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Abstract

This thesis presents the development of an emotion classification pipeline designed
to improve multi-label text classification, with a particular focus on addressing the
underrepresentation of minority classes. In multi-label tasks, class imbalance often
causes models to perform poorly on infrequent labels compared to majority ones. To
mitigate this issue, the proposed approach generates synthetic sentences to enrich
minority class samples and enhance overall classification performance. The study
begins by establishing a baseline model based on the BERT architecture, trained
on the original dataset. A data-driven analysis is then conducted to identify the
most representative examples of underperforming labels. These examples are used
as input for two data augmentation methods: a traditional synonym replacement
technique and a large language model based generation approach. For the latter,
different prompting strategies are explored to improve the relevance, quality, and
diversity of the generated text. The quality of the synthetic data is evaluated
against original samples using appropriate metrics, and the augmented datasets
are used to retrain the baseline model to assess performance improvements. The
results demonstrate that large language model based augmentation can effectively
enhance the performance of minority classes compared to traditional techniques.
All code and implementations developed for this work are made publicly available
in a GitHub repository to support transparency and reproducibility.
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Chapter 1

Introduction

1.1 Background

Multi-label text classification is a growing field within Natural Language Processing
(NLP), especially in sentiment and emotion recognition, content moderation, and
user feedback analysis. In contrast to single-label classification, in which every
text is classified into one category, multi-label classification enables multiple labels
to be assigned to the same text. This capability shows the complexity of natural
language more accurately, but it also makes the problem more complicated.

One of the problems of multi-label text classification is the imbalance of data
among different categories. Some labels, such as common emotions or sentiments
in the field of sentiment and emotion recognition, like joy or anger, tend to appear
frequently in datasets, while others, such as disqust or anticipation, may occur far
less often. This imbalance can cause models to become biased toward the majority
classes, leading to poor performance in predicting rare but potentially critical labels.
As a result, the classifier might excel in identifying dominant emotions but struggle
to detect subtle or infrequent ones. Addressing data imbalance is critical because
minority labels often contain important semantic or contextual information, such
as detecting early signs of distress in mental health texts, identifying niche topics
in content moderation, or picking up on nuanced opinions in customer feedback.

1.2 Motivation and Objectives

A common approach to deal with data imbalance is data augmentation, in which
new training examples are generated to enrich the dataset and improve the model’s
generalization ability. Traditional augmentation techniques, such as synonym
replacement, random insertion, word deletion, or back-translation, have been
widely used in text-based tasks [1]. However, while these methods can expand the

1



Introduction

dataset, they often fail to fully capture the refinement and tone of natural language,
sometimes introducing noise or unnatural phrases that reduce model performance.
In multi-label emotion classification, this kind of noise can be especially damaging.
Even a single corrupted token can change how the emotion of a short sentence is
interpreted, creating labels that feel unclear or even contradictory. On top of that,
small word-level changes do not alter the broader context or the subtle cues in the
text, which are often essential for telling apart emotions that are very similar to
each other, such as annoyance versus anger or sadness versus grief.

In recent years, large language models (LLMs) has provided a new and more
sophisticated way to perform data augmentation. These models can generate
contextually rich paraphrases and variations of text that retain the original meaning
while introducing linguistic diversity. This allows for more realistic and semantically
consistent synthetic data, which can significantly improve the multi-label classifiers.
However, the effectiveness of LLM-based augmentation depends on several factors,
including the quality of the prompts used to guide the model, the selection of
representative sentences, and the evaluation of the generated samples to ensure
consistency and relevance. Poorly designed prompts or unfiltered outputs can
lead to bias amplification or overfitting in synthetic models. Additionally, LLM-
based augmentation tends to be more computationally expensive than traditional
approaches. It can also introduce unintended patterns, such as overly polite wording
or noticeable shifts in writing style, that were not part of the original dataset.
Because of this, it’s important to design and evaluate these methods carefully.

The goal of this thesis is to investigate whether data augmentation can im-
prove the performance of multi-label emotion classification models, particularly
when working with imbalanced datasets. We compare the impact of traditional
augmentation techniques with LLM-based methods, evaluating their effectiveness
in improving the classification of minority emotion classes. Furthermore, this
work seeks to analyze not only the quantitative effects of augmentation, through
metrics such as Fl-score, precision, and recall, but also its qualitative impact,
evaluating the semantic quality and variability of the generated texts. In doing so,
we explicitly distinguish between micro- and macro-averaged metrics in order to
understand whether augmentation primarily helps frequent emotions or genuinely
benefits rare labels. Finally, the results provide insights into how to optimize data
augmentation strategies to address imbalance challenges in NLP tasks, and to what
extent generative models are necessary compared to simpler, cheaper baselines.

1.3 Research Problem

This thesis focuses on addressing several key research questions aimed at under-
standing and mitigating the impact of data imbalance in multi-label emotion
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classification tasks:
o How does class imbalance affect the performance of multi-label classification?

o How do traditional augmentation methods compare with LLM-based methods
in improving classification performance?

o What role does prompt design play in the quality of synthetic data and its
effect on the classifier?

o Can augmentation improve minority-label performance without significantly
decreasing performance on majority labels?

To address these questions, the GoEmotions dataset [2] is used. A baseline
model based on BERT architecture [3] is initially trained on the entire dataset
to establish performance benchmarks. This setting reflects the best achievable
performance without any artificial data scarcity and serves as a reference point for
all subsequent experiments. To simulate real-world label imbalance scenarios, the
dataset is then downsampled, reducing the frequency of certain emotion categories
to reflect scarcity conditions while keeping the underlying label correlations intact.

Next, regression analysis is applied to identify labels that perform below ex-
pectation relative to their frequency. These labels are then augmented using (i)
synonym replacement and (ii) LLM-based paraphrasing with different prompting
strategies. This two-stage design makes it possible to check where the model
struggles (underperforming labels).

Finally, the augmented dataset is used to retrain the baseline model, allowing a
comparative evaluation of the impact of each augmentation strategy at the label
level and overall performance. By keeping the architecture, optimization procedure,
and evaluation pipeline fixed, any observed differences can be attributed primarily
to the augmentation strategy. This ensures a systematic analysis of when traditional
methods are sufficient, and when LLM-based generation provides clear benefits.

1.4 Structure of the Thesis

The thesis is organized into the following chapters.

Chapter 2 provides the literature review, covering prior work on multi-label
classification and highlighting the main challenges associated with class imbalance.
It also discuss existing data augmentation techniques, including both traditional
and generative approaches, and presents the GoEmotions dataset and other works
that used it.

Chapter 3 details the methodological framework adopted in this thesis. It ex-
plains the preprocessing steps applied to the data, the structure of the experimental
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pipeline, and the rationale behind each design decision. The chapter also outlines
how the regression analysis is used to identify underperforming labels, and how
both traditional and LLM-based augmentation strategies are implemented and
integrated into the workflow.

Chapter 4 presents the experimental setup and results. It discusses the evalua-
tion metrics used to assess model performance, training the BERT base model, the
effect of downsampling, and the comparison between traditional and LLM-based
augmentation, including different prompting strategies.

Chapter 5 offers a discussion of the results, highlighting the effectiveness of
different augmentation methods and their relative strengths and weaknesses. It also
reflects on the importance of prompt design, and shows the limitations observed.

Finally, Chapter 6 summarize the key insights gained throughout the thesis and
outlines directions for future work, suggesting potential extensions such as more
advanced augmentation strategies and improved prompt engineering techniques for
multi-label data, and applications to other domains.



Chapter 2

Background and Related
Works

2.1 Multi-label Text Classification

Multi-label text classification is a task in NLP in which a single text instance
can be assigned to multiple labels simultaneously, unlike single-label classification
where only one category is predicted [4]. This formulation better shows the
complexity of natural language, as texts often have overlapping topics, sentiments,
or emotions. Multi-label classification has a big range of applications, including
topic categorization, sentiment analysis, and emotion recognition.

Early studies categorized multi-label learning methods into two major groups:
problem transformation and algorithm adaptation approaches [4]. The former
converts a multi-label problem into several single-label problems (e.g., Binary
Relevance, Classifier Chains), while the latter modifies existing algorithms (such as
decision trees or support vector machines) to directly support multi-label outputs.
Although these classical approaches set the foundation for multi-label learning,
they often struggle with high-dimensional label spaces and fail to capture complex
label dependencies [5]. These limitations have caused the shift to methods based
on deep learning.

Recent research has used deep neural networks to handle these challenges.
Convolutional Neural Networks (CNNs) have been adapted for multi-label text
classification by including label clustering and embedding compression to improve
scalability on large label sets [5]. Surveys on deep learning for multi-label learning
emphasize the growing use of transformer architectures and graph neural networks,
which can deal with label correlations and handle sparsity more effectively [6]. In
particular, attention mechanisms are currently used a lot. For example, the Label
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Attention and Historical Attention model improves discriminative text represen-
tations by filtering words using cosine similarity and co-attention mechanisms to
capture fine-grained word—label interactions, while historical attention reduces error
propagation during training [7]. Similarly, the Label-Sentence Bi-Attention Fusion
Network (LSBAFN) [8] combines Bi-LSTM and multi-head attention to extract
multi-granularity features (see Figures 2.1 and 2.2).
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Figure 2.1: Structure of the LSBAFN model (reproduced from Li et al. [8]).
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Figure 2.2: Structure of the label-based multi-granularity sentence representation
learning (reproduced from Li et al. [8]).

In hierarchical classification settings, multi-label methods can enhance structured
label taxonomies to improve accuracy. Surveys have reviewed how models utilize
parent—child label relationships to improve predictions across multiple datasets
(a list of multiple papers can be found here [9]). Active learning approaches
have also been explored. For instance, the Bayesian Expected Confidence-based
Active Learning method prioritizes uncertain samples using posterior predictive
distributions, reducing annotation costs while maintaining accuracy [10]. Network-
based models such as Label Attention and Correlation Networks [7] further address
label dependencies through residual blocks and re-weighted binary cross-entropy
loss. In few-shot scenarios, where labeled data is scarce, meta-learning and prompt-

based methods have been proposed to enable models to adapt efficiently to new
labels [11].

Advanced architectures, including 3D attention mechanisms [12], have improved
multi-label emotion recognition by jointly modeling spatial and temporal depen-
dencies. In addition, several studies have explored ways to address data imbalance
within emotion datasets, such as the use of focal loss or resampling strategies in
BERT-based models [3], achieving more balanced performance across both rare
and frequent emotions.

Data augmentation plays a complementary role in improving model generaliza-
tion, particularly in imbalanced scenarios. Surveys have categorized text augmen-
tation techniques, such as paraphrasing, random noising, and back-translation, as
effective methods for generating diverse yet semantically consistent samples [13].

Recent work has also integrated augmentation within transformer frameworks,
such as Text2Topic [14], a Bi-Encoder Transformer capable of zero-shot multi-label
predictions that mitigates imbalance through optimized sampling and label-aware
learning (see Figure 2.3).
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represent the topic (U) or the text (V) using CLS/mean-pooling/max-pooling. (4)
Combine the two embeddings into one representation of the pair relationship, E.
Then feed E into two feedforward layers to get logits output, where BCE loss is
applied on (reproduced from Wang et al. [14]).

2.2 Data Imbalance in NLP

Data imbalance is a challenge in NLP, particularly in classification tasks where
certain classes appear far less frequently than others [15]. This imbalance often
causes models to favor majority classes, resulting in biased predictions and weaker
performance for underrepresented categories. The problem is especially notable in
real-world datasets, where minority classes frequently correspond to rare events,
sentiments, or entities. This can lead to the suffering of the model generalization,
and evaluation metrics such as the F1-score tend to decline for minority labels [15].

A survey on deep learning approaches for imbalanced NLP tasks categorizes
solutions into three main types: data-level, algorithm-level, and hybrid methods [16].
Data-level techniques focus on modifying the training data through oversampling
or undersampling (see Figure 2.4), while algorithm-level approaches adjust the
learning process itself using strategies such as cost-sensitive loss functions or
threshold moving. Hybrid strategies combine both perspectives to balance data
representation and model learning simultaneously. Traditional methods, including
random oversampling and text-based adaptations of Synthetic Minority Over-
sampling Technique (SMOTE) [17], have been explored in several works [18], though
these approaches often introduce noise or fail to preserve semantic coherence in
linguistic contexts.
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® Majority ® Minority ® Added Removed

Original Oversampling Hybrid Undersampling

Figure 2.4: Sampling types for imbalanced data preprocessing (reproduced from
Werner et al. [16].

