to
rise after a fall is a crucial marker of fall-related incidents, particularly among
older adults. For instance, one study indicated that approximately 80% of indi-
viduals aged 90 or older are unable to get up after a fall, with many remaining
on the floor for extended periods due to a lack of assistance or cognitive impair-
ment [117]. Additionally, most existing datasets for fall detection are collected
from young, healthy participants simulating falls. For safety, these simulations
are typically conducted on mattresses. However, in real-life falls, people often
instinctively try to break their fall with their hands—a reaction that is not ac-
curately reproduced in controlled trial settings. As a result, these datasets may
not fully represent real-world fall incidents, thereby limiting the generalizability of
the developed models [118]. By utilizing lying on the floor as an approximation of
falls, this methodology ensures participant safety while maintaining the relevance
of the dataset for practical applications, such as AAL environments where timely
intervention is crucial. The following sections explore the implemented DL model
in detail.

Deep Learning Model Architecture

After preprocessing the raw data, as described in Section 3.1, we construct RA and
RE feature maps by combining angular information from the Capon beamformer
with range information obtained through the range Fast Fourier Transform (range-
FFT). Fig. 3.15 shows examples of a participant performing each scenario, along
with the corresponding feature maps.
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Figure 3.15: Examples of a participant performing the activities with correspond-
ing feature maps.

Following the computation of RA and RE feature vectors, these vectors are
concatenated to form a 3D data structure referred to as a data cube. Every ten
consecutive data cubes are then merged, yielding a compact feature representation
that incorporates range, azimuth, elevation, and temporal information.

Given this 3D structure, a 3D CNN is employed to capture the spatial and tem-
poral dependencies present in the data cubes. The model architecture is illustrated
in Fig. 3.16.
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Figure 3.16: Architecture of the 3D CNN model implemented for fall detection
using the living room dataset.

The 3D CNN is particularly suited for this task, as it captures both spatial and
temporal dimensions across three axes, whereas traditional 2D CNN are limited
to spatial information only. This capability is crucial for our application, where
accurately classifying activities like sitting and lying requires capturing temporal
dynamics and spatial patterns within RA and RE maps. Moreover, due to the
inherent similarities between radar-based RA and RE maps, it is challenging to
distinguish subtle patterns and extract meaningful features solely through conven-
tional methods. DL models, such as CNN, help reveal hidden information within
these feature maps, allowing the model to generalize more effectively and perform
robustly in real-world applications. This robustness is essential, as it allows the
model to adapt to small environmental changes that may otherwise alter the fea-
ture maps, ensuring consistent performance across different settings. Our approach
aligns with prior studies that have demonstrated the effectiveness of 3D CNN in
applications like continuous hand gesture recognition [119], fall detection [120] and
human action recognition [121].

For training, a learning rate of 0.0001, a batch size of 8, and a maximum of
200 epochs were used. Early stopping was applied with a patience of 20 epochs
and minimum improvement set to 0 to prevent overfitting. The SGD optimizer
with momentum 0.9 and weight decay 1e-4 was employed alongside the Binary
Cross-Entropy loss function, which is appropriate for binary classification tasks.
These hyperparameters were selected through a grid search to identify the optimal
configuration.
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Data Normalization Prior to training, data normalization was applied to en-
sure consistency across the dataset and to facilitate model convergence. The
mean and standard deviation for each channel were computed from the train-
ing—validation set and used to normalize both the training—validation and test
sets.

Data Augmentation Several data augmentation techniques were applied dur-
ing training to enhance the model’s robustness and generalization. These augmen-
tations include Gaussian noise with a mean of 0 and a standard deviation of 0.1,
added with a probability of 0.5. Additionally, a time-warping (scaling) augmenta-
tion was applied, in which data samples were scaled by a factor randomly chosen
between 0.9 and 1.1, with a probability of 0.5.

Experimental Setup

The experiments were conducted on a system equipped with an AMD Ryzen
7 6800H processor, 32 GB of RAM, and an NVIDIA GeForce RTX 3060 GPU,
running Windows 71. Python version 3.8.19 and TensorFlow version 2.10 were
used to implement and execute the DL model. The model was trained and vali-
dated on data collected from 10 subjects, with 80% of the data used for training
and the remaining 20% for validation. An evaluation is conducted on data from
an additional, unseen subject to assess the model’s generalization capability. The
total number of samples used for the fall and non-fall scenarios is presented in
Table 3.5.

Table 3.5: Total sample count for each scenario.

Scenario Train Validation Test
Fall 96,870 24,220 12,500
Non-fall 196,920 49,240 25,000
Total 293,790 73,460 37,500

3.3.4 Activity recognition

In this stage, activities performed by the subjects were classified. Initially, nine dif-
ferent activities were classified using the 3D CNN model. Subsequently, the same
set of activities was classified using the ResNet+LSTM model. To reduce training
and testing times and to improve model performance, similar activities—such as
picking an object from a table and from the floor, standing, and Sitting on/getting
up from a sofa—were merged into a single class called In-place movement. As a
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result, the classification problem was reduced from nine classes to six. The six-
class classification was conducted using a modified ResNet+LSTM model (Sec-
tion 3.3.4), where adjustments were made to the final layer. Finally, the six-class
classification was also performed using a CNN+LSTM model. Fig. 3.17 illustrates

the architecture of the proposed system prototype.
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Figure 3.17: Overview of the proposed activity recognition system.

Deep Learning Models

Following the preprocessing of raw data, as detailed in Section 3.1, the RD, RA,
and RE feature maps were employed for the activity recognition experiments. This
contrasts with the fall detection experiment in Section 3.3.3, where only the RA
and RE feature maps were used. Fig. 3.18 illustrates examples of a participant
performing each specified activity, alongside the corresponding feature maps.
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Figure 3.18: Examples of a participant performing the activities with correspond-
ing feature maps. Activities: (B;) lying on the floor, (Bs) lying on a sofa, (Bj)
sitting on/getting up from a sofa, (By) picking an object from the floor, (Bs) pick-
ing an object from a table, (Bg) sitting on the floor, (B7) sitting on a sofa, (Bg)

standing, (By) walking.
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3D CNN In the first step, nine activities were classified using the proposed 3D
CNN model introduced in Section 3.3.3. For training, a learning rate of 0.001, a
batch size of 32, and a maximum of 100 epochs were used as hyperparameters. An
early stopping criterion with a patience of 10 epochs and a minimum improvement
(min__delta) of 0 was also applied.

Additionally, the number of neurons in the final dense layer was set to 9 to match
the number of activity classes in the task. All other hyperparameters remained
the same as those described for the model in Section 3.3.3.

Modified ResNet-18 + LSTM In this study, a hybrid DL model was devel-
oped, combining CNN for spatial feature extraction and Bi-LSTM networks for
sequential modeling. This design enables effective learning from spatio-temporal
data, such as sequences of video frames or structured time-series images. The
model is optimized for multiclass classification with nine target classes.

The CNN component is based on a ResNet-18 architecture [122], modified to
enhance computational efficiency. To lighten the ResNet-like CNN while maintain-
ing strong representational power, SeparableConv2D layers were employed instead
of standard Conv2D layers. Separable convolutions factorize a standard convo-
lution into a depthwise convolution, which applies a single filter to each input
channel, followed by a pointwise convolution that linearly combines the output
channels [123,124]. This decomposition significantly reduces both the number of
parameters and the computational cost compared to standard convolutions [123].

The CNN component processes spatial information, while the Bi-LSTM cap-
tures temporal dependencies by analyzing the sequence of CNN-extracted features
across time steps. Regularization techniques, including dropout, batch normaliza-
tion, and L2 weight regqularization, were integrated to prevent overfitting and to
promote generalization. Each convolutional operation is followed by batch normal-
ization to stabilize and accelerate the training process [125], and a ReL U activation
function introduces non-linearity. Additionally, MazPooling is applied early in the
network to downsample feature maps and reduce computational complexity while
preserving essential spatial features.

To apply the CNN independently at each time step, a TimeDistributed wrapper
is employed, ensuring that the same CNN weights are shared across all 10 frames,
yielding a sequence of CNN-processed feature vectors. After extracting spatial
features from each frame, a Bi-LSTM network with 256 hidden units processes the
sequence both forward and backward in time, capturing long-range dependencies
and contextual information from both past and future frames [126]. A dropout rate
of 0.5 is applied within the Bi-LSTM to regularize learning and prevent overfitting.

The output of the Bi-LSTM is fed into a sequence of dense (fully connected)
layers. The first dense layer consists of 256 neurons with ReL U activation, L2
regularization, batch normalization, and a dropout rate of 0.6. The second dense
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layer consists of 128 neurons, also employing ReL U activation, L2 regularization,
batch normalization, and a dropout rate of 0.6. These layers progressively map
the encoded sequence features into a lower-dimensional space while enhancing the
robustness and generalization of the model. Finally, a dense output layer with nine
neurons and softmax activation is used for classification into nine distinct classes.

For training, a learning rate of 0.001, a batch size of 32, and a maximum of 100
epochs were set as hyperparameters. An early stopping criterion with a patience
of 10 epochs and minimum improvement = (0 was applied. The SGD optimizer
with a momentum of 0.9 and a weight decay of Ie-4 was selected to optimize the
learning process. The model architecture is illustrated in Fig. 3.19.

ResNet18 + LSTM

Figure 3.19: Architecture of the ResNet-18 + LSTM model implemented for ac-
tivity classification using the bedroom dataset.

CNN-+LSTM The third model developed in this section is a hybrid DL archi-
tecture that integrates CNN for spatial feature extraction and Bi-LSTM networks
for temporal sequence modeling. Additionally, an attention mechanism was incor-
porated to enhance sequence learning by focusing on relevant temporal features.
The model was designed for multiclass classification with six target classes.

