
POLITECNICO DI TORINO
Master’s Degree in DATA SCIENCE AND

ENGINEERING

Master’s Degree Thesis

Prescriptive Analytics: Review of
Frameworks and Critical Evaluation of

PrescrX

Supervisors

Prof. Daniele APILETTI

Dott. Gianmarco SABATINI

Candidate

Paolo FAVELLA

DECEMBER 2025

Summary

Prescriptive analytics represents the most advanced stage in the evolution of data
analytics. While descriptive analytics aims to interpret past data and predictive
analytics focuses on forecasting possible future outcomes, prescriptive analytics goes
one step further by recommending specific actions to achieve desired objectives. The
ability to not only predict but also prescribe makes it a powerful decision-support
tool for both scientific research and industrial practice.

This thesis, developed during a professional internship at Aizoon, contributes to
this emerging domain by providing both a critical review of existing frameworks
and a detailed evaluation of a newly developed tool named PrescrX. PrescrX is a
proprietary and patented software that proposes prescriptions through a local,
model-agnostic approach inspired by eXplainable Artificial Intelligence (XAI). It
operates independently of the underlying classifier, meaning that it can work with
a wide range of models, from neural networks to decision trees. Given a trained
classifier, a background dataset, and a target class, PrescrX generates minimal
modifications to an input instance so that the modified point is classified into the
desired category. In contrast to many existing optimizers that tend to maximize
classification confidence regardless of plausibility, PrescrX is explicitly designed to
prioritize minimal and interpretable changes that remain close to the original data
distribution.

The work begins with a theoretical overview of the analytics spectrum, high-
lighting the progression from descriptive to predictive and finally to prescriptive
methods. Particular emphasis is placed on the distinction between correlation
and causality, a key requirement for actionable recommendations. This theoretical
foundation is followed by a comprehensive literature review of methodological ap-
proaches to prescriptive analytics, including probabilistic models, machine learning
integrations, mathematical programming, evolutionary computation, logic-based
systems, and hybrid frameworks. The review highlights the absence of standardized
evaluation criteria and points to interpretability, scalability, and comparability as
open challenges.

The core of the thesis focuses on PrescrX. The system is introduced as a
model-independent tool that constructs prescriptions by approximating the local

ii

decision boundary of a classifier with a linear model and solving a quadratic
programming problem. The algorithm is highly configurable, supporting constraints
such as locked features, bounded values, discrete domains, and, uniquely, a cost-
function constraint that restricts prescriptions within an admissible threshold. This
functionality is particularly relevant in industrial contexts, where interventions are
associated with financial costs or operational risks. The flexibility of PrescrX is
demonstrated through two case studies: the first based on the MNIST dataset
of handwritten digits, and the second on a real industrial process involving the
cleaning of mechanical components.

The industrial case study represents the starting point of the experimental
analysis. By applying PrescrX to operational parameters, it was possible to
prescribe changes that transformed components classified as “dirty” into “clean”
according to the predictive model. When compared to a traditional optimizer,
however, some inconsistencies emerged. While the optimizer could generate points
with high confidence in the target class, many of these points were not plausible
or interpretable from an industrial perspective. PrescrX, in contrast, produced
prescriptions that remained realistic and closer to the original operational ranges.
These observations raised the question of whether the comparison between the
two methods was fully equitable. To explore this issue in a more controlled
environment, the MNIST dataset was introduced as a benchmark scenario, allowing
the prescriptions to be validated not only through numerical metrics but also via
human supervision, as the generated images could be visually inspected.

The experiments with MNIST confirmed the discrepancies observed in the
industrial case. Traditional optimizers, which only use the classifier, often produced
adversarial-like examples—images classified with high confidence but meaningless to
a human observer. PrescrX, which leverages both the classifier and the background
dataset, generated more natural and interpretable prescriptions. This highlighted
a structural imbalance in the comparison: PrescrX exploits information from the
background dataset, whereas the optimizer does not. To make the evaluation fairer,
we proposed an improved version of the optimizer that integrates the background
dataset into its process. This was achieved by introducing a similarity factor into
the optimizer’s objective function, penalizing solutions that deviated too far from
the data manifold. This modification allowed the optimizer to produce prescriptions
more comparable to those of PrescrX, enabling a more balanced and meaningful
evaluation.

To assess the quality of prescriptions, the thesis also introduces a set of original
evaluation metrics. These include the normalized distance from the starting point,
the gain of neighbors, a feature preservation score, robustness to perturbations, and
execution time. Together, these metrics allow prescriptions to be evaluated not only
in terms of predictive accuracy but also in terms of plausibility, interpretability,
and computational efficiency. Applied to both case studies, the metrics confirmed

iii

that PrescrX tends to generate prescriptions that remain embedded in the data
distribution, while standard optimizers frequently drift into low-density and im-
plausible regions. The improved optimizer with similarity constraints reduced this
gap, but PrescrX still demonstrated superior interpretability and reliability.

In conclusion, this thesis contributes in three main ways. First, it provides a
critical review of prescriptive analytics frameworks, clarifying current methods and
highlighting open challenges. Second, it presents PrescrX, a proprietary software
that bridges optimization and explainability through a model-agnostic, constraint-
aware approach. Third, it introduces a set of novel evaluation metrics and applies
them to rigorous experimental comparisons, including the proposal of an improved
optimizer to ensure fairness. The results demonstrate that PrescrX generates
plausible and interpretable prescriptions in both academic and industrial settings,
offering a valuable alternative to traditional optimizers. Future work will focus on
scaling the approach to larger datasets, integrating causal inference, and extending
PrescrX toward dynamic, real-time decision-making environments.

Figure 1: Comparison of starting point and generated prescriptions

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 2
1.1 What is prescriptive analytics . 2

1.1.1 Definition of descriptive analytics 3
1.1.2 Definition of predictive analytics 3
1.1.3 Definition of prescriptive analytics 4

1.2 Reichenbach’s common cause principle 4
1.3 Structure of the thesis . 5

2 Literature review 7
2.1 Methods proposed in the literature 7
2.2 Challenges . 15

3 What is PrescrX and How it works 16
3.1 How PrescrX works . 17

3.1.1 Selection of target points . 18
3.1.2 Generating dense sampling 19
3.1.3 Fitting a local linear model 21
3.1.4 Quadratic programming formulation 22

3.2 Current constraints and their expansion 23
3.2.1 Cost function constraint . 24

3.3 Exploring parameters . 25
3.3.1 Exploration and time complexity with nclosest and m 26
3.3.2 Quality of prescriptions with trust_t (trust threshold) and

alpha (regularization parameter) 29
3.3.3 Influence of cost function constraint in the prescription . . . 33

vi

4 Optimizers vs PrescrX 35
4.1 Optimizer for the MNIST case . 35

4.1.1 Mathematical formulation 36
4.1.2 Comparison with PrescrX 37
4.1.3 Improved optimizer . 41

4.2 Optimizer in the industrial case . 44
4.2.1 Mathematical formulation and limitations 44
4.2.2 Comparison with PrescrX 48

5 Metrics 52
5.1 Mathematical formulation of metrics 52

5.1.1 Normalized distance by mean 52
5.1.2 Gain of Neighbors . 54
5.1.3 Features preservation score 55
5.1.4 Robustness . 56

5.2 Analysis with metrics . 58
5.2.1 Analysis through normalized distance 58
5.2.2 Analysis through GoN . 61
5.2.3 Analysis through robustness 65

6 Conclusions and Future Work 72
6.1 Summary of contributions . 72
6.2 What the results show . 72

6.2.1 Minimal-change prescriptions remain close to the data manifold 72
6.2.2 Optimizers and the role of similarity 73
6.2.3 Metric-based evidence . 73
6.2.4 Constraints and practical feasibility 74
6.2.5 Execution time trade-offs . 74

6.3 Guidelines for choosing a method 74
6.4 Limitations . 74
6.5 Implications . 75

6.5.1 Scientific . 75
6.5.2 Industrial . 75

6.6 Future work . 75
6.7 Closing remarks . 76

Bibliography 77

vii

List of Tables

5.1 Summary statistics for distance metrics in the random MNIST
sample: optimizer, optimizer with SSIM, and PrescrX. 60

5.2 Summary statistics for distance metrics in the MNIST 1-to-8 sample:
optimizer, optimizer with SSIM, and PrescrX. 60

5.3 Summary statistics for distance metrics in the industrial case: opti-
mizer and PrescrX. 61

5.4 Summary statistics of GoN scores for the random MNIST sample:
optimizer, optimizer with SSIM, and PrescrX. 63

5.5 Summary statistics of GoN scores for the MNIST 1-to-8 sample:
optimizer, optimizer with SSIM, and PrescrX. 64

5.6 Summary statistics of GoN scores for the industrial case: optimizer
and PrescrX. 65

5.7 Summary statistics for robustness metrics in the industrial case:
optimizer and PrescrX. 68

5.8 Summary statistics for execution times in the random MNIST case:
optimizer, optimizer with SSIM, and PrescrX. 70

5.9 Summary statistics for execution times in the MNIST 1-to-8 case:
optimizer, optimizer with SSIM, and PrescrX. 70

5.10 Summary statistics for execution times in the industrial case: opti-
mizer and PrescrX. 71

viii

List of Figures

1 Comparison of starting point and generated prescriptions iv

2.1 Number of publications divided by category and year. 12

3.1 Density of points along x1 axis . 20
3.2 Density of points along x2 axis . 20
3.3 Combined density of points between x1 and x2 axes 21
3.4 Comparison between the linear approximation and the real classifier. 22
3.5 Intersection between the classifier region and the cost-constrained

region. 25
3.6 Colorization of execution time required to make the prescription in

the MNIST case. 27
3.7 Colorization of execution time required to make the prescription in

the industrial case. 28
3.8 Prescribed point obtained with trustt = 95.0%. 29
3.9 Prescribed point obtained with trustt = 99.9%. 30
3.10 Prescribed point obtained with trustt = 99.99%. 30
3.11 Prescribed point obtained with α = 0. 31
3.12 Prescribed point obtained with α = 1. 32
3.13 Prescribed point obtained with α = 10. 32
3.14 Industrial case dataset represented by the t-SNE dimensionality

reduction. 34

4.1 Point distribution using t-SNE dimensionality reduction for the class
1 to class 8 transformation. 38

4.2 Point distribution using UMAP dimensionality reduction for the
class 1 to class 8 transformation. 39

4.3 Comparison of starting point and generated prescriptions 41
4.4 Point distribution using t-SNE for class 1 to class 8 transformation

with SSIM incorporated. 43
4.5 Comparison of starting point and prescriptions with and without

SSIM regularization. 44

ix

4.6 Example of poorly distributed dataset with a large gap between
clusters . 45

4.7 Mahalanobis vs. Euclidean distance in a 2D example 46
4.8 Visualization of poorly distributed data with added similarity term

to enable optimization . 47
4.9 Distribution of prescriptions in space depending on the model used 48
4.10 Example cases showing the prescriptions from both methods 50

5.1 Distribution of Normalized Distance values for each prescriptive
model in the MNIST case study, considering the random sample. . . 59

5.2 Distribution of Normalized Distance values for each prescriptive
model in the MNIST case study, considering the sample where all
starting points are 1 and the target class is 8. 59

5.3 Distribution of Normalized Distance values for each prescriptive
model in the industrial case study. 61

5.4 Distribution of GoN scores for each prescriptive model in the MNIST
case study, considering the random sample. 62

5.5 Distribution of GoN scores for each prescriptive model in the MNIST
case study, considering the sample where all starting points are 1
and the target class tc is 8. 63

5.6 Distribution of GoN scores for each prescriptive model in the indus-
trial case study. 64

5.7 Distribution of robustness values for each prescriptive model in the
MNIST case study, considering the random sample. 66

5.8 Distribution of robustness values for each prescriptive model in the
MNIST case study, considering the sample where all starting points
are 1 and the target class tc is 8. 66

5.9 Distribution of robustness values for each prescriptive model in the
industrial case study. 67

5.10 Execution time distribution for each prescriptive model in the MNIST
case study, random sample. 69

5.11 Execution time distribution for each prescriptive model in the MNIST
case study, 1-to-8 sample. 69

5.12 Execution time distribution for each prescriptive model in the indus-
trial case study. 71

x

Chapter 1

Introduction

This project was developed during an internship at Aizoon, a technology consulting
firm. The focus is on the PrescrX tool, designed to perform prescriptive analyses.
The aim of the project is to contribute to the evolving field of prescriptive analytics,
which continues to attract significant interest due to its powerful analytical capa-
bilities. The work involves a thorough study of how PrescrX functions, including
an analysis of its strengths and limitations. In addition, to address the lack of
standardized evaluation criteria in the existing literature, a set of original metrics
will be developed. These metrics are designed both to objectively assess the quality
of the prescriptions generated by PrescrX and to enable a meaningful comparison
with traditional optimizers. Proposed enhancements will also be introduced to
improve the tool’s versatility. Given that the academic literature in this domain is
relatively limited—and primarily centered on the development of optimizers, which
PrescrX is not—this study will also include a comparative analysis between PrescrX
and a traditional optimizer. Before examining the tool in detail, the report will first
provide an overview of prescriptive analytics: its definition, current applications,
and the scope explored thus far.

1.1 What is prescriptive analytics
Prescriptive analytics represents a significant advancement in the field of data
analysis and is often referred to as “the future of data analytics.” Unlike other forms
of analytics that primarily describe or predict outcomes, prescriptive analytics goes
a step further by recommending optimal actions to achieve specific objectives. This
characteristic makes it particularly valuable for data-driven decision-making.

Data analytics is typically categorized into three core types: descriptive analytics,
which answers questions such as “What happened?” and “Why did it happen?”;
predictive analytics, which addresses “What might happen next?” and “Why might

2

Introduction

it happen?”; and prescriptive analytics, which focuses on “What should we do next?”
and “Why should we do it?” [1]. Together, these approaches offer a comprehensive
framework that enables organizations to analyze historical data, identify causality,
forecast future outcomes, and take informed actions.

To fully grasp the concept of prescriptive analytics, it is essential first to
understand descriptive and predictive analytics, as these provide the foundational
insights upon which prescriptive analytics is built.

1.1.1 Definition of descriptive analytics
Descriptive analytics is primarily utilized in typical data analyst roles, and most
analytics tools on the market do not extend beyond this stage. The main goal of
descriptive analytics is to impose structure on raw data to facilitate the identification
and visualization of relevant patterns [2]. This is achieved through data collection,
categorization, and classification.

A wide body of literature is available online that supports this initial phase
of the decision-making process, enabling users to derive meaningful insights from
raw datasets. Descriptive analytics is the most prevalent and mature stage of data
analysis, as the majority of current analytics tools fall within this category. The
emphasis here is on processing and organizing data, as well as uncovering and
presenting patterns in a clear and accessible way [2].

Techniques such as pattern recognition and clustering are commonly used at this
stage to help users interpret and visualize the data more effectively. The descriptive
analytics phase includes the creation of visualizations to summarize key data
distributions, correlation analysis between features to detect linear dependencies,
and an explained variance analysis to assess the structure and dimensionality of
the dataset.

1.1.2 Definition of predictive analytics
Predictive analytics addresses the limitations of descriptive analytics in forecasting
future outcomes. It leverages large volumes of historical data to uncover new
insights through the use of machine learning, data mining, and statistical methods.
The purpose of predictive analytics is to generate reliable forecasts that inform
decision-making [3].