Systematic mappings of preprocessing techniques for imbalanced data highlight
the effectiveness of synthetic oversampling for improving model accuracy across
domains [16]. However, class imbalance remains a difficult issue under out-of-
distribution (OOD) conditions, where empirical risk minimization tends to overfit
majority classes. To address this, optimization techniques have been proposed to
maintain balanced performance under distributional shifts [19]. Recent studies also
introduce contrastive sampling strategies that create artificial balance by construct-
ing semantically similar but distinct examples through synonym replacement or
sentence mixing, improving performance on text classification tasks [20].

In specialized NLP applications such as Named Entity Recognition (NER), data
imbalance has been tackled through selective learning strategies. The Majority-
or-Minority (MoM) approach, for example, selectively computes loss functions
for specific subsets of data, effectively handling skewed entity distributions with-
out explicit resampling [21]. Oversampling algorithms like adaptive synthetic
(ADASYN) [22] have also been evaluated in text-based contexts, showing improve-
ments in recall for rare entities and phrases when used in conjunction with neural
architectures (see Figure 2.5) [23].

The progress of LLMs has brought new approaches to addressing imbalance
through synthetic data generation. For instance, Moe et al. [24] used LLaMA 3
to generate artificial samples for underrepresented labels in fact-checking datasets,
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Figure 2.5: Proposed work diagram (ADASYN) (reproduced from Mujahid et
al. [23].

resulting in more balanced classification performance. Such generative augmentation
techniques demonstrate that LLMs can serve as powerful tools for creating high-
quality examples of rare classes, particularly in limited-data settings.

In addition, techniques such as back-translation and Easy Data Augmentation
(EDA) have been widely applied in NLP to increase diversity while maintaining
semantic trueness [13]. These augmentation strategies are particularly valuable in
emotion recognition tasks, where rare emotions must be synthetically enriched to
prevent model bias and ensure more balanced performance across all classes.

2.3 Data Augmentation Techniques for Text Data

Data augmentation is used in NLP as a strategy to improve model performance,
especially in situations with limited resources or imbalanced datasets. The main
idea is to expand the training data by generating new samples that preserve
the original meaning while introducing controlled variation. This helps models
generalize better and reduces the risk of overfitting [13].

Many techniques fall under the umbrella of data augmentation. Traditional
approaches such as SMOTE and ADASYN create synthetic samples to improve
the representation of minority classes, while text oriented methods adapt these
ideas to linguistic data. Other forms of augmentation rely on modifying the text
itself through transformations that maintain semantic consistency. These include
paraphrasing, back translation, synonym replacement, and the introduction of
small perturbations to the input.

10
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Data augmentation can be achieved through rule based procedures, model driven
generation, or a combination of both. Figure 2.6 presents a taxonomy of data
augmentation strategies for text, as proposed by [1].
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Figure 2.6: Taxonomy of NLP data augmentation methods (reproduced from Li
et al. [1]).

Surveys classify data augmentation methods into three main levels: token-
level (e.g., synonym replacement), sentence-level (e.g., sentence shuffling), and
generation-based (e.g., data produced by generative adversarial networks or large
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language models) [13, 25]. Early work such as Easy Data Augmentation (EDA) [26]
demonstrated that simple techniques like random insertion, deletion, swapping,
and synonym replacement can produce noticeable improvements.

Subsequent research extended these ideas to more specialized NLP tasks. For
example, Torres et al. [27] applied augmentation techniques such as mention
replacement and contextual embedding swaps to named entity recognition (NER),
showing that minority entities could be effectively enriched without introducing
artifacts. Similarly, studies in hate speech detection have compared multiple data
augmentation strategies, including synonym replacement, contextual embeddings,
and back-translation, finding that back-translation (see Figure 2.7) best preserves
linguistic nuance while significantly increasing dataset diversity [28].

Possible BT combinations during
-
- iteration:
Fd English- -English
rFr==m=m®=m=m= [———— i | English- -Arabic-English
Back-translation (BT) 7 English-Hindi-ltalian-English
1 1 English- -Arabic-ltalian-English
English-Arabic-| -English
Input: | English Other Language(s) | | g o ¢
Original Sentence Input ( , Arabic, Italian)
—d 1 |
E= H - - - —m-——— - - A
| = |
1 1

Back to English =
| SO - - - o]

:

BERT
Generate contextual vector
space (size=768) of augmented
sentence

- e

between augmented and

original sentence
BERT
Generate contextual vector YES

space (size=768) of Original Y
sentence

Compare cosine similarity }»
E

Output:
Augmented
sentences
=

———

Figure 2.7: Once the new sentence is generated, BERT is used for contextual
embedding. Finally, the Cosine similarity is applied to measure the closeness
between the original and the augmented sentences (reproduced from Jahan et
al. [28]).

The growing availability of large language models has expanded the potential of
data augmentation. Surveys on LLM-driven text augmentation categorize current
approaches into four main groups: rule-based (simple manipulations), prompt-based
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(zero- or few-shot generation), model-based (fine-tuned LLMs for data synthesis),
and hybrid (see Figure 2.9) [29]. These methods have enabled scalable augmentation
pipelines for complex tasks such as multi-label classification. Broader studies across
modalities [30] have also highlighted the cross-domain nature of augmentation,
drawing parallels between visual and textual transformations, such as rotation in
images (see Figure 2.8) and sentence reordering in text.

Al A

(@) () (c) d (e (f) (9)

Figure 2.8: A conceptual demonstration of (a) Original Image, (b) Pixel Erasing,
(c) Photometric Transformation, (d) Image Cropping, (e) Geometric Transformation,
(f) Policy-based Data Augmentation (g) Prompt-based Image Editing (reproduced
from Wang et al. [30]).

More advanced frameworks combine augmentation with label correlation mod-
eling. For example, the Text2Topic Bi-Encoder model [14] supports zero-shot
multi-label augmentation and fine-grained emotion mapping by integrating sam-
pling optimization with label-aware representations.

Overall, the evolution of data augmentation in NLP, from simple rule-based
methods to LLM-based generation, shows its growing significance in addressing class
imbalance, improving generalization, and improving performance on fine-grained,
multi-label emotion classification tasks.

2.4 Dataset: GoEmotions

The GoEmotions dataset [2] is a large-scale, human-annotated corpus developed
by Google Research for fine-grained emotion recognition. It contains roughly
58,000 English Reddit comments labeled with 27 emotion categories plus an
additional neutral label. Because each comment may receive multiple emotion tags,
GoEmotions is naturally suited to multi-label classification. A central challenge of
the dataset is its long-tail label distribution: a small number of emotions (including
neutral and other high-frequency categories) account for a large share of annotations,
while emotions such as grief, disqust, and pride are rare. This skew can cause
emotion classifiers trained naively on the full dataset to favor dominant classes and
underperform on minority emotions.

Demszky et al. [2] introduced GoEmotions and established strong multi-label
baselines. Their main baseline fine-tuned a BERT model for multi-label prediction,
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Figure 2.9: Four categories of data augmentation techniques (reproduced from
Chai et al. [29]).

achieving a macro-F1 of about 0.46 on the full 28-label taxonomy, while a biLSTM
baseline performed notably worse (around 0.41 macro-F1) [2]. The authors also
emphasized the pronounced imbalance across labels and documented that several
low-frequency emotions receive near-zero F1 under standard training, motivating
the need for imbalance-aware learning and evaluation.

Subsequent work has aimed to improve performance on GoEmotions through
model-level and training-level changes. Bashynska et al. [31] trained a BERT-
encoder classifier for GoEmotions and reported an improved macro-F1 (around
0.51), confirming the benefits of transformer-based representations, but their results
still reflect weaker performance on rare classes under the original label skew. Luo
et al. [12] proposed a label-aware 3D attention mechanism (3-CA) that models
interactions across emotion-specific attention planes; on GoEmotions, their approach
raises macro-F1 to roughly 0.56 compared to standard transformer baselines [12].
Focusing explicitly on imbalance, Ramakrishnan and Babu [32] introduced a clipped
asymmetric loss on top of BERT to down-weight easy majority-label predictions
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and emphasize minority-label errors, yielding a clear macro-F1 gain (about 0.54
overall) and more reliable detection of rare emotions [32].

Alongside these modeling advances, data augmentation has emerged as a com-
plementary way to mitigate GoEmotions’ long-tail distribution. Wang et al. [33]
explored large language model (LLM) based synthetic data generation combined
with transfer learning for GoEmotions, showing that augmenting training data
can improve fine-grained multi-label emotion recognition beyond non-augmented
baselines. Ahanin et al. [34] systematically compared classical EDA-style meth-
ods [26], BERT-based contextual substitution, and ChatGPT-based augmentation
on GoEmotions; they found that contextual BERT augmentation produced the
most consistent benefit, improving macro-F1 by about 5 to 6% in their setup [34].
More broadly, comparative model studies on GoEmotions (e.g., stacked LSTM and
transformer variants) confirm that even strong architectures remain sensitive to
label skew and that rare emotions remain the primary source of error [35].

Overall, GoEmotions remains a challenging but productive benchmark for
advancing multi-label emotion classification. Prior work has either emphasized
imbalance-aware objectives and architectures [32, 12] or explored augmentation as
a separate route to robustness [33, 34]. Surveys on class imbalance in NLP and text
augmentation similarly treat these as related but often independently addressed
problems [15, 13, 1]. This gap motivates the present thesis, which investigates
how targeted data augmentation can be integrated with regression-based label
performance analysis to more directly improve minority-class recognition within a
balanced, multi-label framework.

For the experiments conducted in this thesis, the GoEmotions dataset was down-
loaded directly from the official release URLs provided by the original authors [2].
It was integrated into the project’s preprocessing pipeline and split into training,
validation, and test sets following the original partitioning for comparability with
prior benchmarks. Standard preprocessing, including text normalization and BERT
tokenization [3, 36], was applied before training. These standardized splits and
preprocessing steps provide a foundation for the baseline, downsampling, and
targeted data augmentation experiments presented in later chapters.
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Chapter 3

Methodology

3.1 Preprocessing

This section describes how the original GoEmotions dataset was transformed into a
clean, reproducible multi-label dataset. It explains each stage of the process, from
getting the data and verifying its integrity, to cleaning, consolidating emotion labels,
exploring the data, and finally obtaining the final dataset. All source code developed
for this thesis, including data preprocessing, model training, and augmentation
techniques, is provided in an open-source repository on GitHub (https://github.
com/Clearbox-AI/Marileni_Sinioraki_Thesis/tree/main).

3.1.1 Dataset Acquisition

The preprocessing begins by downloading the official GoEmotions dataset , which is
provided in three separate CSV files. These files are combined into a single dataset
so that all annotated comments can be processed in one place. During the merge,
the original comment IDs are kept intact to ensure that each entry can be uniquely
identified later, even though the overall index is updated to ensure consistency.
This results in a clean, unified dataset that is ready for further analysis.

Before any preprocessing or filtering, the raw dataset includes the following
columns:

o text: the Reddit comment text,
e id: a unique identifier for each comment,
e author: the Reddit username of the comment author,

e subreddit: the community where the comment was posted,
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e link_id and parent_id: identifiers linking the comment to its thread and
parent post,

e created_utc: the timestamp of comment creation,
e rater_id: the annotator identifier for the emotion labels,

o example_very_unclear: a quality flag indicating comments with ambiguous
or uncertain emotional content,

e 27 binary emotion indicator columns representing each emotion category (ad-
miration, amusement, anger, annoyance, approval, caring, confusion, curiosity,
desire, disappointment, disapproval, disqust, embarrassment, excitement, fear,
gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief,
remorse, sadness, surprise),

o one additional binary column for the neutral label.

Each row in the original dataset represents one person’s annotation of a Reddit
comment where annotators were all native English speakers from India. As a result,
the same comment can appear more than once if multiple raters labeled it. Because
of this, it is necessary to combine and consolidate those labels during preprocessing.

