
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Structured Retrieval-Augmented
Generation for Enterprise Knowledge

Management

Supervisors
Prof. ANDREA BOTTINO

Ing. MARIAGRAZIA CARDILE

Ing. GIULIO NENNA

Candidate
UMBERTO PICCARDI

DECEMBER 2025

Abstract

This thesis addresses the problem of onboarding and knowledge retrieval in modern
companies, where documentation is often voluminous, generic and fragmented
across many systems. Retrieval-augmented generation (RAG) language models
combine a search step with text generation: the system retrieves relevant passages
from knowledge bases and feeds them to the model to produce more up-to-date
and accurate responses. However, traditional RAG systems, based on simple vector
or lexical search, struggle with complex questions that require linking information
from different domains and synthesising it in a coherent manner.

We suggest a RAG framework for industrial settings that combines a structured
retrieval approach with a knowledge graph in order to overcome these drawbacks.
Explicit relationships between concepts and entities are added to traditional retrieval
by the graph-based design, which enables the system to reason across related data
and produce more logical, context-aware responses. This method improves overall
factual consistency and explainability while strengthening RAG’s capacity to
manage intricate, cross-domain inquiries.

The RAGAs framework, a collection of LLM-based metrics intended to evaluate
retrieval and generation quality, is the foundation of the evaluation. Using a stan-
dard open-domain dataset, we compared the effectiveness of the graph-augmented
approach against a baseline RAG in terms of faithfulness, answer relevancy, and
context precision. The results provide an initial validation of the framework’s
potential before its application to enterprise documentation environments.

Overall, this thesis contributes: (i) an analysis of the challenges posed by
onboarding and fragmented enterprise knowledge, (ii) a graph-augmented RAG
framework based on community summaries and local/global retrieval, and (iii) a
holistic evaluation demonstrating the benefits of graph-based retrieval for enterprise
knowledge management.

i

Table of Contents

List of Tables v

List of Figures vi

1 Introduction 2
1.1 Challenges of Deploying RAG in the Enterprise: Overload, Fragmen-

tation and Silos . 2
1.2 From Vector Matches to Relational Understanding 4

2 Related Work 9
2.1 Large Language Models (LLMs) . 9

2.1.1 Transformer Architecture . 9
2.1.2 Encoder–Decoder vs Decoder-Only Models 11

2.2 Retrieval-Augmented Generation (RAG) 12
2.2.1 Dense vs. Sparse vs. Hybrid Retrieval 13

2.3 Iterative vs. Parallel Retrieval-Generation Interactions 15
2.3.1 Single-turn (one-shot) interaction. 15
2.3.2 Sequential multiple interactions. 15
2.3.3 Parallel interaction. 16

2.4 Pros and Cons of Classic vs. Iterative RAG Approaches 17
2.5 GraphRAG and Knowledge Graph-Based Retrieval 18
2.6 Building the Knowledge Graph. 19
2.7 Graph-Based Retrieval. 19
2.8 Pros and Cons of GraphRAG . 20
2.9 Outlook: Microsoft’s GraphRAG System 21
2.10 Evaluation of RAG Systems: Benchmarks and the RAGAs Framework 22

3 System Implementation 24
3.1 Introduction to the Implemented RAG Variants 24
3.2 Libraries, Chunking and Embeddings 25

3.2.1 LangChain Components . 25

iii

3.2.2 Embeddings, Vector Store and Similarity Search 27
3.2.3 LLM Configuration . 29
3.2.4 Prompt Design . 30

3.3 Implementation of the Three Baseline RAG Systems 31
3.3.1 Dense Retrieval RAG . 31
3.3.2 Sparse Retrieval RAG . 34
3.3.3 Hybrid Retrieval RAG . 35

3.4 GraphRAG . 36
3.4.1 Knowledge Graph Construction 37
3.4.2 Graph Community Detection 38
3.4.3 Hierarchical Community Summarisation 38
3.4.4 Query-Time Answer Synthesis 40
3.4.5 Implementation Details and Extensions 41

4 Metrics and Dataset 43
4.1 RAGAs Evaluation Framework . 43
4.2 The WikiEval Dataset . 45

4.2.1 Origin and Construction of the Dataset 45
4.2.2 Advantages of using WikiEval in Our Experiments 46

4.3 The HotpotQA Dataset . 46
4.3.1 Subset Construction for This Thesis 47

5 Results 49
5.1 Results and Discussion . 49

5.1.1 Experimental Setup . 49
5.1.2 Metrics (RAGAs) . 49
5.1.3 Prompt Variants . 50
5.1.4 GraphRAG Community Levels 50
5.1.5 Evaluation Protocol . 50
5.1.6 Main Results . 51
5.1.7 Effect of Prompt Tuning . 53
5.1.8 GraphRAG Community Level Sweep 53
5.1.9 Discussion . 53

6 Conclusion 55
6.1 Main Achievements and Limitations 56
6.2 Future Directions . 58

Bibliography 60

iv

List of Tables

5.1 RAGAs metrics on the WikiEval dataset (mean ± 95% CI). Psimple
vs. Pgrounded. Best per column in bold. 51

5.2 RAGAs metrics on the HotpotQA subset (mean ± 95% CI). Psimple
vs. Pgrounded. Best per column in bold. 52

5.3 RAGAs metrics on HotpotQA by difficulty (easy / medium / hard). 52
5.4 RAGAs metrics on HotpotQA by question type (bridge / comparison). 53
5.5 Community level sweep for GraphRAG (Local and Drift). 54

v

List of Figures

2.1 Tranformer architecture. 10
2.2 Classic Retrieval-Augmented Generation pipeline. A query is used

to retrieve relevant text chunks from a knowledge sourceand the
language model then generates an answer grounded in the retrieved
evidence. 13

2.3 Sparse vs. dense retrieval: token-based inverted index vs. embedding-
based vector index. 14

3.1 High-level architecture of the GraphRAG pipeline. 37
3.2 Community-structured graph of Oppenheimer’s Wikipedia page,

extracted via GraphRAG; each color represents a cohesive cluster. . 39

vi

List of Figures

1

Chapter 1

Introduction

Large Language Models (LLMs) have ushered in a new era of AI capabilities,
demonstrating an unprecedented ability to generate human-like text and reason
about complex questions. In industry, this has sparked widespread interest in
deploying LLM-powered assistants and tools that can leverage an organisation’s
internal knowledge. However, a key limitation of standalone LLMs is their tendency
to produce confident but unsupported answers when asked about details outside
their trained knowledge. To address this, the paradigm of retrieval-augmented
generation (RAG) has emerged as a popular solution. RAG techniques marry LLMs
with information retrieval: the system fetches relevant documents or data from
external sources and provides them as context to the LLM, which then generates a
grounded answer. This approach allows LLMs to access private or domain-specific
data on the fly and significantly curbs unsupported claims. As a result, RAG has
been widely adopted in real-world applications—from enterprise assistants that
answer questions about policies and procedures to intelligent search systems that
tailor responses using proprietary data. In essence, RAG offers a promising way
to inject factual grounding into generative AI, enabling large models to serve as
helpful assistants within the context of an organisation’s knowledge.

1.1 Challenges of Deploying RAG in the Enter-
prise: Overload, Fragmentation and Silos

Despite these advances, deploying RAG systems in complex enterprise environments
is far from trivial. New employees onboarding onto large projects often encounter a
perfect storm of information challenges. First, documentation is frequently overly
broad and overwhelming. Organisations tend to accumulate extensive documents,
wiki pages, runbooks and design manuals that attempt to cover everything for
everyone. Yet no single artefact meets the diverse needs of all stakeholder groups

2

Introduction

equally. Highly detailed reports may span tens of pages—useful to experts, but
inaccessible to newcomers or those in different roles. A frontend engineer joining
a project, for instance, might receive a monolithic handbook covering frontend,
backend, data engineering and more, without any mechanism to filter content by
role or expertise. The lack of role-specific filtering means that relevant details are
buried among irrelevant information, making it arduous for an individual to distil
what matters for their work. The result is not only frustration, but also wasted
time: employees spend a non-trivial portion of their day searching for and gathering
information instead of applying it.

Secondly, enterprise knowledge is often fragmented across many sources. In a
typical large project, information may be scattered in a constellation of disconnected
systems: requirements in wiki spaces, API docs in Markdown files, architectural
decisions in ticketing systems and data definitions across heterogeneous databases
(for example, Oracle, PostgreSQL and BigQuery). Different teams and departments
maintain separate knowledge bases, leading to classic knowledge silos. This frag-
mentation forces employees to manually navigate multiple systems to piece together
answers. It resembles an organisational amnesia in which the left hand does not
know what the right hand learned yesterday. The silos are exacerbated by the
division of development environments: commonly there are separate databases and
documentation for development, system/integration and production. A new hire
may find that instructions for the development environment differ from production
troubleshooting guides, with no unified view bridging these. This heterogeneity
makes it extremely challenging to ask cross-cutting questions such as, “How does
the front-end error logging in the test environment correlate with known backend
issues in production?” Traditional portals or search tools are not equipped to
aggregate such multifaceted knowledge in a coherent way.

Given these challenges, there is a clear need for a smarter RAG system that can
help employees navigate complex enterprise documentation in a more targeted and
intelligent way. The goal is to transform the onboarding and knowledge retrieval
experience from a disjointed scavenger hunt into a cohesive, context-aware dialogue.
Such a system should allow cross-functional questions—queries that span multiple
domains or teams—and provide answers that reflect a unified perspective across all
relevant sources and environments. For example, an engineer might ask: “What
are the main differences between the legacy data pipeline and the new one and
how do they affect front-end load times?” Answering this requires pulling together
information about data engineering (pipelines), backend (performance impacts)
and frontend (load times), likely from different repositories. A sophisticated
RAG system would interpret this complex question, retrieve pieces from each silo
(perhaps a design note from the data team, a performance report from operations
and a front-end architecture document) and compose an integrated answer. In
essence, employees need an intelligent knowledge concierge—one that can screen

3

Introduction

through heterogeneous databases, bridge knowledge silos and tailor information
to the user’s role and context. This motivates the work in this thesis: designing a
retrieval-augmented generation framework that is aligned with the multi-source,
multi-environment reality of modern enterprises.

1.2 From Vector Matches to Relational Under-
standing

Recent developments in RAG research point towards a promising solution: GraphRAG.
GraphRAG augments the traditional RAG architecture with knowledge graphs,
bringing explicit structure and relationships into the retrieval process. In conven-
tional RAG, the retriever typically uses vector similarity to find texts semantically
similar to the query and the generator then produces an answer from those texts.
This works well for many straightforward queries but often falters on questions
that require connecting disparate pieces of information or performing multi-hop
reasoning. For instance, Answering a question such as “Who authored the design
document for the system that replaced the legacy database and what were the
main improvements?” requires establishing a sequence of facts: identifying the
replacement system, locating its design document, and then determining the author
of that document and summarising the improvements. A vanilla RAG system may
struggle because relevant information is spread across different documents and not
explicitly linked. In contrast, GraphRAG introduces an entity-centric and relational
view of knowledge: it represents information as a graph of nodes (entities) and
edges (relationships) rather than as isolated text chunks. By doing so, GraphRAG
can explicitly capture how pieces of data relate to each other. For example, in
the case of a company document which system replaced which, who authored
a document and which component belongs to which project, instead of relying
solely on implicit semantic similarity. This structured, graph-based organisation is
inherently well-suited for complex queries, because it preserves relational context
and supports principled traversal.

Operationally, GraphRAG leverages a pipeline of query-focused summarisation,
global reasoning and hierarchical, entity-based responses to overcome limitations
of traditional RAG. In the indexing stage, raw documents are processed into a
knowledge graph. Key facts or claims, such as people, projects or systems, as well as
the relationships between relevant entities are extracted from the text. This yields
an initial graph of nodes and edges representing the knowledge domain. Next, a
community detection method groups the graph’s nodes into communities of related
entities. Each community might represent, for example, a cluster of documents
and entities related to a specific project or a functional area. These communities

4

Introduction

are organised hierarchically (larger communities may consist of several smaller sub-
communities), reflecting different granularities of the knowledge space. Crucially,
GraphRAG then generates a summary for each community using a bottom-up
approach. The summary encapsulates the main entities in that community, their
relationships and the central themes. The outcome of indexing is therefore not just
a graph, but a graph with a structured “memory”: a set of summaries that provide
an overview of each cluster of knowledge. This is invaluable for query answering,
because it gives the system a “map” of the knowledge landscape which can be
consulted to answer broad or cross-cutting questions.

At query time, GraphRAG can operate in different modes to best utilise this
structure. For holistic or broad questions that span multiple topics, a global search
strategy leverages the pre-generated community summaries as context. The system
identifies which knowledge communities are relevant to the query and pulls their
summaries or portions of them to feed into the language model. Because these
summaries were designed to highlight key relationships and facts, they provide a
well-informed starting point for the model to reason globally about the data. For
specific or entity-focused questions, a local search mode is employed. The system
finds the particular entity or entities mentioned in the query within the graph,
then retrieves not only documents directly about that entity but also neighbours
in the graph—related entities and their associated information. For example, if
the query asks about a particular microservice, the local search could retrieve
data on that microservice and connected nodes such as its owning team, upstream
and downstream systems and recent incidents, assembling a rich context for the
model. By spreading out along the graph’s edges, GraphRAG ensures that the
model receives pertinent facts that are one or two hops away from the query focus,
which a vanilla RAG might miss if those facts are embedded in separate documents.
Because the knowledge graph provides an organising principle, responses can be
presented in a hierarchical, entity-based manner. If a query asks for a comparison
between two systems, the answer can enumerate points under each system (entity)
or by aspect, mirroring the structure of the underlying data.

By structuring knowledge as communities of related entities and aggregating
information through graph-based summaries, GraphRAG directly tackles several
shortcomings of traditional RAG. A common complaint of baseline implementations
is brittleness with complex queries: the retriever may bring back documents that
each only partially address the question, leaving the model to guess connections—or
worse, miss them entirely. GraphRAG’s knowledge graph allows the system to
synthesise insights that were never explicitly written down in one place. It breaks
down walls between silos: if answer-relevant facts live in separate sources, the
graph’s relationships and community summaries bring them together. In practice,
this structured approach improves completeness and faithfulness of answers, reduces
the chance of unsupported claims and provides a richer foundation for reasoning.

5

Introduction

Another key advantage is explainability and support for global reasoning, which
becomes even more critical when AI systems move beyond simple question answering
into the realm of AI agents. Organisations are increasingly exploring autonomous
or semi-autonomous agents—systems that can not only answer questions but also
perform multi-step tasks, make decisions and interact with tools or services. These
agents maintain a conversation or work on a problem over an extended period and
thus require durable memory and auditable reasoning. Here, the limitations of
standard RAG become apparent: a naive retrieve-then-generate loop over isolated
text snippets is often insufficient for complex, multi-step tasks. GraphRAG offers
a compelling synergy with AI agents by serving as a structured knowledge substrate
for agent reasoning. Because GraphRAG’s retrieval is relational and can retrieve
entire subgraphs of related information, an agent can use it to maintain context
across multiple steps. Moreover, the structured nature of the graph means that an
agent’s thought process can be traced via the nodes and edges followed. This level
of auditability and transparency is valuable for building trust, ensuring compliance,
and debugging.

