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Abstract

The continual emergence and extinction of pathogen lineages, driven by factors
including immune escape, environmental changes, or differences in transmissibility,
poses major challenges for public health. Detecting lineages with an increased
fitness is critical for understanding epidemiological shifts and guiding targeted inter-
ventions. Existing approaches for detecting fitness changes among lineages, such as
PhyloWave, extract summary statistics from trees and use them to identify lineages
with different evolutionary dynamics. However, PhyloWave depends on substantial
domain knowledge and thresholds that require manual fine-tuning—often relying
on expert judgment or arbitrary choices—which limits its scalability and robustness
across different pathogens.

To overcome the limitations of existing approaches, we integrate contrastive
representation learning with phylogenetic modeling to implement a generalization
of the multi-type birth-death (MTBD) model in which mutation events alter
lineage-specific transmission rates. These simulations generate training and testing
data that capture a wide range of fitness scenarios. Building on this foundation,
we design a supervised learning strategy for community detection in phylogenies,
where recursive neural networks learn clade representations. By optimizing a
contrastive loss, our model is encouraged to learn separate representations of
lineages undergoing distinct fitness dynamics. Claderepresentations are input
to a classification head, where similarity between each tree node and its parent
acts as a continuous metric of relatedness. Higher similarity indicates a greater
likelihood of shared evolutionary properties, enabling identification of variants
with fitness changes along the tree. This approach eliminates dependence on ad
hoc parameterization and establishes a principled and scalable methodological
framework for monitoring the evolutionary fitness of circulating lineages, with
potential applications across viral and bacterial pathogens.
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Chapter 1

Introduction

1.1 Context: Genomic epidemiology
The large-scale sequencing of pathogen genomes has changed how we study infectious
diseases. By combining genomic and epidemiological data, an approach known
as genomic epidemiology, researchers can reconstruct how pathogens spread,
identify new variants, and monitor epidemics in real time [1, 2].

Modern sequencing programs now produce very large datasets. Each genome
captures a snapshot of the pathogen’s evolutionary history, and by analyzing many
genomes together it becomes possible to reconstruct how transmission and viral
diversity change over time [3]. This genomic revolution has greatly improved
public health responses by enabling the early detection of variants with increased
transmissibility or immune escape [4]. However, the size and complexity of these
data also create new challenges, motivating the need for scalable tools that can
automatically detect meaningful evolutionary patterns.

1.2 Technical domain: Phylogenetic and phylo-
dynamic modeling

To study evolutionary relationships among pathogen genomes, data are usually
represented as phylogenies or phylogenetic trees: branching trees in which
leaves represent sampled genomes and internal nodes represent transmission events
[5]. A phylogenetic tree is the reconstruction of the pathogen’s history upon
sampling. Within a phylogeny:

• a lineage is a chain of ancestor–descendant nodes that follows the evolutionary
history of a group of samples;
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• a clade is a subtree formed by an ancestor and all of its descendants, repre-
senting a monophyletic group 1.

Phylogenetics focuses on reconstructing these trees from genetic sequences.
Phylodynamics goes further by interpreting phylogenies using population and
epidemiological models, allowing researchers to infer changes in transmission,
growth rates, and reproduction numbers [6]. Although often associated with
viruses, phylodynamics also applies to macroevolution, immune-cell lineages, and
cancer evolution [4]. In this thesis, however, the focus is specifically on viral
phylodynamics.

A major class of phylodynamic models is based on birth–death models, where
lineages “birth” by transmitting and “die” by becoming noninfectious. Birth–death
models provide a flexible mathematical foundation for studying epidemic dynamics
and have been widely used across evolutionary biology [7].

1.3 The challenge: Detecting evolutionary com-
munities

Real phylogenies often contain substructures, clades or lineages, that correspond to
different evolutionary or epidemiological behaviors. Detecting these substructures
is important for identifying new variants, understanding shifts in fitness, and
analyzing patterns of transmission.

This task resembles community detection in network science, where the goal
is to find groups of nodes that are more similar to each other than to the rest of the
graph. However, detecting meaningful communities in phylogenetic trees remains a
difficult task. Most current approaches still rely on manual definitions of clades
or lineage labels created by expert committees (such as Pango for SARS-CoV-2),
which often depend on heuristic rules and do not scale well to large datasets [8],
with one of the most recent attempts being Phylowave [9], which relied on statistical
methods for clade detection.

Importantly, although deep learning has been used in phylogenetics for parameter
inference and simulation-based modeling [10, 11], recursive neural networks have
not yet been explored as tools for clade or community detection in phylogenies. This
leaves an open opportunity for data-driven methods that can automatically learn
evolutionary structure, rather than relying on hand-crafted and pathogen-specific
rules.

1a monophyletic group is a set of organisms that includes one common ancestor and all of its
descendants.
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1.4 Existing solutions: Deep learning as a surro-
gate model

Deep learning has increasingly been used as a surrogate for mathematically complex
or computationally expensive evolutionary models. For example, neural networks
have been applied to infer diversification and birth–death parameters directly from
phylogenies [11]. Other recent work shows that it is possible to learn pathogen
fitness from phylogenies using neural networks, producing estimates that match or
exceed classical model-based approaches [9]. These studies demonstrate that deep
learning can extract meaningful evolutionary information from tree topology and
branch lengths without requiring explicit likelihood formulas.

At the same time, classical phylogenetics provides important tools for under-
standing the limits of tree-based inference. Foundational work on phylogenetic
reconstruction introduced many of the methods still used today [5], and later
developments in molecular-clock modeling showed how to estimate evolutionary
timescales from genetic data [12]. Birth–death skyline approaches provide fast and
nonparametric estimates of population size dynamics [13]. These results highlight
that while strong mathematical tools exist, they can become difficult to apply or
scale when phylogenies grow large.

Together, these findings show both (i) the promise of machine learning for
scalable inference and (ii) the need for new methods specifically aimed at detecting
clades or evolutionary communities.

1.5 Proposed work: A deep-learning framework
for clade detection

This thesis introduces Phyloscope, a new method for detecting evolutionary com-
munities in phylogenetic trees. The framework is based on three main components:

• recursive neural encodings inspired by early work on processing structured
data such as trees and graphs [14];

• a contrastive learning objective that leads samples from the same clade to
have similar embeddings [15];

• a simulation pipeline generating mutated phylogenies under birth–death
models, which provide trees with known fitness shifts for supervised training
[7].

Phyloscope learns an embedding for each node in the tree, and clades can be
identified by applying a similarity threshold in this latent space. This design aims

3
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to provide a scalable and flexible alternative to heuristic lineage definitions, with
the ability to generalize across pathogens and evolutionary scenarios.

1.6 Thesis structure
This thesis is organized as follows:

• Chapter 2 — Background: introduces birth–death models, recursive neural
networks, and existing approaches to clade detection.

• Chapter 3 — Materials & Methods: describes the simulation protocol,
model architecture, training pipeline, and empirical datasets.

• Chapter 4 — Results: presents validation on simulated phylogenies and
application to real pathogen data.

• Chapter 5 — Discussion & Conclusions: summarizes the contributions,
discusses limitations, and outlines future research directions.

4



Chapter 2

Background

2.1 Birth-Death models
Birth-Death Models are continuous-time Markov chains used to study model
population sizes through time [16].

In birth-death models two possible events can occur:

• birth: the number of lineages increases by one

• death: the number of lineages decreases by one

These two events are described by two different rates:

• λ: birth rate

• ψ: death rate1

Given that during birth, the number of individuals is increased only by one, an
important property of these models is that there are no hard polytomies.2

These two events follow a Poisson Process, this means that the expected waiting
times for the next event have an exponential distribution with parameter (λ+ ψ).
If there are N(t) lineages alive at time t, then the waiting time for the next event
is an exponential distribution with parameter N(t)(λ+ ψ).

Probabilities of birth and death can be derived in a short time interval ∆t,
where at most one event can occur, as:

1sometimes written as γ
2A polytomy is a section of the phylogenetic tree where a single lineage splits into three or

more descendant lineages simultaneously.
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P (birth) ≈ N(t)λ∆t (2.1)
P (death) ≈ N(t)ψ∆t (2.2)

The expected value of N(t) after a short time interval ∆t is:

N(t+ ∆t) = N(t) +N(t)λ∆t−N(t)ψ∆t (2.3)

Converting this expression into a differential equation by subtracting N(t) from
both sides, then dividing by ∆t and taking the limit as ∆t becomes very small:

dN

dt
= N(λ− ψ) (2.4)

Solving the differential equation, integrating both sides and solving them, defin-
ing the constant N(0) = n0, which means that at time 0 n0 lineages are present:

N(t) = n0e
(λ−ψ)t (2.5)

Fig.2.1 shows three different behaviors with variation in the quantity λ − ψ
when n0 = 1000

Denoting as pn(t) = P [N(t) = n] for n ≥ 0 the full probability of the model:

p0(t+ ∆t) = p1(t)ψ∆t+ p0(t) (2.6)
p1(t+ ∆t) = p1(t)(1− (λ+ ψ)∆t) + p2(t) · 2ψ∆t (2.7)

This is the probability of having zero lineages at time t+ ∆t. It is given by the
probability that there is one lineage at time t and a death event occurs during ∆t,
plus the probability that there are already zero lineages at time t and no event
occurs.3

The probability of having one lineage alive at time t+ ∆t corresponds to the
probability that the population still consists of a single lineage at time t, after
accounting for the possible birth and death events during the interval ∆t, together
with the probability that, starting from two lineages at time t, exactly one death
event occurs.4

By induction, also accounting for birth events:

3With zero lineages, neither birth nor death events can occur.
4A birth event cannot occur when starting from a single lineage and still result in one lineage

at time t+ ∆t.
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Figure 2.1: Expected number of species under a birth-death with the number
of lineages n = 1000: top line λ− ψ > 0, middle line λ− ψ = 0, bottom line
λ− ψ < 0. Figure taken from [16]

pn(t+∆t) = pn−1(t)(n−1)λ∆t+pn+1(t)(n+1)ψ∆t+pn(t)(1−n(λ+ψ)∆t) (2.8)

Subtracting pn(t) from both sides, dividing both sides for ∆t and taking the
limit for ∆t that becomes smaller, 2.8 can be converted into a set of differential
equations:

dpn(t)
dt

= pn−1(t)(n− 1)λ+ pn+1(t)(n+ 1)ψ − pn(t)n(λ+ ψ) (2.9)

Equation 2.9 is the continuous-time master equation governing the full Birth–
Death process. It characterizes the temporal evolution of the probability distribution
{pn(t)}n≥0 over the number of lineages. Although solving this infinite system
explicitly is rarely feasible, the equation provides the formal probabilistic foundation
for birth–death dynamics and serves as the starting point for deriving analytical
results, approximations, and likelihood functions used in phylodynamic inference.

This concludes the derivation of the Birth–Death process in discrete and contin-
uous form.
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2.1.1 Phylogenetic Trees

Keeping track of the parent-offspring relationships among lineages, the phylogenetic
tree can be obtained. This represents the pathogen history, where each branching
in the tree represents a transmission event (e.g. a birth).

In Fig. 2.2, the three configurations highlight how different observation and
sampling schemes shape the appearance of the underlying evolutionary process. The
first tree reflects the complete history, retaining every branching event. The second
shows how removing extinct lineages produces a more compact representation of
the survivors. The third illustrates the additional incompleteness introduced by
partial sampling, where only a subset of existing lineages is captured, altering both
the depth and overall structure of the resulting phylogeny. The last representation
is the partial reconstruction of the pathogen through sampling. Since the complete
transmission history cannot be observed, only the reconstructed tree is available.

Figure 2.2: Examples of three different phylogenetic trees. A: the true phylo-
genetic tree, the tree obtained observing each lineage evolving over time. B: the
extant-species tree, the same tree considering only the lineages still alive today.
C: a partially sampled phylogenetic tree. A subset of lineages is sampled. Figure
taken from [16]
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Tree characteristics

The following are three relevant characteristics of phylogenetic trees:

• Tree topology: independent of the branch lengths of the phylogenetic tree.

• Tree shape: ignores both branch lengths and tip labels.

• Tree balance: identifies the differences in the number of descendants at
different points of the tree.

Figure 2.3: Trees sharing the same tree topology. The clades and branching
order remain unchanged, even though the drawings differ in orientation and branch
lengths. Figure taken from [16]

In Fig.2.3 the three phylogenetic trees (A–C) display the same topology, as
they represent identical evolutionary relationships among the taxa. Differences
in the graphical layout do not affect the tree structure. In all trees, the clade
formed by Gorilla, Human, and Chimp remains consistent, as does the clade
including Green sea turtle and Anole, with the Leopard frog branching off earlier
as the outgroup. The only variation that may occur between equivalent topologies
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Figure 2.4: Examples of phylogenetic trees that share the same overall tree
shape (A and B) and one with a different shape (C). Trees A and B display an
identical branching structure once tip labels are ignored: both exhibit an unbalanced
configuration in which most lineages belong to one major clade. Tree C instead
shows a more balanced division of lineages, illustrating how tree shape captures
the distribution of descendants across major splits independently of the specific
taxa involved. Figure taken from [16]

concerns the branch lengths, which indicate the amount of evolutionary change or
time separating the nodes.

In Fig.2.4, considering the deepest split in the tree, A and B present an unbal-
anced structure (5, 1), while C presents a balanced structure (3, 3).

