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Abstract

This thesis explores how explainability can be introduced into Music Emo-
tion Recognition (MER) models, which are usually hard to interpret despite
their good performance. While many deep learning models can predict the
emotional content of music with high accuracy, they often work as black boxes,
giving little to no information about how they reach their conclusions. The
goal of this work is to make these models more understandable, especially
for users who might want to exploit them not just as tools, but also to learn
something from them.

To do this, the thesis develops and tests two different approaches. The first
one is based on musical features—some taken from the literature, and others
introduced as a novel contribution. It starts from an existing deep learning
framework that uses mid-level features like melodic or rhythmic descriptors
to explain predictions, and then expands it by adding simpler, more intuitive
features like chords or notes that could be easier to interpret and possibly
helpful to composers or researchers.

The second approach instead focuses on raw audio data. Here, the idea is
to make the model’s internal reasoning perceptible through sound. Using a
Vision Transformer (ViT) trained on spectrograms and Layer-wise Relevance
Propagation (LRP), this method creates a modified version of the original
music where the most relevant parts for the prediction of the task Happy vs.
Sad are made louder, allowing the listener to hear which segments influenced
the classification most.

Even if the two approaches are different, they aim at the same objective:
making MER models more transparent and easier to interact with. The hope
is that this kind of explainability can help both in research and in creative
applications, giving users a better grasp of the models’ internal reasoning
processes.

Code and audio demos:
https://github.com/giacomozu/Explainability-Methods-in-Music-Emotion-Recognition
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1 Introduction

1.1 Motivation and Problem Statement

Music has always played a central role in human emotional expression. Whether

through melody, rhythm, or harmony, musical structures seem to resonate with

deeply rooted affective patterns. In recent years, this expressive capacity has be-

come the focus of computational models aimed at understanding or even predicting

emotional responses to music. This research field, known as MER, has seen rapid

development, especially with the rise of deep learning methods.

Yet, as predictive accuracy has improved, a significant problem remains: the opacity

of these models. Most modern MER systems behave as black boxes, providing

outputs (e.g., “happy” or “sad”) without offering any insight into the reasoning that

led to those decisions. This lack of interpretability is not a trivial issue. It affects

the reliability of these systems and, more importantly, prevents users from using

them as tools for musical understanding, composition, or research.

This thesis tackles this issue by posing the following research question: How can we

build models for MER that not only perform well but also reveal something about

how music and emotion are related? What kinds of explanation might be useful,

for example, to a composer trying to shape the affective impact of a piece, or to a

researcher studying musical communication?

1.2 Objectives of the Study

The main goal of this work is to explore different strategies for making MER models

more interpretable. Two complementary directions are developed throughout the

thesis.

The first is grounded in musical structure. It focuses on using features that carry

an intuitive musical meaning, like melodic shape, chord sequences, or rhythmic

stability, as a bridge between audio and emotion. The idea is that if the model

reasons through familiar musical concepts, then its predictions can be more easily
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interpreted by humans.

The second direction takes a more perceptual route. Instead of looking at symbolic

representations, it works directly with audio (more precisely, with spectrograms) and

uses attribution methods to identify which parts of the input were most important

for the model’s decision. These relevance maps are then turned into sound using a

sonification process, so that the explanation becomes something that can be heard

rather than just visualized.

Although these two approaches differ in methodology, they share the same objective:

making the internal logic of MER models more accessible. By combining structural

and perceptual perspectives, the thesis aims to explore how explainability can not

only improve trust in the model, but also enrich our understanding of music itself.

1.3 Anticipated Findings.

While a detailed discussion is left to the later chapters, it is useful to highlight

here some of the main lessons that emerged from the experiments. In the feature-

based route, combining harmonic and timbral cues turned out to be more effective

than using either source alone. In particular, concatenating chromagrams with

spectrograms provided a clear boost over single representations, confirming that

emotional perception in music depends on both pitch structure and fine spectral

detail. Linear regression models with mid-level and symbolic features also proved to

be surprisingly strong: their stability and interpretability made them preferable to

shallow neural networks in most cases, even when the latter offered more flexibility.

On the perceptual side, the ViT classifier reached a solid level of accuracy on the

Happy vs. Sad task, and the use of LRP revealed that rhythmic regularity was

one of the strongest cues exploited by the model. Through sonification, these pat-

terns became clearly audible, showing how the system tended to associate steady

pulses with happiness and darker, sustained textures with sadness. Taken together,

these results suggest that explainability is not only possible but can actively shape

modelling choices: richer feature sets and perceptual attributions both pointed to

musically meaningful cues, offering insights that go beyond raw metrics.
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1.4 Structure of the Thesis

The thesis develops along two parallel experimental directions, both aimed at im-

proving the interpretability of MER systems. The first direction focuses on struc-

tured musical features such as chroma, mid-level perceptual descriptors, and chord

encodings as inputs for interpretable models. The second direction explores per-

ceptual approaches based on deep learning, with a Vision Transformer trained on

spectrograms and analyzed through attribution and sonification techniques.

These two paths are introduced and elaborated progressively across the chapters,

allowing for a coherent and comparative understanding of their goals, methodologies,

and outcomes.

After introducing the theoretical foundations in Chapter 2, where the key concepts

of MER, explainable AI (XAI), and audio-derived representations are discussed, the

thesis continues in Chapter 3 with a review of the most relevant related work,

including both traditional and deep learning approaches to MER, the use of mid-

level features, and recent developments in explainability for audio tasks.

Chapter 4 presents the methodological framework that supports both experimental

directions of the thesis. It details the datasets used, the feature extraction processes,

the architecture of the models, and the explainability techniques adopted, including

SHAP and Layer-wise Relevance Propagation (LRP). This chapter also outlines the

sonification pipeline developed to transform model attributions into perceptually

meaningful audio.

Chapter 5 is dedicated to the experiments and the discussion. It is divided into

two main sections: the first one focuses on models built using symbolic and mid-

level musical features, analyzing their predictive performance and interpretability;

the second one covers perceptual models based on Vision Transformers trained on

spectrograms, and explores their behavior using LRP and audio-based sonification.

Quantitative and qualitative results are presented for both paths and their findings

are discussed, highlighting the benefits and limitations of each.

Chapter 6 summarizes the main contributions of the thesis and outlines possible

directions for future research in both explainability and music emotion modeling.
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2 Theoretical Background

2.1 Fundamentals of MER

MER is concerned with the task of predicting the emotional content of a musical

excerpt based on its audio signal. Emotions in this context can be expressed using

either categorical labels (e.g., happy, sad, angry) or continuous dimensions (such as

valence and arousal), depending on the type of annotation provided in the dataset.

One of the main challenges in MER stems from the inherently subjective nature of

emotional perception in music, which is influenced by individual experience, cultural

background, and listening context. Despite this, researchers have identified shared

patterns that link certain musical elements to consistent emotional responses, al-

lowing for the development of computational models capable of making meaningful

predictions. These models are typically trained on datasets where human annota-

tors have provided ratings for short musical excerpts based on how the music made

them feel.

MER lies at the intersection of computer science, psychology, and musicology, and

its applications are numerous: from personalized music recommendation systems to

affect-aware interactive systems and even therapeutic interventions where music is

used as an emotional regulator.

2.2 Theoretical Music Features

The theoretical underpinnings of music provide a structured framework for under-

standing the elements that constitute musical compositions. These include notes,

intervals, chords, and chord progressions—each of which has well-defined mathemat-

ical properties that can be encoded computationally.

2.2.1 Notes

Notes are the atomic units of musical language, each corresponding to a particu-

lar pitch determined by frequency. In Western music, twelve distinct pitches form
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the chromatic scale, named with the letters A–G together with their sharp or flat

variants. The frequency of a note in equal-temperament tuning is

fn = f0 · 2n/12,

where f0 is a reference frequency (typically 440 Hz for A4) and n is the number of

semitone steps from that reference.

2.2.2 Intervals

An interval denotes the distance between two notes, measured in semitones. Intervals

play a key role in both melodic and harmonic contexts. For instance, the interval

between C and G (a perfect fifth) spans seven semitones and corresponds to a

frequency ratio of 3:2. Understanding and encoding intervals allows for a compact

representation of melodic contours and harmonic structures.

Figure 1: Visual representation of melodic intervals starting from C (Do). Each note pair
illustrates a common interval type, ranging from the perfect unison to the perfect octave.

2.2.3 Octave

Two notes separated by twelve semitone steps—i.e. when n differs by 12—are said

to be one octave apart. Because 212/12 = 2, an octave corresponds to a doubling (or

halving) of frequency: for example, A3 is 220 Hz, A4 is 440 Hz, and A5 is 880 Hz.

Although their frequencies differ, octave-related notes share the same letter name

and are perceived as musically equivalent, a property that underlies octave-folding

in chromagrams.
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2.2.4 Chords

Chords are combinations of notes played simultaneously, typically built by stacking

thirds on top of a root note. For example, a C major triad consists of the notes C,

E, and G. Chords can be described using interval-based encoding, which lends itself

well to symbolic representations in computational models.

2.2.5 Chord Progressions

Chord progressions are sequences of chords that establish harmonic context and

direction. They are often described using Roman numerals based on scale degrees

(e.g., I–IV–V–I in C major corresponds to C, F, G, and C). These progressions

can be transposed and generalized across keys, making them ideal candidates for

analysis in music information retrieval and emotion modeling tasks.

By encoding notes, chords, and progressions in structured formats, it becomes pos-

sible to analyze their contribution to emotional content computationally, forming

the basis for the feature-based branch of this thesis.

(a) The chord of C major, composed of root
note (C), major third (E), and perfect fifth
(G). The symbol on the left is a treble clef,
which indicates the pitch range of the nota-
tion.

(b) A common chord progression (C, Am, F,
G). Roman numerals indicate scale degrees
relative to the key.

Figure 2: Visual representation of a chord and a chord progression. Each chord in these
examples is formed by 3 notes with an interval of 2 semitones between them.

2.3 Audio-Derived Representations

To enable machine learning algorithms to process audio, we must first convert the

waveform into representations that retain essential information while being struc-
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tured in a format compatible with computational models.

2.3.1 Spectrogram

A spectrogram visualises how the spectral content of a signal evolves over time.

The discrete-time waveform x[n] is first segmented into overlapping frames of NFFT

samples, each new frame starting H samples after the previous one (the hop size).

Before transformation, every frame is multiplied point-wise by an analysis window

w[n]1. The Short-Time Fourier Transform (STFT) of the signal is then computed

as:

X[m, k] =

NFFT−1∑
n=0

x[n+mH]w[n] e−i2πkn/NFFT ,


m ∈ {0, . . . ,M − 1}, (frame index)

k ∈ {0, . . . , NFFT

2
}, (frequency bin)

(1)

The complex coefficients are converted to a log-magnitude spectrogram by taking

their magnitude and expressing it in decibels relative to the maximum magnitude

in the whole STFT matrix:

S[m, k] = 20 log10

(
|X[m, k]|
∥X∥max

)
. (2)

This operation can be, e.g., performed by leveraging the function amplitude_to_db()

from librosa, called with ref=np.max. Setting the reference amplitude to the maxi-

mum value in the spectrogram (ref=np.max) ensures that 0 dB corresponds to the

most energetic point, and all other values are negative. More importantly, it makes

the dynamic range relative to the signal itself.

