/ . ° °

Y S o2V Politecnico
Ny et e W di Tori

\."“' 1T T w1 IIIII " I o rl no
\\‘\ 1859 d‘

Politecnico di Torino

Data Science and Engineering
A.a. 2024/2025

Graduation Session Dicembre 2025

AlI-Powered Claims Assessment

Leveraging Intelligent Agents for Automated Claims

Management

Supervisors: Candidate:
Prof. Paolo Garza Matteo Bracco
Eng. Edoardo Morucci
Eng. Edoardo Lardizzone

Table of Contents

List of Figures

1 Introduction
1.1 Background and Motivation
1.2 Problem Statemento
1.3 Research Objectives
1.4 Contributions
1.5 Thesis Organization

2 Related Work Technologies
2.1 Introduction
2.2 Al in Insurance Claims Management: State of the Art.
2.2.1 Traditional Claims Processing Challenges
2.2.2 Early Automation Attempts
2.2.3 Modern Al Technologies
2.2.4 Industry Applications and Research
2.3 Large Language Models (LLMs)
2.3.1 the Transformer Architecture
2.3.2 Pre-training and Fine-tuning Paradigm
2.3.3 GPT Family: Evolution and Capabilities
2.3.4 LLM Capabilities Relevant to Insurance
2.3.5 Limitations and Challenges
2.4 Retrieval Augmented Generation (RAG)
2.4.1 Motivation and Architecture L.
2.4.2 Retrieval Process oL
2.4.3 Vector Databases
244 RAG Workflow
2.4.5 Advantages for Insurance Applications
2.4.6 Challenges and Advanced RAG Techniques
2.5 Optical Character Recognition (OCR) and Document Processing . .
2.5.1 OCR Technology Evolution

11

VI

2.5.2 OCR Challenges in Insurance Documents 30

2.5.3 Image Preprocessing Techniques 31
2.5.4 Hybrid OCR Strategies 33
2.5.5 Tesseract OCR: Architecture and Usage 36
2.5.6 Advanced Document Processing: GPT-4 Vision 37
2.6 Vector Embeddings and Semantic Search 40
2.6.1 Text Embeddings: From Words to Vectors 40
2.6.2 OpenAl text-embedding-ada-002 41
2.6.3 ChromaDB: Vector Database for LLM Applications 41
2.6.4 Dual Vectorstore Architecture 42
2.6.5 Chunking Strategies for Insurance Documents 44
2.7 LangChain Framework 45
2.7.1 LangChain Overview 45
2.7.2 RAG Implementation with LangChain 46
2.7.3 Prompt Engineering with LangChain 47
2.7.4 Conversation Memory and Context Management 47
2.7.5 LangChain for Production Deployments 48
2.8 Human-in-the-Loop Al Systems 50
2.8.1 Motivation for Human Oversight 50
2.8.2 Levels of Automation 50
2.8.3 Design Patterns for Human-AlI Collaboration. 51
2.8.4 Human-AI Interface Design 54
2.8.5 Evaluation Considerations 55
2.9 Technology Selection Criteria 56
2.9.1 Model Selection Criteria 56
2.9.2 RAG vs. Fine-Tuning: Strategic Considerations 57
2.9.3 Hybrid OCR Strategy Rationale 59
2.9.4 Dual Vectorstore Architecture Rationale 60
2.9.5 Technology Selection Summary 60
2.10 Chapter Summary 61
System Architecture 63
3.1 Problem Definition and Objectives 63
3.1.1 Formal Problem Statement 63
3.1.2 System Objectives and Success Criteria 65
3.1.3 Solution Approach Overview 66
3.2 System Architecture Overview 66
3.2.1 Component Topology 66
3.2.2 Request Lifecycle and Data Flow 69
3.2.3 Design Principleso oo 70
3.3 Backend Architecture and API Design 71

II1

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.3.1 Application Framework and Lifecycle Management
3.3.2 Static Asset Serving and Frontend Integration
3.3.3 Endpoint Design and API Contracts
Service Layer and Workflow Orchestration
3.4.1 Chat Service: Policy Question Answering
3.4.2 Document Service: OCR-Augmented Analysis
3.4.3 Initialization and Utility Services
Retrieval-Augmented Generation Subsystem
3.5.1 Architecture and Component Responsibilities
3.5.2 Lazy Initialization and Parallel Warm-Up
3.5.3 Client ID Extraction with Context Tracking
3.5.4 Coverage Type Inference and Targeted Retrieval
3.5.5 Structured Reasoning and Prompt Construction
3.5.6 Conversation Context and Follow-Up Question Handling . .
3.5.7 Dual Vectorstore Operations and Caching
OCR and Document Processing Pipeline
3.6.1 Pipeline Architecture and Hybrid Extraction
3.6.2 PDF Extraction and Confidence-Based Classification :
3.6.3 Image OCR Preprocessing and PSM Selection
3.6.4 Multi-Language, Confidence Scoring, and Field Extraction .
3.6.5 Batch Processing and Scalability
Claims Validation and Financial Calculation
3.7.1 Policy Status and Coverage Verification
3.7.2 Financial Calculation with Decimal Precision
3.7.3 Alert Generation and Risk Flagging
Data Layer: Schemas, Persistence, and Retrieval
3.8.1 SQLite Database Design
3.8.2 Document Corpus and Metadata Structure
3.8.3 Vector Embedding Storage and Retrieval
Frontend Architecture and User Interface Design
3.9.1 Application Structure and Routing
3.9.2 Chat Interface and Message Management
3.9.3 Response Formatting and Progressive Disclosure
3.9.4 File Upload and Attachment Workflow
System Integration and Deployment
3.10.1 Configuration Management
3.10.2 Logging, Monitoring, and Observability
3.10.3 Error Handling and Resilience Patterns
Performance Engineering and Cost Optimization
3.11.1 Latency Reduction Strategies
3.11.2 Cost Management and Budget Control

v

3.12 Security, Privacy, and Regulatory Compliance 121

3.12.1 Data Privacy and GDPR Compliance 121
3.12.2 Evaluation Data Constraints and Synthetic Data 122
3.12.3 Transport Security and API Authentication 123
3.12.4 Audit Trails and Compliance Reporting 125

4 Empirical Evaluation 127
4.1 Background and Motivation00 127
4.2 Evaluation Methodology 127
4.2.1 Document Processing Metrics 127
4.2.2 Claims Validation Accuracy 128
4.2.3 RAG Query Performance 129
4.2.4 System Performance 129

4.3 Experimental Setup 130
4.3.1 Test Datasets 130
4.3.2 Baseline Comparisons 131
4.3.3 Evaluation Implementation 131

4.4 Results and Analysis oo 131
4.4.1 Document Processing Performance 131
4.4.2 RAG Query Performance 133
4.4.3 Claims Validation Accuracy 134
4.4.4 End-to-End System Performance 136

4.5 Discussiono 138
4.5.1 Key Findings Summary 138
4.5.2 Limitations and Constraints 139
4.5.3 Practical Deployment Considerations 139

4.6 Chapter Summary 140
5 Conclusions 142
5.1 Background and Motivation L. 142
5.2 Summary of Contributions 142
5.2.1 Technical Contributions 142
5.2.2 Methodological Contributions 144

5.3 Limitations and Future Enhancements 145
5.3.1 Data and Evaluation Limitations 145
5.3.2 Functional Enhancements 145
5.3.3 Production Readiness Enhancements 146

5.4 Concluding Remarks o000 147
Bibliography 149

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5

Technology Landscape and Integration Map
Dual Vectorstore Architecture: Conceptual Design

Overall System Architecture: Five-Tier Layered Design

Chat Service Workflow: Policy Question Answering Pipeline

Document Service Workflow: OCR-Augmented Analysis Pipeline . .
RAG Subsystem Architecture: Components and Data Flows
Dual Vectorstore Architecture: Implementation and Lifecycle
OCR Preprocessing Pipeline: Six-Stage Image Enhancement

Average Document Processing Time by Document Type
RAG Answer Quality and Latency by Query Category

Coverage Decision Accuracy and Processing Time by Claim Type

End-to-End Processing Latency Breakdown
Cost Analysis per Claim: API Cost Breakdown

VI

Chapter 1

Introduction

1.1 Background and Motivation

Traditional insurance claims processing depends on manual review by human
adjusters who examine submitted documents, interpret policy terms, determine
applicable coverage, and calculate reimbursement amounts. This manual approach
results in significant operational inefficiencies, including multi-day processing times
that delay customer payouts, inconsistent interpretations of ambiguous clauses
that lead to disputes, and substantial labor costs associated with maintaining large
teams of skilled adjusters.

Advances in Large Language Models, Retrieval-Augmented Generation, and Op-
tical Character Recognition now create the possibility of automating large portions
of this process while maintaining the accuracy, transparency, and accountability
expected in regulated environments. LLMs enable natural language understanding
and reasoning over complex policy language, RAG provides factual grounding
through retrieval of relevant contract clauses, and OCR converts diverse document
formats into machine-readable text. Yet deploying these technologies in insur-
ance presents distinct challenges. Privacy regulations such as the GDPR require
strict separation and controlled retention of personal data, regulatory compliance
mandates that every automated decision include verifiable references to policy
text, financial computations demand exact decimal precision to avoid monetary
discrepancies, and human oversight must remain integral for ambiguous or high-
impact cases. Addressing these domain-specific constraints is essential to achieving
trustworthy and compliant Al-driven claims automation.

1

Introduction

1.2 Problem Statement

This thesis presents the design and implementation of an Al-powered insurance
claims assessment system that achieves a balance between accuracy, efficiency,
privacy compliance, and regulatory explainability. The system is designed to extract
information from heterogeneous documents, interpret complex policy contracts,
compute precise reimbursement amounts, and generate explanations grounded
in verifiable policy text, all while maintaining interactive response times and
economically sustainable operating costs.

The research addresses five core technical and regulatory challenges. Document
understanding focuses on hybrid OCR pipelines capable of processing diverse
document types, including digital PDFs, scanned forms, and smartphone-captured
images, each requiring tailored extraction methods for optimal accuracy. Semantic
retrieval develops mechanisms for mapping natural language questions to relevant
policy clauses, achieving a balance between precision to avoid irrelevant context and
recall to ensure complete coverage. Grounded generation enforces factual integrity
by constraining language model outputs to retrieved contract text and producing
explicit citations, satisfying regulatory requirements for explainable and auditable
AT decisions. Validation and calculation integrate deterministic financial logic with
Al-driven document understanding, ensuring that deductible applications, coverage
limits, and co-pay computations are transparent and numerically exact. Privacy and
compliance are achieved through a dual data architecture that separates persistent
policy corpora from temporary customer uploads, automatically deletes session
data after processing, and maintains human oversight for ambiguous or high-stakes
cases.

1.3 Research Objectives

The primary objective of this thesis is to design, implement, and evaluate an Al-
powered insurance claims assessment system that demonstrates technical feasibility
and production readiness in regulated environments. To achieve this goal, the
research pursues several specific objectives. It develops a modular architecture
that integrates Large Language Models, Retrieval-Augmented Generation, Optical
Character Recognition, and deterministic validation logic within a privacy-compliant
dual vectorstore framework that separates permanent policy data from temporary
customer uploads. It implements hybrid document processing pipelines that apply
type-aware extraction strategies, using native text extraction for digital PDFs
and enhanced OCR for scanned or photographed documents. It adapts RAG
techniques for the insurance domain by introducing explicit citation mechanisms to
ensure factual grounding and conducting a systematic cost-quality tradeoff analysis

2

Introduction

comparing different model tiers. It designs deterministic validation workflows that
compute reimbursements, verify coverage, and generate alerts while seamlessly
integrating with Al-driven document understanding. It establishes evaluation
protocols assessing OCR accuracy, retrieval faithfulness, system performance, and
alignment between Al outputs and human expert judgments. Finally, it develops
methodologies for generating synthetic insurance datasets that preserve structural
and semantic realism while ensuring complete privacy compliance, enabling robust
testing and public demonstration without exposure of personal data.

1.4 Contributions

The key contributions of this thesis are severalfold. It presents a production-oriented
system architecture that integrates Large Language Models, Retrieval-Augmented
Generation, and Optical Character Recognition within a modular design that
satisfies privacy and compliance requirements through dual vectorstore separa-
tion, a pattern broadly applicable to other regulated domains beyond insurance.
It demonstrates the effectiveness of hybrid document processing strategies that
combine native extraction for digital documents with enhanced OCR, for scanned
or photographed materials, achieving superior accuracy and efficiency compared to
uniform processing pipelines. It implements RAG with explicit citation mechanisms
and hallucination detection, ensuring grounded and verifiable outputs suitable for
use in regulated decision-making contexts. It introduces a comprehensive evaluation
framework with metrics tailored to insurance applications, emphasizing faithfulness,
citation accuracy, and human-Al agreement rather than generic language bench-
marks. It develops a systematic methodology for generating realistic synthetic
insurance data, enabling privacy-compliant experimentation and validation. Fi-
nally, it provides an empirical analysis of cost-quality tradeoffs between GPT-4 and
GPT-3.5-turbo models, offering practical guidance for tiered deployment strategies
that balance economic efficiency with decision quality.