Starting from a single node n in the phylogenetic tree, there are two clades
descending from this node, a and b. The total number of species descending from
that node is Ntotal = Na +Nb with Na, Nb /= 0.5 All possible divisions between Na

and Nb are equally probable (e.g, (9,1), (8,2) etc.)6, so that each can occur with
probability 1/9. Generalizing, we have:

5N here refers to the number of species, not the number of lineages
6if the clades are unlabeled then (6,4) and (4,6) coincide.
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P (Na | Ntotal) = 1
Ntotal − 1 (2.10)

Tree balance statistics provide a way to check how the species in the tree are
distributed. The simplest and most used index is Colless’ index [17], denoted IC :

IC =
q |NL −NR|

(N−1)(N−2)
2

(2.11)

where NL and NR are the number of species on the left and right side of the
tree, respectively. If the tree is pectinate (heavily unbalanced), this index will be
equal to 1. On the contrary, if the tree is perfectly balanced, Ic will be equal to
zero.

Another important index that quantifies how balanced a tree is, is the Sackin
index [17], denoted IS. This index measures the overall depth of the tips (leaves)
in a phylogenetic tree. Formally, it is defined as the sum of the depths of all
terminal nodes, where the depth of a tip corresponds to the number of internal
nodes between that tip and the root of the tree:

IS =
NØ
i=1

di (2.12)

where di is the depth of tip i, and N is the total number of tips (species) in
the tree. Intuitively, IS increases as the tree becomes more unbalanced, since in
unbalanced trees many leaves are located at greater depths. In contrast, perfectly
balanced trees minimize this sum, having all tips at equal distances from the root.

To allow comparisons among trees with different numbers of tips, a normalized
IS can be computed by dividing it by its maximum or expected value under a null
model.

Thus, in general:

• a high IS indicates a strongly unbalanced (pectinate) tree;

• a low IS index indicates a more balanced tree, where most lineages diversify
at similar rates.

A set of contrasting tree structures is shown in Fig. 2.5 to illustrate how
different branching patterns reflect varying degrees of balance in a phylogeny. The
caterpillar tree represents an extreme case of asymmetry, in which diversification
proceeds almost linearly, producing long chains of single splits. In contrast, the
fully symmetric bifurcating tree distributes lineages evenly at each branching event,
resulting in the most balanced configuration. The star tree exemplifies the opposite
extreme: all lineages originate from a single ancestral split, collapsing much of
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Figure 2.5: Example of four different tree structures. a: caterpillar tree, the
most unbalanced tree, with IS = 35, IS, norm = 1 IC = 21, IC , norm = 1. b: fully
symmetric bifurcating tree, with IS = 24, IS, norm = 0.59 IC = IC , norm = 0 c:
star tree, with IS = 8, IS, norm = 0 d: clone tree of the lung tumor CRUK0065 in
the TRACERx cohort. Nodes represented by empty circles correspond to extinct
clones, and the diameters of other nodes are proportional to the corresponding
clone population sizes. Figure taken from [17]

the hierarchical structure of the tree. Finally, the empirical clone tree highlights
how real biological systems can display complex combinations of balanced and
unbalanced regions, as well as extinct lineages and uneven clone sizes. Together,
these examples show how tree shape captures important aspects of diversification
dynamics and the historical processes generating observed phylogenies.

Lineage-through-time Plots

Lineage-through-time (LTT) plots describe how the number of lineages changes
over time. An example of LTT plot is shown in Figure 2.6. Time is represented
on the x-axis and the reconstructed number of lineages on the y-axis. Since given
that the population size typically increases exponentially through branching, it is
common practice to log-transform the y-axis to better visualize growth patterns.

Figure 2.6 illustrates the direct correspondence between a phylogenetic tree
(top) and its lineage-through-time representation (bottom). Each red dashed line
indicates the time at which an internal node occurs in the tree, that is, a birth
event or transmission event in the underlying birth-death process. At each of these
points, the LTT curve displays an upward step, reflecting an increase in the number
of extant lineages.

Between two successive branching events, the LTT curve remains flat, indicating
that no new lineages have been generated in that interval. The overall slope of the
curve therefore provides an intuitive summary of the diversification dynamics: a
steeper slope corresponds to a period of rapid branching (high transmission rate),
while a shallower slope indicates slower diversification.

Because the LTT plot is constructed directly from the internal nodes of the tree,

12



Background

Figure 2.6: Example of LTT plot: red lines correspond to transmission events
and are linked from the phylogenetic tree to the LTT plot. Figure taken from [16]

it acts as a compact visualization of the tempo of the evolutionary or epidemiological
process.

2.1.2 Multi-type birth-death models

The simple Birth-Death (BD) model is the simplest example of the Multi-Type
Birth-Death Model (MTBD) family [18]. The MTBD is a birth-death process in
which the individuals have a type label or state label (m states) which categorizes
their properties. As we explain in detail below, these types may correspond to the
individuals having different properties, for example, a higher or lower birth/death
rate, or a specific stage of infection. This multi-state approach allows the model to
capture heterogeneity and structural complexity in a population that the simple
BD model cannot.
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MTBD parameters An MTBD model with m states has m(m− 1) transition
rate parameters, m2 transmission rate parameters, m removal rates7 and m sampling
probabilities upon removal parameters.

• µij: the transition rate parameter indicates the rate with which from state i
we go to state j, where i /= j.

• λij: the transmission rate parameters indicates the rate with which i go from
from state i (donor) to state j (recipient)8.

• ψi: the removal rate of state i.

• pi: probability to sample the pathogen of an individual in state i upon
removal9.

An MTBD has the following epidemiological parameters:

• Reproduction number of state i:

Ri =
q

1≤j≤m λij
ψi

(2.13)

• Exit time10 from state i:

di = 1q
1≤j≤m
j /=i

µij + ψi
(2.14)

Example models Fig.2.7 shows the most famous types of birth-death models
with their respective formulas.11

The last variant, the birth-death model with Exposed-Infectious and Super-
Spreading individuals (BDEISS) model, not shown in the Figure, is only occasionally
used in practice, since it is by far the most complex to handle. Its structure involves
several interacting states and parameters, which significantly complicates both the
mathematical analysis and the practical implementation of the model.

7Previously the transmission rate was called birth rate and the death rate was called extinction
rate, respectively: the names are equivalent

8There is a transmission state even when i = j
9Sampling probability will sometimes be called si.

10The reader is advised to distinguish between parameters ψ and µ, ψ is the rate at which the
state is removed by the model, this means it ceases to exist in the model. µ is the transition rate
from one state to another, still being active in the whole model.

11In the figure β represents the birth rate and γ the death rate
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Figure 2.7: a birth-death model (BD), b birth-death model with Exposed-
Infectious individuals (BDEI), c birth-death model with SuperSpreading (BDSS)
[10]

Table 2.1: Overview of Birth-Death Models (BD, BDEI, BDSS)

Feature BD BDEI BDSS
States 1 2 2

I E, I I, S
Total Parameters 3 4 5

Rates
λ = λI

ψ = ψI

p = pI

µ = µEI

λ = λIE

ψ = ψI

p = pI

λII = λnn

λIS = λns

λSI = λsn

λSS = λss

ψI = ψS

pI = pS

Epidemiological Parameters
R = λ

ψ

dI = 1
ψ

dE = 1
µ

XS = λss
λns

= λsn
λnn

fS = λss
λsn + λss

Table 2.1 summarizes the parameterization and key epidemiological outputs for
three primary single-type and multi-type Birth-Death (BD) models. Note that
rates (λ, ψ, µ) are instantaneous rates, while p is a probability.
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The BDSS (Birth-Death SuperSpreading) model is designed to capture hetero-
geneity in transmission efficiency by distinguishing between Normal Spreaders (I)
and Superspreaders (S).

• Transition Rates (λXY ): Since there are two types, we need four transmission
rates: λXY is the rate at which an individual of type X gives birth to an
individual of type Y.

– λII (λnn) and λSS (λss) represent transmission within the same type.
– λIS (λns) and λSI (λsn) represent transmission across types.

• Removal and Sampling Rates: The parameters ψ (removal rate) and p
(sampling probability) are constrained to be equal across both types (ψI = ψS
and pI = pS). This makes the sampling independent of the individual’s
spreading type.

• Key Epidemiological Parameters:

– XS (Super-spreading transmission ratio) quantifies the relative infectious-
ness of the Superspreader type compared to the Normal Spreader type.

– fS (Super-spreading fraction) measures the probability of a transmis-
sion event leading to a Superspreader state, given the current infection
structure.

2.1.3 Community Detection problem
In the context of evolutionary genomics, the community detection problem can be
reformulated as the task of identifying groups of pathogen lineages that share similar
evolutionary trajectories within a phylogenetic tree. Traditionally, community
detection refers to the process of finding densely connected subgraphs within a
larger network, where nodes are more strongly associated with others in the same
community than with nodes outside it [19, 20].

In a phylogenetic context, clades correspond to monophyletic groups: subsets of
the tree that include an ancestral lineage and all of its descendants. As illustrated
in Fig. 2.8, each colored region highlights one such clade, showing how a single
branching event gives rise to a group of lineages sharing a common origin. Because
members of the same clade emerge from the same ancestral node, they often exhibit
similar diversification patterns, mutation profiles, or epidemiological behaviors. For
this reason, clades naturally represent “communities” within the tree, providing
biologically meaningful groupings that arise directly from the hierarchical structure
of the evolutionary process.

When applied to phylogenetic data, this notion translates naturally to the
identification of clades, subtrees of closely related genomes that may exhibit
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Figure 2.8: The three colored groups (green, red, and blue) represent three
monophyletic clades. Each clade corresponds to a subtree defined by a single
ancestral node and all of its descendants, highlighting distinct evolutionary lineages
within the phylogeny. Image adapted from the Digital Atlas of Ancient Life (CC-BY
4.0).

coherent patterns of diversification, mutation accumulation, or epidemiological
behavior.

Each phylogenetic tree represents a historical record of pathogen evolution, where
nodes correspond to sampled genomes and edges represent ancestral relationships
derived from genetic divergence [21, 8]. Communities within such trees emerge
as topologically and dynamically distinct regions, corresponding to evolutionary
subpopulations that may differ in fitness or transmission potential. Detecting these
substructures is crucial for understanding how new variants arise, expand, and
potentially outcompete other circulating lineages [2].

However, unlike standard networks, phylogenetic trees have a strict hierarchical
and acyclic structure that constrains the topology of possible connections. This
means that community detection in a phylogenetic context cannot rely on traditional
modularity-based or stochastic block model approaches [19]. Instead, it requires
methods that can capture both the tree topology and the temporal or mutational
dynamics encoded within it. Conventional approaches such as clade-based heuristics
or threshold clustering often rely on manually defined criteria, (e.g., fixed genetic
distance cutoffs or clade-size thresholds), which are sensitive to dataset-specific
biases and lack generalization across pathogens [3].

Recent advances in data-driven modeling offer a new perspective on this problem.
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By framing the phylogenetic tree as a structured graph, graph-based neural archi-
tectures—including recursive networks and message-passing neural networks—can
learn to embed nodes (genomes or lineages) into a latent representation space [14].
In this space, communities correspond to clusters of nodes with similar evolution-
ary signals, such as shared fitness dynamics or mutation profiles [9]. Contrastive
learning provides a particularly effective training paradigm for this purpose: it
encourages the model to bring together embeddings of nodes that belong to the
same evolutionary regime while pushing apart those that follow different dynamics
[15].

Through this lens, community detection becomes a representation-learning
problem rather than a purely structural one. The goal is not only to partition the
phylogeny, but to learn a latent space where evolutionary similarity is measured
continuously. This allows the model to generalize across diverse phylogenetic
configurations and capture subtle shifts in fitness that may not be visible through
manual analysis or static clustering thresholds [10, 11].

Ultimately, community detection in phylogenetic trees bridges the gap between
computational graph theory and evolutionary biology. It provides a scalable
framework for detecting emerging variants, interpreting evolutionary pressures,
and quantifying lineage-level differences in transmissibility or adaptation [2]. By
replacing heuristic classification with learned representations, this paradigm paves
the way toward a fully data-driven, automated form of variant discovery, a central
goal of modern genomic surveillance [8].

2.2 Neural Networks for Tree Data
This work focuses exclusively on phylogenetic trees with temporal branch lengths.
These time-scaled (or dated) trees are the standard objects of inference in phylody-
namics, as their branch lengths directly represent evolutionary time and encode
the tempo of the epidemic process [21]. A dated tree T therefore contains both
the topology (the ancestor–descendant relationships) and the temporal structure
of the outbreak, providing essential information for reconstructing transmission
dynamics.

The main objective of phylodynamic inference is to infer the epidemiological
parameters θ that generated the observed phylogeny. These include, for instance,
the basic reproduction number R0, the infectious period 1/ψ, the latency period
1/ϵ, or superspreading-related quantities such as fSS or XSS. The problem can be
framed as a maximum-likelihood estimation (MLE) task:

θ̂MLE = arg max
θ

P (T | θ), (2.15)

where P (T | θ) is the probability of observing the dated tree T under a given
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birth–death model.
For simple models such as the basic Birth–Death (BD) process, closed-form like-

lihood expressions allow efficient inference. However, more expressive models, such
as the Birth–Death with Exposed and Infectious stages (BDEI) or the Birth–Death
with Superspreading (BDSS), require solving systems of differential equations,
making likelihood evaluation computationally demanding [10]. State-of-the-art
Bayesian tools such as BEAST2 or maximum-likelihood approaches such as TreePar
depend on numerical approximations whose computational cost grows rapidly with
tree size or model complexity [10, 21].