This is particularly useful in MER, where absolute loudness can vary a lot across

tracks. What matters more is the relative distribution of energy over time and

frequency. By normalizing each spectrogram to its own maximum, we focus on

these internal patterns—highlighting timbral and rhythmic cues—rather than being
1A tapering function—typically Hann or Hamming—that smoothly brings the frame amplitude

to zero at its ends, thereby reducing spectral leakage.
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misled by global amplitude differences. The resulting 2-D array S is displayed as

an image whose horizontal axis represents time (frames m), vertical axis represents

frequency (bins k), and pixel intensity encodes relative energy in decibels—brighter

pixels correspond to higher energy. Because it preserves both timbral and rhythmic

cues, the spectrogram is a fundamental input representation for downstream tasks

such as MER.

Figure 3: Example of a log-magnitude spectrogram. The x-axis represents time in
seconds, while the y-axis shows frequency in Hz on a logarithmic scale. Colour intensity
encodes signal amplitude in decibels (dB), with brighter regions indicating higher energy.
Lower frequencies are concentrated near the bottom, while harmonics and higher-frequency
components appear toward the top.

2.3.2 Chromagram

A chromagram (or chroma feature) condenses the spectrum into the twelve pitch

classes in the equal-tempered scale (C, C♯, D, . . . , B), with notes from every octave

merged into those same twelve bins. Starting from the same STFT magnitude

|X[m, k]| defined in Eq. (1), we aggregate the energy of every frequency bin whose

pitch maps to the same pitch class.

Let K = NFFT
2

be the number of frequency bins considered in the STFT. Then define

a binary mapping matrix H ∈ R12×(K+1), where:

Hp,k =


1, if the centre frequency of bin k belongs to pitch class p,

0, otherwise,
p ∈ {0, . . . , 11}.
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be a 12× (K + 1) binary mapping matrix. The (unnormalised) chroma matrix is

C[p,m] =
K∑
k=0

Hp,k |X[m, k]|. (3)

By discarding octave2 information and retaining only pitch classes, chromagrams

emphasise harmonic progressions and melodic contours, which are highly relevant

for tasks such as key detection, chord recognition, and, in our case, music-emotion

prediction.

Figure 4: Example of a normalised chromagram. The x-axis represents time in sec-
onds; the y-axis lists the twelve pitch classes, octave-folded. Colour intensity encodes the
relative strength of each pitch class (0–1 after normalisation), with brighter cells indicating
higher energy. Chromagrams capture harmonic and tonal structure while abstracting away
absolute pitch, making them a powerful representation for music-emotion analysis.

In Section 5 we will see that also the 12-bin semplification of the chromogram is

used for training. This simply consists in the 12 average values of the Pitches from

C to B across the whole time axis.

2.4 Overview of Model Architectures

This section introduces the three main types of models used throughout this the-

sis: Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and linear

models. Each of these was chosen depending on the type of input data being consid-

ered and the goals of each experiment, especially considering the trade-off between
2See Section 2.2.3.
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accuracy and interpretability.

2.4.1 Convolutional Neural Networks (CNNs)

CNNs are amongst the most common choice when working with data that can be

represented as images, which is the case when we turn audio signals into spectro-

grams or chromagrams. These models are made up of convolutional layers that scan

the input image with filters and learn to detect patterns like edges, textures, or more

complex shapes as the network goes deeper [Choi et al., 2017; LeCun et al.,

1998]. In the experiments reported in this thesis CNNs were used both for regres-

sion tasks (predicting continuous emotion scores) and for classification (assigning an

emotion label to a clip).

Each convolutional block is usually followed by ReLU activations, batch normaliza-

tion, pooling layers, and sometimes dropout to prevent overfitting.

• ReLU (Rectified Linear Unit): an activation function defined as f(x) =

max(0, x). It introduces non-linearity into the network, allowing the model to

learn complex patterns while being computationally efficient.

• Batch Normalization: a normalization technique applied to intermediate

layers of the network. It standardizes the inputs of each layer to have zero

mean and unit variance, stabilizing and accelerating training while also acting

as a regularizer.

• Pooling Layers: operations (such as max pooling or average pooling) that

reduce the spatial dimensionality of feature maps. This helps decrease the

number of parameters, improve computational efficiency, and provide a form

of translation invariance.

• Dropout: a regularization method where, during training, a fraction of neu-

rons is randomly “dropped” (i.e., temporarily set to zero). This prevents co-

adaptation of neurons and reduces the risk of overfitting, leading to better

generalization.
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Even though these models typically exhibit good performance, they are not partic-

ularly easy to interpret, since their internal workings are quite opaque unless we

use some post-hoc explainability tools like SHAP (see Section 2.5.1) or LRP (see

Section 2.5.2).

The way features are learned in CNNs follows a hierarchy. In the early layers filters

might respond to a single onset or to a couple of harmonics stacked vertically, while

later layers can recognize timbral textures or recurring rhythmic patterns. This

multi-level process mirrors how humans perceive music, combining small details

into bigger structures. Pooling plays a role here too: by reducing the size of the

feature maps it forces the network to keep only the most relevant information and

makes the detection more robust to small shifts in time or frequency. In practice,

this means a note or an onset can still be picked up even if it happens a little earlier

or later than expected.

Normalization and dropout are more on the technical side, but they matter in prac-

tice because they stabilize training and help the model not to just memorize the

training data. This is especially important in MER, where datasets are limited in

size and can have a lot of variability from one song to another.

At the end of the convolutional stack, the feature maps are flattened and fed into

dense layers. These fully connected layers essentially combine all the features into

the final prediction: either a set of probabilities through a softmax when doing

classification (e.g. happy vs. sad), or continuous values when doing regression. This

pipeline, which is sketched in Figure 5, is the standard way CNNs are used in MIR

tasks.

Of course CNNs also have their weak points. Since the filters are local, the network

does not directly capture long-term structure, which is very relevant in music. Also,

even if we can sometimes look at a filter and see that it matches something like an

onset, the overall reasoning process of the network is still a black box. This is why

CNNs in this thesis are complemented with explainability tools. Still, their efficiency

and their ability to capture meaningful short- and mid-term patterns make them a

good baseline, and also a useful comparison point for newer models such as Vision

Transformers.
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Figure 5: Example of a CNN pipeline for classification. Convolutions and pooling pro-
gressively reduce the input into smaller feature maps, which are then passed to dense layers
that output the final prediction. The figure is meant to show the overall flow rather than
the exact details of any particular model. Reprinted from Haque, 2023.

2.4.2 Vision Transformers (ViTs)

Transformers have been a huge breakthrough in NLP, and recently they have been

adapted for vision tasks too. ViTs, introduced by [Dosovitskiy et al., 2021], treat

an image as a sequence of patches and process them using self-attention mechanisms.

Interestingly, ViTs can model long-range dependencies and complex interactions

between different parts of the image: in this case, different time-frequency regions

of a spectrogram.

In this thesis, a pre-trained ViT model on spectrogram images was leveraged and

fine-tuned, with the goal of classifying emotional content (Happy vs Sad). The ViT

does not have built-in biases like local connectivity or translation invariance, so it

tends to be more flexible but also needs more data to learn well. To make training

feasible, pre-trained weights from ImageNet [Deng et al., 2009] were used and

spectrograms were refined to fit the input requirements.

One of the reasons suggesting the usage of a ViT in this context was not just to test

performance, but also to apply LRP and visualize what parts of the spectrogram

were most important for the model’s decisions. This enabled to associate good per-

formance with some form of interpretability, even though these models are complex

and require more computational resources.

Compared to CNNs, ViTs do not rely on convolutions and pooling but instead break
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the spectrogram into a set of patches that are treated like tokens. Each patch is

linearly projected into an embedding and positional encodings are added so that the

model still knows the order of patches. A special [class] token is added at the

beginning of the sequence. This token does not correspond to any actual patch of

the spectrogram: instead, it is learned during training to gather information from

all the other tokens through self-attention, so that in the end it represents a global

summary of the input. This [class] token is then passed through a small multilayer

perceptron (MLP) head that outputs the class prediction. The key difference from

CNNs is that the self-attention mechanism can directly connect distant parts of

the input, so the model can, for example, link a bass onset with high-frequency

harmonics further away in time.

This flexibility comes at a cost: training a ViT from scratch usually requires very

large datasets. That is why pre-training on ImageNet and then fine-tuning on spec-

trograms was essential here. Another point is that ViTs, being heavy models, need

more computational resources than CNNs. Still, they are particularly interesting

in this thesis because the self-attention and the use of attribution methods such as

LRP make it possible to open the “black box” a little more and connect the decision

process with meaningful musical cues.
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Figure 6: Overview of the Vision Transformer (ViT) workflow. The spectrogram is
divided into patches, which are embedded and enriched with positional information before
being processed by Transformer encoder layers. A dedicated [class] token collects a global
representation that is passed to an MLP head for classification. The figure emphasizes the
sequence-based processing of image patches that distinguishes ViTs from CNNs. Reprinted
from Dosovitskiy et al., 2021, via PapersWithCode.

2.4.3 Linear and Interpretable Models

Alongside deep learning models, experiments with simpler and more interpretable

models have also been considered in this thesis, like linear regression and shallow

feedforward networks. These were mostly used when the input data was highly

structured: for example, when using averaged chroma features (just 12 values per

clip) or mid-level perceptual descriptors like dissonance or rhythm stability.

The benefit of these models is that they are much easier to analyze. It is possible

to appreciate directly how each input feature affects the output, which makes them

ideal when interpretability is a key goal. SHAP was also used in some of these

experiments to better understand which features were contributing the most to the

predictions.

From a mathematical point of view, a linear regression model predicts the output

as a weighted sum of the input features. For a feature vector x = (x1, x2, . . . , xp)

the prediction is
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ŷ = w⊤x+ b, (4)

where w = (w1, . . . , wp) are the coefficients and b is the intercept. Each coefficient

indicates how strongly a feature influences the output, which makes the model easy

to interpret.

To prevent overfitting, especially when the number of features grows or they are

correlated, regularization is often added. In Ridge regression the objective becomes

min
w,b

N∑
i=1

(
yi − (w⊤xi + b)

)2
+ λ∥w∥22, (5)

where the parameter λ controls the strength of the L2 penalty. This discourages

large coefficients and makes the solution more stable.

In some cases interaction terms between features were also added, leading to a model

of the form

ŷ =

p∑
j=1

wjxj +
∑
j<k

wjk xjxk + b, (6)

Here p is the number of original features, wj are the coefficients for the individual

features, and wjk are the coefficients for the interaction terms, with the second

summation running over all pairs of indices (j, k) such that j < k, which allows the

model to capture how combinations of features may influence the prediction beyond

their individual contributions. This extra flexibility comes at the cost of many more

parameters, so regularization is crucial to keep the model from overfitting.

Even though these models did not perform as well as CNNs or ViTs, they helped me

build some intuition about the relationship between musical structure and emotion,

and served as a kind of benchmark to evaluate whether more complex models were

really learning something meaningful or just overfitting.
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2.5 Explainable AI Methods for MER

Explainable AI (XAI) encompasses a collection of techniques designed to provide

insights into how machine learning models make their predictions, particularly in

the case of complex, non-transparent models such as deep neural networks.

The motivations for using XAI in this project are two: first, it helps improve trust

and accountability, particularly in sensitive applications; second, and perhaps more

relevant in a creative domain like music, it allows us to gain a better understanding

of the phenomena being modeled. In the context of MER, understanding how a

model associates musical features with emotions can yield insights both for music

researchers and practitioners.

This section gives an overview of the three explainability techniques used in this

thesis: SHAP (SHapley Additive exPlanations), Layer-wise Relevance Propagation

(LRP), and a perceptual sonification approach. These are not necessarily the most

advanced or popular techniques overall, but they were selected because they fit well

with the kinds of models and data used in this work (spectrograms, chromagrams,

and structured features).