1.5 Thesis Organization

Chapter 2 reviews the foundational technologies and prior research relevant to
this work, including Large Language Models, Retrieval-Augmented Generation
architectures, Optical Character Recognition methods, and vector database sys-
tems used for semantic retrieval. Chapter 3 details the system architecture and
implementation, covering the backend services, RAG subsystem, OCR processing
pipeline, validation and calculation logic, and the React-based frontend interface.
Chapter 4 presents the empirical evaluation, measuring OCR accuracy, retrieval
faithfulness, overall system performance, and alignment between Al-generated

3

Introduction

and human expert decisions. Chapter 5 concludes the thesis by summarizing key
contributions, identifying current limitations, and outlining directions for future
research and development.

Chapter 2

Related Work Technologies

2.1 Introduction

Claims management represents one of the most critical and complex processes
within the insurance industry. It encompasses all stages following the submission of
a claim, from its initial registration in the company’s system to the eventual issuance
of reimbursement to the client. The process is characterized by several persistent
challenges, including labor-intensive document review, inconsistent assessments
across cases, and lengthy processing times that hinder operational efficiency and
customer satisfaction.

Recent advances in artificial intelligence, particularly in large language models
(LLMs), Retrieval-Augmented Generation (RAG), and optical character recognition
(OCR), provide new opportunities to address these challenges and to enhance the
efficiency, consistency, and accuracy of claims processing. The integration of these
technologies enables systems that can augment human decision-making or, in some
cases, support fully automated processing pipelines.

This chapter analyzes the technologies and methodologies that make Al-powered
claims processing possible. It begins with a review of prior work in insurance au-
tomation (chapter 2.2), followed by an examination of foundational Al technologies,
including large language models (chapter 2.3), RAG architectures (chapter 2.4),
and OCR-based document processing (chapter 2.5). Subsequent sections explore
vector embeddings and semantic search (chapter 2.6), the LangChain framework for
orchestrating LLM applications (chapter 2.7), and the design of human-in-the-loop
systems (chapter 2.8). The final sections (chapter 2.9-2.10) discuss the criteria
guiding technology selection and conclude the overall analysis.

5

Related Work Technologies

Technology Landscape and Integration

Al/ML Technologies Infrastructure

Semantic Search Vector Databases

Q_ (ChromaDB)
S

Semantic | Search

Large Language
QB Models
(GPT-4, GPT-3.5)

LLMs used in RAG
for generation

‘
B

Grounded orchestrates

Retrieval-A d INSURANCE RAG pipeline Y LangChain
Q Generation (RAG) CLAIMS {@69 Framework

PROCESSING

GPT-4 Vision for
complex document
understanding

Document
Understanding

Governance

N
“al =§ Optical F:_haracter Confidence [] Human-in-the-Loop
T, Recognition (OCR) @ Design

Figure 2.1: Conceptual map illustrating relationships between LLMs, RAG, OCR,
Vector DBs, LangChain, and Human-in-the-Loop technologies within the insurance
claims processing domain

2.2 Al in Insurance Claims Management: State
of the Art

2.2.1 Traditional Claims Processing Challenges

Insurance claims processing comprises a sequence of interdependent steps, each
contributing to the overall management of a claim. The process begins with
Document Collection, during which documents of various formats and from multiple
sources are aggregated into the company’s system. This is followed by Information
Extraction, where relevant data are identified and extracted through parsing or
other analytical methods. The next stage, Policy Verification, involves checking
which policies are associated with each client to confirm eligibility and coverage.
Once verified, the process advances to Damage Assessment, where the existence
and extent of damage to the insured person or property are evaluated. During
the Fraud Detection phase, client information is compared and cross-checked with
claim details to identify potential inconsistencies or discrepancies. Finally, the
Reimbursement Calculation stage determines the compensation amount owed to
the claimant based on verified coverage and policy terms.

Within this context, manual workflows present several limitations that signifi-
cantly affect both operational efficiency and decision consistency. High processing
latency is a common issue, as the time required to complete a single claim can
range from several days to multiple weeks, particularly in complex cases. Another

6

Related Work Technologies

challenge arises from inter-adjuster variability, the inconsistencies in how different
claims adjusters interpret similar policy provisions, which can lead to unequal
outcomes across comparable claims. Substantial labor costs further compound
inefficiency, as the large number of hours required for manual review necessitates
extensive workforce investment. Data entry errors, often originating from unno-
ticed human mistakes early in the process, can propagate throughout the workflow,
producing significant downstream costs. Additionally, limited scalability poses a
major operational constraint: during claim surges caused by large-scale events such
as natural disasters, manual systems struggle to parallelize the additional workload
effectively, leading to bottlenecks and delays.

These inefficiencies clearly reveal the limitations of traditional, fully manual
implementations, which are neither fault-tolerant nor cost-effective. Consequently,
beginning in the 1980s, insurance companies started to investigate and develop
methods for automating claims processing, marking the early stages of research
into computer-assisted decision systems within the insurance sector.

2.2.2 Early Automation Attempts

Early automation efforts in the insurance sector relied on systems that encoded
policy logic as explicit rule sets and decision trees, commonly referred to as rule-
based expert systems. While these systems were effective in handling narrowly
defined scenarios, they proved brittle in practice. Any modification to policy
terms or regulatory requirements necessitated extensive manual updates to the
underlying rules, and cases falling outside the predefined rule coverage often
resulted in processing failures. Moreover, as noted by Hayes-Roth et al. (1983) [1],
maintenance costs frequently exceeded the initial development investments, making
such systems economically unsustainable over time.

In the late 1990s, the first generation of optical character recognition (OCR)
systems emerged [2]. These models were based on template matching and hand-
crafted feature extractors, achieving acceptable performance on clean, high-quality
printed documents. However, their accuracy deteriorated sharply when confronted
with handwritten text, low-quality scans, or heterogeneous document layouts, all
common characteristics of insurance claim materials.

The early 2000s marked a shift toward statistical machine learning approaches,
including Support Vector Machines, Random Forests, and other related algorithms.
These models were applied to tasks such as fraud detection and claim classification
[3] [4]. While they represented a significant step forward in adaptability compared
to rule-based systems, their performance remained heavily dependent on extensive
feature engineering and large labeled datasets. As a result, their generalization
across diverse insurance claim scenarios was limited, restricting their practical
scalability in production environments.

Related Work Technologies

2.2.3 Modern AI Technologies

In recent years, document understanding has benefited greatly from advances
in deep learning, particularly through the introduction of Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs). These architectures
enabled end-to-end document processing without the need for manual feature
engineering, representing a major breakthrough in automation and scalability [5]
[6]. The robustness of optical character recognition (OCR) systems improved
substantially as well, particularly with the integration of Long Short-Term Memory
(LSTM) layers into the Tesseract 3.0 model [7] [8], which enhanced sequential
character recognition and reduced error rates. Nevertheless, challenges persist for
degraded scans, handwritten documents, and heterogeneous layouts, which continue
to test model generalization. The subsequent development of the Transformer
architecture [9] marked another paradigm shift in natural language processing
(NLP), including its applications in insurance claim management. The Transformer
replaced recurrent structures with self-attention mechanisms, allowing models to
process entire sequences in parallel and enabling large-scale training on massive
text corpora. This innovation laid the foundation for a new generation of pre-
trained models such as BERT [10], which demonstrated that transfer learning could
effectively leverage general-purpose language representations for domain-specific
tasks, even with limited labeled data.

Building on this foundation, the emergence of Large Language Models (LLMs)
such as GPT-3 [11] and GPT-4 [12] brought unprecedented capabilities through
their vast parameter counts, ranging from tens to hundreds of billions, and their
ability to exhibit emergent in-context learning behaviors [13]. These models can
perform novel tasks directly from example prompts without any parameter updates,
a property particularly relevant in the insurance domain. By providing policy text,
claim details, and customer data as contextual input, such models can generate
accurate, context-aware responses without the need for costly task-specific fine-
tuning.

Most recently, multimodal models such as GPT-4 Vision [12] have extended
these capabilities by processing both textual and visual information within a
unified framework. This development enables true multimodal AI, capable of
jointly understanding text, tables, diagrams, and images. For insurance claims,
where documents frequently combine textual descriptions, structured forms, and
photographic evidence of damage, this integration holds significant promise. It
may substantially reduce reliance on separate OCR, layout analysis, and image
processing pipelines, paving the way for more efficient and holistic claim assessment
systems.

Related Work Technologies

2.2.4 Industry Applications and Research

Several commercial and research institutions have actively explored the application
of artificial intelligence to claims automation. Among the most prominent examples
is Lemonade Insurance, which has deployed an Al-powered chatbot designed to
accelerate claims processing. The system automatically analyzes customer submis-
sions, cross-references them with policy data, and performs anomaly detection to
identify inconsistencies or potential fraud. Despite its high degree of automation,
complex or high-value cases continue to require human oversight to ensure accuracy
and regulatory compliance.

Similarly, Tractable has developed computer vision systems specifically tailored
for vehicle damage assessment. These systems analyze photographs of damaged
vehicles to estimate repair costs and have reportedly processed millions of claims
annually for major insurers. By automating visual assessment, Tractable’s approach
significantly reduces evaluation time and supports consistent cost estimation across
large claim volumes.

In academic research, recent work has begun to extend these capabilities into
language-based reasoning and contract analysis. Studies by Bommarito and Katz
(2022) [14] and Katz et al. (2023) [15] demonstrate that GPT-4 can extract
contractual terms, identify ambiguities, and answer legal questions with performance
approaching that of domain experts. Parallel research on Retrieval-Augmented
Generation (RAG) has shown that grounding language model outputs in retrieved
policy text can markedly reduce hallucinations compared to purely parametric
generation [16] [17]. These findings highlight the growing potential of large language
models and retrieval-enhanced systems to support or even partially automate policy
interpretation and claim assessment.

However, despite substantial progress, existing Al-driven solutions remain lim-
ited in scope. Many commercial and research efforts target narrow claim categories,
such as vehicle collisions, without achieving broader generalization across het-
erogeneous insurance products. Integration with legacy enterprise systems also
presents persistent challenges, often constraining the deployment of end-to-end Al
workflows. Furthermore, regulatory requirements for explainability and auditability
are not consistently addressed, and human-in-the-loop processes are frequently
implemented as ad hoc additions rather than as integral components of system
design. As a result, the full potential of Al for comprehensive, transparent, and
reliable claims automation remains only partially realized.

9

Related Work Technologies

2.3 Large Language Models (LLMs)

2.3.1 the Transformer Architecture

Large Language Models (LLMs) form the computational core of modern Al-powered
chatbots and represent one of the most transformative developments in contem-
porary data science. To understand their operation, it is essential to analyze
the architecture on which they are built. LLMs are founded on the Transformer
architecture introduced by Vaswani et al. (2017) in Attention Is All You Need.
Unlike earlier sequence models based on Recurrent Neural Networks (RNNs) [18]
or Long Short-Term Memory (LSTM) networks [19], transformers rely exclusively
on self-attention mechanisms. This innovation allows parallel processing of input
sequences and enables efficient scaling to massive datasets, fundamentally changing
how neural networks handle sequential data by shifting from inherently sequential
computations to fully parallelizable operations.

The self-attention mechanism computes a weighted representation for each token
by considering its relationship with every other token in the sequence. Formally,
given query (Q), key (K), and value (V) matrices, each obtained as learned linear
projections of input embeddings, the attention operation is defined as:

Attention(Q, K, V') = Softma (QKT> Vv (2.1)
ntion(Q, K, V') = Softmax :
Vi

where d_k denotes the dimensionality of the key vectors. This formulation allows
the model to capture long-range dependencies efficiently, overcoming the bottle-
necks inherent in recurrent architectures. However, the quadratic computational
complexity O(n?) with respect to sequence length n poses practical challenges
for very long documents. To address this, several extensions have been proposed,
including sparse attention mechanisms [20] and linear attention approximations
[21], which significantly reduce memory and time requirements while maintaining
representational fidelity.

Transformers employ multi-head attention, wherein multiple attention heads
operate in parallel, each learning distinct relational patterns such as syntactic
dependencies, semantic associations, or coreference relationships. For instance,
GPT-3 utilizes 96 attention heads distributed across 96 layers, enabling the model
to form hierarchically specialized representations at varying levels of abstraction
[11]. The outputs from these parallel heads are concatenated and processed through
a position-wise feed-forward network, which expands the hidden dimensionality,
typically by a factor of four, before projecting back to the original size. Activation
functions such as the Gaussian Error Linear Unit (GELU) [22] introduce nonlinearity
and further enrich representational capacity.

Because the attention mechanism itself does not encode positional information,

10

Related Work Technologies

transformers incorporate positional encodings to preserve word order and syntactic
structure. The original architecture used sinusoidal functions of varying frequencies,
allowing the model to infer relative and absolute positions. Modern LLMs, however,
often employ learned positional embeddings or relative position encodings [23],
which improve flexibility and generalization. These positional signals enable the
model to distinguish between semantically distinct sentences such as “the customer
filed a claim” and “a claim filed the customer,” ensuring that ordering information
is retained throughout processing.