To illustrate the original data structure, Table 3.1 shows a small sample of the
original GoEmotions CSV file before preprocessing. Each row corresponds to a
Reddit comment annotated with one or more emotion indicators. The columns
include id, text content, and binary emotion labels.

text id sadness love remorse
That game hurt. eewdj0j 1 0 0

The ABC’s hard-hitting in- ed2mahl 1 0 0
vestigation :/ Such a sad ar-

ticle.

Man I love reddit. eeibobj 0 1 0

Pity. I had some decent ee04wub 0 0 1

lunches there, but never
went there at night.

I am so sorry for your loss ee04wub 0 1 1
and all the stress you have

right now. All the internet

hugs you want right now!

<3

Table 3.1: Excerpt from the raw GoEmotions dataset (simplified view).
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3.1.2 Cleaning and filtering

Two filtering steps were applied to improve reliability of the label and better align
the dataset with the objectives of emotion recognition:

1. Rows where the column example_very_unclear = True are discarded to
eliminate instances that annotators marked as confusing or unreliable.

2. All rows labeled as neutral are removed to keep the focus on explicit emotions
and to emphasize emotion expressions rather than emotionally neutral content.

These filters are applied before label unification (explained more in detail in the
following section) to ensure that uncertain or neutral examples do not influence
the final multi-label representations. In the following Table 3.2, we can take a look
at the remaining rows after each filtering step.

Filtering step Remaining rows
Original concatenated dataset 211,225
Remove unclear examples 207,814
Remove neutral examples 152,516

Table 3.2: Dataset size after each preprocessing step.

Per-id aggregation

As mentioned before, each Reddit comment in the GoEmotions dataset may appear
multiple times because it was annotated independently by several raters. To obtain
a single entry per comment, the dataset is grouped by the unique identifier id.
This ensures that all annotations referring to the same comment are merged into
one record.

For each comment, the first occurrence of the text, subreddit, and created_utc|
values is retained, since these fields are identical across raters. For each emotion
label e € &£, where £ is the set of 27 emotions (excluding neutral), the binary
annotations from different raters are first aggregated by computing their mean:

BN Iy
Tie = — Z yz(fe)7
n; j=1
where yz(]e) is the label assigned by rater j for emotion e on comment 7, and n; is
the number of raters for that comment.
A final binary label is then assigned according to a unanimity rule:
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yiﬁ = ,Hé(?i’e = 10) y

meaning that an emotion e is considered present for comment ¢ only if all raters
selected it. If even one rater did not mark the emotion, it is excluded (y; . = 0). In
this way, we obtain reliable, high-confidence emotion labels.

The resulting dataset contains one row per unique comment id, with the
structure:

{id, text, subreddit, created_utc} U {yc}ece,

where each y, € {0,1} represents the final binary presence or absence of emotion
e under unanimous agreement.

This aggregation criterion minimizes label noise and ensures that only comments
with clear emotion are included in the dataset. No further text normalization (such
as lowercasing or stopword removal) is performed at this stage, as these operations
are being done to the tokenization step.

After applying this aggregation rule and removing comments with no active
emotion labels, the final dataset contains 53,740 unique comments. Table 3.3 and
Figure 3.1 shows the number of samples associated with each of the 27 emotion
labels in the resulting multi-label dataset. As shown, certain emotions such as
approval, annoyance, and admiration are relatively frequent, while others like
relief and grief remain underrepresented, reflecting the class imbalance of the
GoEmotions dataset.

3.2 Pipeline Overview

The proposed method is implemented in a pipeline designed to process the raw
GoEmotions dataset, build a clean multi-label emotion corpus, train and evaluate
a baseline model, analyze label performance under simulated data scarcity, and
finally assess the impact of different data augmentation strategies. The entire
workflow follows a reproducible structure, allowing each stage to be executed either
independently or as part of a complete automated run.

In the code, the pipeline is organized into different components, each implemented
in a specific module: prepare_data.py (data acquisition and preprocessing),
data_loader.py (data formatting and tokenization), model.py (definition of the
classification model), trainer.py (training and evaluation routines), and utils.py
(auxiliary functions and configuration utilities). The main entry script manages the
execution flow and contains command line arguments that allow users to control
each step of the process.

At a high level, the pipeline contains the following phases:
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Table 3.3: Label distribution in the final aggregated GoEmotions dataset (27
emotions, 53,740 comments).

Emotion Count
approval 13,253
annoyance 10,038
admiration 9,937
disapproval 8,402
realization 7,250
disappointment 6,661
curiosity 6,216
optimism 6,209
joy 5,718
anger 5,652
gratitude 5,364
confusion 5,321
amusement 5,187
sadness 4,676
love 4,383
excitement 4,355
caring 4,339
disgust 4,058
surprise 3,830
desire 2,838
fear 2,142
embarrassment 2,004
remorse 1,664
nervousness 1,557
pride 1,128
relief 1,085
grief 560

1. Downloading, cleaning, and aggregating the original GoEmotions release into
a unified multi-label dataset.

2. Transforming textual data into a ready input using the BERT tokenizer [3],
with a train, validation and test split stratified by subreddit to reduce topic
bias.

3. Fine-tuning the BERT base model on the preprocessed dataset to establish
reference performance.
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Final Label Distribution (After Consolidation)
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Figure 3.1: Labels distribution.

4. Optimizing classification thresholds on the validation set to better balance
precision and recall across multiple emotion labels.

5. Assessing the model on the test set and comparing results against default
decision thresholds.

6. Reducing the number of samples per label to simulate class imbalance and
analyze how data scarcity affects model performance.

7. Applying a regression-based approach to relate label frequency and F1-score,
identifying which emotions are most affected by data scarcity.

8. Generating additional samples for underperforming labels using both tradi-
tional synonym replacement (Easy Data Augmentation, EDA) and LLM-based
rewriting (Mistral-7B Instruct [37]), followed by retraining and evaluation to
measure performance gains.

This structured approach (see Figure 3.2) ensures that each experiment can be
reproduced, extended, or modified. This design also allows future integration of
new models, datasets, or augmentation techniques.
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Dataset
Acquisition & Split & tokenize Baseline training Threshold tuning
Preprocessing

Underperformance
analysis (F1 vs.
support)

Downsampling
(simulate scarcity)

Targeted

Test evaluation .
Augmentation

EDA LLM Rewriting
(Synonym (Mistral-7B
Replacement) Instruct)

Retrain & Evaluate
on Augmented
Data

Figure 3.2: Pipeline from data preparation to baseline training, threshold tuning,
and evaluation; followed by downsampling, regression-based diagnosis of under-
performing labels, targeted augmentation (EDA and LLM), and retraining on the
enriched dataset.

3.2.1 Loading, splitting, and tokenization

At this stage, the processed dataset is being prepared for model training. To create
the train, validation, and test sets, the data is split within each subreddit. This
means that every subreddit contributes examples to all three splits in proportions
defined by the specified ratios. This approach ensures that each split preserves the
diversity of topics and styles present across subreddits.

The final dataset includes comments from 483 unique subreddits, covering
a wide range of themes and emotional tones. Some communities are very active,
contributing hundreds of comments, while others appear only a few times. Table 3.4
and Figure 3.3 provides an overview of the subreddit distribution. The most
represented communities, such as loveafterlockup and cringe, each contribute over
200 examples, while smaller subreddits like farcry contain only a handful of posts.

Once the dataset is analyzed, it is split into training, validation, and test sets
following a 60/20/20 ratio. The final splits contain 31,967 examples for training,
10,844 for validation, and 10,929 for testing. Each subset is then converted into
a Hugging Face Dataset object, which stores both the text and a labels field of a
27-dimensional binary vector representing the presence or absence of each emotion.

Before model training, each comment is transformed from raw text into the input

22



Methodology

Table 3.4: Subreddit distribution in the final GoEmotions dataset (top 10).

Subreddit Number of posts
loveafterlockup 227
cringe 226
socialanxiety 224
AnimalsBeingBros 218
confessions 212
vanderpumprules 211
danganronpa 206
90dayfianceuncensored 205
90DayFiance 203
datingoverthirty 200
Unique subreddits 483
Minimum posts per subreddit 22
Number of subreddits with 22 posts 1
Subreddit with fewest posts farcry (22)

format required by BERT using the Hugging Face AutoTokenizer, configured for
the bert-base-uncased model. Bert-base-uncased is one of the most widely
used transformer-based architectures introduced by Devlin et al. [3], which itself is
based on the transformer encoder proposed by Vaswani et al. [38]. BERT is designed
to capture rich contextual representations of language by jointly conditioning on
both left and right contexts within a sentence. This bidirectionality enables the
model to understand subtle dependencies between words, which is important for
emotion classification, where meaning often depends on context.

The base configuration of BERT consists of 12 transformer encoder layers, each
with 12 self-attention heads and 768-dimensional hidden representations, resulting
in approximately 110 million parameters. The model was pre-trained on two large-
scale corpora, the BooksCorpus and English Wikipedia, using a masked language
modeling (MLM) and next sentence prediction (NSP) objective [3].

Additionally, BERT employs a subword tokenization method known as Word-
Piece, originally introduced by Google for neural machine translation [39]. This
approach decomposes words into smaller units from a fixed-size vocabulary of
30,522 tokens. It enables the model to effectively represent both common and rare
words without excessively increasing vocabulary size. For instance, the rare word
overgeneralization may be segmented into over, ##general, and ##ization, where
the prefix ## marks continuation subwords.

The uncased variant of BERT applies automatic lowercasing and accent removal,
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Distribution of Subreddit Frequencies (All 483 Subreddits)
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Figure 3.3: Subreddits distribution.

mapping variations such as Happy, HAPPY, and happy to the same token sequence.
This reduces sparsity and it is the standard for English classification tasks where
capitalization does not carry strong semantic meaning. During tokenization, BERT
also inserts two special tokens: the classification token [CLS] at the beginning of
each sequence and the separator token [SEP] at the end. Each input sequence
therefore takes the following general form:

[CLS] t; ty ... t, [SEP],

where t; denotes the individual WordPiece tokens. During fine-tuning, the hidden
representation associated with the [CLS] token serves as the aggregated sequence
embedding used by the classification head.

To ensure uniform input lengths across all samples, both padding and trunca-
tion are applied. Each sequence is capped at a maximum of 128 tokens. Longer
texts are truncated from the end, while shorter ones are padded using the special
[PAD] token until they reach the fixed length. Alongside this, the tokenizer gener-
ates an attention mask (a binary vector of the same length) where 1 indicates valid
tokens and 0 marks padded positions. The mask prevents BERT’s self-attention
mechanism from attending to padded tokens. The choice of 128 tokens represents a
balance between covering most Reddit comments and keeping memory and training
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time manageable. In practice, the majority of GoEmotions samples are shorter
than this limit.

After tokenization, all examples are stored in the Hugging Face Dataset format,
which integrates with PyTorch. Each processed example contains the following

fields:
e input_ids: the token indices corresponding to subword tokens,
o attention mask: a binary mask distinguishing valid tokens from padding,
e labels: a 27-dimensional binary vector representing the emotion categories.

Then it is passed directly to the Hugging Face Trainer, which handles data
batching, GPU allocation, and gradient accumulation. Overall, this step transforms
the dataset from structured text into model-ready tensors.

3.2.2 Baseline training

In this thesis, the BERT model is fine-tuned for multi-label emotion classification.
Since each Reddit comment may express multiple emotions simultaneously, the
output layer is modified to include 27 independent sigmoid units, one for each
emotion label. Unlike a softmax layer, which enforces mutual exclusivity among
classes, the sigmoid activation allows each label to be activated independently. The
model outputs a probability vector p = [p1, ps, - . ., p27], where p; € [0,1] represents
the predicted probability of emotion 7 being present in the text. The loss function
used is the binary cross-entropy with logits loss (BCEWithLogitsLoss), defined as:

1 N K

L=-3Y% [yij log((8i3)) + (1 — yi7) log(1 — o(fi;))|

i=1j=1

where N is the number of samples, K is the number of emotion labels, y;; is the
ground truth label for class j in example ¢, g;; is the model’s raw output (logit),
and o(-) is the sigmoid activation function. This formulation treats each emotion
prediction as an independent binary decision.