The goal here is to explain how these techniques work and what kind of strengths

and weaknesses they have, without yet going into the details of their practical ap-

plication, which will be instead covered in Chapter 4.

Figure 7: XAI aims to open the “black box” of a machine-learning model by making its
internal decision process understandable by humans.
Reprinted from Papermaker AI, 2024.
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2.5.1 SHapley Additive exPlanations (SHAP)

SHAP is based on Shapley values, first used in game theory to measure how much

contribution each player adds to the final score. [Lundberg and Lee, 2017].

Here, the “game” is the prediction made by a model f , and the “players” are the

input features. Let x = (x1, . . . , xd) ∈ Rd be one sample with d features, and let

N = {1, . . . , d} be the index set of all features. SHAP writes the prediction f(x) as

f(x) = ϕ0 +
d∑

i=1

ϕi, (7)

where

ϕ0 Baseline: the expected model output Ez∼Db
[f(z)] over a background set

Db (often a random subset of the training data, but any representative

distribution can be used);

ϕi Shapley value for feature i, indicating how much the specific value xi raises

or lowers the prediction relative to the baseline.

For one feature i ∈ N , the exact Shapley value sums over every subset (coalition)

of the other features:

ϕi =
∑

S⊆N\{i}

|S|! (d− |S| − 1)!

d!

[
f(xS∪{i})− f(xS)

]
, (8)

with

S any subset that does not contain i;

xS the input where only features in S stay as they are—the others are replaced

by “missing” values drawn from a background distribution;

|S| the size of S; the factorial terms make sure each possible order of features

is treated fairly.
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The difference f(xS∪{i})−f(xS) shows how much the output changes when feature i

is added to coalition S. Taking the weighted average over all coalitions as in (8)

gives a single attribution that meets the Shapley axioms listed in Table 1.

Table 1: Game-theoretic axioms underlying Shapley values and their meaning for SHAP

Axiom Game-theoretic requirement Interpretation in the SHAP
setting

Efficiency
(Completeness)

The total value produced by the
grand coalition must be fully
given to the players.

Baseline plus all SHAP values
exactly rebuild the model output:
ϕ0 +

∑d
i=1 ϕi = f(x).

Symmetry Players that contribute in the
same way to every coalition get
the same reward.

Features with identical
contributions across all coalitions
receive the same ϕ.

Dummy (Null
player)

A player that never changes the
value of any coalition gets zero.

If a feature never changes the
prediction (∆i(S) = 0 for every
S), then ϕi = 0.

Additivity For two games g and h combined,
rewards add: ϕ g+h

i = ϕ g
i + ϕh

i .
If we add two models (for
example, by summing their
outputs), the SHAP values add in
the same way.

A positive ϕi means feature i pushes the output above the baseline ϕ0; a negative

value pushes it below. Because (7) is exact (up to the chosen approximation), adding

up all ϕi and ϕ0 rebuilds f(x). This check helps when drawing plots like waterfall

charts.

Thanks to the axioms, SHAP is consistent : if a feature’s contribution grows after

retraining, its ϕi cannot drop. Still, two main limitations matter for MER:

1) Feature dependence. Spectral bins and chroma features are often strongly

correlated. Assuming full independence among features can distort the contri-

bution that SHAP assigns to each region.

2) Computation cost. Estimating Shapley values on thousands of frames is com-

putationally heavy. A practical shortcut is to aggregate statistics over musically

meaningful windows (e.g., per bar) or to sample a subset of well-spaced frames.

SHAP is most useful when each feature has a clear physical or musical meaning

(MFCCs, spectral centroid, rhythm features, or learned embeddings tied to the

song’s structure). In such cases, the additive split in (7) not only helps explain the

prediction to users but also checks whether the model uses cues that make musical

sense.
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2.5.2 Layer-wise Relevance Propagation (LRP)

Layer-wise Relevance Propagation (LRP) is an attribution technique that redis-

tributes a neural network’s output back to the input features. [Bach et al., 2015;

Montavon et al., 2019].

LRP visualises the contribution of each input feature by treating the prediction

value f(x) as a conserved quantity and passing it backwards, layer by layer, until it

reaches the inputs.

Consider a feed-forward network written as a composition of layers

f(x) = f (L)◦ f (L−1) ◦ · · · ◦ f (1)(x),

where x = (x1, . . . , xd) ∈ Rd and L is the index of the output layer. Let a(ℓ) denote

the activations in layer ℓ, w(ℓ) the weights, and b(ℓ) the biases. LRP assigns to every

neuron j in every layer ℓ a relevance score R
(ℓ)
j such that

∑
j

R
(ℓ)
j =

∑
k

R
(ℓ+1)
k , ℓ = L− 1, . . . , 1, (9)

and at the top layer ∑
j

R
(L)
j = f(x). (10)

Equation (9) expresses the relevance–conservation principle: all relevance that

leaves one layer enters the next, so that the total relevance remains exactly f(x)

throughout the backward sweep.

The ε-rule. For a fully connected layer, let the pre-activation of neuron k be

zjk = a
(ℓ)
j w

(ℓ)
jk ,

and (optionally) zbk = b
(ℓ)
k for the bias term3. Using the ε-rule, relevance is redis-

3Biases can be handled by treating each b
(ℓ)
k as the activation of an additional “bias neuron”

with fixed value a
(ℓ)
b =1, so relevance is redistributed exactly as for the standard neurons. We omit

zbk in the main equations for clarity.
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tributed as

R
(ℓ)
j =

∑
k

zjk∑
j′

zj′k + ε sign
(∑

j′

zj′k

) R
(ℓ+1)
k , (11)

where a small constant ε > 0 (e.g. 10−6) prevents division by zero and its sign

matches that of the denominator. Inputs that contribute little to neuron k (small

|zjk|) receive little relevance.

Convolutional and pooling layers. For convolutional and pooling layers the

same redistribution is applied locally within each receptive field, ensuring layer-wise

conservation irrespective of layer type.

After the backward sweep, each input dimension xi carries a relevance R
(0)
i with

f(x) =
d∑

i=1

R
(0)
i .

A positive value R
(0)
i supports the prediction, whereas a negative value speaks

against it. Because the decomposition is exact, the resulting heatmap can be verified

by summing all pixel (or frame) relevances and checking that the total equals the

model output. These properties are usually summarized as a small set of constraints

that guide how relevance is redistributed. Table 2 reports the main ones, together

with their practical meaning when interpreting explanations.

Table 2: Core constraints for LRP and their practical meaning

Constraint Mathematical statement Interpretation for explanations

Conservation
∑

i R
(ℓ)
i =

∑
k R

(ℓ+1)
k All relevance credited to a layer is

fully redistributed—nothing is lost
or created. Ensures faithfulness at
every depth.

Positivity
(optional)

R
(0)
i ≥ 0 under the z+-rule The z+-rule discards negative

evidence: only positive
contributions are propagated back,
so every highlighted region supports
the prediction—often easier to
interpret for non-expert users.

In summary, LRP offers a principled way to trace predictions through deep net-

works while exactly preserving the model output. Its relevance-conservation mirrors
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SHAP’s completeness axiom, making the two methods complementary: SHAP guar-

antees fair attribution across feature coalitions, whereas LRP guarantees layer-wise

exactness with negligible extra compute.

2.5.3 Perceptual Sonification of Model Attributions

The third pillar of explainable AI explored in this thesis is perceptual sonification,

a strategy that turns machine–generated attributions back into the same sensory

modality as the original data: sound. [Zohar et al., 2021]. Where SHAP

distributes numerical credit over input dimensions and LRP propagates relevance

through the layers of a network, sonification renders those abstract scores as audible

cues in the time–frequency plane, letting a listener hear what the model is “paying

attention to.” In the context of MER, the idea is both natural and novel: if the task

itself concerns musical affect, the most intuitive explanation is a musical one.

From relevance to sound This subsection spells out, step by step, how a rele-

vance heatmap R(τ, f) is converted into an audible explanation.

1. Analysis: turning the waveform into a time–frequency matrix

1.1 Waveform. The starting point is a continuous time signal x(t), sampled at a

rate Fs (samples per second) for a total duration T seconds.

1.2 Windowing and hop size. A short analysis window of length Nwin samples slides

over the signal in steps of H samples (the hop size). Each placement of the win-

dow defines a frame index τ ∈ {0, . . . , Nτ−1}, where Nτ =
⌊
(T Fs−Nwin)/H

⌋
+1.

1.3 FFT size and frequency bins. Inside each time frame we compute a NFFT-

point complex Fast Fourier Transform. The FFT yields Nf = NFFT complex

coefficients, indexed by f ∈ {0, . . . , Nf − 1} and spaced Fs/NFFT Hz apart.

1.4 Short-Time Fourier Transform (STFT). The whole procedure can be summarised

as

X(τ, f) = STFT
(
x
)
∈ CNτ×Nf . (12)
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where each entry X(τ, f) is a complex number that encodes both the magnitude

and the phase of frequency bin f in time frame τ .

How the indices map to real units. Because τ and f are merely counters, you turn

them into seconds or hertz only when you need the physical scale:

tτ = τ
H

Fs

[s], ff = f
Fs

NFFT
[Hz]. (13)

Thus the hop size H fixes the time resolution, while the FFT size NFFT fixes the

frequency resolution.

2. Attribution: where the model looks

The application of Layer-wise Relevance Propagation on the Vision Transformer

returns a non-negative matrix

R(τ, f) ∈ RNτ×Nf

≥0 , (14)

whose entry R(τ, f) quantifies how much the model relies on the information in time

frame τ and frequency bin f . Classical explainability stops here, showing R as a

coloured heatmap. We go one step further and render R in the sonic domain.

3. Relevance-weighted spectrum

We amplify the magnitude of each STFT coefficient in proportion to its relevance,

keeping the phase untouched so that temporal micro-structure is preserved:

X̂(τ, f) = A
(
R(τ, f)

)
X(τ, f), (15)

where A(·) is any monotonically increasing gain function.

4. Re-synthesis

Applying the inverse STFT to the relevance-weighted spectrum produces a new

waveform x̃(t):
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x̃(t) = iSTFT
(
X̂
)
, (16)

which is almost identical to the original x(t), except that time–frequency regions the

model considered important now sound noticeably louder. The listener literally hears

the parts the network “attends to,” offering an intuitive, audio-native explanation.

Fixed numerical settings—window length, hop size H, FFT size NFFT, frame-smoothing

of R(τ, f), and the particular (γ, p) chosen for A—are listed in Section 4. The four

numbered steps above constitute the general pipeline, independent of those imple-

mentation details.
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3 Related Work

3.1 Traditional and Deep Learning Approaches to MER

Earlier attempts at MER mostly relied on classic machine learning models like Sup-

port Vector Machines (SVMs) or decision trees. These models used hand-crafted

features such as Mel-Frequency Cepstral Coefficients (MFCCs), spectral centroid,

or energy, extracted through standard signal processing techniques. Even though

this approach was reasonably effective in some cases, it often failed to capture the

deeper structure of music and the subtle ways in which it relates to emotions.

In recent years, particularly since 2018, deep learning has become the dominant

method in MER. These models do not rely on pre-defined features but instead

learn directly from data, often using audio representations like spectrograms or mel-

spectrograms. CNNs have proven especially useful for capturing spatial patterns

in time-frequency representations, while Recurrent Neural Networks (RNNs) have

been used to model temporal dependencies in music. For instance, [Chowdhury

et al., 2019] demonstrated that even relatively simple CNN architectures could

learn to predict emotional values directly from log-mel spectrograms.