The CNN component processes individual data frames independently using a
TimeDistributed wrapper, ensuring shared convolutional weights across all time
steps. Each input sequence consists of 10 frames. To efficiently extract spatial fea-
tures, similar to the second proposed model, the CNN backbone employs multiple
stacked SeparableConv2D layers instead of standard convolutions. Each separable
convolutional layer is followed by batch normalization [125], a ReLU activation
function, and MazPooling to progressively downsample feature maps.

Specifically, the network applies three blocks of separable convolutions with
increasing filter sizes (32, 64, and 128 filters) and consistent kernel sizes of 5 x
5. After feature extraction, the output feature maps are flattened across spatial
dimensions for each time step.

The extracted spatial features are then passed to a two-stage Bi-LSTM mod-
ule. The first Bi-LSTM layer, configured with 128 hidden units, returns the full
sequence of outputs, enabling subsequent temporal attention modeling. An Atten-
tion layer is then applied to dynamically weight the temporal features by learning
the importance of different time steps. Following the attention mechanism, a
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second Bi-LSTM layer with 128 hidden units aggregates the sequence into a fixed-
size context vector that captures bidirectional temporal dependencies. Dropout
regularization with a rate of 0.5 is applied to both BiLSTM layers to mitigate
overfitting.

Finally, the output of the sequence modeling module is passed to a fully con-
nected dense layer with six neurons and a softmax activation function, performing
classification into the six target activity classes.

For training, a learning rate of 0.01, a batch size of 32, and a maximum of 700
epochs were used as hyperparameters. An early stopping criterion with a patience
of 10 epochs and minimum improvement = ( was applied to terminate training
if no improvement was observed in validation loss. Optimization was performed
using the SGD optimizer with a momentum of 0.9 and a weight decay of Ie-4 to
promote efficient and stable convergence. The model architecture is illustrated in
Fig. 3.20.
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Figure 3.20: Architecture of the CNN 4+ LSTM model implemented for activity
classification using the bedroom dataset.

Experimental Setup

The proposed models were trained and validated on data collected from 10 sub-
jects, with 80% of the data used for training and the remaining 20% for validation.
The evaluation of the models was conducted using data from the remaining, unseen
subject to assess and ensure the models’ generalization capability. All procedures
were executed on the same PC described in Section 3.3.3. The total number of
samples for each activity is presented in Tables 3.6 and 3.7.
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Table 3.6: Activity sample counts for 9-class classification.

Activity Label Training Validation Testing  Total
Lying on the floor (By) 97,240 24,310 12,040 133,590
Lying on a sofa (By) 96,340 24000 12,500 132,930
Sitting on/getting up from a sofa (Bj) 94,990 23,750 12,500 131,240
Picking an object from the floor (By) 54,920 13,730 6,500 75,150
Picking an object from a table (Bs) 55,280 13,830 6,500 75,610
Sitting on the floor (Bs) 96,010 24010 12,500 132,520
Sitting on a sofa (By) 100,580 25,150 12,500 138,230
Standing (Bs) 99,370 24850 12,500 136,720
Walking (By) 95,370 23,850 12,500 131,720
Total 790,100 197,570 100,040 1,087,710

Table 3.7: Activity sample counts for 6-class classification.

Activity Label Training Validation Testing  Total
In-Place movement (C1) 304,590 76,150 37,980 418,720
Lying on the floor (Cs) 97,240 24,310 12,040 133,590
Lying on a sofa (C'3) 96,340 24,090 12,500 132,930
Sitting on the floor (C}) 96,010 24,010 12,500 132,520
Sitting on a sofa (C5) 100,580 25,150 12,500 138,230
Walking (Cj) 95,370 23,850 12,500 131,720
Total 790,130 197,560 100,020 1,087,710

3.4 Performance Metrics

The performance of the proposed models are assessed using several key metrics:
accuracy, precision, recall, Fij-score, and confusion matrix. These metrics provide
a comprehensive evaluation of the models’ classification performance and reveal
patterns of classification errors.

Accuracy quantifies the overall correctness of the predictions by accounting for
both True Positive (TP) and True Negative (TN) relative to the total number of
predictions made. It is calculated as the ratio of the sum of TP and TN to the
total number of cases, which also includes False Positive (FP) and False Negative
(FN), as defined in Equation 3.26:
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TP +TN
TP+ FP+TN+ FN

Precision quantifies the accuracy of positive predictions made by the model. It
is calculated as the ratio of TP to the sum of TP and FP, emphasizing the quality
of positive predictions. A high precision value indicates that the model produces
few False Positive (FP), while a perfect precision of 100% is achieved when no FP
are present. The formula for precision is defined in Equation 3.27:

Accuracy = (3.26)

TP
Precision = ———— 2
recision TP EFP (3.27)

Recall represents the model’s ability to correctly identify actual positive cases.
It is calculated as the ratio of TP to the sum of TP and FN, emphasizing the
model’s sensitivity. A high recall value indicates that the model effectively min-
imizes FN, ensuring that most positive instances are detected. The formula for
recall is defined in Equation 3.28:

TP
RGCCL” = m (328)

The Fi-score provides a balanced assessment of the model’s performance by
combining precision and recall into a single value. This metric is particularly
useful when the class distribution is imbalanced, as it offers a more informative
evaluation than accuracy alone. The Fj-score is defined as the harmonic mean of
precision and recall, calculated using Equation 3.29:

Precision X Recall
F — =2 3.29
L seore * Precision + Recall (3:29)

The weighted Fi-score accounts for the number of instances in each class, while
the macro-averaged Fi-score treats all classes equally, making it particularly useful
for assessing performance on imbalanced datasets.

The confusion matrix is a widely used tool in classification tasks, providing
a detailed summary of model performance by displaying the counts of TP, FP,
FN, and TN. It offers insights into how well each class is correctly predicted and
highlights the types of misclassifications that occur, making it a valuable resource
for performance analysis.



Chapter 4

Experimental Evaluation
Result

This chapter presents the experimental evaluation of the proposed radar-based
HAR system. The performance of various ML and DL models is assessed using
the two collected datasets. The evaluation includes multi-class activity recognition
and binary fall detection, explored under different feature representations and
model architectures. Results are reported using standard performance metrics and
analyzed to highlight system strengths, limitations, and generalization capabilities
across diverse indoor scenarios.

4.1 Bedroom Dataset

This section presents the experimental results obtained using the Bedroom Dataset,
which was collected in a realistic indoor environment and includes several daily ac-
tivities performed by multiple subjects. A range of ML and DL models is evaluated
for multi-class activity classification. The experiments aim to assess model perfor-
mance, examine feature representation effectiveness, and investigate how reducing
the number of target activities affects classification accuracy in this controlled
setting.

4.1.1 Experimental Results

We evaluated the performance of several ML classifiers for recognizing different
human activities using radar-derived features. The classifiers were trained and
tested on reduced feature vectors extracted from RD, RA, and RE maps under
the CSV protocol. To optimize dimensionality reduction, we tested multiple prin-
cipal component settings in PCA and selected 100 components, which provided
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the highest overall accuracy. Detailed performance metrics for each classifier are
presented in Table 4.1.

Next, DL models including CNN, LSTM, and ConvLLSTM were trained and
evaluated using combined RD, RA, and RE (RD+RA+RE) feature maps across
various activity sets under CSV. We further analyzed ConvLSTM performance for
individual feature maps and pairwise combinations. To evaluate generalization to
unseen subjects, we also tested ConvLSTM under the LOPO-CV protocol using
the combined RD, RA, and RE features.

Table 4.1: Comparison of Accuracy and Fij-scores for different machine learning
classifiers across varying activity sets. NB: Naive Bayes, DT: Decision Tree, RF:
Random Forest.

ML-based Activity Classification
SVM‘MLP‘ NB ‘ DT ‘ RF ‘KNN
‘Weighted Fj-score| 70.82 | 68.95 |30.14|50.31|54.65| 51.69

# Activities | Metrics (%)

7 Macro Fi-score | 70.41 | 65.85 |33.41|49.57|57.15| 53.41
Accuracy 70.97| 68.71 {31.89]51.31[56.34 | 54.02

Weighted Fi-score| 76.28 | 75.40 |32.13]54.41|61.16| 57.85

6 Macro Fi-score | 77.75 | 75.58 [36.03|55.51(63.89| 61.35

| Accuracy  |76.34| 75.40 |34.09]55.71|62.59| 59.49
‘Weighted Fj-score| 76.86 | 78.20 |36.42|59.68|63.01| 58.29

5 Macro Fi-score | 79.86 | 80.99 |42.58|61.20(66.13| 63.85
Accuracy 76.63 |78.25[42.89160.21]63.72| 59.34

Weighted Fi-score| 88.39 | 89.99 |68.29|76.15|74.27] 72.63

4 Macro Fi-score | 89.08 | 90.43 [64.78|75.73|75.63| 74.16
Accuracy 88.80 |90.2866.78/77.36|77.15| 76.17

We evaluated system performance across different activity sets, initially classify-
ing seven activities and subsequently removing less significant labels incrementally
to focus on primary classes. The “Transition” class was removed first, followed by
the “Empty Room” class, and finally the “Lay Down on the Floor” class. This
step-by-step approach allowed us to refine the model’s performance and better
assess its effectiveness for core activities.

For seven activity classes, SVM achieved the highest accuracy (70.97%) and
macro Fj-score (70.41%), followed by MLP with strong performance in macro
Fy-score (65.85%) and accuracy (68.71%) still lagged behind SVM in accuracy.
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Table 4.2: Confusion matrix for the Support Vector Machines classifier with seven
activities, showing percentages.

Predicted Label

=
g
s =l 15
T 2 &
< o [N
g - = = 2
g ¢ & &8 =52 , %
£z 2 % s % o=
2 h= g o® = g =
€3} <3| = — n = n
Empty room 125 545 156 0.0 0.0 0.0
E Enter the room and walk 0.0 K0 0.56 1.12 048 024 0.0
% Lay downonthebed 045 0.26 [E 175 0.19 7.59 0.00
= Lay down on the floor 890 3.09 | 30.12 JF## 0.13 0.33 0.79
£ Sit on the bed 0.0 3.67 099 0.0 18.76 0.0
< Transitions 0.0 965 451 2338 183 9.77
Sit on the chair 27.05 0.25 11.54 9.38 0.08 0.17

Table 4.3: Confusion matrix for the Multi-Layer Perceptron classifier with seven
activities, showing percentages.