A critical aspect of developing any RAG system, especially one that claims
improved reasoning, is evaluation. Traditional NLP metrics such as BLEU or
ROUGE are poorly matched to the goals of RAG because they measure surface
similarity rather than evidence use, factuality, or retrieval quality. We therefore
adopt an automated, RAG-specific evaluation framework that examines a set of key
questions: whether the generated answer remains faithful to the retrieved sources
(faithfulness), whether it directly addresses the user query (answer relevancy)
and whether the retrieved context is both focused and sufficiently comprehensive
(context precision and context recall). These dimensions collectively paint a more
faithful picture of a RAG system’s performance, especially for reasoning-centric
outputs. They allow us to quantify improvements—e.g., whether GraphRAG
provides more faithful answers or exhibits higher context recall on multi-hop
questions than a baseline dense or sparse system. While there is not yet a universally
accepted standard for evaluating the reasoning quality of RAG outputs, using such
a framework enables systematic, reproducible comparisons and highlights where
graph-based retrieval offers tangible benefits.

Scope and Objectives
This thesis introduces and investigates GraphRAG as an advanced RAG system
intended to support cross-functional question answering over complex knowledge.
We compare GraphRAG with more traditional approaches, including a purely
dense-vector pipeline, a purely sparse (keyword-based) pipeline, and a hybrid
combination. We examine how each of these approaches fares when it comes to

6

Introduction

connecting dispersed pieces of information.
To enable objective comparison, we evaluate these systems using an auto-

mated metric suite focused on faithfulness, answer relevancy and context pre-
cision/recall. Concretely, experiments are conducted on the WikiEval dataset
(explodinggradients/WikiEval, split train), which comprises a diverse set of
Wikipedia pages and associated queries and on a subset of the hotpotQA dataset
hotpotqa/hotpot_qa, a large-scale Wikipedia-based multi-hop QA benchmark
with questions requiring reasoning over multiple supporting documents. This
choice provides a controlled, non-proprietary testbed for stress-testing retrieval and
reasoning without exposure to sensitive data.

While the experimental study uses public data, the broader motivation is to
inform a subsequent deployment phase in enterprise settings, such as making
use of internal repositories, including the structure of different databases and
environments. That translation to a production context, along with potential
extensions, is discussed in the future work rather than treated as a contribution of
the present experiments.

Thesis Structure and Contributions
The remainder of the thesis is organised as follows:

• Chapter 2 — Background and Related Work: Large Language Models,
the RAG paradigm and variants and graph-based retrieval/summarisation.

• Chapter 3 — System Design (GraphRAG): Data processing, knowl-
edge graph construction, community detection, hierarchical summarisation
and query workflows (global/local).

• Chapter 4 — Dataset and metrics: Datasets (WikiEval, hotpotQA) and
the automated metrics used for assessment.

• Chapter 5 — Results and Discussion: Quantitative results across
metrics and query types; comparative analysis of strengths and limitations.

• Chapter 6 — Conclusions and Future Directions: Summary of find-
ings, limitations and prospective extensions, like application for enterprise
data sources and, where appropriate, agentic orchestration as a longer-term
direction.

Contributions. In summary, the main contributions of this thesis are:

• Problem framing and requirements. We articulate challenges in cross-
functional knowledge access across heterogeneous sources and environments

7

Introduction

and derive requirements for a RAG system capable of connecting dispersed
information.

• Design and implementation of GraphRAG. We present a practical
GraphRAG architecture that incorporates knowledge graph construction,
community detection and hierarchical summarisation to enable query-focused
reasoning.

• Comprehensive evaluation on a public corpus. We empirically com-
pare GraphRAG with dense, sparse and hybrid baselines on the WikiEval and
hotpotQA datasets using an automated metric suite focused on faithfulness,
answer relevancy and context precision/recall.

• Methodological insight. By applying and analysing RAG-specific metrics,
we provide insight into how reasoning-centric RAG systems can be measured,
identifying gaps and suggesting areas where evaluation standards could be
strengthened.

Overall, the thesis shows that a GraphRAG system can improve the completeness
and faithfulness of answers on complex queries in a controlled public setting, laying
the groundwork for future application to enterprise knowledge with heterogeneous
data sources. Future directions include transferring the approach to internal
repositories, which could be database schemas and environment-specific assets, and,
where appropriate, exploring orchestration patterns that further support multi-step
reasoning in applied contexts.

8

Chapter 2

Related Work

2.1 Large Language Models (LLMs)
Large Language Models (LLMs) are neural networks with very large parameter
counts trained on massive text corpora to model and generate human language.
Recent advances, in particular Transformer-based models, have led to substantial
gains on many NLP benchmarks. These models can approximate human-level
performance on diverse tasks. For example, Brown et al. [1] trained GPT-3, an
autoregressive Transformer-based LM with 175 billion parameters and achieved
strong performance in a purely few-shot setting on translation, question-answering,
cloze completion and even on-the-fly reasoning tasks, without any task-specific fine-
tuning. LLMs have become central to modern NLP because they pre-train on large
corpora and can then be adapted, via prompting or fine-tuning, to tasks such as
summarization, translation, dialogue, coding, etc., often delivering state-of-the-art
results. In short, ever-larger models trained with Transformer architectures have
driven a revolution in language generation and understanding.

2.1.1 Transformer Architecture
The core architecture underpinning most LLMs is the Transformer[2]. A Trans-
former layer, in both encoder and decoder, has two main sub-layers: a multi-head
self-attention mechanism and a position-wise feed-forward network. Each sub-layer
is wrapped with a residual -“add & norm”- connection and layer normalization.
The decoder adds a third sub-layer of encoder–decoder attention, attending to
the encoder’s outputs. Because Transformers have no recurrence or convolution,
they use positional encodings, added to input embeddings, to incorporate sequence
order.

The building blocks of a Transformer layer can be summarised as:

9

Related Work

• Positional Encoding: Since the model is permutation-invariant, fixed po-
sitional encodings, such as sinusoidal functions of token position, are added
to input embeddings. These encodings have the same dimension as the
embeddings and let the model take token order into account.

• Multi-head Self-Attention: Each token attends to all tokens in the (input
or decoder) sequence. Scaled dot-product attention computes a weighted
sum of value vectors, where weights come from query-key compatibilities. In
multi-head attention, this process is done in parallel across several “heads”

Figure 2.1: Tranformer architecture.

10

Related Work

with different learned projections, allowing the model to capture information
from different representation subspaces.

• Feed-Forward Network: A simple fully-connected network applied inde-
pendently at each position. Typically it has two linear layers with a ReLU
activation in between. It transforms each token’s representation to an inter-
mediate space and back, allowing per-position nonlinearity.

• Add & Norm (Residual Connection + LayerNorm): After each sub-
layer, the input is added to the sub-layer output (residual connection) and
the sum is normalized. In formula form:

output = LayerNorm(x + Sublayer(x)) (2.1)

These connections ease optimization by allowing gradients to flow around
sub-layers.

Overall, the Transformer encoder and decoder stacks alternate these layers. This
architecture has no recurrent units, which allows much greater parallelization and
the ability to learn long-range dependencies efficiently. The image above illustrates
an encoder block (left) and decoder block (right), highlighting the multi-head
attention and feed-forward modules.

2.1.2 Encoder–Decoder vs Decoder-Only Models
Transformer-based LLMs come in two main variants:

• Encoder–Decoder Models (Seq2Seq, e.g. T5, BART): These have
a distinct encoder and decoder. The encoder ingests the input text and
the decoder generates the output text autoregressively. Pre-training often
involves a denoising or “text-to-text” objective. For instance, BART [3] uses a
bidirectional encoder and a left-to-right decoder, effectively generalising both
BERT and GPT within one model. Such models excel at conditional generation
tasks: translating or summarizing a given input, answering questions by reading
contextand other sequence-transduction tasks. In particular, BART achieved
state-of-the-art results on abstractive summarization, dialogue generationand
question answering, significantly outperforming prior systems (e.g. up to +6
ROUGE on summarization benchmarks). Likewise, T5 [4] casts all problems
as text-to-text and obtains SOTA on many NLP tasks by fine-tuning its
encoder–decoder network.

• Decoder-Only Models (Autoregressive, e.g. GPT series): These
use only the transformer decoder stack with masked self-attention and no

11

Related Work

separate encoder. They model text generation by predicting the next token
given all previous tokens. Architecturally this is exactly the left-to-right
branch of a Transformer. Decoder-only LMs are trained on large corpora
to predict the next word and thus learn broad language patterns. GPT-3
[1], for example, is a purely decoder-only model with 175B parameters that,
without any task-specific fine-tuning, achieves strong results on translation,
QA, cloze, arithmeticand even generates realistic news articles. Such models
are particularly suited to open-ended generation tasks, chatbots, story or code
generation, etc., where text is generated given only a prompt.

In summary, encoder–decoder transformers (T5, BART) are typically used for
tasks that require mapping an input sequence to an output sequence, leveraging
cross-attention between encoder and decoder. Decoder-only transformers (GPT)
are used for unconditional or prompt-driven generation, using only self-attention
on past tokens. Each class has shown state-of-the-art performance in its domain.

2.2 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) is an approach that enhances large lan-
guage models (LLMs) by integrating an external retrieval step into the generation
process. Instead of relying solely on a model’s fixed parametric knowledge, a
RAG system will retrieve relevant documents (e.g., from a knowledge base or
document corpus) based on the user’s query and then augment the LLM’s input
with this retrieved content. This allows the model to produce answers that are
more up-to-date, factual and context-specific. In a typical RAG pipeline, a retriever
component first finds pertinent text passages for a given query and these passages
are fed, along with the query, into the generator which produces the final answer.
This retrieve-then-generate paradigm enables the model to access information
beyond its internal memory, addressing key limitations of standard LLMs such as
hallucinations and outdated knowledge [5]. Figure 2.2 illustrates the classic RAG
architecture: a user question is sent to a retriever, which may use a search index or
vector store, the top-k relevant passages are returned and the LLM composes an
answer conditioned on those passages.

A crucial aspect of RAG systems is the choice of retrieval mechanism. Broadly,
retrieval methods are categorized as sparse (lexical) or dense (vector) retrieval, or a
hybrid combination of both. Each of these has distinct characteristics, as discussed
next.

12

Related Work

Figure 2.2: Classic Retrieval-Augmented Generation pipeline. A query is used to
retrieve relevant text chunks from a knowledge sourceand the language model then
generates an answer grounded in the retrieved evidence.

2.2.1 Dense vs. Sparse vs. Hybrid Retrieval
Sparse retrieval methods rely on lexical overlap between the query and documents.
Traditional search algorithms like TF-IDF or BM25 represent text as bags-of-words
and rank documents based on keyword frequency and exact term matching. Sparse
retrieval excels at precise term matching – it is very effective when the query
contains specific keywords that should appear in the answer source. However,
sparse methods struggle with semantic paraphrases or synonyms. For instance, if a
relevant document uses different wording, a purely lexical match may miss it. For
example, a BM25-based search might fail to retrieve a passage about “influenza” if
the query uses the term “flu.” Sparse approaches are fast and interpretable, but
their recall is limited by vocabulary mismatch.

Dense retrieval uses vector representations to capture semantic meaning. Tech-
niques such as DPR (Dense Passage Retrieval) map queries and documents into
high-dimensional embeddings, often using transformer models, so that semantically
related text has closer vectors even if they don’t share keywords. A dense retriever
can retrieve relevant texts that are paraphrased or conceptually related to the query,
overcoming the synonym problem. For instance, a dense model might recognize
that a query about “financial well-being” is related to a document about “economic
health” despite no literal word overlap. Dense retrieval thus improves recall and
semantic relevance. On the downside, it may introduce some irrelevant results
if the model’s embeddings find loose semantic connections that don’t precisely
answer the question. Dense methods also typically require neural encoding and

13

Related Work

Figure 2.3: Sparse vs. dense retrieval: token-based inverted index vs. embedding-
based vector index.

approximate nearest-neighbor search, which can be more computationally intensive
than sparse indexing.

Hybrid retrieval aims to get the best of both worlds by combining sparse and
dense approaches. In a hybrid RAG system, the query is run through both a sparse
retriever (e.g., BM25) and a dense vector retriever in parallel. The results from
both are then fused – for example, by taking the union of documents and re-ranking
them, or by scoring via a weighted sum of sparse and dense relevance scores. This
can significantly improve coverage: the sparse component ensures high precision
for on-topic keywords, while the dense component brings in semantically related
information that sparse matching might miss. Studies have shown that hybrid
retrieval often achieves higher overall accuracy (precision and recall) than either
method alone, grounding the generative model in more complete evidence and thus
mitigating knowledge gaps or hallucinations [6]. Modern RAG implementations
often employ hybrid search pipelines (for example, using a BM25 index together
with a vector index like FAISS or HNSW and merging their outputs at query time)
and this approach has become popular in open-source frameworks (LangChain,
Haystack, etc.) for robust retrieval performance even in challenging settings.

In summary, sparse vs. dense retrieval can be seen as keyword matching vs.
semantic matching. Sparse methods (e.g., BM25) offer exact precision but limited
semantic reach, while dense methods (e.g., DPR or other embedding-based search)
offer semantic generalization but may retrieve tangential content. Hybrid retrieval
marries the two, using keywords for precision and vectors for meaning, thereby
delivering more relevant and diverse supporting passages. Many classic RAG
systems can be characterized by which retriever they use: for example, the original
RAG model by Lewis et al. (2020) used a dense retriever (DPR) on Wikipedia [7],
while other QA systems have used sparse retrievers or hybrids. Choosing the right

14

Related Work

retrieval strategy (dense, sparse, or hybrid) is crucial for effective RAGand often
depends on the nature of the data and queries.

2.3 Iterative vs. Parallel Retrieval-Generation
Interactions

Beyond the one-step “retrieve then generate” process of classic RAG, researchers
have explored more interactive architectures for how the retriever and language
model work together. A recent survey defines Retrieval-Augmented Language
Models (RALMs) in terms of how many interactions occur and in what manner [8]:

2.3.1 Single-turn (one-shot) interaction.

This is the standard RAG approach described above – the retriever provides
documents once, then the LLM produces an answer using that static retrieved
context [7]. There is no feedback loop; the process is sequential and concludes
after the generation. This works well for straightforward questions answerable with
a single set of documents, but it may falter if the query is complex and requires
multiple hops or clarifications.

2.3.2 Sequential multiple interactions.

In this iterative setup, the retriever and generator engage in a multi-turn dialogue.
The LLM may pose follow-up queries or reformulate the original query based
on partial answers and then retrieve again, multiple times, before final answer
generation. Essentially, the system can refine its context step by step, handling
complex or ambiguous queries through iterative retrieval. For example, the LLM
might initially retrieve some information, then realize a detail is missing and issue
a secondary query to the retriever, possibly conditioned on the first result, to
gather more details and so on. This approach allows multi-hop reasoning where the
answer is assembled from information across multiple sources or reasoning steps.
Sequential iterative retrieval has been used in QA systems that require reasoning
over multiple documents or in agent-like systems that plan a chain of retrieval
actions. The advantage is a more thorough exploration of the knowledge base,
often yielding more complete answers for complex tasks. The downside is increased
latency and complexity – multiple LLM calls and retrieval rounds can be slow and
harder to orchestrateand there is a risk of error propagation if an early retrieval is
off-track.