Finally, architectural components such as residual connections [he2015deepresiduallearning
and layer normalization [24] are essential for stabilizing the training of deep trans-
former networks. Residual pathways facilitate gradient flow across layers, while
normalization prevents internal covariate shifts, both of which are crucial for train-
ing models with dozens or even hundreds of layers. More recent improvements,
such as Pre-Layer Normalization [24], have further enhanced training stability,
allowing models to scale beyond one hundred billion parameters while maintaining
convergence and robustness.

2.3.2 Pre-training and Fine-tuning Paradigm

Modern Large Language Models (LLMs) are typically developed through a two-stage
training process consisting of pre-training and fine-tuning [25] [26]. During the pre-
training phase, the model is exposed to massive text corpora comprising hundreds
of billions to trillions of tokens collected from heterogeneous sources such as web
pages, books, scientific publications, and code repositories. For instance, GPT-3
was trained on approximately 300 billion tokens drawn from datasets including
Common Crawl, WebText2, Booksl, Books2, and Wikipedia [11]. Achieving this
scale necessitates distributed training across thousands of GPUs over several weeks
or months, representing computational investments in the order of millions of
dollars.

Pre-training relies on self-supervised learning objectives, which enable models
to learn from raw text without manual labeling. The most common objective is
causal language modeling, where the model predicts each subsequent token given
all preceding tokens in the sequence. Formally, for a token sequence [t1,ts, ..., t,],
the model maximizes the conditional probability

Pt |t ... ti1) (2.2)

for each position i. This objective compels the model to internalize linguistic
regularities, semantic relationships, and general world knowledge implicitly present
in the corpus. Before training, text is tokenized using subword segmentation algo-
rithms such as Byte Pair Encoding (BPE) [27] or SentencePiece [28], which balance
vocabulary compactness and representational efficiency. GPT models typically

11

Related Work Technologies

employ vocabularies of 50,000 to 100,000 tokens, where each token corresponds to
common words, frequent subwords, or rare character fragments.

The fine-tuning stage adapts the pre-trained model to specific domains or down-
stream tasks using smaller, labeled datasets. During this phase, model parameters
are selectively adjusted to optimize performance on domain-relevant objectives
while retaining the general linguistic and reasoning capabilities acquired during
pre-training. In the insurance context, fine-tuning on policy documents, claims
data, and regulatory text can enhance understanding of specialized terminology and
improve task-specific performance. However, fine-tuning introduces potential risks
such as catastrophic forgetting, where the model’s general knowledge deteriorates
as it specializes [29]. Mitigating this requires careful hyperparameter control to
balance domain adaptation and generalization.

As model scales have surpassed 100 billion parameters, a new capability, emergent
in-context learning, has appeared. This property allows models to perform previ-
ously unseen tasks directly from examples embedded within the prompt, without
any modification to model parameters [13]. The emergence of such few-shot learning
behaviors has been shown to scale predictably with model size, computational
resources, and dataset diversity [30].

For insurance applications, these capabilities suggest that effective automation
may not require full fine-tuning. Instead, providing relevant policy text and cus-
tomer data as contextual input can enable accurate question answering, information
extraction, and reasoning directly within the prompt. This retrieval-augmented
approach offers substantial operational advantages: policy or regulatory updates
can be reflected instantly through changes to the knowledge base rather than
through model retraining, and general-purpose LLMs can serve multiple insurance
lines without the need for distinct fine-tuned variants.

2.3.3 GPT Family: Evolution and Capabilities

The Generative Pre-trained Transformer (GPT) series developed by OpenAl ex-
emplifies the state of the art in autoregressive language modeling, showcasing
progressive improvements in scale, reasoning ability, and alignment with human
intent. The evolution from GPT-3 to GPT-4 Vision highlights how architectural re-
finements and training innovations have driven increasingly sophisticated language
understanding, reasoning, and multimodal capabilities.

GPT-3, introduced in 2020, contained approximately 175 billion parameters
and was trained on about 300 billion tokens drawn from large and diverse corpora
[11]. Its architecture comprised 96 layers with 96 attention heads per layer and a
hidden dimensionality of 12,288. GPT-3 demonstrated strong few-shot learning
performance across a wide range of natural language tasks, including translation,
arithmetic, question answering, and text completion, often matching or surpassing

12

Related Work Technologies

specialized models without task-specific fine-tuning. The model’s performance
scaled with the number of in-context examples: zero-shot (task description only),
one-shot (a single example), and few-shot (multiple examples) configurations
produced progressively higher accuracy. Nonetheless, GPT-3 remained text-only
and was prone to hallucinations, occasionally generating plausible yet factually
incorrect outputs, especially for knowledge-intensive queries or multi-step reasoning
tasks.

GPT-3.5-turbo represented a major refinement optimized through Reinforcement
Learning from Human Feedback (RLHF) to enhance helpfulness, truthfulness, and
safety [31]. The RLHF process consists of three stages: supervised fine-tuning
on human-authored demonstrations, training a reward model to predict human
preference rankings, and finally, optimizing the base model with Proximal Policy
Optimization (PPO) [32] to align its outputs with these preferences. This alignment
process substantially reduced harmful or irrelevant responses and improved in-
struction following, making GPT-3.5-turbo more suitable for real-world production
systems. The model achieved a favorable balance between quality, latency, and
cost, processing requests faster and more efficiently than GPT-3 while maintaining
high performance in structured extraction, classification, and summarization tasks
central to insurance workflows.

GPT-4, released in 2023, introduced notable gains in reasoning, factual reliability,
and adherence to user intent (OpenAl, 2023). Although its internal architecture
remains proprietary, GPT-4 demonstrated superior performance on complex rea-
soning benchmarks, including the Uniform Bar Exam (90th percentile), the LSAT
(88th percentile), and multiple medical and legal domain evaluations. For insurance
applications, these improvements translate into more accurate interpretation of
policy language, better handling of conditional clauses, and enhanced multi-step
reasoning for tasks such as computing coverage limits and deductibles. Some GPT-4
variants also feature extended context windows of up to 32,000 tokens, depending on
the API tier and configuration. This larger context capacity enables comprehensive
processing of long policy documents, entire claims histories, or multiple related
files within a single prompt, reducing the need for truncation or summarization.

GPT-4 Vision (GPT-4V) extends these capabilities by incorporating multi-
modal understanding, processing both text and images within a unified framework
(OpenAl, 2023). The model employs a visual encoder that converts images into
token-like representations compatible with the text transformer, allowing joint
reasoning over visual and textual information. In the context of insurance claims
processing, this multimodal capability is particularly valuable: GPT-4V can analyze
damage photographs to assess severity, extract structured information from com-
plex forms containing mixed text and checkboxes, interpret tables with spanning
cells and nested headers, and reason over relationships between textual descrip-
tions and accompanying visual evidence. Unlike traditional OCR pipelines that

13

Related Work Technologies

separately handle text extraction and layout interpretation, GPT-4V integrates
both modalities, enabling more accurate and semantically consistent document
understanding.

2.3.4 LLM Capabilities Relevant to Insurance

Several capabilities of Large Language Models are particularly pertinent to claims
automation, each addressing specific challenges within the insurance workflow.
Natural language understanding enables these models to interpret complex policy
language that includes legal terminology, conditional clauses, and exceptions.
Policies frequently contain nested conditions such as “coverage applies if the incident
occurs within the policy period and the insured was not engaged in commercial use
of the vehicle, unless explicitly covered under the commercial rider endorsement,”
and LLMs parse such structures by attending to logical connectives like if, unless,
and except while maintaining coreference over long passages.

They also disambiguate polysemous terms according to context, distinguishing,
for instance, between premium as a payment amount and premium as a quality tier,
or between deductible in medical versus property insurance usage. This contextual
competence extends naturally to domain-specific jargon such as exclusions, riders,
endorsements, and subrogation without requiring explicit definitions.

Information extraction then converts unstructured text into structured data
suitable for downstream processing. Given a claim description such as “On January
15th, T was driving on Via Roma when another vehicle ran a red light and hit
my front bumper, causing approximately 2,000 euros in damage,” an LLM can
produce well-formed fields, incident_date = “2024-01-15,” location = “Via Roma,”
damage_ type = “collision,” estimated __cost = 2000, fault = “other_ party.” Whereas
traditional rule-based approaches would require brittle, field-specific patterns and
still falter on phrasing variants like “the 15th of January” or “two thousand
euros,” LLMs generalize across expression patterns through learned semantic
representations. The same capability applies to adjuster notes, medical reports,
and police statements, enabling automated data entry that formerly demanded
manual review.

Question answering over policy documents represents a core application that
relies on the model’s ability to locate relevant clauses, evaluate applicability con-
ditions, and reason over exceptions with the policy text as context. When asked,
“Does policy X cover flood damage for customer Y?”, the model must identify
whether customer Y holds policy X, verify coverage types, inspect natural-disaster
clauses, and consider exclusions such as Acts of God. Unlike keyword search, which
might retrieve any section mentioning flood, semantic understanding recognizes
that “water damage from natural disasters” can imply flood coverage, or that an
exclusion could preclude it, thereby performing multi-hop reasoning that mirrors

14

Related Work Technologies

how human adjusters analyze claims.

Text generation then supports coherent explanations, summaries, and customer
communications. After determining eligibility, the system can produce a clear report
such as: “Your claim for windshield replacement is approved. Coverage applies
under comprehensive insurance with a 150 euros deductible. Your reimbursement
is 350 euros (500 euros repair cost minus 150 euros deductible). Processing will
complete within 5 business days.” This requires integrating calculation outputs
with policy terms and standard communication practices. The same mechanism
adapts tone and register for different audiences, technical justifications for adjusters,
accessible language for customers, and formal documentation for regulatory contexts,
while multilingual capabilities allow delivery in the customer’s preferred language
without a separate translation pipeline.

Finally, multi-step reasoning enables complex calculations by decomposing tasks
into sequential operations. Reimbursement assessment may require retrieving the
claimed repair cost, identifying per-incident or annual coverage limits, applying
absolute or percentage-based deductibles, calculating co-payment where applicable,
checking remaining coverage relative to out-of-pocket maximums, and aggregating
across multiple line items. In medical contexts, it may also involve verifying that
a procedure is covered, confirming whether pre-authorization was obtained, and
adjusting reimbursement percentages accordingly. These workflows benefit from
stepwise reasoning methods (e.g., approaches described by Wei et al., 2022 [13]), in
which intermediate steps can be articulated to support verification and debugging
of the calculation logic before the final outcome is presented.

2.3.5 Limitations and Challenges

Despite their impressive performance, Large Language Models (LLMs) exhibit
several limitations that constrain their deployment in production insurance systems.
Understanding these challenges is essential for guiding architectural choices and
designing appropriate risk-mitigation strategies.

Hallucinations remain one of the most critical concerns. LLMs can generate
content that is syntactically correct and semantically plausible yet factually in-
accurate, often with high confidence. In insurance contexts, this may take the
form of fabricated policy clauses, incorrect coverage interpretations, or entirely
invented customer data. For instance, when queried about flood coverage, a model
might assert that “your policy includes flood protection up to 50,000 euros” even if
the actual policy excludes flood damage altogether. The persuasive plausibility of
such outputs makes them particularly dangerous, as human reviewers may trust
authoritative-sounding responses without verification. Empirical studies show that
hallucination rates vary across models and tasks, with knowledge-intensive queries
producing more errors than reasoning-oriented ones [33] [34]. Effective mitigation

15

Related Work Technologies

requires grounding techniques such as Retrieval-Augmented Generation (RAG),
which anchors responses in retrieved source documents, as well as confidence cali-
bration mechanisms to flag uncertain outputs and human oversight for high-stakes
cases.

A lack of true understanding also poses fundamental challenges. LLMs are sta-
tistical pattern learners rather than agents with genuine semantic comprehension
[35]. They predict likely token sequences based on statistical regularities in training
data rather than by reasoning about meaning. This results in brittle reasoning
behavior: a model may correctly compute reimbursements for hundreds of claims
yet fail unexpectedly on a structurally similar case because it lacks the conceptual
understanding that human experts rely on. It might accurately interpret “coverage
applies unless” constructions in familiar examples but misread semantically equiva-
lent phrasing such as “coverage is void except when.” Correct outputs often arise
from coincidental correlations rather than from robust inferential logic, producing
unpredictable failure modes that can be difficult to anticipate during testing.

The training data cutoff introduces another limitation by constraining temporal
knowledge. LLMs only reflect information available up to their last training date,
which may precede deployment by months or years. Consequently, policy updates,
new regulatory requirements, or coverage changes introduced after that point
remain unknown to the model. A model trained before 2023, for example, would
not account for pandemic-related policy modifications or recent legal precedents
affecting claim interpretation. This limitation underscores the need for architectures
such as RAG, which retrieve up-to-date policy documents dynamically rather than
relying solely on static parametric knowledge.