To overcome these limitations, amortized Bayesian approaches [22] use neural
networks to approximate the mapping between a tree and its generating parameters.
We define a neural estimator

θ̂ = fϕ(T ), (2.16)

where fϕ is a neural network parameterized by ϕ, trained to predict the parameters
associated with an input dated tree. During training, the model minimizes the
expected error over a large collection of simulated phylogenies:

L(ϕ) = E(T ,θ)∼D
è
∥fϕ(T )− θ∥2

é
, (2.17)

with D denoting the joint distribution of simulated trees and known ground-truth
parameters.

Once trained, the neural estimator becomes a likelihood-free surrogate
model: it provides near-instantaneous predictions of θ for any new observed tree,
bypassing differential equations and Monte Carlo Markov Chains (MCMC) sampling
entirely. This paradigm, known as amortized or simulation, based inference, is
increasingly used in phylodynamics and infectious disease modeling [10].

In the remainder of this chapter, we discuss strategies for encoding dated
phylogenetic trees into neural-compatible formats and review the main architectures
proposed for this task, ranging from summary statistics and compact encodings to
graph-based and recursive neural models [14, 11, 22].

2.2.1 How to use Neural Networks for Surrogate Deep
Learning

Traditional phylodynamic inference relies on explicit likelihood-based methods such
as BEAST2 or TreePar [10]. These frameworks estimate epidemiological parameters,
like the basic reproduction number (R0), infectious period (1/γ), or latency period
(1/ψ), by maximizing the likelihood of observing a given phylogenetic tree under
a specified birth-death model. However, as model complexity increases (e.g.,
with latent states or superspreading), the associated differential equations become
computationally intractable [21].
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Surrogate deep learning offers an efficient alternative by training neural networks
to approximate the mapping between phylogenetic trees and model parameters.
Once trained, these models perform inference orders of magnitude faster than
likelihood-based approaches while maintaining comparable accuracy. In this frame-
work, neural networks act as learned estimators of epidemiological parameters,
trained on large numbers of simulated trees generated under known parameters
[22].

This paradigm was pioneered by PhyloDeep, where millions of simulated trees un-
der BD, BDEI, and BDSS models were used to train feed-forward and convolutional
architectures [10]. Once the network learns to infer parameters from synthetic trees,
it can generalize to real outbreak data, bypassing explicit likelihood computation.
Similar ideas have been investigated in broader diversification contexts, further
confirming the importance of choosing appropriate neural architectures and tree
representations for accurate parameter recovery [11].

Such surrogate models provide a scalable approach for epidemic inference, en-
abling near real-time phylodynamic analysis and complementing classical Bayesian
or maximum-likelihood frameworks [8].

2.2.2 Summary statistic representations
One strategy to make phylogenetic trees compatible with neural networks is to
represent them through summary statistics (SS). These are handcrafted numerical
features describing the topology and branch lengths of the tree, for example, lineage-
through-time (LTT) slopes, tree balance indices, and distributions of coalescent
intervals [10].

In PhyloDeep [10], a set of 83 summary statistics was used for BD and BDEI
models, extended to 97 for BDSS to capture superspreading effects. Each tree
is thus transformed into a fixed-length vector that feeds a Feed-Forward Neural
Network (FFNN), trained to regress model parameters and classify the underlying
birth–death model. This approach offers simplicity and interpretability. The more
statistics are included, the more precise and faithful the representation is, the loss
of information with respect to the phylogenetic tree is inevitable [10].

2.2.3 Compact Bijective Ladderized Vector (CBLV) repre-
sentation

To address the limitations of the summary statistics framework, an alternative
approach was invented in PhyloDeep. The CBLV [10] encoding provides a compact,
bijective transformation of the phylogenetic tree into a vector suitable for deep
learning. The process involves two key steps:
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1. Ladderization: for each internal node, the subtree containing the most
recently sampled tip is rotated to the left, standardizing the orientation of the
tree.

2. Inorder Traversal: during traversal, for internal nodes the distance from the
root is appended to a real-valued vector, and for each visited tip its distance
from the previously visited internal node.

The resulting vector is padded with zeros for the maximum tree size. This
vectorized representation preserves both tree topology and branch length informa-
tion, making it suitable as direct input to Convolutional Neural Networks (CNNs).
In the PhyloDeep framework, CNNs trained on CBLV-encoded trees achieved
accuracy comparable to FFNNs trained on summary statistics, while offering better
generalization across different epidemic models. The main tradeoff lies in higher
computational cost during training but increased flexibility and model reuse for
unseen tree structures.

Fig. 2.9 shows PhyloDeep pipeline, from CBLV and summary statistics repre-
sentations to the neural networks used in both scenarios. Finally, their deployment
for inference of epidemiological parameters and model selection.

2.2.4 Graph neural network approaches
While CBLV encodings allow vector-based learning, they lose some of the relational
structure inherent to phylogenetic trees, especially because the CNN has a limited
receptive field. Graph Neural Networks (GNNs) overcome this limitation by
operating directly on the tree as a graph, where nodes represent sequences or
ancestors and edges encode evolutionary relationships. This makes them well-
suited for learning on relational data structures more complex than sequences or
grids, as highlighted in broader surveys on deep learning for networked data [19,
20].

In recent work comparing multiple neural architectures, (FFNNs, CNNs, RNNs,
and GNNs), GNNs have demonstrated the ability to exploit tree topology through
message-passing mechanisms. This enables local feature aggregation and hierarchi-
cal representation learning across the entire phylogeny without flattening it into
Euclidean space, a result also supported in comparative studies on deep learning for
diversification and phylogenetic inference [11]. Although the GNN implementations
deployed suffered from over-smoothing12.

A recent and notable example is DeepDynaForecast, which introduced a Primal-
Dual Graph LSTM (PDGLSTM) to jointly model nodes and edges of phylogenetic

12loss of node distinction after multiple layers.
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trees [23]. By learning temporal and structural dependencies, the model predicts
short-term transmission dynamics for each sample in an outbreak. When applied
to large-scale HIV and SARS-CoV-2 datasets, DeepDynaForecast substantially
outperformed standard GNN and GCN baselines, demonstrating the potential of
graph-based neural models for real-world genomic surveillance.

2.2.5 Towards recursive architectures
Recursive neural networks (RvNNs) provide a mathematically principled framework
for processing trees of variable size. Unlike CNNs or GNNs, an RvNN defines a
function f over trees recursively:

f(Ti) =


σ(Wℓxi + bℓ), if i is a leaf,

gθ
1
f(Tleft(i)), f(Tright(i)),xi

2
, otherwise.

(2.18)

Here f(Ti) ∈ Rm is the embedding of the subtree rooted at i, and gθ is typically
a feed-forward transformation such as

gθ(hL,hR,xi) = σ
1
W [hL ∥hR ∥xi] + b

2
, (2.19)

where ∥ denotes concatenation. This formulation naturally mirrors the process of
tree construction: information flows bottom-up from tips to root, aggregating pro-
gressively larger evolutionary contexts. The recursive computation can be efficiently
implemented via dynamic programming and differentiated using backpropagation
through structure (BPTS), as formalized in the original framework for recursive
networks [14].

RvNNs therefore preserve both the hierarchical and chronological structure of
the data, avoid arbitrary traversal orders, and support variable-size input without
padding. When combined with contrastive or supervised objectives, they enable
the model to learn embeddings that reflect shared evolutionary dynamics, precisely
the type of structure required to identify clades undergoing distinct fitness changes,
as highlighted in recent work on learning fitness dynamics from phylogenies [9].

2.3 Contrastive Learning
Contrastive learning has recently emerged as a powerful paradigm in machine
learning, particularly for representation learning in complex or structured domains.
Its key principle is to learn an embedding space in which samples that share
similar semantic or structural properties are mapped close to each other, while
dissimilar samples are placed farther apart. This approach is especially suitable for
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phylogenetic applications, where evolutionary similarity can be naturally interpreted
as proximity in an abstract latent space [21].

2.3.1 Foundations of Contrastive Learning
Let X denote the input space (e.g., a set of phylogenetic trees or nodes within
a tree), and let fϕ : X → Rd be an encoder parameterized by ϕ that maps each
input x ∈ X to a d-dimensional representation vector z = fϕ(x). The central idea
of contrastive learning is to train fϕ so that representations of “positive” pairs are
close, while those of “negative” pairs are far apart.

Given a dataset of paired examples {(xi, x+
i , x

−
i )}, where x+

i is a positive (similar)
example of xi and x−

i a negative (dissimilar) one, the learning objective can be
formalized as the minimization of a contrastive loss function. A common choice is
the InfoNCE (Noise Contrastive Estimation) loss [15]:

LInfoNCE = −
NØ
i=1

log
exp

1
sim(zi, z+

i )/τ
2

exp
1
sim(zi, z+

i )/τ
2

+ qK
k=1 exp

1
sim(zi, z−

k )/τ
2 (2.20)

where sim(·, ·) is a similarity measure, typically the cosine similarity, and τ > 0
is a temperature parameter controlling the sharpness of the distribution.

The minimization of LInfoNCE encourages the encoder to produce similar em-
beddings for related samples and to separate unrelated ones. At convergence, the
learned representation space preserves the intrinsic relationships present in the
data, even without explicit supervision. This property makes contrastive learning
particularly effective in domains such as phylogenetics, where labels describing
evolutionary dynamics or lineage membership are often unavailable or incomplete
[10].

2.3.2 Contrastive Learning in Hierarchical Data
Contrastive learning can be naturally extended to hierarchical and graph-structured
data, such as phylogenetic trees. In this setting, a phylogeny T = (V , E) consists of
a set of nodes V (representing sampled sequences or ancestral taxa) connected by
edges E that encode evolutionary relationships. Each node i ∈ V can be mapped
to a latent representation zi = fϕ(i) through a neural architecture designed to
exploit both the topological and temporal structure of the tree (e.g., recursive
neural networks or graph neural networks [19, 20]).

The highlighted clades in Figure 2.10 illustrate groups of taxa that share a
recent common ancestor. Such clades provide a natural way to define positive
and negative pairs for contrastive learning: samples within the same clade are
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considered positive pairs, reflecting their close evolutionary relationship, while
samples from different clades serve as negative pairs, representing more distant
evolutionary divergence.

A general formulation of the contrastive objective on a phylogenetic tree is:

Lcontrastive = −
Ø

(i,j)∈P
log exp(sim(zi, zj)/τ)q

k∈N (i) exp(sim(zi, zk)/τ) (2.21)

where P denotes the set of positive pairs and N (i) denotes all nodes contrasted
against i. This loss enforces local smoothness in the embedding space: nodes that
are close in evolutionary time or genetic distance acquire similar representations,
whereas distant nodes remain well separated.

When applied to graph-structured phylogenies, contrastive learning can be
implemented using two complementary encoders:

• a local encoder, which aggregates information from immediate neighbors
through message passing (as in Graph Neural Networks);

• a global encoder, which captures coarse-scale properties of the entire tree, such
as its temporal depth or overall diversity.

By contrasting local and global embeddings, the model learns hierarchical repre-
sentations that capture both fine-scale and macro-evolutionary structure. These
representations can subsequently be employed for downstream tasks such as variant
detection, lineage clustering, or prediction of evolutionary fitness.

2.3.3 Community Detection as Classification
Once node representations zi have been learned through contrastive pretraining,
community detection in phylogenetic trees can be reformulated as a classification
problem. The aim is to assign each node i to a community or lineage label
yi ∈ {1, . . . , K}, where K is the number of distinct evolutionary regimes. This can
be achieved by adding a classification head gψ on top of the encoder:

ŷi = gψ(zi) (2.22)

The model is then optimized using a cross-entropy loss:

Lclass = −
NØ
i=1

KØ
k=1

yik log ŷik (2.23)

In a self-supervised or weakly supervised setting, labels may be replaced by
proxy targets derived from the tree structure itself. For example, similarity between
a node and its parent can be used as a continuous metric of relatedness:
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si = sim(zi, zparent(i)) (2.24)

where high similarity indicates shared evolutionary dynamics, whereas lower
similarity suggests a transition to a new variant or lineage. Thresholding or
clustering on the similarity values {si} thus provides a data-driven criterion for
detecting community boundaries in the tree, without requiring manually defined
thresholds or expert annotations.

In summary, contrastive learning provides a principled framework for learning
phylogenetically meaningful embeddings. By combining self-supervised representa-
tion learning with downstream classification or clustering objectives, this approach
enables automatic identification of lineages or variants characterized by distinct
evolutionary or epidemiological behaviors, laying the foundation for scalable and
adaptive genomic surveillance.

2.4 Analysis of the state-of-the-art
This section focuses on existing approaches to tackle the problem of lineage detection
in phylogenetic trees.

2.4.1 Variant Hunters
The term "Variant Hunters" refers to molecular biologists or epidemiologists respon-
sible for detecting and monitoring emerging pathogen variants through genomic
analysis. Such genomic surveillance approaches have been crucial throughout recent
outbreaks, where phylogenetic and phylodynamic tools enabled real-time tracking
of viral diversification and the identification of emerging lineages [8, 21]. Following
sample collection and sequencing, the pathogen’s genome, which encodes all the
information required for replication, is compared to previously sequenced genomes
of the same species. When significant differences are observed, a new sequence may
be classified as a mutation or, if associated with multiple distinctive changes, as
part of a new variant. This process is exemplified in early genomic epidemiology
studies, such as the surveillance of SARS-CoV-2 in Lombardy, where multiple
co-circulating lineages were detected and monitored through systematic sequencing
[3].