Predicted Label

e
<
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[ =}
g 2 =
© Q o
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E & 8 &8 35 4, T
o Q = =] g
A B E £ 2 =
- - [} s} =
= e < o] =] @ =}
= 2 >, = o e °
= = < @ = = =
<3| m — — 0 = n
Empty room 125 1324 1044 031 0.16 0.78

E Enter the room and walk  0.00 0.80 1.28 0.32 0.96 0.00
,5  Lay down on the bed ~ 1.23 0.39 247 214 889 0.06
= Lay down on the floor  10.68 2.76 20.70 1.74 0.85 2.86
£ Sit on the bed 0.14 240 0.14 0.00 41018 0.14
< Transitions 0.00 6.77 4.64 2.63 19.67 Y 9.27
Sit on the chair 2415 0.83 863 11.54 1.16 1.08
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Table 4.4: Confusion matrix for the Naive Bayes classifier with seven activities,
showing percentages.

Predicted Label
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Empty room Z%(] 0.00 3.89 1.25 0.16 0.00 0.00

E Enter the room and walk 0.00 | 30.14 1.12 11.19/ 37.01 20.30 0.24
.5 Lay down on the bed  [26.09 0.06 OIS 591 1421 4.22 0.00
= Lay down on the floor 0.33 128.02 762 6.90 154 1.74
£ Sit on the bed 0.00 945 127 282 32102 0.00
< Transitions 0.00 514 263 7.64 4211 33.96 852

Sit on the chair 0.00 407 050 091 0.00 24.40

Table 4.5: Confusion matrix for the Decision Tree classifier with seven activities,
showing percentages.

Predicted Label
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Empty room [E9%9 0.78 (2944 1511 234 0.16 249

E& Enter the room and walk 0.08 1.84 6.08 392 328 1.04
.5 Lay down on the bed ~ 1.88 227 824 571 9.86 0.8
= Lay down on the floor  10.55 3.68 | 34.26 39.09 4.93 2.53 4.96
Z Sit on the bed 0.00 16.93 3.39 2.12 16.36 0.14
< Transitions 0.25 12.66 7.27 6.27 23.68 43198 5.89

Sit on the chair 2141 1.33 [25.98/21.99 415 241 22.74
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Table 4.6: Confusion matrix for the Random Forest classifier with seven activities,
showing percentages.

Predicted Label
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Empty room X7 0.47 [3380 3.12 0.00 0.00 0.00
E Enter the room and walk 0.00 ReEE@ 0.72 3.12 1.92 0.56 0.00
= Lay down on the bed  0.78 0.71 221 136 9.67 0.00
=  Lay down on the floor 749 3.78 FepaiEy 36.04 0.13 0.36  0.07
£ Sit on the bed 0.00 10.72 0.71 0.14 8.89  0.00
< Transitions 0.00 1892 3.01 7.39 15.91 9N 5.01
Sit on the chair 22.66 0.75 [39.83 17.51 0.00 0.00 19.25

Table 4.7: Confusion matrix for the K-Nearest Neighbor classifier with seven ac-
tivities, showing percentages.

Predicted Label
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E
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= = < < = ~ =
<3 = — — n = N
Empty room 0.47 17.60 2.80 0.00 0.00 0.00
€ Enter the room and walk  0.08 128 6.71 184 064 0.16
.5 Lay down on the bed 448 0.52 221 104 286 0.00
= Lay down on the floor = 22.04 1.31 [45.83 30.19 0.10 0.20 0.33
£ Sit on the bed 0.00 353 423 0.71 JEEEE 564 0.28
< Transitions 0.00 8.27 11.15 7.39 | 31.95 29.07 12.16
Sit on the chair 43132 0.08 [31.37 7.39 0.00 0.25 17.59

Reducing the number of classes to six improved all models’ performance. This
indicates that reducing the number of activities simplifies the classification task,
benefiting most models. However, SVM still led in accuracy (76.34%), with MLP
showing significant gains in both weighted (75.40%) and macro Fi-scores (75.58%).
Additionally, based on the SVM confusion matrices in Table. 4.2 and Table 4.8, the
average correct classification rate is over 74% while considering all seven activity
classes and exceeds 82% on average for the six activity classes, respectively. This

suggests that SVM is most effective for recognizing a diverse set of activities within
this more complex scenario.
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Table 4.8: Confusion matrix of the Support Vector Machines in classifying six
activities, showing percentages.

Predicted Label
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Sit on the chair 27.55 0.17 855 9.13 0.00

Table 4.9: Confusion matrix of the Multi-Layer Perceptron classifier in classifying
six activities, showing percentages.

Predicted Label
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< Enter the room and walk 0.08 0.32 144 040 0.16
= Lay down on the bed 0.71 0.45 EEBEN 2.79 2.01 0.13
£ Lay down on the floor 848 3.15 ' 23.55 (i 125 2.50
2 Sit on the bed 0.00 3.10 1.27 0.00 0.28
Sit on the chair 22.32 0.58 7.63 10.21 1.66 Bt
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Table 4.10: Confusion matrix of the Naive Bayes classifier in classifying six activ-
ities, showing percentages.

Predicted Label
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Table 4.11: Confusion matrix of the Decision Tree classifier in classifying six ac-
tivities, showing percentages.

Predicted Label
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< Enter the room and walk 0.16 2.40 440 5.04 1.28
= Lay down on the bed 149 3.11 9.80 7.85 0.58
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= Sit on the bed 0.28 15.23 5.08 2.40 0.85
Sit on the chair 21.41 2.07 2274 22.32 2.82  28.63
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Table 4.12: Confusion matrix of the Random Forest classifier in classifying six
activities, showing percentages.

Predicted Label
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= Sit on the bed 0.00 9.45 0.14 0.14 gEL®dd 0.00
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Table 4.13: Confusion matrix of the K-Nearest Neighbor classifier in classifying
six activities, showing percentages.

Predicted Label

Empty room

Enter the room and walk
Lay down on the bed
Lay down on the floor
Sit on the bed

Sit on the chair

Empty room EWAl 1.09 10.90 2.80 0.00 0.00
Enter the room and walk 0.08 1.84 560 2.08 0.40
Lay down on the bed 3.70  0.65 2.08 1.17 0.00
Lay down on the floor = 22.67 1.22 142,61 33.18 0.13 0.20
Sit on the bed 0.00 3.95 381 0.71 geElxE] 0.71
Sit on the chair oW o0.17 (2332 7.14 0.08  20.08

Actual Label

However, with seven activity classes, there is notable confusion between similar
activities, such as “Lying on the bed” and “Lying on the floor”. Additionally,
natural movements during activities such as “Lying on the bed” or “Sitting on the
bed” can lead to misclassification as the “Transition” class. Furthermore, brief
periods without specific movements may cause confusion between the “Empty
room” and “Lying on the floor” or “Sitting on the chair”. When the “Transition”
class is removed, reducing the classification to six activity classes, the classification
performance becomes more balanced across the remaining activities. However,
challenges persist in distinguishing between similar activities, such as “Lying on
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the bed” and “Lying on the floor”.

With five activity classes, MLP excelled, achieving the highest macro Fj-score
(80.99%) and accuracy (78.25%), indicating its effectiveness in fewer activity sce-
narios. SVM also performed well, particularly in macro Fij-score (79.86%). Ta-
ble 4.15 which illustrates MLP confusion matrix, highlights the classifier’s robust-
ness in distinguishing between the reduced set of activities with the average correct
classification rate is over 82% for all five activity classes, particularly in recognizing
“Entering the room and walking”, “Lay down on the bed”, and “Sit on the bed.”

Table 4.14: Confusion matrix of the Support Vector Machines in classifying five
activities, showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed
Lay down on the floor

Sit on the bed
Sit on the chair

g Enter the room and walk 0.56 0.80 0.40 0.00
X Lay down on the bed  0.91 1.95 1.30 0.00
=  Lay down on the floor 3.02 | 3348 aRE] 0.13 1.64
g Sit on the bed 7.05 099 0.00 0.14
< Sit on the chair 0.25 [25.06 16.35 0.00 JEEEL

Table 4.15: Confusion matrix of the Multi-Layer Perceptron in classifying five
activities, showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed
Lay down on the floor
Sit on the bed

Sit on the chair

E Enter the room and walk 0.56 1.60 0.72 0.08
5 Lay down on the bed 0.52 279 1.82 0.19
=  Lay down on the floor 2.86 | 28.91 fGBEEN) 1.77 3.06
g Sit on the bed 3.10 042 0.00 0.14
<< Sit on the chair 0.66 15.60 18.09 1.00 MEZNGE]
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Table 4.16: Confusion matrix of the Naive Bayes in classifying five activities,
showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed
Lay down on the floor

Sit on the bed
Sit on the chair

E Enter the room and walk 4229 1.92 14.55 41.25 0.00
3 Lay down on the bed 4.28 HEHEN 4.09 15.83 6.68
=  Lay down on the floor 1.51 - 792 6.14 | 37.16
£ Sit on the bed 42108 0.99 2.82 % 0.00
< Sit on the chair 0.00 7.05 058 0.66

Table 4.17: Confusion matrix of the Decision Tree in classifying five activities,
showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed
Lay down on the floor

Sit on the bed
Sit on the chair

C Enter the room and walk 248 576 432 1.52
= Lay down on the bed ~ 2.92 10.06 9.34 1.10
= Lay down on the floor ~ 4.17 [ 37.88 J46i78 6.04 5.12
g Sit on the bed 13.82 4.51 2.68 0.56
< Sit on the chair 1.99 | 32.37 25.89 3.90 | 35.85
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Table 4.18: Confusion matrix of the Random Forest in classifying five activities,
showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed
Lay down on the floor