Computational cost presents a practical constraint that directly impacts scala-
bility. Running large models incurs substantial API costs and energy consumption
[36]. GPT-4 inference is approximately 10 to 100 times more expensive per token
than GPT-3.5-turbo, raising cost concerns for high-volume insurance operations.

Processing a single complex claim may involve multiple model calls, for docu-
ment analysis, information extraction, policy reasoning, and explanation generation,
causing cumulative expense. Latency further compounds the issue: inference times
range from a few seconds to tens of seconds depending on model size and prompt
length, potentially limiting suitability for real-time customer interactions that
demand sub-second responsiveness. These constraints motivate careful model selec-
tion strategies, using smaller models such as GPT-3.5-turbo for routine extraction
tasks while reserving more powerful models like GPT-4 for complex reasoning
requiring maximal accuracy.

Persistent bias and fairness concerns further complicate deployment. LLMs
inherit statistical and social biases present in their training data, which can inad-
vertently influence claim assessments [37]. In insurance settings, such biases may
manifest as differential treatment linked to demographic attributes: a model might

16

Related Work Technologies

unconsciously associate certain names, geographic regions, or linguistic patterns
with higher fraud risk, leading to inequitable outcomes. Gender bias could affect
injury-severity assessments, while regional bias might distort cost estimates. More-
over, the predominance of data from specific languages or jurisdictions produces
representational gaps that degrade performance for underrepresented populations.
Mitigating these effects requires proactive bias testing across demographic groups,
continuous fairness monitoring in production, and architectural safeguards such as
the exclusion of protected attributes from prompts.

Finally, interpretability challenges pose significant barriers to regulatory com-
pliance and customer trust. The internal decision processes of LLMs are opaque,
as knowledge is distributed across billions of parameters in ways that defy direct
inspection [38]. When a claim is denied, both customers and regulators expect
transparent justification grounded in specific policy clauses. A generic statement
such as “claim denied due to policy exclusions” fails to meet legal and ethical
standards for explainability. This opacity conflicts with regulations that mandate
auditable decision trails and clear reasoning. Although attention visualizations offer
limited insight, their correlation with causal decision factors remains weak. More
effective approaches involve prompting the model to produce explicit explanations
that cite retrieved documents, enabling human reviewers to trace reasoning chains
and verify that outputs are grounded in legitimate sources even when the underlying
model mechanisms remain inscrutable.

2.4 Retrieval Augmented Generation (RAG)

2.4.1 Motivation and Architecture

Retrieval-Augmented Generation (RAG) addresses several critical limitations of
Large Language Models, particularly hallucination and knowledge cutoff, by ground-
ing language generation in documents retrieved from external knowledge bases.
Originally introduced by Lewis et al. (2020) in “Retrieval-Augmented Genera-
tion for Knowledge-Intensive NLP Tasks”, the paradigm integrates information
retrieval with neural text generation and demonstrated substantial improvements
on knowledge-intensive tasks such as open-domain question answering. Subsequent
refinements have extended the original architecture to include multi-hop retrieval,
iterative refinement, and hybrid retrieval strategies that combine sparse and dense
representations [39] [40].

The fundamental motivation behind RAG arises from well-documented defi-
ciencies in parametric knowledge stored within LLM weights. Such knowledge is
static, frozen at the time of training, making models unaware of newly introduced
facts, updated policies, or regulatory changes. Furthermore, rare or domain-specific
information is often underrepresented in training corpora, leading to unreliable

17

Related Work Technologies

recall for specialized queries. Finally, parametric models lack the ability to attribute
their answers to verifiable sources, impeding transparency, explainability, and user
trust. RAG mitigates these deficiencies by reframing the LLM as a reasoning engine
rather than a knowledge repository, dynamically retrieving relevant context from a
curated knowledge base and conditioning the generation process on this retrieved
information.

Architecturally, RAG augments each input query with relevant retrieved docu-
ments prior to generation. Instead of relying exclusively on the knowledge implicitly
encoded in its parameters, the model consults an external repository to retrieve
semantically relevant passages, which are then concatenated with the query as
contextual input. This mechanism ensures that generated outputs are grounded in
verifiable sources. The decoupling of knowledge storage, managed by the retrieval
system, from reasoning capability, handled by the language model, provides a
flexible and maintainable design: updating domain knowledge merely requires
refreshing the document index, avoiding the computational and operational burden
of model retraining.

A typical RAG system consists of three interdependent components. The
Knowledge Base contains domain-specific documents such as policy texts, coverage
conditions, regulatory guidelines, and historical claim precedents, preprocessed and
segmented into manageable units for efficient indexing. The Retriever identifies
the most relevant passages given a user query, using dense vector embeddings to
compute semantic similarity and match meaning rather than surface-level lexical
overlap. Finally, the Generator, generally implemented as a large language model,
receives both the original query and the retrieved documents as input, synthesizing
responses grounded in this context. During inference, the generator attends jointly
to the query and the retrieved passages, integrating information from multiple
sources to construct coherent, contextually justified answers.

This architectural design confers several operational advantages in the insurance
domain. Policy updates propagate instantly through the system, as refreshing
the knowledge base is sufficient to reflect new information without retraining.
Generated answers can include explicit source citations, enabling human reviewers
to trace reasoning chains and verify decision logic. The framework also supports
heterogeneous document types, including contracts, regulatory circulars, case
law, and customer correspondence, stored in a unified retrieval index and accessed
through the same semantic search interface. As a result, domain adaptation becomes
primarily a data engineering challenge rather than a model training problem,
substantially simplifying maintenance while enhancing accuracy, transparency, and
compliance.

18

Related Work Technologies

2.4.2 Retrieval Process

Contemporary retrievers encode queries and documents into dense vector embed-
dings via neural networks, in a process termed Dense Retrieval [41]. This approach
fundamentally differs from traditional sparse retrieval methods, representing text
as continuous vectors in a high-dimensional space, typically between 768 and 1536
dimensions, where semantic similarity corresponds to geometric proximity. The
retrieval process consists of two phases: Offline Indexing, where all documents are
embedded and stored, and Online Retrieval, where the query is embedded and
compared against the document index.

Similarity between query and document embeddings is computed using cosine
similarity or dot product, expressed as:

T €q - €4
Similarity(query, document) = cos(f) = —L—— (2.3)
el lled]
Cosine similarity normalizes vectors to unit length before computing the dot product,
making it invariant to magnitude and focusing purely on directional alignment in
embedding space.

Values range from -1, representing opposite directions, to 1, indicating identical
directions, with typical relevant documents scoring between 0.6 and 0.9 depending
on specificity.

The retriever computes similarity between the query embedding and all document
embeddings, ranks documents by descending similarity, and returns the top-k results,
typically between 3 and 10 for insurance applications, balancing recall against
context window constraints.

Dense retrieval captures semantic relationships that keyword-based methods
such as BM25 [42] often miss. BM25 ranks documents based on term frequency and
inverse document frequency, rewarding documents containing query words while
penalizing common terms. However, this approach fails when queries and documents
use different vocabularies to express the same concept. A query about “broken
windshield” might not retrieve a policy document discussing “automotive glass
damage” because there is no lexical overlap beyond “damage”. Dense retrieval, by
encoding meaning rather than words, recognizes semantic equivalence and retrieves
the relevant policy clause. This proves particularly valuable for multilingual
scenarios, where a query like “cristalli rotti” (Italian for “broken glass”) can
successfully retrieve English policy documents because embeddings capture cross-
lingual semantic similarity when trained on multilingual corpora.

The choice of embedding model significantly impacts retrieval quality. Sentence-
BERT (SBERT) [43] fine-tunes BERT using siamese networks to produce seman-
tically meaningful sentence embeddings. Unlike standard BERT, which requires
processing sentence pairs jointly and is computationally expensive at retrieval time,
SBERT embeds sentences independently, enabling efficient similarity search. The

19

Related Work Technologies

model trains on sentence pair datasets with labels indicating semantic equivalence,
learning to place similar sentences close together in embedding space. OpenAl’s
text-embedding-ada-002 [44] and more recent embedding families with comparable
dimensionality and cost profiles represent proprietary models balancing quality,
efficiency, and cost. These models produce 1536-dimensional embeddings and
demonstrate strong performance across diverse domains without fine-tuning, mak-
ing them suitable for production deployments where training infrastructure may
be limited.

Domain-specific embeddings fine-tuned on insurance corpora can further improve
retrieval quality for specialized terminology [45]. Insurance documents contain
technical terms such as “subrogation”, “underwriting”, “deductible”, and “rider”,
which may not appear frequently in general-purpose training data. Fine-tuning on
domain-specific corpora ensures that these terms receive appropriate embeddings
reflecting their specialized meanings. This process typically involves continued
training on sentence pairs drawn from insurance documents, teaching the model
that “comprehensive coverage” and “collision coverage” are distinct concepts despite
lexical similarity, and that “premium” in insurance contexts refers to payment
rather than quality.

2.4.3 Vector Databases

Efficient large-scale retrieval requires specialized data structures optimized for high-
dimensional vector search. Vector databases are systems designed specifically to
store and query dense embeddings, addressing the computational challenge of finding
nearest neighbors in spaces with hundreds or thousands of dimensions. Unlike
relational databases that support exact matches through indexing using B-trees or
hash tables, vector databases implement Approximate Nearest Neighbor (ANN)
search, trading perfect accuracy for orders of magnitude speedup. For a database
with N documents, exhaustive search requires computing N similarity scores,
resulting in O(N) complexity, which becomes prohibitively expensive as collections
grow to millions of documents. ANN algorithms reduce this to logarithmic or
sub-linear complexity while maintaining high recall, typically retrieving 95 to 99
percent of true nearest neighbors.

HNSW, or Hierarchical Navigable Small World, represents a graph-based al-
gorithm that provides fast ANN search with high recall [46]. The data structure
builds a multi-layer proximity graph where each layer contains nodes representing
document embeddings connected to their nearest neighbors. Upper layers contain
sparse subsets with long-range connections enabling rapid navigation toward the
query region, while lower layers contain progressively denser graphs refining the
search. During query time, the algorithm starts at the top layer, traverses edges
greedily toward the query vector, and descends through layers until reaching the

20

Related Work Technologies

bottom, where it performs local search to identify the nearest neighbors. This
hierarchical structure achieves logarithmic search complexity O(log N) while main-
taining recall above 95 percent in practice. Construction time is O(N log N), with
tunable parameters controlling the number of edges per node and balancing memory
usage against search speed.

FAISS, or Facebook Al Similarity Search [47], offers a comprehensive library im-
plementing various indexing methods optimized for different trade-offs among speed,
memory, and accuracy. The library includes flat indexes for exhaustive search,
product quantization for memory compression, IVF indexes for partitioned search,
and GPU-accelerated implementations for high-throughput scenarios. Product
quantization decomposes vectors into subvectors and quantizes each independently,
reducing memory requirements by 10x to 50x while maintaining acceptable re-
call. This compression proves valuable when deploying on memory-constrained
infrastructure or when the embedding collection exceeds available RAM.

IVF, or Inverted File Index [48], partitions the vector space into clusters using
k-means or similar algorithms, then searches only relevant partitions at query time.
During indexing, all vectors are clustered into C partitions, typically C equals v/ N,
and each vector is assigned to its nearest cluster centroid. At query time, the
algorithm identifies the nearest cluster centroids to the query vector and searches
only within those clusters, examining a small fraction of the database. This reduces
search complexity from O(N) to O (% + C’), with the optimal partition count
balancing exhaustive centroid comparison against within-cluster search. IVF scales
effectively to billions of vectors when combined with quantization techniques.

Among vector database systems, ChromaDB, Pinecone, Weaviate, and Milvus
represent the most popular production-ready solutions, each with distinct archi-
tectural characteristics. ChromaDB emphasizes simplicity and local deployment,
offering an embedded Python library that requires no separate server process,
making it suitable for development environments and small-scale production use.
Pinecone provides a fully managed cloud service optimized for scalability and
operational simplicity, handling indexing, replication, and serving infrastructure
transparently. Weaviate supports hybrid search combining vector similarity with
keyword filtering and graph relationships, enabling complex queries such as “find
similar policies for customers in region X with premium above Y euros.” Milvus tar-
gets high-throughput enterprise scenarios with a distributed architecture supporting
horizontal scaling across clusters.

Selection among these systems depends on factors such as the need for local
versus cloud deployment, expected query volume, latency constraints, integration
with existing infrastructure, and operational complexity tolerance. For insurance
applications with moderate document collections, typically ranging from thousands
to millions of policies, embedded solutions like ChromaDB often suffice, whereas
high-volume customer-facing platforms may benefit from managed cloud services

21

Related Work Technologies

such as Pinecone or Weaviate.

2.4.4 RAG Workflow

A production Retrieval-Augmented Generation workflow consists of several coordi-
nated phases, each addressing specific technical challenges and contributing to the
overall system reliability.