However, not all sequence differences correspond to biologically meaningful
mutations. Each sample is transformed into a digital representation of the viral
genome, typically consisting of approximately 30,000 nucleotides in the case of
SARS-CoV-2. These genomic sequences are then aligned and compared to a
reference genome, such as the original Wuhan strain, to identify substitutions,
deletions, or insertions that have occurred during viral replication.
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2.4.2 PhyloWave and other approaches
PhyloWave [9] is a computational framework designed to detect emerging pathogen
lineages that display distinct growth dynamics within phylogenetic trees. The
method aims to identify clades with increased fitness, which may indicate changes
in transmissibility or immune escape. By analyzing local variations in lineage
expansion over time, PhyloWave provides an early warning system for identifying
variants of concern directly from genomic data.

Phylowave relies on an index computation for each internal or terminal node,
based on a pathogen-specific kernel timescale, which weights more short distances
to detect clades with increased fitness.

In empirical applications, PhyloWave has been successfully applied to four
large-scale viral datasets: SARS-CoV-2, Pertussis, Tuberculosis and H3N2 (a
subtype of influenza). In retrospective analyses, the method detected the rise of
SARS-CoV-2 variants such as Alpha, Delta, and Omicron several weeks before
their epidemiological dominance became apparent. It detected two additional
undetected clades for Pertussis. This demonstrates the potential of tree-based
dynamic analysis as an independent and quantitative surveillance tool to track the
evolutionary fitness of circulating lineages. Phylowave pipeline is shown in fig. [9].

A recent line of work introduces statistical approaches for detecting variation in
lineage fitness directly from phylogenetic trees. Volz and Didelot (2025) propose a
model in which each branch is associated with a coalescent propensity, a heritable
continuous trait quantifying the expected contribution of a lineage to future de-
scendants. Variation in this trait reflects underlying selective differences, allowing
the model to predict which lineages are expected to expand [24]. Their framework
also provides a principled method to group branches into clusters with similar
growth behavior, addressing a problem closely related to phylogenetic community
detection [24].

2.4.3 Limitations of current paradigms
Although PhyloWave has introduced important progress in the detection of lineage-
specific fitness shifts, current approaches remain constrained by several conceptual
and practical limitations that hinder their scalability and generalization across
pathogens.

The most fundamental limitation concerns their dependence on substantial
domain knowledge and ad hoc parameterization. PhyloWave relies on expert-defined
thresholds to determine when a clade’s diversification rate deviates significantly
from the expected neutral pattern. These thresholds, including the choice of time
windows for local growth estimation, smoothing parameters for lineage-through-
time curves, and statistical cutoffs for anomaly detection, must often be fine-tuned
manually for each dataset. Small changes in these parameters can lead to markedly
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different outcomes, making the method sensitive to subjective decisions and difficult
to reproduce. As a consequence, the approach cannot be applied automatically to
new pathogens or outbreak scenarios without expert supervision.

Moreover, PhyloWave assumes the existence of a neutral birth–death baseline
against which anomalous diversification is evaluated. In real-world epidemiological
systems, however, transmission rates, sampling intensity, and selection pressures
vary dynamically across time and space. When these assumptions are violated,
apparent growth anomalies may arise purely from uneven sampling or transient
demographic fluctuations rather than genuine fitness changes. This limits the
interpretability and reliability of detected signals, especially in rapidly evolving
viral populations [21].

Finally, the paradigm underlying PhyloWave is inherently heuristic: it depends
on pre-defined statistical features of the tree and fixed decision criteria rather than
learned representations. This rigidity prevents the model from adapting to novel
or complex evolutionary scenarios that differ from those anticipated during design.
Deep learning–based approaches such as PhyloDeep [10] and simulation-based
neural estimators [22] demonstrate the advantages of flexible, data-driven inference
strategies.

The line of work explored in [24] illustrates both the strengths and the limitations
of statistical, non–machine-learning approaches: while theoretically grounded
and interpretable, they require strong parametric assumptions and can become
computationally demanding for large trees. These constraints motivate the need
for scalable, data-driven models, such as recursive neural networks, that can learn
clade structure directly from tree topology without relying on extensive manual
calibration.

These limitations collectively motivate the need for a data-driven alternative
that eliminates the dependence on manual thresholding and domain-specific heuris-
tics. The framework proposed in this thesis addresses these issues by integrating
contrastive representation learning with phylogenetic modeling. Instead of manu-
ally defining what constitutes a fitness change, the model learns from simulated
multi-type birth–death processes in which mutation events alter lineage-specific
transmission rates. Recursive neural networks encode the hierarchical structure of
phylogenetic trees, while a contrastive objective ensures that lineages with distinct
evolutionary dynamics occupy separate regions in latent space. This approach
replaces ad hoc calibration with a principled learning paradigm, enabling scalable,
automated, and pathogen-agnostic detection of fitness changes across evolving
lineages.

27



Background

Figure 2.9: PhyloDeep pipeline. Tree representations: a (i), simulated binary
trees. The simulations were encoded into two representations, either a (ii–v) with
CBLV or a (vi) with summary statistics (SS). CBLV is obtained through a (ii)
ladderization and a (iii) an inorder tree traversal. a (iv), an input matrix in which
the information on internal nodes and leaves is separated into two rows. a (v),
this matrix is padded with zeros so that the matrices for all simulations have the
size of largest simulation matrices. SS consists of a (vi), a set of 98 statistics: 83
published in Saulnier et al., 14 on transmission chains and 1 on tree size. The
information on sampling probability is added to both representations. b Neural
networks are trained on these representations to estimate parameter values or to
select the underlying model. For SS, b (i), a deep feed-forward neural network
(FFNN) of funnel shape . For the CBLV representation, b (ii), convolutional neural
networks (CNN). The CNN is added on top of the FFNN. Figure taken from [10]
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Figure 2.10: Example of a phylogenetic tree partitioned into three mono-
phyletic clades (blue, green, red). Each colored region highlights a group of
taxa sharing a recent common ancestor, illustrating how clades naturally define
positive pairs (within the same color) and negative pairs (across different col-
ors) for contrastive learning. Image adapted from the Wikipedia page “Clade”
(https://en.wikipedia.org/wiki/Clade), licensed under CC BY-SA 4.0.
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Figure 2.11: Phylowave pipeline. a, Schematics describing the principles of index
computation. From left to right: example of a time-resolved phylogenetic tree with
a background population (grey) and an emerging lineage (green); pairwise distance
distribution from terminal node A, or terminal node B, respectively, to the rest
of the population, with the dashed blue line denoting the geometric weighting;
and expected index dynamics over time (see Methods for details). b–e, For each
pathogen, SARS-CoV-2 (b), influenza A/H3N2 (H3N2; c), B.pertussis (d) and
M.tuberculosis (e) the index dynamics computed at each node (terminal or internal)
is presented. Colors represent the different lineages identified by their different
index dynamics. Figure taken from [9]

30



Chapter 3

Materials & Methods

The subsequent sections are dedicated to the two main methodological contributions
of this work: (i) adapted recursive neural networks and (ii) smoothed contrastive
loss. Then, the materials are discussed. Following sections include materials,
analysis and NN training and implementation details.

3.1 Contribution I - Adapted recursive neural
networks

The Phyloscope encoder applies the concept of recursive neural networks (RvNNs)
to the domain of phylogenetic trees. Recursive neural architectures are specifically
designed to process hierarchical data structures, in which each internal node
represents a composition of its children. Unlike conventional feed-forward networks
that operate on fixed-length inputs, recursive networks propagate information
upward through the topology of a tree, computing a vector representation for each
node based on the representations of its descendants.

Formally, for a given node v with left and right children vL and vR, the encoding
hv is computed as a non-linear transformation of the encodings of its children,
together with additional structural information such as branch length (Fig. 3.1)
The Phyloscope implementation follows this general recursive formulation:

hv = fθ([ℓv,hvL
,hvR

]), (3.1)

where [·] denotes concatenation, ℓv is the branch length associated with node v,
and fθ is a learnable function parameterized by the neural network weights θ.

In practice, this function is implemented as a multi-layer perceptron (MLP)
that receives as input the aggregated encodings of the child nodes together with
the corresponding branch lengths. The MLP receives as input the concatenation of
the children’s encodings and the corresponding branch lengths. Its output is then
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Figure 3.1: Example of a phylogenetic tree in which each internal node is assigned
a vector representation computed by the MLP together with its branch length,
except for the root, where only the final encoded vector is shown.

combined through an element-wise mean across the two child branches, producing
the updated representation for the internal node.

The recursive process proceeds level by level, following the hierarchical organi-
zation of the tree. In the implementation, which is the core contribution of this
thesis, this is achieved by iterating through the height levels of all nodes within
a batch, starting from the lowest internal nodes and progressing toward the root.
For each level, nodes whose children have already been encoded are selected, and
their encodings are updated according to:

hv = MLP
1
concat

1
ℓv, h̄children,

22
, (3.2)

where h̄children is the mean of the children’s encodings. This operation can be
interpreted as a bottom-up message-passing mechanism that aggregates descendant
information into a compact latent representation.
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Figure 3.2: Illustration of the encoding step for internal nodes: for each node, the
vectors corresponding to its left and right children (with respective branch lengths)
are averaged, and the resulting mean vector is passed through the MLP to produce
the internal representations e5 and e6.

All node encodings are updated in place within the batch tensors, ensuring
computational efficiency and allowing the model to process multiple trees simulta-
neously. Once the recursion has reached the topmost level, each tree is represented
by a hierarchy of learned encodings, culminating in a final root embedding that
summarizes the entire phylogeny.

This adapted recursive neural network therefore provides a natural and theo-
retically grounded approach for learning from tree-structured data. By explicitly
respecting the hierarchical dependencies among nodes, it enables the model to
capture both local evolutionary events (encoded at lower levels) and global tree-
wide patterns (emerging near the root). The resulting representations can then be
exploited for downstream analysis, clustering, or evolutionary inference within the
Phyloscope framework.

Input tree structure. The model assumes that each input phylogeny satisfies a
set of structural constraints:

• Binary topology: every internal node must have at most two children. Trees
that contain nodes with more than two descendants are considered invalid and
are rejected during preprocessing. This constraint simplifies the representation
of the tree as a matrix where each row corresponds to a node and each node
stores at most two child indices.

• Defined branch lengths: all nodes must be associated with a branch length
connecting them to their parent. Missing branch lengths are not allowed, as
they form an integral part of the numerical representation. These values are
later rescaled to achieve a comparable magnitude across different trees.
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• Unique node identifiers: each node is required to have a unique name
within a tree. This property allows unambiguous mapping between node-level
labels, metadata, and learned embeddings.

Before any encoding takes place, each tree is systematically checked for com-
pliance with these assumptions. Trees that fail these structural requirements are
discarded, as they would violate the model’s internal representation and could lead
to inconsistent or misleading embeddings.

Branch length normalization. Branch lengths are used directly by the encoder,
so it is important that they stay on a comparable scale across different trees. Since
raw branch lengths can vary a lot (because of different reconstruction procedures
or evolutionary models), each tree is rescaled so that its average branch length
becomes 1.

For a tree with branch lengths {ℓ1, ℓ2, . . . , ℓK}, the mean value is

ℓ̄ = 1
K

KØ
i=1

ℓi, (3.3)

and every branch length is replaced by

ℓi ←
ℓi

ℓ̄
. (3.4)

This simple normalization keeps the numerical scale stable and makes different
trees easier for the model to compare.

Cluster definition and minimum leaves per cluster. To detect meaningful
clusters in the tree, the embeddings computed at each internal node need to be
related to a measure of similarity on the branches. For this reason, each internal
node v has an embedding hv, and its similarity with the parent node p(v) is
computed.
Branch-level similarity. For every internal node v, the similarity between v and
its parent is defined using cosine similarity:

sim(v, p(v)) = h⊤
v hp(v)

∥hv∥ ∥hp(v)∥
. (3.5)

This score tells us how similar the two embeddings are: high similarity means that
the subtree under v is close (in embedding space) to its parent, while low similarity
means that the branch marks a clearer separation.
Minimum leaves per cluster. Not every internal node is considered a valid
cluster. A hyperparameter called minimum leaves per cluster sets the minimum
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number of descendant leaves required for a node to count as a cluster. If leaves(v)
is the number of leaves under node v, then v is a valid cluster only if

leaves(v) ≥ Lmin, (3.6)

where Lmin is the chosen threshold. Nodes that do not reach this number of
leaves are considered too small to be meaningful, and they are effectively merged
into the nearest ancestor that satisfies the requirement. In the experiments, this
hyperparameter was set to 17: clusters whose nodes culminated in at least 17
descendant leaves were considered, otherwise the cluster information was inherited
recursively until the base nodes.

Role in cluster identification. Putting these two elements together, the network
focuses only on internal nodes that (i) have enough descendant leaves and (ii) show
a clear embedding similarity or difference with their parent. This avoids creating
clusters that are too small and helps ensure that cluster boundaries are placed
where both the tree structure and the embeddings agree.