While descriptive tools focus on past events, predictive analytics introduces
models that anticipate future developments. By applying methodologies from
machine learning and statistics, it becomes possible to estimate probabilities
of future events, identify recurring patterns, and uncover relationships between
variables. This allows organizations to not only understand historical performance
but also anticipate what is likely to happen next. Predictive analytics is widely

3

Introduction

used in various domains such as marketing, financial services, healthcare, supply
chain management, and capacity planning. In practice, this phase heavily relies on
machine learning and deep learning techniques to train models capable of generating
accurate forecasts and capturing complex, non-linear relationships within the data.

1.1.3 Definition of prescriptive analytics
Prescriptive analytics has already seen successful applications across various indus-
trial and research contexts. It logically extends the progression established by the
two preceding phases of Business Analytics: if the past has been analyzed (descrip-
tive analytics) and future outcomes have been forecasted (predictive analytics),
then it becomes possible to recommend—i.e., prescribe—the most effective actions
to shape and adapt plans based on those forecasts.

Compared to the other stages of Business Analytics, prescriptive analytics
empowers decision-makers not only to detect issues and opportunities across past,
present, and future contexts, but also to directly suggest optimal courses of action
aligned with specific objectives. It additionally allows for the evaluation of those
decisions’ potential outcomes. While optimization techniques have long been a core
method for solving decision-making problems—leveraging mathematical tools—the
integration of prediction with optimization introduces novel opportunities for
decision support.

In real-world applications, prescriptive analytics often deals with considerable
uncertainty. As a result, the effectiveness of optimization is strongly dependent
on the accuracy of predictions and, in many cases, the capability to quantify
uncertainty. To address this, optimization processes may incorporate statistical
and simulation-based models to explicitly account for uncertainty in the domain.

To further illustrate and differentiate the three phases of Business Analytics, the
following section will present a concrete use case that exemplifies their practical
application.

Prescriptive analytics, the most recent among the three types of analytics, was
introduced as a term by IBM in 2010 [4]. Although the body of literature dedicated
to it is still limited compared to descriptive and predictive analytics—both of which
have had more time to evolve and establish themselves—it is increasingly gaining
traction across a wide range of research fields. Many approaches presented in the
literature are either explicit implementations of prescriptive analytics or custom
strategies tailored to solve particular problems.

1.2 Reichenbach’s common cause principle
One of the reasons behind the scarcity of literature and the complexity of prescriptive
analytics lies in the challenge of extracting the right information to support effective

4

Introduction

decision-making. To properly address the questions "What should we do?" and
"Why should we do it?", it is essential to clearly distinguish between correlation
and causality.

In statistics, two variables may be correlated—meaning they exhibit a common
pattern—but this does not imply a causal relationship between them. A formal
articulation of this concept is provided by Reichenbach’s Common Cause Principle
[5], which, according to the philosophy of probability, states that if two variables
are correlated, there exists a third variable (possibly latent or hidden) that causes
both, unless there is a direct causal link between them.

A commonly cited example is the observed relationship between the number
of ice creams sold and the number of shark attacks at a beach. These two events
are positively correlated. If the goal is to reduce shark attacks, one might initially
consider reducing ice cream sales. However, doing so would have no effect. The
two events are correlated, but neither causes the other. Both are driven by a third
factor: rising temperatures during the summer. Hypothetically, decreasing the
temperature would lead to fewer shark attacks and fewer ice cream sales.

This example illustrates the importance of distinguishing correlation from causa-
tion when making decisions based on data. In the context of prescriptive analytics,
having a strong predictive model is a necessary but not sufficient condition for
effective prescription. If the model relies solely on proxies rather than true causal
variables, it may still achieve high predictive accuracy but fail to identify actionable
interventions. Therefore, without uncovering and modeling causal relationships,
prescriptive analytics cannot reliably recommend actions, even when predictions
are accurate.

1.3 Structure of the thesis
This introductory chapter has presented the context, objectives, and scope of the
project carried out during an internship at Aizoon, with a particular emphasis on
the PrescrX tool and its role within the field of prescriptive analytics. A conceptual
framework distinguishing descriptive, predictive, and prescriptive analytics has been
established, highlighting the progression from data interpretation to action-oriented
recommendations. Furthermore, the importance of differentiating correlation from
causality—an essential aspect of effective decision-making—has been introduced
through Reichenbach’s Common Cause Principle.

The remainder of the thesis is organized as follows:

• Chapter 2 provides a literature review of prescriptive analytics, surveying
the principal methodological families, including probabilistic models, machine
learning approaches, mathematical programming, evolutionary computation,
logic-based systems, and hybrid frameworks. The chapter also discusses key

5

Introduction

challenges in the field, such as scalability, interpretability, and the lack of
standardized evaluation criteria.

• Chapter 3 introduces the PrescrX tool in detail, explaining its underlying
mechanisms and configurable parameters. Special attention is devoted to its
local, model-agnostic approach inspired by LIME, the integration of constraints
(locked features, bounded values, discrete domains), and the extension to cost
function constraints. The chapter also presents two case studies—one based
on the MNIST dataset and another on an industrial cleaning process—to
illustrate the tool’s versatility in both academic and real-world contexts.

• Chapter 4 compares PrescrX with traditional optimization-based approaches.
Through the MNIST and industrial case studies, it highlights the differ-
ences in objectives and outcomes between minimal-change prescriptions and
maximization-based optimizers, with emphasis on interpretability, plausibility,
and computational performance.

• Chapter 5 proposes a set of original evaluation metrics designed to objectively
assess prescriptive models. These metrics include normalized distance, gain of
neighbors, feature preservation, and robustness. The chapter applies them to
the experimental results obtained in earlier sections, enabling a structured and
quantitative comparison between PrescrX and optimizer-based prescriptions.

Finally, Chapter 6 draws conclusions from the research, discussing its contribu-
tions, limitations, implications for scientific and industrial practice, and directions
for future work.

6

Chapter 2

Literature review

As previously mentioned in Section 1.1, prescriptive methods are heavily influenced
by and dependent on the descriptive and predictive models used in the earlier
stages. In fact, many prescriptive models can often be seen as an extension of
the predictive model, without a clear boundary between where one ends and the
other begins. Furthermore, many models are not based on a single technique, but
rather on a combination of methods and technologies, making strict categorization
difficult. In the proposed literature review, a distinction among methods is made,
although, as already noted, it is not particularly rigid.

2.1 Methods proposed in the literature
This section provides a review of the literature on models used to perform pre-
scriptive analytics. While not all of these models were originally developed with
a prescriptive purpose in mind, many have been effectively adapted for this do-
main. A notable example is the use of optimization techniques, which, despite
their broader applications, currently represent the most widely adopted tools for
generating actionable prescriptions. The reviewed literature includes contributions
from a variety of application contexts and methodological approaches, although
the number of studies is not uniformly distributed across them. Special attention
is given to techniques that incorporate machine learning models and mathematical
programming, as these have garnered substantial interest in recent research efforts
focused on prescriptive analytics.

Probabilistic models

The main idea of a probabilistic model is to solve a problem using a statistical
or distributional approach, where the analysis of variables goes beyond their
actual values to also consider their uncertainty, variability, and distribution. As

7

Literature review

a result, the output of probabilistic models consists of a set of possible events,
each associated with a probability of occurrence, defined by the initial parameters
and their uncertainties. The main limitation of these models is their scalability:
the complexity of the analyzed problem increases in proportion to the number of
variables considered. High-dimensional problems may not be fully captured or
interpreted by probabilistic models, as the computational and analytical demands
grow significantly with each additional variable[6].

Martinez, Cristaldi, and Grau [7] propose a comprehensive data analytics process
aimed at maximizing penicillin productivity through a bioreactor. Prescriptive
analytics represents the final phase of the analytical cycle. In the initial phase
(descriptive analytics), the bioreactor parameters are modeled as probability dis-
tributions to capture uncertainty and correlations among them. Then, using a
Bayesian framework, a distribution of potential penicillin yields is derived (pre-
dictive analytics). Finally, a run-to-run optimization is applied to determine
the optimal parameter adjustments that enhance productivity while minimizing
uncertainty.

In a different scenario, a probabilistic model is proposed to support Prescriptive
Maintenance decisions under uncertainty[8]. In the aeronautical sector, a Monte
Carlo simulation has been developed to estimate cost-benefit distributions. Subse-
quently, the expected cost variation (E(∆C)), the risk of incorrect decisions, the
Expected Opportunity Loss (EOL), and the Expected Value of Information (EVI)
have been computed in order to prescribe the optimal combination of cost, benefit,
and risk.

Both proposed methods have the advantage of managing the uncertainties and
correlations of the parameters in play, but these are solutions built ad hoc for the
case studies, with limited scalability in the aeronautical case.

Machine learning

Machine learning (ML) is a branch of artificial intelligence that focuses on building
systems capable of learning from data to make predictions or decisions without
being explicitly programmed. Unlike probabilistic models, which rely on predefined
statistical assumptions and focus on modeling uncertainty through probability
distributions, ML models learn patterns directly from data, often capturing com-
plex, nonlinear relationships. One major advantage of ML is its scalability: it can
efficiently handle large, high-dimensional datasets where probabilistic models may
struggle[9, 10]. Additionally, ML models often require less manual feature engi-
neering and can adapt more flexibly to different types of data, making them more
suitable for tasks like image recognition, natural language processing, and real-time
decision-making. However, their black-box nature often hinders interpretability,
making it difficult to fully answer the question, “Why should a specific action be

8

Literature review

taken?” (as discussed in Section 1.1).
Despite this limitation, machine learning has been successfully applied in several

prescriptive analytics contexts. For example, to support bulk ordering of critical
spare parts in the shipping industry, a decision-making tool based on prescriptive
analytics and machine learning was developed to improve the planning and execution
of annual maintenance spare parts orders for a fleet of 75 ships [11]. Critical high-
impact components were identified using clustering techniques, while the required
quantities were predicted using a Random Forest model. Finally, all possible
combinations proposed by the Random Forest were generated, and the minimum-
cost solution was selected. The limited amount of data analyzed results in reduced
scalability and versatility of the model, although the identification of high-impact
orders has led to significant administrative benefits.

Machine learning techniques are often integrated with other methods, particularly
with mathematical programming and optimization algorithms. Pessach Dana,
Singer Gonen, and their colleagues [12] propose an analytics framework that
applies machine learning models to support HR recruitment decisions and improve
hiring outcomes. Using a Variable-Order Bayesian Network (VOBN) model, which
remains interpretable for recruiters, they predict which candidates are most likely
to succeed. Subsequently, the selected candidates are assigned to job positions
through a Mixed Integer Linear Programming (MILP) model, aiming to maximize
hiring success. Unlike the previous case, the availability of a large volume of data
and the interpretability of the models facilitate broader adoption and practical use.

To address inefficiencies in outpatient appointment scheduling systems, exac-
erbated by patient no-shows, Sharan Srinivas and A. Ravi Ravindran propose a
stacking approach that combines several machine learning models [13]. The idea is
to predict the no-show risk for each patient and schedule appointments accordingly,
following prescriptions specifically designed for the problem and validated through
prior simulations. The proposed solution proves effective due to the generalization
capabilities of the stacking technique; however, model interpretability is limited,
and local adaptations are required for each clinic.

Mathematical programming

Mathematical programming, also known as mathematical optimization, is a disci-
pline that formulates decision-making problems as mathematical models. These
models consist of an objective function to be optimized (either maximized or mini-
mized), decision variables, and a set of constraints that represent the problem’s
limitations or requirements [14]. In predictive contexts, mathematical program-
ming can be used to model and forecast outcomes based on certain inputs. In
prescriptive contexts, it goes a step further by not only predicting outcomes but
also recommending optimal decisions to achieve desired objectives, considering the

9

Literature review

constraints and possible scenarios.
Compared to ML, which excels at identifying patterns and making predictions

from large datasets, mathematical programming provides a structured approach to
decision-making by explicitly modeling the relationships and constraints within a
problem. While ML can handle complex, high-dimensional data and adapt to new
patterns, it often lacks the explicit constraint-handling capabilities of mathematical
programming. Therefore, mathematical programming is particularly advantageous
in scenarios where decisions must adhere to strict rules or limitations, such as
resource allocation, scheduling, and logistics. Conversely, ML is more suitable for
problems where learning from data to make predictions is paramount, such as
image recognition or natural language processing[15].

The popularity of these methods stems from their interpretability, the exten-
sive literature supporting them, and their broad applicability. Common forms
include linear and nonlinear programming, as well as their subtypes: linear integer
programming, mixed-integer programming, and binary linear programming.

Advanced strategies such as stochastic, adaptive, and robust optimization have
also been explored. Recent developments include Bayesian Optimization and
Constrained Bayesian Optimization, though these are more complex to implement
in real-world scenarios.

Examples of applications include:

• In the context of solution selling, where assigning the right working team to a
customer account is crucial for maximizing revenues, a recent study proposes
an information system that integrates predictive analytics through the use of
a Multilayer Perceptron Neural Network (MLP) to estimate the probability
of a team’s success with a specific client. Subsequently, an Integer Linear
Programming (ILP) model is used to optimally compose the team to meet
customer needs [16]. Although a Neural Network model is proposed, most
of the work focuses on the optimization phase, aiming to offer alternative
scenarios beyond the optimal solution;

• The simplicity of formulating problems solved through linear programming
has enabled the development of one of the first commercial products for
prescriptive analytics. Using LogiQL—a unified, declarative language that
integrates queries, rules, triggers, statistical models, and optimization mod-
els—it is possible to formulate problems that are automatically solved via
Linear Programming or Mixed Integer Programming. Although using this
commercial platform still requires domain expertise, it guarantees a high
degree of flexibility [17];

• Hosting events like the FIFA World Cup requires careful lodging planning
due to the influx of international visitors. The specific case analyzed concerns

10

Literature review

Qatar 2022, where the pre-existing hotel infrastructure was insufficient to
meet the expected demand. To optimize the overall accommodation plan,
Integer Programming models were developed to assign groups to stadiums
while maximizing balanced occupancy of the facilities [18]. These models
not only predict the number of expected spectators but also prescribe: how
to form groups, how to assign them to stadiums, and how to scale lodging
capacities under uncertain scenarios;

• Electric utilities face growing challenges in managing aging, geographically
dispersed assets while balancing reliability, regulations, and budgets. To
address this, advanced analytics solutions have been developed to assess
asset health and network reliability by optimizing maintenance planning
through stochastic programming models and sequential optimization based on
minimizing the expected total cost. This approach supports decision-making
regarding when and how to perform maintenance or replace assets, prioritizing
interventions based on geographic location and criticality [19]. Although the
proposed solution successfully handles a high level of problem complexity,
maintaining it requires constant, difficult-to-manage, and non-automatable
updates.

Methods based on Machine Learning and Mathematical Programming have been
increasingly developed in recent years, particularly for decision-making processes.
As shown in Figure2.1, these two approaches are experiencing a growing number
of publications, as tracked by Wissuchek Christopher and Zschech Patrick, who
categorized the publications accordingly [20].

11

Literature review

Figure 2.1: Number of publications divided by category and year.

Statistical analysis and evolutionary computation

When data becomes too large or complex for traditional mathematical programming,
hybrid models combining statistical analysis and evolutionary computation are
often employed [21]. These methods are especially effective when fast, approximate
solutions are required.

Statistical models, such as regression and Bayesian inference, provide a structured
framework for analyzing data variability and uncertainty. They enable hypothesis
testing and causal inference, especially when data is noisy or incomplete. However,
their effectiveness can be limited with large-scale or unstructured data and when
underlying assumptions are not met.