Query processing begins with the user question being embedded into a vector rep-
resentation using the same embedding model employed during document indexing.
This consistency ensures that queries and documents inhabit the same embedding
space, making similarity scores meaningful. Some systems also apply preprocessing
steps such as spelling correction, abbreviation expansion, or query reformulation
to improve retrieval quality. In insurance applications, for example, preprocessing
may normalize policy identifiers by removing hyphens or standardizing case, and
expand domain-specific acronyms such as “RCA” into “Responsabilita Civile Auto”.
Advanced implementations perform query expansion, where the original query gen-
erates semantically related variations to enhance recall; a query about “windshield
damage” might expand to include “glass repair” and “automotive glazing”.

The retriever then compares the query embedding against all document em-
beddings stored in the vector database using the Approximate Nearest Neighbor
algorithms described previously. The top-k most similar documents are retrieved,
with k typically ranging from three to ten depending on the available context win-
dow and the desired specificity. This phase involves critical trade-offs: retrieving
too few documents risks low recall and potential information gaps, while retrieving
too many may dilute the context with marginally relevant material that confuses
the generator. Systems therefore balance precision and recall carefully. Some
implementations use dynamic k selection based on similarity thresholds, retrieving
all documents above a similarity cutoff rather than a fixed number. This adaptive
approach proves particularly effective when query specificity varies; narrow queries
such as “what is the deductible for policy 123457” retrieve a small number of high-
confidence matches, while broader queries such as “what damages are covered?”
collect more documents spanning multiple coverage categories.

The next step involves context construction, where retrieved documents are
formatted and concatenated with the user query to form an augmented prompt for
the generator. During this phase, several engineering decisions affect generation
quality. Documents are generally ordered by descending similarity score, although
some systems randomize order to mitigate position bias, where the model tends
to overemphasize earlier context. Citation generation is facilitated by including
metadata for each document chunk, such as source identifier, chunk position, and
retrieval score. The prompt template structures the context, typically following
patterns such as: “Answer the following question based on the provided policy

22

Related Work Technologies

documents. Question: [query]. Policy Documents: [docl], [doc2], [doc3]. An-
swer:”. More sophisticated templates introduce explicit instructions for uncertainty
handling, such as “if the documents do not contain sufficient information, say so
explicitly”, and citation requirements like “cite the specific policy clauses supporting
your answer”.

Generation follows by feeding the augmented prompt to the Large Language
Model, which processes both the query and retrieved documents, attending over
all tokens to synthesize an answer grounded in the provided context. The model’s
attention mechanism naturally focuses on the most relevant passages, though this
weighting emerges implicitly rather than through explicit programming. Output
determinism and creativity are governed by temperature and sampling parameters:
lower temperatures between 0.0 and 0.3 yield deterministic factual responses suitable
for insurance queries, while higher temperatures between 0.7 and 1.0 encourage
creativity for open-ended tasks. Maximum token limits constrain response length,
with typical insurance-related answers ranging from 100 to 500 tokens depending
on query complexity.

Post-processing validates, formats, and refines the generated response. Valida-
tion steps ensure internal consistency and factual correctness by checking that cited
policy numbers exist in the database, that calculated reimbursement amounts align
with deterministic computation modules, and that the response avoids prohibited
content such as speculative advice or unauthorized coverage claims. Citation ex-
traction identifies referenced documents in the generated text, enabling the creation
of hyperlinks or footnotes for human verification. Some systems also implement
confidence scoring, prompting the model to rate its certainty or estimating con-
fidence from token probabilities, with low-confidence outputs flagged for human
review.

Formatting adapts the final output to the target interface, producing structured
JSON for APIs, formatted HTML for web dashboards, or fluent natural language
for conversational chatbots.

Finally, robust error handling ensures that failure modes are managed gracefully.
When retrieval returns no relevant documents, the system defaults to reporting
insufficient information. If generation exceeds token limits, truncation or summa-
rization safeguards the process. In cases of API timeout or transient network errors,
retry mechanisms with exponential backoff maintain continuity without overloading
the system.

2.4.5 Advantages for Insurance Applications

RAG systems offer compelling advantages for insurance claims processing, effectively
addressing both technical and business requirements specific to the domain.
Accuracy and grounding improve substantially because RAG systems explicitly

23

Related Work Technologies

provide policy text as contextual input, anchoring generation in verifiable sources.
When a customer asks, “Does my policy cover hail damage?”, the system retrieves
the specific policy clauses addressing weather-related coverage and generates an
answer based on those retrieved passages rather than relying on the model’s internal
parametric knowledge. This grounding significantly reduces hallucinations, since
the model cannot fabricate coverage terms when it must reference the actual policy
text provided in the prompt. Empirical research demonstrates that RAG reduces
factual errors by 30 to 50 percent compared to pure parametric generation on
knowledge-intensive tasks [16] [17]. In insurance applications, where incorrect
coverage interpretations carry potential legal and financial consequences, this
improvement is of critical importance.

Transparency and explainability also benefit from RAG’s architecture because the
retrieved documents serve as explicit evidence that enables human reviewers to verify
correctness. Unlike pure LLM-generated responses, where the reasoning process
remains opaque, RAG systems can cite specific policy sections supporting each
statement, such as “Your windshield replacement is covered under Comprehensive
Coverage (Section 4.2.b) with a 150 euros deductible (Schedule A, Line 7).” Both
adjusters and customers can trace these citations back to their sources, verifying
the model’s interpretation directly. This design satisfies regulatory explainability
requirements established by GDPR and the EU Insurance Distribution Directive,
which mandate that insurers explain automated decisions affecting consumers. The
ability to trace responses to specific policy clauses further supports audit trails,
ensuring compliance and facilitating quality assurance reviews.

Information currency remains high because policy updates propagate instantly
through the knowledge base without requiring model retraining. When an in-
surer introduces a new coverage type, updates premium calculations, or modifies
exclusions in response to regulatory changes, these updates involve only adding
or modifying documents in the vector database and re-embedding them. The
retrieval and generation components continue to operate without modification.
This agility is particularly valuable in insurance, where policy terms evolve fre-
quently, for example due to regulatory adjustments following natural disasters,
pandemic-related coverage revisions, or competitive pressures driving new product
designs. In contrast, fine-tuned models require retraining cycles that can last days
or weeks, during which the deployed system may continue to provide outdated
information. By contrast, RAG systems update within minutes, maintaining full
alignment between the knowledge base and customer-facing responses.

In this paradigm, domain adaptation becomes primarily a data engineering chal-
lenge rather than an expensive model training task. RAG leverages general-purpose
LLMs by grounding them in company-specific documentation, thereby avoiding
domain-specific fine-tuning that demands labeled datasets, GPU infrastructure,
and machine learning expertise. An insurer can deploy a RAG system simply by

24

Related Work Technologies

curating its policy documents into a structured knowledge base and configuring
retrieval parameters, tasks that remain accessible to engineering teams without
specialized Al training. This democratization of Al deployment lowers the barrier
to adoption significantly. Moreover, a single LLM can serve multiple insurance lines,
such as auto, home, life, and health, by maintaining separate document collections
for each domain, whereas fine-tuned approaches would require distinct models for
each.

Scalability likewise improves due to the filtering nature of retrieval, which
ensures that only the most relevant sections of extensive policy documentation are
passed to the LLM. Insurance companies typically maintain vast policy libraries
containing hundreds of variants across product lines, regions, regulatory contexts,
and historical versions. For example, a comprehensive auto insurance policy corpus
may span thousands of pages, far exceeding the capacity of even large-context
LLMs. RAG mitigates this limitation by retrieving only the most relevant passages
for each query. A question about comprehensive coverage, for instance, retrieves
only those relevant sections rather than loading the entire policy as context.

This selective retrieval enables efficient processing of knowledge bases containing
millions of tokens using models with context windows limited to tens of thousands
of tokens, achieving logarithmic rather than linear scaling with respect to corpus
size.

2.4.6 Challenges and Advanced RAG Techniques

Despite their advantages, RAG systems face several fundamental challenges that
constrain performance and continue to motivate research into advanced retrieval
and generation techniques.

Retrieval quality represents the most critical factor affecting system accuracy
because if the retriever fails to identify relevant documents, the generator cannot
produce correct answers regardless of its reasoning capability. Retrieval failures
manifest in several forms: the embedding model may fail to capture semantic simi-
larity for domain-specific terminology, the query phrasing may differ significantly
from document phrasing despite semantic equivalence, or relevant information may
be distributed across multiple chunks, none of which individually appears strongly
relevant. For example, determining coverage for a particular claim scenario may
require combining information from a general coverage clause, an exclusions list,
and a special conditions addendum, yet each chunk on its own receives only a
moderate relevance score. Improving retrieval quality depends on multiple factors,
including high-quality embeddings tuned for insurance terminology, careful param-
eter calibration balancing precision and recall, and hybrid retrieval approaches that
combine vector similarity with keyword-based matching to ensure comprehensive
coverage.

25

Related Work Technologies

Context length limitations pose another significant challenge. Even with ex-
tended context windows, practical limits constrain how much retrieved information
can be included in a single generation prompt. For instance, GPT-4 variants support
up to 32,000 tokens, but effective context utilization degrades as the prompt grows
longer. The “lost in the middle” phenomenon [49] shows that models tend to attend
more to information at the beginning and end of the prompt, under-weighting
content appearing in the middle. This issue becomes particularly problematic
for complex insurance policies spanning hundreds of pages, where even aggressive
retrieval filtering may produce dozens of relevant chunks totaling tens of thousands
of tokens. Selecting which information to include therefore requires a balance
between comprehensiveness and the constraints of the model’s context window and
attention mechanisms.

Chunking strategy selection also critically influences retrieval effectiveness. Doc-
uments must be divided into chunks before embedding, and chunk size introduces
inherent trade-offs. Smaller chunks containing approximately 100 to 200 tokens
offer precise retrieval by aligning narrowly focused passages with user queries but
lose the surrounding context necessary for correct interpretation. Larger chunks
containing 500 to 1000 tokens preserve context but yield less precise retrieval,
often including irrelevant material alongside the relevant portion. Achieving opti-
mal performance requires balancing these opposing tendencies. Chunking should
avoid severing related information, since splitting mid-sentence produces incoherent
fragments while separating closely related paragraphs disconnects context from
content. Advanced strategies mitigate these issues by employing sliding windows
with overlap, typically maintaining a 50 to 100 token overlap between consecutive
chunks to preserve cross-boundary information. Others use semantic segmentation,
leveraging natural language processing to detect paragraph boundaries, section
headers, or topic shifts using sentence embeddings, thereby ensuring that each
chunk represents a coherent semantic unit.

Metadata filtering introduces another layer of complexity because insurance
queries often include contextual constraints beyond pure semantic similarity. A
query about “deductible amounts,” for instance, should retrieve information only
from the customer’s active policies, excluding expired contracts or documents
belonging to other customers. Achieving this requires combining vector similarity
with structured metadata predicates such as customer 1D, policy type, effective
date, or jurisdiction. Implementations typically adopt a two-stage approach: first,
metadata constraints narrow the search space, and second, vector similarity search
operates within that filtered subset. More sophisticated systems implement com-
pound indexing structures that support simultaneous evaluation of metadata filters
and vector similarity, though these solutions substantially increase implementation
complexity.

Recent innovations propose advanced methods to address these limitations. One

26

Related Work Technologies

such method is Hypothetical Document Embeddings (HyDE) (Gao et al., 2022),
which reverses the traditional retrieval order. Instead of embedding the query
directly, the system first prompts the LLM to generate a hypothetical answer
to the query, then embeds that answer for retrieval. The intuition is that a
generated answer often aligns more closely with the phrasing and structure of
actual documents, thereby improving retrieval recall. For insurance applications,
a query such as “Am I covered for flood damage?” might yield a hypothetical
answer like “Yes, flood damage is covered under comprehensive policies with specific
exclusions for...,” which semantically resembles real policy language more than the
brief initial query.

Another technique, multi-query retrieval, reformulates the original query into
multiple semantically related variants and performs retrieval for each. For example,
a single query about “windshield repair” may be expanded into “automotive glass
damage,” “windscreen replacement,” and “front window coverage,” each retrieving
distinct yet relevant documents reflecting terminology variation across insurers or
product lines. The union of retrieved documents provides more comprehensive
context than any single query variant, significantly improving recall in heterogeneous
policy corpora.

A further improvement involves re-ranking strategies, which refine the ordering
of retrieved documents before generation [50]. The retrieval process begins with
fast but less accurate methods, such as dense embedding search, to identify a
broad candidate set. A more computationally intensive cross-encoder model then
processes each query—document pair jointly to produce highly accurate relevance
scores. Cross-encoders outperform bi-encoders because they model token-level
interactions between queries and documents, but their computational cost prevents
their use over the full corpus. The two-stage design reconciles this trade-off by
retrieving the top 100 candidates efficiently and re-ranking the top 10 with high
accuracy, combining scalability with precision.