CBLV encoding for children of base nodes. Before the recursive encoder is
applied, the tree is first scanned to identify which internal nodes are large enough
to be treated as potential cluster roots. This uses the minimum leaves per cluster
hyperparameter: an internal node is considered a valid base node if it has at least
Lmin descendant leaves as detailed in previous paragraphs (Fig. 3.3).

Once the base nodes are identified, only their immediate children are assigned
an explicit structural encoding using a CBLV representation. Each CBLV vector is
padded to a fixed size of E + 1, where E is the dimensionality of the embeddings
produced by the neural network (Fig. 3.4).

Encoding dimension. The hyperparameter encoding dimension E specifies the
size of the embedding vector produced by the MLP for every internal node. This is
the dimensionality of the space in which all node embeddings live, and it determines
how much information the model can capture in a single vector. A larger value
of E gives the model more capacity to represent structural differences between
subtrees, at the cost of increased computation.

In our experiments, the encoding dimension is set to E = 128, which provides
enough capacity for the embeddings to represent the structural patterns of the tree
without becoming a computational bottleneck.

Node selection and hierarchical representation. The full phylogeny is thus
reduced to a set of base nodes and their associated subtrees. The procedure can be
summarized as follows:
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Figure 3.3: Example of a phylogenetic tree in which the internal nodes highlighted
in red represent the base nodes selected according to the minimum–leaves criterion.
For illustration purposes, the figure uses small hyperparameter values (e.g. minimum
leaves per cluster and encoding dimension), which are not the ones used in the
actual implementation.

1. Identify all internal nodes that satisfy the minimum leaf requirement (leaves(v) ≥
Lmin). These nodes define the roots of the smallest valid clusters.

2. For each base node, generate a CBLV encoding for its two children, padded to
dimension E + 1.

36



Materials & Methods

Figure 3.4: Example of the CBLV representations assigned to the nodes directly
below the base nodes identified in the previous step. Each red vector shows the
CBLV encoding padded to dimension E+1, assigned only to the immediate children
of the base nodes, while the rest of the tree is processed recursively by the neural
network.

3. All deeper nodes receive embeddings computed by the MLP during the bottom-
up recursive pass.

This produces a clean hierarchical structure where explicit CBLV information is
injected at the boundaries of each valid cluster, and the recursive neural encoder
handles the rest of the tree structure.
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3.2 Contribution II - Contrastive Loss for Com-
munity Detection

From recursive encodings to a learning objective. Once these embeddings
are computed, the model needs a training objective that can make use of them and
change nodes to organize in a meaningful way.

3.2.1 Smoothed Contrastive Loss
The second main contribution of this work is the definition of a contrastive loss
function that uses these node embeddings to detect evolutionary communities inside
the tree. This loss compares pairs of internal nodes within the same phylogeny and
pushes the embeddings to reflect how close or far their evolutionary behavior is,
according to the anchors associated with the nodes.

Given N encodings xi ∈ Rd and scalar anchors1 ai ∈ R, the loss first L2-
normalizes each encoding,

x̂i = xi
∥xi∥

(3.7)

then forms cosine similarities and the corresponding cosine distances

simij = x̂⊤
i x̂j, dij = 1− simij ∈ [0,2] (3.8)

and considers only unordered index pairs (i, j) with i < j.

Anchor-conditioned target similarity. For each pair we define a soft target
similarity

tij = exp
1
− s |ai − aj|

2
∈ (0,1] (3.9)

where s > 0 is the scale. When |ai− aj| = 0 we have tij = 1, and as |ai− aj| grows,
tij decays toward 0 at a rate controlled by s.

Per-pair loss. In this setting, the indices i and j refer to internal nodes belonging
to the same phylogenetic tree. Thus, each pair (i, j) compares two node encodings
within a single tree, and the loss encourages nodes with similar anchor values to
remain close in the embedding space while pushing apart nodes whose anchors
differ substantially. The loss for a pair (i, j) is the mixture

ℓij = tij d
2
ijü ûú ý

pull term

+ (1− tij)
1

max{0, m− dij}
22

ü ûú ý
push term

(3.10)

1the anchors are the logged birth rates of each mutation saved in the metadata and passed to
the loss as additional information
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with margin m > 0.

Total objective. Averaging over all N(N−1)
2 unordered pairs yields

L = 2
N(N − 1)

Ø
1≤i<j≤N

5
tij d

2
ij + (1− tij)

1
max{0, m− dij}

22
6

(3.11)

Pull vs. Push. The pull term tij d
2
ij dominates when anchors are close (tij ≈ 1),

penalizing the squared cosine distance and therefore encouraging high cosine
similarity between x̂i and x̂j . The push term (1−tij)

1
max{0, m−dij}

22
dominates

when anchors are far (tij ≈ 0), acting as a squared hinge that is active only for
dij < m and driving pairs apart until the margin m is reached; for dij ≥ m the
hinge is inactive and contributes no penalty.

Role of the scale s and of tij. The scale s controls how sharply tij transitions
from 1 to 0 as |ai − aj| increases: small s yields a gradual blend of pull and push
over a wider anchor gap, while large s yields a rapid switch, making the loss
more sensitive to anchor differences. Thus tij serves as a data-driven weight that
interpolates continuously between attraction and repulsion, aligning the geometry
of the normalized embeddings with the geometry induced by the anchors.

Ranges and practical choice of m. Because vectors are L2-normalized, simij ∈
[−1,1] and dij ∈ [0,2], which makes m ∈ [0,2] a natural range; for dissimilar pairs
(tij ≈ 0) the margin implies a target maximum cosine similarity of 1−m.

3.3 Materials
This section is dedicated to the materials used in this work.

3.3.1 MTBD-based mutation model
In the Multi-Type Birth-Death (MTBD) model framework used in this thesis,
lineages undergo four types of events over time: birth, death, mutation, and
sampling.

SARS-COV-2 variants, among many other pathogens, have gained wide-spread
transmission due to their adaptability and infectiousness, which resulted in increased
fitness and virus transmission at a rapid rate [3]. To account for this process, the
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Figure 3.5: Plot of the smoothed contrastive loss showing its three components:
the pull loss (green), which penalizes small distances for similar-anchor pairs; the
push loss (red), which penalizes distances below the margin m for dissimilar-anchor
pairs; and the total loss (blue), given by their weighted combination as defined in
Eq. (3.10). The vertical dotted line marks the margin m.

library phylogenie2 extends the MTBD framework with a separate mutation
process, which records new variants of existing states over time.

Mutation events in phylogenie In phylogenie, mutations are modeled as
independent stochastic events. Mutation events are migration events, which change
the epidemiological state of a lineage. For example, suppose some nodes of the
phylogenetic tree have undergone two mutations:

2phylogenie is a Python library developed to simulate a large number of trees; this tool
turned out to be incredibly useful for the experiments presented throughout this thesis.
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I → MUT-1.I → MUT-2.I

MUT-1.I and MUT-2.I represent two mutations with increased birth rate with
respect to I(Fig. 3.7).

Figure 3.6: Illustration of the full evolutionary tree (top) and the corresponding
sampled tree (bottom).Red segments mark the occurrence and propagation of a
mutation, while eye symbols indicate sampling events. Only the sampled lineages
and the minimal structure connecting them are retained in the reconstructed tree.

The extended MTBD mutation framework implemented in phylogenie relies on
the Gillespie Stochastic Simulation Algorithm (SSA) to generate exact realizations
of the underlying continuous-time Markov process. In this setting, lineages evolve
by undergoing discrete events in continuous time, such as birth, death, sampling, or
mutation, each characterized by an instantaneous rate.

As illustrated in Fig. 3.6, the sampled phylogeny corresponds to the type of
tree representation produced by this simulation framework.

At any given time, let
E = {e1, e2, . . . , eNe} (3.12)

be the set of all possible events. Each event ei occurs at a rate ri and can act on a
population of size Si. The propensity of event ei is therefore defined as:

pi = ri × Si (3.13)

The total rate at which any event occurs is the following:

λ =
NeØ
i=1

pi (3.14)
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Gillespie’s algorithm proceeds in two steps:

1. Sampling the waiting time. The time to the next event is drawn from an
exponential distribution with rate λ:

∆t ∼ Exp(λ),

ensuring that events occur in continuous time with statistically correct spacing.

2. Selecting the event. Once the waiting time is sampled, the next event is
chosen using weighted sampling, where the probability of selecting event ei is:

Pr(ei) = pi
λ
.

If the event acts on individual lineages (e.g., mutation or birth), one lineage is
then selected uniformly at random among the Si eligible ones.

This procedure is repeated until the sampled tree reaches the desired number of
tips.

Figure 3.7: Portion of a simulated tree. In red, nodes with no mutation are
represented. Each color identifies a new mutation, where the birth rate is increased.
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In Fig.3.73, several mutations are identified by different colors. When a mutation
occurs, a mutated individual inherits the same events as the original lineage, except
for the birth rate. The birth rate of this mutated variant is obtained by multiplying
the previous rate by a random variable S(k)

birth, called the birth-rate scaler :

λMUTk.i = S
(k)
birth × λi (3.15)

The variable S(k)
birth is drawn from a probability distribution Dbirth.

3.3.2 Simulation data
To evaluate the proposed framework under controlled yet realistic evolutionary
scenarios, a large collection of synthetic phylogenetic trees was generated using a
stochastic birth-death process with mutations. This simulation setup allows direct
control over key epidemiological and evolutionary parameters, while preserving the
complex branching structure characteristic of real-world phylogenies.

A total of 100,000 independent trees were simulated. Each tree was generated
under a birth-death parameterization, in which the reproduction number, infectious
period, sampling proportion, and mutation rate are either fixed or drawn from
predefined probability distributions.

Birth-death parameterization. The underlying model follows a standard birth-
death formulation, as detailed in 2. In this setting, the process is parameterized
through the basic reproduction number R0, which specifies the expected number
of secondary infections produced by a single infectious lineage in the birth–death
model. In this setting, the infectious period was fixed at 2.5 time units, which
simply sets the rate at which infectious lineages stop producing new infections in
the simulation.

Distributions of simulation parameters. Table 3.1 summarizes the proba-
bilistic specification used to generate the simulation parameters. All parameters
are sampled independently for each tree from the following distributions:

• The reproduction number R0 is drawn from a log-normal distribution with
mean 1 and standard deviation 0.2 on the log scale.

• The sampling proportion s is sampled from a uniform distribution on the
interval [0.1, 1.0].

3the picture was taken from Icytree, a web-based tool to visualize trees, color them or gather
statistics
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• The mutation rate r is drawn from a uniform distribution on [0.01, 0.1].

• The birth-rate scaling factor used during mutation events is drawn indepen-
dently for each mutation event from a normal distribution with mean 2 and
standard deviation 0.2.

Table 3.1: Probabilistic specification of the main simulation parameters.

Parameter Distribution Hyperparameters

Effective reproduction number R0 Log-normal mean = 1, σ = 0.2
Sampling proportion s Uniform low = 0.1, high = 1.0
Mutation rate r Uniform low = 0.01, high = 0.1
Birth-rate scaler (for mutation process) Normal µ = 2, σ = 0.2

Sampling constraints and tree size. To ensure that all simulated trees contain
sufficient information for meaningful analysis, explicit constraints were imposed on
the number of observed tips. The process was conditioned to produce trees with
between 200 and 500 tips (inclusive). The choice of this range follows PhyloDeep
[10], where the BD simulations for large trees fell within the same interval.

Node-level features. In addition to the global parameters described above, the
simulation records a set of features at the node level, which are later used during
preprocessing and encoding. For every node in each tree, the following quantities
are stored:

• a mutation-related label indicating the presence or identity of mutations,

• the absolute height of the node in the tree (distance from the root),

• a discretized height level, obtained by grouping nodes according to their height,

• the depth, defined as the distance from the root or the number of edges along
the path from the root,

• the number of descendant leaves (subtree size), which is crucial for identifying
nodes that qualify as clusters.

These node-level descriptors provide a rich structural and evolutionary context
that can be exploited by the encoder. For example, the number of descendants is
used to determine which nodes represent sufficiently large clusters, while depth
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and height information contribute to the construction of the base encodings fed to
the neural network. Furthermore, these terms contribute directly to data analysis
through detailed statistics.

Reproducibility and implementation. The simulation of 100 000 trees was
performed using a fully automated pipeline with a fixed random seed (seed =
42) to guarantee reproducibility of the generated dataset. The simulations were
distributed across all available CPU cores (n_jobs = -1), and each individual
simulation was subject to a time limit to avoid pathological runs that might fail
to terminate within a reasonable time window. Unfortunately, the timeout affects
the resulted simulated trees, as it depends on number of CPU cores used in the
simulation.

3.3.3 Dataset
The simulated phylogenetic trees described in the previous subsection are trans-
formed into a structured dataset that can be directly used for training the neural
encoder. Each individual tree is converted into a self-contained sample that en-
capsulates both its topology and its associated evolutionary annotations. These
samples are then stored to disk and later combined into mini-batches for efficient
processing during training.

From simulated trees to structured samples. The tree is normalized by
rescaling its branch lengths to have unit mean, ensuring numerical comparability
with the rest of the dataset.

Each accepted tree is then converted into a structured representation consisting
of:

• a list of node identifiers that uniquely label every node in the tree,

• a pair of indices for each node indicating its left and right child (or a special
placeholder for leaves),

• a vector of branch lengths, one for each node,

• node-level attributes such as height, discrete height level, depth, and number
of descendant leaves,

• cluster labels and cluster anchor values derived from the tree-level metadata.