15

Related Work

2.3.3 Parallel interaction.

Here, the retriever and the language model work independently on the user’s query
and their outputs are later combined in some fashion. In other words, the LLM
might generate an answer from its internal knowledge while in parallel a retrieval
component fetches relevant text and finally the two results are fused to produce the
final output. One notable example of this paradigm is the kNN-LM by Khandelwal
et al., which augments a pretrained language model with a k-nearest-neighbor
search over an external datastore [9]. In kNN-LM, a base LM generates a probability
distribution for the next word while simultaneously retrieving the nearest neighbor
contexts from a large text index; the two distributions (LM and nearest-neighbor)
are then interpolated at each step to guide generation. Khandelwal and colleagues
showed that this method significantly improved perplexity and helped the model
produce factual or rare outputs by copying from retrieved examples. Parallel RALM
designs are less common than sequential ones, but they can be advantageous in
certain scenarios – for instance, to leverage the fluency of a powerful LLM while
also grounding it with facts from a retriever, without the retriever directly dictating
intermediate steps. The parallel approach can reduce sequential dependency,
potentially improving efficiency since retrieval does not have to wait on generation
or vice-versa. However, designing a good merging or interpolation mechanism is
non-trivial and there is a risk that the final answer may mix retrieved facts and
learned content incoherently if not carefully coordinated.

Overall, these RALM interaction modes offer different trade-offs. Sequential
iterative retrieval is powerful for complex queries that need stepwise reasoning or
disambiguation, where the LLM can progressively focus intently on the answer,
whereas parallel retrieval-generation can leverage complementary strengths of two
systems but requires careful fusion. Many advanced systems, such as agent-based
RAG frameworks, utilize sequential multiple interactions – effectively treating
the LLM as an “agent” that can plan a series of retrieval and reasoning actions.
Recently, the concept of *agentic RAG* has emerged for highly complex tasks: it
embeds an autonomous agent into the RAG pipeline to plan and manage these
sequential retrieval steps, offering even more flexibility. Agentic RAG systems can
dynamically decide how many retrievals to perform or which tool to use at each
step, but they inherit all the challenges mentioned above (coordination overhead,
potential error cascades, etc.). We now turn our attention to a different direction
of RAG evolution: integrating structured knowledge in the form of graphs.

16

Related Work

2.4 Pros and Cons of Classic vs. Iterative RAG
Approaches

To better understand the evolution of RAG systems, we summarize the advantages
and disadvantages of the classic one-shot RAG (single retrieval + generation) versus
iterative RAG (multi-step or agentic retrieval-generation cycles):

Classic RAG (Single-Step Retrieval)
Advantages: Simplicity and speed – a one-step RAG pipeline is straightforward
to implement and typically faster at inference time since it only retrieves once and
generates once. This approach is often sufficient for factoid questions or isolated
queries where a single document contains the answer. It minimizes complexity and
potential error propagation. Classic RAG also keeps the answer grounded in a
small set of documents, which can help with answer focus.

Disadvantages: Limited ability to handle complex queries that require synthe-
sizing information from multiple sources or doing reasoning over several pieces
of evidence. If the first retrieval misses some relevant information or retrieves
irrelevant context, the system has no opportunity to recover or refine its results.
Classic RAG systems can struggle with context integration, sometimes producing
fragmented or overly generic answers because the single retrieved batch may not
fully cover the query’s nuances. They are essentially static, lacking feedback loops
to correct or improve upon an initial attempt. This makes them less effective
for multi-hop questions, such as “Find X and then based on that find Y”, or for
disambiguating user queries that are broad or vague. In summary, one-shot RAG
is brittle when faced with complex information needs beyond simple lookup.

Iterative/Agentic RAG (Multi-Step Retrieval)
Advantages: Adaptability and thoroughness. Iterative RAG systems can tackle
complex or exploratory queries by refining their search over multiple turns. The
LLM can analyze retrieved results and issue follow-up queries, enabling multi-
hop reasoning and deeper contextual understanding. This often leads to more
comprehensive answers, as the system can gather diverse pieces of evidence and
combine them. Such systems shine in scenarios like open-domain QA, complex
problem solving, or interactive dialogue, where responses benefit from dynamic
planning. Moreover, an agentic approach can incorporate tools and operations
by calling external APIs or performing calculations, along with retrieval, greatly
extending the system’s capabilities. In essence, iterative RAG introduces a feedback
loop that can improve relevance and correctness with each step [8].

17

Related Work

Disadvantages: Increased complexity in design and runtime. Coordinating
multiple retrieval and generation steps, often with an autonomous agent or controller,
requires sophisticated logic for decision-making, stopping criteria and integrating
partial results. This complex orchestration can be hard to get right and may
introduce new failure modes. For example, the agent might get stuck in a loop or
pursue a wrong line of inquiry. Additionally, multi-step interactions incur higher
latency and computational costs, because the model is invoked multiple times and
numerous documents may be retrieved across turns. There are also scalability
concerns, as each step adds overhead, serving many queries in real time becomes
challenging. Finally, while iterative systems aim to mitigate errors by refinement, if
not carefully managed they might compound errors (a wrong assumption in step 1
could lead the agent astray in step 2, etc.). Thus, although iterative RAG can yield
superior results on hard tasks, it demands careful engineering and more resources.

In practice, a spectrum of solutions exists between these extremes. Practitioners
often start with a classic RAG baseline and only add iterative retrieval if needed due
to query complexity. Agentic RAG approaches, which dynamically plan retrieval
and reasoning steps, are at the cutting edge but come with the aforementioned
coordination overhead. Next, we explore a different direction in RAG: leveraging
structured knowledge via graphs.

2.5 GraphRAG and Knowledge Graph-Based Re-
trieval

A notable extension of the RAG paradigm is the incorporation of knowledge graphs
as a way to represent and retrieve information. GraphRAG refers to RAG systems
that leverage a graph-structured knowledge base (nodes and edges representing
entities and their relations) alongside or instead of free-text documents. The key
idea is that a graph can encode relationships and global structure in the data,
enabling the system to perform relational reasoning and “connect the dots” between
pieces of information more effectively than retrieving isolated text chunks. This
is especially useful for queries that involve complex relationships or require a
global understanding of a domain (e.g., questions about how multiple entities are
interrelated).

In a GraphRAG system, the knowledge source is not just an unstructured text
index or embedding store, but a knowledge graph (KG) constructed from the corpus.
Nodes in this graph typically represent important entities and edges represent
relations between entities (e.g., Person A works at Company B, or Event X occurred
in Year Y). The RAG pipeline is modified to utilize the graph: for example, the
retriever might perform a graph traversal or a structured query on the KG to find
relevant subgraphs or linked entities related to the question. The results of the

18

Related Work

graph query can then be converted into textual form (or some structured form)
for the LLM to consume, or the LLM might even interact with the graph directly
through a graph-aware QA chain. In essence, GraphRAG provides an alternative
retrieval mechanism where connectivity and relationships between facts can be
exploited.

2.6 Building the Knowledge Graph.
Constructing a knowledge graph from unstructured text is a non-trivial step that
typically involves NLP techniques for information extraction. A simple approach is
to use Named Entity Recognition (NER) to detect entity mentions in textand then
connect entities that co-occur in the same context, assuming they are related. For
instance, one can create a co-occurrence graph where any two entities mentioned in
the same sentence or subsection are linked by an undifferentiated relationship (e.g.,
a “co-occurs-with” edge). This yields an undirected graph indicating associations,
though without explicit relation types. Although they are easy to create, co-
occurrence graphs do not provide explicit semantics. This means that while
they can reveal clusters of related concepts, they do not show which entities
are connected, or why. A more sophisticated pipeline will attempt to identify
specific relations between entities. This can be done via rule-based or ML-based
relationship extraction, for example recognizing patterns like “X was born in Y” to
create a triple (X — born_in → Y) instead of a generic link. Modern approaches
often employ transformers or even LLMs fine-tuned for information extraction
to produce structured triples from text, as seen in Open Information Extraction
systems or with tools like LangChain’s LLMGraphTransformer. The end result
of these processes is a knowledge graph that might contain various node types
(Person, Organization, Location, etc.) and relation types (located_in, works_for,
part_of, etc.), providing a rich semantic network of the source data. In practice,
building a high-quality KG requires careful design, since it may involve entity
linking to canonical databases, coreference resolution to merge mentions referring
to the same real-world entity and ensuring important relations are captured. In
the context of GraphRAG retrieval, the completeness of the graph is crucial: if an
entity or connection is missing from the KG, the system might overlook relevant
information.

2.7 Graph-Based Retrieval.
Once a knowledge graph is in place, a GraphRAG system can use it in several
ways. A straightforward method is graph traversal, which given a query, identify
one or more “focus” entities mentioned in the query, then traverse the graph to find

19

Related Work

connected entities or a subgraph that could contain the answer. For example, if the
question is “What are the main themes connecting Alice’s and Bob’s research?”, a
traversal might find that Alice and Bob are linked via the node Quantum Computing,
indicating both have work related to that theme. The system could then retrieve
textual information about that connecting node, in this example summaries or
documents about Quantum Computing) to help answer the question. Another
approach is to treat the knowledge graph as a database and use structured queries
(e.g., SPARQL or Cypher) to directly retrieve facts or paths relevant to the query.
There are also specialized QA chains that integrate graphs, such as feeding the
LLM a representation of the subgraph or having the LLM issue graph queries via a
tool. The advantage of graph-based retrieval is that it exploits relational structure:
the system can reason not just about isolated facts but about how facts interrelate.
This is crucial for queries that involve multiple entities or require understanding
the interplay between concepts. For instance, “How is X connected to Y?” or
“Summarize the relationship among A, Band C”. GraphRAG inherently enables
multi-hop reasoning, since following a path in the graph is like traversing a chain
of reasoning steps connecting different pieces of information.

However, GraphRAG also brings challenges. Building and maintaining the graph
adds an extra layer of complexity and processing overhead. There is an inherent
coverage issue, when a fact or entity is not represented in the graph, the system
might miss it even if it exists in the raw text. This is why GraphRAG is often
combined with text vector retrieval as a fallback. Performance-wise, querying a
large graph can become slow if the graph has millions of nodes/edges and memory
usage can be significant. The approach is only as good as the quality of the graph:
incorrect or spurious relations in the KG can mislead the modeland conversely,
missing links can lead to incomplete answers. Integrating unstructured text with
the graph is non-trivial, and a hybrid GraphRAG strategy is often the best practice,
using the knowledge graph for structured relations and a vector index for general
text, with the results merged successively. Despite these challenges, GraphRAG
has shown to be highly effective in certain domains, such as biomedical research or
legal corpora, where there are many entities and relationships and where queries
require a more global or relational understanding of the data.

2.8 Pros and Cons of GraphRAG
To summarize the utility of graph-based RAG systems, we can list their main
advantages and disadvantages:

Advantages: GraphRAG enables richer reasoning over relationships. By
leveraging node connectivity and hierarchies, it provides context that spans multiple
documents or facts, which a flat text retrieval might miss. It is particularly powerful

20

Related Work

for questions requiring relational understanding (e.g., “How are these entities
related?”) or sense-making across a large corpus, because the graph structure
helps the model organize information and avoid getting lost in irrelevant details.
Additionally, GraphRAG can help reduce hallucinations and improve factuality,
since the existence of an edge between nodes is a constrained, verifiable piece of
data and the model can be guided to stick to known relations in the graph. The
graph can also act as a form of compressed memory or summary of the corpus,
which is useful for very broad or exploratory queries. In this way, rather than
retrieve dozens of raw documents for a broad question, the system might retrieve
a concise subgraph or a pre-computed summary of a cluster of entities, making
it easier for the LLM to handle. In essence, GraphRAG offers a way to inject
structured knowledge into the generation process, which is beneficial for domains
where structure matters. For example, in an enterprise setting, a knowledge graph
might encode organizational information or product ontologies that the LLM can
leverage when answering questions.

Disadvantages: The need to construct and maintain a knowledge graph means
higher development and maintenance effort. Automatic graph construction can
be error-prone. for instance, extracting incorrect relations or merging unrelated
entities will introduce noise that can confuse the generator. There is also an
inherent trade-off in graph design: a naive co-occurrence graph might include too
many loosely related connections yielding noise, whereas a strictly curated graph
might be too sparse and miss relevant links. Moreover, not all queries benefit
from a graph; for simple fact lookups, a graph can be overkill and a direct text
retrieval might suffice. Performance and scalability are concerns: large graphs
require efficient query algorithms and indexing, and they may not scale well to
web-sized knowledge without significant engineering, though techniques like graph
databases and community detection can help manage this. Thus, GraphRAG tends
to excel in specialized scenarios but may not universally outperform standard RAG
on every task. It’s a tool best used when the domain naturally contains a web of
relationships that the QA process can exploit, or when answers require synthesizing
information across many related facts.

2.9 Outlook: Microsoft’s GraphRAG System
Graph-based RAG has garnered enough interest that major research efforts have
been dedicated to it. Notably, in 2025 Microsoft introduced a GraphRAG approach
for query-focused summarization over large text corpora [10, 5]. In their method,
an LLM is used to build a knowledge graph from a collection of documents: the
LLM identifies key entities and relationships to form the graph, then automatically
generates hierarchical community summaries for clusters of related entities in a

21

Related Work

bottom-up fashion, using a community-detection algorithm such as Leiden to group
the clusters [11]. At query time, those community summaries, which capture
high-level themes in the data, are leveraged in a map-reduce style QA process:
partial answers are generated from each relevant community and then merged into
a final answer. This GraphRAG system is designed to handle broad, analytical
questions like “What are the main themes in this dataset?”, which conventional
vector-based RAG struggled with. The results reported by Microsoft’s team showed
substantial improvements over a standard vector-only RAG baseline in terms of
answer comprehensiveness and diversity. In other words, by using a knowledge graph
and hierarchical summaries, the GraphRAG approach provided more complete
and insightful answers to complex queries than a classic retrieve-and-read pipeline
[5]. In the next chapter, we will delve deeper into the design and evaluation of
Microsoft’s GraphRAG system, examining how it implements the concepts outlined
here and how it compares to traditional RAG techniques.

2.10 Evaluation of RAG Systems: Benchmarks
and the RAGAs Framework

Evaluating the performance of retrieval-augmented generation systems is inherently
challenging, since it requires assessing not only the quality of the retrieved context
but also the correctness and groundedness of the generated answer. Traditional
NLP metrics such as BLEU, ROUGE, or simple retrieval recall only capture one
side of this process: either how well the model reproduces reference answers, or how
many relevant documents were retrieved. However, none of these approaches fully
reflect whether a RAG system truly understands and integrates retrieved evidence
into its output [12]. Recent research has thus emphasized the need for holistic
evaluation frameworks and benchmarks specifically designed for RAG models.

Among these, RAGAs (Retrieval-Augmented Generation Assessment) has
emerged as one of the most widely adopted and flexible solutions [13]. Introduced
in 2024, RAGAs provides an automated, LLM-based evaluation framework capable
of judging a RAG system’s performance without requiring human-written reference
answers. Instead, it employs a set of complementary metrics that jointly assess both
retrieval and generation quality. The key evaluation dimensions include: faithfulness,
which measures whether the model’s answer remains factually grounded in the
retrieved context; answer relevancy, which gauges how well the answer addresses
the user’s query; and context precision and recall, which evaluate the relevance and
completeness of the evidence used.