Recursive retrieval introduces iterative reasoning by retrieving, generating partial
answers, and then retrieving again based on intermediate results (Khattab et al.,
2021). For complex multi-hop queries, the system first retrieves documents related
to the initial question, generates partial answers or identifies missing information,
formulates refined follow-up queries, and retrieves additional supporting documents.
For instance, determining whether a specific claim is covered may require first
retrieving the customer’s policy type, then retrieving the coverage terms applicable
to that policy, and finally identifying exclusions that might apply. This iterative
refinement allows RAG systems to handle queries that require integrating informa-
tion across multiple documents and reasoning steps, closely mirroring the workflow
of human adjusters.

27

Related Work Technologies

2.5 Optical Character Recognition (OCR) and
Document Processing

2.5.1 OCR Technology Evolution

The Optical Character Recognition (OCR) technology has undergone substantial
evolution over the past five decades, transitioning from rigid template-based systems
to flexible deep learning architectures. This evolution has had direct implications
for insurance claims processing, where document quality and format variability
demand highly robust extraction capabilities.

Traditional OCR systems developed between the 1970s and early 2000s relied
on template matching and handcrafted feature extractors [2]. These systems
encoded explicit rules describing character shapes, strokes, and patterns. Their
performance was acceptable for clean, high-resolution printed text with standard
fonts, but degraded substantially when confronted with handwritten content, poor
scan quality, varied typefaces, or complex document layouts, all of which are
common in insurance claims documentation. Moreover, template-based approaches
required extensive manual engineering for each new font or language, limiting
scalability and generalization. Error rates for handwritten text frequently exceeded
30 to 40 percent, rendering such systems impractical for claims forms containing
handwritten sections.

The introduction of Tesseract OCR represented a pivotal milestone in open-
source OCR technology. Originally developed by Hewlett-Packard in the mid-1980s
as a proprietary system, it was released as open source by Google in 2005 [51] [7].
Tesseract quickly became the de facto standard for open-source OCR due to its
maturity, broad language support exceeding one hundred languages, and competitive
accuracy on printed text. Early versions (1.x-3.x) relied on classical computer
vision methods such as connected component analysis for character segmentation,
feature extraction based on character topology, and pattern matching against
predefined character templates.

The fourth generation, Tesseract 4.0, released in 2018, integrated LSTM-based
neural networks (Graves et al., 2009), marking a major architectural shift. Instead
of segmenting characters individually and recognizing them in isolation, the LSTM
recognizer processes entire text lines as sequences, enabling the model to exploit
contextual information. For example, in the sequence “ins_rance policy”, the
LSTM can infer that the missing character is “u” based on surrounding context,
whereas isolated character recognition would fail.

This context-aware approach substantially improved robustness, especially for
degraded documents, unusual fonts, and connected scripts. As a result, Tesseract
4.x achieves character error rates of 1-5 percent on clean printed documents and
5-15 percent on moderately degraded scans, compared to 5-20 percent for earlier

28

Related Work Technologies

versions on similar material.

During the 2010s, deep learning-based OCR emerged, introducing end-to-end
architectures that eliminated manual feature engineering entirely. These systems
combined Convolutional Neural Networks (CNNs) for visual feature extraction
with Recurrent Neural Networks (RNNs) or Transformers for sequence modeling
[52]. The objective was to integrate the strengths of both paradigms: CNNs learn
to detect edges, curves, strokes, and higher-level character structures directly from
pixel data without handcrafted features, while RNNs or LSTMs process these
visual feature sequences, predicting character strings with awareness of linguistic
context and structure. This architecture enabled large-scale training on millions of
document images, producing robust models that generalize across fonts, languages,
and diverse document conditions.

Commercial cloud OCR services, including Google Cloud Vision API, AWS
Textract, and Azure Read API, have since adopted proprietary deep learning
models trained on massive internal datasets. These services typically outperform
open-source alternatives like Tesseract, especially on challenging inputs such as
handwriting, degraded scans, or complex layouts, achieving character error rates as
low as 0.5-2 percent for printed text and 10-20 percent for handwriting. However,
these systems incur recurring costs of approximately 1.50 USD per 1,000 pages,
which can become prohibitive for high-volume insurance operations. For instance,
an insurer processing 100,000 claim documents annually would spend between
15,000 and 30,000 USD solely on OCR, while Tesseract, being open-source and
locally executable, incurs only infrastructure costs such as compute time, typically
negligible compared to API fees.

The current frontier in document understanding is represented by multimodal
models, which integrate textual, spatial, and visual reasoning. Notable examples
include LayoutL.M [53] and its successors LayoutLMv2 and LayoutL.Mv3 [54]. These
models are pre-trained on millions of document images, learning to jointly represent
text content, spatial layout, including the positions of text blocks, tables, and
figures, and visual attributes such as fonts, colors, and formatting. This multimodal
representation enables holistic document comprehension, allowing the model to
recognize that a number appearing in a specific table cell corresponds to a particular
coverage type based on the associated row and column headers, or that text in a
header section defines the context for subsequent content.

Another breakthrough model, Donut [55], adopts an OCR-free approach by
using a vision-to-text Transformer that directly processes document images and
outputs structured information, typically in JSON format, without explicit character
recognition. This design bypasses traditional OCR pipelines entirely, offering a
more integrated alternative to conventional text extraction and parsing.

For insurance applications, these advanced multimodal models enable the extrac-
tion of structured data from highly complex policy and claim documents. They are

29

Related Work Technologies

particularly effective for cases involving premium tables with conditional pricing,
coverage grids with multiple dimensions, or claim forms that include checkboxes
indicating coverage types, handwritten damage descriptions, and mixed-format
receipts. Such models achieve higher accuracy with significantly less engineering
effort compared to traditional OCR-plus-parsing pipelines, making them especially
valuable for modern insurance claim automation systems.

2.5.2 OCR Challenges in Insurance Documents

Insurance claims involve heterogeneous document types that present distinct OCR
challenges, each of which must be addressed to achieve a robust and reliable
document processing pipeline.

Scanned policy documents frequently arrive as low-quality images exhibiting
multiple forms of degradation. Repeated photocopying or faxing introduces both
random and systematic distortions: noise and speckles appear as random pixel
variations or dust marks, while text edges become fuzzy or broken, often accompa-
nied by JPEG compression artifacts and moiré patterns resulting from scanning
printed halftones. Additional quality issues arise when pages are scanned at angles,
producing geometric skew that requires rotation correction, or when documents
exhibit uneven illumination, leaving some regions underexposed or washed out.
In insurance, where many policy documents may be decades old and have been
copied or faxed numerous times, such low-quality inputs are the norm rather than
exceptions.

Handwritten claim forms present even greater challenges because handwriting
varies substantially across individuals in terms of character shape, slant, spacing,
and stroke continuity. Some writers produce well-separated printed characters,
while others use cursive script with tightly connected strokes and ambiguous
boundaries between characters. As a result, handwriting recognition typically
requires specialized models trained on handwritten datasets that differ from models
used for printed text. The gap in performance is significant: character error rates
for handwriting range between 15 and 40 percent depending on writing quality,
compared to 1 to 5 percent for clean printed text. In insurance claims, critical fields
such as policy numbers, claim amounts, and dates are often handwritten, which
necessitates rigorous OCR quality validation and human verification whenever
low-confidence extractions occur.

Mixed-content documents further complicate processing by combining diverse vi-
sual elements such as text, tables, checkboxes, signatures, stamps, and photographs
on a single page. Traditional OCR engines treat the entire page as uniform text,
an assumption that fails in these heterogeneous contexts. Checkboxes require the
detection of visual marks such as “,” “,” or filled boxes rather than textual charac-
ters, and tables demand the preservation of row and column structures to maintain

30

Related Work Technologies

logical relationships. Naive OCR typically returns text in linear reading order,
losing the association between table cells and headers. Signatures and stamps,
which are graphical elements rather than text, may be misinterpreted as nonsensical
characters, while embedded photographs or diagrams should either be ignored or
handled by separate processing pipelines. For insurance claim forms containing
structured sections, including checkboxes indicating coverage types, tables listing
itemized damages, free-text fields for incident descriptions, and designated areas
for signatures, accurately distinguishing and processing each content type is a
non-trivial requirement.

Multilingual documents introduce another layer of complexity, particularly in
multinational insurance contexts where a single claim form might contain Italian
instructions, English policy references, and handwritten notes in a regional dialect.
OCR engines generally perform best when the target language is specified a priori,
yet many insurance workflows must handle mixed-language inputs dynamically.
This necessitates automated language detection at the page, region, or line level,
followed by adaptive switching of OCR models or configurations. While multilingual
OCR models exist, they often trade off accuracy compared to language-specific
systems. For insurers operating in multilingual regions such as Switzerland (German,
French, Italian), Belgium (French, Dutch), or Canada (English, French), effective
multilingual OCR is indispensable rather than optional.

Complex document layouts pose additional difficulties. Insurance documents
frequently feature multi-column text, nested tables, non-linear reading orders such
as sidebars or footnotes, and embedded figures. Traditional OCR engines output
text in a simple left-to-right, top-to-bottom sequence, which leads to misordered
results in multi-column formats, for example, reading “Column 1 Line 1, Column
2 Line 1, Column 1 Line 2, Column 2 Line 2” instead of completing each column
sequentially. Nested tables, where tables appear within other cells, challenge most
layout analysis algorithms, often producing incomplete or distorted extractions.
In insurance policy documents containing multi-column coverage descriptions,
embedded premium tables, or margin notes referencing specific clauses, preserving
structural relationships during extraction is essential for subsequent processing
stages such as semantic parsing, clause retrieval, or data entry automation.

2.5.3 Image Preprocessing Techniques

Obtaining high-quality OCR results depends critically on the preprocessing phase,
which applies a series of image enhancement and correction steps before recognition.
During this phase, raw scanned images are transformed into forms optimized for
character recognition, often improving OCR accuracy by 10 to 30 percent on
degraded documents.

31

Related Work Technologies

Binarization converts grayscale or color images into binary form, typically rep-
resenting text as black on a white background or vice versa. This simplification
enhances contrast and separation between text and background, improving the
recognizer’s ability to distinguish characters. Global thresholding applies a single
threshold value across the entire image: pixels darker than the threshold become
black, while lighter pixels become white. Although simple and computationally
efficient, this method fails for documents with uneven illumination, where some
regions are underexposed or overexposed. Otsu’s method [56] mitigates this limita-
tion by automatically determining the optimal threshold that maximizes inter-class
variance between foreground and background, but it still performs best when the
image has a bimodal intensity distribution, meaning a clear distinction between
text and background. Adaptive thresholding, by contrast, computes thresholds
locally for small image regions, effectively handling variable lighting. The Sauvola
method [57] achieves particularly strong results for degraded documents because
it adjusts thresholds dynamically based on local mean and standard deviation.
For insurance documents scanned under inconsistent lighting conditions, adaptive
methods typically outperform global thresholding approaches.

Noise reduction is another crucial preprocessing step that removes random
pixel variations, speckles, dust marks, and compression artifacts which otherwise
interfere with OCR accuracy. Median filtering replaces each pixel with the median
of its neighbors, effectively removing salt-and-pepper noise, isolated dark or light
pixels, while preserving edge details. Gaussian filtering smooths noise through
weighted averaging but can blur character edges if parameters are not tuned
carefully. Bilateral filtering [58] offers a more balanced approach, smoothing noise
while preserving edges by weighting neighboring pixels based on both spatial
distance and intensity similarity. Morphological operations such as erosion, dilation,
opening, and closing can further remove small noise artifacts or repair gaps in
broken characters. For insurance claims involving photocopied or faxed documents,
where artifacts and texture noise are frequent, these techniques are essential to
achieve acceptable OCR accuracy.

Deskewing corrects geometric misalignment introduced when documents are
scanned at slight angles. Even small skew angles of 2 to 3 degrees can reduce
OCR accuracy by 5 to 10 percent because recognition models assume horizontally
aligned text lines. Skew detection algorithms estimate the dominant orientation of
text lines using the Hough transform, projection profiles, or connected component
analysis [59]. Once the skew angle is detected, the image is rotated to align the text
horizontally. In insurance workflows where many documents are scanned manually,
automatic deskewing is indispensable.

Dewarping addresses a different geometric distortion, correcting page curvature in
photographs of open books, bound documents, or wrinkled pages. Such distortions
arise because the page surface is non-planar, causing curved baselines and warped

32

Related Work Technologies

character shapes. Dewarping algorithms detect curved text lines, estimate the
three-dimensional page surface, and apply geometric transformations to flatten it
[60]. This technique is especially relevant when customers photograph folded policy
booklets or bent claim forms instead of scanning them flatly.

Contrast enhancement improves the visibility of faint or low-contrast text,
particularly in aged or faded documents. Histogram equalization redistributes pixel
intensities across the full range, increasing global contrast, while adaptive histogram
equalization (CLAHE,Contrast Limited Adaptive Histogram Equalization) performs
localized adjustments that enhance contrast in text regions without over-amplifying
noise. Gamma correction modifies brightness non-linearly, brightening shadows or
darkening highlights as needed. For insurance documents with faint print, such
as carbon copies or aged policies, these methods can significantly boost OCR
performance.