Training is conducted using the Hugging Face Trainer API [36], which sim-
plifies the fine-tuning process by handling gradient accumulation, learning rate
scheduling, evaluation, and checkpointing. The model is trained with a 27-
unit sigmoid head by setting problem type=multi_label classification in
the BertForSequenceClassification class. The training loop is implemented
through a lightweight wrapper around the Trainer, replacing the default loss with
BCEWithLogitsLoss.

Training parameters such as batch size, learning rate, weight decay, number
of epochs, and warmup ratio are defined using the TrainingArguments class.
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Validation is performed at the end of each epoch to monitor progress and prevent
overfitting.

The baseline model has two purposes. First, it provides a reference performance
on the original dataset without any data augmentation, establishing a benchmark
for later comparison. Second, it forms the foundation for the downsampling
experiments, where the dataset is reduced to simulate data scarcity. Retraining the
baseline under these conditions helps quantify how performance deteriorates when
minority labels are underrepresented. As expected, the reduction in training data
affects rare emotions, which shows the importance of synthetic data generation for
balancing the label distribution.

Table 3.5: Hyperparameters and Training Arguments for Fine-Tuning BERT.

Model Parameter Value
Learning rate 2% 107°
Optimizer AdamW
Adam (B4, f2) (0.9, 0.999)
Adam € 1x10°8
Weight decay 0.01
Warmup ratio 0.1
LR scheduler linear
BERT-base-uncased | Epochs 3
Train batch size 16
Eval batch size 32
Max sequence length 128
Gradient accumulation | 1
FP16 training False
Save strategy epoch
Logging strategy epoch

The hyperparameter configuration used for fine-tuning BERT (see table 3.5) fol-
lows recommendations from the original BERT paper [3], from optimisation studies
such as AdamW [40], and from best practices in the Hugging Face Transformers
ecosystem [36]. The learning rate is set to 2 x 107°, a value widely recognised as a
stable choice for BERT fine-tuning. Larger learning rates can overwrite pretrained
knowledge and lead to unstable convergence, while smaller ones often slow down
learning or cause underfitting. The AdamW optimizer is used because it decouples
weight decay from the gradient update rule, improving generalisation and address-
ing limitations of the original Adam algorithm [41]. The default Adam parameters
(B1, B2) = (0.9,0.999) and € = 1078 are retained, as these settings have consistently
proven effective for transformer architectures and modifying them rarely yields
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benefits.

A weight decay of 0.01 is applied to reduce overfitting, which is particularly
important when the fine-tuning dataset is much smaller than the corpora used
during pretraining. Training begins with a warmup phase covering the first 10% of
optimization steps, gradually increasing the learning rate to stabilise the early stages
of fine-tuning. After warmup, a linear learning rate decay schedule is employed,
which gently decreases the learning rate toward zero and is known to encourage
smooth convergence for transformer models.

The model is trained for three epochs, consistent with the recommendation in [3]
that BERT typically converges within 2-4 epochs for sentence-level classification
tasks. The training batch size is set to 16, a common choice that balances gradient
stability with GPU memory limitations, while evaluation uses a larger batch size
of 32 to speed up inference. The maximum sequence length is restricted to 128
tokens, as most Reddit comments in the GoEmotions dataset fall well below
this threshold; shorter sequences improve computational efficiency and reduce
unnecessary padding.

Gradient accumulation is not used, as memory constraints allow training with
a batch size of 16 directly. Mixed precision (FP16) training is disabled to avoid
potential numerical instability, ensuring reproducibility and consistency across
machines. Both saving and logging are performed once per epoch, which avoids
excessive checkpointing, keeps logs interpretable, and aligns naturally with the
validation and threshold-tuning procedures used later in the pipeline.

Overall, this hyperparameter configuration reflects a standard, robust, and em-
pirically validated setup for BERT fine-tuning. Using such well-established settings
ensures that the baseline serves as a fair reference point, enabling improvements to
be attributed to the data augmentation techniques rather than to hyperparameter
optimisation.

Threshold tuning on the validation set

In multi-label classification, each label is predicted independently, and a threshold
must be applied to convert probabilities into binary outputs. Using a fixed thresh-
old of 0.5 for all labels often leads to suboptimal results, especially under class
imbalance. To address this, a per-label threshold tuning procedure is performed
on the validation set. For each emotion, the precision and recall is computed, and
the threshold that maximizes the F1 score is selected (the metrics are explained
in the next chapter in more detail). These optimal thresholds replace the default
0.5 values for all subsequent evaluations, ensuring that each emotion is classified
according to its own empirical decision boundary. This tuning step improves both
macro- and micro-F1 scores by aligning decision thresholds.
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Test evaluation and default-threshold comparison

After threshold optimization, the model is evaluated on the test split using the tuned
thresholds. Performance is reported using micro- and macro-averaged precision,
recall, and F1 scores, providing perspectives on model performance across common
and rare labels. The test set is also evaluated using the default threshold of 0.5
to quantify the benefit of threshold tuning. Additionally, a per-class evaluation
report is produced, summarizing precision, recall, F1, and support for each of the
27 emotions. These metrics reveal which emotions are consistently well captured
and which remain challenging due to limited representation or label ambiguity.

3.2.3 Downsampling experiments (simulated scarcity)

To evaluate the model under conditions of limited training data, a series of downsam-
pling experiments were conducted to simulate label scarcity. In these experiments,
the training set was progressively reduced by a user-specified percentage per emotion
label, ranging from 10% to 90% of the original samples. Downsampling was applied
approximately uniformly across labels, ensuring that each emotion retained the
same proportion of its original examples. This approach preserves the multi-label
structure of the dataset, meaning that comments with multiple emotions continue
to reflect realistic overlaps, even after reduction.

For each downsampling level, the experimental pipeline repeats the entire process
from scratch: tokenization, model initialization, fine-tuning, validation threshold
tuning, and evaluation on the fixed test set. The resulting metrics are aggregated
into tables and plotted as F1-score versus data reduction curves (check the next
chapter). This setup is used for doing a study of how class frequency affects
both global and per-label performance, particularly for minority emotions that are
already underrepresented.

Among the various reduction levels tested, the configuration corresponding to a
60% reduction (i.e., retaining 40% of each label) was selected for detailed analysis.
This choice represents a realistic scenario: the dataset remains large enough for
stable model training while clearly exhibiting the effects of scarcity on minority
emotions. At this reduction level, we have comparisons with data augmentation
experiments performed later in this study.

Table 3.6 summarizes the resulting label distribution after applying the 60%
downsampling. Each entry reports the number of samples per emotion before and
after reduction, along with the percentage of data retained.

3.2.4 Underperforming-label analysis via regression

After training the baseline model under the specific data reduction setting (60%
downsampling), the next step is to identify which emotion labels are most negatively
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Table 3.6: Label distribution after 60% downsampling (40% remaining per label).

Emotion Original Count New Count
approval 7915 3166
annoyance 6006 2402
admiration 5879 2351
disapproval 4982 1992
realization 4350 1740
disappointment 3928 1571
optimism 3743 1497
curiosity 3710 1484
joy 3395 1358
anger 3382 1352
gratitude 3185 1274
confusion 3149 1259
amusement 3063 1225
sadness 2764 1105
love 2640 1056
caring 2594 1037
excitement 2566 1026
disgust 2380 952
surprise 2311 924
desire 1694 677
fear 1244 497
embarrassment 1199 479
remorse 973 389
nervousness 944 377
pride 687 274
relief 646 258
grief 340 136

affected by limited data. To do this, a regression-based analysis is performed that
models the relationship between the number of samples available for each emotion
(label support) and the corresponding per-class F1 score obtained on the test set.
A simple linear regression is fitted to predict the expected F1 score from the
logarithm of label frequency, following prior work showing that model performance
in imbalanced classification tasks typically scales with label frequency in a roughly
logarithmic fashion [42].

Labels whose observed F1 scores fall significantly below the regression line
are considered underperforming relative to their support. In simpler terms, these
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are emotion classes that don’t perform as well as someone would expect given
how much data they have. This usually happens because of subtle differences in
meaning, emotions that overlap with others, or a lack of variety in the training
examples. Spotting these specific labels helps focus improvements where they are
really needed, instead of just applying data augmentation to every emotion equally.

3.2.5 Augmentation experiments (EDA and LLM-based
generation)

Once the most underperforming labels are identified, two complementary augmen-
tation strategies are applied to improve their representation in the downsampled
dataset. In this way there is a check whether the new augmented data can re-
duce the effects of class imbalance and improve overall model performance. Both
approaches are designed to increase diversity and quantity in low-resource labels
while preserving the underlying emotional semantics.

The first method, traditional data augmentation (EDA — Easy Data Augmen-
tation), follows the approach introduced by Wei and Zou [26]. Specifically, the
synonym replacement technique substitutes a small proportion of non-critical
words in a sentence with WordNet [43] based synonyms, generating label-consistent
paraphrases that maintain the same emotional tone and the same meaning. Some
examples for the emotion embarrassment can be shown in table 3.7. This lightweight
augmentation technique has been shown to be effective in text classification tasks
by increasing linguistic variety without requiring large computational resources [13,
44]. In the context of this thesis, EDA is applied only to the emotion categories
identified as underperforming, and the number of new examples is scaled until each
targeted label reaches the predefined support of the most frequent emotion.

The second method uses a large language model for the generation of the synthetic
data in order to augment the baseline dataset. Synthetic data refers to information
that is artificially created to resemble real observations while avoiding a direct
copy of the original material. It maintains the statistical properties and semantic
patterns of the real dataset, making it suitable for training machine learning models
in situations where certain categories are rare or difficult to collect. Recent work
has highlighted the usefulness of synthetic text for improving performance in low
resource and imbalanced scenarios [45].

Specifically, the Mistral-7B-Instruct model is used to rewrite real examples
into semantically similar sentences conditioned on the target emotion. Some
examples for the emotion embarrassment can be shown in table 3.8. The LLM is
prompted with an instruction enabling it to generate diverse, fluent, and emotion-
preserving paraphrases. Previous studies have shown that instruction-tuned LLMs
can effectively produce high-quality labeled data for NLP tasks, including emotion
classification and sentiment analysis [24, 33]. Unlike traditional rule-based EDA,
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Original text Augmentated text
Looks kinda creepy when you keep Looks kinda spooky when you
watching keep watching

He may be embarrassed about the con- He may be ashamed about the con-
dition of their house. dition of their house.

His interviews are so awkward His interviews are so clumsy

Sorry I forgot a word! I added it back Sorry I forgot a term! I added
in, thanks for letting me know it back in, thanks for letting me
know

Y’all been eatin’ long enough now, stop Y’all been eatin’ long enough now,
being greedy! stop being selfish!

Table 3.7: Excerpt from the traditional data augmentation technique.

this approach uses deep contextual understanding to generate richer, more natural
examples that better capture the ways people actually express themselves.

Also in this case, synthetic examples are added incrementally until the target

label reaches the support of the most frequent emotion. The augmented training
dataset is then used to train the BERT base model under the same settings as the
baseline. Threshold tuning is performed again on the unchanged validation set,
and evaluation is conducted on the same fixed test split to ensure a fair comparison
across models. The pipeline records key performance metrics, including micro-
and macro-averaged precision, recall, and F1, as well as the number of synthetic
samples generated for each label.
The hyperparameters used for Mistral-7B-Instruct (see table 3.9) were selected to
balance three main goals: (i) preserving the original emotion of each sentence, (ii)
generating linguistically natural rewrites suitable for social media text, and (iii)
ensuring computational feasibility during large-scale augmentation.

The model mistralai/Mistral-7B-Instruct-v0.2 is an instruction-tuned,
decoder-only language model with 7 billion parameters. Instruction tuning improves
controllability and consistency under prompting, making it more reliable for tasks
such as emotion-conditioned paraphrasing. The model is loaded in torch.float16
to reduce memory consumption while maintaining high generation quality, following
common practice in LLM inference pipelines.