The release of the PMEmo dataset in 2018 [K. Zhang et al., 2018] also marked

a key step forward. It provided real-world songs annotated with continuous valence

and arousal labels, which helped standardize training and evaluation procedures

[Y. Zhang et al., 2018]. However, despite these advances, most deep models still

operate as black boxes. They might perform well, but it is hard to understand why a

certain output is produced, which is a limitation especially in research and creative

applications.

Some studies have combined multiple time–frequency representations to improve

MER accuracy. For example, in [Er and Aydilek, 2019], chroma features, which

capture harmonic content, are fused with spectrograms, which encode spectral–temporal

patterns. This multi-representation approach outperforms using either feature set

alone, showing their complementarity. Although it does not address explainability,

this work is closely related to part of the methodology developed later in this the-

sis, where chroma and spectrogram information are also used together, making it a
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relevant point of reference.

3.2 Use of Mid-level Features in MER

One of the most promising directions for making MER more interpretable has been

the use of mid-level features: descriptors that sit somewhere between raw audio

data and emotional judgments. These include things like rhythmic stability, melodic

complexity, and dissonance, which are more intuitive for humans to understand.

In their 2019 work, Chowdhury et al., 2019 proposed a two-step model where

audio is first mapped to seven mid-level features, which are then used to predict

emotional scores through a simple regression layer. This design makes it possible

to explain predictions in terms of perceptual qualities of the music, rather than

low-level spectral features.

Building on this idea, the current thesis explores whether using even simpler or

more symbolic features, like chords or average chroma, can improve interpretability

without drastically reducing performance. The hope is that such features might be

more actionable for musicians or analysts who want to understand or control the

emotional tone of a piece.

The mid-level features used in the original model were derived from perceptual

studies like those by Friberg et al. and Aljanaki et al. [Aljanaki and Soleymani,

2018b; Friberg et al., 2014], and provide a helpful bridge between psychological

theories of emotion and audio-based models.

3.3 Mid-level Bottleneck Architectures

Chowdhury et al. (2019) ask whether a deep model for music–emotion recognition

(MER) can remain explainable if its predictions must pass through a small set

of perceptually meaningful intermediate cues. Using the 360-excerpt Soundtracks

corpus annotated for both emotions (Table 3) and the seven mid-level perceptual

features (Table 4) of Aljanaki and Soleymani (2018a), Eerola and Vuoskoski

(2011) compare three CNN-based architectures (see Figure 8). Predictive accuracy
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is measured as the Pearson correlation between predicted and reference emotion

ratings; the “cost of explainability” is the loss incurred when the mid-level bottleneck

is enforced.

Table 3: Emotion categories and dimensions provided with the 360-excerpt Soundtracks
(Stimulus Set 1) corpus [Eerola and Vuoskoski, 2011]. Expert raters scored each
excerpt on a 1–7.83 Likert scale (later multiplied by 0.1 in our experiments).

Emotion label Meaning / rating prompt

Happy Degree to which the excerpt expresses a cheerful, positive mood.
Sad Degree of sadness, melancholy or grief conveyed.
Tender Perceived warmth, softness or loving tenderness.
Fearful Level of fear, anxiety or suspense communicated.
Angry Strength of anger, aggression or hostility expressed.
Valence Position on the positive–negative affect axis (high = pleasant, low

= unpleasant).
Energy Perceived activity or intensity (low = calm/relaxed, high = vig-

orous/energetic).
Tension Psychological stress or suspense experienced (low = relaxed, high

= tense).

To explore the trade-off between explainability and predictive performance, the au-

thors design and compare three neural architectures. Each of them reflects a differ-

ent level of constraint on the information flow from audio to emotion prediction, as

summarised below.

A2E. This baseline maps a log-mel spectrogram directly to the continuous emotion

ratings using a convolutional network followed by a small fully connected block.

Because the prediction bypasses any explicit musical descriptors, A2E delivers the

highest raw accuracy but offers no insight into why a particular score is produced.

The metrics scores obtained with this architecture will work as reference when we

will compare the ones that pass through the mid-level features to compute the "cost

of explainability".

A2Mid2E. To add interpretability, A2Mid2E routes the same audio network through

the seven mid-level perceptual features listed in Table 4 (melodiousness, articulation,

rhythm stability, rhythm complexity, dissonance, tonal stability and “minorness”).

The model first learns to reproduce these descriptors and then combines them into

the final emotion estimates. Because every prediction passes through this seven-

value bottleneck, users can inspect which perceptual cues drove a given emotional
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assessment.

A2Mid2E-joint. The joint variant retains the bottleneck but optimises descrip-

tor accuracy and emotion accuracy simultaneously. Allowing the whole network to

adapt to the downstream task recovers most of the performance lost in A2Mid2E,

while still preserving a clear, seven-dimensional explanation layer. The difference in

correlation between A2Mid2E-joint and the direct A2E baseline is therefore inter-

preted as the cost of explainability.

Figure 8: The three architectures compared for predicting emotion from audio (A2Mid,
A2Mid2E and A2Mid2E-joint). Reprinted from Chowdhury et al., 2019.
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Figure 9: Visual representation of the convolutional backbone shared by all networks up
to the Adaptive Average Pooling 2D layer. Reprinted from Chowdhury et al., 2019.

All three variants in Figure 8 rely on the same convolutional backbone shown in

Figure 9. This design is directly taken from Chowdhury et al., 2019 and follows a

fairly standard VGG-style structure. The use of 3×3 convolutions with progressively

increasing channel depth (from 64 up to 512) is motivated by the idea of capturing

simple local patterns at the beginning, such as spectral edges or harmonic stacks,

and gradually combining them into richer, more abstract representations. Batch

normalization and ReLU are included after each convolution to stabilize training

and introduce non-linearity, while max-pooling reduces the spatial dimensions and

introduces invariance to small shifts in time or frequency. Dropout (set to 0.3) is

used as a regularizer to prevent overfitting, which is particularly important given

the relatively small size of the Soundtracks dataset. Finally, the adaptive average

pooling layer reduces each feature map to a fixed 1× 1 representation, making the

output size independent of the input dimensions and suitable for the fully connected

layers that follow.

In other words, the backbone is not meant to be a novel proposal, but rather a
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controlled and reproducible choice: it is complex enough to learn useful spectro-

temporal features, but at the same time lightweight compared to more recent deep

architectures, which makes it well suited for testing the effect of the mid-level bot-

tleneck without adding unnecessary confounding factors.

Table 4: Overview of the seven mid-level perceptual features that form the bottleneck
in Chowdhury et al., 2019. Each descriptor is accompanied by the prompt used in
Aljanaki and Soleymani, 2018a. Following Chowdhury et al., 2019, the feature
Modality is referred to as “Minorness”.

Perceptual Feature Question asked to human raters

Melodiousness To which excerpt do you feel like singing along?
Articulation Which has more sounds with staccato articulation?
Rhythmic Stability Imagine marching along with the music.

Which is easier to march along with?
Rhythmic Complexity Is it difficult to repeat by tapping?

Is it difficult to find the meter?
Does the rhythm have many layers?

Dissonance Which excerpt has noisier timbre?
Has more dissonant intervals (tritones, seconds, etc.)?

Tonal Stability Where is it easier to determine the tonic and key?
In which excerpt are there more modulations?

Modality (“Minorness”) Imagine accompanying this song with chords.
Which song would have more minor chords?

3.4 Sonification and Perceptual Explanations in Music AI

While most XAI techniques rely on visual outputs like plots or heatmaps, some

researchers have started exploring whether model explanations can be conveyed

through sound: a direction known as sonification.

One example is AudioLIME, an adaptation of the LIME framework for audio

data. It works by segmenting the audio input, evaluating the contribution of each

segment to the prediction, and then resynthesizing the audio to make the relevant

parts louder or clearer [Ribeiro et al., 2016; Zohar et al., 2021].

The idea is to turn the explanation into something we can hear, rather than just see.

If a segment classified as “Happy” emphasizes melodic or rhythmic peaks, the listener

might intuitively grasp what the model is focusing on. Although still experimental,
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this kind of perceptual feedback has potential both for user interaction and for

validating model behavior in a more intuitive way.

To give some more context, LIME itself [Ribeiro et al., 2016] is a model-agnostic

method that perturbs the input and then trains a simple surrogate model to ap-

proximate the decision boundary of the complex model around a given example. In

AudioLIME this principle is applied to sound: the input is divided into chunks of

audio, these chunks are turned on or off in different combinations, and the effect

on the prediction is measured. The explanation can then be reconstructed not only

visually but also through listening, by reassembling the audio and making the influ-

ential parts more prominent. This makes the abstract idea of "feature importance"

more concrete for the listener.

Beyond AudioLIME, the idea of using sonification for explanations has been con-

sidered in a broader sense in the literature. Surveys like the ones from Grond and

Berger, 2011 and Dubus and Bresin, 2013 have collected many examples of

how data can be mapped to sound in scientific and perceptual studies, arguing that

listening can sometimes reveal patterns that are hard to notice visually. Other more

recent works such as Gresham et al., 2020 discuss auditory displays specifically

for machine learning explanations, suggesting that hearing what the model pays

attention to might give users a more natural sense of trust and understanding.

In this thesis, a similar approach is explored using a Vision Transformer trained on

spectrograms, combined with LRP for attribution. The resulting relevance maps are

used to modify the volume of the original audio: louder segments correspond to parts

the model found more important for emotion classification. This is applied to clips

from the "Musical Emotions Classification" dataset available on Kaggle [“Musical

Emotions Classification”, 2020].

Our implementation is directly based on the ViT-LRP framework proposed by

[Chefer et al., 2021]. They fine-tuned a ViT-Base/16 model [Dosovitskiy et

al., 2021], where the input spectrogram was resized to 224 × 224 pixels, divided

into 16×16 patches that are treated as tokens and processed through 12 transformer

layers with 12 attention heads (embedding dimension 768). The resulting relevance

maps obtained through Chefer’s method were then used as input for the sonification
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stage.

Overall, the literature suggests that combining structured features with perceptual

tools might be a promising direction for making MER models not only more accurate

but also more transparent.
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4 Methodology

This chapter presents how the two contributions of the thesis — the one based on

musical features and the one based on perceptual explanations — were practically

implemented. The goal here is not just to describe the experiments, but also to

give a clear idea of how everything was built step by step, from data preparation to

model training, explainability and sonification.

4.1 Research Design

The experimental design of this thesis is structured around two distinct but com-

plementary approaches to understanding how machine learning models perceive and

predict musical emotion. Both approaches rely on supervised learning, but they

differ significantly in the way they treat the input data and the kind of explanations

they can provide.

The first approach focuses on building models using a variety of audio-derived fea-

tures, which are representations that are extracted or computed from the audio

signal itself. These include low and mid-level descriptors such as spectrograms,

chromagrams, average chroma vectors, mid-level perceptual features (like melodi-

ousness, articulation, rhythm complexity), and even symbolic approximations of

chord sequences. Although these features differ in dimensionality and abstraction,

they share a common trait: they are all derived from the audio and can be related,

more or less directly, to musical concepts. The goal in this part of the work is to

build interpretable models that connect changes in these features with variations

in emotional perception. In some cases, we also apply post-hoc explanation tools,

such as SHAP, to better visualize which features influenced the model’s outputs the

most.