Evolutionary computation, inspired by natural selection, includes algorithms
like genetic algorithms and particle swarm optimization. These are well-suited for
optimizing complex, non-linear, or non-differentiable functions. They can explore
vast solution spaces and adapt over iterations [22, 23], though they may require
many evaluations and do not guarantee global optima.

In contrast, machine learning excels at processing large datasets and identifying
complex patterns, often achieving high predictive performance. Yet, ML models
can lack interpretability and typically demand large amounts of training data.

Furthermore, in many scenarios testing decisons can be expensive, especially

12

Literature review

when the complexity of the case is elevated (marketing multicanale, medical
treatments). With the purpose to solve this dynamic has been proposed ESP
method (Evolutionary Surrogate-Assisted Prescription) where a Surrogate model
(es: random forest o neural network) imita il comportamento reale a partire da
dati storici and a Prescriptor (una rete neurale) evoluto tramite algoritmi genetici
massimizza gli outcome previsti dal surrogate. ESP non si limita a predire gli
esiti delle azioni, ma prescrive direttamente quali azioni compiere ottimizzando gli
obiettivi desiderati[24]. Questo approccio garantisce un’alta efficienza e versatilità,
ma comunque nell’elaborato si sottolinea quanto sia importante la bontà del
surrogate per ottenere una prescrizione di qualità; inoltre è necessario definire dei
confini precisi per lo spazio di ricerca delle policy, altrimenti l’Evoluzione genetica
potrebbe risultare troppo lenta e inefficace.

In a different case study, evolutionary algorithms have been applied to optimize
nonpharmaceutical intervention strategies (NPI) for controlling COVID-19. It’s
reproposed the ESP technique with a surrogate model LSTM (Long Short-Term
Memory) predict l’andamento dei casi COVID-19 a partire da dati storici su contagi
e NPI and prescriptor (rete neurale evoluta tramite algoritmi genetici tipo NSGA-II)
genera strategie ottimali di NPIs in ordeto to maximize the afficacy of these actions
minimizing costs [25].

In yet another distinct case, advanced analytics were applied to optimize uni-
versity admissions within Thailand’s multi-round admission system. Predictive
models—such as generalized linear models, deep learning, and gradient boosted
trees—were used to forecast student performance. These predictions informed a
prescriptive model using evolutionary optimization to identify optimal admission
criteria and student allocation across engineering majors and admission rounds [26].

Logic-based models

Logic-based models use formal logic to represent knowledge and perform reason-
ing through structures like first-order logic, rule-based systems, and ontologies
[27]. They are especially valuable in domains requiring transparency and rigorous
inference, such as legal reasoning, semantic web, and safety-critical systems. Imple-
mented through rule-based frameworks, these models integrate expert knowledge
into prescriptive systems. Their deterministic nature and high interpretability
contrast with the "black box" nature of many machine learning models. While logic
models excel in explainability and logical rigor, they face challenges with scalability
and handling ambiguous or noisy data. In such contexts, statistical or evolutionary
models may offer better adaptability[28].

In the work by Cindy G. De Jesus and Mark Kristian C. Ledda [29], a support
system for interventions targeting students at risk of dropping out (SARDO) in
public schools is proposed, using a prescriptive analytics model based on fuzzy

13

Literature review

logic. The system predicts dropout risk based on familial, individual, school, and
community factors, and prescribes personalized interventions based on fuzzy rules
that combine applicability and historical effectiveness. Results show that this
approach improves the timeliness and accuracy of corrective actions.

To enhance decision support in agriculture in France, several methods have been
proposed to address the same problem from different perspectives, all starting from
a minimalist agricultural taxonomy (seven main categories) [30]. Different machine
learning models are combined through a Boltzmann Machine to predict various
agricultural scenarios. The best decision (maximizing productivity, minimizing
risk) is determined using Particle Swarm Optimization (PSO), which simulates a
"swarm" of possible solutions seeking the optimal one. However, since the objective
functions are difficult to formalize in these contexts, fuzzy rules derived from
expert knowledge are used. Two main approaches are proposed: Fuzzy Linear
Programming (FLP), which performs linear optimization under data uncertainty;
and Fuzzy Rule-Based Systems (FRBS), which manage approximate logic through
expert systems.

Other methods and approaches proposed do not follow a rigorous mathematical
formulation; instead, most of the attention is devoted to developing user-friendly
and interactive tools, so they can be used even by non-domain experts, although
this compromises the quality of the models. For example, one application involves
a mapping method that extracts domain ontology information from CVs (skills, ed-
ucation, experience) [31]. The analyzed problem is addressed through a distributed
architecture for job-to-curriculum matching using semantic technologies. Compared
to other studies (e.g., those using MILP or genetic algorithms), here the prescription
is built more on an advanced semantic architecture and intelligent matching rather
than relying on a heavy mathematical solver. It is a lighter and more scalable
approach, though less rigorous from the perspective of "formal optimization".

Another example is the EventAction system, which presents and explains time-
based recommendations. The paper addresses the problem of recommending
optimal actions based on temporal event sequences, helping users define action
plans that increase the probability of achieving a desired outcome. It represents
an interactive form of prescriptive analytics: the system does not automatically
decide but supports users in making better decisions through data, visualizations,
and suggestions [32].

From this analysis, it becomes clear that machine learning and deep learning
models are widely used as background analyses of the problem under examination
and for the evaluation of plausible scenarios. Furthermore, optimization concepts
(such as Linear Programming and related techniques) are commonly applied to
identify the best decision to be made, aiming to minimize or maximize the objective
function.

14

Literature review

2.2 Challenges
According to the literature, prescriptive analytics is trending toward models that
can operate in real-time, streaming environments, especially in the context of the
Internet of Things (IoT) [1]. The goal is to develop systems and tools that minimize
the need for human intervention and dynamically update in response to new data
streams.

Key challenges and future directions include:

• Developing real-time, sensor-driven information systems and recursive algo-
rithms for large-scale applications;

• Leveraging distributed computing to handle high data volumes and enable
rapid decision-making in IoT environments;

• Managing uncertainty stemming from both predictive models and data quality;

• Establishing generic metrics for evaluating individual prescriptions or overall
prescriptive model performance—currently, these are mostly assessed through
human judgment;

• Transitioning from expert-based models to AI-based systems capable of higher
abstraction and autonomy.

There is also ongoing interest in integrating prescriptive analytics into broader
data management and analytics frameworks [4]. This includes developing standard-
ized workflows and software libraries at both managerial and technical levels, as
well as embedding prescriptive methods into software engineering processes.

In this work, we propose a prescriptive model inspired by the principles of
eXplainable Artificial Intelligence (XAI). The objective is to create interpretable
models based on machine learning or deep learning, and to compare these with
optimization-based models using specific metrics for evaluating individual prescrip-
tions.

15

Chapter 3

What is PrescrX and How it
works

PrescrX is a tool that enables prescriptive analysis even in multi-class classification
problems. Given a specific point, a trained classifier, a background dataset, and
a target class, the algorithm returns the minimal changes needed to the point’s
features so that the model classifies it into the desired category.

PrescrX is based on ideas from eXplainable Artificial Intelligence (XAI), par-
ticularly inspired by the LIME (Local Interpretable Model-agnostic Explanations)
technique [lime]. LIME explains predictions by creating samples around the input
point and learning a local decision boundary that reflects how the model behaves
nearby. Usually, the classifier relies on a complex and unknown function f(x)
to separate the classes. Because of this complexity, it is not possible to reason
analytically or geometrically about how to change the point to alter its classification.

LIME deals with this by approximating the local decision boundary with a
simpler linear function g(x). It perturbs the input point to generate a neighborhood
of synthetic data, uses the model to predict their classes, and then fits a linear
classifier to separate them. This results in a local, linear, and interpretable
approximation of f(x). PrescrX applies this same approach: it approximates f(x)
locally with a linear classifier g(x) to find the region where points are classified as
belonging to the target class.

An important characteristic of PrescrX is that it is model-independent. It does
not rely on the internal structure of the predictive model but instead operates on
its outputs, meaning that it can be applied regardless of the classification algorithm
used, whether neural networks, decision trees, support vector machines, or other
classifiers.

Furthermore, PrescrX is a patented proprietary software, developed and legally
protected to safeguard its originality and industrial applicability. Its deployment in

16

What is PrescrX and How it works

industrial contexts therefore requires explicit licensing, ensuring that the methodol-
ogy is both rigorously defined and commercially regulated.

3.1 How PrescrX works
PrescrX is designed to generate prescriptive recommendations by identifying the
minimal changes needed to reclassify a given data point into a desired target class.
It achieves this by constructing a local and interpretable approximation of the
classifier’s decision boundary, which enables actionable suggestions even when the
underlying model is complex or opaque.

A comprehensive understanding of how PrescrX operates requires the introduc-
tion of key parameters that govern its behavior. This section provides a general
overview of these parameters and outlines the algorithm’s core logic, while more
detailed explanations will follow in subsequent sections.

• Xbackground: The set of background points used for analysis.

• Classifier model: The classification model responsible for assigning labels
to Xbackground.

• Starting point (sp): The initial instance for which a prescription is to be
generated.

• Target class (tc): The desired class to which the starting point should be
reassigned.

• Locked indices: Feature dimensions of sp that remain unchanged throughout
the process.

• Bounds: The upper and lower limits imposed on each feature of sp.

• Discrete indices: Feature dimensions of sp that must take integer values.

• Trust threshold (trustt): When the classifier outputs a probability distribu-
tion, a point is considered trustworthy if its assigned probability exceeds this
threshold.

• Regularization parameter (α): The l1-norm regularization parameter for
the linear approximation step.

In general terms, PrescrX analyzes the space defined by Xbackground in the vicinity
of a given starting point sp, with the goal of moving the point closer to a region
populated by points that belong to the target class tc. These target points are
selected from the dataset when the probability of belonging to the target class

17

What is PrescrX and How it works

exceeds the threshold trustt. To ensure a reliable fit of the linear model, a dense
sampling is performed between the initial point sp and the selected points. Once
the linear model is established, it becomes possible to define the minimal changes
required for the point to reach tc.

There are scenarios in which specific feature values are subject to constraints.
For instance, features may need to stay within certain upper and lower bounds, take
only discrete (integer) values, or remain fixed. These conditions can be handled
within PrescrX by specifying Locked Indices, Bounds, and Discrete Indices. For
instance, in the medical field, drug dosages must remain below a certain limit to
avoid harmful effects. Similarly, in industrial settings, operational parameters such
as machine temperature may need to be maintained within predefined thresholds
to ensure safety and functionality.

Now that a general overview of the functioning has been provided, we can examine
each step in detail to understand the rationale behind their implementation and
their specific roles.

3.1.1 Selection of target points
From Xbackground, a subset of candidate points is selected—these are the points
assigned to the target class tc. At this stage, the threshold trustt is not considered:
even if the classifier outputs a probability distribution, the class with the highest
predicted value is used.

Next, the Euclidean distance is computed between the starting point sp and
each candidate point. An iterative process then begins, governed by two additional
PrescrX parameters: nclosest and m, where nclosest defines the number of target
points to be selected, and m indicates the number of neighbors considered for each
candidate.

In the first iteration, the closest nclosest candidate points are selected. A candidate
point becomes a valid target point if at least m

2 of its neighbors also belong to tc.
In subsequent iterations, nclosest

2 additional candidate points are considered at a
time. The process stops once nclosest valid target points have been selected.

The choice of nclosest and m significantly influences the outcome of PrescrX. The
number of target points determines the size of the explored region in the space: a
larger value increases the coverage, but it may also slow down execution and, in
cases where Xbackground is not large enough, may result in an insufficient number
of valid points. The parameter m controls the consistency of the selected target
points. Higher values ensure more reliable target points, as they are surrounded by
a greater number of neighbors from the same class tc. However, setting m too high
may make it difficult to find valid target points, again depending on the density
and size of Xbackground.

In cases involving large datasets, high dimensionality, or both, execution time

18

What is PrescrX and How it works

and computational cost can become significant. The time complexity of computing
Euclidean distances is O(n · d), where n is the number of candidate points (in this
case, m) and d is the dimensionality of the space. The iterative method is used
specifically to avoid computing distances for all candidate points when only nclosest
will be retained in the final selection.

3.1.2 Generating dense sampling

Unlike the standard sampling used in the LIME model, which aims to interpret
local behavior, the goal of PrescrX is to find a direction along which to move in the
feature space. Once the target points are identified, the next step is to generate a
densely populated region between the starting point sp and the target points. This
ensures that, when the linear model is fitted to separate the starting and target
classes, there are enough points to enable a consistent and reliable fitting.

This step is also carried out through an iterative process. In each iteration,
n target points are randomly sampled. For each sampled point, a new point is
generated according to the following formula:

new_point = starting_point+(sampled_point−starting_point) ·U(low, 1) (3.1)

Here, the new point is obtained by perturbing sp uniformly along the direction
of the sampled point. It is important to note that the uniform perturbation U is
applied independently to each dimension of the point. While the upper bound of
the uniform distribution is fixed at 1, the lower bound varies across sampled points
and can take on values in {0, 0.25, 0.75}, distributed equally among the n sampled
points. This variation helps ensure a higher density of generated points near the
target points, as the final prescription will likely be close to them.

To provide a visual representation of this procedure, Fig. 3.1, 3.2, and 3.3
illustrate the density of generated points in a two-dimensional space, where the
intensity of color reflects the population density. Figs. 3.1 and 3.2 show the density
along the x1 and x2 axes, respectively, while Fig. 3.3 shows their combined effect.

19

What is PrescrX and How it works

Figure 3.1: Density of points along x1 axis

Figure 3.2: Density of points along x2 axis

20

What is PrescrX and How it works

Figure 3.3: Combined density of points between x1 and x2 axes

If any of the newly generated points belongs to the same class as sp, it will
become the new sp for the next iteration. The iterative process continues until the
total number of generated points is at least four times the number of dimensions of
the starting point, and at least half of the points belong to the target class tc.

This biased generation of points addresses two main challenges. First, in
high-dimensional spaces, exploring the full neighborhood around sp would be
computationally expensive and time-consuming. Second, it ensures a sufficient
number of points between sp and the target points, which is essential for building
a reliable linear separator that approximates the true (and complex) decision
boundary of the classifier.

3.1.3 Fitting a local linear model

Now that the local region of space has been densely populated, a Support Vector
Classifier (SVC) can be fitted. This fitting provides a separating hyperplane that
will act as the decision boundary for the linear approximation of the model’s
complex behavior. A graphical representation of this process is shown in Fig. 3.4.

21

What is PrescrX and How it works

Figure 3.4: Comparison between the linear approximation and the real classifier.

In the figure, the data points are colored red or blue according to their class.
The purple line represents the true classifier, while the green line is its local linear
approximation. As discussed in Section 3.1, this linear model can be customized
using a regularization parameter α, which helps prevent underfitting or overfitting
during approximation.

3.1.4 Quadratic programming formulation
Once the linear approximation has been obtained, all the elements required to
compute the prescription are available.

Recalling the primary objective of PrescrX—making the smallest possible changes
to move the point sp into the target class tc—the next task is to find the shortest
path to reach that class. This is formulated as a Quadratic Programming (QP)
problem, defined as follows:

• Objective Function: Minimize the squared Euclidean distance from the
starting point, expressed as ∥x − starting_point∥2.

• Constraint: An equality constraint ensuring that the point x lies on the
hyperplane defined by the linear model.