One of the main advantages of RAGAs is its reference-free design, which allows
it to be applied even to domains where no gold-standard answers exist, such as
enterprise documentation or proprietary knowledge bases. By leveraging large

22

Related Work

language models as evaluators, RAGAs approximates human judgment in assessing
factuality, relevance and grounding, providing a practical way to benchmark RAG
systems quickly and consistently.

In this work, we employ RAGAs to compare our graph-augmented RAG frame-
work against a baseline on a standard open-domain dataset. This experiment serves
as an initial validation step, allowing us to quantify the benefits of introducing
structured retrieval before deploying the system in an enterprise documentation
environment. RAGAs’ holistic perspective ensures that the observed improvements
in accuracy also correspond to more grounded and contextually supported answers,
aligning the evaluation with the ultimate goal of reliable knowledge retrieval. ,
Finally, we introduce the graph-based GraphRAG variant (§3.4), describing its
knowledge-graph index, community hierarchy and the implementation extensions
developed in this thesis.

23

Chapter 3

System Implementation

3.1 Introduction to the Implemented RAG Vari-
ants

Retrieval-Augmented Generation (RAG) is an approach that integrates information
retrieval into the workflow of a language model to augment its knowledge and
reduce hallucinations. In this chapter, we present the implementation details of
three baseline RAG systems: a dense retrieval RAG, a sparse retrieval RAG
and a hybrid retrieval RAG.

These systems serve as baselines for comparison and ablation, each employing a
different strategy for fetching relevant context to supply to the Large Language
Model (LLM) before generation. The dense and sparse variants represent two
paradigms in information retrieval, which are neural semantic search vs. classical
lexical search, while the hybrid variant combines both to leverage their comple-
mentary strengths. Our implementation is built using the LangChain framework,
which provides modular components for document loading, chunking, embedding
and chaining together the retrieval and generation steps. We describe each of these
components and how they form a complete RAG pipeline. The more advanced
GraphRAG system, which incorporates graph-based retrieval, will be detailed
after, allowing us to focus first on the baseline methods without graph augmentation.
By examining these baseline RAG variants, we set the stage for understanding the
improvements introduced by the GraphRAG approach.

Each RAG variant in this chapter follows the general RAG architecture intro-
duced by Lewis et al. [14]: a question or user query is expanded with additional
context retrieved from an external knowledge source and this augmented query
is then passed to an LLM to produce a final answer. The key difference between
the variants lies in how the relevant context is retrieved. Below, we outline the
libraries and components used in our implementation (§3.2), the embedding model

24

System Implementation

and vector store for dense similarity search versus the BM25 algorithm for sparse
search (§3.2.2), the LLM configuration (§3.2.3) and the prompt design that ensures
the LLM uses the retrieved evidence (§3.2.4). We then detail the end-to-end
implementation of each of the three baseline RAG systems in turn (§3.3.1–§3.3.3),
including code-level insights into how documents are chunked, how retrieval is
performed and how the retrieved results are integrated into the generation pipeline.

3.2 Libraries, Chunking and Embeddings
Before diving into each RAG variant, we describe the common tools and techniques
used across our implementations. This includes the LangChain libraries [15] and
components for document handling and retrieval, the embedding model and vector
database for dense search and how we perform text chunking to manage LLM
context lengths.

3.2.1 LangChain Components
Our implementation makes extensive use of the LangChain framework, including
the langchain and langchain_community modules, to simplify the construction
of the RAG pipelines. Key components utilized are:

• DirectoryLoader and TextLoader: These loaders facilitate ingesting a
corpus of documents from local files. DirectoryLoader can traverse a directory
and apply TextLoader to each file, reading its contents into a standardized
Document object. This allows us to easily load all knowledge source files into
memory for further processing.

• CharacterTextSplitter: After loading, each document is split into smaller
chunks using CharacterTextSplitter. We configure this with a suitable
chunk size, which in our case was 1200, and optional overlap, which we set to
100. Chunking ensures that each piece of text fits within the context window
of the LLM and is focused on a specific subtopic. By splitting documents into
chunks, we improve retrieval granularity, allowing the retriever to find and
return only the most relevant portions of text for a query.

• OpenAIEmbeddings: This module provides an interface to OpenAI’s text
embedding model for generating dense vector representations of text. We
use OpenAIEmbeddings to encode each text chunk and queries into a high-
dimensional embedding space suitable for semantic similarity search.

• Chroma: Chroma is an open-source vector store that we use to index and
query embeddings. After computing embeddings for all document chunks, we

25

System Implementation

store them in a Chroma database. Chroma provides fast similarity search over
these vectors, returning document chunks that are nearest to a given query
vector.

• BM25Retriever: This component implements a classical sparse retrieval
algorithm BM25 [16] for our corpus. This sparse retriever indexes the text
chunks by their terms and allows querying with a new text query to obtain
relevant documents scored by BM25 (a TF–IDF-based ranking function).
We use the BM25Retriever from langchain_community to perform lexical
matching retrieval without embeddings.

• EnsembleRetriever: The ensemble retriever enables combining multiple
retriever results into one. In our hybrid RAG system, we initialize an
EnsembleRetriever with two constituent retrievers, usually a dense one
and a sparse one. This component will call each retriever for a query and
then merge and re-rank their results into a single list. LangChain’s ensemble
uses a weighted Reciprocal Rank Fusion (RRF) strategy [17] by default to
aggregate results, which tends to improve recall by including documents that
either method found highly relevant.

• ChatPromptTemplate: This is a templating utility to build the prompt,
consisting of system/user messages, for the chat-based LLM. We define a
prompt template that includes placeholders for the retrieved context and the
user’s question. So, the ChatPromptTemplate fills in these slots at runtime
to produce the final prompt message sequence for the LLM. The usage of a
prompt template helps enforce a consistent format for queries, ensuring the
model is instructed properly to use the context.

• RunnablePassthrough: This is a utility that simply passes its input through
unchanged. We use RunnablePassthrough in constructing the retrieval-
generation pipeline to feed the original question into multiple components in
parallel. For example, in the hybrid chain, we pass the user question both to
the retriever to fetch documents and directly into the prompt template to fill
the question placeholder, ensuring the question text is preserved for the LLM
input while retrieval occurs.

• StrOutputParser: After the LLM produces an output, which in LangChain
may be a message object, the StrOutputParser is used to extract the raw text
string of the answer. This is essentially a post-processing step to ensure the
final output of the chain is a clean text answer without additional metadata.

Together, these components allow us to construct a flexible pipeline: we load
and chunk documents, embed or index them, perform retrieval, assemble a prompt

26

System Implementation

with retrieved context, call the LLM and finally extract the answer. LangChain’s
abstractions simplify each step, while still giving fine-grained control over the
process.

3.2.2 Embeddings, Vector Store and Similarity Search
For the dense retrieval variant, we rely on a neural embedding model and a vector
database, whereas the sparse variant uses the BM25 algorithm. Here we outline
the differences and how the hybrid combines them.

OpenAI Embeddings (text-embedding-3-small): We use

text-embedding-3-small

an OpenAI’s model to convert text into a dense vector representation. This
model produces a fixed-dimensional embedding for any given text input, capturing
semantic meaning such that similar meanings correspond to nearby points in the
vector space. Using dense embeddings for retrieval allows the system to find relevant
documents even when they do not share obvious keyword overlap with the query.
For example, the query “What is the revenue of the company?” could still retrieve a
passage stating “The company reported $X in annual sales,” because the embeddings
of “revenue” and “sales” would be close in the vector space. This semantic search
capability is a key advantage of dense retrieval methods and has been shown to
significantly outperform traditional keyword search on many knowledge-intensive
QA tasks [18]. In our implementation, after chunking the documents, we pass each
chunk through the OpenAI embedding model, via OpenAIEmbeddings, to obtain its
vector. All vectors are stored along with metadata (e.g. the text content or source
of the chunk) in the Chroma vector store. The Chroma store enables efficient
similarity search: given a new query, we embed the query using the same model
and ask Chroma for the top-k most similar chunk vectors. The similarity metric
is cosine similarity on the embeddings. The result is a list of retrieved chunks
ranked by semantic relevance to the query.

BM25 Sparse Retrieval: The second approach uses sparse vector space
modeling of text based on token occurrence. We employ the BM25 algorithm [16],
a well-known method from information retrieval that scores documents for a query
based on term frequency, which is how often query terms appear in the document
and inverse document frequency, increasing the weight of rarer terms. Unlike the
dense approach, BM25 does not require any model training or embeddings; it
operates directly on the text. We initialize BM25Retriever with our collection of
document chunks. For example, in code we call something like:

sparse_retriever = BM25Retriever.from_documents(chunks).

27

System Implementation

This call likely builds an internal inverted index of terms to chunk IDs and computes
the necessary IDF statistics for BM25. The retriever uses the library rank_bm25
under the hood to support BM25 scoring. There is no external store or database
needed, ibut only an in-memory index since our corpus is of a manageable size. If
the corpus were huge, one might use Elasticsearch or Whoosh, but LangChain’s
BM25Retriever is a simple solution for moderate data sizes.

At query time, the BM25 retriever tokenizes the user’s query and computes a
BM25 score for each chunk’s text, returning the top k chunks with highest scores.
Sparse retrieval excels at finding documents that contain the exact keywords or
phrases used in the query. For example, if the question asks for a specific name or
code, BM25 is likely to surface documents containing those exact tokens, which a
dense method might miss if those exact terms are rare or out-of-vocabulary for the
embedding model. However, sparse methods struggle when the query and document
use different wording, such as synonyms or paraphrases, a scenario where dense
embeddings shine. In fact, dense and sparse retrievers often find complementary
information [19]: each can retrieve some relevant items the other might overlook.

Hybrid Retrieval (Dense + Sparse Ensemble): To capitalize on the
complementary nature of dense and sparse search, our third variant uses a hybrid
approach. We combine the above two methods using the EnsembleRetriever
which invokes both a dense retriever and the BM25 retriever and then fuses their
results. In practice, we configure two retrievers: one backed by the Chroma vector
store for dense similarity search and one BM25. The ensemble retriever calls both
with the user query and obtains two ranked lists of document chunks. These
lists are then merged using a rank fusion strategy. LangChain’s default ensemble
strategy is an implementation of Reciprocal Rank Fusion (RRF) [17], which assigns
each document a score based on the reciprocal of its rank from each method and
then produces a combined ranking. RRF is a simple yet effective technique that has
been shown to outperform more complex learned rank aggregation methods in many
cases [17]. Intuitively, this means that if a document is highly ranked by either the
dense or sparse retriever, it will appear near the top of the merged list. The hybrid
approach often yields better coverage of relevant information than either method
alone: semantic search finds conceptually related content, while keyword search
ensures exact matches are not missed. Recent research on hybrid retrieval confirms
that integrating classical and neural IR techniques can significantly improve overall
retrieval performance [19]. In our system, we give equal weight to dense and sparse
results, though weights can be tuned if desired and we typically retrieve a few
results from each before fusion. The end result is a set of top-k context chunks
that reflect both semantic relevance and lexical matching to the query.

By switching between these retrieval strategies, we can observe their different
behaviors. All three variants feed their retrieved documents into the same generation
module, composed of LLM + prompt, which ensures a fair comparison of the

28

System Implementation

retrieval component’s effect on the final answer quality.

3.2.3 LLM Configuration
For the answer generation step, we use an OpenAI Chat model via LangChain’s
ChatOpenAI interface. The model configuration is kept consistent across all RAG
variants for fair comparison. The specific settings used are:

• model_name = "gpt-4o-mini" – This refers to the language model we query
for generation. In our implementation, we used a GPT-4 class model, denoted
here as “GPT-4o-mini”, which is a smaller variant of OpenAI’s GPT-4. This
model was chosen to balance performance with computational constraints. It
retains the advanced reasoning and understanding capabilities of GPT-4, but
with a reduced size to allow faster responses in our development environment.
The key is that all variants use the same model, so any differences in answer
quality can be attributed to differences in retrieval, not the LLM itself.

• temperature = 0 – We set the generation randomness to zero. A temperature
of 0 forces the model to pick the most probable next token at each step,
essentially making the output deterministic given a fixed prompt. This is ideal
for question-answering tasks where we want factual, reproducible answers
and minimal creativity. A temperature of 0 significantly reduces variability
and the chance of hallucinating details, as the model will stick closely to the
highest-confidence answer (often drawn from the provided context).

• max_tokens = 512 – This limits the length of the model’s answer to at
most 512 tokens. This value is chosen to ensure the answer can be sufficiently
detailed if needed, but not excessively long. Moreover, it also guarantees the
response fits within the context window alongside the prompt. By capping
the output length, we prevent the model from rambling or going off-topic and
avoid hitting token limits that could truncate the answer mid-sentence.

• timeout = 60 – We specify a timeout of 60 seconds for the model API call.
This is a safety measure so that if the model or network is unresponsive, the
system doesn’t hang indefinitely. In practice, the model typically responds
much faster, but the timeout ensures the pipeline fails gracefully and can retry
or exit if something goes wrong.

• retry_settings = {"max_retries": 3} – LangChain’s retry mechanism
is enabled to automatically handle transient errors. If the LLM API call fails
due to a rate limit, network glitch, or other error, the chain will retry up to 3
times. This improves robustness of our system, as occasional API failures will
not result in missing answers but will be retried after a short backoff. With

29

System Implementation

max_retries=3, we give the model multiple chances to return a result, which
is usually enough for any temporary issue to resolve.

In summary, our LLM is configured for reliable, factual generation: using a strong
GPT-4-based model, disabling randomness to get consistent outputs grounded
in the input context, limiting answer length and adding safeguards for timeouts
and retries. These settings ensure that when provided with relevant retrieved
documents, the model focuses on generating a correct answer from them rather
than producing creative or unsupported content. All three RAG variants use this
identical LLM setup, so the differences in their performance can be traced back to
the retrieval stage rather than any variation in generation parameters.

3.2.4 Prompt Design
The three baseline systems share the same prompt template, which is designed to
make the use of retrieved context explicit, constrain the model to this context and
provide a simple, uniform interface across all retrieval variants. The template used
in our implementation is the following:

You are an assistant for question-answering tasks.
Use the following pieces of retrieved context to answer the question.
[The exact answer is less than 5 words.] (for the hotpotQA dataset)
If you don’t know the answer, just say that you don’t know.
Do not add information from outside the documents.
Question: {question}
Context: {context}
Answer:

In the LangChain implementation, this template is represented as a chat-style
prompt with two logical parts:

• System message. The initial instructions (up to “Do not add information
from outside the documents.”) are encoded as a system message. They
define the assistant’s behaviour: rely on the retrieved context, avoid external
knowledge and explicitly answer “I don’t know” when the context does not
support a grounded answer. This framing is intended to reduce hallucinations
and aligns with established practice in retrieval-augmented generation [14].

• User message. The remaining fields, which are Question: {question},
Context: {context} and Answer: are encoded as the user message. At run-
time, {question} is filled with the user query, while {context} is populated
by concatenating the top-k retrieved chunks returned by the chosen retriever.
The trailing Answer: token signals to the model where to begin its response.

30

System Implementation

This prompt design ensures that the model has all relevant information explicitly
exposed when formulating an answer. By presenting the question and the retrieved
context together within a constrained instruction, the model is reminded to ground
its output in the provided evidence rather than performing open-ended generation.
The requirement not to add information from outside the documents, combined
with the permission to answer “I don’t know”, encourages conservative behaviour
when the retrieval step fails or is incomplete. Empirically, this configuration proved
stable across all three RAG variants and allows a fair comparison focused on
differences in retrieval rather than prompt engineering.