Sit on the bed
Sit on the chair

Enter the room and walk 0.88 3.12 1.76 0.00
Lay down on the bed 2.66 WEOR 2.86 4.02 0.00

Lay down on the floor  3.88 -- 0.13 0.07

Actual Label

Sit on the bed 10.72 0.28 0.14 sy 0.00
Sit on the chair 0.75 BEER 15.44 0.00  24.56

Table 4.19: Confusion matrix of the K-Nearest Neighbor in classifying five activi-
ties, showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed
Lay down on the floor

Sit on the bed
Sit on the chair

E Enter the room and walk 1.60 5.76 2.08 0.24
= Lay down on the bed  0.58 2.08 1.49 0.06
=  Lay down on the floor 1.28 WMy 35.74 0.16  0.36
b= Sit on the bed 3.95 423 0.56 0.28
< Sit on the chair 0.25 I 1320 0.17 21.58

For four classes, MLP continued to lead with the highest macro Fi-score (90.43%)
and accuracy (90.28%). Its confusion matrix for four activities, depicted in Ta-
ble 4.21, exceeds an 89% average correct classification rate, which highlights the
strong performance of the MLP in simplified classification tasks.
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Table 4.20: Confusion matrix of the Support Vector Machines classifier in classi-
fying four activities, showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed

Sit on the bed

Sit on the chair

g Enter the room and walk 0.64 0.48 0.00
.5 Lay down on the bed  0.84 1.43  0.00
= Sit on the bed 5.64 0.99 0.14
§ Sit on the chair 0.58 [35.10 0.00 MEEEEY

Table 4.21: Confusion matrix of the Multi-Layer Perceptron in classifying four
activities, showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed

Sit on the bed

Sit on the chair

g Enter the room and walk JEEREN 0.64 0.56 0.16
5 Lay down on the bed ~ 0.32 2.27 0.19
= Sit on the bed 254 1.13 BELRE) 0.14
i) Sit on the chair 0.83 1 28.13 1.74 MRS
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Table 4.22: Confusion matrix of the Naive Bayes classifier in classifying four ac-
tivities, showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed

Sit on the bed

Sit on the chair

S Enter the room and walk ST 4.72 JEEEE 0.08
85 Lay down on the bed  4.61 BK§d 17.52 7.20
= Sit on the bed 40134 1.97 JEEEE] 0.00
£ Sit on the chair 0.00 539 1.24 |CEER
<

Table 4.23: Confusion matrix of the Decision Tree in classifying four activities,
showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed

Sit on the bed

Sit on the chair

Enter the room and walk 248 3.84 0.96
Lay down on the bed 2.27 8.18 0.71
Sit on the bed 12.13 4.94 0.99

Sit on the chair 1.58 (64 s.22 JAE07
82

Actual Label
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Table 4.24: Confusion matrix of the Random Forest classifier in classifying four
activities, showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed

Sit on the bed

Sit on the chair

T Enter the room and walk 0.88 2.00 0.00
85 Lay down on the bed  4.02 3.57 0.00
= Sit on the bed 9.59 0.28 0.00
;j Sit on the chair 1.16 0.00 [29.29

Table 4.25: Confusion matrix of the K-Nearest Neighbor in classifying four activ-
ities, showing percentages.

Predicted Label

Enter the room and walk
Lay down on the bed

Sit on the bed

Sit on the chair

Enter the room and walk 2.96 264 0.72
Lay down on the bed 0.91 1.88  0.00
Sit on the bed 3.67 5.50 0.71
Sit on the chair 0.50 BEI§ 0.08 22.90

Actual Label

CSV The performance comparison of different models evaluated over multiple
activity categories with combination of RD, RA, and RE (RD+RA+RE) feature
maps as models’ input is presented in Table 4.26. This table illustrates a con-
sistent performance pattern across all activity sets: DL models (CNN, LSTM,
and ConvLSTM) significantly outperform traditional ML approaches (SVM and
MLP in Table 4.1). In particular, ConvLSTM consistently achieves the highest
performance across all activity sets, with peak accuracies of 90.51% for 7-activity
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classification and 97.87% for 4-activity classification. This trend indicates that
ConvLSTM'’s ability to capture both spatial and temporal features provides a sub-
stantial advantage for HAR tasks using radar data.

Table 4.26: Performance metrics for various deep learning models under Cross-
Scene-Validation with Range-Doppler+Range-Azimuth+Range-Elevation inputs.

Metrics (%)

#Activities ‘ Model ‘
| | Accuracy | Precision | Recall | Fy-score
| CONN | 8948 | 86.66 | 88.81 | 87.17
7 | LSTM | 8850 | 8509 | 87.35 | 85.64
| ConvLSTM | 90.51 | 86.75 | 88.51 | 87.31
| CNN | 9260 | 9159 | 93.67 | 91.83
6 | LSTM | 9403 | 9287 | 9519 | 93.55
| ConvLSTM | 95.29 | 94.08 | 96.02 | 94.73
| CNN | 9257 | 9409 | 9440 | 93.79
5 | LSTM | 9399 | 9508 | 95.08 | 94.79
| ConvLSTM | 96.06 | 96.86 | 96.15 | 96.39
| ONN | 9628 | 9712 | 96.17 | 96.49
4 | LSTM | 9691 | 9761 | 96.79 | 97.11
| ConvLSTM | 97.87 | 98.39 | 97.80 | 98.05

The classification results of the ConvLSTM model with different feature inputs
over various numbers of activities are summarized in Tables 4.27-4.30. Addi-
tionally, Fig. 4.1 shows the confusion matrices for different tasks, while Fig. 4.2
illustrates the training and validation loss curves of the ConvLSTM model across
different activity sets using the RD+RA+RE feature maps.

As shown in Tables 4.27-4.30, classification performance improves as the num-
ber of classes decreases. Specifically, the Fi-score increases from 87.31% for seven
classes to 98.05% for four classes. The RE map consistently achieves the best
results across all tasks among single-feature inputs. For pairwise combinations,
except for four classes, RD+RE maps outperform other combinations. Integrat-
ing all three features yields the highest performance, slightly surpassing RD+RE
maps. This highlights the significance of combining motion (Doppler) and spa-
tial dimensions (azimuth and elevation) to comprehensively represent activities,
thereby enhancing classification accuracy.

The training process, shown in Fig. 4.2, demonstrates a steady decrease in both
training and validation loss, reaching suitably low levels. This reflects effective
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model learning, the absence of overfitting, and strong generalization capability.

Table 4.27: Comparison of ConvLSTM model performance for 7 activity classifi-
cation under the Cross-Scene-Validation approach.

Model Input

Metrics (%)

RD | RA | RE | RD+RA |RD+RE|RA4+RE|RD+RA+RE
Accuracy |76.94|71.76|89.53| 86.26 90.40 87.51 90.51
Precision |80.12|74.32|86.02| 84.96 87.05 84.47 86.75
Recall 79.98|77.18|87.33| 87.16 88.95 86.42 88.51
Fi-score |77.66|72.95/86.12| 85.51 87.70 84.59 87.31

Table 4.28: Comparison of ConvLSTM model performance for 6 activity classifi-
cation under the Cross-Scene-Validation approach.

Model Input

Metrics (%)

RD | RA | RE | RD+RA |RD+RE|RA+RE | RD+RA+RE
Accuracy |[82.70|78.22|194.09| 92.60 95.58 91.23 95.29
Precision [85.53|83.60|92.79| 92.69 94.43 90.66 94.08
Recall 87.80(86.96|95.14| 94.74 96.43 93.67 96.02
Fi-score  |85.00(82.41|93.50| 93.28 95.20 91.35 94.73

Table 4.29: Comparison of ConvLSTM model performance for 5 activity classifi-
cation under the Cross-Scene-Validation approach.

Model Input
Metrics (%)

RD | RA | RE | RD+RA |RD4+RE|RA4+RE | RD+RA+RE
Accuracy |78.42|79.59|95.93| 88.37 95.48 93.28 96.06
Precision |83.79(86.31|96.53| 91.26 95.98 94.30 96.86
Recall 82.43|87.10196.11|  92.28 95.73 95.11 96.15
Fi-score [80.79|84.26|96.24| 90.71 95.67 94.43 96.39

Table 4.30: Comparison of ConvLSTM model performance for 4 activity classifi-
cation under the Cross-Scene-Validation approach.

Model Input
Metrics (%) P

RD | RA | RE | RD+RA |RD+RE|RA+RE |RD+RA+RE
Accuracy |86.49(95.43|96.81| 96.49 97.45 97.66 97.87
Precision [87.28/95.94|97.43| 97.33 97.92 98.22 98.39
Recall 86.89|95.53]96.67|  96.30 97.37 97.49 97.80
Fi-score  |85.76(95.56|96.96|  96.68 97.58 97.80 98.05

LOPO-CV We report the LOPO-CV results for the ConvLSTM model, which
demonstrated the strongest performance under the CSV approach. The combined
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Figure 4.1: Confusion matrices for the ConvLSTM model on various activity
sets under Cross-Scene-Validation with Range-Doppler+Range-Azimuth+Range-
Elevation inputs.

RD+RA-+RE feature maps were used, as they consistently provided the most re-
liable results. Table 4.31 summarizes the ConvLSTM performance for different
activity sets. Both accuracy and F}j-score improve as the number of activities de-
creases, rising from 89.56% (87.15%) for seven activities to 93.00% (91.12%) for
four activities. These findings demonstrate the model’s robustness and general-

ization capability in subject-independent evaluation, as well as the effectiveness of
integrating RD, RA, and RE feature maps.