The QP is written in standard form:

22

What is PrescrX and How it works

Minimize 1
2xT Px + qT x

subject to Ax = b
(3.2)

with the parameters defined as:

• P = 2I, where I is the identity matrix, ensuring positive semi-definiteness.

• q = −2 · starting_point.

• A: the coefficients of the linear model.

• b: the intercept of the linear model, defining the separating hyperplane.

Geometrically, this formulation corresponds to projecting the starting point sp
onto the hyperplane defined by the linear model. The line connecting these two
points is orthogonal to the separating plane.

It is important to note that this process does not guarantee that the projected
(i.e., prescribed) point will actually belong to the target class tc, since the linear
model is only an approximation of the real classifier. Therefore, two outcomes are
possible:

• Case 1: The prescribed point belongs to the target class tc, and—if a
probability is required—it does so with a confidence greater than trustt. In
this case, the process is complete.

• Case 2: The prescribed point either does not belong to tc, or it does but with
a confidence below trustt. In this case, the process described in Section 3.1.2 is
repeated. The closest point to the current prescribed point is considered, and
the one that satisfies all required conditions is selected as the final prescribed
point.

3.2 Current constraints and their expansion
As previously mentioned, PrescrX can operate under specific restrictions dictated
by the problem at hand. These include Locked Indices, Bounds, and Discrete
Indices, each integrated into the prescriptive process in distinct ways. Below is a
brief explanation of how each constraint is managed:

• Locked Indices: These constraints ensure that certain dimensions or features
remain unchanged throughout the process. That is, specific dimensions of the
starting point sp must retain their original values. During Dense Sampling

23

What is PrescrX and How it works

(Section 3.1.2), the perturbation applied to sp avoids modifying the locked
dimensions, focusing only on the free ones. Additionally, after the QP step
(Section 3.1.4), the locked features are explicitly restored to their original
values, as the optimization might not preserve them automatically.

• Integer-Value Constraints: Some dimensions of the starting point are
required to take only integer values, typically to ensure compatibility with
discrete domains. This constraint affects both the Dense Sampling and the
QP optimization steps. During Dense Sampling, values for these dimensions
are sampled as integers. After the QP step, the affected features are rounded
to the nearest valid integer values.

• Bounded Ranges: Certain features are limited to lie within specific bounds,
defined by lower and upper limits. These bounds may be finite or extend to
infinity (e.g., ±∞). During Dense Sampling, generated values are restricted to
these bounds. In the QP step, the bounds are directly incorporated into the
optimization formulation. The updated version of the QP problem becomes:

Minimize 1
2xT Px + qT x

subject to Ax = b

lb ≤ x ≤ ub

(3.3)

where lb and ub represent the lower and upper bounds for each feature.

All of these constraints can be applied simultaneously, allowing PrescrX to
handle complex problem formulations. If the QP step fails to produce a point
belonging to the target class tc, an additional Dense Sampling step is triggered—still
respecting all defined constraints—to explore further solutions.

3.2.1 Cost function constraint
To enhance PrescrX’s flexibility, a new type of constraint has been introduced: a
cost function constraint. This addresses scenarios where each point x ∈ Xbackground
is associated with a cost, expressed through a generic (not necessarily linear)
function c(x). The constraint consists in enforcing a maximum allowable cost costt,
such that the prescribed point must satisfy:

c(xprescribed) ≤ costt

This constraint modifies the Target Point Selection step (Section 3.1.1) slightly.
In addition to meeting the consistency condition defined by parameter m, candidate
target points must also satisfy the cost condition:

24

What is PrescrX and How it works

c(xtarget) ≤ costt

This effectively narrows the selection to a subregion of the space where both
the class consistency and cost conditions are met.

As with the previous constraints, the cost function constraint can be combined
with all others. Fig. 3.5 provides a visual representation of how this constraint, in
combination with the classifier’s decision boundary, restricts the solution space.
The shaded region in the bottom-left corner represents the intersection of the
classifier region and the region under the cost threshold costt, indicated by the
orange boundary.

It is important to note that these regions might not intersect, depending on the
problem’s formulation. In such cases, PrescrX will terminate without producing a
prescription, as no feasible solution exists.

Figure 3.5: Intersection between the classifier region and the cost-constrained
region.

3.3 Exploring parameters
To investigate the behavior of PrescrX, two types of case studies are proposed.

The first case study involves the MNIST dataset. MNIST (Modified National
Institute of Standards and Technology database) is a large dataset of handwritten
digits commonly used for training and evaluating image processing systems [33].

25

What is PrescrX and How it works

It contains 60,000 training images and 10,000 test images, each representing a
digit from 0 to 9. In this study, each image is flattened into a linear vector of
784 dimensions (originally a 28 × 28 pixel image). A convolutional neural network
is trained to classify these digits according to their corresponding labels. The
structure of the neural network is as follows:

• Input Layer: shape = 784

• Dense Layer: 256 units, activation = ReLU

• Dropout Layer: rate = 0.5

• Output Layer: num_classes units, activation = Softmax

The choice of MNIST is motivated not only by its popularity and high dimen-
sionality, which make it a standard benchmark in the machine learning community,
but also by the specific nature of the prescriptions generated in this context. Since
prescriptions correspond to modified images of handwritten digits, their validity
can be directly assessed by human supervision. In other words, it is possible to
visually inspect whether the transformed image plausibly resembles the intended
digit, thereby providing an additional, intuitive form of validation beyond numerical
metrics.

The second case study is based on a real-world industrial scenario. In this
setting, an industrial machine cleans mechanical components using seven operational
parameters. These seven parameters form the features used to train a classifier for
this task. At the end of the cleaning process, each component is classified as either
dirty or clean—defining a binary classification problem.

All cleaned components are identical in structure, allowing the cleaning quality
to be assessed solely based on the values of the seven parameters. The dataset
includes a total of 143 samples. Each sample consists of the parameters used in
the cleaning process and a class label: 0 for clean and 1 for dirty. A decision
tree classifier is trained on this dataset. While the internal structure of the model
is not disclosed due to legal restrictions, the classifier is treated as a black-box
model—used purely as a ground truth oracle for evaluating PrescrX. The internal
reasoning behind its predictions is not a focus of this study.

These two case studies were chosen to explore, respectively, the behaviors in a
widely studied and data-rich dataset that remains a benchmark (MNIST), and in
a scenario where, despite limited available data, the context is realistic (industrial
case).

3.3.1 Exploration and time complexity with nclosest and m

To analyze how the parameters nclosest and m influence the prescription process,
experiments were conducted using the MNIST dataset. In this setup, the starting

26

What is PrescrX and How it works

point always belongs to class 1, and the target class is fixed at 8. All other
parameters required for the prescription remain constant across experiments: the
regularization parameter for the linear model is set to α = 0, indicating no
regularization, and the trust threshold is fixed at trustt = 97.5%, to ensure a stable
and high level of confidence.

As previously discussed, nclosest and m define the extent of the space explored
during the prescription process. Increasing their values generally leads to greater
computational demands. To study this phenomenon, 100 prescriptions were exe-
cuted, with both parameters ranging from 10 to 100 in steps of 10. The results are
shown in Figure 3.6, where each point corresponds to a prescription with nclosest
and m marked along the axis and warmer colors correspond to longer execution
times (measured in seconds). The trend is primarily driven by nclosest, although the
influence of m could be more thoroughly analyzed with a larger number of trials.
Notably, the plot highlights four specific points: the two slowest and two fastest
prescriptions, which appear on opposite sides of the chart.

Figure 3.6: Colorization of execution time required to make the prescription in
the MNIST case.

In the industrial case study, the prescriptions are performed using the same

27

What is PrescrX and How it works

parameters, with the exception of trustt, which is not needed since the classifier is
a decision tree. The starting point sp is a sample classified as dirty (class 1), and
the goal is to prescribe changes that make it clean (class 0). In this case, nclosest
and m range from 2 to 20 in steps of 2.

Figure 3.7: Colorization of execution time required to make the prescription in
the industrial case.

What stands out in Figure 3.7 is the absence of many points, which correspond
to failed prescriptions. These failures are likely due to the limited size and coverage
of the dataset, which restricts the explorable space. Nonetheless, a general trend
is still visible: execution time increases as nclosest and m grow. Additionally,
comparing the legends of both figures reveals a clear difference in the time required
for prescriptions. The MNIST case demands significantly more time due to the
larger values of the two parameters and the much higher dimensionality of the
explored space.

28

What is PrescrX and How it works

3.3.2 Quality of prescriptions with trust_t (trust threshold)
and alpha (regularization parameter)

The trust threshold trustt can significantly affect the quality of a prescription, as it
defines the minimum confidence required for a point to be considered as belonging
to a given class. As previously discussed, the quality of a prescription is directly
related to the reliability of the underlying classification. Since the classifier used
in the industrial case is a decision tree that produces deterministic outputs, this
parameter is evaluated only in the MNIST case.

Currently, there is no established standard in the literature for quantitatively
measuring the quality of a prescription. However, in this context, the result can
be visually assessed by inspecting the image generated at the end of the PrescrX
process.

Using the same experimental setup as in the analysis of nclosest and m, with both
parameters fixed at a value of 50, we observe how varying the trustt value affects
the outcome. The tested values are {95%, 99.9%, 99.99%}, and the corresponding
prescribed digits are shown in Figures3.8, 3.9, and 3.10.

Figure 3.8: Prescribed point obtained with trustt = 95.0%.

29

What is PrescrX and How it works

Figure 3.9: Prescribed point obtained with trustt = 99.9%.

Figure 3.10: Prescribed point obtained with trustt = 99.99%.

30

What is PrescrX and How it works

The quality of a prescription can also be visually assessed by examining the
impact of the regularization parameter α. As previously mentioned, α controls the
regularization applied during the construction of the linear model. This corresponds
to adding a penalty term to the objective function, which helps prevent overfitting
[34].

From a visual perspective, it is evident in the following figures that higher
values of α (i.e., stronger regularization) result in more conservative changes to
the starting point sp. In other words, strong regularization encourages minimal
movement in the feature space, potentially at the expense of precision in reaching
the target class.

In this experiment, all parameters other than α remain unchanged from previous
examples. The tested values of α are {0, 1, 10}, with the resulting prescribed points
shown in order in Figures 3.11, 3.12, and 3.13.

Figure 3.11: Prescribed point obtained with α = 0.

31

What is PrescrX and How it works

Figure 3.12: Prescribed point obtained with α = 1.

Figure 3.13: Prescribed point obtained with α = 10.

32

What is PrescrX and How it works

3.3.3 Influence of cost function constraint in the prescrip-
tion

The Cost Function Constraint can sensibly influence the final result of the PrescrX
process. Before exploring how this constraint works in the MNIST and industrial
case, it is possible to imagine some scenarios, based on Figure 3.5, where the
region of space, which satisfies the Cost Function Constraint and the target class tc
requirements, can be a location of non-dense points and it could be a region further
than a region who satisfy only the target class tc. However, to better understand
his mechanisms, it is necessary to define a cost function for both case studies. For
the MNIST case, considering that this function is invented just for an exploratory
purpose, without any technical aim, it follows that is possible to consider a ink
function, composed as the sum of the normalized values, between 0 and 1, of the
respective points where, referring to the images showed above in the Sections 3.3.1
3.3.2, values are represented with a grayscale of colors with black pixels equal to 0
and withe pixels equal to 1. The formulation of this cost function is really simple:

ink function(x) =
dØ

i=1
xi (3.4)

Where, d is the dimensions of the x point (784 for the MNIST case), considering
the values already normalized. For the industrial case there is no need to invent
a cost function, considering that is already provided. There is no interest in
understanding how the following function is created; it is sufficient to know that
defines the climate impact, that will be considered an adimensional value, that is
the quantity of "resources" used to clean a single mechanical component:

climate impact(x) = 0.0179 · x1 + 0.0179 · x2 − 0.3565

+ 0.8286 · (0.0152 · x7 − 0.0554)
1.0014 − 0.0004 · x7

+ 0.8368 · (0.0342 · x6 − 0.0514)
1.0013 − 0.0009 · x6

(3.5)

It is worth noting that in this case not all dimensions are involved in the cost
function, which means that these dimensions can freely change without affecting
this constraint. To understand how this constraint influences the prescribed result,
starting from the same starting point sp several prescriptions will be executed,
varying only the maximum admissible value costt, which defines the boundary
of the space that satisfies the Cost Function Constraint as explained in Section
3.1.1. For the MNIST case 4 prescriptions have been executed, each one with the
same parameters used in sections above; the first one has been executed without
applying a Cost Function Constraint, the other three have been executed setting

33

What is PrescrX and How it works

the respective costt: {120, 100, 80}. These values have been decided computing the
average value of ink function for all points who belong to the target class tc (120)
and decreased respecting the scale of values available under these conditions.

From the industrial case, there is no an image to associate to the prescribed point
to appreciate the quality of the prescription. Anyway, it is possible to visualize
how the point moves to satisfy the Cost Function Constraint.

Figure 3.14: Industrial case dataset represented by the t-SNE dimensionality
reduction.

In Figure 3.14 the industrial case data set is represented by the t-SNE dimen-
sionality reduction [35]. Where green points belong to class 0 (clean), red points
belong to class 1 (dirty) and blue points are the prescribed points which intensity
of color represent the value of climate impact. The blue lines are a link between the
starting point sp, in common for each prescription, and the prescribed points. From
this graph it is possible to notice how the prescription need to move in different
spaces to address the Cost Function Constraint. Furthermore, it is possible to
appreciate the fact that all prescribed points move towards the green points; this
is a base behavior of PrescrX, but from this graphical representation is possible to
appreciate the result.

34

Chapter 4

Optimizers vs PrescrX

This chapter analyzes how PrescrX performs in comparison to other prescriptive
tools. Continuing the analysis of the case studies presented earlier in Section 3.3, an
optimizer is proposed for each case. The main difference between these optimizers
and PrescrX lies in the objective function: while PrescrX aims to reach the target
class tc with the fewest possible changes, these new optimizers instead use as
objective function the probability to belong to the target class tc.

Before delving into the formulation of these optimizers, it is important to
emphasize that these two optimizers are addressing a different question than
PrescrX. In fact, PrescrX answers the question: “What are the minimal changes
required to achieve the desired class?”, whereas the new optimizers answer: “What
is the point belonging to the target class with highest probability?”. As a result,
the outcomes are expected to differ; however, what will be particularly interesting
is to observe and analyze the nature of these differences.

4.1 Optimizer for the MNIST case

Before comparing the prescriptions generated by PrescrX and the optimizer, it
is essential to provide a detailed explanation of the mathematical formulation of
the latter. This will allow us to understand the underlying dynamics that lead to
certain types of outcomes.

Once the mathematical formulation is clearly defined, an analysis will be car-
ried out from both a statistical perspective—comparing different prescriptions
using statistical and distributional approaches—and through specific case-by-case
comparisons to illustrate representative examples of the observed phenomena.

35

Optimizers vs PrescrX

4.1.1 Mathematical formulation
The goal of the optimization process is to identify an input x∗ that maximizes
the probability assigned by a trained classification model to a desired target class
tc ∈ {0, 1, . . . , 9}.

Let x ∈ R784 represent a flattened grayscale image (28×28 pixels) from the
MNIST dataset, and let the classifier be a function.

f : R784 → [0,1]10, (4.1)

where f(x) is a probability vector over the ten digit classes. The component
ftc(x) denotes the predicted probability for the target class tc.

The objective is to find an input x∗ that maximizes this probability. Formally,
this is expressed as the following constrained optimization problem:

x∗ = arg max
x∈B

ftc(x), (4.2)

where B ⊂ R784 represents a set of box constraints applied to each component
of x.