This representation bridges the gap between the raw phylogenetic object and the
tensor-based format required by the neural network.

45



Materials & Methods

Cluster labels and anchors. Cluster labels are used to assign each node to
an evolutionary cluster. A node is considered a valid cluster only if the subtree
beneath it contains at least Lmin = 17 descendant leaves; this is the same cluster-size
threshold introduced earlier. Nodes that do not reach this threshold are merged
into a larger clade so that clusters are not too small or unstable.

Once the clusters are defined, each of them is given an anchor value taken from
the tree metadata (e.g., the birth rate associated with a mutation). These anchor
values are later used by the contrastive loss to pull or push the node embeddings
to reflect how similar or different the clusters are.

Base encodings and node features. For each node in the tree, a base encoding
vector is constructed prior to any neural processing. This vector summarizes the
local structure of the subtree rooted at that node, with a particular emphasis on
depth-related information. A typical base encoding is obtained by considering the
depths of the nodes encountered in a traversal of the subtree and expressing them
relative to the depth of the current node. The resulting sequence is then padded
with zeros up to the fixed encoding dimension used by the model.

In addition to these base encodings, the dataset retains the raw node features
produced by the simulator, namely:

• indicators of mutation events or mutation-related labels,

• the continuous height of the node from the root,

• a discretized height level that groups nodes into height bands,

• the depth of the node, expressed as a path length from the root,

• the number of descendant leaves, which plays a central role in determining
cluster membership.

These quantities are not all directly fed into the neural network, but they inform both
preprocessing decisions (e.g., which nodes qualify as clusters) and the construction
of the base encodings that serve as inputs to the encoder.

Construction of training batches. Although the fundamental unit of the
dataset is the individual tree sample, training is performed on mini-batches of
trees to leverage parallel computation. To construct a batch, several samples are
selected and their node-level tensors are concatenated along the node dimension. A
cumulative offset is applied to all child indices to ensure that references to children
remain correct in the concatenated representation. In addition, a list of pairs
is maintained to map each node in the batch back to its original tree and node
identifier.

The resulting batched dataset thus consists of:
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• a collection of normalized and structurally validated trees,

• for each tree, a complete set of node-level base encodings and structural
descriptors,

• cluster labels and anchors suitable for contrastive learning,

• and a memory layout optimized for efficient processing on modern hardware.

3.3.4 Empirical data
The network was additionally evaluated on four real-world phylogenetic datasets
corresponding to major viral and bacterial pathogens: SARS-CoV-2, Mycobacterium
tuberculosis (tuberculosis), Bordetella pertussis, and influenza A subtype H3N2.
These pathogens were not chosen arbitrarily. Their selection was strongly motivated
by the recent Phylowave framework [9].

Real-world datasets By adopting the same set of pathogens, this thesis aligns
its empirical evaluation with an emerging standard in the field. However, a direct
comparison with Phylowave results is still not possible. Because Phyloscope has
been trained on relatively small simulated trees, it cannot handle the full pathogen
trees. For this reason, preprocessing and subsampling become essential steps in
the pipeline, ensuring that the real-world phylogenies satisfy both simulated trees
requirements and are small enough to test the validity of this network.

Preprocessing & Subsampling Before being used for model evaluation, each
empirical phylogeny underwent a standardized preprocessing procedure to ensure
structural consistency and biological comparability with the simulated data. The
overall objective of this step was to transform the heterogeneous raw phylogenies into
curated, binary, and temporally constrained trees compatible with the Phyloscope
framework.

Since phylogenetic reconstructions can contain polytomies (nodes with more
than two descendants), an initial check verified whether the tree was strictly
binary. In cases where polytomies were detected, they were recursively resolved
by introducing minimal artificial branch lengths (1e-6) to preserve topological
integrity. This ensured that every internal node had exactly two children, which
is a strict requirement for the neural encoder, without impacting on Phyloscope
performances.

Once binary, the tree was ladderized according to the number of descendant
leaves (n_leaves), resulting in a consistent left-right ordering of nodes. Branch
lengths were rescaled to normalize the tree and remove scale-dependent biases
among datasets.
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Each phylogeny was associated with a corresponding metadata file containing
leaf-level attributes such as isolate identifiers, sampling dates, and clade designations.
These metadata files were parsed and cross-referenced with the leaf identifiers in
the tree to attach the appropriate information to each node. Depending on the
dataset, different metadata columns were used to extract clade and time information,
including Genotype, Clade, Nextstrain_clade, Global_clade for cluster-specific
information and Collection_time for time information, useful for the subsampling
step.

A dataset-specific filtering step was then performed to obtain subsampled trees
that were comparable in size to the simulated training trees. The ideal target range
was between 200 and 500 tips, matching the interval used in the simulated dataset.
Values slightly below 200 were also accepted when necessary, since some pathogens
did not contain enough samples to meet the lower bound while still preserving
meaningful clade diversity, and alternative subsampling strategies produced too
many tips. Trees close to (but below) 500 tips were considered acceptable, as they
remained manageable for the Phyloscope architecture.

Table 3.2: Overview of the empirical datasets and corresponding subsampling
criteria. The selection aimed to produce trees with a number of tips comparable to
the simulated range (less than 500 tips), where possible the >200 tips was respected

.

Pathogen Selection criterion Time window
TB “Euro” clades —
SARS-CoV-2 Samples collected in 2023 2023
Pertussis Samples from 2009–2011 2009–2011
H3N2 Samples collected in 2022 2022

To ensure consistent labeling across all levels, clade information was propagated
upward from the leaves to their parent nodes in post-order traversal, allowing
internal nodes to inherit the clade identity of their left descendant. This propagation
enabled full clade annotation across the tree.

Through this standardized preprocessing and subsampling pipeline, all empirical
phylogenies were made structurally and numerically comparable to the simulated
data, thereby enabling a direct, unbiased evaluation of the Phyloscope neural
framework on real-world evolutionary datasets.

3.4 Analysis & NN training
This section provides an overview of the analytical and computational steps required
to validate the training data, construct the neural architecture, and optimize the
Phyloscope encoder.
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The section begins with an assessment of the simulated training data, verify-
ing that the trees generated under the birth-death process possess the expected
structural and evolutionary properties and are broadly comparable to empirical
phylogenies. Subsequent subsections describe the data analysis procedures applied
to both simulated and real-world trees, focusing on the extraction of relevant
statistics and the preparation of neural-ready representations.

The architecture of the recursive encoder is then detailed, with particular atten-
tion to the design of the MLP used to process hierarchical information within each
tree. Finally, the optimization strategy adopted during training is presented, includ-
ing the choice of optimizer, learning rate, batch construction, and regularization
techniques.

Together, these components define the methodology used to train Phyloscope
and assess its ability to learn consistent, biologically meaningful representations of
phylogenetic structures.

3.4.1 Validation of training data & Empirical data
To quantitatively assess the quality and internal consistency of the simulated
dataset, a comprehensive set of structural and topological statistics was computed
on a representative subset of the data. Specifically, the analysis was performed on
the first 100 phylogenetic trees out of the 100,000 total simulations. This sampling
strategy was adopted to obtain an interpretable yet statistically meaningful overview
of the dataset characteristics, while maintaining computational efficiency given the
large total number of trees.

The selected metrics were designed to evaluate both the shape and the diversity
of the simulated trees, as well as the distribution of biologically relevant quantities
such as mutation counts, cluster structure, and tree balance. For each of the 100
sampled trees, the following measures were calculated:

• Tip depths: the minimum and maximum depth of the leaves, providing a
measure of the temporal or evolutionary span represented in each phylogeny.

• Tree height and height levels: indicators of the overall tree scale and the
hierarchical structure across internal nodes.

• Number of mutations and true labels: quantifying the diversity of
mutational states and the effective number of clusters retained after filtering
by the minimum leaf threshold (min_tips_per_cluster = 17).

• Difference between mutation and label counts: highlighting discarded
or merged clusters that did not meet the minimum size requirement.
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• Discarded label sizes: the size distribution of clusters removed during
preprocessing, giving insight into how many small subclades were pruned from
the dataset.

• Gini index of true labels: a normalized measure of label imbalance across
the leaves, ranging from 0 (completely homogeneous) to 1 (maximally diverse).

• Sackin index: a classical measure of tree balance, computed here in its
normalized form to compare topological symmetry among trees.

• Mean leaf pairwise distance: the average distance between all pairs of
leaves, reflecting the degree of diversification within each phylogeny.

• Sampling proportion (s): extracted from the simulation metadata, repre-
senting the fraction of the total population that was sampled in each simulation
instance.

All statistics were computed using the phylogenie library and aggregated across
the 100 sampled trees. The resulting distributions were visualized as histograms
for each metric, enabling rapid inspection of potential outliers, biases, or structural
anomalies. Although computed on a limited subset, the obtained results provide
a reliable quantitative overview of the variability and stability of the simulated
dataset, confirming that it adequately spans the parameter space intended by the
birth–death model configuration.

To further evaluate the realism of the simulated trees and their suitability as
training data, a comparative analysis was conducted between the simulated and
empirical phylogenies. A set of common structural metrics was computed for
both groups, allowing a direct, quantitative comparison of tree topology, size, and
diversification patterns. Specifically, for each tree the following quantities were
calculated:

• Depth levels: measures of overall tree scale and hierarchical structure;

• Number of leaves: reflecting the sampling density and effective tree size;

• Sackin index: quantifying tree balance and symmetry in branching patterns;

• Mean leaf pairwise distance: capturing the average evolutionary distance
among sampled tips.

Specifically, results of this comparison will be discussed in 4.
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3.4.2 Network Architecture
The neural component of Phyloscope is based on a feed-forward multi-layer percep-
tron (MLP) used as the core transformation module within the recursive encoding
framework. At each internal node, the MLP receives as input the encodings of the
two child nodes together with their branch lengths, and outputs a latent repre-
sentation for the parent. The parent branch length is then appended afterward,
producing the final encoding of the node.

Child representations. Each node v maintains two vectors: a latent encoding
ev ∈ RE and a full encoding hv ∈ RE+1 that includes the branch length ℓv. For
each child vL and vR, a full representation is constructed as:

zvL
=

è
ℓvL
, evL

é
, zvR

=
è
ℓvR

, evR

é
, (3.16)

where both vectors lie in RE+1.
These vectors are then aggregated to obtain a single representation summarizing

the subtree below v:
z̄v = 1

2
1
zvL

+ zvR

2
∈ RE+1. (3.17)

MLP transformation. The aggregated vector z̄v serves as the input to the
MLP, which computes the latent encoding of the parent node. The transformation
is given by:

ev = σ(W2 σ(W1z̄v + b1) + b2) , (3.18)

where W1 and W2 are learnable weight matrices, b1 and b2 are the associated bias
vectors, and σ denotes the ReLU activation function. The output ev has dimension
E.

Final parent encoding. The full encoding of v is obtained by concatenating its
own branch length before the latent vector:

hv =
è
ℓv, ev

é
∈ RE+1. (3.19)

Recursive propagation. Applying this procedure bottom-up across the tree
allows the encoder to propagate structural, topological, and branch-length informa-
tion from the leaves toward the root. The MLP acts as a shared, depth-invariant
transformation at each internal node, enabling the model to learn consistent hier-
archical representations that reflect both local patterns and global phylogenetic
structure.
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3.4.3 Optimization

The optimization of the Phyloscope encoder aimed to refine the parameters of the
MLP and recursive framework in order to produce stable and biologically consistent
node embeddings. Training was conducted using the AdamW optimizer, an
improved variant of the classical Adam algorithm that decouples weight decay
from gradient-based parameter updates. In traditional Adam, the L2 regularization
term is applied directly within the gradient update, which can lead to an incorrect
interaction between the adaptive learning rate and the weight decay term. AdamW
addresses this limitation by performing weight decay as a separate operation,
ensuring a more accurate and theoretically sound form of regularization. As
a result, the optimizer provides faster convergence, better generalization, and
improved stability across deep and recursive architectures.

Training was performed in mini-batches of 64 samples, each batch containing
multiple preprocessed phylogenetic trees. The dataset was randomly divided into a
training set (80%) and a validation set (20%), ensuring a balanced representation of
trees of different sizes and topologies across both subsets. A constant learning rate
of 0.001 was adopted, which yielded smooth convergence without oscillations or
divergence across epochs. A dropout rate of 0.5 was applied between hidden layers
to reduce overfitting and promote robust generalization to unseen phylogenies.

The model was trained for a fixed number of epochs, with continuous monitoring
of the validation loss to assess convergence and detect potential overfitting. The
optimization process was terminated once the validation loss reached a plateau,
indicating that the encoder had achieved a stable and generalizable set of parame-
ters.

Through this combination of adaptive learning, decoupled regularization, and
dropout-based noise injection, the training procedure achieved both numerical
stability and robust convergence. This ensured that the final learned representations
captured consistent topological patterns across simulated and empirical trees,
validating the reliability of the training process.
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Table 3.3: Summary of the main optimization hyperparameters used during
training.