Compared with the CSV approach, the LOPO-CV strategy evaluates perfor-
mance using a larger number of test samples, providing a more realistic measure
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Figure 4.2: Training and validation loss curves for the ConvLSTM model under
Cross-Scene-Validation with Range-Doppler+Range-Azimuth+Range-Elevation
inputs.

of model generalizability across individuals. The performance of the ConvLSTM
using single or pairwise feature-map inputs was not analyzed under this validation
method.

Table 4.31: Comparison of ConvLSTM model performance presented as percent-
ages using the Leave-One-Person-Out Cross-Validation approach.

‘ 7 Activity 6 Activity 5 Activity 4 Activity
‘Accuracy Fi-score Accuracy Fj-score Accuracy Fj-score Accuracy Fij-score

Subject 1 89.08 85.49 92.19 90.79 92.35 91.15 92.55 91.03
Subject 2 93.14 91.23 96.90 96.25 97.96 97.89 97.95 97.49
Subject 3 86.45 84.72 94.35 93.88 94.51 93.41 88.52 84.84

Average 89.56 87.15 94.48 93.64 94.94 94.15 93.00 91.12

Test Subject

Conventional ML models struggle to distinguish patterns in RD, RA, and RE
maps, making subtle feature extraction challenging. In contrast, DL models such

37



Experimental Evaluation Result

as CNN effectively capture discriminative features, while ConvLSTM further en-
hances radar data processing by modeling both spatial and temporal dependen-
cies [108,109].

4.1.2 Discussion

This study validates the effectiveness of FMCW radar for HAR through a unified
framework that integrates RD, RA, and RE feature maps across multiple ML and
DL models. Performance was evaluated using both CSV and LOPO-CV validation
strategies to assess generalization under varying conditions.

Among the ML models, SVM achieved the best performance for 6- and 7-
activity classification, while MLP performed better for 4- and 5-activity tasks.
This suggests that SVM is more robust in complex feature spaces with overlapping
classes, whereas MLP benefits from simplified classification scenarios. However,
the MLP requires careful regularization and sufficient computational resources to
avoid overfitting. DT and RF provided consistent results but did not surpass SVM
or MLP.

Analysis of confusion matrices reveals recurring misclassifications between “sit-
ting on a chair” and “lying down,” likely due to similarities in static radar signa-
tures and minimal movement. The limited representation of certain classes—particularly
sitting—may also have hindered the model’s ability to learn distinctive features.
These findings highlight the importance of dataset balancing and broader sample
diversity for improving classifier performance.

The use of DL models further enhances classification accuracy. ConvLSTM de-
livered the strongest results, achieving accuracies of 90.51% under CSV and 89.56%
under LOPO-CV, with corresponding F-scores above 87%. By integrating spatial
and temporal modeling, ConvLSTM excels in distinguishing activities with subtle
motion differences, such as “sitting on a bed” versus “sitting on a chair.” These
observations align with prior studies demonstrating the benefits of spatiotemporal
learning for HAR [108,109, 111, 112].

Among the radar representations, RE consistently outperformed RD and RA,
underscoring the importance of vertical spatial information. Combining RD with
RE typically improved accuracy, highlighting their complementary role. The in-
clusion of RA provided smaller gains, suggesting potential redundancy in some
scenarios.

We demonstrated the advantages of using combined RD, RA, and RE maps
as 3D data structures that effectively capture both motion and spatial patterns.
Experimental results showed that SVM performs best on complex classifications
involving 7 and 6 activities, while MLP excels in simpler 4- and 5-activity tasks,
highlighting the need to match classifiers with task complexity.
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4.1.3 Conclusion

In the first dataset, we installed one FMCW mmWayve in the bedroom environment,
and extracted 3 RD, RA, and RE feature maps as data vector feed them to various
ML and DL models. Our approach focuses on system architecture optimization,
including radar setup configuration, preprocessing pipeline development, and the
generation of multi-dimensional feature maps for classifying intricate human ac-
tivities. Unlike conventional image-based radar data processing, our framework
processes raw radar data into structured feature maps that capture both temporal
and spatial characteristics of human activities, balancing computational efficiency
with recognition accuracy.

We demonstrated the feasibility and advantages of integrating RD, RA, and
RE feature maps as 3D data vectors to effectively capture motion and spatial
details. The experimental validation in realistic environments showed that among
conventional ML models, SVM effectively handled complex, overlapping features in
7- and 6-activity classifications, while MLP excelled with less ambiguous activities
in 4- and 5-activity scenarios. This highlights the importance of classifier selection
based on data characteristics.

Furthermore, by leveraging DL models, particularly the ConvLSTM architec-
ture, we successfully extracted spatiotemporal patterns from radar feature maps,
thereby surpassing traditional approaches in performance. The ConvLSTM model
effectively captured both motion and spatial dependencies, demonstrating robust
performance across diverse scenarios and when tested on unseen data through CSV
and LOPO-CV. Our results emphasize the benefits of using multiple feature maps
for improved recognition accuracy, with RE proving the most effective, highlighting
the crucial role of vertical spatial information in precise activity recognition.

The proposed solution demonstrated strong performance even when trained
on a limited dataset, making it suitable for real-world applications in healthcare
monitoring and smart environments that require non-intrusive activity monitoring.
This advantage is particularly valuable when comprehensive data collection may
be impractical due to domain-specific constraints.

Despite promising results, several limitations remain, including challenges in
distinguishing highly similar activities and managing periods of inactivity. Future
research should address these limitations by expanding dataset diversity, incor-
porating a wider range of activities, and evaluating the computational cost of
models for large-scale implementation, real-time applications, and deployment on
edge devices. Additionally, further exploration of lightweight DL architectures
could improve accuracy and adaptability, enhancing the framework’s suitability
for long-term care and AAL environments.
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4.2 Living Room Dataset

This section presents the experimental results obtained using the Living Room
Dataset. This dataset, collected in a more spacious and complex environment,
involves a larger group of subjects performing a diverse set of activities. Data
were captured using two radars installed at different positions to provide multi-
perspective coverage. The evaluation includes both binary fall detection and multi-
class activity classification tasks. Several DL models are tested to assess their
performance, computational complexity, robustness to spatial variations, and scal-
ability in more realistic, less constrained settings.

4.2.1 Fall detection

This subsection presents the experimental evaluation of fall detection using the
Living Room Dataset. Falls are critical events in healthcare monitoring. The
dataset includes multiple instances of fall and non-fall activities recorded from
two radar perspectives. One DL model is evaluated to assess its ability to accu-
rately distinguish falls from similar daily movements using individual feature maps
(RE, RA) as well as their combination (RE4+RA). The results provide insight into
model effectiveness, generalization across viewpoints, and the applicability of these
feature maps for the fall detection task.

Experimental Results

The experimental methodology was designed to comprehensively evaluate both
the performance and computational efficiency of the proposed fall detection sys-
tem across multiple configurations and input modalities. The investigation focused
on two key aspects: (1) the effect of varying the number of 3D CNN blocks and (2)
a comparative analysis of three distinct input configurations—RE, RA, and the
combined RE4+RA feature maps. This approach enables a systematic assessment
of how architectural complexity and feature representation influence detection ac-
curacy and model robustness.

Table 4.32 provides a comprehensive comparison of the model’s performance
across different configurations. The RE4+RA input consistently exhibited superior
performance, achieving the highest accuracy across various 3D CNN block arrange-
ments. The model reached a peak accuracy of 94.33% with one 3D CNN block.
Although adding additional 3D CNN blocks resulted in slight variations in per-
formance, the RE+RA input maintained the highest accuracy levels, significantly
outperforming models with either RE or RA inputs alone. Fig. 4.3a, 4.3b, and 4.3c
illustrate the normalized confusion matrices for the RE4+RA input configuration
with one, two, and three 3D CNN blocks, respectively.
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Table 4.32: Comparison of proposed 3D CNN model performance for various con-
figurations. RE: Range-Elevation, RA: Range-Azimuth.

‘ Model Input

# of Proposed ]
Metrics (%) | 'RE | RA | RE+RA

3D CNN Blocks

Accuracy ‘ 89.04 ‘ 81.38 ‘ 94.33
Precision ‘ 88.98 ‘ 81.03 ‘ 94.36

Recall | 87.39 | 83.01 | 93.61
Fi-score | 85.43 | 79.59 | 92.75

|
|
|
. |
| Recall | 89.04 | 81.38 | 94.33
| Fi-score | 87.59 | 7842 | 935
| Accuracy | 879 | 8274 | 9345
5 | Precision | 87.78 | 82.45 | 93.61
| Recall | 879 | 8274 | 9345
| Fi-score | 86.19 | 79.69 | 92.38
| Accuracy | 87.39 | 83.01 | 93.61
5 | Precision | 87.26 | 82.89 | 93.58
|
|
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Figure 4.3: Normalized confusion matrices for different proposed model configura-
tions and the Range-Elevation+Range-Azimuth feature input.

The training progression, depicted by the loss curves for different 3D CNN con-
figurations in Fig. 4.4, indicates that increasing the number of blocks improves
convergence behavior. In particular, models with multiple 3D CNN blocks exhib-
ited greater training stability and more consistent reduction in loss across epochs.

Computational Efficiency A comprehensive analysis of computational require-
ments is presented in Table 4.33. The relationship between the number of 3D CNN
blocks and overall computational demands reveals two notable trends: (1) increas-
ing the number of 3D CNN blocks results in higher floating-point operations per
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Figure 4.4: Training loss for different proposed model configurations and Range-
Elevation+Range-Azimuth feature input.

second (FLOPs) and greater memory consumption, and (2) the total parameter
count decreases with additional blocks due to architectural modifications, such as
the incorporation of pooling layers. Across all configurations, the RE+RA input re-
quired the largest memory allocation and the longest processing time. In this study;,
FLOPs are reported in GigaFLOPS (GFLOPS) and MegaFLOPS (MFLOPS),
model size is expressed in megabytes (MB), the number of parameters is reported
in millions (M), and inference time is measured in milliseconds (ms).