The setting device_map="auto" automatically distributes model components
across available GPUs. This avoids manual device placement and ensures efficient
use of hardware resources, which is especially helpful for 7B-parameter models.

A generation batch size of 8 prompts was chosen as a compromise between
throughput and GPU memory constraints. Allowing up to 40 new tokens ensures
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Original text Augmentated text

Looks kinda creepy when you keep Feels a bit awkward to keep star-
watching ing at that.

He may be embarrassed about the con- He might feel embarrassed about
dition of their house. the state of their house.

His interviews are so awkward The interviews make him come

across as uncomfortable.

Sorry I forgot a word! I added it back Apologies for the oversight, I've
in, thanks for letting me know added the missing word back in.
Embarrassed for the mistake.

Y’all been eatin’ long enough now, stop It’s time to show some restraint,
being greedy! y’all have been eating enough.

Table 3.8: Excerpt from the LLM-based augmentation technique.

that rewritten sentences remain close in length to the originals while avoiding overly
long or drifting generations.

Nucleus sampling with top-p = 0.95 and temperature 0.7 was selected to
encourage lexical diversity without sacrificing semantic fidelity. Lower temperatures
produced overly literal rewrites, while higher temperatures increased the risk of
semantic drift.

A chat-style prompt structure combining a system message with a user message
was used to stabilize model behaviour. This format aligns with Mistral’s instruction-
tuning setup and has been shown to improve faithfulness and adherence to con-
straints in rewriting tasks. The system prompt explicitly restricts stylistic changes
and prohibits the introduction of new content, encouraging emotion-preserving
variations rather than uncontrolled paraphrases.

Each rewrite is conditioned on both the original sentence and the target emotion.
Only the target emotion is activated in the synthetic label vector, ensuring clean
supervision when the synthetic examples are merged with the training set. The
number of generations per label is defined by the target_count parameter, which
aligns augmentation with the imbalance level identified in earlier analysis.

Short or malformed generations (fewer than three tokens) are discarded to
ensure that only meaningful rewrites contribute to the training set. This post-
processing step is necessary because LLMs occasionally produce incomplete outputs,
particularly when conditioned on very short input sentences.

Together, these choices aim to produce high-quality paraphrases that preserve
emotional content while increasing label diversity. This configuration achieved
substantially better results than simpler synonym-based augmentation methods
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Table 3.9: Generation configuration for Mistral-7B-Instruct used in LLM-based
data augmentation.

Setting Value

Model mistralai/Mistral-7B-Instruct-v0.2

Model type Decoder-only causal LM (instruction-tuned)

Parameters B

Precision torch.float16

Device mapping device_map="auto"

Task Sentence rewriting for emotion-preserving
augmentation

Batch size (generation) 8 prompts per batch

Max new tokens 40

Sampling strategy
Temperature
Top-p

Pad token

Random seed
Prompt format
System prompt

Conditioning signal
Per-label target count
Output filtering
Synthetic label vector

Nucleus sampling (do_sample=True)

0.7

0.95

EOS token (pad_token_id =
11m_model.config.eos_token_id)

42 (Python and Torch)

System + user messages (chat template)
Instruction to rewrite social media sentences
while preserving emotion

Original sentence + target emotion label
target_count (desired support per label)
Discard generations with fewer than 3 tokens
Single active emotion: y. = 1 iff e = label

and earlier prompt versions, showing the importance of careful hyperparameter
and prompt design in LLM-based data generation.

Comparison The traditional EDA approach (Table 3.7) produces minimal lexical
changes that preserve sentence structure and overall semantics. This method
tends to substitute individual words with synonyms (e.g., 'creepy’ — ’spooky’,
’embarrassed’” — ’ashamed’), resulting in relatively conservative augmentations.
While this keeps the augmented data close to the original, it may introduce limited
linguistic diversity and stylistic variation.

In contrast, the LLM-based augmentation technique (Table 3.8) generates
paraphrases that differ more substantially from the original text. LLMs often
restructure sentences, introduce new expressions, and adapt tone, leading to more
natural and contextually rich variations. For example, “Looks kinda creepy when
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you keep watching” becomes “Feels a bit awkward to keep staring at that,” which
is a full paraphrase rather than a synonym substitution. This allows for greater
diversity in training data, which can improve model strength, though it also
increases the risk of semantic drift if not monitored.

Overall, EDA provides controlled and predictable lexical variation, while LLM-
based augmentation offers broader linguistic flexibility and more human-like para-
phrasing.

Original Text

EDA Augmentation

LLM-Based Aug-
mentation

Looks kinda creepy when
you keep watching

Looks kinda spooky when
you keep watching

Feels a bit awkward to
keep staring at that.

He may be embarrassed
about the condition of
their house.

He may be ashamed
about the condition of
their house.

He might feel embar-
rassed about the state
of their house.

His interviews are so awk-
ward

His interviews are so
clumsy

The interviews make
him come across as un-
comfortable.

Sorry I forgot a word! I
added it back in, thanks
for letting me know

Sorry I forgot a term! I
added it back in, thanks
for letting me know

Apologies for the over-
sight, I've added the
missing word back in.
Embarrassed for the
mistake.

Y’all been eatin’ long
enough now, stop being
greedy!

Y’all been eatin’ long
enough now, stop being

selfish!

It’s time to show some
restraint, y’all have
been eating enough.

Table 3.10: Comparison between EDA-based and LLM-based augmentation
strategies.

This design allows for a direct comparison among three experimental conditions:
(1) the downsampled baseline (no augmentation), (2) the dataset augmented
with EDA-based synonym replacements, and (3) the dataset augmented with
LLM-generated rewrites. Comparing these scenarios gives us information on the
effectiveness of traditional versus modern augmentation approaches in enhancing
minority and overall label performance.
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3.2.6 Reproducibility

All stages can be invoked separately through command-line switches: -download,
-prepare, —analyze, -train, ~downsample, —analyze-labels, and

-augment-experiment. Model and data hyperparameters (model-name, epochs,
batch-size, learning-rate, downsampling levels, augmentation target counts, and
augmentation type) are exposed as flags to support ablations. The pipeline creates
required directories on demand, caches dataset downloads, seeds random generators
where applicable, and writes deterministic outputs (processed CSV, plots, per-
experiment results), making runs repeatable across environments.
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Chapter 4

Experiments and Results

4.1 Evaluation Metrics

To evaluate the performance of the model, several standard metrics were used in
multi-label classification: precision, recall, and F1l-score. Since these metrics can
be averaged across labels in different ways, we considered both micro and macro
averaging. Using both, we come up with a more complete view of how the model
behaves, particularly when dealing with imbalanced classes.

Precision measures the proportion of predicted positive instances that are
actually correct. For a single label i, precision is defined as:

Th

recision TR I FR

where T'P; denotes the number of true positives for label i, and F'P; denotes the
number of false positives.

Recall measures the proportion of actual positive instances that are correctly
identified by the model. For a single label 7, recall is defined as:

TFh
Recall; = —————
eca TP 1 FN,
where F'N; denotes the number of false negatives for label 7.
F1-score is the harmonic mean of precision and recall, providing a balanced
measure that accounts for both false positives and false negatives. For a single

label 4, it is given by:

F1, — 2 - Precision; - Recall;

Precision; + Recall;

In micro-averaging, the contributions of all classes are aggregated to compute
the overall metric. This approach gives equal weight to each individual prediction,

36



Experiments and Results

making it sensitive to class imbalance and dominated by majority classes. Micro-
averaged metrics are defined as:

Procisi > T'P;
recision,icro =
>u(TP, + FPy)
TP
Recall,icro = 2ilh

(TP, + FN;)

2 - Precision,,;cro + Recallicro
Flmicro =

Precision,,;cro + Recall,icro

In macro-averaging, the metric is computed independently for each label and
then averaged across all labels. This gives equal weight to each class, regardless of
its frequency, making it particularly useful for evaluating performance on minority
classes. Macro-averaged metrics are defined as:

Precision,,qero = T Z Precision;
i=1

L
Recall,aero = Z Recall;

L
Linacro = Z

where L is the total number of labels.

Using both micro and macro averaging gives a more complete picture of the
model’s performance. Micro-averaged metrics show how well the model works
overall, but they are mostly driven by the labels that appear most often. Macro-
averaged metrics, instead, emphasize how the model performs on the less common
labels, which are the main focus of this thesis. By including both types of metrics,
the evaluation makes it easier to see the balance between overall accuracy and
fairness across all classes.

4.2 Baseline Experiment

Table 4.1 reports the per-label precision, recall, F1-score, and support obtained
by the baseline BERT model on the test set. These results show the behaviour
of the model when trained on the full (non-downsampled) dataset, before any
augmentation is applied.

Overall, the model performs strongly on several high-support labels such as love,
amusement, and gratitude, each reaching F1l-scores above 0.75. These emotions
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Table 4.1: Per-label performance of the baseline BERT model on the test set.

Label Precision Recall F1l-score Support
love 0.831 0.726 0.775 876
amusement 0.850 0.697 0.766 1061
gratitude 0.879 0.654 0.750 1087
admiration 0.660 0.714 0.686 1981
curiosity 0.676 0.695 0.685 1272
remorse 0.828 0.511 0.603 329
joy 0.483 0.643 0.551 1156
confusion 0.475 0.655 0.551 1085
sadness 0.510 0.583 0.544 945
anger 0.471 0.630 0.539 1129
disapproval 0.460 0.629 0.531 1747
annoyance 0.409 0.742 0.527 2061
approval 0.428 0.682 0.526 2658
surprise 0.572 0.481 0.522 763
fear 0.600 0.454 0.517 449
caring 0.465 0.521 0.491 860
optimism 0.481 0.474 0.478 1231
disgust 0.386 0.531 0.447 828
desire 0.539 0.372 0.440 589
disappointment 0.343 0.596 0.436 1400
excitement 0.434 0.435 0.434 908
realization 0.317 0.452 0.373 1415
embarrassment 0.278 0.374 0.319 393
nervousness 0.287 0.290 0.289 293
relief 0.242 0.264 0.253 212
grief 0.283 0.157 0.202 108
pride 0.234 0.106 0.146 208

tend to be expressed with more explicit linguistic and semantic signals, making
them easier for BERT to learn. Labels such as admiration, curiosity, and remorse
also achieve relatively high Fl-scores, indicating that the model is able to generalize
well when sufficient training examples are available and the emotional expression is
consistent.

However, the results also show clear weaknesses on a subset of emotion categories.
In particular, optimism (F1 = 0.478), nervousness (F1 = 0.289), relief (F1 = 0.253),
grief (F1 = 0.202), and pride (F1 = 0.146) show substantially lower F1-scores.
These labels either have very few examples (for instance, grief appears only 108
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times) or rely on subtle, ambiguous language that makes them harder for the model
to predict accurately. Because they are both rare and expressed in diffuse ways,
the model struggles with them even when trained on the full dataset.

This first evaluation sets the baseline performance for all later augmentation
experiments. It also clearly identifies which labels need the most improvement that
will be the focus of the downsampling and augmentation steps.

4.3 Downsampling Experiments

To understand how performance drops when less data is available, the training
dataset was gradually downsampled in steps of 10% up to 90%. At each reduction
level, a new BERT base model was trained from scratch and evaluated using the
same validation and test splits. Figure 4.1 summarizes the relationship between
training data size and classification performance, expressed through the Micro-F1
and Macro-F1 scores.

Validation F1 vs. Training Set Downsampling

0.54 4 —&— micro/F1

—#— macro/F1

0.52 1

0.50 4

0.48 A

F1 Score

0.46

0.44

0.42 1

0.40 - T T T T T
0 20 40 60 80
Downsampling Reduction (%)

Figure 4.1: Validation F1-score versus training set downsampling. Both micro-
and macro-averaged F1-scores are shown as the percentage of removed training
data increases.

As expected, model performance consistently declines as the amount of available
training data decreases. The Micro-F1 score, which aggregates contributions from
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all classes proportionally to their frequency, shows a gradual decrease, indicating an
overall reduction in predictive accuracy across the dataset. The Macro-F1 score
which averages performance equally across all labels drops more sharply. This gap
shows that rare emotions are more severely impacted by data scarcity than frequent
ones. When the dataset is reduced to 40% of its original size (a 60% downsampling
rate), the Macro-F1 score drops sharply, confirming that underrepresented classes
lose performance disproportionately.