Parameter Value / Description
Optimizer AdamW (decoupled weight decay)
Learning rate 0.001 (constant across epochs)
Weight decay Decoupled, default PyTorch implementation
Batch size 64 phylogenetic trees per batch
Training / Validation split 80% / 20%
Dropout rate 0.5 between hidden layers
Number of epochs Fixed; training stopped at validation plateau
Loss monitoring Validation loss tracked after each epoch
Early stopping criterion Convergence of validation loss
Regularization strategy Dropout + weight decay via AdamW

3.5 Implementation & Computation
This section is dedicated to implementation details and computational settings.

3.5.1 Model requirements
The computational framework developed in this work is designed to learn vector
representations of phylogenetic trees through a neural network encoder that operates
directly on tree-structured data. To guarantee both mathematical correctness
and computational efficiency, a number of structural, numerical, and software
requirements must be satisfied by the input data and by the execution environment.

Software and computational environment. All experiments were performed
in Python, using PyTorch as the main deep learning library for tensor operations
and automatic differentiation. Additional packages were used for specialized
tasks: a phylogenetic toolkit to parse and manipulate trees in Newick format, a
columnar data-processing library for metadata tables, and a parallelization library
to accelerate sample preparation across multiple CPU cores.

Empirical data used in this thesis were obtained from the Supplementary Material
of Phylowave paper [9], which obtained them, in turn, from Nextstrain, an open-
source platform for real-time pathogen genomic surveillance. The phylogenies
used for the empirical evaluation originate from the supplementary material of the
Phylowave study, distributed as .nexus files containing both the inferred trees and
associated metadata. These were converted to Newick format for compatibility
with the encoder.
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To ensure reproducibility and portability across computational systems, all
experiments were executed inside containerized environments using Singularity
and Apptainer. Long-running processes on the university servers were managed
using screen, allowing training and simulation jobs to continue after detaching
from the session.

Hardware resources. This work was conducted on two main computational
infrastructures:

• Politecnico di Torino departmental server: 24 CPU cores, used primarily
for initial simulations and preprocessing steps.

• HPC cluster of Politecnico di Torino: up to 96 CPU cores available for
this thesis, used for large-scale simulations, sample generation, and training.

No GPU was required for training, as the model is lightweight and efficiently
runs on CPUs.

Computation times. The full pipeline involves three main stages, simulation,
sample generation, and model training, each executed only once. The corresponding
computation times were the following:

• Simulation of 100,000 phylogenies (training + validation): approximately
2 days on 96 CPU cores.

• Creation of training and validation samples: approximately 1.5 days.

• Training + validation for 20 epochs on 100,000 trees: approximately 18
hours.

These timings refer to the full-scale configuration adopted in this thesis and
reflect the computational cost of the entire learning pipeline.
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Results

This chapter is dedicated to analysis of the results obtained in two settings:
validation set and inference on empirical data, with an introduction to the results
of the tree analyses, to the evaluation metrics used in this work and to the choice
of threshold for cluster visualization.

4.1 Dataset Metrics Analysis
Before training and evaluating Phyloscope, both simulated and empirical phylo-
genies were characterized using the structural metrics described in Section 3.4.1.
The aim of this analysis was to assess whether the simulated birth–death trees
span a similar range of shapes, depths, and imbalance profiles as the empirical
phylogenies. Ensuring this similarity is crucial, since the encoder should not be
trained on unrealistic or overly homogeneous tree shapes.

Table 4.1 summarizes the main metrics computed for each empirical dataset.
Although different pathogens exhibit distinct evolutionary behaviors, the collected
values fall well within the variability observed across the 100,000 simulated trees
used for training.

The following table shows different metrics gathered for empirical trees:

Table 4.1: Summary of phylogenetic metrics for each virus (simulated data
excluded).

Pathogen Sackin MLPD Depth levels n.leaves
TB 5078 21.33 29 359
H3N2 1829 10.45 26 126
SARS-CoV-2 3707 10.78 47 180
Pertussis 2537 10.85 20 200
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Figure 4.1: Distribution of mean pairwise patristic distances across simulated
phylogenies. The histogram shows the distribution of the mean pairwise patristic
distance computed over 100 simulated phylogenies generated under the BD-MUT
model. The x-axis reports the average pairwise patristic distance for each tree, while
the y-axis indicates how many trees fall within each bin. Vertical colored lines mark
the corresponding values for the empirical datasets used in this thesis, Pertussis,
H3N2, SARS-CoV-2, and TB, with their mean distances reported in parentheses.
The empirical trees fall within (or close to) the simulated range of values, indicating
that the simulated training data adequately match the evolutionary scale of real
pathogen phylogenies.

To further verify this, Figures 4.1 and 4.2 show the distributions of key metrics
for simulated trees compared with the empirical values.

Overall, this analysis provides strong evidence that the simulation model pro-
duces diverse and biologically plausible phylogenies. This is essential because
Phyloscope learns solely from simulated data; therefore, validating the realism
of the training distribution increases confidence in the method’s applicability to
empirical phylogenetic trees.
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Figure 4.2: Distribution of Sackin index values across simulated phylogenies. The
histogram reports the distribution of the Sackin index for 100 simulated phylogenies,
a classical measure of tree imbalance where higher values indicate more unbalanced
branching structures. The x-axis shows the Sackin index of each simulated tree,
while the y-axis represents the number of trees falling into each bin. Vertical
colored lines correspond to the Sackin index of the empirical phylogenies used in
this thesis, Pertussis, H3N2, SARS-CoV-2, and TB, along with their index values
shown in parentheses. The empirical Sackin indices lie within or near the simulated
distribution, indicating that the simulated training trees capture a comparable
range of topological imbalance to that observed in real pathogen phylogenies.

4.2 Evaluation Metrics

To evaluate the performance of Phyloscope on simulated phylogenies, we monitored
both the training and validation loss, which measure how well the encoder learns
the embedding space, and standard clustering metrics comparing the predicted
clusters to the true labels (after applying the minimum-leaves-per-cluster grouping).
Quantitative evaluation is performed only on simulated data, where ground-truth
cluster assignments are available.
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4.2.1 Contrastive Loss
The model was trained using a smoothed contrastive loss (as described in Chapter 3)
which encourages high similarity between embeddings of nodes belonging to the
same true cluster and low similarity between embeddings from different clusters.
Lower loss values indicate a cleaner separation of evolutionary groups in the latent
space.

At convergence (after 20 epochs), the loss values were:

• Training loss: 0.14

• Validation loss: 0.16

These values show that the encoder successfully learned consistent representa-
tions of evolutionary structure across a large set of simulated phylogenies.

4.2.2 Clustering Metrics
To assess the quality of the predicted clusters, we computed three widely used
clustering evaluation metrics: ARI, NMI and AMI. All metrics compare the
predicted clusters with the ground truth after minimum-leaves-per-cluster grouping.
The computation of ARI, NMI, and AMI followed the standard implementations
provided in the scikit-learn library [25].

Adjusted Rand Index (ARI). ARI measures the agreement between two
clusterings based on pairwise assignments. Its values range from:

• 1.0 — perfect agreement,

• 0 — random clustering,

• < 0 — worse than random (rare in practice).

Normalized Mutual Information (NMI). NMI quantifies how much informa-
tion is shared between two clusterings. Values range from:

• 1.0 — identical clusterings,

• 0 — no mutual information between partitions.

Adjusted Mutual Information (AMI). AMI is a variant of NMI corrected
for chance. Its values range from:

• 1.0 — perfect agreement,

• ≈ 0 — no agreement beyond chance.
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4.2.3 Clustering Results on Simulated Data
All values below represent the mean ± standard deviation across 100,000 simulated
trees used during training and validation (80/20 split), as discussed in the Chapter
3.

Table 4.2: Final clustering metrics on simulated phylogenies.

Metric Training Validation
ARI 0.71± 0.06 0.66± 0.07
NMI 0.74± 0.05 0.70± 0.06
AMI 0.72± 0.05 0.68± 0.06

Although empirical phylogenies come with well-established lineage or clade
labels, these annotations represent operational ground truth. They are defined
through a mixture of historical convention, expert curation, and pathogen-specific
heuristics, and they do not necessarily correspond to the fitness shifts that underpin
the simulated training data. For this reason, quantitative clustering metrics such as
ARI, NMI, and AMI, which rely on a one-to-one correspondence between predicted
and true clusters, are not computed on empirical datasets. Instead, empirical
results are evaluated qualitatively, in the subsequent sections of this chapter, by
comparing the predicted clusters with these operational labels to assess whether
the model recovers the major evolutionary groups.

4.2.4 Interpretation
These clustering scores show that:

• the model reliably reconstructs the major mutation-driven clades;

• small clusters are sometimes merged, reducing ARI slightly;

• the gap between training and validation is small, indicating good generalization.

Overall, Phyloscope learns a meaningful and stable embedding space that
captures the true evolutionary communities present in the simulated phylogenies.

4.3 Network validation
Threshold selection for clustering. While the contrastive loss shapes the
continuous geometry of the embedding space, a discrete cluster assignment is
required to visualize the results on empirical phylogenies. For these real-world
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datasets, cluster boundaries were obtained by applying a similarity threshold to
the node-parent cosine similarity detailed in the previous chapter 3.

The threshold was not fixed a priori, as the appropriate value depends on the
empirical distribution of similarities in each tree. Instead, only for inference on
empirical data, an elbow-based heuristic was used: selecting the threshold at the
point where the similarity histogram shows a sharp change in slope. Fig. 4.3 shows
an example of the elbow heuristic for clustering. This choice has a purely visual

Figure 4.3: Elbow heuristic for selecting the number of clusters in k-means
clustering. The plot shows how the inertia, the within-cluster sum of squared
distances between each point and the centroid of its assigned cluster, changes as
a function of the number of clusters k. The x-axis reports the chosen value of k,
while the y-axis reports the corresponding inertia. Increasing k always decreases
inertia, because clusters become smaller and better fit the data. However, the
rate of decrease is not uniform: after an initial steep drop, the curve gradually
flattens. The elbow point marks the value of k where adding more clusters provides
only marginal reductions in inertia. This point offers a practical trade-off between
underfitting (too few clusters) and overfitting (too many), and is therefore used as
a heuristic to select an appropriate number of clusters.

and interpretative purpose:

• it enables the projection of continuous embeddings onto discrete clusters,

• it produces stable and biologically interpretable clade partitions,

• and it can be easily adjusted by inspecting the histogram for each empirical
dataset.

Importantly, this threshold plays no role during training or validation on simu-
lated data, where ground-truth cluster labels exist and are used directly. In this

60



Results

context, the threshold was set to 0.5 for all phylogenetic trees, and this proved to
be an optimal choice for visualization purposes for the majority of phylogenies. Its
role is limited to the qualitative visualization of cluster structure in real phyloge-
netic trees, allowing the continuous embedding space to be mapped into discrete
evolutionary groups.

Realistically, the threshold is pathogen-specific and has to be fine-tuned by the
user, very similarly to Phylowave [9]. Later studies could automate this process.

Figure 4.4: Example of validation tree: comparison between mutation values, true
cluster labels, embedding-based similarity, and predicted labels for a representative
simulated phylogeny. Top: true mutation coloring (left) and corresponding ground-
truth cluster assignments with logged birth for each corresponding mutation in the
legend (right). Bottom: similarity map derived from the learned node embeddings,
with a histogram showing the similarity scores (left), and model-predicted cluster
labels (right). The strong correspondence between predicted and true labels
indicates that the encoder successfully captures the hierarchical structure of the
tree and reconstructs meaningful evolutionary clusters.

Figure 4.4 provides a visual comparison between the ground-truth evolutionary
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structure of a simulated phylogeny and the corresponding predictions obtained
by applying the prediction head to the embeddings produced by the Phyloscope
encoder. The top-left panel shows the true mutation-based coloring of the tree,
where all of the simulated mutations are displayed with different colors. The
top-right panel illustrates the true cluster labels after the minimum leaves per
cluster condition was applied: each color corresponds to a clade originating from a
mutation event that satisfies the minimum cluster size criterion. These labels serve
as the structural ground truth that the model aims to reconstruct.

The bottom-left panel displays the similarity scores computed from the learned
node embeddings. Branches with higher similarity are rendered in more saturated
colors, indicating that the encoder successfully captures hierarchical relationships
across the tree. The histogram uses cosine similarity values on the x-axis, while
the y-axis reports the number of node pairs falling into each similarity bin. To
make both very common and very rare similarity values visible, the y-axis is shown
on a logarithmic scale. The inset histogram shows two main groups of similarity
values, which roughly correspond to pairs of nodes from the same cluster and from
different clusters.

Finally, the bottom-right panel shows the predicted labels obtained from the
model. The correspondence with the true labels is generally good: major clades are
correctly recovered, and the boundaries between predicted clusters closely follow
the underlying phylogenetic splits. Comparing predicted results and ground truth,
small discrepancies can be found: the green cluster (11.3) is not predicted correctly
as it is merged with the light orange one (5.89). The same misclassification occurs
for some blue tips (1.66) classified as orange (4.03). Overall, the model recovers
the four main clusters, with only minor misclassifications.

This type of four-panel layout is used in all the following figures: the top row
always shows the true mutation coloring and the corresponding true cluster labels,
while the bottom row displays the similarity map with its histogram and the
predicted labels.

Figure 4.5 presents a special validation case in which the simulated phylogeny
contains no mutation event large enough to form a valid cluster under the mini-
mum–leaves criterion. As shown in the top row, in the mutation coloring some
small clusters are identified, but in the true cluster labels those clusters are not
present, since their nodes had less than 17 descendant leaves, considering that the
entire tree belongs to a single homogeneous group.