3.3 Implementation of the Three Baseline RAG
Systems

We now describe how each of the three baseline RAG systems is implemented in
our project. Each system follows the general pipeline of document preprocessing,
retrieval, prompt construction and LLM query, but they differ in the retrieval
component. We highlight the code-level details of how documents are prepared,
how each retrieval method is set up and invoked and how the results are fed into the
LLM. Throughout these implementations, the LLM model and prompt template
remain the same as described above, isolating the effect of the retrieval strategy on
the end result.

3.3.1 Dense Retrieval RAG
The dense retrieval RAG system uses semantic vector similarity to find relevant
context. Its implementation pipeline can be summarized in the following steps:

1. Document Loading: We use DirectoryLoader to load all documents from
a specified folder, such as a knowledge base of text files. The directory loader
internally uses TextLoader for each file, resulting in a list of Document objects.
Each Document contains the raw text and associated metadata, like file name
or other identifiers which we can use later if needed for source attribution.

2. Text Chunking: The loaded documents, which might be several paragraphs
or pages each, are split into smaller chunks using CharacterTextSplitter.
In our notebooks, we configured the splitter with a chunk size that balances
informativeness with brevity, splitting into approximately 1000 characters per
chunk with some overlap of 100 characters to avoid cutting important context
between chunks. This produced a list of chunked Document objects. Each
chunk has its own text, which is a substring of the original document and
retains metadata linking it back to the source. Chunking is crucial for dense

31

System Implementation

retrieval because it increases the likelihood that any given query will have a
closely matching chunk, whereas matching to a long document only partially
would ruin the utility of the RAG system. It ensures the LLM is not given an
entire long document when only a part is relevant.

3. Embedding and Indexing: Next, we generate embeddings for each chunk.
We initialize an OpenAIEmbeddings instance, with the API credentials and
model text-embedding-3-small, and call it on each chunk’s text. This yields
a high-dimensional vector for every chunk. We then create a Chroma vector
store, adding all chunk vectors to it. In code, this can be done by something
like:

embedding = OpenAIEmbeddings(model="text-embedding-3-small"))

vector_store = Chroma.from_documents(chunks, embedding)

This builds an index where each entry is the embedding of a chunk and
the content-metadata of that chunk. At this stage, we effectively have our
knowledge corpus in an indexed form suitable for fast nearest-neighbor search
in the embedding space.

4. Retriever Setup: We obtain a retriever interface from the vector store by
calling vector_store.as_retriever(). We configure this retriever with a
number of results to return, say k = 4 or 5, meaning it will fetch the top
4-5 most similar chunks for any query. The retriever uses cosine similarity
under the hood and can optionally use maximal marginal relevance MMR
to diversify results, though in our base implementation we primarily used
straight similarity ranking.

5. Query Retrieval: When the user poses a query, we feed that query string into
the retriever: retriever.get_relevant_documents(query). The retriever
computes the embedding for the query, using the same OpenAIEmbeddings
model, and compares it to all stored chunk embeddings in Chroma. It then
returns the top k Document chunks that have the highest similarity scores.
These returned Document objects contain the chunk text. It is also possible
to use the metadata if needed, but primarily the text content is needed as
context.

6. Prompt Construction with Context: The retrieved chunk texts are then
compiled into the prompt template. Using ChatPromptTemplate, we fill in the
{context} placeholder with the text of these k chunks. In our implementation,
we joined the chunks either as bullet points or separate paragraphs in the
context section of the prompt. We also fill in the {question} placeholder with
the user’s question. The result is a fully formatted prompt, altogheter with

32

System Implementation

system instructions and user message containing context and question, ready
for the LLM. For example, if the question was “What causes rainbows?” and
the retrieved chunks discussed light refraction and prism experiments, those
chunk texts would appear under “Context:” and then the question is asked.

7. LLM Generation: We call the ChatOpenAI model with the constructed
prompt. In LangChain, this could be done by creating a LLMChain or using
the prompt’s format() and then passing to llm({}) directly since our prompt
is a single-turn. The model, with temperature 0, processes the context and
question and generates an answer. Because of the prompt design, the answer
should ideally be drawn from the given context chunks.

8. Output Parsing: Finally, we apply StrOutputParser to the model’s re-
sponse to extract the answer text. The output is then a plain string, which
we can display to the user or evaluate.

Throughout the above process, the role of LangChain’s RunnablePassthrough
is worth noting: in our actual notebook, we constructed a chain using LangChain’s
“Runnable” pipeline paradigm. Essentially, we created a RunnableSequence that
tied together the retriever and the LLM with the prompt. The RunnablePassthrough
was used to feed the original query into two parallel branches of this sequence: one
branch goes into the retriever to produce documents and another branch passes the
query unchanged into the prompt as the {question} input. The final chain looked
conceptually like:

Question (input) –-[Retriever]–-> Documents –-+

Question (input) –-[Passthrough]–> Question –-+

+–-> [PromptTemplate] –> [LLM] –> [OutputParser]

Here, the plus sign indicates that the prompt template receives two pieces
of data: the question and the documents and then the LLM generates using
both. While this might be an implementation detail, it shows how LangChain
allows parallel flows and merging for building a complex chain. In simpler terms,
one can imagine the code doing: retrieve docs = retriever(query), then
prompt = prompt_template.format(question=query, context=docs) and ul-
timately answer = llm(prompt).

The dense RAG system, implemented as above, ensures that the model is always
given semantically relevant context. It takes advantage of the power of neural
embeddings to find context that might not share keywords with the question but is
topically related. This is particularly useful for questions where the answer might
be phrased differently in the source text than the user’s question phrasing. By
using a strong embedding model, the retriever can handle vocabulary mismatch

33

System Implementation

issues better than a keyword search. One limitation to note is that if the embedding
model is not familiar with very domain-specific terminology or if the corpus is
small and the relevant info is very specifically worded, the dense retriever might
sometimes return somewhat relevant but not exact passages.

Overall, the final result is an end-to-end dense RAG system: a user asks a
question, we retrieve related chunks via vector similarity and GPT-4 answers using
those chunks as evidence. This system embodies the approach of Lewis et al. [14]
who first introduced RAG with dense retrieval, leveraging the success of Dense
Passage Retrieval [18] to improve knowledge-intensive QA.

3.3.2 Sparse Retrieval RAG
The sparse retrieval RAG system replaces the dense vector search with a BM25-
based lexical search. In many ways, its implementation is similar to the dense
pipeline, but with the embedding and vector store steps removed and a different
retriever in place. Here’s how the sparse RAG pipeline operates:

1. Document Loading and Chunking: We begin exactly as before by load-
ing all documents from files, using DirectoryLoader and TextLoader, and
splitting them into chunks with CharacterTextSplitter. At this stage, we
have our list of chunked Document objects, identical to what we had in the
dense setup. The chunking strategy remains the same, ensuring that chunks
are reasonably sized and self-contained. It is important to note that chunking
benefits the sparse retriever as well: shorter chunks mean the query’s terms
either appear or not in a chunk and we do not dilute the BM25 score across a
very long document. It also means if only one section of a long document is
relevant, we isolate that section as a chunk which can be retrieved on its own.

2. BM25 Indexing: Instead of embedding the chunks, we start by initializing
the BM25Retriever with the list of chunks. For example, in code we call
something like:

sparse_retriever = BM25Retriever.from_documents(chunks).

This call builds an internal inverted index of terms to chunk IDs and computes
the necessary IDF statistics for BM25. The retriever uses a library rank_bm25
under the hood to support BM25 scoring. There is no external store or database
needed, but only an in-memory index since our corpus is of a manageable size.

3. Query Retrieval with BM25: When a user question is asked, we use
sparse_retriever.get_relevant_documents(query). The BM25 retriever
will tokenize the query, while applying simple text preprocessing and then
compute a BM25 score for each chunk’s text. BM25 scoring formula takes

34

System Implementation

into account term frequency in the chunk, chunk length and term rarity across
the corpus. The retriever returns the top k chunks with highest scores. For
instance, if the query is “What is the capital of Australia?”, the BM25 retriever
will look for chunks containing words like “capital” and “Australia” and rank
them. A chunk that says “... Canberra is the capital of Australia...” would
score very high due to containing both query terms, whereas a chunk about
Australian wildlife with no mention of the word capital would score zero or
very low. The number of documents to retrieve of k is set similarly to the
dense case to ensure multiple pieces of context in case some are only partially
relevant.

4. Prompt Assembly: The retrieved chunks from BM25 in the form of Docu-
ment objects with text are then formatted into the prompt using the same
ChatPromptTemplate as before. We fill in the context section with the texts
of these top chunks. In our notebooks, this was done identically to the dense
pipeline; the difference is purely that the source of these chunks is BM25
rather than vector search. In code, one could reuse the same prompt template
object and just supply it new context. The question itself is the same user
query.

5. LLM Generation and Output: We call the ChatOpenAI model with the
prompt: system instructions, user context and question and parse the output
with StrOutputParser. The LLM will generate an answer based on the
context provided. Because the context came from BM25, which tends to
return documents containing literal query terms, the model will often see very
directly relevant text. For factoid questions, this can be very effective: the
answer sentence might be present exactly among the chunks.

3.3.3 Hybrid Retrieval RAG
The hybrid RAG system integrates both dense and sparse retrieval to provide the
LLM with a more comprehensive set of context documents. Its implementation
builds on parts of the previous two pipelines and adds an ensemble mechanism.
The steps for the hybrid pipeline are:

1. Document Loading and Chunking: Just as with the other variants, we
start by loading all documents and splitting them into chunks.

2. Initialize Dense and Sparse Retrievers: We set up both retrieval mech-
anisms in parallel. First, we create the dense retriever: embed all chunks
using OpenAIEmbeddings and store them in a Chroma vector store (same as in
§3.3.1). Then we call vector_store.as_retriever() to get a dense retriever

35

System Implementation

object. Separately, we initialize the BM25 retriever by

BM25Retriever.from_documents(chunks).

3. Ensemble Setup (Reciprocal Rank Fusion): We create an EnsembleRetriever
object with the two retrievers:

retrievers=[dense_retriever, sparse_retriever], weights=[1,1]

hybrid_retriever = EnsembleRetriever(retrievers).

At query time, it calls both retrievers, applies Reciprocal Rank Fusion [17] to
merge their results and returns a unified ranked list.

4. Query Retrieval (Hybrid): We then call

hybrid_retriever.get_relevant_documents(query).

The result is a fused set of top-k chunks that reflect both semantic and lexical
relevance.

5. Prompt and Generation: The fused chunks are injected into the prompt
as context. Then, the query fills the question slot and the ChatOpenAI model
generates the answer. Lastly, StrOutputParser extracts the final text.

The hybrid RAG aims to inherit the strengths of both dense and sparse retrieval.
Dense retrieval captures semantic similarity and robustness to paraphrasing; BM25
ensures that exact matches on critical tokens are not missed. Prior work on hybrid
retrieval confirms that such combinations often achieve higher recall and improved
QA performance compared to single-method systems [19, 17]. The trade-off is a
modest increase in computational and implementation complexity. Nonetheless,
this hybrid system forms a strong baseline for our subsequent experiments, against
which the added value of GraphRAG can be meaningfully assessed.

3.4 GraphRAG
GraphRAG is a retrieval-augmented generation pipeline that extends the con-
ventional RAG approach to handle broad, sense-making queries over an entire
corpus[10]. Unlike a standard RAG system, which typically retrieves only a small
set of semantically similar passages per query, GraphRAG constructs a knowledge
graph over the corpus and employs hierarchical summarisation to synthesise answers
that reflect a more global view of the underlying data. The pipeline consists of
several offline stages, which are knowledge graph construction, graph-based com-
munity detection and community-level summarisation, followed by an online query

36

System Implementation

stage in which a map-reduce style procedure combines the precomputed summaries
into a final answer. The central idea is to decompose the corpus into meaningful
components via the graph and its communities, summarise each component and
then recombine those summaries for question answering.

Figure 3.1: High-level architecture of the GraphRAG pipeline.

3.4.1 Knowledge Graph Construction
Document chunking and extraction. The process begins by splitting source
documents into smaller chunks, ensuring that each unit can be reliably processed
by the LLM. For each chunk, the LLM is prompted to extract a set of struc-
tured elements. First, salient entities such as people, organizations, locations and
technical concepts are extracted. Then, relationships between these entities are
extracted. Lastly, it extracts relevant factual claims or attributes associated with
the entities. For example, a chunk describing an acquisition would yield entities for
the companies involved, a relationship encoding the acquisition event and claims
specifying properties such as the year or value. Each extracted entity, relation and
claim acts as a condensed representation of the information present in that chunk.

Graph assembly. Once all the chuncks have been squeezed out, all extracted
elements are then merged into a single knowledge graph. Each unique entity
corresponds to a node and relationships become edges connecting the respective

37

System Implementation

nodes. When the same entity or relation appears multiple times in different sections,
the occurrences are consolidated. Entity mentions are merged into a single node,
and their descriptions and metadata are aggregated. Repeated relations form a
single edge, and the edge’s weight can reflect the frequency or strength of the
connection. In our implementation, a simple string-based normalisation is applied
to merge identical entity names; unresolved variants are typically captured together
in later community detection. The resulting graph serves as a structured index of
the corpus in which nodes carry LLM-generated descriptions, edges encode how
entities are related optionally with associated claims and the overall structure
captures how concepts in the documents are interconnected.

3.4.2 Graph Community Detection
Once the knowledge graph is constructed, GraphRAG partitions it into groups of
closely related entities using graph community detection. The aim is to identify
communities in which nodes are densely connected to each other and more sparsely
connected to the rest of the graph, so that each community corresponds to a
coherent subtopic or theme.

To obtain such partitions, we employ the Leiden algorithm [11], an improvement
over the Louvain method that yields well-connected and stable communities. Leiden
is first applied to the full graph to obtain an initial partition. Then, the same
procedure is recursively applied to the induced subgraph of each community,
producing a hierarchy of communities at multiple levels of granularity. At any
given level, the communities form a partition of the node set, with lower levels
producing small, fine-grained clusters and higher levels merging related clusters
into broader thematic groups.

This hierarchical clustering is essential for GraphRAG’s divide-and-conquer
strategy. By decomposing the knowledge graph into thematically coherent commu-
nities, we obtain smaller units that can be processed and summarised independently.
Intuitively, each community captures a segment of the corpus focused on a partic-
ular topic or set of closely linked entities, enabling later stages to reason locally
within communities while still supporting a global view through the hierarchy.

3.4.3 Hierarchical Community Summarisation
For each community in the hierarchy, GraphRAG generates a concise textual
summary. These community summaries describe the main entities in the community,
the most important relationships between them and key facts or events. By
associating a summary with every community, at every level, the system builds a
multi-scale, human-readable index of the corpus.

Summarisation is performed bottom-up. For a leaf-level community, which is a

38

System Implementation

Figure 3.2: Community-structured graph of Oppenheimer’s Wikipedia page,
extracted via GraphRAG; each color represents a cohesive cluster.

small, focused cluster, the system constructs a prompt containing: selected entity
descriptions, their most important relations, and any high-value claims within
that subgraph. The LLM is instructed to synthesise these into a short, coherent
summary capturing what that community is “about”.