Rather than directly maximizing the raw probability ftc(x), which may result in
gradients that are too small and therefore ineffective for guiding the optimization
(especially in flat regions of the probability space), the objective is reformulated as
the minimization of the negative log-likelihood:

x∗ = arg min
x∈B

L(x) = − log ftc(x). (4.3)

This reformulation is common in probabilistic models, as minimizing the negative
log-likelihood is equivalent to maximizing the model’s confidence in the target class,
while ensuring more stable and informative gradients.

The loss function to be minimized is therefore:

L(x) = − log ftc(x). (4.4)

The gradient of the loss with respect to the input x is computed at each iteration:

∇xL(x) = −∇x log ftc(x), (4.5)

which guides the local update of the input x in the optimization process.
To solve the optimization problem in Equation 4.3, the L-BFGS-B algorithm is

employed. This is a quasi-Newton optimization method that:

• Is based on gradient information, ensuring efficient convergence,

• Is well-suited for high-dimensional problems,

36

Optimizers vs PrescrX

• Supports box constraints on the variables.

The optimization iteratively updates the input x in the direction of the negative
gradient (Equation 4.5), while ensuring that x remains within the constraint set B.

Definition of box constraints

To ensure that the optimized input x∗ remains realistic and similar to real data,
each component xi of the input is bounded by a lower and upper limit derived
from the empirical distribution of training samples belonging to the target class tc.
Specifically:

xi ∈ [ai, bi] for i = 1, . . . , 784, (4.6)

where

ai = min
j

1
x

(i)
j | yj = tc

2
, bi = max

j

1
x

(i)
j | yj = tc

2
(4.7)

Here, x
(i)
j denotes the i-th component (pixel) of the j-th training sample in the

original dataset, and yj is its corresponding label. These bounds ensure that the
solution remains within the pixel intensity ranges observed in the training set for
class tc, thus reducing the likelihood of generating implausible or out-of-distribution
samples.

4.1.2 Comparison with PrescrX
Now that the structure and functioning of the optimizer have been explained, we
can analyze its results and compare them with those produced by PrescrX.

To conduct this comparison, two statistical samples are considered. The first
consists of 500 cases, where for each case a random point from the dataset is
selected as a starting point. From each of these, two prescriptions are generated:
one using the optimizer and the other using PrescrX, both targeting the same class
tc.

The second sample follows the same setup, except that all starting points belong
to class 1 and the target class is fixed to 8. In total, each case study comprises
1500 points: 500 starting points, 500 prescriptions generated by the optimizer, and
500 prescriptions generated by PrescrX.

Before evaluating the quality of the prescriptions using quantitative metrics,
it is useful to observe their spatial distribution. To facilitate interpretation, two
popular dimensionality reduction techniques—t-SNE and UMAP—are applied to
project the high-dimensional data into two dimensions for visualization purposes
[36].

37

Optimizers vs PrescrX

To maintain a clear and interpretable visualization, dimensionality reduction is
applied only to the second case, where all starting points belong to class 1.

Figure 4.1: Point distribution using t-SNE dimensionality reduction for the class
1 to class 8 transformation.

38

Optimizers vs PrescrX

Figure 4.2: Point distribution using UMAP dimensionality reduction for the class
1 to class 8 transformation.

Figures 4.1 and 4.2 show the same dataset and use the same legend. Red points
represent the 500 starting samples from class 1. All other points are classified
as class 8. Green points are 500 samples drawn from the original dataset, blue
crosses (x) represent the optimizer’s prescriptions, and orange crosses (x) indicate
prescriptions generated by PrescrX.

From the first figure (t-SNE), we can draw two key observations:

• The prescriptions generated by PrescrX (orange x) form a dense cluster within
the cloud of original dataset samples.
This suggests that PrescrX tends to produce prescriptions that are similar to
existing data points, a behavior consistent with its strategy of navigating the
data manifold.

• The prescriptions from the optimizer (blue x) appear as a distinct cluster,
separated from the rest of the dataset.

39

Optimizers vs PrescrX

This separation raises concerns about the plausibility of the optimizer’s pre-
scriptions, as they lie far from known data regions, potentially indicating low
reliability.

The second visualization, obtained using UMAP, differs from t-SNE in its
methodology: the model fitting was performed only on the original dataset (i.e.,
excluding any points generated by the prescriptive models), and the transformation
was then applied to all data points.

Two main insights emerge from this UMAP plot:

• The PrescrX-generated points (orange x) are more tightly clustered, indicating
that the model tends to generate prescriptions within a compact region of the
data space.

• Some of the optimizer-generated points (blue x) diverge from the green cloud
and even encroach upon the region occupied by the red points (class 1).
However, it’s worth noting that certain green points (i.e., real samples from
the dataset) show a similar behavior, suggesting that this may reflect some
natural overlap in the data space.

Adversarial samples

Given that it is possible to visually assess the quality of the generated prescriptions
by inspecting the resulting images, we can further investigate the behavior observed
in Figure 4.1—specifically, the separation of the optimizer’s cluster from the rest of
the dataset.

In Figure 4.3, we show, in order: the image corresponding to the starting point,
the image produced by the optimizer, and finally the image generated by PrescrX.

As clearly visible, the image produced by the optimizer does not resemble the
digit 8, despite the classifier assigning it a probability close to 1 for this class.

This scenario is a typical example of what is commonly referred to as an
adversarial sample—a result that is highly dependent on the classifier’s internal
structure and does not align with human perception or empirical data [37]. In
the specific case of MNIST, the pixel intensities of these optimized images are not
consistent with any real samples present in the dataset.

This phenomenon consistently appears in all samples generated by the optimizer.
Although these points may not offer meaningful human interpretation, they are
still valuable from an analytical standpoint: they highlight edge cases and potential
failure modes in the prescriptive process, enriching our understanding of the model’s
behavior.

40

Optimizers vs PrescrX

Figure 4.3: Comparison of starting point and generated prescriptions

4.1.3 Improved optimizer

As previously discussed, PrescrX generates prescriptions by relying on both the
classifier and the background dataset, whereas the baseline optimizer operates
solely on the classifier. This asymmetry implies that the comparison between the
two approaches is not entirely fair: PrescrX benefits from additional information
derived from the background data, while the optimizer does not.

To mitigate this imbalance, an improved version of the optimizer is introduced.
The idea is to extend the prescriptive process of the optimizer by incorporating
the background dataset, thus enriching its search space with information about
the empirical data distribution. In the literature, the most common strategy to
achieve this integration is to include a similarity factor within the objective function.
Such a factor is designed to penalize solutions that deviate excessively from the
original data manifold, thereby promoting prescriptions that remain close to real
and plausible instances.

The notion of similarity can be defined in multiple ways, depending on the
problem at hand. From a geometric perspective, similarity may be quantified using
distance measures such as Euclidean or Mahalanobis distance, while in other cases
it may involve structural or semantic criteria more closely aligned with the domain.
By embedding this similarity term into the objective function, the optimizer is
encouraged to balance the pursuit of high classification confidence with the need
for prescriptions that are realistic and interpretable.

PrescrX explores the data space by selecting target points based on notions of
proximity. Analogously, a concept of similarity is introduced into the optimizer.
Before explaining how this similarity is incorporated, it is important to clarify the

41

Optimizers vs PrescrX

type of similarity being used and its purpose.
The similarity metric adopted in this case is the Structural Similarity Index

(SSIM) [38], a widely used measure for assessing the perceptual similarity between
two images. Unlike pixel-wise differences, SSIM provides a more human-aligned
evaluation by comparing three local components between two image patches:
luminance (l), contrast (c), and structure (s). These components are computed as
follows:

l(x, y) = 2µxµy + C1

µ2
x + µ2

y + C1
(4.8)

c(x, y) = 2σxσy + C2

σ2
x + σ2

y + C2
(4.9)

s(x, y) = σxy + C3

σxσy + C3
with C3 = C2

2 typically (4.10)

The SSIM index for a given window is then computed as the product of these
three terms:

SSIM = l · c · s (4.11)
By setting α = β = γ = 1, we obtain the commonly used simplified formula:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

(4.12)

where µx, σ2
x represent the local mean and variance of image x, and σxy is the

local covariance between x and y.
The resulting SSIM score lies within the interval [−1,1] (often normalized to

[0,1]), with 1 indicating identical images.
We incorporate SSIM into the optimizer by modifying the original loss function

in Equation 4.4, yielding:

L(x) = − (log ftc(x) + λ log(SSIM(x, y))) (4.13)
Here, y is the image belonging to the target class tc that has the highest SSIM

score with respect to the current candidate x. Importantly, y is reselected at each
iteration, since x is updated dynamically.

The parameter λ controls the relative weight of the similarity term. Since
the primary goal remains achieving class tc, SSIM should play a secondary—yet
meaningful—role in the optimization. While the choice of λ influences the final
outcome, in this case study a value of 0.1 proved effective. However, λ can generally
range within (0, 1] (excluding 0, as that would ignore the similarity component
altogether).

42

Optimizers vs PrescrX

The introduction of this parameter aims to generate prescriptions that are not
only valid in terms of classification, but also visually coherent and interpretable.

When reapplying t-SNE dimensionality reduction using this modified loss func-
tion, we observe in Figure 4.4 that the optimizer’s outputs no longer form a separate,
isolated cluster. Instead, they appear closer to the distribution of original dataset
samples.

Figure 4.4: Point distribution using t-SNE for class 1 to class 8 transformation
with SSIM incorporated.

Additionally, to visually confirm the effectiveness of integrating SSIM into the
optimization process, Figure 4.5 compares prescriptions generated with and without
the similarity constraint.

43

Optimizers vs PrescrX

Figure 4.5: Comparison of starting point and prescriptions with and without
SSIM regularization.

Both the starting point and the corresponding prescriptions from each model are
shown. By examining the central images, the difference between the two optimizer
variants—one with and one without the similarity term—is clearly noticeable.

4.2 Optimizer in the industrial case
As with the MNIST case, before analyzing and comparing the outputs of the
optimizer and PrescrX in the industrial setting, it is essential to present a proper
mathematical formulation of the optimizer. In this scenario, the technical challenges
differ significantly from those in MNIST, which results in distinct optimization
behaviors and outcomes.

4.2.1 Mathematical formulation and limitations
The classifier used in this case study does not provide gradient information that
can be used during optimization. This is not an isolated situation—many machine
learning models either do not expose gradients or are not designed to compute
them at all. As such, a gradient-free optimization approach is required. Several
well-known methods exist in this category, including Powell’s method, Nelder-Mead
simplex, and Bayesian Optimization [39].

The first method attempted was Powell’s algorithm, due to its simplicity and
intuitive behavior. Powell’s method performs sequential one-dimensional searches
along each coordinate direction, and then combines them into new directions for
successive iterations until convergence [40].

Unfortunately, Powell’s method—and other derivative-free methods tested—proved
unsuccessful. Specifically, none of the applied techniques produced points with a
predicted probability of belonging to the target class tc higher than approximately
30%.

44

Optimizers vs PrescrX

To understand the cause of this behavior, an analysis of the underlying dataset
was performed to examine how the data points are distributed in space. It was
observed that the two classes are strongly separated, leaving a wide unpopulated
region between the clusters.

Figure 4.6: Example of poorly distributed dataset with a large gap between
clusters

As illustrated in Figure 4.6, the empty space between the two clusters results
in a steep jump between them, and the probability function becomes flat near
the clusters. This flatness prevents the optimizer from identifying a meaningful
direction to move toward higher probability regions. This issue has been studied
previously by Moustapha Maliki and Sudret Bruno [41], who proposed a solution
to handle such discontinuities. However, that method lies beyond the scope of this
work and will not be implemented here.

Given this phenomenon, local optimization based solely on the classifier’s output
becomes impractical.

Nonetheless, introducing a similarity constraint—like in the MNIST case—also
proves beneficial here. However, due to the limited size of the dataset, using
pointwise similarity (as done with SSIM) would result in repeatedly selecting the
same few data points, failing to explore the broader space.

Therefore, in this context, we propose a **statistical or distributional similarity**
approach. The goal is to guide optimization towards results that are not only class-
consistent but also statistically aligned with the target distribution. To achieve
this, we introduce the **Mahalanobis Distance** [42].

The Mahalanobis distance between two vectors x and y, with respect to a
covariance matrix Σ, is defined as:

45

Optimizers vs PrescrX

dM(x, y) =
ñ

(x − y)⊤Σ−1(x − y) (4.14)
In particular, the Mahalanobis distance of a point x from a distribution with

mean µ and covariance Σ is given by:

dM(x, µ) =
ñ

(x − µ)⊤Σ−1(x − µ) (4.15)
To visualize the difference between Euclidean and Mahalanobis distances, con-

sider the 2D example in Figure 4.7. Here, both the red and blue points are
equidistant from the distribution’s mean under Euclidean distance. However, the
red point lies within the 50th percentile (first Gaussian contour), while the blue
point is beyond the 90th percentile—thus, the Mahalanobis distance correctly
identifies the red point as statistically closer.

Figure 4.7: Mahalanobis vs. Euclidean distance in a 2D example

By introducing Mahalanobis distance, the objective function is reformulated as:

L(x) = −ftc(x) + λdM(x, µtc) (4.16)
Here, ftc(x) is the probability that point x belongs to the target class tc. In

this industrial case, we have x ∈ R7 and the classifier is f : R7 → [0,1]2. The

46

Optimizers vs PrescrX

Mahalanobis term dM(x, µtc) measures how close the candidate point is to the
statistical center of the target class.

This formulation mirrors the logic used in the MNIST case (Section 4.1.1): the
first term encourages classification success, and the second encourages statistical
similarity. However, unlike in MNIST, only the classification term is negated, since
the Mahalanobis distance is naturally minimized, and no logarithmic transformation
is applied—due to the smaller, less complex search space.

The parameter λ again controls the relative importance of the similarity term.
In this study, we fix λ = 0.1, although it can vary in the range (0,1], with 0 excluded
to avoid ignoring similarity altogether.

In the industrial case, introducing statistical similarity not only prevents the
generation of adversarial examples but also makes the search space more navigable
for the optimizer. This enables the optimization process to successfully converge
to valid prescriptions.

To visualize this benefit, consider Figure 4.8, where we extend the earlier step-
function probability landscape (Figure 4.6) by adding the similarity component
(−dM). The result is a smoother, more informative search landscape, avoiding flat
or abrupt regions that obstruct optimization.

Figure 4.8: Visualization of poorly distributed data with added similarity term
to enable optimization

Now that prescriptions can be generated both from PrescrX and the optimizer,
we can proceed with a first comparison by analyzing how their outputs aggregate
and distribute across the space.

47

Optimizers vs PrescrX

4.2.2 Comparison with PrescrX
For each point in the original dataset, two prescriptions are generated with the goal
of reaching the class to which the point does not currently belong: one using the
optimizer and one using PrescrX. As previously discussed, the aim of this analysis
is to explore how different prescriptions can arise from the same starting point,
depending on the specific priorities of the method used.

To visualize the differences between the outcomes, a t-SNE representation is
shown below.

Figure 4.9: Distribution of prescriptions in space depending on the model used

In Figure 4.9, each background dataset point has undergone a prescription,
including transitions from class 0 (“clean”) to class 1 (“dirty”) and vice versa.
Colors are consistent with those used in Figure 3.14, where green indicates class 0
and red indicates class 1.