This example is important because it evaluates whether the network introduces
artificial structure when none is present. In the bottom-left panel, the similarity map
computed from the learned embeddings shows consistently high cosine similarity
across almost all branches. The histogram in the inset, displays a narrow peak
concentrated at very high similarity values, suggesting very similar node-parent
embeddings. This indicates that the encoder correctly interprets the whole tree as
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Figure 4.5: Second validation tree example: this phylogeny contains no mutation-
derived clusters in the ground truth. Top: true mutation coloring (left), and the
corresponding true cluster labels (right), showing a single mutation value across
the entire tree, where all nodes belong to the same cluster due to the absence of
valid mutation events. Bottom: similarity map derived from the learned node
embeddings (left), with a log-scaled histogram of cosine similarity values in the
inset, and the predicted labels (right). As expected, the network assigns all nodes
to a single cluster.

a single coherent unit, with no internal divisions strong enough to imply separate
clusters.

An important consequence of these high similarity scores is that any threshold
used to discretize clusters would need to be set very low to artificially create more
than one cluster.

The bottom-right panel shows the predicted labels. Phyloscope assigns the
same cluster to every leaf, confirming that the model does not create evolutionary
structure when the underlying data does not support it. This conservative behavior
is essential: the method avoids false positives and only produces clusters when the
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learned embeddings exhibit meaningful separation.
Overall, this case demonstrates that the encoder behaves reliably in the absence

of true diversification and produces embeddings that remain stable and biologically
consistent.

4.4 Inference on Empirical data
From validation trees to empirical ones Having illustrated two representative
validation examples, one with clear mutation-driven structure and one with no
detectable clusters, the behavior of the model on simulated data has been illustrated.
The analysis can therefore proceed to the inference results on empirical phylogenetic
datasets.

Table 4.3: Phyloscope similarity thresholds selected for each empirical dataset.

Dataset Threshold
Pertussis 0.71
SARS-CoV-2 0.85
TB 0.80
H3N2 0.90

Table 4.3 summarizes the optimal thresholds found for each pathogen. The
similarity threshold was selected separately for each dataset by visually inspecting
the histogram of cosine similarities and choosing the point corresponding to the
elbow of the distribution. This threshold is used only to convert the continuous
embedding space into discrete clusters for visualization and comparison with ground-
truth clade labels. The minimum leaves per cluster threshold was set to 17 in
all experiments, matching the value used during training and validation. This
choice provided a good balance between avoiding very small, unstable clusters and
preserving the main mutation–derived clades. An exception was made for the H3N2
dataset: due to the presence of many small clades terminating in several closely
related leaves, the threshold was increased to 25 to prevent the formation of many
small clusters.

In the case of H3N2 (Figure 4.6), Phyloscope is able to reconstruct the main
structure of the phylogeny, capturing most of the large clades. The true clade
assignments (top-right panel) contain many closely related sublineages.

The predicted labels (bottom-right panel) follow these groups reasonably well.
The deepest splits of the tree are reproduced correctly, and the main backbone of
the phylogeny is preserved. Several of the larger clusters, in particular 2a, 2a.1,
and 2a.3, are recovered as coherent units.

64



Results

Figure 4.6: Inference results for the H3N2 phylogeny (subsampled from 2022).
Top row: the true clade assignments derived from metadata (right) and the
corresponding mutation-based coloring (left), displaying the numerous closely
related sublineages that characterize recent H3N2 seasonal evolution. Bottom
row: the similarity map computed from Phyloscope’s learned embeddings (left),
with a log-scaled histogram of cosine similarities in the inset, and the predicted
cluster labels produced by the model (right). Phyloscope successfully recovers the
major circulating clades, including the prominent groups 2a, 2a.1, and 2a.3, and
preserves the deeper structural backbone of the tree. Because this tree contains
many small, shallow sublineages, the minimum cluster-size threshold was increased
to 25 tips to avoid fragmentation into numerous tiny clusters. Despite merging
some of the closest sublineages, the model provides a coherent reconstruction of
the main evolutionary groups present in the dataset.

Some of the finer subclades are merged by the model, such as 2a.3b and 2a.3
or 2a and 2a.2, and reflecting the difficulty of separating very similar H3N2 clades.

The similarity map (bottom-left) shows a clear block corresponding to the
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main H3N2 backbone, while higher similarities are concentrated within each ma-
jor seasonal group. This justified using a slightly larger minimum cluster size
(min_tips_per_cluster = 25) for this dataset, preventing the formation of nu-
merous tiny clusters and stabilizing the predicted structure.

Overall, Phyloscope provides a coherent reconstruction of the H3N2 phylogeny:
the main circulating clades are recovered, the major evolutionary splits are main-
tained, and only finer sublineages are occasionally merged.

Figure 4.7: Inference results for the Pertussis phylogeny (2009–2011 subsam-
ple). Top row: true clade assignments derived from metadata (right) and the
corresponding mutation-based coloring (left) after minimum leaves per cluster
grouping. Bottom row: similarity map computed from the learned node embed-
dings (left), including a log-scaled histogram of cosine similarities in the inset,
and the predicted cluster labels returned by Phyloscope (right). Two of the three
major clades (ptxP1/fim3-1 and ptxP3/fim3-2) are successfully recovered, with
predicted clusters that match the true structure of the tree.

Figure 4.7 shows the inference results for the Bordetella pertussis phylogeny
(2009–2011 subsample). This dataset contains only three major clades of substantial
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size, as the Others category is represented by very few tips and therefore falls
below the minimum cluster-size threshold. Increasing the minimum leaves per
cluster hyperparameter would have omitted the Others cluster. However, other
relevant clusters would not have been considered.

One true clade is not identified: instead, the model detects an additional
cluster with high internal similarity, a behavior also observed in PhyloWave for
this dataset. Because the Others clade contains too few tips, it falls below the
minimum cluster-size threshold and is therefore not treated as a separate cluster.

Overall, the model reconstructs the main evolutionary relationships in the
Pertussis phylogeny, detecting one additional undetected cluster.

Figure 4.8: Inference results for the SARS-CoV-2 phylogeny (subsampled from
2023). Top row: mutation-based coloring (left) and true clade assignments (right),
showing the dominant Omicron sublineages present in the dataset. Bottom row:
similarity map derived from the learned node embeddings (left), including a log-
scaled histogram of cosine similarities in the inset, and the predicted cluster labels
obtained from Phyloscope (right).
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Figure 4.8 shows the inference results for the SARS-CoV-2 phylogeny (subsam-
pled from 2023). This dataset consists almost entirely of Omicron sublineages,
many of which differ by only a few mutations, making their separation particularly
challenging for any similarity-based model.

Phyloscope successfully recovers the major Omicron groups, producing a pre-
dicted structure that broadly follows the true clade assignments. The large-scale
splits are captured accurately, and the global arrangement of the tree is consistent
with the true evolutionary relationships. However, several of the finer sublineages
(e.g. 22F, 23A and 22D, 21L) exhibit very small genetic distances and are therefore
merged by the model into larger predicted clusters.

Despite these limitations, the essential backbone of the SARS-CoV-2 tree is
preserved: the main Omicron lineages are clearly distinguished, and the predicted
clusters remain biologically coherent. This behavior is expected given the limited
genetic variation present across recent Omicron subclades and is consistent with
observations made in similar frameworks such as PhyloWave.

Figure 4.9 shows the inference results for the Tuberculosis (TB) phylogeny.
Unlike the viral datasets, this tree contains only a few broad clades, all belonging
to the Euro-American lineage, but with several well-defined subgroups such as
Euro_American_LAM, Euro_American_Harleem, and Euro_American_Ural.

Phyloscope correctly recovers the major Euro-American backbone of the tree:
the large top and bottom clusters are reconstructed consistently and match the true
labels, which is a non-trivial aspect of this dataset due to the long branches sepa-
rating these groups. However, the model has more difficulty distinguishing among
the internal Euro-American sublineages. In particular, Euro_American_LAM is split
into two predicted clusters, and several tips belonging to Euro_American_Ural are
misclassified. Furthermore, the Euro_American_Harleem clade is not recovered as
a distinct group, instead it is merged with the bigger Euro-American

Despite these limitations, the global tree structure is largely preserved, and the
main Euro-American division is captured correctly. This outcome is consistent
with the behavior observed in other empirical datasets: the model performs well
on broad-scale splits, while finer distinctions between closely related sublineages
are more challenging to resolve based solely on embedding similarity.
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Figure 4.9: Inference results for the Mycobacterium tuberculosis (TB) phylogeny.
Top row: mutation-based coloring (left) and true clade assignments (right), showing
the major Euro-American sublineages present in the dataset. Bottom row: similar-
ity map produced by the learned node embeddings (left), including a log-scaled
histogram of cosine similarities, and the resulting predicted cluster labels from
Phyloscope (right).
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Chapter 5

Discussion & Conclusions

5.1 Discussion

In this thesis, the community detection problem in phylogenetic trees is addressed,
which is crucial for the identification of clades with increased fitness that could
create threats for public health (for example escaping immunity).

This thesis introduced Phyloscope, a new framework for detecting clades in phy-
logenetic trees using recursive neural networks and supervised contrastive learning.
This work brought together two core contributions: a recursive architecture (hybrid
CBLV–MLP) for producing the encodings of the phylogenetic tree and a smoothed
contrastive loss formulation that allowed the embeddings to reflect the mutation
dynamics.

To train the network, a large dataset of phylogenetic trees was simulated under
a birth-death model extended with mutation events. Once simulated trees were
preprocessed and converted into structured samples, the recursive encoder was
trained to summarize node information into a fixed-dimensional encoding. A
contrastive loss led pairs of nodes with similar birth-rate to be close in embedding
space, while pushing apart pairs with different anchors. The more the respective
birth rates were different, the more their encodings were pushed apart.

The final output of Phyloscope is a matrix of cosine similarities between the nodes
of a given tree. By applying a similarity threshold, this continuous representation is
converted into discrete clusters. A key advantage of this threshold is interpretability:
it can be easily fine-tuned by looking at the similarity histogram. In empirical
applications, a simple elbow technique was applied to select the optimal number of
clusters. This selection proves to be more intuitive than previous approaches, such
as PhyloWave [9], where a different threshold had to be fine-tuned by experts.

Across both simulated and empirical datasets, Phyloscope was able to correctly
detect the majority of clades. In validation trees, the network logically identified
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clades with respect to their birth rates, also proving not to hallucinate when no
mutations were present. On the four empirical phylogenies, (H3N2, Pertussis,
SARS-COV-2 and Tuberculosis), the network reproduced the major lineage splits
and occasionally merging very similar clusters. In the Pertussis tree, an additional
lineage was detected, while for the Tuberculosis tree some misclassification problems
were shown.

The empirical analyses highlighted some limitations. It is unclear how the
performance of Phyloscope would generalize for trees larger than those that appeared
in the training data. However, given the recursion, it seems plausible it would work
well within trees up to 500 tips (which was the upper bound for the simulated
trees).

Overall, Phyloscope:

• suggests a novel way of automatically detecting fitness-increasing mutation
events in pathogen phylogenies,

• offers a real-time, scalable inference that does not rely on expert-defined
metrics,

• generalizes reasonably to real-world pathogen phylogenies.

Importantly, using simulated phylogenies is not a limitation of the method.
The simulation framework can be made more realistic very easily, and Phyloscope
would immediately benefit from this increased realism. This is a clear advantage
over analytical approaches such as Phylowave, where extending the underlying
mathematical model is far more difficult. Therefore, the ability to plug in richer
and more accurate simulations should be viewed as one of the strengths of the
framework.

5.2 Conclusions and Future Work
This thesis introduced Phyloscope, a novel framework for clade detection in phylo-
genies based on recursive neural encodings and contrastive learning. The method
demonstrates that learned representations can capture evolutionary structure in
a way that is competitive with existing approaches while offering greater flexi-
bility and conceptual simplicity. Across simulated and real-world datasets, the
model was able to reconstruct major clades, highlight regions of high similarity in
the embedding space, and generalize across pathogens with distinct evolutionary
profiles.

Several promising directions for future work emerge from this study. First,
the current loss function could be extended or replaced by a more expressive
formulation that better captures the hierarchical nature of phylogenies. Second, the

71



Discussion & Conclusions

model architecture itself could be enriched: while a simple MLP proved effective,
more powerful designs may further improve encoding quality. Another promising
direction for future work concerns the simulation framework. Although the normal
distribution used for the birth-rate scaling factor makes large fitness decreases
extremely unlikely (occurring only several standard deviations away from the
mean), the framework itself is flexible and can easily accommodate more complex
evolutionary scenarios. Future extensions could therefore incorporate mutations
with both increasing and decreasing fitness, or adopt more expressive models such
as BDEI or BDSS, ultimately enabling the model to train on larger and more
realistic phylogenies. Training on larger phylogenies remains a major goal: with
appropriately designed simulations, Phyloscope could eventually operate on full
pathogen trees without relying on subsampling, enabling direct comparisons with
state-of-the-art methods like Phylowave.

An additional research direction concerns threshold selection. A principled, data-
driven approach for determining pathogen-specific thresholds, possibly leveraging
the similarity histogram or embedding geometry, would significantly enhance the
usability and automation of the method.

Finally, extending the model with an inference head capable of estimating birth
rates or other evolutionary parameters would open the door to true phylodynamic
inference within the Phyloscope framework.

Overall, this work establishes a foundation for learning-based clade detection
and points to several exciting opportunities for extending Phyloscope toward a
more robust, scalable, and biologically grounded tool for phylogenetic analysis.
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