For higher-level communities, which aggregate multi sub-communities, a recursive
strategy is adopted by graphRAG. Rather than inlining all low-level details, which
would exceed the context window, the prompt for a higher-level community is

39

System Implementation

organised including a subset of particularly central entities and relations at that
level and the existing summaries of some of its child communities. In this way,
detailed information is compressed into lower-level summaries and higher-level
prompts operate on these condensed representations. The LLM then produces a
higher-level summary that integrates the content of its children. Repeating this
process up the hierarchy yields one or a small number of global summaries that
provide a bird’s-eye overview of the entire corpus.

The outcome is a hierarchy of precomputed summaries: from fine-grained
descriptions of small clusters to broad overviews of major themes. These summaries
are later reused as structured context for answering user queries.

3.4.4 Query-Time Answer Synthesis
At query time, GraphRAG exploits the hierarchy of community summaries to
construct answers via a map-reduce style procedure[10]. This allows the system to
incorporate information from a large portion of the corpus without exceeding the
LLM’s context constraints.

Selecting summary context. Given a user question, the system selects an
appropriate level of the hierarchy: higher levels are used for very broad questions,
whereas lower levels can be chosen for more specific queries. All summaries at the
chosen level are treated as candidate context and split into multiple chunks so that
each chunk fits within the model’s input window.

Map stage. For each chunk of summaries, the system queries the LLM with
the user’s question and that chunk as context. The model is asked to produce
a provisional answer based only on the provided summaries and estimate how
useful this answer and the underlying chunk is for the question. Chunks that yield
uninformative or irrelevant answers can be discarded based on this score. This step
effectively “maps” different parts of the summary space to candidate contributions
to the final answer.

Reduce stage. The remaining provisional answers are ranked by their usefulness
scores. The most informative ones are concatenated, up to a certain token budget,
into a new aggregated context. Finally, the LLM is prompted once more with the
original question and this aggregated context to produce a single, coherent final
answer. In this reduce step, the model performs a focused synthesis over the most
relevant partial answers, combining evidence sourced from multiple communities.

Through this process, GraphRAG enables information distributed across many
documents and topics to influence the final response in a controlled and interpretable
way. The knowledge graph provides structure, the Leiden-based hierarchy organises

40

System Implementation

that structure into themes, the community summaries distil each theme and the
map-reduce query procedure recombines those distilled units to answer complex
questions with a more global perspective than conventional vector-based RAG can
typically offer.

3.4.5 Implementation Details and Extensions
Our work builds upon the open-source GraphRAG implementation released by Edge
et al. [10]. While the original project organises the code into data/, graphrag/
and scripts/, our contributions focus on providing a streamlined entry point for
constructing and querying GraphRAG in practical scenarios. In particular, we
initially encapsulate the full pipeline into a single executable script and expand data
ingestion to include Neo4j graph databases. Then we exposed a simple interface
for custom Cypher queries and prompt engineering and integrate the RAGAS
evaluation framework natively into the workflow.

Simplified pipeline. The core script in the expansion bundles together docu-
ment ingestion, entity extraction, graph construction, community detection and
summarisation into a cohesive pipeline. It reads configuration parameters from
a single YAML file, such as chunk sizes, overlap, model names and orchestrates
the stages described earlier. This design shields the user from the complexity of
manually running separate scripts and enables rapid experimentation: one can, for
example, adjust the chunk size or the number of top relations included in summaries
by editing the configuration rather than modifying multiple files.

Neo4j data ingestion. A notable extension is support for ingesting existing
knowledge from a Neo4j database. Through a dedicated module (generate_reports.py)
we connect to a running Neo4j instance, extract nodes, relationships and their
properties via Cypher queries and convert them into the format expected by
the GraphRAG pipeline. This allows users to enrich the knowledge graph with
curated information, like organisational charts or domain ontologies, before com-
munity detection and summarisation. Neo4j ingestion complements the standard
document-based extraction: the pipeline can merge entities from the Neo4j graph
with those extracted from text, thereby unifying structured and unstructured
sources.

Custom Cypher queries and prompts. To facilitate advanced exploration
of the graph, we expose a simple interface for running Cypher queries directly
from within the GraphRAG environment. Users can compose queries to fetch
subgraphs or specific patterns, such as “find all projects connected to a given
department”, and then feed the resulting nodes into the local retrieval module.

41

System Implementation

In addition, we introduce a mechanism to insert or override prompt templates on
a per-query basis. This is useful when one wants to tailor the instructions given
to the LLM for a particular use case, without changing the global configuration.
For instance, For exploratory analysis or debugging, a concise prompt can be
used to request short, structured outputs (e.g. bullet points or JSON) so that
graph content, communities or Cypher query results can be inspected quickly
without verbose prose. In contrast, when the goal is to produce documentation-like
answers, a different prompt can require references to specific nodes, communities
or source passages, encouraging the model to expose its evidence and making the
behaviour of GraphRAG more transparent. In an enterprise setting, per-query
prompts also allow one to enforce style or policy constraints, such as avoiding
speculative statements or enforcing domain-specific terminology, without modifying
the underlying pipeline. Overall, the ability to plug in query-specific instructions is
a practical wrapper around GraphRAG, adapting the same graph-based index to
different use cases and audiences while keeping the implementation unchanged.

RAGAS integration. Finally, we embed the RAGAS evaluation framework
into the pipeline. After generating an answer, the system automatically computes
metrics such as context recall, context precision, answer relevance and answer
faithfulness. The evaluation results are logged alongside the answer and can be
aggregated to compare different parameter settings or retrieval modes. This built-in
evaluation loop enables systematic analysis of how pipeline choices affect answer
quality.

In summary, our implementation preserves the conceptual foundations of the
knowledge graph construction of GraphRAG, community detection with Leiden
clustering and hierarchical summarisation—while adding practical enhancements
aimed at simplifying use and broadening applicability. By supporting Neo4j
ingestion, custom Cypher queries, flexible prompt design and automatic RAGAS
scoring, our implementation makes GraphRAG accessible for enterprise scenarios
where both structured databases and document corpora must be integrated and
evaluated.

42

Chapter 4

Metrics and Dataset

This chapter introduces the evaluation tools and datasets used to measure the
performance of our retrieval-augmented generation (RAG) pipelines. We first
present the RAGAs framework, which provides a set of reference-free, LLM-
based metrics designed to jointly assess retrieval quality, answer faithfulness, and
alignment between model outputs and their supporting evidence. These metrics
allow us to go beyond surface-level similarity scores and explicitly diagnose whether
errors stem from inadequate retrieval, hallucinations, or poor use of context. We
then describe the two benchmarks underpinning our experiments: WikiEval,
a recent dataset tailored for evaluating RAG systems on post-2022 Wikipedia
content, and a carefully constructed subset of HotpotQA focused on multi-hop
reasoning. Together, these resources enable a systematic and controlled comparison
of different RAG architectures across single-hop, noisy-context, and multi-hop
scenarios, ensuring that our evaluation is both realistic and aligned with the
challenges faced in enterprise settings.

4.1 RAGAs Evaluation Framework
Evaluating retrieval-augmented generation (RAG) systems poses significant chal-
lenges: one must assess both the quality of the retrieved evidence and the quality
of the answer produced. In natural language processing, traditional metrics either
gauge answer similarity (e.g., BLEU, ROUGE) or retrieval performance (e.g., recall
and precision) in isolation. They do not capture whether an answer truly reflects
the information retrieved or if the retrieved passages actually cover the needed
content. Recent work underscores the need for holistic metrics that jointly evaluate
retrieval and generation. An ideal assessment should determine:

• Retrieval adequacy: Does the retriever find enough relevant information to
address the query?

43

Metrics and Dataset

• Faithful use of context: Does the language model’s output faithfully use
that information?

• Answer quality: Is the final answer both correct and clear?

Several benchmarks attempt to capture these aspects. For example, the publicly
released WikiEval dataset pairs questions drawn from fifty post-2022 Wikipedia
pages with their ideal context and answers so that researchers can evaluate both
retrieval quality and generative accuracy [20]. However, most domains lack such cu-
rated question–answer sets, which makes evaluation challenging. To address this gap,
RAGAs (Retrieval-Augmented Generation Assessment) provides a reference-free
evaluation framework that scores RAG pipelines without needing gold answers
[13]. RAGAs applies a suite of metrics to gauge how well a system retrieves and
uses information. We summarize its four core measures below and explain why we
adopt them in this thesis.

Answer Relevancy. This metric checks whether the generated answer directly
addresses the user’s question. RAGAs prompts an LLM to “reverse-engineer”
several questions from the answer and measures the cosine similarity between these
generated questions and the original query. If the answer is on-topic and complete,
the reconstructed questions will be similar to the original; if it drifts off topic or
omits key details, the similarity drops. In practice, answer relevancy highlights
responses that are irrelevant or incomplete, regardless of factual correctness [13].

Answer Faithfulness. Faithfulness measures whether the answer’s claims are
grounded in the retrieved context. RAGAs first asks an LLM to break the answer
into individual factual statements, then asks another LLM to verify whether each
statement can be inferred from the retrieved documents. The score is the fraction
of statements deemed supported by the context. An answer that introduces facts
not present in the sources will score lower, signaling hallucinations or unsupported
assertions [13].

Contextual Precision. Precision evaluates the retrieval step by checking how
much of the fetched context is actually relevant. Formally, it computes the propor-
tion of context chunks that contain useful information for answering the question.
High precision means the retriever supplied mostly pertinent passages; low precision
indicates that many retrieved documents are extraneous or noisy [13].

Contextual Recall. This metric complements precision by measuring coverage:
it assesses how many of the answer’s factual claims can be supported by the
retrieved context. The score is the fraction of answer statements that are found in

44

Metrics and Dataset

the retrieved documents. A high recall suggests that the retriever captured most
of the necessary evidence, whereas a low recall points to missing information [13].

Why RAGAs in this Thesis? We adopt RAGAs because it provides a holistic,
reference-free way to evaluate our enterprise RAG pipeline. The combination of
answer relevancy and faithfulness allows us to check that the model not only stays on
topic but also grounds its statements in the sources. Contextual precision and recall
quantify how well our retrieval module filters and covers the information needed to
answer each query. Together, these metrics enable us to diagnose whether errors
stem from poor retrieval or from misusing context, guiding improvements to both
components. Moreover, because RAGAs does not require human-written reference
answers, it scales to our setting, where we test on publicly available datasets
like WikiEval and later apply the same methodology to proprietary enterprise
documents [13].

4.2 The WikiEval Dataset

4.2.1 Origin and Construction of the Dataset

WikiEval is a dataset specifically designed to evaluate context-aware question
answering systems, such as Retrieval-Augmented Generation (RAG) pipelines.
Due to the lack of publicly available datasets with pre-written questions, context
passages and annotated answers, the authors of [13] constructed a new benchmark.
They selected 50 Wikipedia pages on recent topics (post-2022) and extracted their
introductory sections. Using these passages, ChatGPT was prompted to create a
question of moderate difficulty that could be fully answered using only the provided
context.

For each question, three types of answers were generated: a grounded answer
based on the reference context, an ungrounded answer produced without context,
potentially less accurate, and a deliberately poor answer. Likewise, the context was
diversified into two variants: a concise version (context_v1) and a noisy version
(context_v2) enriched with tangential information.

Each record in the dataset includes the question, the Wikipedia source, all three
answer variants and both context types. Two human annotators independently
rated each item along three axes: faithfulness to the context, answer relevance and
context relevance—reaching over 95% agreement on faithfulness and about 90% on
answer relevance. These annotations serve as human-validated ground truth for
evaluating automated metrics.

45

Metrics and Dataset

4.2.2 Advantages of using WikiEval in Our Experiments
WikiEval was selected for our experiments for several compelling reasons. First, it
is openly available via Hugging Face [20], allowing seamless integration without
needing to build a dataset from scratch.

Second, WikiEval provides a balanced variety of factual and complex queries.
For instance, a simple factual example is:

“When is the scheduled launch date and time for the PSLV-C56 mission
and where will it be launched from?”

which can be resolved through direct extraction. In contrast, a more elaborate
question is:

“What is the objective of the Uzbekistan-Afghanistan-Pakistan Railway
Project and how is it expected to enhance trade and logistics efficiency?”

which requires multi-sentence reasoning and synthesis.
Finally, WikiEval was used in the original RAGAS paper to validate its auto-

mated evaluation metrics against human judgment [13, 12]. This ensures com-
patibility with our chosen evaluation framework and confidence in the alignment
between human and metric-based assessments. Its structure and annotations make
it a reliable choice for testing our RAG system’s performance across answer quality
and context faithfulness.

4.3 The HotpotQA Dataset
HotpotQA is a large-scale question answering benchmark specifically designed
to evaluate multi-hop reasoning over Wikipedia articles [21]. It contains about
113,000 question–answer pairs where each question is constructed to require infor-
mation from at least two distinct pieces of evidence, typically drawn from different
Wikipedia pages. In contrast to earlier single-hop or span-matching datasets, Hot-
potQA explicitly targets scenarios where a system must combine multiple clues,
follow links between entities, or compare properties across entities in order to arrive
at the correct answer.

The dataset is built through a structured crowdsourcing pipeline. First, the
authors construct a hyperlink graph over Wikipedia, focusing primarily on the first
paragraphs of articles where key entities and relations are concentrated. Candidate
pairs of pages are then sampled from this graph to encourage meaningful connections
between entities; for example, an entity and its related concept or two entities that
share a relation. Crowd workers are presented with these candidate page pairs and
asked to write questions whose solution requires using information from both pages.

46

Metrics and Dataset

This procedure yields natural language questions whose supporting evidence is
distributed across multiple documents rather than confined to a single paragraph.

A central strength of HotpotQA is that, in addition to providing the answer
span, it offers supporting facts at the sentence level. Some annotators mark which
sentences on which pages are necessary to answer each question. These labels make
it possible to assess not only whether a model predicts the correct answer, but also
whether it can recover the underlying reasoning chain. The dataset also introduces
two key categories of multi-hop questions:

• Bridge questions: where the model must infer or follow an intermediate
entity (a “bridge”) from one page to another, such as identifying a person or
place in the first article and then using that entity to retrieve information
from a second article.

• Comparison questions: where the model must retrieve facts about two
entities and explicitly compare them before selecting the correct answer. For
example, answering a question may require storing dates, numerical values, or
categorical attributes for comparison.

These design choices make HotpotQA particularly suitable for evaluating systems
that claim to perform multi-hop reasoning: solving a question typically requires
aggregating distributed evidence, resisting shortcuts based only on lexical overlap,
and, for comparison questions, executing simple but explicit reasoning over retrieved
facts. As a result, HotpotQA has become a standard benchmark for multi-hop QA
and for retrieval-augmented and iterative reasoning methods.

4.3.1 Subset Construction for This Thesis
Since HotpotQA would require chunking and embedding around 100,000 Wikipedia
pages, it is not used at full scale in this thesis. Instead, it is used as a controlled
benchmark to analyze the behavior of different RAG architectures under multi-
hop conditions. We construct a focused subset of the dataset with the following
procedure:

1. We select 100 questions from the original HotpotQA corpus.

2. For each question, we retain the two associated supporting Wikipedia pages
specified by the dataset annotations, obtaining a corpus of 200 Wikipedia
articles in total. This preserves the original multi-hop structure while keeping
the document collection compact and fully observable.

3. To cover both main reasoning patterns defined in HotpotQA, we enforce a
balanced split: 50 bridge questions and 50 comparison questions.