The second approach takes a more perceptual and model-centric perspective. In-

stead of trying to interpret the input features, it focuses on explaining what the

model has learned when trained directly on spectrograms. Specifically, we use a

ViT architecture and apply LRP to produce heatmaps that highlight the regions of

the input spectrogram most responsible for a given decision. These heatmaps are
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then used to sonify the model’s attention, effectively producing a modified version

of the original audio that emphasizes the parts deemed most emotionally relevant

by the model itself. This method shifts the focus of interpretability from structured

inputs to perceptual salience, offering a way to both visualize and hear what the

model “thinks” is important.

While these two directions are different in spirit (one rooted in music theory and

structured features, the other in perceptual relevance), they were both designed to

investigate the same question: how can we build emotion recognition systems that

are not only accurate, but also explainable in human terms? This thesis progresses

by alternating between these two perspectives, presenting experiments that highlight

their respective strengths, limitations, and points of contact.

The concrete model architectures employed in each route have already been intro-

duced in Chapter 3. For the feature-based approach, we rely on the CNN and

mid-level bottleneck architectures described by Chowdhury et al., 2019, while

for the perceptual route we fine-tune a ViT-Base/16 with LRP as in Chefer et al.,

2021. In this chapter, we therefore focus on the data preparation, training protocols

and evaluation procedures, rather than re-describing the network structures.

In both cases, we followed a supervised learning approach, meaning that the models

were trained on input–output pairs where the target emotion labels were known in

advance. Depending on the dataset and experiment, the task was either regression

(predicting continuous emotion scores such as valence or arousal) or classification

(e.g., distinguishing between Happy and Sad). Most of the experiments were run in

Google Colab, taking advantage of GPU acceleration to reduce training time and

facilitate experimentation.

4.2 Datasets Used

For our first experiments, we leverage music recordings annotated both with mid-

level perceptual features, and with human ratings along some well-defined emotion

categories. Our starting point is Aljanaki & Soleymani’s Mid-level Perceptual Fea-

tures dataset [Aljanaki and Soleymani, 2018a], which provides mid-level feature

annotations. For the actual emotion prediction experiments, we then use the Sound-
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tracks dataset [Eerola and Vuoskoski, 2011], which is contained in the Aljanaki

collection as a subset, and comes with numeric emotion ratings along 8 dimensions.

In addition to this, the Musical Emotion Classification dataset from Kaggle [“Mu-

sical Emotions Classification”, 2020] is the dataset that has been used for the

sonification experiments, allowing research in the classification task in the previously

descripted perceptual and model-centric perspective.

These datasets are presented in the next sections, and the summary of their char-

acteristics is presented in Table 5

4.2.1 Mid-Level Feature Dataset

The Mid-level Perceptual Features Dataset [Aljanaki and Soleymani, 2018a]

consists of 5000 song snippets of around 15 seconds each annotated according to

the seven mid-level descriptors listed in Table 4. The annotators were required to

have some musical education and were selected based on passing a musical test. The

ratings range from 1 to 10 and were scaled by a factor of 0.1 before being used for

the experiments.

4.2.2 Soundtracks Dataset

The Soundtracks (Stimulus Set 1) dataset [Eerola and Vuoskoski, 2011] consists

of 360 excerpts from 110 movie soundtracks. The excerpts come with expert ratings

for five categories following the discrete emotion model (happy, sad, tender, fear-

ful, angry) and three categories following the dimensional model (valence, energy,

tension). This makes it a suitable dataset for musically conveyed emotions. The

ratings in the dataset range from 1 to 7.83 and were scaled by a factor of 0.1 before

being used for our experiments. As stated above, all the songs in this set are also

contained in the Mid-level Features Dataset, so that both kinds of ground truth are

available.
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4.2.3 Musical Emotions Classification (Kaggle)

The Musical Emotions Classification dataset includes about 2000 audio samples,

each 10 seconds long, labeled as either "Happy" or "Sad." Most of the original

sources of the audios were longer than 10 seconds and generated more than one

10-second-long clip for the dataset. These clips were turned into spectrograms and

used to train the Vision Transformer (ViT) model and to test attribution methods

like LRP and the sonification pipeline. The dataset is publicly available on Kaggle

[“Musical Emotions Classification”, 2020].

Table 5: Key statistics of the music–emotion datasets used in this thesis.4

Characteristic Mid-level Features Soundtracks Musical Emotions
Number of clips 5 000 360 (110 tracks) 2 126
Clip length 15 s 15 s 10 s
Label type 7 mid-level 5 discrete + 3 dim. Binary (Happy/Sad)
No. of attributes 7 8 1
Label scale 1–10 (scaled ×0.1) 1–7.83 (scaled ×0.1) categorical

4.3 Feature Extraction Techniques

Depending on the experiment, we used different representations of the audio, in-

cluding spectrograms, chroma features, and symbolic data like chords.

4.3.1 Spectrograms

Spectrograms (see Section 2.3.1) were one of the primary representations used through-

out this work. Although they originate from a well-established audio analysis tech-

nique, in this context they were treated primarily as visual inputs for deep learning

models. By converting audio signals into two-dimensional time–frequency represen-

tations, it becomes possible to take advantage of computer vision architectures to

analyze musical structure and emotional content.

The rationale behind using spectrograms lies in their capacity to capture fine-grained

temporal and spectral features, including harmonic patterns, rhythmic cues, and
4All audio excerpts are down-mixed to mono and resampled to 22 050 Hz for the experiments

reported in Chapters X–Y.
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dynamic contours, which are all known to correlate with perceived emotion. Once

generated, each spectrogram was saved as an image and used directly as input to the

models, either as a grayscale or RGB representation depending on the architecture.

From a methodological point of view, this choice implies a shift from treating music

as a sequence of notes or features to treating it as a surface of energy across time

and frequency. This allowed us to explore a different set of architectures (CNNs

and ViTs) and to apply visual explainability techniques, such as heatmaps and

relevance propagation, which would not have been possible using only symbolic or

low-dimensional representations.

The exact parameters used for spectrogram generation, such as STFT configuration,

frequency scaling, and image resizing, are reported in Chapter 5, where they are

discussed in the context of specific experiments and models.

Spectrograms were used for both approaches of the thesis (with different dimensions

to satisfy the requirements of the different tasks) as they are one of the most complete

and interesting representations of audio. In the first part of experiments they were

used as inputs to learn the mid-level features while in the second approach they

were the data on which the ViT model with LRP worked to obtain the relevance

maps that were used for sonification. In particular, for the lattest (sonification

experiments), spectrograms were the only audio representation data used.

4.3.2 Chromagrams

Chromagrams (see Section 2.3.2) represent the distribution of spectral energy across

the twelve pitch classes of the musical scale, regardless of the octave. This represen-

tation abstracts away information about timbre and precise pitch, focusing instead

on harmonic content and tonal structure. Because of this, chroma features are par-

ticularly suited for tasks involving chord recognition, key detection, and, in our case,

emotion prediction based on harmonic patterns.

In this work, chroma features were extracted from audio using standard signal pro-

cessing techniques and were treated as compact, structured inputs for machine learn-

ing models. Their relatively low dimensionality (typically 12 bins per frame) made
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them ideal for use in models that prioritize interpretability, such as linear regressors

or shallow neural networks.

Unlike spectrograms, chromagrams emphasize the musical dimension rather than

the acoustic dimension of the signal. They allowed us to investigate to what extent

harmonic cues alone can be predictive of emotion, without relying on detailed timbral

or rhythmic information. In particular, we experimented both with raw chroma

sequences and with aggregate statistics such as the average chroma profile across

each segment.

The technical details regarding chroma extraction (e.g. windowing, hop length,

normalization) are discussed later in Chapter 5 alongside the specific models that

employed them.

Chromagrams were used just for the first approach to derive more audio-related

features.

4.4 Chord Features

In an effort to enrich the mid-level feature set with harmonic content, a pipeline

to extract chords directly from audio using the Essentia library was explored.

Specifically, the ChordsDetection algorithm was applied on 10-second excerpts from

a subset of 360 annotated audio files. The process involved computing Harmonic

Pitch Class Profiles (HPCP) over overlapping frames and then aggregating the pitch

profiles to detect the most likely chord labels.

These vectors were concatenated with the previously presented perceptual descrip-

tors, forming the input to a feed-forward neural network trained to predict emotion

scores. To see how these extracted chords influenced the decision of the machine

learning model, SHAP was applied.

4.5 Adapted Architectures

Previously, in Section 2.4, we provided an overview of the main model families used

in Music Emotion Recognition, and in Chapter 3 we discussed the specific baselines
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proposed in prior work. In this section, the focus shifts to the practical adaptations

applied in our implementation. The aim is not to reintroduce the architectures

themselves, but to clarify how they were modified to accommodate the different

feature sets explored in this thesis.

A2E (Audio → Emotion)

We follow the convolutional backbone of Chowdhury et al., 2019, keeping the

architecture unchanged but varying the input representation.

Spectrograms. Spectrograms are fed as 2D time–frequency inputs with a single-

ton channel (H×W×1), e.g. (149, 313, 1) . The CNN architecture remains identical

to the baseline, with input and output dimensions identical to the ones described in

Section 2.4.

Chromagrams. Chromagrams have shape (12, 431, 1). Again, the CNN backbone

is unchanged: the convolutions simply operate over a smaller, pitch–class domain

instead of a time–frequency surface. Therefore the architecture is the same and has

the same output dimension, but the input dimensions are changed in order to work

with the different image.

Averaged chroma (C2E). When chroma is averaged over time, the result is

a 12-dimensional vector. Since convolution presupposes spatial locality, which a

flat vector lacks, a CNN would add parameters without exploiting any meaningful

inductive bias. For this reason, we replaced the CNN with a multilayer perceptron

(MLP) composed of stacked Dense, BatchNorm, and Dropout layers. Conceptually,

both CNNs and MLPs learn hierarchical transformations, but while CNNs exploit

local 2D patterns, MLPs are more suitable for tabular inputs where features interact

globally. This adaptation drastically reduces complexity and risk of overfitting.

Multi-input (spectrogram + chromagram). In addition to the single-input

variants, we designed a multi-branch version of A2E. In this case, the spectrogram
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(149, 313, 1) and the chromagram (12, 431, 1) are each fed into a separate convolu-

tional backbone, structurally identical to the one used in the single-input setting

but with independent weights. This means that the two feature types are processed

in parallel streams: one CNN learns filters specialized for time–frequency patterns

(timbral and rhythmic cues), while the other learns filters specialized for pitch-class

sequences (harmonic cues).

At the end of each branch, the high-level embeddings are reduced to fixed-size vectors

through global average pooling and flattening. These two embeddings, one per input

modality, are then concatenated into a joint representation of dimension 512. Only

at this point do the two information streams interact: the concatenated vector is

passed through a shared dense head that outputs the final emotion prediction.

This design corresponds to a late fusion strategy: each modality is first processed

independently, preserving the same architecture used before, and only afterwards are

the learned representations combined, producing a combined output. The rationale

is to let the network specialize on complementary aspects of the signal before merging

them into a unified decision.

A2Mid2E (Audio → Mid-level → Emotion)

Here the CNN backbone again follows Chowdhury et al., 2019, trained to predict

the seven mid-level perceptual descriptors. Our adaptation concerns the bottleneck

layer: to the original seven features we concatenated additional harmonic descriptors

(12-d average chroma and 24 chord flags), producing bottlenecks of size 7, 19, and 34.

These numbers of features will be explained more in detail lateer. The downstream

regressor is unchanged; only its input dimensionality grows.