This visualization reveals that the two prescriptive models generate outcomes
that are distributed very differently across the space. Specifically, the points

48

Optimizers vs PrescrX

obtained using the optimizer (represented as squares) tend to form compact, well-
defined clusters—one per target class. By contrast, the points generated by PrescrX
(plotted as crosses) do not form isolated clusters but are rather spread more closely
around the original background data points. This is consistent with the design of
PrescrX, which searches for solutions in the proximity of real data.

Given the simplicity of the dataset in this industrial case, it is also feasible to
inspect individual prescriptions from specific starting points. Figure 4.10 presents
several representative cases by randomly selecting background points. The index
for each example is shown in the plot.

49

Optimizers vs PrescrX

Figure 4.10: Example cases showing the prescriptions from both methods

From the plots in Figure 4.10, it is evident that prescriptions generated by the
optimizer tend to occupy regions densely populated by points of the target class tc

50

Optimizers vs PrescrX

in the background dataset. Additionally, in the plot with index 34, we observe that
the point generated by PrescrX still belongs to class 1. This highlights a known
limitation of PrescrX: it does not always succeed in completing a prescription that
transitions the point to the target class. Nonetheless, for this industrial case study,
only 6 points in the entire dataset failed to produce a successful prescription using
PrescrX.

Now that a general understanding of the prescriptive behavior of both tools
has been established across the two case studies, the next chapter will focus on
evaluating the generated prescriptions analytically through the introduction of
evaluation metrics.

This final analysis serves two main purposes:

• To identify the strengths and weaknesses of each prescriptive model, and

• To assess the reliability of individual prescriptions.

This is particularly relevant because, in many prescriptive use cases, it is not
necessary to generate prescriptions for the entire dataset. Instead, the typical
requirement is to generate a valid prescription for a single, specific point under
analysis.

51

Chapter 5

Metrics

In order to quantitatively assess the quality of a prescription, it is necessary to
introduce metrics or parameters capable of analyzing one or more aspects of the
obtained result. As previously mentioned, the primary focus of this study is to
define metrics that evaluate a single prescription. Nevertheless, these metrics will
also be reported at a statistical and distributional level, in order to observe and
consolidate the different behaviors of PrescrX and the optimizers.

The following section introduces a set of metrics, together with their mathemat-
ical formulation and operational details.

5.1 Mathematical formulation of metrics
In this section, we present the metrics designed to evaluate the quality of a
prescription. It is important to note that, in this context of analysis, it is essential
to assess whether the obtained prescription is coherent and reliable with respect to
the analyzed setting.

5.1.1 Normalized distance by mean
This metric has been designed to measure how far the starting point must move
in order to obtain the prescription. In many contexts, it is important not to
deviate excessively from the initial point. As already mentioned, in a clinical
setting—where a point in the space represents the dosages of the different drugs
taken by a patient—a large deviation, and therefore a large variation in dosages,
could prove either ineffective or even harmful.

Below we present the mathematical formulation, including all relevant steps.
Let:

• D = {xi ∈ Rd}n
i=1 be a dataset of n points in Rd,

52

Metrics

• y = {yi ∈ C}n
i=1 be the associated class labels,

• xs ∈ Rd be a starting point,

• xp ∈ Rd be a prescribed point (target point from a different class),

• f : Rd → C be a classifier used to predict class labels.
If class labels are not provided, they are inferred using the classifier:

yi = f(xi), ∀i ∈ {1, . . . , n} (5.1)
The class of the starting point xs is determined as:

cs =
yi if ∃i such that xi = xs,

f(xs) otherwise.
(5.2)

The class of the prescribed point xp is:

cp =
yj if ∃j such that xj = xp,

f(xp) otherwise.
(5.3)

It is required that the two points belong to different classes:
cs /= cp (5.4)

We define the subsets of the dataset belonging to the respective classes as:
Dcs = {xi ∈ D | yi = cs} , (5.5)

Dcp = {xj ∈ D | yj = cp and xj /= xp} . (5.6)
The direct Euclidean distance between xs and xp is computed as:

ddirect = ∥xs − xp∥2 (5.7)
The mean inter-class distance between Dcs and Dcp is:

d̄mean = 1
|Dcs| · |Dcp |

Ø
xi∈Dcs

Ø
xj∈Dcp

∥xi − xj∥2 (5.8)

Finally, the normalized distance is defined as:

NormalizedDistance =


1.0 if d̄mean = 0,
ddirect

d̄mean
otherwise.

(5.9)

The value of NormalizedDistance is a positive real number in the interval
[0, ∞). What matters, however, is whether it is greater or smaller than 1. If
NormalizedDistance is smaller than 1, this means that the traveled distance is
less than the average distance between the two classes of interest. Conversely, if
NormalizedDistance is greater than 1, the distance between the starting point and
the prescribed point exceeds the average inter-class distance.

53

Metrics

5.1.2 Gain of Neighbors
To obtain a first estimate of whether the prescribed point effectively moves toward
a region of the space populated by the background dataset, we introduce the Gain
of Neighbors (GoN) metric. As will be shown in the mathematical formulation,
the underlying idea is to verify whether the prescribed point has a greater number
of neighbors belonging to the target class tc compared to the starting point. In
addition, this value provides an initial indication of whether the prescribed point
could potentially represent an adversarial example. In fact, if the prescribed point
has fewer neighbors belonging to the target class than the starting point, there is a
risk that it lies in an anomalous region of the space.

Let:

• D = {xi ∈ Rd}n
i=1 be a dataset of n points in Rd,

• y = {yi ∈ C}n
i=1 be the corresponding class labels,

• xs ∈ Rd be the starting point,

• xp ∈ Rd be the prescribed point,

• f : Rd → C be a classifier used to predict class labels.

If class labels are not given, they are predicted by the classifier:

yi = f(xi), ∀i ∈ {1, . . . , n} (5.10)

The classes of the starting and prescribed points are assigned as follows:

cs =
yi if ∃i such that xi = xs,

f(xs) otherwise.
(5.11)

cp =
yj if ∃j such that xj = xp,

f(xp) otherwise.
(5.12)

We require that the two points belong to different classes:

cs /= cp (5.13)

Define the Euclidean distance between the two points as:

d = ∥xs − xp∥2 (5.14)

Let the neighborhood radius be half this distance:

r = d

2 (5.15)

54

Metrics

Define the neighborhoods of xs and xp as:

Ns = {xi ∈ D \ {xs} | ∥xi − xs∥2 ≤ r} , (5.16)

Np =
î
xi ∈ D \ {xp} | ∥xi − xp∥2 ≤ r

ï
. (5.17)

Let the percentage of neighbors around xs and xp that belong to class cp be
defined as:

Ps =


0 if |Ns| = 0,

1
|Ns|

Ø
xi∈Ns

1{yi=cp} otherwise.
(5.18)

Pp =


0 if |Np| = 0,

1
|Np|

Ø
xi∈Np

1{yi=cp} otherwise. (5.19)

The final output is the difference in percentages:

GoN = Pp − Ps (5.20)

The value of GoN lies in the interval [−1, 1]. Values smaller than 0 indicate a
loss of neighbors, suggesting low prescription quality, whereas values greater than 0
indicate good quality. It is important to note that this metric depends strongly on
the number of neighbors of the starting point. For example, if the starting point is
located in an anomalous region of the space—such as a low-density area with labels
assigned with low reliability—the GoN value may potentially lose significance.

5.1.3 Features preservation score
Depending on the analyzed context, it may be of interest to generate prescriptions
that alter as few features as possible. For example, in an industrial scenario where
features represent the operating parameters of a machine, modifying only one or
two of them could entail a lower cost compared to changing all of them.

For this purpose, we introduce the Features Preservation Score (FPS), which
measures how many features remain unchanged when moving from the starting
point to the prescribed point. Naturally, this type of metric is meaningful only
in contexts where the problem requires such an evaluation. The mathematical
formulation is provided below.

Let:

• xs ∈ Rd be the starting point (original input),

• xp ∈ Rd be the prescribed (modified or target) point.

55

Metrics

Assume xs and xp have the same dimensionality, i.e.,

dim(xs) = dim(xp) = d (5.21)

Let m be the number of features that differ between the two points:

m =
dØ

j=1
1{xs,j /=xp,j} (5.22)

Then the feature preservation score is defined as:

FeaturePreservationScore = 1 − m

d
(5.23)

This score lies in the interval [0,1], where a value of 1 indicates that all features
are preserved (i.e., xs = xp), whereas a value of 0 means that all features have been
modified. Clearly, if the value is exactly 1, the prescription loses significance, since
no changes have been applied with respect to the starting point.

5.1.4 Robustness
Finally, we introduce a metric to measure the robustness of the prescribed point. In
this case, the calculation of the metric is strongly tied to its definition: to measure
robustness, the prescribed point is perturbed, and we verify whether it continues
to belong to the target class despite the perturbations.

The rationale behind measuring robustness lies in assessing the reliability of a
prescription. A point that does not change class under perturbations is considered
robust, and therefore more reliable, compared to a point that may change class
depending on the perturbation.

Several variants of this metric can be proposed. For example, instead of simply
observing whether the point changes class after perturbation, one could monitor
the prediction confidence. Indeed, if a point starts with 95% confidence and drops
to 90% after perturbation, it is more robust than a point that, starting again
from 95%, drops to 60%. Another possible variant consists in defining an ad hoc
perturbation method tailored to the problem under analysis. In the following
mathematical formulation, perturbations are introduced through Gaussian noise,
although alternative approaches may certainly be considered depending on the
application domain.

Let:

• D = {xi ∈ Rd}n
i=1 be the dataset used to estimate per-feature statistics,

• xp ∈ Rd be the prescribed point on which robustness is evaluated,

56

Metrics

• f : Rd → C be a classifier used for prediction,

• α ∈ R+ be a scaling factor for feature-wise noise,

• T ∈ N be the number of perturbation trials.

Let the standard deviation of each feature over the dataset be defined as:

σj =
öõõô 1

n

nØ
i=1

(xi,j − x̄j)2, for j = 1, . . . , d (5.24)

where x̄j is the mean of the j-th feature in D. Define the perturbation magnitude
per feature as:

εj = α · σj (5.25)

Let the original predicted class of xp be:

cp = f(xp) (5.26)

For each trial t = 1, . . . , T , generate noise from a normal distribution:

η(t) ∼ N (0, diag(ε2
1, . . . , ε2

d)) (5.27)

and define the perturbed point as:

x̃(t)
p = xp + η(t) (5.28)

Let Nconsistent be the number of trials where the predicted class remains un-
changed:

Nconsistent =
TØ

t=1
1{f(x̃(t)

p)=cp} (5.29)

The robustness score is then computed as:

RobustnessScore = Nconsistent

T
(5.30)

The robustness score takes values in the interval [0,1], where 0 indicates a
point that changes class under every perturbation, and 1 indicates a point that
consistently remains in the original class despite all perturbations.

57

Metrics

5.2 Analysis with metrics

As in the previous chapters, we now extend the analysis of the prescriptive models
from a quantitative perspective, in order to further expand or consolidate the
understanding of their behavior. Consistently with the two case studies considered
so far, the following analysis is carried out by examining one metric at a time.

Since in both case studies it is not required to minimize the number of modified
features, the analysis based on the Features Preservation Score (FPS) will not be
included.

5.2.1 Analysis through normalized distance

As previously discussed, this metric is designed to evaluate whether the distance
between the starting point sp and the prescribed point is consistent with the
distribution of the background dataset. In line with the expectations outlined
earlier, PrescrX is anticipated to yield lower values for this metric compared to the
optimizers.

Starting with the MNIST case, a quantitative assessment can be obtained
both from a distributional and statistical perspective. From the histograms in
Figures 5.1 and 5.2, as well as the summary statistics in Tables 5.1 and 5.2, it is
evident—in both the random sample and the 1-to-8 case (Section 4.1.2)—that the
distances generated by PrescrX are consistently smaller than those obtained with
the optimizers, regardless of whether similarity is incorporated or not.

Moreover, both the mean and the median of PrescrX distances are lower than
1, meaning that the distance between starting and prescribed points is smaller
than the average inter-class distance observed in the background dataset. This
result reinforces the key behavioral trait of PrescrX. By contrast, the prescriptions
generated by the optimizers yield mean and median distances greater than 1,
indicating that the prescribed points lie further apart than the average inter-class
distance. This phenomenon is particularly evident in the 1-to-8 case, where the
histograms are more clearly separated. Although not explicitly shown, this behavior
consistently appears across all cases—whether considering all points from the same
starting class or targeting the same class tc.

58

Metrics

Figure 5.1: Distribution of Normalized Distance values for each prescriptive
model in the MNIST case study, considering the random sample.

Figure 5.2: Distribution of Normalized Distance values for each prescriptive
model in the MNIST case study, considering the sample where all starting points
are 1 and the target class is 8.

59

Metrics

Distance Metrics Comparison, MNIST, random
Statistic Optimizer Optimizer SSIM PrescrX
Mean 1.053 1.016 0.791
Std Dev 0.187 0.169 0.132
Min 0.288 0.456 0.499
25% 0.929 0.893 0.698
Median 1.059 1.013 0.783
75% 1.179 1.151 0.876
Max 1.498 1.385 1.218

Table 5.1: Summary statistics for distance metrics in the random MNIST sample:
optimizer, optimizer with SSIM, and PrescrX.

Distance Metrics Comparison, MNIST, from 1 to 8
Statistic Optimizer Optimizer SSIM PrescrX
Mean 1.203 1.156 0.656
Std Dev 0.132 0.104 0.048
Min 0.465 0.663 0.541
25% 1.161 1.100 0.626
Median 1.227 1.173 0.650
75% 1.282 1.214 0.681
Max 1.379 1.441 1.017

Table 5.2: Summary statistics for distance metrics in the MNIST 1-to-8 sample:
optimizer, optimizer with SSIM, and PrescrX.

Turning to the industrial case (Figures 5.3 and 5.3), the same trends observed
for MNIST are further confirmed. For this analysis, only cases where prescriptions
transition from the “dirty” class to the “clean” class (from 1 to 0) are considered.
It is worth recalling that in the industrial setting only one optimizer is visualized,
since the inclusion of similarity is necessary for prescriptions to be generated at all.

60

Metrics

Figure 5.3: Distribution of Normalized Distance values for each prescriptive
model in the industrial case study.

Distance Metrics Comparison, industrial
Statistic Optimizer PrescrX
Mean 0.829 0.652
Std Dev 0.272 0.689
Min 0.325 0.037
25% 0.632 0.279
Median 0.857 0.428
75% 0.960 0.707
Max 2.478 2.786

Table 5.3: Summary statistics for distance metrics in the industrial case: optimizer
and PrescrX.

5.2.2 Analysis through GoN
The purpose of the GoN metric is to verify whether the prescribed point lies in a
region with a higher density of points belonging to the target class tc compared to
the starting point. If GoN has a value greater than 0, this condition is satisfied.

Starting with the MNIST case study, the three prescriptive models exhibit
very different behaviors. As shown in Figures 5.4 and 5.5, which respectively

61

Metrics

correspond to the random sample and the 1-to-8 case, the optimizer without
similarity consistently reports a GoN score less than or equal to 0. This result
is consistent with what was observed in the previous chapter: since this model
generates adversarial samples, the prescribed points do not fall in the vicinity of the
background dataset. For future studies, this metric could thus be employed as an
initial check for the possible existence of adversarial samples whenever non-positive
values are obtained.

The optimizer with similarity, on the other hand, displays a completely different
behavior. The GoN score for points generated by this model is not only almost
always strictly positive, but also very close to 1, indicating that the prescriptions
are located in highly populated regions of the background dataset corresponding
to the target class tc.