Resolution adjustment ensures images meet the optimal input requirements
of the OCR engine. Tesseract performs best at approximately 300 dots per inch
(DPI). Images scanned at lower resolutions, such as 72 to 150 DPI, typical for quick
smartphone captures, lack sufficient detail for accurate recognition. Upsampling
through bilinear or bicubic interpolation, or using deep learning super-resolution
models [61], can partially compensate for low resolution, while overly high-resolution
images above 600 DPI may include excessive detail such as paper texture and ink
irregularities, which can reduce accuracy. In those cases, downsampling improves
both recognition and processing efficiency.

In insurance claim processing pipelines, these preprocessing methods are often
applied sequentially: binarization enhances contrast, noise reduction removes ar-
tifacts, deskewing aligns text lines, dewarping corrects curvature when necessary,
contrast enhancement clarifies faint text, and resolution adjustment ensures com-
patibility with the OCR engine. The optimal preprocessing configuration depends
on the characteristics of each document, which often requires adaptive preprocess-
ing pipelines capable of automatically analyzing image quality and selecting the
appropriate combination of methods and parameters.

2.5.4 Hybrid OCR Strategies

For production insurance claims systems, hybrid approaches that combine multiple
extraction methods often yield superior results compared to any single method,
since the diversity of document types, ranging from digitally created PDFs to
scanned documents and photographs, and quality levels, from pristine to severely
degraded, necessitates adaptive strategies capable of selecting optimal extraction
methods based on document characteristics.

PDF text extraction provides the foundation for these hybrid strategies. When
PDFs contain embedded text, created electronically from word processors, policy

33

Related Work Technologies

management systems, or digital forms rather than scanned, text can be extracted
directly using libraries such as PyMuPDF (fitz) or PDFMiner. These libraries parse
PDF data structures and extract text together with metadata (fonts, positions,
formatting) without requiring any character recognition. Consequently, this ap-
proach entirely avoids OCR, achieving near-perfect accuracy for well-formed digital
PDFs, as the error rate is effectively zero: the extracted text is exactly what the
PDF contains, with no recognition errors. Moreover, native extraction is typically
10x to 100x faster than OCR, (milliseconds versus seconds per page), providing
significant throughput advantages. In high-volume insurance claims processing,
where many policy documents are digitally generated PDFs, native extraction
therefore dramatically reduces processing time while improving accuracy.

However, native extraction completely fails for scanned or image-based PDFs,
since when a PDF contains only scanned page images rather than embedded
text, native extraction returns empty strings or meaningless symbols. As a result,
systems must detect the PDF type and route documents to appropriate extraction
methods. Detection heuristics can analyze extraction output: very few characters
extracted (for instance, fewer than 50 for a full-page document) suggest a scanned
PDF, unusual character distributions (many non-alphabetic characters or random
symbols) indicate extraction errors, and missing expected content (such as policy
numbers, dates, or monetary amounts in known formats) reveals that native
extraction has failed.

OCR fallback mechanisms ensure that scanned documents are still processed
when native extraction yields sparse or low-quality results. When detection heuris-
tics indicate that a PDF is scanned or image-based, the system automatically
switches to OCR processing. This provides robustness, as OCR can handle any
document that can be rendered as an image, including scanned PDFs; photographs,
or faxes, thus preventing complete failure on legacy or low-quality submissions. Im-
portantly, the system does not require manual configuration or user input regarding
document type. Instead, automatic quality assessment of native extraction output
triggers OCR fallback only when necessary, thereby optimizing both speed (through
native extraction when possible) and accuracy (through OCR when required).

Multi-engine ensemble approaches extend this concept by running multiple OCR
engines and combining their outputs. Different OCR engines, such as Tesseract,
Google Cloud Vision API, AWS Textract, and Azure Read API, possess complemen-
tary strengths based on their training data, model architectures, and optimization
targets. For instance, Tesseract excels at printed text in supported languages,
Google Vision performs well on handwriting and degraded documents, and AWS
Textract specializes in forms and tables through structured field extraction. Con-
sequently, for challenging documents involving handwriting, degraded scans, or
unusual layouts, multi-engine voting or confidence-based selection can reduce error
rates by 20% to 40% compared to single-engine approaches. Voting methods run

34

Related Work Technologies

multiple engines and select the most common output for each word or field, whereas
confidence-based selection chooses the output reported with the highest confidence
score.

Nevertheless, multi-engine approaches incur costs, since running N engines
multiplies both expenses (in terms of API fees for cloud services) and latency (as
serial execution adds up individual engine times, while parallel execution demands
Nx compute resources). For cloud OCR APIs that charge per page, Google
Vision and AWS Textract both approximately $1.50 per 1000 pages, ensemble
approaches become expensive at scale. For example, an insurer processing 100,000
documents annually with a dual-engine ensemble would incur roughly $300 in
OCR costs compared to $150 for a single engine or near-zero for Tesseract alone.
Moreover, adding a third or fourth engine often provides only minimal accuracy
gains beyond two engines, reflecting diminishing returns and suggesting that dual-
engine ensembles may represent the optimal cost—benefit balance.

In the insurance claims domain, therefore, selective ensemble use is the most
prudent strategy. Single-engine OCR, such as Tesseract, can handle routine
documents, while multi-engine ensembles are reserved for high-value claims or cases
where single-engine confidence is low. This approach maintains high accuracy for
critical claims while controlling costs for routine processing.

Human-in-the-loop verification further addresses OCR uncertainty for critical
fields. For fields with high business impact, such as policy numbers, claim amounts,
coverage limits, or dates, low-confidence OCR results can be flagged for human
review. Rather than processing all documents manually or accepting all OCR
outputs uncritically, selective human verification directs human effort toward
uncertain extractions. For instance, if OCR extracts a policy number “AB12345”
with 95% confidence, it can be accepted automatically.

However, if confidence drops to 60%, a human reviewer verifies the extraction
against the original image. This hybrid human—AI approach thus balances au-
tomation efficiency, as most extractions proceed automatically, with accuracy, as
uncertain extractions receive targeted verification.

Finally, quality assessment and confidence scoring underpin all these hybrid
strategies. Tesseract and most cloud OCR APIs provide per-word or per-character
confidence scores that indicate recognition certainty, and the aggregate confidence
(mean word confidence across the extracted text) reflects overall extraction quality.
Thresholds, such as triggering human review or multi-engine processing when mean
confidence falls below 70%, enable a balanced trade-off between automation and
accuracy. Cross-validation further enhances reliability: when multiple extraction
methods yield substantially different outputs, this suggests either a problematic
PDF (for example, corrupted or unusually encoded) or a failed OCR, warranting
human inspection. The effectiveness of a hybrid OCR strategy therefore depends
critically on accurate quality assessment, since poor assessment, whether selecting

35

Related Work Technologies

OCR unnecessarily when native extraction would suffice or trusting low-quality
OCR, can entirely negate the benefits of the hybrid approach.

2.5.5 Tesseract OCR: Architecture and Usage

Tesseract OCR merits detailed examination as the most widely deployed open-
source OCR engine and a common choice for insurance claims processing systems
requiring cost-effective, locally executable text extraction.

Tesseract 4.x architecture combines traditional computer vision with modern
deep learning, and its processing pipeline proceeds in several stages. Page layout
analysis first detects text regions, separating text from non-text areas such as
images, white space, or decorative elements. It then identifies text blocks (para-
graphs, columns, headers), segments these blocks into lines, and further segments
lines into words. This process relies on connected component analysis, grouping
connected black pixels into character-like blobs, analyzing blob properties (size,
shape, position), and clustering blobs into words and lines based on spacing and
alignment. Layout analysis is critical for complex documents, since incorrect seg-
mentation, such as merging separate words, splitting single words, or confusing
columns, propagates errors into the recognition stage.

Character recognition employs LSTM neural networks. Unlike earlier Tesseract
versions that recognized isolated characters, Tesseract 4.x processes entire text
lines as sequences. The LSTM receives a sequence of visual features, extracted
from the line image via convolutional layers, and outputs a sequence of characters.
This sequence-to-sequence approach enables the model to leverage contextual
information, allowing uncertain characters to be resolved based on surrounding
letters and linguistic patterns. For example, in the phrase "ins_rance policy," the
LSTM infers that " " is likely "u" because "insurance policy" is a common phrase,
while "ins_rance" is not. The LSTM was trained on millions of text line images
across hundreds of languages, learning both character shapes and language-specific
patterns such as common letter sequences and word structures.

Language models further refine recognition outputs. Statistical language models,
typically n-gram models trained on text corpora, score character sequences by lin-
guistic plausibility and adjust recognition when implausible sequences are detected.
For instance, if character recognition outputs "rhe" at the start of a sentence, the
language model might correct it to "the," a common word, rather than accepting
'rhe," which is rare or nonexistent. Since language models are language-specific,
accurate language detection prior to recognition improves overall results.

Page Segmentation Modes (PSM) allow Tesseract to adapt to different document
layouts. Tesseract offers multiple PSMs that control how page layout analysis
proceeds. PSM 1 performs automatic page segmentation with orientation and
script detection, making it suitable when document orientation or script (Latin,

36

Related Work Technologies

Arabic, Chinese) is unknown. PSM 3 applies fully automatic segmentation without
orientation detection, which is the default mode and appropriate for standard
documents with known orientation. PSM 6 assumes a single uniform text block,
skipping block detection, and is useful for simple documents with one contiguous
text region. PSM 11 finds sparse text in any order, which suits documents with
scattered text, such as receipts or forms containing isolated fields. Selecting the
appropriate PSM based on document type, for example full-page policy text, sparse
claim forms, or multi-column layouts, significantly impacts accuracy. Incorrect
PSM selection can cause missing text (failing to detect regions), garbled output
(incorrect segmentation), or excessive processing time (using complex analysis for
simple documents).

Confidence scores enable quality assessment and selective human verification.
Tesseract provides confidence scores at multiple granularities: per-character con-
fidence (on a 0 to 100 scale) indicates recognition certainty for each character,
per-word confidence aggregates character confidences, and per-line confidence aggre-
gates word confidences. These scores correlate closely with actual accuracy: high-
confidence extractions (90% to 100%) are typically correct, while low-confidence
extractions (below 60% to 70%) often contain errors.

In insurance claims processing, these confidence scores enable flagging uncertain
extractions for human review, selecting between single-engine and multi-engine
processing based on quality, and rejecting completely failed OCR attempts, since
very low average confidence suggests the document is illegible or preprocessing has
failed.

Configuration and optimization strongly affect Tesseract performance. The
engine accepts numerous configuration parameters, including language specification
(single or multiple languages for multilingual documents), character whitelists or
blacklists (restricting recognition to expected characters, useful for fields such as
policy numbers with known formats), OCR Engine Mode (legacy engine, LSTM
engine, or both combined), and various image preprocessing flags. For insurance
applications, typical configurations specify language (for example, Italian, English,
or multilingual), use the LSTM engine mode for best accuracy, and apply character
whitelists for structured fields, such as policy numbers restricted to alphanumeric
characters or claim amounts restricted to digits and currency symbols. Preprocessing
integration often feeds images through custom preprocessing pipelines, including
binarization, deskewing, and noise reduction as discussed in chapter 2.5.3, before
invoking Tesseract, thereby optimizing image quality for recognition.

2.5.6 Advanced Document Processing: GPT-4 Vision

While traditional OCR engines extract raw text from images, understanding
document structure and extracting specific information often requires additional

37

Related Work Technologies

intelligence beyond character recognition. Multimodal Large Language Models,
particularly GPT-4 Vision, represent a paradigm shift in document processing by
combining visual understanding with language comprehension.

GPT-4 Vision capabilities extend beyond text recognition to document un-
derstanding. GPT-4V processes document images and can extract structured
information directly, for example, “Extract all entries from this premium table as
JSON,” answer content questions such as “What is the deductible mentioned in
this policy page?”, understand complex layouts without explicit parsing rules by in-
terpreting multi-column text, nested tables, or forms with non-linear reading order,
and interpret visual elements such as logos indicating insurance companies, dia-
grams explaining coverage scenarios, or highlighting and annotations emphasizing
important clauses (OpenAl, 2023). Unlike OCR engines that merely convert images
to text strings, GPT-4V understands semantic content and structure, enabling
higher-level information extraction.

GPT-4V offers substantial advantages over traditional OCR-plus-parsing pipelines|
Context understanding allows GPT-4V to infer relationships without explicit rules.
It recognizes that a number next to the word “Deductible:” represents the deductible
amount, that table cells in the “Premium” column contain pricing information,
and that checkboxes indicating coverage types map to specific insurance products,
all without programming explicit parsing logic. Traditional pipelines require rule-
based parsers, such as regular expressions to extract patterns, heuristics to locate
specific fields, and layout analysis to map positions to meanings. GPT-4V replaces
hundreds of lines of parsing code with natural language instructions, for example,
“Extract the deductible amount from this document.”