These results align with prior studies on imbalanced and low-resource NLP
tasks, which shows that when models are trained on limited data, they often overfit
to the majority patterns while failing to represent minority categories [15, 42].
The sharper decline of the Macro-F1 score shows that the model is becoming less
able to generalize across the full range of emotions, highlighting the importance
of targeted strategies such as data augmentation to better represent infrequent
emotions. This observation motivated the following experiments, which apply
traditional and LLM-based augmentation techniques to compensate for the effects
of label scarcity.

To analyse the effect of training data scarcity, we choose the experiment where
the training set for each emotion was reduced by 60%, and the baseline BERT
model was trained again from scratch. The evaluation was performed on the
unchanged test set to ensure comparability with the full-data baseline. Table 4.2
presents the per-class precision, recall, F1-score, and support.

In total, the results show a clear decrease in performance compared to the
full-data model, confirming that BERT is strongly dependent on the availability of
sufficient examples for multi-label emotion classification. High-frequency emotions
such as love, amusement, and gratitude remain relatively stable, preserving F1-
scores between 0.74 and 0.76. These labels are frequent and often expressed with
distinctive lexical signals, which helps the model remain robust even when the
training data is heavily reduced.

However, the reduction affects mid frequency and low frequency labels. Several
medium support emotions such as disapproval (F1 = 0.528), annoyance (F1 =
0.523), anger (F1 = 0.521), and approval (F1 = 0.512) show noticeable declines.
These categories are more semantically diffuse, and their expression depends on
subtle context, making them particularly sensitive to data reduction.

The most noticeable declines occur in low support emotions. Labels such as
optimism (F1 = 0.471), caring (F1 = 0.461), disgust (F1 = 0.446), desire (F1 =
0.449), excitement (F1 = 0.419), and realization (F1 = 0.346) now fall well below
0.50 F1, showing that the model struggles to form stable decision boundaries with
limited training examples.

At the bottom of the performance distribution are the rarest emotions, which
collapse almost entirely. Relief drops to 0.192 F1, nervousness to 0.234 F1,
embarrassment to 0.254 F1, while grief (0.159) and pride (0.094) fall to near-zero
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F'1 despite unchanged test-time support. This pattern shows a known phenomenon
in imbalanced multi-label classification which is when support becomes too low,
the model defaults to majority-class predictions, severely harming the recall of rare
labels.

These findings provide motivation for the augmentation strategies explored in
the next sections. The big decrease of minority emotions under 60% downsampling
makes them ideal targets for data augmentat, and the regression-based analysis
performed later aligns with these observations.

Table 4.2: Per-label performance of the baseline model after 60% downsampling
of the training data.

Emotion Precision Recall F1l-score Support
love 0.758 0.771 0.764 876
amusement 0.889 0.702 0.752 1061
gratitude 0.852 0.664 0.747 1087
admiration 0.658 0.699 0.678 1981
curiosity 0.697 0.635 0.665 1272
remorse 0.773 0.486 0.597 329
confusion 0.464 0.643 0.540 1085
sadness 0.522 0.647 0.534 945
disapproval 0.464 0.611 0.528 1747
joy 0.480 0.574 0.523 1156
annoyance 0.418 0.610 0.523 2061
anger 0.454 0.610 0.521 1129
approval 0.420 0.653 0.512 2658
surprise 0.507 0.499 0.503 763
fear 0.578 0.428 0.492 449
optimism 0.448 0.496 0.471 1231
caring 0.459 0.464 0.461 860
desire 0.464 0.435 0.449 589
disgust 0.384 0.531 0.446 828
disappointment 0.338 0.595 0.431 1400
excitement 0.443 0.398 0.419 908
realization 0.317 0.452 0.346 1415
embarrassment 0.293 0.224 0.254 393
nervousness 0.294 0.195 0.234 293
relief 0.191 0.193 0.192 212
grief 0.124 0.222 0.159 108
pride 0.069 0.149 0.094 208
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4.3.1 Identifying Underperforming Labels

After downsampling the training set by 60%, we performed a regression based
diagnostic analysis to determine which emotion labels were affected by the reduction
in data. The aim of this step is to establish a quantitative method for selecting the
labels that should be targeted during data augmentation.

F1l-score vs Support per Label (Red = Underperforming vs Regression)

0.8 4 = Linear Regression
love

o RARRLke
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0.2 4 embarrassment

nervousness
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Figure 4.2: Identifying underperforming labels using regression based diagnostic
analysis.

Figure 4.2 visualizes the relationship between each label’s validation F'1-score
and its training support. Each point corresponds to one of the 27 emotion categories.
The horizontal axis shows the number of training examples available for that label
after downsampling, while the vertical axis reports its resulting F1-score. A linear
regression line is fitted across all points to model the expected level of performance
as a function of support size.

Labels positioned below the regression line are considered underperforming: their
F1-scores are lower than what the model would typically achieve given the amount
of training data available. Labels above the line are considered overperforming,
indicating that the model is able to learn them effectively even with limited support.

This analysis reveals a clear pattern. Several emotions with relatively low
support fall below the regression line, including grief, pride, relief, nervousness,
embarrassment, and desire. These labels achieve F1-scores far below what would
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be expected from their sample size, which suggests that the model struggles to
generalize their emotional content. Other labels with comparable support (such
as love or gratitude) are located above the regression line, indicating more better
learnability.

By analyzing performance relative to expected behavior rather than raw support
alone, this regression-based method provides a more reliable and data-driven
approach to label selection. It identifies not only emotions that are rare in the
training set, but also those whose linguistic or emotional signals may be inherently
more difficult for the model to capture. The labels identified in this step which
are in total 15 (grief, pride, relief, nervousness, embarrassment, fear, desire, caring,
excitement, optimism, disappointment, realization, disapproval, annoyance, and
approval) form the target set for the augmentation strategies analysed in the next
sections.

4.4 Traditional Augmentation
(Synonym Replacement)

The first augmentation strategy evaluated in this thesis is synonym replacement,
inspired by the Easy Data Augmentation (EDA) framework. The goal was to enrich
the underperforming labels identified through regression analysis by generating
additional training examples that preserved the original meaning while introducing
lexical variety.

The method operates by selecting one or more content words in a sentence and
replacing them with WordNet-derived synonyms as mentioned in section 3.2.5. This
produces new variants that remain semantically aligned with the original sentence
but differ in surface form. Compared to more advanced LLM-based approaches,
synonym replacement is simple, fast, and computationally inexpensive.

In this work, synonym replacement was applied only to the set of underper-
forming labels from the 60% downsampled experiment. For each target label, new
examples were generated until the label’s support increased toward the level of
the most frequent emotion. The most frequent emotion was approval, with 3166
instances. Even though approval was identified by the regression technique as an
underperforming label, it was not augmented. Each of the other 14 labels was
augmented individually in separate training runs: for every run, only one label at
a time was augmented up to 3166 instances, the model was retrained from scratch,
and the results were recorded. This allows us to specifically examine the effect of
augmenting each label, for example, evaluating performance changes when only
embarrassment was augmented, and so on. After augmentation, standard threshold
tuning was applied and evaluation was performed on the unchanged test set.

Table 4.3 reports the per-label performance after applying synonym replacement.
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While some labels experienced a modest improvement in F1-score, the overall gains
remained limited. In several cases, performance remained nearly unchanged or
even declined slightly. This outcome is consistent with observations in prior work
where synonym replacement can unintentionally introduce semantic drift when
a substituted synonym does not fit the context, and it often produces unnatural
phrasing. Such distortions may confuse the model or reduce the utility of the
generated examples.

A closer look reveals that improvements occurred primarily in labels with slightly
higher support within the underperforming group. For example, annoyance reaches
an F1 of 0.522, close to the 60%-downsampled baseline. Similarly, disapproval
achieves 0.516 and fear reaches 0.476. Only pride reached an F1 higher that
the downsampled baseline. These gains suggest that synonym replacement can
help when the semantic space of a label is relatively broad and tolerant to lexical
variation.

However, for the rarest labels, such as grief, and relief the improvements are
minimal. These emotions are typically expressed with specific, nuanced language,
and synonym substitution often fails to preserve the intended emotional meaning,
leading to limited benefit during model training.

Although synonym replacement provides a good baseline and can modestly
provide an improvement, its impact is inconsistent and weak. These leads us to
explore LLM-based techniques of generative methods in the following section.

Table 4.3: Per-label performance after traditional synonym-replacement augmen-
tation.

Emotion Precision Recall F1l-score Support
nervousness 0.234 0.222 0.228 293
optimism 0.428 0.461 0.444 1231
annoyance 0.434 0.656 0.522 2061
disapproval 0.432 0.642 0.516 1747
excitement 0.381 0.424 0.401 908
grief 0.150 0.157 0.154 108
disappointment 0.340 0.538 0.416 1400
desire 0.337 0.458 0.388 589
realization 0.246 0.559 0.342 1415
fear 0.513 0.443 0.476 449
embarrassment 0.168 0.407 0.238 393
relief 0.163 0.226 0.189 212
pride 0.115 0.216 0.150 208
caring 0.383 0.505 0.436 860
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4.5 LLM-based Data Generation

After establishing the baseline and evaluating the traditional synonym replacement
approach, this section presents the results of the second augmentation strategy
which is large language model based data generation. While the previous chapter
introduced the methodology and implementation details of this approach, here we
focus on the results and their interpretation.

The goal of this strategy was to improve performance for underperforming
emotion labels by generating high-quality synthetic examples that preserved both
meaning and emotional tone. Instead of replacing individual words with synonyms,
this approach used a generative model to rewrite entire sentences, thereby achieving
richer lexical and syntactic diversity as mentioned in section 3.2.5. Same as in
the previous section, for each target label, new examples were generated until the
label’s support increased toward the level of the most frequent emotion. For every
run, only one label at a time was augmented up to 3166 instances, the model was
retrained from scratch, and the results were recorded.

For this purpose, the Mistral-7B-Instruct model [37] was used. This instruc-
tion tuned large language model, containing approximately 7 billion parameters,
is trained to follow human-like instructions and produce contextually appropriate
outputs. Its generative ability allows it to produce paraphrases that maintain
emotional fidelity while introducing natural linguistic variety.

Two prompting strategies were tested and compared: (1) a simple prompt,
which focused on minimal rewriting using synonyms, and (2) an advanced prompt,
which provided richer guidance, stylistic constraints, and in-context examples. The
comparison between these two prompts shows the importance of prompt engineering
in LLM behavior and achieving consistent label augmentations.

4.5.1 Simple Prompt

The initial experiments employed a straightforward prompting strategy, which
instructed the model to perform synonym-based rewriting for a given emotion label.
The prompt template was:

"Rewrite the following sentence using synonyms. Keep the same meaning
and emotion {label}’: '{sentence}’ Respond with one sentence only.”

This configuration led to modest gains, with improvements observed for only
6 out of 14 targeted labels, specifically relief, embarrassment, fear, desire, grief,
and nervousness. The limited improvement can be attributed to two main factors.
First, the simplicity of the prompt provided little contextual guidance, leading the
model to produce literal synonym substitutions rather than meaningful paraphrases.
Second, the lack of stylistic and semantic constraints occasionally introduced subtle
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shifts in tone or emotion, a phenomenon known as semantic drift. As a result,
some generated sentences were linguistically valid but failed to express the intended
emotional meaning, and so reducing their effectiveness as augmentation samples.

These findings are consistent with earlier work on data augmentation, which
has shown that simple word-level transformations often provide limited benefits for
tasks that rely on subtle and consistent semantic meaning [33].

Table 4.4: Per-label performance after LLM-based augmentation with the simple
prompt.