Table 4.33: Comparison of proposed 3D CNN model complexity and computational
resource for various configurations. RE: Range-Elevation, RA: Range-Azimuth.

# of Proposed ‘ Metri ‘ Features
3D CNN Blocks | etrics | RE | RA | RE+RA
| #Parameter (M) | 838 | 838 | 838
| Inference Time (ms) | 7.82 | 7.78 | 10.36
1 | #Flops (MFLOPS) | 312 | 311 | 4535
| Model Size (MB) | 640 | 640 | 640
| Memory Usage (MB) | 424.11 | 425.92 | 561.78
|  #Parameter (M) | 168 | 16.8 | 1638
| Inference Time (ms) | 9.84 | 804 | 9.50
2 | #Flops (GFLOPS) | 13 | 13 | 14
| Model Size (MB) | 128 | 128 | 128
| Memory Usage (MB) | 432.77 | 436.41 | 573.14
| #Parameter (M) | 44 | 44 | 44
| Inference Time (ms) | 10.09 | 9.17 | 9.28
3 | #Flops (GFLOPS) | 1.7 L7 1.8
| Model Size (MB) | 342 | 342 | 342
| Memory Usage (MB) | 433.25 | 433.98 | 570.39
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Our experimental results lead to several key findings:

o The integration of elevation and azimuth data is crucial for achieving robust
fall detection performance. While increasing the number of 3D CNN blocks
does not substantially enhance accuracy, it improves training convergence and
reduces the total parameter count.

o System designers must carefully balance the trade-offs between model com-
plexity and computational efficiency, considering specific deployment con-
straints and accuracy requirements.

These insights provide valuable guidance for optimizing fall detection systems
across various operational scenarios and resource constraints.

Discussion

In this step, we evaluated the effectiveness of FMCW radar for fall detection
using a framework that incorporates RA and RE feature maps individually and
in combination (RA+RE) within a 3D CNN model. System performance was
assessed using the LOPO-CV validation strategy.

The experimental results demonstrate that combining RA and RE feature maps
substantially improves fall detection accuracy. The RE+RA configuration achieved
a peak accuracy of 94.33% using a single 3D CNN block, indicating that the inte-
gration of complementary spatial information enables more effective differentiation
between fall and non-fall scenarios.

Our analysis further highlights a trade-off between model complexity and com-
putational efficiency. Although increasing the number of 3D CNN blocks enhances
training stability and reduces the parameter count, it does not consistently im-
prove classification accuracy. This suggests that beyond a certain depth, additional
blocks contribute more to architectural optimization than to meaningful gains in
detection performance.

Despite these encouraging results, several limitations remain. Data collected
under controlled conditions may not capture the full variability of real-world envi-
ronments, and using “lying on the floor” as a proxy for falls may not fully reflect
the dynamics of actual fall events. Future work should include evaluation in more
diverse and realistic scenarios, as well as exploration of alternative architectures
and augmentation techniques to further improve robustness and efficiency.

Conclusion

This step introduces a system optimized for AAL environments, combining FMCW
radar technology with DL to achieve reliable and cost-effective fall detection.
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Utilizing two wall-mounted mmWave radars, the system captures human motion
across multiple positions in the room and transforms the data into RA and RE
feature maps for input to a 3D CNN model. The proposed model achieved high
performance, with an accuracy of 94.33% and a macro Fj-score of 93.5%, demon-
strating a strong balance between reliability and generalizability. These findings
highlight the advantages of integrating range, azimuth, and elevation information
and confirm the effectiveness of 3D CNN architectures in capturing both spatial
and temporal characteristics for enhanced fall detection.

Future research may extend this work by examining additional environmental
configurations and optimizing real-time processing for deployment across various
AAL settings. With robust detection capability under diverse lighting conditions
and a strong emphasis on user privacy, the proposed system offers a scalable solu-
tion for elderly care, with significant potential to enhance safety and overall quality
of life.

4.2.2 Activity Recognition

This subsection presents the experimental evaluation of multi-class activity recog-
nition using the Living Room Dataset. The dataset includes various daily activi-
ties performed by 11 subjects in a realistic environment, with radar data collected
from two different viewpoints. Multiple DL models were trained and tested using
combinations of RD, RA, and RE feature maps. The experiments were conducted
under two classification scenarios—6-class and 9-class—to investigate the trade-off
between task complexity and model performance.

Experimental Results

In this study, we evaluated the performance of several DL models in recogniz-
ing human activities using RD, RA, and RE feature representations. Detailed
evaluation metrics for each model are provided in their respective sections. Both
classification performance and computational cost were thoroughly assessed.

First, a 3D CNN was trained and tested for nine-class activity recognition.
Next, a ResNet combined with LSTM (ResNet+LSTM) was evaluated for both
nine-class and six-class tasks. Finally, we designed and implemented a hybrid
CNN-+LSTM model and assessed its performance for the six-class activity recog-
nition task.

To enhance model robustness and performance, we implemented a Majority
Voting approach for the last DL model. In this method, instead of immediately
displaying the model’s classification output, the predicted activity labels are stored
in an empty vector while the model continues processing subsequent samples. This
process is repeated for ¢ samples. At the end of this sequence, the final classified
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activity is determined by identifying the majority label among the ¢ predictions.
Although this approach may introduce a slight delay in displaying the output,
it effectively reduces false activity detections by considering a broader temporal
context, ultimately improving overall system performance.

3D CNN Table 4.34 presents the overall performance of the 3D CNN model
trained on the combined RD, RA, and RE features for nine-class activity recog-
nition. The model achieved an accuracy of 60.98%, with a precision of 57.14%,
recall of 56.40%, and an Fj-score of 55.53%. These results indicate moderate
performance, suggesting that although the model learns meaningful spatiotempo-
ral features, its generalization capability remains limited for this more complex
classification scenario.

Table 4.34: Performance metrics for 3D CNN models with Range-Doppler+Range-
Azimuth+Range-Elevation inputs for 9-class activity recognition.

Model | Accuracy (%) | Precision (%) | Recall (%) | Fi-score (%)
3D CNN | 60.98 | 57.14 | 5640 | 55.53

Fig. 4.5 presents the confusion matrix, highlighting class-wise performance. The
model performs well on activities such as lying on the floor and walking. However,
it struggles with actions like picking up an object from the floor or table, and
sitting on or getting up from a sofa, which are often misclassified as standing.
This confusion is likely due to overlapping spatiotemporal radar signatures.
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Figure 4.5: Confusion matrix for the 3D CNN model for 9-class activity recogni-
tion. (Bj) lying on the floor, (Bs) lying on a sofa, (Bs) sitting on/getting up from
a sofa, (By) picking an object from the floor, (B5) picking an object from a table,
(Bg) sitting on the floor, (B7) sitting on a sofa, (Bsg) standing, (Bg) walking.

The training and validation loss curves in Fig. 4.6 show steady convergence over
100 epochs, indicating stable training behavior.

In addition to classification performance, we evaluated the model’s computa-
tional complexity. As shown in Table 4.35, the 3D CNN requires approximately
64.70 GFLOPs and consists of 4.5 M parameters. These values reflect a high
computational cost, which may limit the feasibility of deploying this model on
resource-constrained edge devices.

Table 4.35: Computational cost for 3D CNN model with Range-Doppler+Range-
Azimuth+Range-Elevation inputs for 9-class activity recognition.

Model | #Flops (GFLOPS) | #Parameter (M)
3D ONN | 64.70 | 4.5

Overall, the 3D CNN demonstrates limited effectiveness in recognizing all nine
activities, particularly those involving similar or overlapping motion patterns.
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Figure 4.6: Training and validation loss curves for the 3D CNN model with Range-
Doppler+Range-Azimuth+Range-Elevation inputs for 9-class activity recognition.
These findings underscore the need to explore alternative DL architectures to im-
prove classification accuracy and robustness.

ResNet+LSTM Table 4.36 presents the classification performance and compu-
tational cost of the ResNet4+LSTM model for nine-class activity recognition using
RD, RA, and RE features. The model achieved an overall accuracy of 63.54%,
with a precision of 61.56%, recall of 59.28%, and F}-score of 58.89%. These results
indicate a modest improvement over the 3D CNN model.

Table 4.36: Classification performance of ResNet+LSTM model with Range-
Doppler+Range-Azimuth+Range-Elevation inputs for 9-class activity recognition.

Model | Accuracy (%) | Precision (%) | Recall (%) | Fi-score (%)
ResNet+LSTM | 63.54 | 61.56 | 59.28 | 58.89

Fig. 4.7 presents the confusion matrix for the ResNet+LSTM model in the nine-
class activity recognition task. Similar to the 3D CNN model (Fig. 4.5), it performs
well on distinguishable activities such as walking and lying on the floor. However,
it shows difficulty in recognizing overlapping or similar activities, including picking
up an object from the table or floor, sitting or getting up from a sofa, and standing
still.
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Figure 4.7: Confusion matrix for the ResNet+LSTM model for 9-class activity
recognition. (Bj) lying on the floor, (Bs) lying on a sofa, (Bs) sitting on/getting
up from a sofa, (Bj,) picking an object from the floor, (Bs) picking an object from a
table, (Bg) sitting on the floor, (By) sitting on a sofa, (Bs) standing, (Bg) walking.

The training and validation loss curves for the ResNet+LSTM model are shown
in Fig. 4.8. The validation loss closely follows the training loss throughout the
training process, with no significant divergence between the two. This behavior
indicates that the model generalizes well to unseen data and does not exhibit signs
of overfitting. The convergence of both curves further suggests stable training and
effective learning of relevant spatiotemporal features.
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Figure 4.8: Training and validation loss curves for the ResNet+LSTM model
with Range-Doppler+Range-Azimuth+Range-Elevation inputs for 9-class activ-
ity recognition.