PrescrX also tends to provide prescriptions with non-negative GoN scores,
although the values are generally lower than those obtained by the optimizer
with similarity. This outcome can be explained by the nature of PrescrX, which
prioritizes staying as close as possible to the starting point, rather than seeking
regions of high density in the target class.

A numerical confirmation of these observations can be found in Tables 5.4
and 5.5.

Figure 5.4: Distribution of GoN scores for each prescriptive model in the MNIST
case study, considering the random sample.

62

Metrics

Figure 5.5: Distribution of GoN scores for each prescriptive model in the MNIST
case study, considering the sample where all starting points are 1 and the target
class tc is 8.

GoN Comparison, MNIST, random
Statistic Optimizer Optimizer SSIM PrescrX
Mean -0.001 0.993 0.767
Std Dev 0.008 0.071 0.393
Min -0.116 0.000 0.000
25% 0.000 1.000 0.752
Median 0.000 1.000 1.000
75% 0.000 1.000 1.000
Max 0.000 1.000 1.000

Table 5.4: Summary statistics of GoN scores for the random MNIST sample:
optimizer, optimizer with SSIM, and PrescrX.

63

Metrics

GoN Comparison, MNIST, from 1 to 8
Statistic Optimizer Optimizer SSIM PrescrX
Mean -0.003 0.998 0.160
Std Dev 0.003 0.003 0.367
Min -0.014 0.978 0.000
25% -0.005 0.997 0.000
Median -0.003 0.998 0.000
75% -0.001 1.000 0.000
Max 0.000 1.000 1.000

Table 5.5: Summary statistics of GoN scores for the MNIST 1-to-8 sample:
optimizer, optimizer with SSIM, and PrescrX.

Turning to the industrial case, the behavior of PrescrX is consistent with that
observed in MNIST, apart from a few negative GoN values. These are attributable
to the relatively small background dataset, which does not fully populate the
feature space under analysis. Similarly, the optimizer also records some negative
GoN scores for the same reason. A visual and quantitative confirmation of these
findings is provided in Figure 5.6 and Table 5.6.

Figure 5.6: Distribution of GoN scores for each prescriptive model in the industrial
case study.

64

Metrics

GoN Comparison, industrial
Statistic Optimizer PrescrX
Mean 0.612 0.398
Std Dev 0.398 0.512
Min -0.750 -0.624
25% 0.586 0.000
Median 0.704 0.500
75% 0.854 1.000
Max 1.000 1.000

Table 5.6: Summary statistics of GoN scores for the industrial case: optimizer
and PrescrX.

5.2.3 Analysis through robustness

For evaluations based on this metric, several variants can be considered depending
on the problem at hand.

In the MNIST case study, instead of measuring the number of times the point
under analysis changes class after perturbation, we assess how much the prediction
confidence of the perturbed point decreases on average. The reason for adopting
this variant lies in the fact that all prescribed points exhibit very high confidence
values (above 95%). Perturbing them while maintaining a humanly interpretable
image (the digit of the corresponding class) essentially results in no class changes.
This is a favorable sign for the robustness of all prescribed points, regardless of the
model. Nevertheless, a deeper level of analysis is required.

In the following plots (Figures 5.7 and 5.8), what is reported is not the number
of times the class remains the same as the target class, but rather the extent to
which prediction confidence decreases after perturbation. Note that the x-axis,
which indicates the percentage drop in confidence after perturbation, is displayed
on a logarithmic scale. From the graphs, it is evident that PrescrX tends to produce
prescriptions with greater instability, although this still amounts to only a few
percentage points, which—as noted earlier—are insufficient to induce a change of
class.

65

Metrics

Figure 5.7: Distribution of robustness values for each prescriptive model in the
MNIST case study, considering the random sample.

Figure 5.8: Distribution of robustness values for each prescriptive model in the
MNIST case study, considering the sample where all starting points are 1 and the
target class tc is 8.

66

Metrics

For the industrial case study, robustness is evaluated using the original mathe-
matical formulation in Equation 5.30, with results shown in Figure 5.9 and Table 5.7.
Here, the optimizer provides significantly more robust prescriptions. As observed in
the table, no prescription generated by the optimizer has a robustness lower than
100%. Conversely, PrescrX produces prescriptions with noticeably lower robustness,
consistent with previous observations in the industrial case.

This marked difference can also be explained by the fact that the optimizer
tends to produce prescriptions that are very similar to each other, concentrating
within a compact region of the space. By contrast, the prescriptions generated by
PrescrX do not form a single identifiable cluster, as already noted in Figure 4.1 of
the previous chapter.

Figure 5.9: Distribution of robustness values for each prescriptive model in the
industrial case study.

67

Metrics

Robustness Comparison, industrial
Statistic Optimizer PrescrX
Mean 1.000 0.583
Std Dev 0.000 0.207
Min 1.000 0.250
25% 1.000 0.460
Median 1.000 0.520
75% 1.000 0.650
Max 1.000 1.000

Table 5.7: Summary statistics for robustness metrics in the industrial case:
optimizer and PrescrX.

Execution time analysis

Although not a proper metric, the time required to obtain a prescription can be
of fundamental importance. In certain contexts, execution time may be critical.
For example, in an industrial setting where prescriptions are used to prevent the
production of defective components, the process would be ineffective—or at least
unsatisfactory—if prescriptions required too long to compute. Conversely, in a
medical context, the time required to generate a prescription may reasonably span
several minutes or even hours (except in specific urgent scenarios).

Looking at the MNIST case study, it can be observed from the logarithmic-scale
plots (Figures 5.10 and 5.11) and the corresponding tables (Tables 5.8 and 5.9) that
the optimizer without similarity is approximately two orders of magnitude faster
than both PrescrX and the similarity-based optimizer. This consistent difference is
explained by the high computational cost of space exploration. Indeed, whether
performed through Euclidean-based metrics (as in PrescrX) or through similarity-
based metrics such as SSIM (as in the optimizer with similarity), this step is the
most time-consuming part of the process. At the same time, however, it is also what
ensures that the resulting prescriptions are not adversarial examples. In certain
applications, therefore, selecting the most efficient method for space exploration
can be crucial if minimal execution time is a requirement of the problem.

68

Metrics

Figure 5.10: Execution time distribution for each prescriptive model in the
MNIST case study, random sample.

Figure 5.11: Execution time distribution for each prescriptive model in the
MNIST case study, 1-to-8 sample.

69

Metrics

Execution time, MNIST, random
Statistic Optimizer Optimizer SSIM PrescrX
Mean 0.043 82.619 9.683
Std Dev 0.031 44.584 1.537
Min 0.000 16.189 8.231
25% 0.019 48.367 8.897
Median 0.043 74.588 9.213
75% 0.050 106.800 9.879
Max 0.248 280.488 21.559

Table 5.8: Summary statistics for execution times in the random MNIST case:
optimizer, optimizer with SSIM, and PrescrX.

Execution time, MNIST, 1 to 8
Statistic Optimizer Optimizer SSIM PrescrX
Mean 0.062 100.381 10.470
Std Dev 0.032 64.960 1.555
Min 0.003 22.745 8.747
25% 0.046 64.716 9.247
Median 0.050 88.814 9.770
75% 0.070 118.905 11.195
Max 0.267 725.888 17.860

Table 5.9: Summary statistics for execution times in the MNIST 1-to-8 case:
optimizer, optimizer with SSIM, and PrescrX.

Finally, considering the industrial case (Figures 5.12 and Table 5.10), it becomes
evident that PrescrX achieves significantly lower execution times compared to the
similarity-based optimizer. Again, the chosen space exploration strategy proves
to be decisive: PrescrX explores only the local region relevant to the prescription,
whereas the optimizer performs exploration over the entire dataset, thereby making
the process far more time-consuming.

70

Metrics

Figure 5.12: Execution time distribution for each prescriptive model in the
industrial case study.

Execution time, industrial
Statistic Optimizer PrescrX
Mean 0.436 0.014
Std Dev 0.148 0.008
Min 0.144 0.000
25% 0.328 0.008
Median 0.448 0.014
75% 0.552 0.018
Max 0.751 0.055

Table 5.10: Summary statistics for execution times in the industrial case: optimizer
and PrescrX.

Thanks to this set of proposed metrics, it is possible to conduct a quantitative
evaluation of prescriptive models, as illustrated in this chapter, as well as to evaluate
single prescriptions by jointly considering the entire metric set. Moreover, this
should be regarded only as a first step toward quantitatively testing the quality of
prescriptions. Future work may explore alternative approaches, either by developing
new general-purpose metrics applicable across contexts, or by introducing ad hoc
metrics specifically tailored to the problem under analysis.

71

Chapter 6

Conclusions and Future
Work

6.1 Summary of contributions
This thesis investigated prescriptive analytics from both a methodological and an
empirical perspective. First, it clarified the position of prescriptive analytics within
the broader analytics spectrum, emphasizing its distinctive goal: recommending
concrete actions rather than only describing or predicting outcomes. Then it
introduced PrescrX, a local, model-agnostic prescriptive tool inspired by XAI
ideas (notably LIME), and formalized its core pipeline: targeted neighborhood
construction, local linear approximation of the decision boundary, and a constrained
quadratic projection to obtain minimal interventions.

Beyond the tool itself, the work proposed an initial set of evaluation metrics for
prescriptions—including Normalized Distance, Gain of Neighbors (GoN), Feature
Preservation, and Robustness—in order to move from qualitative, visual checks to
quantitative and repeatable assessments. Finally, two case studies (MNIST and an
industrial cleaning process) were developed to compare PrescrX with optimizers
built around different objectives, highlighting how alternative objectives yield
qualitatively different prescriptions.

6.2 What the results show

6.2.1 Minimal-change prescriptions remain close to the
data manifold

Across experiments, PrescrX consistently generated prescriptions that stay near
empirical data regions. In the MNIST 1→8 setting, t-SNE and UMAP visualizations

72

Conclusions and Future Work

showed that PrescrX points concentrated within or near the cloud of true samples
from the target class, whereas standard probability-maximizing optimizers produced
a distinct cluster detached from the data manifold and often corresponding to
adversarial-looking digits.

This behavior is coherent with the tool’s objective: PrescrX searches for the
smallest feasible move that flips the class, not for the most confident point in
the target class irrespective of plausibility. The local linearization plus projection
encode this “short move” bias, and the targeted sampling steers the search along
directions supported by the background data.

6.2.2 Optimizers and the role of similarity

Optimizers that simply maximize target-class probability can converge to solutions
that are correct for the classifier but implausible for humans, i.e., adversarial.
Introducing an explicit similarity term into the optimizer (SSIM for images; Maha-
lanobis distance for tabular industrial data) partially mitigated this effect: it both
improved plausibility and made the optimization landscape smoother and more
navigable in the industrial case.

6.2.3 Metric-based evidence

The metrics corroborated the qualitative patterns:

• Normalized Distance: PrescrX achieved the smallest feature-space changes
in the MNIST 1→8 analysis (median ≈ 0.65) compared with the optimizer
variants, aligning with its minimal-change objective.

• Gain of Neighbors (GoN): The optimizer with similarity typically produced
prescriptions in very dense target-class regions (GoN close to 1), while PrescrX
prescriptions showed non-negative but generally smaller GoN, reflecting its
preference to remain near the starting point rather than to migrate to the
densest cluster. The optimizer without similarity often had GoN ≤ 0, matching
its tendency to leave the data manifold.

• Robustness: In the industrial case, the optimizer with similarity delivered
highly robust prescriptions (all at or near 100% under the adopted definition),
whereas PrescrX, which disperses outputs around the background data, had
lower robustness statistics. This difference is consistent with each method’s
objective and search behavior.

73

Conclusions and Future Work

6.2.4 Constraints and practical feasibility
PrescrX natively accommodates domain constraints (locked features, bounds, inte-
ger domains) and can incorporate a cost function constraint. In the industrial case,
using the domain-provided climate impact function, prescriptions visibly relocated
in space to satisfy the cost threshold while still moving towards “clean” regions,
illustrating how feasibility filters shape actionable recommendations.

6.2.5 Execution time trade-offs
A clear trade-off emerged between realism and speed. In MNIST, the baseline
optimizer (no similarity) was roughly two orders of magnitude faster than PrescrX
and than the similarity-based optimizer, because dense exploration or similarity
computations dominate runtime. Although not a formal metric, compute time is
central for deployment: the best choice depends on application latency requirements.

6.3 Guidelines for choosing a method
The case studies suggest the following guidelines for selection and tuning:

• If minimal, interpretable change and staying close to observed data
are priorities (e.g., process set-point tweaks, user-facing recourses), PrescrX is
well-suited. Prefer moderate nclosest and m to control runtime, set trustt to
filter unstable local fits, and use α to regularize the local model when sampling
is sparse.

• If the goal is to maximize success probability and prescriptions can
deviate significantly from the starting point, use an optimizer with an explicit
similarity term; in tabular contexts, a Mahalanobis component helps both
plausibility and convergence.

• Always consider domain constraints early (bounds, discreteness, lockings,
and cost caps). These fundamentally shape the feasible space and, therefore,
the nature of the prescriptions.

6.4 Limitations
Several limitations deserve attention:

1. Local linearity assumption. PrescrX relies on a local linear surrogate.
When class boundaries are highly curved or fragmented around the starting

74

Conclusions and Future Work

point, the approximation may mislead the projection step, requiring additional
sampling rounds and careful regularization.

2. Data sparsity. In small or poorly covered datasets, the target-point selection
may fail or become brittle, as observed in parts of the industrial experiments
where prescriptions could not be produced for certain parameter settings.

3. Compute cost. Dense local exploration and similarity estimates (when used)
are the dominant contributors to runtime, which can be critical in real-time
applications.

4. Objective mismatch. Different prescriptive objectives (minimal change
vs. maximum confidence) are not directly comparable; metric selection must
reflect the intended use (e.g., Normalized Distance for recourse-effort, GoN
for plausibility, Robustness for stability under perturbations).

6.5 Implications

6.5.1 Scientific
The metrics proposed here operationalize aspects of prescription quality and open a
path towards more standardized evaluation. In particular, GoN behaved as an early
warning for adversarial prescriptions in MNIST; Robustness separated clustered,
optimizer-style outputs from locally faithful, PrescrX outputs in the industrial case.

6.5.2 Industrial
For process control and quality assurance (e.g., the cleaning case), minimal, bounded
changes that respect operational constraints and cost caps are often preferable to
large jumps with marginal confidence gains. PrescrX provides such prescriptions
and can be combined with a cost function to encode sustainability or safety policies
(e.g., climate impact thresholds).

6.6 Future work
Three directions appear particularly promising:

1. Causal prescription. Integrate causal structure learning and identification
into PrescrX so that recommended actions act on causes rather than proxies.
This would directly align the tool with the decision-centric spirit of prescriptive
analytics and mitigate spurious recourses.

75

Conclusions and Future Work

2. Adaptive exploration and surrogates. Replace fixed exploration schedules
with adaptive sampling schemes that estimate local curvature and uncertainty;
investigate non-linear but still interpretable surrogates (e.g., locally weighted
splines) while preserving the minimal-change objective.

3. Scalability and real-time deployment. Engineer approximate nearest-
neighbor search, batched QP solves, and hardware acceleration to reduce
latency by one to two orders of magnitude. Coupling PrescrX with streaming
pipelines would enable on-line corrective prescriptions in IoT settings.