Vision Transformer with LRP (Perceptual Route)

For the perceptual route, we directly build on the work of Chefer et al., 2021,

who proposed an extension of the Vision Transformer with Layer-wise Relevance

Propagation (LRP) and attention rollout for interpretability. We reused their pub-

licly available implementation, fine-tuning the ViT on spectrogram images from our
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dataset. The model was then used to produce class-specific relevance maps, which

were subsequently employed in the sonification stage (Section 5.2). In practice, this

means that our perceptual experiments follow the same architecture and explana-

tion pipeline described by Chefer et al., 2021, with minimal changes other than

adapting the input format and training procedure to our task.

4.6 Evaluation Metrics

For the first set of experiments related to the mid-level features, to ensure com-

parability with Chowdhury et al., 2019 we adopt two complementary metrics:

Pearson’s correlation coefficient (PC) and Mean-Squared Error (MSE). For the soni-

fication route, in which the task was no longer regression but switched to the predic-

tion of the class "Happy" or "Sad" we used the classic Cross-Entropy (CE) metric as

loss for the fine-tuning of the ViT model with the spectrograms, while the accuracy

was used as evaluation metric. Finally, precision, recall and the F1 score formulas

are presented as they will be considered as indicators for the class predictions when

discussing the confusion matrix in section 5.2.2.

Pearson’s correlation coefficient. PC measures the strength and direction of

the linear relationship between the ground-truth values {yi}ni=1 and the model pre-

dictions {ŷi}ni=1:

r =

n∑
i=1

(yi − ȳ) (ŷi − ¯̂y)√√√√ n∑
i=1

(yi − ȳ)2

√√√√ n∑
i=1

(ŷi − ¯̂y)2

(17)

where ȳ and ¯̂y denote the sample means of the true and predicted values, respec-

tively. A coefficient close to +1 or −1 indicates a strong positive or negative linear

association, whereas values near 0 imply little or no linear correlation.

Mean-Squared Error. MSE is used as loss function, meaning it is the metric

that we minimize during model training, and it appears in the reported results to
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complement PC with an absolute accuracy measure:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (18)

Lower MSE values indicate smaller average squared deviations between predictions

and targets, hence better performance.

Cross-Entropy Loss. CE is the standard loss for multi-class classification. For

each instance i with true one-hot label vector yi = (yi1, . . . , yiK) and predicted class

probabilities p̂i = (p̂i1, . . . , p̂iK) over K classes, the (categorical) cross-entropy is

CE = − 1

n

n∑
i=1

K∑
k=1

yik log p̂ik. (19)

The loss penalises confident but wrong predictions heavily, encouraging the model

to assign high probability to the correct class and low probability to the others.

Lower CE values therefore correspond to better class-prediction accuracy.

Accuracy. Accuracy is the most straightforward and widely used evaluation met-

ric in classification tasks. It is defined as the ratio between the number of correctly

predicted instances and the total number of instances:

Accuracy =
Number of correct predictions
Total number of predictions

. (20)

A higher accuracy indicates that a larger fraction of samples were classified correctly.

While it provides an intuitive global measure of performance, accuracy may be less

informative in scenarios with class imbalance, since it does not account for the

distribution of errors across classes.

Precision. Precision measures the proportion of instances that were predicted as

positive and are actually positive. It is defined as

Precision =
True Positives

True Positives + False Positives
. (21)
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High precision indicates that the model makes few false positive errors.

Recall. Recall, also called sensitivity or true positive rate, quantifies the ability

of the model to identify all relevant instances of the positive class:

Recall =
True Positives

True Positives + False Negatives
. (22)

High recall means that most of the actual positives are correctly detected.

F1 Score. The F1 score is the harmonic mean of precision and recall, providing

a single measure that balances the two:

F1 = 2 · Precision · Recall
Precision + Recall

. (23)

It is particularly useful when the dataset is imbalanced, as it penalises models that

achieve high precision but low recall, or vice versa.
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5 Experiments and Discussion

This section pulls together the results from the two parts of the thesis and tries to

make sense of the numbers interpreting them. The common thread is explainabil-

ity: the goal was never “highest score at all costs”, but models that we can read,

question, and reuse as tools. In practice, this meant (i) using a mid-level bottleneck

with simple heads where coefficients and feature roles are visible, and (ii) turning

attributions into sound so we can literally hear what the model relied on.

Across both routes a few themes recur. Harmonic and timbral cues seem comple-

mentary, not interchangeable. Simpler models are often more stable when features

are correlated. And attribution, whether plotted or sonified, helps to sanity-check

behaviour: when the model is right, the highlighted/boosted regions usually make

musical sense; when it is wrong, the maps and audio often show why. Of course there

are limits (dataset size, down/up-sampling to fit the ViT, simple chord encodings),

so the discussion keeps claims modest and points to where more data or different

encodings would likely help.

The rest of this section is split in two parts. First, I discuss the mid-level feature

experiments (A2E and A2Mid→Mid2E): what worked, what did not, and what the

importance analyses suggest. Then we move to the sonification route (ViT + LRP),

looking at the confusion matrix, the four qualitative examples, and what the sonified

attributions tell us about the model’s habits. This section presents the experiments

conducted on the two parts of the thesis: mid-level features attribution on first and

then sonification.

5.1 Experiments on mid-level musical features

This section studies how the model’s understanding of music shifts when we change

the features and the model’s structure. The three model configurations used for

these experiments are:

1) A2E — a single model maps the raw audio directly to emotion ratings;
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2) A2Mid — the model first predicts seven interpretable mid-level musical de-

scriptors;

3) Mid2E — those descriptors, optionally extended with chroma and chord in-

formation, are fed into a second model that outputs the final emotion scores.

The main goal is explainability. We track how regression coefficients and SHAP

attributions shift when we

• add or remove feature sets (spectrogram, chroma, chords, mid-level descriptors),

and

• switch between linear regressors and shallow neural networks.

These comparisons reveal which musical cues gain or lose influence and show how

each modelling choice shapes the system’s internal reasoning about emotion. Perfor-

mance is reported as mean ± standard deviation under the two metrics introduced

in subsection 4.6:

• Pearson’s correlation coefficient (r) for directional agreement;

• Mean-Squared Error (MSE) for absolute deviation;

Looking at the A2E and A2Mid→Mid2E results, two things will stand out. First,

when we predict emotion directly from audio, putting chromagram and spectrogram

together works best (Table 10). This makes sense: chroma brings harmonic context,

the spectrogram brings timbre and broadband energy, and the model seems to use

both. Second, in the bottleneck setup (A2Mid→Mid2E), the choice of model matters

more than stacking lots of related features. The linear head behaves well and is

stable, while the shallow neural network tends to overfit (Table 12, Table 14).

5.1.1 A2E – Audio to Emotion

The first block of experiments establishes four baselines that feed the convolutional

network of Figure 9 with different audio representations. Each model is trained on

the Soundtracks dataset and evaluated on the held-out test set which was set to

contain 20% of the data, but different reppresentations of the audio file are being

used as input to the model each time. In order to provide a more precise result

44



with standard deviation included, each experiment was run four times with different

random seeds.

Spectrogram input Table 6 shows that a plain log-magnitude spectrogram is a

strong baseline. The model reaches a mean global correlation of 0.688 ± 0.060 and

an MSE of 2.180 ± 0.300. Energy is captured best (r = 0.775), while “Happy” and

“Sad” remain harder to predict, hinting that the frequency information contained in

the spectrogram alone carries limited information for those two emotions.

Table 6: A2E performance with log-magnitude spectrogram input.

Metric Mean ± SD

Total correlation 0.688± 0.060
Total MSE 2.180± 0.300

Per-emotion correlations

Valence 0.679± 0.072
Energy 0.775± 0.051
Tension 0.684± 0.056
Anger 0.710± 0.076
Fear 0.665± 0.060
Happy 0.460± 0.120
Sad 0.440± 0.130
Tender 0.619± 0.067

Chromagram input

With pure harmonic information ( Table 7) the overall numbers stay close to the

spectrogram case (r = 0.682, MSE = 2.240). Valence even rises slightly, but Energy

drops, suggesting that chroma is better at capturing pleasantness than intensity.

Variation across random seeds is also lower, pointing to a more stable training

process.
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Table 7: A2E performance with chromagram input.

Metric Mean ± SD

Total correlation 0.682± 0.012
Total MSE 2.240± 0.140

Per-emotion correlations

Valence 0.706± 0.021
Energy 0.636± 0.060
Tension 0.688± 0.017
Anger 0.613± 0.067
Fear 0.695± 0.027
Happy 0.503± 0.062
Sad 0.487± 0.034
Tender 0.590± 0.044

Combined chromagram + spectrogram

Combining chromogram and spectrogram (Table 8) gives the best results so far:

r = 0.730 and MSE = 1.990. Gains are consistent across all emotions, with Valence

and Happy benefiting the most. The drop in MSE suggests that the two feature sets

carry complementary information rather than redundant data.

Table 8: A2E performance with concatenated chromagram + spectrogram input.

Metric Mean ± SD

Total correlation 0.730± 0.022
Total MSE 1.990± 0.120

Per-emotion correlations

Valence 0.772± 0.048
Energy 0.745± 0.025
Tension 0.748± 0.024
Anger 0.715± 0.068
Fear 0.721± 0.047
Happy 0.603± 0.023
Sad 0.516± 0.037
Tender 0.668± 0.042

Simplified 12-bin chromagram
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Aggregating the chroma into 12 coarse bins (Table 9) hurts performance badly:

correlation drops to 0.518 and MSE almost doubles to 3.790. Fine-grained spectral

detail seems essential, and also their change over time; over-simplifying the feature

space throws away too much information.

Table 9: A2E performance with mean 12-bin chroma input.

Metric Mean ± SD

Total correlation 0.518± 0.042
Total MSE 3.790± 0.270

Per-emotion correlations

Valence 0.508± 0.051
Energy 0.366± 0.050
Tension 0.520± 0.120
Anger 0.393± 0.094
Fear 0.539± 0.042
Happy 0.338± 0.082
Sad 0.321± 0.056
Tender 0.400± 0.140

Table 10: Direct comparison of all A2E variants.

Input Total corr. Total MSE

Spectrogram 0.688± 0.060 2.180± 0.300
Chromagram 0.682± 0.012 2.240± 0.140
Chroma + Spectrogram 0.730± 0.022 1.99± 0.12
12-bin mean chroma 0.518± 0.042 3.790± 0.270

Summary of A2E configurations

Table 10 shows what seems to be the solution: mixing harmonic (chroma) and

timbral (spectrogram) cues gives the largest boost, while over-simplified chroma

features drag the model down. The results confirm that emotion perception in music

depends on both pitch structure and detailed spectral texture, and that keeping a

richer feature set helps the network capture this blend.

The concatenated input consistently beats either source alone (Table 8). Roughly

speaking, valence-like behaviour seems tied to pitch organisation (chroma), while

energy/tension are captured more from patterns that the spectrogram captures.
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When we collapse harmony to a time-averaged 12-bin chroma (no temporal evo-

lution), performance drops a lot (Table 9). That suggests we do need both finer

spectral detail and how it changes over time.

5.1.2 A2Mid – Audio to Mid-Level Features

Predicting the seven perceptual descriptors of Table 4 from audio is the critical

“bottleneck” step in the explainable pipeline. These experiments were repeated six

times instead of four to reduce variance, because accurate predictions of these mid-

level features is important.

Table 11: Prediction accuracy for each mid-level feature (A2Mid stage).