As mentioned earlier, to reduce training time and enhance classification per-
formance, similar activity classes were merged into a broader category, In-place
movement. This consolidation led to a significant increase in the accuracy of the
ResNet+LSTM model. Table 4.37 presents the model’s performance on this six-
class problem using RD, RA, and RE features. Compared to the nine-class setting,
the model shows consistent improvements across all metrics. It achieved high ac-
curacy with a strong balance between precision and recall, indicating that class
combination improved generalization and reduced inter-class confusion.

Table 4.37: Classification performance of ResNet+LSTM model with Range-
Doppler+Range-Azimuth+Range-Elevation inputs for 6-class activity recognition.

Model | Accuracy (%) | Precision (%) | Recall (%) | Fi-score (%)
ResNet+LSTM | 75.28 | 72.10 | 7017 | 70.82

Fig. 4.9 presents the confusion matrix for the ResNet+LSTM model on the six-
class task. The model shows strong performance in identifying activities such as
In-place movement (90.3%), lying on the floor (73.8%), and walking (82.2%). Al-
though some misclassification remains, the overall distribution indicates enhanced
class separability compared to the more granular nine-class setting.
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Figure 4.9: Confusion matrix for the ResNet+LSTM model for 6-class activity
recognition. (C7) In-place movement, (C5) lying on the floor, (C3) lying on a sofa,
(Cy) sitting on the floor, (Cj) sitting on a sofa, (Cs) walking.

The training and validation loss curves shown in Fig. 4.10 indicate rapid conver-
gence and stable learning behavior, confirming that the model avoids overfitting
and maintains strong generalization performance throughout training.
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Figure 4.10: Training and validation loss curves for the ResNet+LSTM model
with Range-Doppler+Range-Azimuth+Range-Elevation inputs for 6-class activity
recognition.

In terms of computational efficiency, the ResNet+LSTM model is considerably
lighter than the 3D CNN. As shown in Table 4.38, it requires only 23.45 GFLOPs
and approximately 3.19 M parameters. This reduced complexity makes it a promis-
ing candidate for real-time or edge deployment, where computational constraints
are significant.

Table 4.38: Computational cost of ResNet+LSTM model.

Model | FLOPs (GFLOPs) | Parameters (M)
ResNet+LSTM | 23.45 | 3.19

Overall, while the ResNet+LSTM model offers performance comparable to the
3D CNN, its substantially lower computational cost and stable generalization per-
formance make it more suitable for practical implementation in real-world human
activity recognition systems.

CNN-+LSTM Table 4.39 presents the classification performance of the CNN+LSTM
model for six-class activity recognition using RD, RA, and RE features. The model
achieved an overall accuracy of 79.11%, with a precision of 76.27%, recall of 76.23%,

and Fj-score of 76.09%. These results indicate that the CNN+LSTM architecture
provides strong and consistent performance across the different activity classes.
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Table 4.39: Classification performance of CNN+LSTM model with Range-
Doppler+Range-Azimuth+Range-Elevation inputs for 6-class activity recognition.

Model | Accuracy (%) | Precision (%) | Recall (%) | Fi-score (%)
CNN+LSTM | 79.11 | 76.27 | 7623 | 76.09

Fig. 4.11 shows the confusion matrix of the ResNet+LSTM model, highlighting
its ability to accurately distinguish between various activities. High diagonal values
indicate strong performance in recognizing certain activities, such as “In-Place
Movement” and “Walking.” The model shows moderate confusion between “sitting
on a sofa” and “sitting on the floor,” indicating areas for further optimization.
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Figure 4.11: Confusion matrix for the CNN+LSTM model for 6-class activity
recognition. (C4) In-place movement, (C5) lying on the floor, (C3) lying on a sofa,
(Cy) sitting on the floor, (Cj) sitting on a sofa, (Cs) walking.

In the next step, as explained in Section 4.2.2, the Majority Voting technique
was applied with various values for the parameter t. Table 4.40 presents the
model’s accuracy for each tested value. Given the model’s sampling frequency,
where each segment consists of 10 samples (equivalent to one second of data), a
setting of ¢ = 5 means that the model classifies and labels five consecutive data
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segments without immediately displaying the result. Instead, the predicted labels
are stored in a vector. After processing these five segments (totaling five seconds),
the final activity label is determined based on the most frequently occurring label
within this vector. This approach effectively enhances classification stability by
minimizing the impact of occasional misclassifications.

Table 4.40: Accuracy of the model with different value of ¢.

t 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20
Accuracy (%) |[79.11 79.29 82.30 83.57 84.83 85.52 85.63 86.62 87.21 87.49 88.00 89.06 88.80 89.22 89.49 89.74 89.80 89.01 90.30 89.80

The training and validation loss curves for the CNN+LSTM model are illus-
trated in Fig. 4.12. The model demonstrates stable training with a steady decline
in training loss and a consistent validation loss. The absence of significant di-
vergence between the two curves suggests effective generalization and low risk of
overfitting.
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Figure 4.12: Training and validation loss curves for the CNN+LSTM model

with Range-Doppler+Range-Azimuth+Range-Elevation inputs for 6-class activ-
ity recognition.

In terms of computational cost, the CNN+LSTM model contains approximately
17.31 M parameters and requires 2.3 GFLOPs, as reported in Table 4.41. This
combination of relatively low computational complexity and competitive perfor-
mance makes the model well suited for real-time or resource-constrained deploy-
ment environments.
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Table 4.41:  Computational cost for CNN+LSTM model with Range-
Doppler+Range-Azimuth+Range-Elevation inputs for 6-class activity recognition.

Model | #Flops (GFLOPS) | #Parameter (M)
CNN+LSTM | 2.3 | 17.31

Overall, the CNN+LSTM model delivers robust classification performance while
maintaining computational efficiency, positioning it as a practical and effective so-
lution for real-world human activity recognition systems.

Discussion

The activity recognition experiments conducted on the living room dataset pro-
vide valuable insights into the effectiveness and robustness of radar-based HAR
systems under realistic residential conditions. The results show that deep learn-
ing models—particularly the hybrid ResNet18+LSTM and CNN+LSTM architec-
tures—achieved the highest classification accuracies in both the 9-class and 6-class
configurations. This demonstrates the importance of jointly exploiting spatial and
temporal information for accurate activity recognition.

Compared to the bedroom dataset, the living room environment posed greater
challenges due to increased environmental complexity, diverse furniture layout,
broader motion trajectories, and a wider range of subject orientations. Despite
these complexities, several deep models maintained strong performance, highlight-
ing their robustness to scene variability. The inclusion of range-Doppler, range-
azimuth, and range-elevation inputs further enhanced feature richness, improving
the recognition of visually and kinematically similar activities, such as “sitting on
sofa” versus “sitting on floor.”

The 3D CNN model, which performed well in the more controlled bedroom
scenario, exhibited a significant drop in accuracy in the living room setting. This
can be attributed to multiple factors. First, the bedroom dataset involved a single
radar in a confined and structured space, allowing the model to learn consistent
spatiotemporal patterns. In contrast, the living room dataset incorporated data
from two radars, introducing additional complexity in spatial alignment and re-
quiring models to generalize across multiple viewpoints. Since 3D CNNs are highly
sensitive to spatial consistency and localized patterns, any discrepancies in radar
fusion or recording conditions likely degraded their performance.

Furthermore, 3D CNNs are inherently limited in modeling long-range temporal
dependencies. Although they capture short-term spatiotemporal cues effectively,
they are less capable of distinguishing activities with overlapping temporal sig-
natures. For example, activities such as “picking an object from the floor” and
“picking an object from a table” contain several motion segments resembling the
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“standing” posture. LSTM-based architectures address this limitation by explicitly
modeling temporal evolution across frames, enabling more reliable discrimination
of sequential patterns.

The ResNet184+LSTM model achieved strong performance in both the 9-class
and 6-class tasks, confirming the effectiveness of combining deep spatial feature
extraction with temporal modeling. The residual connections in ResNet18 enhance
learning of fine-grained radar features, while the LSTM layer captures longer-
term dynamics. However, the performance improvement offered by this deeper
architecture did not justify its substantially higher computational cost.

To improve robustness and mitigate confusion among activities with similar
motion patterns, we consolidated the original 9 classes into 6 broader categories.
This class merging led to a noticeable improvement in classification accuracy across
all models. This indicates that some activity distinctions were too subtle for radar-
based features alone to resolve reliably, especially in complex environments like the
living room.

Interestingly, the CNN+LSTM model not only demonstrated substantially lower
computational cost but also outperformed the ResNet18+LSTM model in 6-class
tasks. This finding highlights that deeper and more complex spatial networks do
not always guarantee better performance in radar-based HAR tasks. Instead, the
CNN+LSTM model strikes an optimal balance between accuracy and efficiency,
making it more suitable for deployment in ambient assisted living systems.

To further enhance performance, we implemented a majority voting ensemble
strategy, where outputs were fused at the decision level. This approach led to
a consistent improvement in classification accuracy compared to using a single
model. Specifically, when using a temporal window of t = 19 seconds—meaning the
model’s predictions over the last 19 seconds were considered and the final label was
chosen by majority vote—the accuracy reached up to 90%. This demonstrates that
aggregating temporal predictions helps to smooth out transient misclassifications
and reinforces consistent activity trends.

However, this improvement came at the cost of increased computational com-
plexity and decision latency. The ensemble approach required running model con-
currently, and the majority voting introduced a delay proportional to the window
length. While this may be acceptable in high-resource or offline settings, it in-
troduces challenges for real-time or embedded deployments, where rapid inference
and low power consumption are critical.

Overall, this comparative analysis underscores that model complexity and en-
semble strategies must be balanced with computational demands and deployment
constraints. In scenarios where efficiency is paramount, the CNN+LSTM model
alone offers a robust and scalable solution. However, when higher accuracy is es-
sential and system resources are available, decision-level fusion via majority voting
serves as an effective method to further enhance recognition performance.
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Conclusion

The activity recognition experiments conducted using the Living Room Dataset
highlight the feasibility and effectiveness of radar-based sensing in realistic do-
mestic environments. By leveraging multiple feature representations—including
RD, RA, and RE—we evaluated several model architectures to explore the trade-
offs between classification accuracy, computational complexity, and generalization
capability.