6.7 Closing remarks
Prescriptive analytics promises not only to predict but to shape outcomes. This
thesis shows that the choice of objective and the way we explore the neighborhood
of a decision point are decisive: minimal-change, data-manifold-aware methods such
as PrescrX produce prescriptions that are plausible and interpretable, while pure
probability maximization requires explicit similarity control to avoid adversarial or
brittle results. The proposed metrics, together with the two case studies, provide a
first step towards principled, comparable assessments of prescriptive systems and
towards safer, more useful deployments of AI-driven decision support.

76

Bibliography

[1] Katerina Lepenioti, Alexandros Bousdekis, Dimitris Apostolou, and Gregoris
Mentzas. «Prescriptive analytics: Literature review and research challenges».
In: International Journal of Information Management 50 (2020), pp. 57–70.
issn: 0268-4012. doi: https://doi.org/10.1016/j.ijinfomgt.2019.
04.003. url: https://www.sciencedirect.com/science/article/pii/
S0268401218309873 (cit. on pp. 3, 15).

[2] Debashish Roy, Rajeev Srivastava, Mansi Jat, and Mustafa Said Karaca. «A
Complete Overview of Analytics Techniques: Descriptive, Predictive, and
Prescriptive». In: Decision Intelligence Analytics and the Implementation
of Strategic Business Management. Ed. by P. Mary Jeyanthi, Tanupriya
Choudhury, Dieu Hack-Polay, T. P. Singh, and Sheikh Abujar. Cham: Springer
International Publishing, 2022, pp. 15–30. isbn: 978-3-030-82763-2. doi:
10.1007/978-3-030-82763-2_2. url: https://doi.org/10.1007/978-3-
030-82763-2_2 (cit. on p. 3).

[3] Wayne W Eckerson. «Predictive analytics». In: Extending the Value of Your
Data Warehousing Investment. TDWI Best Practices Report 1 (2007), pp. 1–
36 (cit. on p. 3).

[4] Pedersen T.B Frazzetto D. Nielsen T.D. «Prescriptive analytics: a survey
of emerging trends and technologies». In: The VLDB Journal 28 (2019),
pp. 575–595. doi: https://doi.org/10.1007/s00778-019-00539-y (cit.
on pp. 4, 15).

[5] László E. Szabó Gábor Hofer-Szabó Miklós Rédei. «On Reichenbach’s Com-
mon Cause Principle and Reichenbach’s Notion of Common Cause». In: The
British Journal for the Philosophy of Science 50.3 (1999) (cit. on p. 5).

[6] Philipp Hennig, Michael A Osborne, and Mark Girolami. «Probabilistic
numerics and uncertainty in computations». In: Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 471.2179 (2015),
p. 20150142 (cit. on p. 8).

77

https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2019.04.003
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2019.04.003
https://www.sciencedirect.com/science/article/pii/S0268401218309873
https://www.sciencedirect.com/science/article/pii/S0268401218309873
https://doi.org/10.1007/978-3-030-82763-2_2
https://doi.org/10.1007/978-3-030-82763-2_2
https://doi.org/10.1007/978-3-030-82763-2_2
https://doi.org/https://doi.org/10.1007/s00778-019-00539-y

BIBLIOGRAPHY

[7] Ernesto C. Martínez, Mariano D. Cristaldi, and Ricardo J. Grau. «Dynamic
optimization of bioreactors using probabilistic tendency models and Bayesian
active learning». In: Computers & Chemical Engineering 49 (2013), pp. 37–49.
issn: 0098-1354. doi: https://doi.org/10.1016/j.compchemeng.2012.
09.010. url: https://www.sciencedirect.com/science/article/pii/
S0098135412002888 (cit. on p. 8).

[8] Lily Geraldine Koops. «Optimized maintenance decision-making—A simulation-
supported prescriptive analytics approach based on probabilistic cost-benefit
analysis». In: PHM Soc. Eur. Conf. Vol. 5. 2020, p. 14 (cit. on p. 8).

[9] Arash Rasaizadi, Iman Farzin, and Fateme Hafizi. «Machine learning approach
versus probabilistic approach to model the departure time of non-mandatory
trips». In: Physica A: Statistical Mechanics and its Applications 586 (2022),
p. 126492 (cit. on p. 8).

[10] Lele Luan, Nesar Ramachandra, Sandipp Krishnan Ravi, Anindya Bhaduri,
Piyush Pandita, Prasanna Balaprakash, Mihai Anitescu, Changjie Sun, and
Liping Wang. «Scalable Probabilistic Modeling and Machine Learning With
Dimensionality Reduction for Expensive High-Dimensional Problems». In:
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. Vol. 87295. American Society of
Mechanical Engineers. 2023, V002T02A011 (cit. on p. 8).

[11] Fiorentia-Zoi Anglou, Stavros Ponis, and Athanasios Spanos. «A machine
learning approach to enable bulk orders of critical spare-parts in the shipping
industry». In: Journal of Industrial Engineering and Management 14.3 (2021),
pp. 604–621 (cit. on p. 9).

[12] Dana Pessach, Gonen Singer, Dan Avrahami, Hila Chalutz Ben-Gal, Erez
Shmueli, and Irad Ben-Gal. «Employees recruitment: A prescriptive analytics
approach via machine learning and mathematical programming». In: Decision
support systems 134 (2020), p. 113290 (cit. on p. 9).

[13] Sharan Srinivas and A Ravi Ravindran. «Optimizing outpatient appointment
system using machine learning algorithms and scheduling rules: A prescrip-
tive analytics framework». In: Expert Systems with Applications 102 (2018),
pp. 245–261 (cit. on p. 9).

[14] Edwin KP Chong and Stanislaw H Żak. An introduction to optimization.
Vol. 76. John Wiley & Sons, 2013 (cit. on p. 9).

[15] Martin Moesmann and Torben Bach Pedersen. «Data-Driven Prescriptive Ana-
lytics Applications: A Comprehensive Survey». In: arXiv preprint arXiv:2412.00034
(2024) (cit. on p. 10).

78

https://doi.org/https://doi.org/10.1016/j.compchemeng.2012.09.010
https://doi.org/https://doi.org/10.1016/j.compchemeng.2012.09.010
https://www.sciencedirect.com/science/article/pii/S0098135412002888
https://www.sciencedirect.com/science/article/pii/S0098135412002888

BIBLIOGRAPHY

[16] Johannes Kunze Von Bischhoffshausen, Markus Paatsch, Melanie Reuter,
Gerhard Satzger, and Hansjoerg Fromm. «An Information System for Sales
Team Assignments Utilizing Predictive and Prescriptive Analytics». In: 2015
IEEE 17th Conference on Business Informatics. Vol. 1. 2015, pp. 68–76. doi:
10.1109/CBI.2015.38 (cit. on p. 10).

[17] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,
Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. «Design and
Implementation of the LogicBlox System». In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’15.
Melbourne, Victoria, Australia: Association for Computing Machinery, 2015,
pp. 1371–1382. isbn: 9781450327589. doi: 10.1145/2723372.2742796. url:
https://doi.org/10.1145/2723372.2742796 (cit. on p. 10).

[18] Ahmed Ghoniem, Agha Iqbal Ali, Mohammed Al-Salem, and Wael Khallouli
and. «Prescriptive analytics for FIFA World Cup lodging capacity planning».
In: Journal of the Operational Research Society 68.10 (2017), pp. 1183–1194.
doi: 10.1057/s41274-016-0143-x. eprint: https://doi.org/10.1057/
s41274-016-0143-x. url: https://doi.org/10.1057/s41274-016-0143-
x (cit. on p. 11).

[19] Aanchal Goyal et al. «Asset health management using predictive and pre-
scriptive analytics for the electric power grid». In: IBM Journal of Research
and Development 60.1 (2016), pp. 4–1 (cit. on p. 11).

[20] Christopher Wissuchek and Patrick Zschech. «Prescriptive analytics systems
revised: a systematic literature review from an information systems perspec-
tive». In: Information Systems and e-Business Management (2024), pp. 1–75
(cit. on p. 11).

[21] Lian Duan and Ye Xiong. «Big data analytics and business analytics». In:
Journal of Management Analytics 2.1 (2015), pp. 1–21 (cit. on p. 12).

[22] Zhi-Hui Zhan, Lin Shi, Kay Chen Tan, and Jun Zhang. «A survey on evo-
lutionary computation for complex continuous optimization». In: Artificial
Intelligence Review 55.1 (2022), pp. 59–110 (cit. on p. 12).

[23] Crina Grosan and Ajith Abraham. «Hybrid evolutionary algorithms: method-
ologies, architectures, and reviews». In: Hybrid evolutionary algorithms. Springer,
2007, pp. 1–17 (cit. on p. 12).

[24] Olivier Francon, Santiago Gonzalez, Babak Hodjat, Elliot Meyerson, Risto Mi-
ikkulainen, Xin Qiu, and Hormoz Shahrzad. «Effective reinforcement learning
through evolutionary surrogate-assisted prescription». In: Proceedings of the
2020 Genetic and evolutionary computation conference. 2020, pp. 814–822
(cit. on p. 13).

79

https://doi.org/10.1109/CBI.2015.38
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1057/s41274-016-0143-x
https://doi.org/10.1057/s41274-016-0143-x
https://doi.org/10.1057/s41274-016-0143-x
https://doi.org/10.1057/s41274-016-0143-x
https://doi.org/10.1057/s41274-016-0143-x

BIBLIOGRAPHY

[25] Risto Miikkulainen, Olivier Francon, Elliot Meyerson, Xin Qiu, Darren Sar-
gent, Elisa Canzani, and Babak Hodjat. «From prediction to prescription:
evolutionary optimization of nonpharmaceutical interventions in the COVID-
19 pandemic». In: IEEE Transactions on Evolutionary Computation 25.2
(2021), pp. 386–401 (cit. on p. 13).

[26] Sorawee Yanta, Sotarat Thammaboosadee, Pornchai Chanyagorn, and Roj-
jalak Chuckpaiwong. «Course performance prediction and evolutionary opti-
mization for undergraduate engineering program towards admission strategic
planning». In: ICIC Express Letters 15.6 (2021), pp. 567–573 (cit. on p. 13).

[27] Hasan Davulcu, Michael Kifer, CR Ramakrishnan, and IV Ramakrishnan.
«Logic based modeling and analysis of workflows». In: Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems. 1998, pp. 25–33 (cit. on p. 13).

[28] Joao Marques-Silva. «Logic-based explainability: past, present and future».
In: International Symposium on Leveraging Applications of Formal Methods.
Springer. 2024, pp. 181–204 (cit. on p. 13).

[29] Cindy G. de Jesus and Mark Kristian C. Ledda. «Intervention Support
Program for Students at Risk of Dropping Out Using Fuzzy Logic-Based
Prescriptive Analytics». In: 2021 IEEE 17th International Colloquium on
Signal Processing & Its Applications (CSPA). 2021, pp. 144–149. doi: 10.
1109/CSPA52141.2021.9377304 (cit. on p. 13).

[30] Henri Laude. «France’s governmental big data analytics: From predictive
to prescriptive using R». In: Federal data science. Elsevier, 2018, pp. 81–94
(cit. on p. 14).

[31] Manjula Ramannavar and Nandini S Sidnal. «A proposed contextual model
for big data analysis using advanced analytics». In: Big Data Analytics:
Proceedings of CSI 2015. Springer. 2018, pp. 329–339 (cit. on p. 14).

[32] Fan Du, Catherine Plaisant, Neil Spring, and Ben Shneiderman. «EventAction:
Visual analytics for temporal event sequence recommendation». In: 2016 IEEE
Conference on Visual Analytics Science and Technology (VAST). 2016, pp. 61–
70. doi: 10.1109/VAST.2016.7883512 (cit. on p. 14).

[33] Han Xiao, Kashif Rasul, and Roland Vollgraf. «Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms». In: arXiv preprint
arXiv:1708.07747 (2017) (cit. on p. 25).

[34] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. «Regularized
linear regression: A precise analysis of the estimation error». In: Conference
on Learning Theory. PMLR. 2015, pp. 1683–1709 (cit. on p. 31).

80

https://doi.org/10.1109/CSPA52141.2021.9377304
https://doi.org/10.1109/CSPA52141.2021.9377304
https://doi.org/10.1109/VAST.2016.7883512

BIBLIOGRAPHY

[35] Farzana Anowar, Samira Sadaoui, and Bassant Selim. «Conceptual and
empirical comparison of dimensionality reduction algorithms (pca, kpca, lda,
mds, svd, lle, isomap, le, ica, t-sne)». In: Computer Science Review 40 (2021),
p. 100378 (cit. on p. 34).

[36] Salifu Nanga, Ahmed Tijani Bawah, Benjamin Ansah Acquaye, Mac-Issaka
Billa, Francis Delali Baeta, Nii Afotey Odai, Samuel Kwaku Obeng, and
Ampem Darko Nsiah. «Review of dimension reduction methods». In: Journal
of Data Analysis and Information Processing 9.3 (2021), pp. 189–231 (cit. on
p. 37).

[37] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. «Explaining and
harnessing adversarial examples». In: arXiv preprint arXiv:1412.6572 (2014)
(cit. on p. 40).

[38] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. «Image
quality assessment: from error visibility to structural similarity». In: IEEE
transactions on image processing 13.4 (2004), pp. 600–612 (cit. on p. 42).

[39] Jeffrey Larson, Matt Menickelly, and Stefan M Wild. «Derivative-free op-
timization methods». In: Acta Numerica 28 (2019), pp. 287–404 (cit. on
p. 44).

[40] Michael JD Powell. «A view of algorithms for optimization without deriva-
tives». In: Mathematics Today-Bulletin of the Institute of Mathematics and
its Applications 43.5 (2007), pp. 170–174 (cit. on p. 44).

[41] Maliki Moustapha and Bruno Sudret. «Learning non-stationary and dis-
continuous functions using clustering, classification and Gaussian process
modelling». In: Computers & Structures 281 (2023), p. 107035 (cit. on p. 45).

[42] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart. «The
mahalanobis distance». In: Chemometrics and intelligent laboratory systems
50.1 (2000), pp. 1–18 (cit. on p. 45).

81

	List of Tables
	List of Figures
	Introduction
	What is prescriptive analytics
	Definition of descriptive analytics
	Definition of predictive analytics
	Definition of prescriptive analytics

	Reichenbach’s common cause principle
	Structure of the thesis

	Literature review
	Methods proposed in the literature
	Challenges

	What is PrescrX and How it works
	How PrescrX works
	Selection of target points
	Generating dense sampling
	Fitting a local linear model
	Quadratic programming formulation

	Current constraints and their expansion
	Cost function constraint

	Exploring parameters
	Exploration and time complexity with n closest and m
	Quality of prescriptions with trust t and alpha
	Influence of cost function constraint in the prescription

	Optimizers vs PrescrX
	Optimizer for the MNIST case
	Mathematical formulation
	Comparison with PrescrX
	Improved optimizer

	Optimizer in the industrial case
	Mathematical formulation and limitations
	Comparison with PrescrX

	Metrics
	Mathematical formulation of metrics
	Normalized distance by mean
	Gain of Neighbors
	Features preservation score
	Robustness

	Analysis with metrics
	Analysis through normalized distance
	Analysis through GoN
	Analysis through robustness

	Conclusions and Future Work
	Summary of contributions
	What the results show
	Minimal-change prescriptions remain close to the data manifold
	Optimizers and the role of similarity
	Metric-based evidence
	Constraints and practical feasibility
	Execution time trade-offs

	Guidelines for choosing a method
	Limitations
	Implications
	Scientific
	Industrial

	Future work
	Closing remarks

	Bibliography