Emotion Precision Recall Fl-score Support
nervousness 0.152 0.244 0.187 293
optimism 0.384 0.481 0.427 1231
annoyance 0.412 0.599 0.489 2061
disapproval 0.412 0.553 0.472 1747
excitement 0.286 0.414 0.338 908
grief 0.123 0.147 0.134 108
disappointment 0.325 0.510 0.400 1400
desire 0.397 0.367 0.382 589
realization 0.199 0.539 0.291 1415
fear 0.413 0.398 0.405 449
embarrassment 0.133 0.381 0.198 393
relief 0.180 0.202 0.191 212
pride 0.074 0.143 0.097 208
caring 0.337 0.379 0.357 860

4.5.2 Advanced Prompt

To overcome these limitations, a more context-rich and instructive prompt was
developed. This new version explicitly described the rewriting task, constrained
style, and provided multiple examples of desired behavior. The final prompt used
for training the LLM was:

You are a helpful assistant that rewrites sentences for social media.

You receive a sentence and an emotion. You have to rewrite the sentence
preserving the original meaning and emotion.

Do not add hashtags, emojis, or any new content unless already present.
Keep the same text style.

Return only one sentence.

Ezamples:

46



Experiments and Results

Original: I just finished my first half marathon.
Rewritten: Just completed my first half marathon!

Original: So grateful to all my colleagues for pulling this off.
Rewritten: Huge thanks to my colleagues for making this happen.

Original: Wrapping up a great quarter with an amazing team.
Rewritten: Finishing a fantastic quarter alongside a great team.

This advanced prompt produced consistently better results, leading to improve-
ments in 8 out of 14 targeted labels. Providing richer context and adding examples
helped the model better understand how each sentence should be rewritten and
where the emotional boundaries of each label lie. The generated sentences ended
up sounding more fluent and natural, and they also stayed closer to the intended
emotion, with fewer instances of labels drifting away from their original meaning.

By supplying structured examples, the prompt guided the model toward produc-
ing emotionally consistent variations, which led to clear improvements in macro-level
F'1 compared to both the simpler prompt and the traditional synonym-replacement
approach.

Overall, the results show that although LLM-based augmentation requires more
computational resources than rule-based methods, it generates synthetic data that
more accurately reflects the emotional patterns in the dataset. This makes it a
good option for addressing label imbalance in multi-label emotion classification
tasks.

An important outcome of the methodological exploration was the realization
that the quality of the prompt critically influences the quality of the generated data.
The simpler prompt that was introduced in the previous section produced only
modest improvements. In contrast, the advanced prompt offered richer context and
clearer constraints, including stylistic guidance, reminders not to introduce new
content, and examples showing how to produce faithful paraphrases. This more
explicit setup resulted in synthetic sentences that were not only more coherent but
also more accurately reflected the intended emotion.

The augmented dataset was then used to re-train the BERT model, followed by
threshold tuning and evaluation on the original test set. The resulting per-label
metrics are reported in Table 4.5.

The performance gains are noticeably larger and more consistent than those
obtained with synonym replacement. Out of the 14 targeted labels, 8 showed an
improvement in Fl-score relative to the downsampled baseline, confirming the
effectiveness of the LLM-based method. Notable improvements include:

o grief: F1 increases from 0.159 to 0.192,

e relief: from 0.192 to 0.240,
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o embarrassment: from 0.234 to 0.302,

e realization: from 0.346 to 0.366,

« caring: from 0.461 to 0.455 (comparable but stable),
o fear: from 0.492 to 0.493,

o optimism: from 0.471 to 0.451 (minor decline),

« annoyance, disapproval, and excitement remain strong performers with
stable F1.

While not all labels improved, the overall trend is clear. LLM-generated examples
exhibit higher semantic fidelity and create richer training signals than synonym
substitution. Particularly for subtle emotions with low support (grief, pride, and
relief) LLM rewriting offers a significant advantage by producing naturalistic
paraphrases that better capture the underlying affective meaning. So, we can see
that augmentation quality, not just quantity, plays an important role in improving
model performance for minority labels.

Table 4.5: Per-label performance after LLM-based augmentation with the ad-
vanced prompt.

Emotion Precision Recall Fl-score Support
nervousness 0.258 0.259 0.259 293
optimism 0.450 0.453 0.451 1231
annoyance 0.429 0.649 0.517 2061
disapproval 0.433 0.669 0.526 1747
excitement 0.380 0.479 0.424 908
grief 0.174 0.213 0.192 108
disappointment 0.351 0.538 0.425 1400
desire 0.407 0.433 0.420 589
realization 0.275 0.548 0.366 1415
fear 0.563 0.439 0.493 449
embarrassment 0.316 0.290 0.302 393
relief 0.208 0.283 0.240 212
pride 0.188 0.130 0.153 208
caring 0.393 0.540 0.455 860

4.6 Comparison
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Table 4.6: Performance comparison for all 14 emotion labels across techniques.

Label ‘ Technique F1 Precision Recall
Original 0.303 0.356 0.263

I VOUSTLESS Downsampled 0.234 0.294 0.195
Traditional Augmentation 0.228 0.234 0.222

LLM-based 0.259 0.258 0.259

Original 0.432 0.444 0.421

. Downsampled 0.419 0.443 0.398
excitement Traditional Augmentation  0.401 0.381 0.424
LLM-based 0.424 0.380 0.479

Original 0.130 0.115 0.148

. Downsampled 0.159 0.124 0.222
gricf Traditional Augmentation 0.154 0.150 0.157
LLM-based 0.192 0.174 0.213

Original 0.387 0.293 0.568

realization Downsampled 0.346 0.246 0.584
Traditional Augmentation 0.342 0.246 0.559

LLM-based 0.366 0.275 0.548

Original 0.532 0.613 0.470

foar Downsampled 0.492 0.578 0.428
Traditional Augmentation 0.476 0.513 0.443

LLM-based 0.493 0.563 0.439

Original 0.304 0.265 0.356

Downsampled 0.254 0.293 0.224

embarrassment | 1. ditional Augmentation 0238 0.168  0.407
LLM-based 0.302 0.316 0.290

Original 0.235 0.218 0.255

. Downsampled 0.192 0.191 0.193
relief Traditional Augmentation 0.189 0.163 0.226
LLM-based 0.240 0.208 0.283

Original 0.124 0.098 0.168

. Downsampled 0.094 0.069 0.149
pride Traditional Augmentation 0.150 0.115 0.216
LLM-based 0.153 0.188 0.130

Original 0.488 0.499 0.477

. Downsampled 0.471 0.448 0.496
optimism Traditional Augmentation 0.444 0.428 0.461
LLM-based 0.451 0.450 0.453

Continued on next page
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Label ‘ Technique F1 Precision Recall
Original 0.529 0.433 0.681

nnovan Downsampled 0.522 0.418 0.695
annoyance Traditional Augmentation 0.522 0.434 0.656
LLM-based 0.517 0.429 0.649

Original 0.545 0.496 0.604

disanproval Downsampled 0.528 0.464 0.611
PpIov Traditional Augmentation 0.516 0.432 0.642
LLM-based 0.526 0.433 0.669

Original 0.454 0.371 0.586

disanbointment Downsampled 0.431 0.338 0.595
PP Traditional Augmentation 0.416 0.340 0.538
LLM-based 0.425 0.351 0.538

Original 0.456 0.514 0.409

desire Downsampled 0.449 0.464 0.435
" Traditional Augmentation 0.388 0.337 0.458
LLM-based 0.420 0.407 0.433

Original 0.500 0.443 0.574

carin Downsampled 0.461 0.459 0.464
& Traditional Augmentation 0.436 0.383 0.505
LLM-based 0.455 0.393 0.540

In this section we will compare all the techniques that were used. As already
mentioned in the previous sections these techniques are: the baseline model trained
on the full dataset, a version trained on a dataset downsampled by 60% per
label, a model trained with traditional synonym-based augmentation, and a model
trained with LLM-based augmentation using Mistral-7B-Instruct (the advanced
prompt). These configurations can show a systematic assessment of how different
augmentation strategies influence both overall performance and label specific
recovery under class imbalance.

Baseline vs. Downsampled (60% Reduction). As expected, reducing the
support for each emotion label by 60% resulted in a noticeable decrease of per-
formance across most classes. High-frequency emotions such as love, gratitude,
and amusement remained relatively stable, whereas mid-frequency labels (e.g.,
disapproval, annoyance, optimism) experienced moderate declines. The most severe
decline occurred among low-support labels such as grief, pride, nervousness, and
relief, which in some cases lost more than half of their original F1 score. These
results can show the well-known sensitivity of minority classes to data reduction
and highlight the need for augmentation approaches for the low-resource labels.
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Traditional Synonym Replacement. Applying synonym-replacement augmen-
tation produced mixed results. Only 1 out of the 14 targeted labels showed an
improvement. This label is pride which the F1-score for the downsampled technique
is 0.094 and for the traditional synonym replacement is 0.150. For several labels,
performance decreased relative to the downsampled model, largely due to lexical
substitutions that disrupted the contextual or emotional meaning of the original
text. Simple word-level transformations often introduce semantic drift and yield
unnatural or stylistically inconsistent sentences. This method provides a useful
baseline but lacks the expressive power needed to reliably improve minority emotion
categories.

LLM-Based Augmentation. In contrast, augmenting the data with the model
Mistral-7B-Instruct yielded the most improvements. Out of the 14 targeted
labels, 8 exhibited higher F1 scores after augmentation. Gains were especially
pronounced for low-frequency emotions such as embarrassment, relief, pride, and
grief, where synthetic examples helped compensate for data scarcity. For nervous-
ness, the Fl-score increases slightly from 0.234 to 0.259 because recall improves
significantly (0.195 to 0.259), even though precision drops a little (0.294 to 0.258).
In excitement, the improvement in Fl-score from 0.419 to 0.424 is driven by a
strong gain in recall (0.398 to 0.479), despite a noticeable decrease in precision
(0.443 to 0.380). For grief, all three metrics improve: Fl-score rises from 0.159 to
0.192, precision from 0.124 to 0.174, and recall from 0.222 to 0.213, although recall
only changes slightly. In the case of realization, the F1l-score goes up from 0.346 to
0.366 mainly due to better precision (0.246 to 0.275), while recall declines slightly
(0.584 to 0.548), showing a trade-off. For fear, the Fl-score barely changes (0.492
to 0.493) because precision decreases slightly (0.578 to 0.563) while recall improves
modestly (0.428 to 0.439), keeping the overall balance similar. Both embarrassment
and relief show clear improvements across all metrics: for embarrassment, F1-score
rises from 0.254 to 0.302, precision from 0.293 to 0.316, and recall from 0.224 to
0.290; for relief, Fl-score improves from 0.192 to 0.240, precision from 0.191 to
0.208, and recall from 0.193 to 0.283. Finally, pride stands out for its big jump in
precision (0.069 to 0.188), which drives the F1-score up from 0.094 to 0.153, even
though recall falls slightly (0.149 to 0.130). This means the model is more selective
but still performs better overall.

The quality of LLM-generated paraphrases played the most important role
where the advanced prompt ensured that rewrites remained faithful to the original
meaning and emotional tone while introducing natural linguistic variability. This
led to semantically coherent and stylistically correct examples, improving the
model’s ability to generalize to rare emotional expressions.
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Overall Comparison. A summary of the outcomes across conditions is shown
below:

« Downsampled (60%): Performance declines across most labels where mi-
nority classes heavily affected.

» Traditional augmentation: Improvements in 1/14 labels where small gains
and occasional degradation.

« LLM-based augmentation: Improvements in 8/14 labels where stronger
gains, especially for low-support emotions.

The results show that LLM-based augmentation is the most effective approach
for restoring performance when dealing with severe class imbalance. It not only
outperforms traditional synonym replacement but also delivers larger and more
consistent gains. Its ability to generate text that feels emotionally accurate and
stylistically natural makes it especially valuable for enriching minority emotion
classes in multi-label classification tasks.

Overall, the comparison supports the main claim of this thesis: high-quality
synthetic data generated by large language models can significantly improve classi-
fication performance when data is limited. LLM-based augmentation stands out
as clearly superior to traditional methods, providing both stronger quantitative
results and more meaningful training examples.
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Chapter 5

Discussion

This chapter reflects on the main findings of the experimental study and connects
them back to the research questions posed in the introduction. The discussion is
organised around four themes: how the baseline model behaves under different
levels of data scarcity, the role of threshold tuning and regression-based analysis
in understanding label performance, the comparative impact of traditional and
LLM-based augmentation, and the quality, limitations, and broader implications of
using synthetic data for multi-label emotion classification.