Among the models tested, the ResNet+LSTM architecture achieved satisfactory
performance, particularly in the 6-class classification task. This demonstrates that
combining spatial feature extraction through deep residual networks with temporal
modeling via LSTM units forms a solid framework for radar-based activity recog-
nition. However, its high computational demand limits its feasibility for real-time
or large-scale deployments. In contrast, the hybrid CNN+LSTM model not only
outperformed ResNet+LSTM in accuracy but also offered a better balance be-
tween performance and efficiency, effectively capturing both spatial and temporal
features while maintaining lower computational complexity.

The results also revealed that reducing the number of activity classes—from
nine to six—significantly improved classification performance. This suggests that
some activities produce similar radar signatures, making them inherently more
difficult to distinguish. Nonetheless, the proposed models demonstrated promising
results even in the more complex 9-class scenario, highlighting the potential of deep
learning to extract meaningful patterns from radar data.

Importantly, the models accurately classified activities performed at different
locations within the room, suggesting that they learned activity-specific features
rather than relying on positional cues. This contributes to better generalizability
across different indoor layouts and deployment contexts.

Moreover, the implementation of ensemble techniques, such as a majority voting
strategy, yielded improved overall performance. However, such approaches are not
ideal for real-time or large-scale applications due to their added computational
overhead.

Despite these promising outcomes, several research challenges remain. The
high resource requirements of complex models, limited subject diversity, and con-
strained environmental variation in the current dataset are key areas for improve-
ment. Future work should focus on developing lightweight architectures, expanding
the dataset to include more subjects and diverse environments, and implement-
ing domain adaptation techniques for cross-environment deployment. In addition,
real-time processing on edge devices should be explored to enable practical and
scalable integration into everyday settings.

Overall, these experiments confirm the viability of using MIMO FMCW radar
combined with deep learning techniques for reliable, privacy-preserving human
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activity recognition in indoor settings. The findings support radar as a strong
candidate for ambient intelligence applications, particularly in elderly care, home
monitoring, and smart living environments.
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Chapter 5

Summary and Future
Outlook

5.1 Technical Contributions

This thesis presents a comprehensive study of HAR using FMCW radar and various
ML and DL models, with contributions on dataset creation, signal processing,
model development, and empirical evaluation.

An end-to-end radar signal processing pipeline was designed and implemented
to transform raw FMCW radar signals into structured feature maps, including
RD, RA, and RE representations. The pipeline integrates essential preprocessing
techniques such as static clutter removal, FFT-based transformations, and the
application of the Capon algorithm.

Two original datasets were collected using FMCW radar devices in fully fur-
nished and realistic indoor environments. The first dataset includes recordings
from three subjects in a bedroom using a single radar, while the second involves
eleven subjects in a living room monitored by two radars placed at different view-
points. Both datasets focus on underexplored and challenging daily activities with
overlapping motion patterns, offering valuable resources to the radar-based activity
recognition community.

The evaluation of multi-view activity classification demonstrates that the trained
models achieve robust classification performance across varying spatial positions
within the room. This suggests that the models capture activity-specific motion
features rather than relying on static positional cues, thereby indicating strong
potential for generalization to unseen environments.

A broad range of classification models was implemented and assessed, including
classical ML algorithms such as SVM, MLP, k-NN, DT, and RF, as well as DL
models including CNN, LSTM, ConvLSTM, CNN+LSTM, and ResNet+LSTM.
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These models were evaluated on both multi-class activity recognition and binary
fall detection tasks, providing insights into trade-offs in accuracy, computational
cost, and deployability.

Finally, ensemble learning methods, particularly majority voting strategies,
were employed to aggregate predictions from multiple inputs. These techniques led
to measurable improvements in classification performance, while also highlighting
trade-offs concerning computational complexity in real-time applications.

5.2 Open Issues and Future Directions

While this thesis demonstrates the viability of radar-based HAR in realistic indoor
environments, several critical challenges remain to be addressed to enable robust,
scalable, and ethically sound deployment. This section outlines the primary open
issues and potential directions for future research.

Dataset Limitations and Standardization Challenges The absence of large-
scale, standardized radar datasets significantly limits the ability to fairly bench-
mark and compare HAR methodologies. Existing studies often rely on small,
custom datasets with limited subject diversity, environmental variability, and in-
consistent evaluation protocols. Moreover, the field lacks foundation models, large-
scale pretraining approaches, and studies addressing domain shift.

Future research should prioritize the development of publicly available datasets
that encompass a broad range of demographics, environments, and activity types.
These datasets should include multi-radar setups, diverse indoor layouts, and lon-
gitudinal recordings to support robust generalization. Establishing standardized
benchmarking protocols and requirement-driven dataset specifications would fur-
ther improve comparability and accelerate progress in the field.

Real-World Deployment and Robustness Challenges Although laboratory
experiments yield promising results, deploying HAR systems in real-world settings
introduces new challenges. Environmental factors such as changes in furniture
layout, the presence of pets, multiple occupants, and even external conditions like
weather can degrade performance. Clutter noise remains a critical issue, with
existing rejection algorithms often failing under complex conditions.

To ensure robust operation, future systems should incorporate adaptive learning
mechanisms capable of handling environmental dynamics. Additionally, improving
the interpretability of model decisions is essential for building user trust, particu-
larly in healthcare, assisted living, and other high-stakes applications.
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Multi-Person Activity Recognition Most current HAR systems are designed
for single-subject scenarios, limiting their applicability in shared environments.
Real-world settings often involve multiple individuals performing concurrent activ-
ities, which introduces challenges such as signal overlap, occlusion, and multipath
interference.

Advancing toward multi-person activity recognition will require improved sig-
nal separation techniques, MIMO radar array configurations, and attention-based
tracking mechanisms capable of distinguishing individuals and their activities in
crowded indoor environments.

Privacy and Ethical Considerations As radar-based HAR systems move to-
ward mainstream deployment, privacy and ethical concerns become increasingly
significant. Although radar offers better privacy than camera-based alternatives,
issues related to data misuse, consent, and fairness persist.

Future work should explore privacy-preserving strategies such as on-device in-
ference, federated learning, and encrypted model sharing. In parallel, the devel-
opment of ethical guidelines and regulatory standards will be essential to ensure
the responsible and equitable use of these technologies.

Integration with Edge Computing and Real-Time Processing Deep learn-
ing models used in HAR are often computationally demanding, posing challenges
for deployment on resource-constrained edge devices. Real-time inference is par-
ticularly important for time-sensitive applications such as fall detection, home
automation, and elderly care.

Future research should focus on lightweight neural architectures, model com-
pression techniques (e.g., pruning, quantization), and hardware-aware optimiza-
tion. Efficient fusion strategies and adaptive processing pipelines will also be nec-
essary to balance accuracy, latency, and power consumption in embedded systems.

Advanced Signal Processing and Feature Engineering Traditional radar
feature maps such as RD, RA, and RE offer valuable information but may not
fully capture the rich structure inherent in radar signals.

Future directions should include exploring advanced signal processing tech-
niques such as tensor decomposition, manifold learning, and physics-informed
features. These methods can enhance representation capacity, robustness, and
interpretability, particularly in complex and cluttered environments.

Multimodal Sensor Fusion Combining radar with complementary sensing
modalities—such as Inertial Measurement Units (IMUs), infrared sensors, micro-
phones, and vision-based systems—can significantly improve recognition perfor-
mance and contextual awareness. Radar fusion from multiple perspectives also
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helps reduce occlusion effects and improve spatial coverage.

Future efforts should focus on deep sensor fusion frameworks capable of jointly
modeling heterogeneous data streams, dynamically weighting their contributions
based on context, and improving resilience to sensor failures or environmental
noise.

5.3 Other Potential Application Areas

Beyond activity recognition, radar sensing technology offers promising opportu-
nities across a broad spectrum of domains, owing to its non-intrusive, privacy-
preserving, and robust nature. In the healthcare sector, radar systems can non-
invasively monitor vital signs such as respiration and heart rate. This capability
makes them suitable for sensitive medical applications, including neonatal care,
continuous monitoring of the elderly, and chronic disease management. In re-
habilitation and physical therapy, radar enables objective assessments of patient
recovery by facilitating gait analysis, monitoring adherence to prescribed exercises,
and evaluating progress in both sports and clinical contexts.

In smart building environments, radar contributes to energy-efficient infras-
tructure through occupancy detection and intelligent control of lighting systems,
enhancing overall building automation. Within the automotive and transporta-
tion industries, radar plays a key role in ensuring passenger safety by enabling
in-vehicle monitoring systems capable of detecting driver fatigue, initiating emer-
gency responses, and ensuring compliance with safety regulations.

The technology also shows strong potential in the domain of security and surveil-
lance. Unlike vision-based systems, radar can detect motion and monitor behavior
in a privacy-preserving manner, making it ideal for use in sensitive environments.
In industrial settings, such as construction sites, chemical plants, and mining op-
erations, radar-based monitoring can improve workplace safety by tracking worker
movements and ensuring adherence to safety protocols.

Further applications extend into education and human-computer interaction,
where radar facilitates gesture-based interfaces and engagement tracking. These
features are particularly beneficial in sterile environments, such as laboratories or
surgical rooms, and in accessibility-critical scenarios. In the field of sports and
fitness, radar systems provide biomechanical analysis and real-time performance
feedback, aiding in injury prevention and enhancing athletic training.

Lastly, radar sensing supports the development of assistive technologies for in-
dividuals with disabilities. Capabilities such as gesture control and fall detection
empower users by enhancing autonomy and improving their quality of life. Over-
all, the versatility and unobtrusiveness of radar technology make it a compelling
solution for a wide range of applications beyond traditional activity recognition.
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