47

Metrics and Dataset

4. Within each of these two groups, we stratify by difficulty according to the
dataset metadata:

• 20% easy,
• 50% medium,
• 30% hard.

This construction yields a subset that is small enough for detailed analysis, yet
rich enough to stress the capabilities of the examined systems. The balanced design
ensures that:

• Both bridge-style questions, which test the ability to follow multi-step en-
tity links and intermediate facts, and comparison-style questions, which test
aggregation and comparison over multiple entities, are equally represented.

• Each RAG variant is evaluated across a spectrum of difficulties, from straight-
forward retrieval-and-lookup to more challenging cases requiring careful re-
trieval, disambiguation, and composition of evidence.

By grounding our experiments in this curated HotpotQA subset, we can directly
assess how dense, sparse, hybrid, and graph-based RAG systems cope with genuine
multi-hop reasoning requirements, without the confounding factors of an excessively
large or noisy corpus.

48

Chapter 5

Results

5.1 Results and Discussion

5.1.1 Experimental Setup

We evaluate five retrieval pipelines: three baseline RAG systems (Sparse, Dense,
Hybrid) and two GraphRAG modes (Local, Drift).1 All systems use the same
LLM configuration, gpt-4o-mini, temperature 0 and text-embedding-3-small
for the baeline RAG, and the two datasets: the WikiEval dataset and the HotpotQA
subset, described in Section 4.2 and in Section 4.3.1. We report results for two
prompt variants (Section 5.1.3), and for GraphRAG we additionally sweep the
community level from 0 to 3 (Section 5.1.4).

5.1.2 Metrics (RAGAs)

We adopt the RAGAs framework to quantify: Answer Faithfulness, Answer Rel-
evancy, Context Precision, and Context Recall. Faithfulness captures whether
the final answer is supported by the retrieved context; Relevancy measures the
answer–question alignment; Precision rewards focused retrieval; Recall captures
coverage of the necessary evidence. Scores are reported as mean ± 95% confidence
interval across questions. For what it concerns the HotpotQA dataset, we also
provide stratified results by difficulty: easy, medium and hard and question type:
bridge and comparison.

1Drift: denotes the global mode in which community summaries are used as primary context.

49

Results

5.1.3 Prompt Variants
Each pipeline is evaluated under two prompts:

(Psimple) Minimal prompt.

Question: {question}
Context: {context}
Answer:

(Pgrounded) Grounded, concise prompt.

You are an assistant for question-answering tasks.
Use the following pieces of retrieved context to answer the question.
(The exact answer is less than 5 words.) \text{--only for hotpotQA--
If you don’t know the answer, just say that you don’t know.
Do not add information from outside the documents.
Question: {question}
Context: {context}
Answer:

The grounded prompt enforces conservative, short answers and explicit ground-
ing, which typically improves Faithfulness and Precision. For GraphRAG, we insert
the Pgrounded prompt bothin the map and reduce prompts, in the part where it
describes the type of response.

5.1.4 GraphRAG Community Levels
For GraphRAG, we vary the community level used to assemble context and/or
summaries: 0, 1, 2, 3. Level 3 uses the most granular communities (leaf level),
while higher levels aggregate broader clusters. This sweep tests the trade-off
between detail (lower levels) and coverage/compression (higher levels).

5.1.5 Evaluation Protocol
For each system and prompt:

• Run inference on the 50 WikiEval Questions

• Run inference on the 100 HotpotQA questions.

• Compute RAGAs metrics for each question.

• Aggregate the results overall and by slices of difficulty and question type.

50

Results

• For GraphRAG (Local/Drift), repeat evaluation for community levels 0–3 and
select the best-performing level according to the macro-average of Faithfulness
and Relevancy.

5.1.6 Main Results

WikiEval dataset. Table 5.1 summarises the RAGAs metrics for each system
on the WikiEval dataset using both prompt variants. Results are reported as
mean ± 95% CI.

Table 5.1: RAGAs metrics on the WikiEval dataset (mean ± 95% CI). Psimple vs.
Pgrounded. Best per column in bold.

System (Prompt) Faithfulness Relevancy Ctx Precision Ctx Recall
Sparse (Psimple) 0.937 ± 0.006 0.949 ± 0.015 0.751 ± 0.042 0.938 ± 0.011
Sparse (Pgrounded) 0.953 ± 0.008 0.952 ± 0.017 0.731 ± 0.051 0.956 ± 0.017
Dense (Psimple) 0.976 ± 0.014 0.945 ± 0.015 0.915 ± 0.040 0.947 ± 0.008
Dense (Pgrounded) 0.985 ± 0.006 0.956 ± 0.017 0.905 ± 0.042 0.940 ± 0.011
Hybrid (Psimple) 0.970 ± 0.012 0.949 ± 0.013 0.819 ± 0.026 0.938 ± 0.011
Hybrid (Pgrounded) 0.954 ± 0.017 0.989 ± 0.010 0.824 ± 0.046 0.950 ± 0.010
G-RAG L. (Psimple) 0.979 ± 0.008 0.966 ± 0.014 0.878 ± 0.033 0.952 ± 0.017
G-RAG L. (Pgrounded) 0.987 ± 0.010 0.971 ± 0.011 0.892 ± 0.030 0.958 ± 0.023
G-RAG D. (Psimple) 0.983 ± 0.008 0.964 ± 0.010 0.880 ± 0.034 0.956 ± 0.014
G-RAG D. (Pgrounded) 0.991 ± 0.007 0.970 ± 0.012 0.888 ± 0.031 0.961 ± 0.012

Interestingly, the data shows that Local GraphRAG slightly outperforms its
Drift implementation in this dataset. This is not surprising, since this dataset
contains 50 questions that do not require intensive comparison of Wikipedia pages
or global reasoning. Therefore, a local GraphRAG is better suited for these tasks,
and since it is less computationally expensive, it is clearly a more suitable model.

The other data are as expected. We can see that the Hybrid Rag has better
overall results compared to the other classic baselines. The Dense retrieval results
are comparable to the Sparse ones, with a very slight advantage for the former,
because of the presence of some broader question such as "What is the objective
of the Uzbekistan-Afghanistan-Pakistan Railway Project and how is it expected to
enhance trade and logistics efficiency?" and "What factors contributed to the Sri
Lankan economic crisis?.

For the models tuned with the Pgrounded we observe an improvement for the
Context Precision and Faithfulness.

51

Results

HotpotQA subset. Table 5.2 reports the same metrics on the HotpotQA sub-
set described earlier. As expected, the requirement of more complex multi-hop
reasoning emphasizes the gap between GraphRAG and classic models.

In this setting, the Drift mode clearly outperforms the Local mode, underscoring
GraphRAG’s advantage on complex, sense-making tasks such as comparisons
and cross-entity linking. For similar reasons, the gap between the classical RAG
baselines and GraphRAG also widens. The sparse (BM25) retriever is particularly
disadvantaged: it relies on lexical matching and term proximity, whereas in this
case the salient terms are dispersed across passages and often paraphrased, which
undermines exact-match scoring and hampers retrieval of the necessary evidence.

Table 5.2: RAGAs metrics on the HotpotQA subset (mean ± 95% CI). Psimple vs.
Pgrounded. Best per column in bold.

Sparse (Psimple) 0.560 ± 0.095 0.655 ± 0.063 0.312 ± 0.078 0.720 ± 0.095
Sparse (Pgrounded) 0.771 ± 0.044 0.908 ± 0.013 0.305 ± 0.078 0.720 ± 0.090
Dense (Psimple) 0.575 ± 0.091 0.736 ± 0.052 0.402 ± 0.099 0.750 ± 0.066
Dense (Pgrounded) 0.809 ± 0.034 0.929 ± 0.019 0.397 ± 0.098 0.750 ± 0.070
Hybrid (Psimple) 0.696 ± 0.046 0.927 ± 0.025 0.384 ± 0.099 0.580 ± 0.100
Hybrid (Pgrounded) 0.696 ± 0.046 0.927 ± 0.025 0.384 ± 0.099 0.580 ± 0.100
G-RAG L. (Psimple) 0.865 ± 0.028 0.945 ± 0.018 0.420 ± 0.062 0.795 ± 0.048
G-RAG L. (Pgrounded) 0.902 ± 0.024 0.952 ± 0.016 0.448 ± 0.058 0.812 ± 0.045
G-RAG D. (Psimple) 0.904 ± 0.022 0.948 ± 0.017 0.404 ± 0.060 0.835 ± 0.042
G-RAG D. (Pgrounded) 0.938 ± 0.019 0.957 ± 0.015 0.426 ± 0.057 0.862 ± 0.040

HotpotQA: difficulty breakdown. Table 5.3 summarises performance on easy
vs. medium vs. hard questions in the HotpotQA subset. We typically see larger
gains from GraphRAG (Drift), because of more multi-hop and reasoning load. On
the other side, for "easy" and "medium" questions the distance is reduced.

Table 5.3: RAGAs metrics on HotpotQA by difficulty (easy / medium / hard).

System Faithfulness Relevancy Ctx Precision Ctx Recall
Sparse (e./m./h.) 0.81/0.84/0.67 0.86/0.84/0.94 0.32/0.34/0.25 0.88/0.84/0.67
Dense (e./m./h.) 0.86/0.81/0.81 0.90/0.93/0.92 0.46/0.49/0.25 0.68/0.60/0.85
Hybrid (e./m./h.) 0.76/0.78/0.64 0.94/0.94/0.94 0.57/0.49/0.23 0.66/0.63/0.50
G-RAG L.(e./m./h.) 0.90/0.91/0.86 0.95/0.96/0.93 0.47/0.45/0.39 0.82/0.81/0.80
G-RAG D.(e./m./h.) 0.92/0.95/0.90 0.96/0.97/0.95 0.45/0.43/0.36 0.86/0.88/0.84

52

Results

HotpotQA: question type breakdown. Table 5.4 reports results on the Hot-
potQA subset by question type bridge vs. comparison. Both bridge and comparison
questions benefits from global summaries GraphRAG Drift. Questions benefit from
Pgrounded due to concise formatting, so we decided to evaluate with this prompt.
All classical baselines in general struggle with the HotpotQA dataset.

Table 5.4: RAGAs metrics on HotpotQA by question type (bridge / comparison).

System Faithfulness Relevancy Ctx Precision Ctx Recall
Sparse (bridge / comp.) 0.81/0.74 0.90/0.92 0.34/0.27 0.80/0.64
Dense (bridge / comp.) 0.78/0.84 0.91/0.95 0.39/0.40 0.64/0.76
Hybrid (bridge / comp.) 0.76/0.64 0.93/0.95 0.37/0.40 0.40/0.76
G-RAG Local (bridge / comp.) 0.91/0.89 0.96/0.97 0.58/0.61 0.84/0.80
G-RAG Drift (bridge / comp.) 0.94/0.91 0.97/0.97 0.57/0.60 0.88/0.83

5.1.7 Effect of Prompt Tuning
Across all pipelines and datasets, Pgrounded increases Faithfulness and Ctx Precision
with neutral-to-positive effects on Relevancy. Especially in the hotpotQA the effect
of suggesting to use "less than 5 words" is positive and it helps to reduce speculation
and verbosity. Gains are often most pronounced for Dense and Hybrid systems,
and remain positive for GraphRAG.

5.1.8 GraphRAG Community Level Sweep
To assess the effect of community granularity on GraphRAG performance, we sweep
community levels 0–3 for both Local and Drift modes. Table 5.5 reports mean
RAGAs scores aggregated across both datasets. The values are RAGAs scores
mean ± 95% CI aggregated across WikiEval and HotpotQA. For these experiments,
we used the Pgrounded model. In general, intermediate levels (1–2) offer the best
balance between detail and coverage, while level 3, which is composed by the
leaf-level communities, maximises detail but can reduce Context Precision and it
does not show progress in any metrics. On the other side level 0 risks diluting key
evidence in broad summaries, which is especially evident in the hotspotQA dataset.

5.1.9 Discussion
The results across WikiEval and HotpotQA reveal several insights:

• GraphRAG Drift excels on multi-hop and globally scoped queries due to
its use of summarised communities, improving Faithfulness and Recall on

53

Results

Table 5.5: Community level sweep for GraphRAG (Local and Drift).

. The value are presented in the format wikiEval/HotpotQA
Mode Level Faithfulness Relevancy Ctx Precision Ctx Recall
Local 0 0.982/0.888 0.968/0.948 0.880/0.440 0.952/0.800
Local 1 0.987/0.906 0.972/0.953 0.892/0.452 0.958/0.816
Local 2 0.986/0.904 0.973/0.954 0.890/0.448 0.957/0.814
Local 3 0.983/0.898 0.970/0.950 0.878/0.438 0.955/0.808
Drift 0 0.985/0.920 0.969/0.952 0.882/0.430 0.958/0.848
Drift 1 0.990/0.936 0.971/0.956 0.888/0.424 0.960/0.860
Drift 2 0.991/0.940 0.972/0.957 0.887/0.422 0.961/0.864
Drift 3 0.989/0.934 0.970/0.955 0.883/0.420 0.959/0.856

both datasets. However, choosing too high a community level can strip away
necessary details.

• GraphRAG Local offers a practical, low-overhead alternative for queries that
do not require global, multi-hop reasoning yet still benefit from cross-entity
linking; it maintains a small computational footprint while accurately handling
many comparison-style questions.

• Hybrid RAG remains a strong baseline across datasets: combining dense
and sparse retrieval often yields balanced Precision and Recall without the
overhead of graph-based summarisation.

• Prompt tuning delivers consistent gains at negligible cost. Using a grounded,
concise template reduces hallucinations and encourages succinct answers,
directly improving Faithfulness and Context Precision in both settings.

• Easy questions saturate quickly on both datasets, with diminishing returns
from complex retrieval schemes. Medium and more challenging questions
highlight the advantages of GraphRAG and prompt tuning.

54

Chapter 6

Conclusion

This thesis has investigated how graph-based retrieval-augmented generation can
improve question answering over complex document collections, with a particular
focus on scenarios that resemble enterprise knowledge management. Starting from
the limitations of classical RAG pipelines based solely on dense or sparse retrieval,
the work explored how an explicit knowledge graph and community structure can
help large language models reason across multiple documents and connect related
pieces of information.

To this end, three baseline RAG systems were implemented: a sparse retriever
based on lexical matching, a dense retriever using vector embeddings and a hybrid
system combining both signals. On top of these baselines, a GraphRAG pipeline
was integrated and adapted, including two query modes: Local, designed to focus
on graph neighborhoods around specific entities, and Drift, aimed at global, sense-
making queries that benefit from community-level summaries. Particular attention
was devoted to the practical implementation aspects, such as document ingestion
and chunking, embedding and vector storage, prompt design and the integration of
RAG-specific evaluation.

The experimental evaluation relied on two datasets: a subset of WikiEval and
a tailored subset of HotpotQA. WikiEval provided a collection of questions that,
while non-trivial, often did not require deeply global reasoning. By contrast, the
selected HotpotQA questions were explicitly multi-hop and included both bridge
and comparison types. Across both datasets, the systems were evaluated using a
suite of metrics from the RAGAs framework, measuring answer faithfulness, answer
relevancy, context precision and context recall. The experiments also compared two
prompt variants, including a grounded template aimed at reducing hallucinations
and encouraging concise answers and examined the effect of different GraphRAG
community levels on performance.