The downsampling experiments clearly show how strongly the model depends on
the availability of training data. As the proportion of available data decreases, both
micro- and macro-averaged F1-scores decline in a smooth and predictable manner.
The drop is steeper for macro-F1 than for micro-F1, which confirms that minority
labels are disproportionately affected by scarcity. This behaviour is consistent with
how the metrics are defined: micro-F1 is dominated by frequent labels, whereas
macro-F1 gives each label equal weight and therefore exposes failures on rare
classes more clearly. At higher reduction levels, such as the 60 percent setting used
throughout this work, several minority emotions fall to very low F1 values even
though their test-time support remains unchanged.

The downsampling study also shows how precision and recall shift when data
become limited. For low-support labels, the model tends to behave more conser-
vatively where precision often remains relatively high, but recall drops sharply.
In other words, when the model predicts a rare emotion it is likely to be correct,
but it tends to make such predictions too rarely. For emotion recognition tasks,
this conservative behaviour may be undesirable because it prioritises avoiding false
positives over detecting subtle emotional cues. Depending on the application, it
might be necessary to bias the system toward higher recall for particular emotions,
especially those with high practical relevance.

Threshold tuning can be used as an effective method for improving performance
under these circumstances. Tuning one threshold per emotion on the validation set
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improves both micro- and macro-F1 scores, with clear benefits for underrepresented
labels. By adapting each decision boundary to the empirical score distribution
of the corresponding label, threshold tuning compensates for skewed priors and
differences in difficulty across emotions. However, it is important to recognise that
this technique operates only at the decoding stage and does not influence what the
model has learned internally. When the training signal for an emotion is extremely
limited, even the best choice of threshold cannot recover information that the model
never acquired. As a result, the benefit of threshold tuning gradually diminishes as
downsampling becomes more aggressive.

To better understand where the model struggles, a regression-based analysis
was performed. By regressing per-label Fl-scores on label support and studying
the residuals, it becomes possible to distinguish labels that perform poorly simply
because they are rare from those that perform worse than expected given their
support. Emotions that fall clearly below the regression line, such as grief, pride,
relief, and nervousness, appear to be intrinsically difficult. Their difficulty may arise
from linguistic subtlety, context-dependent meaning, or diffuse emotional expression.
This diagnostic perspective proved important for guiding the augmentation stage,
ensuring that new examples were added where they could make the most meaningful
difference rather than being allocated purely by counting frequencies.

The comparison of augmentation strategies shows that not all strategies provide
the same benefit. Traditional synonym replacement, inspired by Easy Data Aug-
mentation, provides a useful baseline. When applied only to the labels identified
as underperforming, it increases lexical diversity at very low computational cost
and sometimes recovers a small amount of performance, mainly by increasing
recall. However, the overall improvements are modest and often inconsistent. Only
one of the fourteen targeted labels, pride, achieves a clear improvement over the
downsampled baseline. This limited success aligns with what can be observed
qualitatively. Even when synonyms are technically correct, they often feel slightly
unnatural or shift the emotional tone in subtle ways. For tasks that depend on
fine-grained emotional signals, even small mismatches can reduce the usefulness of
the new examples.

The LLM-based augmentation using the Mistral-7B-Instruct model presents
a more promising alternative. When paired with the advanced prompt that includes
clear instructions and in-context examples, the model generates paraphrases that
are natural, stylistically consistent with Reddit data, and faithful to the original
emotional label. These synthetic sentences are not simple word substitutions but
full rewrites that preserve meaning and emotional tone. Quantitatively, this results
in improvements for eight of the fourteen targeted labels, with particularly strong
gains among the most data-scarce emotions such as embarrassment, relief, grief,
and pride. Although the absolute F1 values for these labels remain low, as expected
for extremely rare emotions, the relative improvements over both the downsampled
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and synonym-augmented models are significant.

One of the clearest findings from the augmentation experiments is the importance
of prompt design. The initial, simpler prompt produced only modest gains because
it offered little guidance beyond requesting synonym-based rewriting. The advanced
prompt, by contrast, provided explicit constraints, clear instructions, and examples
that demonstrated the desired behaviour. This richer formulation helped the
behaviour of the LLM and reduce semantic drift, ensuring that the model generated
paraphrases that remained faithful to the intended emotion.

The quality of augmented data therefore becomes an important factor in deter-
mining the effectiveness of any augmentation strategy. For synonym replacement,
quality was controlled by limiting replacement rates and filtering unnatural outputs.
For the LLM-based generation, quality control involved careful prompt crafting,
appropriate generation parameters such as temperature and top-p sampling, and
post-processing to remove duplicates or malformed sentences. Augmentation should
prioritise semantic fidelity and domain alignment, particularly for subtle tasks such
as emotion classification.

Despite the improvements achieved, several types of errors persist. The model
frequently confuses emotions with similar valence, such as sadness and disappoint-
ment or anger and disgust, and these confusions become more pronounced as data
decrease. The model also struggles with co-occurring emotions in multi-label set-
tings, often predicting only one emotion when human annotators indicated several.
This can show that independent label prediction may be insufficient for capturing
complex emotional dependencies. Finally, the model continues to struggle with sar-
castic or ironic comments, which require contextual meaning that are not present in
isolated sentences. While augmentation improves coverage of surface-level patterns,
it does not address this deeper contextual challenge.

This study also comes with limitations. The unanimity-based preprocessing
yields high-precision labels but excludes cases where annotators disagreed, poten-
tially removing subtle or ambiguous emotional expressions. The downsampling
procedure treats all labels equally and does not account for differences in inherent
difficulty or stylistic variation across subreddits. The regression assumes a linear
relationship between support and performance, which may be an oversimplification
in extreme cases. Moreover, all experiments were conducted in English and on
Reddit data, making it unclear how well the findings transfer to other languages,
platforms, or model architectures.

From a practical perspective, the results point to several recommendations.
Threshold tuning should be included by default in multi-label classification pipelines.
Augmentation should boost labels that underperform, not just those that appear
infrequently. Traditional augmentation can serve as a quick baseline, but LLM-
based augmentation is more effective when computational resources allow, especially
when prompts are carefully designed and high-quality constraints are applied.
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Throughout the experiments, reproducibility was prioritised. The workflow uses
fixed data splits, deterministic preprocessing, seeded randomness, and full model
reinitialisation for each setting. The findings were most sensitive to the level of
downsampling, the augmentation target counts, and the constraints used in the
LLM prompt.

Finally, synthetic data generation raises ethical considerations. Even when the
task is restricted to rewriting existing sentences without adding new content, there
is a potential risk of amplifying biases or introducing stylistic patterns that distort
the data distribution. In this thesis, these risks were mitigated by constraining
the generation process, avoiding content creation, and evaluating exclusively on
human-written test data.
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Chapter 6

Future Work

The findings of this thesis open several promising directions for future research,
both in terms of methodological refinement and broader applications. While the
experiments show the value of targeted augmentation, particularly when using large
language models, there are still open questions about how to further improve data
quality, model robustness, and real-world applicability in imbalanced multi-label
emotion classification.

A first area for future exploration concerns the selection of augmentation targets.
In this thesis, labels were chosen based on a regression-based underperformance
analysis, which proved effective in identifying emotions that are difficult to learn.
However, the method could be enriched by incorporating additional criteria such
as semantic diversity, lexical variability, or context-specific ambiguity. Combining
these measures with performance-based diagnostics could lead to a more complete
understanding of label difficulty and support more precise augmentation strate-
gies. An adaptive selection mechanism, where labels are re-evaluated throughout
training, may also help refine augmentation by responding to the model’s evolving
performance.

Another direction is the selection of the most representative sentences for each
label and using these sentences as templates for generating new synthetic examples.
By identifying prototypical instances that capture the core semantics of each
emotion, augmentation could produce more coherent and contextually relevant
synthetic data. This approach would not only improve the quality of generated
samples but also help maintain consistency across augmented datasets, ultimately
enhancing model generalization.

A second direction involves modelling label dependencies more explicitly. The
current architecture treats emotion labels as independent outputs, despite the
fact that many emotions tend to co-occur or rely on similar linguistic meanings.
Future work could explore hierarchical, graph-based, or correlation-aware models
that make use of observed co-occurrence patterns. Approaches such as classifier
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chains, conditional dependency networks, or transformers with structured output
spaces may help the model capture these relationships more effectively, reducing
common errors such as missing secondary emotions or confusing emotions with
similar meaning.

There is also space for improvement in synthetic data generation. One promising
direction is the integration of human-in-the-loop validation or reinforcement learning
from human feedback, where generated paraphrases are iteratively refined against
explicit quality criteria. This could help issues such as subtle semantic drift or stylis-
tic inconsistencies. Another valuable extension is multilingual augmentation. As
instruction-tuned models are increasingly available in multiple languages, applying
the methods developed here to multilingual or cross-lingual emotion datasets could
significantly broaden the reach of the approach. Additionally, automatic prompt
optimisation using techniques such as genetic search, gradient-free optimisation,
or prompt tuning could reduce dependence on manual prompt crafting and help
produce more consistent synthetic examples.

Hybrid augmentation strategies also represent an interesting direction to explore.
Rather than relying only on synonym replacement or model-based rewriting, future
research could examine how different augmentation methods interact. For instance,
lexical transformations can increase surface-level variability while large language
model paraphrasing helps preserve meaning. Combining these approaches may
produce richer and more balanced training data. Likewise, context-aware generation,
where the model has access to extended conversation history or subreddit metadata,
could be useful when emotion depend on broader discussion or social context.

Evaluation frameworks can be expanded as well. Beyond micro and macro
F1 scores, future studies could consider calibration metrics, or label correlation
aware scores that better capture the structure of multi-label predictions. These
metrics may offer insights into how augmentation affects prediction confidence and
reliability, particularly for less frequent emotions.

To sum up, future work can build on the contributions of this thesis by improv-
ing augmentation quality, advancing model architectures, broadening cross-lingual
applications, and addressing the challenges of real-world deployment. These direc-
tions point toward a more flexible, and contextually aware framework for emotion
classification in imbalanced multi-label settings.
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Chapter 7
Conclusion

This thesis set out to explore how targeted data augmentation can help address
the challenges created by class imbalance in multi-label emotion classification.
By combining controlled data reduction, systematic diagnostics, and synthetic
data generation, the work shows that carefully designed augmentation strategies,
especially those that rely on large language models, offer an effective way to
strengthen performance for rare and difficult emotion categories.

The study began by establishing a strong baseline using a BERT-based classifier
trained on a cleaned and consolidated version of the GoEmotions dataset. Controlled
downsampling experiments revealed how performance declines when label support
decreases, particularly for subtle and infrequent emotions. These findings showed
the structural sensitivity of multi-label models to imbalance and underscored the
need for augmentation methods that do more than simply increase sample size.

An important contribution of this work is the regression-based diagnostic analysis
used to identify labels that underperform. Instead of selecting augmentation targets
only by their frequency, this method identifies labels that perform worse than
expected given their level of support. This approach therefore offers a principled
and generalizable way to prioritize which labels should receive augmentation.

The experimental comparison between augmentation strategies showed clear
differences in their impact. Traditional synonym replacement served as a useful
baseline but produced limited and sometimes inconsistent gains, often due to
contextual drift caused by isolated word substitutions. In contrast, augmentation
based on large language models, using the Mistral 7B model, produced stronger
and more reliable improvements, particularly when paired with a prompt designed
to preserve emotional accuracy and stylistic consistency. Augmentation quality,
especially in terms of semantic precision and natural expression, plays a central
role in improving classifier performance for rare emotional categories.

More broadly, the thesis show how the interaction between diagnostic analysis,
model calibration, and high-quality augmentation creates a flexible pipeline for
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addressing imbalance. The modular structure of the implementation allows the
approach to be extended with new generative models, prompt designs, or selection
criteria, making it suitable both for future research and for practical applications.

In summary, this thesis shows how modern generative tools can help with
multi-label emotion classification, especially when some emotion classes are under-
represented. By combining statistical analysis with high-quality synthetic text
generation, it provides a clear and flexible approach for improving the detection of
minority emotions.
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