Metric Mean ± SD

Total correlation 0.624± 0.035
Total MSE 0.026± 0.002

Per-feature correlations

Melodiousness 0.620± 0.070
Articulation 0.841± 0.041
Rhythm complexity 0.332± 0.081
Rhythm stability 0.300± 0.130
Dissonance 0.547± 0.077
Tonal stability 0.416± 0.065
Minorness 0.293± 0.083

5.1.3 Mid2E – From Mid-Level Features to Emotion

We next regress emotion ratings from the predicted mid-level features. These ex-

periments were repeated six times to reduce variance.

Two modelling strategies are compared:

a) Linear regression — with and without second-order interaction terms;

b) Shallow neural network (architecture in Table 13; early stopping 15 epochs).
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Table 12: Linear regression results with various feature sets.

Feature set r MSE

7 features, interactions 0.738± 0.022 1.629± 0.132
7 features, no interactions 0.733± 0.015 1.638± 0.084

19 features, interactions 0.525± 0.027 4.916± 0.905
19 features, no interactions 0.747± 0.012 1.566± 0.070

34 features, interactions 0.433± 0.015 5.545± 0.218
34 features, no interactions 0.734± 0.012 1.634± 0.062

Linear models Table 12 shows the results of the linear models in the prediction

of emotions from various sets of mid-level faetures. For clarity, the "19 features"

configuration simply appends the 12 mean chroma bins to the original 7 descriptors,

while the 7-feature baseline uses the perceptual descriptors alone.

The "34 features" variant is made up of:

• the 7 mid-level descriptors in Table 4;

• 24 binary chord flags: presence of the 12 major and 12 minor triads predicted

by Essentia;

• key_root — the tonic pitch class estimated by Essentia;

• tonic_top3 — a Boolean that checks whether key_root matches one of the

three most frequent chords in the excerpt;

• key_mode — the mode (major/minor) returned by Essentia, conceptually

akin to the “minorness” perceptual descriptor.

Table 13: Architecture of the shallow Mid2E network.

Layer Description

Input Mid-level feature vector
Dense (32) Fully-connected layer with 32 units
Dropout (0.3) Applied to activations
Dense (8) Output layer (8 emotion dimensions)
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Table 14: Neural-network Mid2E results averaged over six seeds.

Feature set r MSE

7 mid-level 0.652± 0.093 2.066± 0.473
19 features 0.659± 0.084 2.027± 0.411
34 features 0.679± 0.073 1.959± 0.359

Neural network model Table 14 shows the results of the shallow neural network

model in the prediction of emotions from the same sets of mid-level faetures described

in the previous paragraph.

Despite dropout and early stopping, the neural variant underperforms the simpler

linear regressors and shows larger run-to-run variance.

Mid2E: model choice over “more features” With many correlated inputs

(mid-level descriptors, average chroma, chord flags), the linear model regularises the

problem better than the shallow NN. The 7-feature baseline is already competitive;

adding a compact harmonic summary (mean chroma → 19 features) gives a small,

consistent bump. Turning on interactions on the larger 34-feature set actually hurts

(Table 12), which looks like over-parameterisation relative to the data. The shallow

NN also underperforms and shows higher variance even with dropout and early

stopping (Table 14).

The improvement from 7 to 19 features in Table 12 is there, but not huge. Looking

at the means and standard deviations in the tables, a compact representation of the

harmonic content appears to provide some benefit. However, the improvement is

small and would require further validation to confirm its significance.

Feature-importance analysis Below we present a unified analysis of feature im-

portance across four configurations: 7 features with interactions, 7 features without

interactions, 19 features, and 34 features, to offer a complete view of how infor-

mation is distributed in both a linear Ridge model and a shallow neural network.

The objective here is not only comparative performance, but explainability : tracing

which descriptors matter, and in what direction, for a task that is simple to state

(e.g., deciding whether a song is happy or sad from its spectrogram) yet acoustically
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complex. To make cross–model and cross–setting comparisons meaningful, linear

coefficients are reported in standardized space while neural importances are sum-

marized with global SHAP (mean absolute attributions across emotions). Taken

together, the heatmaps, ranked coefficients, and SHAP summaries provide comple-

mentary perspectives: where the linear model concentrates weight, where explicit

interactions shift salience, and where the neural model distributes influence more

diffusely. We will return to these figures in the following pages, highlighting con-

vergences and divergences across the four setups and discussing what they suggest

about linear structure versus (explicit or implicit) interactions.
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7-Feature configuration: feature-importance visualizations In this section

we focus on the 7 features setup. We show two linear models (one without in-

teractions and one with pairwise interactions) and, separately, the shallow neural

network. We include both linear variants because they both gave good predictive

results in cross-validation and they let us look at the problem from two angles: the

model without interactions shows the main effects of each descriptor; the model with

interactions shows how pairs of descriptors work together. For all linear plots the

coefficients are in standardized space (a standard standardization was applied) and

we keep the same, symmetric colour scale across emotions. Next to each heatmap

we also report a bar plot that ranks features by the mean absolute weight across the

eight emotions. For the neural network we use global SHAP (the mean of SHAP

values attributions aggregated over emotions) to summarize importance in a single

view.

Main effects (no interactions). The baseline linear model (Figure 10, Figure 11)

is quite readable. melodiousness shows positive weights for valence, happy, sad and

tender, and negative weights for tension, anger, and fear. dissonance behaves in

the opposite way (down for valence/sad, up for tension/anger/fear), which fits the

idea that dissonance adds tension. articulation is strongly linked to energy (and

somewhat to tension/anger, and relates negatively to tender). minorness separates

positive and negative affect in the expected major/minor direction. The ranking

confirms a small core of important variables: melodiousness, minorness, dissonance

and articulation, while the two rhythm descriptors play a smaller role.

Adding interactions. When we add explicit pairwise terms (Figure 12, Figure 13),

the overall picture does not change, but some importance moves from single fea-

tures to specific pairs. Several combinations with tonal_stability become visible

in the top part of the ranking (for example articulation + tonal_stability,

rhythm_complexity + tonal_stability, tonal_stability + minorness). This

suggests that the effect of tonal_stability depends on how notes are articulated and

organised in time. In short, interactions add a degree of complexity, but the same

few descriptors remain the main drivers.

Neural model (SHAP). The SHAP summary for the shallow network (Figure 14)

is broadly consistent with the linear view. The largest contributions still come from
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melodiousness, articulation, dissonance, and minorness, with smaller con-

tributions from tonal_stability and rhythm. Compared to the linear model,

articulation ranks higher in the neural network. We think the network is pick-

ing up cues about how notes start and change in loudness over time (onsets and

envelopes), which are non-linear and hard for a linear model to capture. Also, the

SHAP distribution is more spread out, meaning the network distributes importance

across more features instead of putting very large weights on a few of them.

Takeaways. (i) A small, musically meaningful set—melodiousness, minorness,

dissonance, articulation—explains most of the behaviour in both models. (ii)

Interactions mainly highlight conditional effects with tonal_stability but do not

overturn the ranking. (iii) The neural model agrees with the same cues, while

allocating importance more smoothly. For these reasons we keep both versions

(with and without interaction) variants in the 7-feature analysis.

Figure 10: Normalised weights of the 7-feature linear regression without interaction (only
first-order terms).

Figure 11: Absolute weight ranking for the same 7-feature linear model (no interactions).
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Figure 12: Normalised weights of the 7-feature linear regression with interaction (up to
second order).
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Figure 13: Absolute weight ranking for the same 7-feature linear model (with interac-
tions).

Figure 14: Mean SHAP values for the shallow neural network with 7 features.
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19-Feature configuration: feature-importance visualizations Here we anal-

yse the 19 features setup. We only report the linear model without interactions and

the shallow neural network. As discussed in the introduction of this section, we do

not include interaction-augmented versions for larger sets because early trials were

not convincing and the number of terms grows quickly, which goes against our ex-

plainability goal. As before, linear coefficients are shown in standardized space with

a common, symmetric colour scale, and we add a bar plot that ranks features by

the mean absolute weight across the eight emotions. For the neural model we use

again global SHAP.

Linear model (no interactions). The heatmap in Figure 15 shows patterns that

are consistent with the 7-feature case, but with some extra detail coming from pitch-

class features. The strongest and clearest effects are the ones following. minorness

has a marked polarity: negative for valence and especially happy, and positive for

sad, fear, and anger. dissonance is negative for valence, sad and tender and positive

for tension, anger, and fear. melodiousness goes in the opposite direction: positive

for valence/happy/tender. articulation is strongly linked with energy and shows

smaller positive weights for tension/anger, and a negative relation with tender.

Pitch class features (C, C#/Db, . . . , B) are weaker on average, but a few of them

(e.g., F, G#/Ab, A) show consistent mid-level contributions across several emotions.

A possible explanation is that, given the small dimension of the dataset, some spe-

cific pitch classes were learned overfitting on various pieces of the same song. This

overfitting could be one of the reasons why using more complex sets of features does

not provide a large margin of improvement. Exploring larger datasets and using a

relative encoding could make the difference and in that case more complex sets of

features could have better performance. The ranking in Figure 16 confirms this pic-

ture: the top group is minorness, dissonance, melodiousness, and articulation;

then we find some pitch classes and tonal_stability; rhythm descriptors remain

in the lower half.

Neural model (SHAP). The SHAP summary in Figure 17 broadly agrees with the

linear results but changes the order of the top features: melodiousness comes first,

followed by articulation, minorness, and dissonance. This suggests that the

network gives more value to cues related to how notes start and how their loudness
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evolves over time (onsets and amplitude envelopes), which are non-linear and harder

for a linear model to capture. SHAP also brings a few pitch classes (for example F,

G#/Ab, A) slightly higher than in the linear ranking, while rhythm_complexity

and rhythm_stability stay relatively small in both models. Overall, the neural im-

portance is more spread out: the network distributes weight across more descriptors

instead of relying on a few very large coefficients.

Takeaways. (i) The core cues seen with 7 features—minorness, dissonance,

melodiousness, and articulation—remain dominant with 19 features. (ii) Adding

pitch-class information improves the granularity of the linear model without chang-

ing the global picture; some pitch classes enter the mid-range of the ranking but

do not replace the main four cues. (iii) The neural model keeps the same set of

important descriptors but pushes articulation to the top and spreads importance

more smoothly. This supports the idea that both models agree on what matters,

while they differ a bit on how these cues are used.

Figure 15: Normalised weights of the 19-feature linear regression without interactions.
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Figure 16: Absolute weight ranking for the same 19-feature linear model (no interactions).

Figure 17: Mean SHAP values for the shallow neural network with 19 features.
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34-Feature configuration: feature-importance visualizations Here we anal-

yse the 34 features setup. As for the 19-feature case, we only report the linear

model without interactions and the shallow neural network. Interaction-augmented

versions were not included because early tests were not very convincing and the

number of terms would become very large, which is not ideal for explainability. We

keep the same plotting choices as before: linear coefficients in standardized space

with a common, symmetric colour scale, a bar plot that ranks features by the mean

absolute weight across the eight emotions, and global SHAP for the neural model.

Linear model (no interactions). The heatmap in Figure 18 extends what we

saw with 19 features. The four main cues remain very clear: melodiousness

is positive for valence, happy, sad, and tender, and negative for tension, anger,

and fear ; dissonance shows the complementary pattern (down for valence/happy,

up for tension/anger/fear); articulation aligns strongly with energy and has

smaller positive links to tension/anger and negative links to tender ; minorness

keeps the expected major/minor polarity (negative for valence/happy, positive for

sad/fear/anger). With 34 features we also include key-related descriptors: key_mode

and key_root behave in a way that is consistent with minorness, while individ-

ual pitch classes and minor/major keys show small but coherent weights in sev-

eral columns. The ranking in Figure 19 reflects this picture: the top group is

melodiousness, dissonance, articulation, and minorness; then we see tonal_stability,

key_mode, and a subset of pitch-class/key features; rhythm descriptors remain lower

(rhythm_stability above rhythm_complexity).