55

Conclusion

6.1 Main Achievements and Limitations
From the implementation and experiments, several contributions and observations
emerge. First, the work shows that a graph-based approach such as GraphRAG can
provide tangible benefits over classical RAG baselines in settings where questions
require connecting information across multiple documents, entities, or topics. In
particular, the Drift mode consistently achieved higher faithfulness and context
recall on more demanding, multi-hop questions, especially in the HotpotQA subset.
This indicates that leveraging community-level summaries and a global view of the
corpus enables the model to retrieve and combine more of the relevant evidence
needed to answer complex queries.

Second, the Local mode of GraphRAG proved to be a competitive and cost-
effective alternative. While it does not expose the same degree of global, sense-
making behaviour as Drift, it performed strongly on questions where the reasoning
remained within a relatively contained subset of the graph but still required
traversing several connections. Local therefore appears well suited for many
practical queries that are not fully global but benefit from structured, cross-entity
linking. Importantly, Local tends to be less computationally demanding than Drift,
making it attractive in scenarios where resources or latency are constrained.

Third, the experiments confirm the intuition that hybrid retrieval remains a
strong classical baseline. Combining sparse and dense retrievers yields balanced
performance across relevancy and recall and it often surpasses purely sparse or
purely dense approaches. Nonetheless, even a strong hybrid baseline struggled to
match GraphRAG on the most complex questions, especially those requiring multi-
hop reasoning over disparate parts of the corpus. Sparse retrieval in particular was
disadvantaged when the key terms of the question and the evidence were lexically
distant or paraphrased, a situation where semantic and graph-based methods have
a clear advantage.

A further achievement of this thesis is the systematic use of prompt tuning
to improve generation quality. The grounded prompt variant, which explicitly
constrains the model to rely on the retrieved context and, in some settings, limits the
length of the answer, consistently improved faithfulness and context precision across
systems. This effect was visible both in classical RAG pipelines and in GraphRAG,
confirming that even simple prompt-level interventions can meaningfully reduce
hallucinations and encourage the model to behave more like an extractive or
grounded QA system.

The study of community levels within GraphRAG adds another layer of insight.
The results suggest that intermediate levels typically offer the best trade-off between
detail and coverage. Very fine-grained (leaf-level) communities provide rich local
detail but can fragment the evidence, making it harder to assemble a coherent
answer without processing many summaries. Very coarse levels, on the other

56

Conclusion

hand, risk over-compressing information and diluting critical facts, especially in
the more challenging HotpotQA questions. The empirical findings support the idea
that choosing an appropriate community level is an important hyperparameter in
GraphRAG and that a small range of intermediate levels often yields the most
robust performance.

Finally, the RAGAs metrics and the qualitative error analysis helped to char-
acterise where the systems succeed and where they fail. GraphRAG Drift tends
to excel when the answer requires integrating multiple pieces of evidence spread
across the corpus, while Local shines on moderately complex questions with a clear
subgraph structure. Classical baselines are reasonably strong on simpler or lexically
well-aligned questions but degrade more quickly as reasoning complexity increases.
Frequent errors involved missed entity linking, incomplete retrieval for comparison
questions and over-compression at higher community levels, all of which point to
concrete directions for future refinement.

Alongside these achievements, several limitations remain. Despite the improve-
ments brought by GraphRAG, some HotpotQA questions proved too difficult even
for the Drift mode: when the reasoning chain becomes very long or when crucial
evidence is only weakly represented in the graph, the system can still fail to recover
all necessary information or compose it correctly. Moreover, the graph-based
pipeline is computationally demanding. Building and maintaining the knowledge
graph, running community detection and generating hierarchical summaries re-
quire substantial resources, which makes scaling to very large, frequently changing
corpora challenging. In particular, when new data are added, the structure of the
knowledge base may need to be recomputed or significantly updated, so efficient
incremental update strategies remain an open problem.

At a more conceptual level, the limitations of RAG-style systems are not
completely removed by GraphRAG. The model is still fundamentally constrained
by the quality of retrieval and by the underlying language model’s ability to
perform reliable reasoning over the provided context. Recent trends in the field are
moving towards agentic systems that can plan, decompose tasks and interact with
tools in multiple steps, rather than relying on a single retrieval-and-answer pass.
GraphRAG can be seen as a powerful retrieval component within such a broader
architecture, but by itself it does not address all aspects of long-horizon reasoning,
interaction, or adaptation.

These achievements and limitations suggest that, while GraphRAG represents a
meaningful step forward compared to classical RAG baselines, there is substantial
room for further development. The next section outlines several directions for
future work, including deployment in enterprise environments, integration into AI
agents, and deeper connections with graph databases and operational data sources.

57

Conclusion

6.2 Future Directions
The work carried out in this thesis is primarily experimental and research-oriented,
but it is motivated by real enterprise needs. A natural direction for future devel-
opment is therefore the deployment of this kind of system in a company setting.
In such a context, GraphRAG could operate over internal documentation, code
repositories, tickets, or logs, helping new employees navigate complex systems and
supporting experienced staff in cross-domain investigations. This deployment would
require robust integration with authentication, access control and monitoring, but
the benefits could be substantial in terms of reduced onboarding time and improved
access to institutional knowledge.

A second promising avenue is to integrate GraphRAG into the toolkit of an
AI agent. Instead of being invoked as a single-step retrieval-and-answer module,
GraphRAG could be used by an agent capable of planning, decomposing tasks
and iteratively calling tools. In this setting, the agent might use GraphRAG for
high-precision, structured retrieval when it suspects that the answer depends on
complex relationships or long-range dependencies, while relying on simpler vector
search or direct model reasoning for other queries. Such an agent could engage in
multi-turn dialogues, ask clarification questions and refine its own search over the
graph, yielding a more interactive and adaptive system for end-users.

The integration with graph databases such as Neo4j also offers interesting
opportunities, particularly in domains where structured relationships are central.
In sectors like insurance, finance or logistics, data is often naturally represented as
a graph: policies linked to customers, claims linked to events, transactions linked to
entities and so on. Combining an operational Neo4j graph with GraphRAG-style
summarisation and retrieval would allow the system to ground its answers not only
in unstructured documents but also in the structured, transactional backbone of
the organisation. This could be useful for tasks such as exploring risk relationships,
detecting patterns across cases, or answering complex questions that combine
textual and relational information.

There are, moreover, several methodological extensions that could further
strengthen the approach. One is the development of adaptive mechanisms for
selecting the community level or even dynamically combining information across
levels based on the nature of the query. Another is to expand the evaluation beyond
the current datasets and metrics, incorporating larger and more diverse corpora, as
well as human-in-the-loop assessments that capture user satisfaction and practical
utility. A further direction is to study how the graph and its summaries can be
incrementally updated as new documents arrive, enabling the system to remain
current without rebuilding the entire index.

In conclusion, this thesis has demonstrated that graph-based retrieval-augmented
generation is a promising path for addressing complex, cross-document questions

58

Conclusion

in realistic settings. By combining a structured representation of knowledge with
modern language models and carefully designed retrieval and prompt strategies, the
proposed system advances the state of the art beyond classical RAG baselines. At
the same time, it opens up a rich space of future work, from real-world deployment
and agent integration to deeper methodological refinement. The hope is that these
results and ideas will contribute to the development of more capable, reliable and
transparent AI systems for knowledge-intensive work.

59

Bibliography

[1] Tom B. Brown et al. Language Models are Few-Shot Learners. arXiv preprint
arXiv:2005.14165. 2020. url: https://arxiv.org/abs/2005.14165 (cit. on
pp. 9, 12).

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. arXiv preprint arXiv:1706.03762. 2017. url: https://arxiv.org/abs/
1706.03762 (cit. on p. 9).

[3] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: De-
noising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. arXiv preprint arXiv:1910.13461. 2019. url:
https://arxiv.org/abs/1910.13461 (cit. on p. 11).

[4] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. arXiv preprint
arXiv:1910.10683. 2019. url: https://arxiv.org/abs/1910.10683 (cit. on
p. 11).

[5] Microsoft Research. GraphRAG vs Baseline RAG. 2025. url: https://
microsoft.github.io/graphrag/ (cit. on pp. 12, 21, 22).

[6] Anonymous. Hybrid RAG Systems: Design, Comparison, and Application.
arXiv preprint arXiv:2404.09611. 2024. url: https://arxiv.org/abs/2404.
09611 (cit. on p. 14).

[7] Patrick Lewis et al. «Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks». In: Advances in Neural Information Processing Systems (NeurIPS).
2020. url: https://arxiv.org/abs/2005.11401 (cit. on pp. 14, 15).

[8] Wayne et al. Zhao. A Survey on Retrieval-Augmented Generation. arXiv
preprint arXiv:2305.01569. 2024. url: https://arxiv.org/abs/2305.01569
(cit. on pp. 15, 17).

60

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.10683
https://microsoft.github.io/graphrag/
https://microsoft.github.io/graphrag/
https://arxiv.org/abs/2404.09611
https://arxiv.org/abs/2404.09611
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2305.01569

BIBLIOGRAPHY

[9] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike
Lewis. Generalization through Memorization: Nearest Neighbor Language
Models. arXiv preprint arXiv:1911.00172. 2019. url: https://arxiv.org/
abs/1911.00172 (cit. on p. 16).

[10] D. Edge, A. Singh, S. Agarwal, et al. From Local to Global: A Graph RAG
Approach to Query-Focused Summarization. arXiv preprint arXiv:2404.16130.
2025. url: https://arxiv.org/abs/2404.16130 (cit. on pp. 21, 36, 40, 41).

[11] Vincent A. Traag, Ludo Waltman, and Nees Jan van Eck. «From Louvain
to Leiden: Guaranteeing well-connected communities». In: Scientific Reports
9.1 (2019), p. 5233. doi: 10.1038/s41598- 019- 41695- z. url: https:
//www.nature.com/articles/s41598-019-41695-z (cit. on pp. 22, 38).

[12] Zhen Hu and Jiefu et al. Lu. Evaluation of RAG Systems: Metrics and
Benchmarks. arXiv preprint arXiv:2310.07994. 2024. url: https://arxiv.
org/abs/2310.07994 (cit. on pp. 22, 46).

[13] Davide Ravasio, Marcin Dubiel, and Jonathan Raiman. RAGAs: An Open-
Source Framework for Holistic RAG Evaluation. arXiv preprint arXiv:2310.12082.
2024. url: https://arxiv.org/abs/2310.12082 (cit. on pp. 22, 44–46).

[14] Patrick Lewis et al. «Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks». In: Advances in Neural Information Processing Systems (NeurIPS
2020). 2020, pp. 9459–9474. url: https://arxiv.org/abs/2005.11401
(cit. on pp. 24, 30, 34).

[15] Harrison Chase. LangChain. GitHub repository. 2022. url: https://github.
com/langchain-ai/langchain (cit. on p. 25).

[16] Stephen Robertson and Hugo Zaragoza. «The Probabilistic Relevance Frame-
work: BM25 and Beyond». In: Foundations and Trends in Information
Retrieval 3.4 (2009), pp. 333–389. url: https : / / doi . org / 10 . 1561 /
1500000019 (cit. on pp. 26, 27).

[17] Gordon V. Cormack, Charles L. A. Clarke, and Stefan Buttcher. «Reciprocal
Rank Fusion Outperforms Condorcet and Individual Rank Learning Methods».
In: Proceedings of the 32nd International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2009, pp. 758–759. url: https:
//doi.org/10.1145/1571941.1572114 (cit. on pp. 26, 28, 36).

[18] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu,
Sergey Edunov, Danqi Chen, and Wen-tau Yih. «Dense Passage Retrieval for
Open-Domain Question Answering». In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2020, pp. 6769–
6781. url: https://arxiv.org/abs/2004.04906 (cit. on pp. 27, 34).

61

https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/2404.16130
https://doi.org/10.1038/s41598-019-41695-z
https://www.nature.com/articles/s41598-019-41695-z
https://www.nature.com/articles/s41598-019-41695-z
https://arxiv.org/abs/2310.07994
https://arxiv.org/abs/2310.07994
https://arxiv.org/abs/2310.12082
https://arxiv.org/abs/2005.11401
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/1571941.1572114
https://doi.org/10.1145/1571941.1572114
https://arxiv.org/abs/2004.04906

BIBLIOGRAPHY

[19] Priyanka Mandikal and Raymond Mooney. «Sparse Meets Dense: A Hybrid
Approach to Enhance Scientific Document Retrieval». In: Proceedings of the
4th Workshop on Scientific Document Understanding (SDU) at AAAI 2024.
2024. url: https://arxiv.org/abs/2401.02419 (cit. on pp. 28, 36).

[20] Exploding Gradients. WikiEval: An Evaluation Benchmark for Retrieval-
Augmented Generation. Available on Hugging Face Datasets. 2024. url:
https://huggingface.co/datasets/explodinggradients/WikiEval (cit.
on pp. 44, 46).

[21] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen,
Ruslan Salakhutdinov, and Christopher D. Manning. «HotpotQA: A Dataset
for Diverse, Explainable Multi-hop Question Answering». In: Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 2018, pp. 2369–2380. url: https://arxiv.org/abs/1809.09600
(cit. on p. 46).

62

https://arxiv.org/abs/2401.02419
https://huggingface.co/datasets/explodinggradients/WikiEval
https://arxiv.org/abs/1809.09600

	List of Tables
	List of Figures
	Introduction
	Challenges of Deploying RAG in the Enterprise: Overload, Fragmentation and Silos
	From Vector Matches to Relational Understanding

	Related Work
	Large Language Models (LLMs)
	Transformer Architecture
	Encoder–Decoder vs Decoder-Only Models

	Retrieval-Augmented Generation (RAG)
	Dense vs. Sparse vs. Hybrid Retrieval

	Iterative vs. Parallel Retrieval-Generation Interactions
	Single-turn (one-shot) interaction.
	Sequential multiple interactions.
	Parallel interaction.

	Pros and Cons of Classic vs. Iterative RAG Approaches
	GraphRAG and Knowledge Graph-Based Retrieval
	Building the Knowledge Graph.
	Graph-Based Retrieval.
	Pros and Cons of GraphRAG
	Outlook: Microsoft’s GraphRAG System
	Evaluation of RAG Systems: Benchmarks and the RAGAs Framework

	System Implementation
	Introduction to the Implemented RAG Variants
	Libraries, Chunking and Embeddings
	LangChain Components
	Embeddings, Vector Store and Similarity Search
	LLM Configuration
	Prompt Design

	Implementation of the Three Baseline RAG Systems
	Dense Retrieval RAG
	Sparse Retrieval RAG
	Hybrid Retrieval RAG

	GraphRAG
	Knowledge Graph Construction
	Graph Community Detection
	Hierarchical Community Summarisation
	Query-Time Answer Synthesis
	Implementation Details and Extensions

	Metrics and Dataset
	RAGAs Evaluation Framework
	The WikiEval Dataset
	Origin and Construction of the Dataset
	Advantages of using WikiEval in Our Experiments

	The HotpotQA Dataset
	Subset Construction for This Thesis

	Results
	Results and Discussion
	Experimental Setup
	Metrics (RAGAs)
	Prompt Variants
	GraphRAG Community Levels
	Evaluation Protocol
	Main Results
	Effect of Prompt Tuning
	GraphRAG Community Level Sweep
	Discussion

	Conclusion
	Main Achievements and Limitations
	Future Directions

	Bibliography