Neural model (SHAP). The SHAP summary in Figure 20 mostly agrees with the

linear model but changes the order of the top features. articulation comes first,

followed by melodiousness, then minorness and dissonance. This suggests that

the network gives extra value to cues about how notes start and how loudness evolves

over time (onsets and amplitude envelopes), which are non-linear and harder for a

linear model to capture. We also see key-related features (key_mode, key_root)

appearing in the top ten. Several pitch classes enter with small contributions (e.g.,

D, E, B, Eb), but each one is modest on its own. The last bar (“sum of 15 other

features”) makes clear that, with 34 inputs, the neural importance becomes more

spread out across many small terms.
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Takeaways. (i) The same core cues—melodiousness, dissonance, articulation,

minorness—remain dominant even after adding many new descriptors. (ii) Key-

related features add useful granularity and are consistent with the global minorness

signal, while individual pitch classes/keys contribute in a mild but coherent way.

(iii) The neural model keeps the same set of important descriptors but pushes

articulation to the top and distributes importance more smoothly over the long

tail. Overall, both models agree on what matters, and they differ slightly on how

these cues are used.

Figure 18: Normalised weights of the 34-feature linear regression without interactions.
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Figure 19: Absolute weight ranking for the same 34-feature linear model (no interactions).
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Figure 20: Mean SHAP values for the shallow neural network with 34 features.

5.2 Experiments on sonification

This section describes how we turn the LRP attribution maps from our fine-tuned

ViT classifier into simple sonifications. Here we switch focus to the Musical Emotions

Classification dataset (Section 4.2.3), where the ViT backbone (Section 2.4.2) is fine-

tuned to distinguish “Happy” vs. “Sad” audio excerpts. By computing attributions

on spectrogram inputs, we reveal which time–frequency regions the model attends

to—and then render those regions as audible cues. In the GitHub repository of the

project you can listen to the sonification examples presented in this section.

5.2.1 Setup

The ViT is fine-tuned for 60 epochs (learning rate 1e-4, batch size 8) with early

stopping (patience=10). Across different seeds, convergence typically occurs within

5–10 epochs. To mitigate the class imbalance (135 “Sad” vs. 102 “Happy” examples),

we employ a weighted cross-entropy loss: each class’s loss contribution is scaled
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inversely proportional to its number of samples, giving the minority “Happy” class

a larger weight during training. The final model achieves a test accuracy of 0.776

on held-out test data.

5.2.2 Classification Results and Confusion Matrix

After fine-tuning, the ViT classifier reaches an overall test accuracy of 0.776. To

better understand its behaviour on each emotion class, we examine the confusion

matrix in Figure 21 and report per-class precision and recall.

Figure 21: Confusion matrix for the “Happy” vs. “Sad” classification on the test set. Rows
correspond to true labels, columns to predicted labels.

Figure 21 details per-class behaviour. Of 135 true “Sad” excerpts, 122 are correctly

identified (recall = 122/135 ≈ 0.90); of 102 true “Happy” excerpts, 62 are correctly

classified (recall = 62/102 ≈ 0.61). Precision is 122/(122 + 40) ≈ 0.75 for Sad

and 62/(62 + 13) ≈ 0.83 for Happy. Macro-averaged precision and recall are 0.79

and 0.76, and the weighted F1 is 0.77. In practice, the model is sensitive to “Sad”

(high recall) but tends to be conservative in predicting “Happy,” leading to higher

precision but lower sensitivity for that class. This matches the class imbalance (135

vs. 102) and the idea that some acoustic cues are shared between the two labels.
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5.2.3 Attribution map extraction and visualization

To understand those errors, we will look at four examples, one for each cell fo

the confusion matrix: Happy→Happy (Fig. 22), Happy→Sad (Fig. 23), Sad→Sad

(Fig. 24), and Sad→Happy (Fig. 25).

We first compute log-magnitude spectrograms at a 22.05kHz sampling rate using

an FFT size of 3198 samples (≈ 145ms window) and hop length of 989 samples

(≈ 45ms), yielding 1600×224 grayscale images. To satisfy the ViT’s 224×224 input

requirement (Section 2.4.2), we downsample along the frequency axis to 224×224

before inference. LRP attributions are then computed on these 224×224 inputs

and then upsampled back to 1600×224, producing full-resolution relevance masks

R(τ, f).

We retain the complex STFT throughout so that during sonification we can invert

the spectrum with Librosa’s istft using the original phase.
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Figure 22: Attribution map for a correctly classified “Happy” excerpt (99.61% confidence).
Left: spectrogram.
Right: upsampled LRP map; warmer colors = higher contribution.
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Figure 23: Attribution map for a wrongly classified “Happy” excerpt (predicted sad with
85.23% confidence).
Left: spectrogram.
Right: upsampled LRP map; warmer colors = higher contribution.
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Figure 24: Attribution map for a correctly classified “Sad” excerpt (93.17% confidence).
Left: spectrogram.
Right: upsampled LRP map; warmer colors = higher contribution.
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Figure 25: Attribution map for a wrongly classified “Sad” excerpt (predicted happy with
89.88% confidence).
Left: spectrogram.
Right: upsampled LRP map; warmer colors = higher contribution.
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5.2.4 Sonification mapping strategy

To generate the sonification, we weight each complex STFT coefficient X(τ, f) by

the squared attribution mask, following Eq. (15) with a quadratic gain:

X̂(τ, f) = R(τ, f)2X(τ, f). (24)

This boosts high-relevance bins so that, when listening to the sonification, the rele-

vance is even more accentuated. We then apply Librosa’s istft to X̂, reconstructing

a waveform that audibly emphasizes the model’s focus.

5.2.5 What the examples suggest

Our reading is that the model has associated a regular, faster rhythmic surface with

Happy. This helps when the target is indeed Happy and rhythm is present (Fig. 22),

but it also explains the two error types:

• Happy→Sad. When a Happy clip is more relaxed or sparser, the highlighted

regions are weaker and the model seems to default to Sad (Fig. 23).

• Sad→Happy. When a Sad clip has pronounced, steady percussion (e.g., regu-

lar drum hits), the map focuses on those onsets and the model flips to Happy

(Fig. 25).

This is consistent with what we hear in many tracks: rhythm alone can bias the

impression. With a small dataset, and with several clips cut from the same songs, the

model probably learned the most frequent, easy cues first (steady pulse for Happy;

lower, sustained energy for Sad), and did not see enough counter-examples to refine

that rule.
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6 Conclusion and Future Work

The main idea behind this thesis was simple: put explainability first. Rather than

only chasing higher scores, this work tried to build and analyse models that we can

read, question, and learn from. This matters now more than ever. In research and

in everyday tools, people need to know why a model behaves a certain way, not just

whether it is accurate on average. As AI systems get closer to human performance,

the difference will be less about “who gets the best number” and more about “who

can be understood, trusted, and improved.” For music in particular, explanations

that connect to musical structure, or that you can literally listen to, are far more

useful than a raw metric.

6.1 Conclusions

Looking back at the experiments, these are the observations that appear:

• Explanations allow to see what was each feature’s contribution. With

linear coefficients and SHAP it was possible to check which inputs actually mat-

tered (and when extra features just added noise). This made over-parameterisation

visible and helped preferring simpler, more stable heads when features were cor-

related.

• Sonifications made the reasoning clearer. The LRP-based sonification

turned a hard-to-read image into something that it was possible to listen to.

Hearing the boosted onsets/patterns made it much clearer what the classifier

was putting its focus on and why certain mistakes happened.

• Explanations changed the research decisions. They weren’t just “nice

plots”: they guided modelling choices (e.g., avoid large interaction sets, keep har-

monic summaries compact), flagged dataset biases (steady rhythm → “Happy”),

and suggested concrete fixes (threshold calibration, using weights for Happy ex-

amples). In short, they turned the model into a tool for hypothesis testing rather

than just a score generator.

In short, explainability was not an add-on at the end; it shaped the modelling choices
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and the way the results were interpreted.

6.2 Future Work

The most important next step is straightforward: better data. A larger and more

diverse corpus (balanced classes, fewer near-duplicates from the same tracks, and

ideally labels beyond a binary split) would let the models rely on richer features and

would make the explanations more interesting. It would also make more possible

to learn from extracted features, as with more training data it would be possible to

recognize more patterns and reduce the variance typical of extracted features.

Beyond data, a few other directions:

• Key–relative encodings of musical structure. Musical information is mostly

relative (to key, function, interval). Instead of raw chord one-hots, it would be

better trying key–relative or function-of-harmony encodings, interval patterns,

or low-rank harmonic embeddings that are transposition-invariant.

• More trustworthy models and checks. Explore models and techniques

aimed at reliability: compare attribution methods and run sanity checks; apply

more XAI methods to see how this changes our perception of the explanation.

• Apply to real-world catalogues and use-cases. Test the approach on main-

stream music (popular genres, chart tracks) and genre-specific subsets, where

production cues and conventions differ. Tie explanations to practical applica-

tions (e.g., recommendation “rationales”, playlisting, creative tools) and run small

user studies to see if people find the explanations helpful. This would make the

work more directly useful and highlight domain shifts that do not appear in small

academic datasets.

Overall, the thesis shows that, even when working with musical emotions, starting

from explainability is a workable strategy: it helps build models you can reason

about, it surfaces limitations early, and it points clearly to what to fix next. With

better datasets and a few careful design choices, the same approach should scale to

richer emotions and more realistic musical material.
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7 Glossary

MER (Music Emotion Recognition)

Task of predicting the emotional content of a musical excerpt based on its audio

signal, either categorical (Happy/Sad) or dimensional (valence/arousal).

Mid-level Features

Perceptual descriptors (e.g., melodiousness, rhythmic stability, dissonance)

that mediate between raw audio and emotion labels.

Spectrogram

Time–frequency representation of audio, showing how spectral energy evolves

over time.

Chromagram (Chroma Features)

Representation condensing spectral energy into 12 pitch classes (C–B), regard-

less of octave, focusing on harmonic/tonal structure.

Chord / Chord Progression

Simultaneous combination of notes and their sequential arrangement, often

linked to harmonic and emotional perception.

CNN (Convolutional Neural Network)

Deep learning architecture using convolutional filters to detect patterns in data

like spectrograms.

ViT (Vision Transformer)

Deep model processing spectrograms as sequences of patches through self-

attention, enabling long-range dependencies.

SHAP (SHapley Additive exPlanations)

Game-theoretic explainability method assigning each feature a contribution

value to the prediction.

LRP (Layer-wise Relevance Propagation)

Attribution technique redistributing the model’s output backwards through

its layers to highlight relevant input parts.
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Sonification

Transformation of model attribution maps into sound, so that explanations

can be perceived aurally.

Accuracy

Classification metric: ratio between correct predictions and total predictions.

Precision

Proportion of predicted positives that are truly positive.

Recall (Sensitivity)

Proportion of true positives correctly identified by the model.

F1 Score

Harmonic mean of precision and recall, balancing false positives and false

negatives.

MSE (Mean Squared Error)

Regression metric: average squared difference between predicted and true val-

ues.

Pearson’s r

Statistical measure of linear correlation between predicted and true values.

Cross-Entropy Loss

Classification loss function penalizing the divergence between predicted prob-

ability distribution and true class.
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