Table extraction demonstrates GPT-4V’s strengths particularly well. Insurance
policy documents often contain complex tables such as premium tables with merged
cells (single headers spanning multiple columns), multi-level headers (hierarchical
column groupings), conditional formatting (different pricing based on customer
age, vehicle type, or coverage level), and embedded notes or footnotes. Traditional
table extraction methods use rule-based techniques (detecting horizontal and
vertical lines, clustering text into cells, and inferring row and column structure) or
specialized models like TabNet and TableBank parsers. These approaches struggle
with irregular tables containing missing borders, cells spanning rows or columns, or
nested tables. GPT-4V can extract such tables by understanding visual structure
and semantic content jointly. When instructed to “Extract this premium table as
JSON with coverage types, customer categories, and prices,” GPT-4V produces
structured output that correctly maps table contents to semantic categories, even
handling merged cells and complex headers that confuse traditional parsers.

Error correction leverages GPT-4V’s language understanding. When traditional
OCR produces errors, such as character misrecognitions or garbled text from
poor image quality, downstream systems receive corrupted text. GPT-4V can

38

Related Work Technologies

infer correct text even when visual recognition is ambiguous by using contextual
understanding. For example, if an insurance document image contains degraded
text where “deductible” appears as “d_ductible” (with one letter unreadable),
GPT-4V infers the missing letter from context, recognizing that “deductible” is
a common word in insurance policies, while “daductible” or “diductible” are not.
This type of contextual error correction is difficult for traditional OCR, which lacks
semantic understanding.

Multimodal reasoning combines textual and visual information. Insurance claims
often include both textual descriptions and photographs. For instance, a claim may
include a written description “front bumper damage” alongside a photograph show-
ing the actual damage. GPT-4V can analyze both, verifying consistency by asking
“Does the photograph show front bumper damage as described?”; assessing damage
severity from the image, and correlating damage types to policy coverage terms.
Traditional pipelines process text and images separately, requiring explicit logic to
relate them, whereas GPT-4V’s native multimodality enables joint reasoning.

Use cases in insurance demonstrate GPT-4V’s versatility. Extracting glossary
terms from policy documents involves identifying term-definition pairs, preserving
formatting such as italicized terms or bold definitions, and maintaining hierarchical
structure, for example, terms within subsections. GPT-4V can extract complete
glossaries while preserving this structure. Parsing premium tables with conditional
pricing enables extraction of complex pricing schemes where premiums depend on
multiple factors such as coverage type, customer age, vehicle value, and deductible
chosen, producing structured data in formats such as JSON or CSV suitable for
database insertion. Analyzing damage photographs alongside claim descriptions
verifies claim consistency, assesses damage severity, and relates visual damage to
coverage types mentioned in policies. Extracting structured data from varied claim
form layouts also becomes simpler, as GPT-4V can handle diverse form designs used
by different insurers without requiring custom parsers for each layout, generalizing
across designs by understanding content semantically rather than positionally.

Limitations and cost considerations temper GPT-4V’s advantages. API costs for
GPT-4V are higher than text-only models or traditional OCR, approximately $0.01
to $0.02 per image as of 2023 to 2024, compared to $0.0015 per page for Tesseract-
equivalent cloud OCR or near-zero for local Tesseract. For insurance companies
processing thousands of documents monthly, these costs accumulate substantially.
Latency is also higher, since processing a document image with GPT-4V takes 3 to
10 seconds depending on image complexity and output requirements, compared to
sub-second processing with Tesseract. Therefore, GPT-4V is typically reserved for
complex documents such as tables, forms, or mixed-content pages where traditional
OCR struggles, while simpler documents such as plain text pages use faster, cheaper
extraction methods. Model availability and access are additional considerations, as
GPT-4V requires API connectivity (introducing external dependency and potential

39

Related Work Technologies

data privacy implications for sensitive insurance documents) and is subject to rate
limits and availability constraints.

For insurance claims processing, GPT-4V complements rather than replaces
traditional OCR. Simple text extraction uses Tesseract or native PDF extraction,
complex structured extraction involving tables or forms uses GPT-4V, and hand-
written content may use specialized handwriting recognition models or cloud OCR
services. This tiered approach balances cost, latency, and accuracy across diverse
document types.

2.6 Vector Embeddings and Semantic Search

2.6.1 Text Embeddings: From Words to Vectors

Text embeddings, dense vector representations of textual units, enable semantic
search by mapping text into continuous spaces where semantic similarity corresponds
to geometric proximity. This allows documents to be found based on meaning
rather than simple keyword overlap, a capability essential for insurance policy
retrieval where queries and documents often use varied terminology.

Early methods such as Word2Vec [62] and GloVe [63] learned word vectors
through distributional semantics, where words appearing in similar contexts receive
similar embeddings. The famous example

vec("king") — vec("man") 4 vec("woman") ~ vec("queen") (2.4)

demonstrates how these models encode semantic relationships. However, these
methods assign a single vector per word regardless of context, meaning that the
word “bank” has the same representation whether referring to financial institutions
or river banks, which limits their applicability for ambiguous terminology frequently
encountered in insurance documents.

Sentence-BERT (SBERT) [43] advanced beyond word-level representations by
fine-tuning BERT models to produce semantically meaningful sentence embeddings
via Siamese network training. SBERT generates 768-dimensional embeddings that
can be efficiently compared using cosine similarity, enabling fast and accurate re-
trieval. It achieves orders-of-magnitude faster search than cross-encoder approaches
while maintaining strong semantic accuracy.

Contextualized embeddings from BERT [10] further improve upon these tech-
niques by generating different vectors for the same word in different contexts
through masked language modeling. For example, “premium” in “insurance pre-
mium” receives a different embedding than “premium” in “premium quality,”
thereby capturing context-dependent meanings. In insurance applications, this
capability enables distinguishing domain-specific terms such as “collision coverage”

40

Related Work Technologies

(a vehicle insurance term) from the general word “collision,” significantly improving
retrieval precision for specialized terminology.

2.6.2 OpenAl text-embedding-ada-002

This work employs OpenAl’s text-embedding-ada-002, or more recent embedding
families with comparable dimensionality and cost profiles, for semantic search in
insurance document retrieval [44]. The model is trained via contrastive learning on
text pairs, producing 1536-dimensional embeddings in which semantically similar
texts exhibit high cosine similarity.

Key characteristics include 1536 dimensions that balance semantic nuance against
storage requirements (approximately 6KB per embedding, with 100,000 chunks
equating to around 600MB), an 8191-token context window that comfortably
accommodates typical policy chunks of 200 to 500 tokens, and L2-normalized
embeddings that enable efficient dot product similarity computation. The model
also demonstrates competitive performance on semantic search benchmarks such
as MTEB and MS MARCO, while its API availability eliminates the need for local
infrastructure.

For insurance applications, the model effectively handles synonym matching, for
instance “glass damage” retrieving related terms such as “windshield,” “crystal,” or
“lunotto,” captures domain-specific terminology relationships like “deductible” and
“franchigia” or “premium” and “premio,” and supports limited cross-lingual retrieval.
The cost is approximately $0.0001 per 1000 tokens (as of 2023), meaning that
embedding a 100,000-chunk corpus costs around $10 to $20, which is economical
for stable policy corpora requiring infrequent re-embedding.

However, several limitations remain. API dependency introduces latency, typi-
cally around 50 to 200 milliseconds of network overhead, and raises data privacy
considerations since documents are transmitted to external servers. The model also
cannot be fine-tuned on domain-specific data, and its internal workings are opaque,
hindering detailed error analysis. Organizations with substantial proprietary data
and existing GPU infrastructure may achieve superior results with fine-tuned open-
source alternatives, although API-based approaches continue to offer significant
operational simplicity for moderate-scale deployments.

2.6.3 ChromaDB: Vector Database for LLM Applications

ChromaDB is an open-source vector database designed specifically for LLM appli-
cations, prioritizing developer experience and rapid prototyping while maintaining
production viability. Unlike general-purpose systems such as Pinecone, Weaviate, or
Milvus, ChromaDB focuses on Retrieval-Augmented Generation (RAG) workflows,
offering a level of simplicity particularly suitable for insurance claims processing

41

Related Work Technologies

applications.

Key features include a straightforward Python API that abstracts vector search
complexities, allowing creation of collections, document insertion, and querying
with minimal code. Its in-process execution enables local development without the
need for separate database servers, while native LangChain integration reduces
boilerplate code. Metadata filtering supports SQL-like where clauses, combining
semantic search with structured predicates such as customer_ id or policy type.
Collections act as logical namespaces, supporting a dual vector store architecture
that distinguishes between “permanent policies” for contract documents and
“temp_uploads” for session-scoped claim documents. Persistence options range
from in-memory mode, which is fastest but ephemeral, to local file-based mode
using SQLite and HNSW index files, and to client-server mode for production
deployments.

ChromaDB employs HNSW (Hierarchical Navigable Small World) indexing
[46] for approximate nearest neighbor search. HNSW organizes vectors within
multi-layer graphs where upper layers facilitate long-range navigation and lower
layers refine searches, achieving O(log V) complexity. Querying one million 1536-
dimensional vectors typically takes between 10 and 50 milliseconds on modern
hardware, depending on parameter configurations. Tunable parameters M (edges
per vertex) and ef (beam width) balance index size, construction time, search
quality, and latency. For insurance applications, where recall is more important
than microsecond-level latency differences, ChromaDB’s quality-prioritizing defaults
are well suited, with typical retrieval latencies ranging from 20 to 100 milliseconds.

2.6.4 Dual Vectorstore Architecture

Insurance claims processing handles two document categories with fundamentally
different characteristics. Policy documents, such as contracts, coverage terms, and
regulatory texts, are long-lived, shared across users, and updated infrequently.
Customer-uploaded documents, including claim forms, damage photographs, and
receipts, are ephemeral, user-specific, and relevant only during claim processing. A
dual vector store architecture, which maintains separate vector databases for these
two categories, offers substantial advantages.

The permanent vector store persistently stores policy document embeddings.
Once embedded, these documents remain valid until policy updates occur, typically
on an annual or quarterly basis, enabling reuse across thousands of claims without
the need for re-embedding. All users query the same shared knowledge base,
for example 50,000 chunks derived from 100 insurance products multiplied by 50
sections and 10 chunks each. Incremental updates, such as adding, modifying, or
removing chunks, minimize downtime when policies change. Built during system
initialization and persisted to disk, the permanent vector store functions as stable,

42

Related Work Technologies

long-term infrastructure.

The temporary vector store, in contrast, stores customer-upload embeddings
ephemerally. Created on demand when documents are uploaded and deleted after
claim processing or session timeout, these session-specific collections provide user
isolation, ensuring that Customer A’s documents are never retrievable by Customer
B, and accommodate variable sizes ranging from 10 to 50 chunks for simple claims
to several hundred for complex ones. This ephemeral design also satisfies GDPR’s
right to erasure by automatically deleting personally identifiable information once
the claim is resolved.

Architectural separation provides multiple benefits. Data privacy and compliance
improve because uploads containing personal information are retained only as long
as necessary, while generic policy texts persist indefinitely. Performance remains
predictable since the permanent vector store maintains nearly constant size, given
that policies evolve slowly, while temporary vector stores stay relatively small,
containing hundreds to thousands of chunks, thereby avoiding unbounded index
growth that could degrade query latency. Operational reliability also increases, as
maintenance operations on the permanent vector store, such as policy updates or
re-embedding, pose no risk to customer uploads, and potential bugs in temporary
document processing cannot affect the shared knowledge base. Query flexibility
is enhanced as well, allowing different retrieval strategies to be applied: pure
semantic similarity for policy documents versus hybrid approaches, combining
semantic similarity with metadata filtering by session, for user uploads. Selective
querying enables routing policy-related questions to the permanent vector store,
claim-specific questions to temporary stores, or querying both with result merging
when appropriate.

Implementation requires query routing logic to determine which vector store or
combination of stores to query, cleanup policies to prevent resource exhaustion from
concurrent temporary vector stores, and session management to handle reopened
claims or multi-session workflows. Despite these additional complexities, the dual
vector store architecture aligns naturally with insurance claims processing, where
the distinction between shared policy knowledge and ephemeral claim documents
is clear and the benefits of separation are substantial.

43

Related Work Technologies

Dual Vectorstore Architecture

{P t Knowledge Base I X | Temporary K ge Base | ~
CROSSOVER
Content type 0) f Content type \ﬁ
Institutional knowledge (policy JJ_ User-specific data (uploaded @® é
documents, contracts, regulations) ﬁ documents, claim forms, receipts) -
Data characteristics Strict archltl_ectural (> Data characteristics o
Generic, non-personal, long-lived Separation & Personal, ephemeral, session-scoped
Update frequency = No data Update frequency
Quarterly/annually (policy updates) =0 commingling & Per-session (created on upload) &
Retention &) Retention
Indefinite (until policy changes) = Different retention i Session duration only (auto-deleted) i
Access pattern policies 7 Access pattern o5
Shared across all users @ | User-specific, isolated -,
Privacy status Diﬂere‘r:t ccoss Privacy status
Q@ No PII, GDPR-compliant for Q@ pattemns & Contains PII, automatically purged x-» i‘
permanent storage (GDPR compliance)
N o &3 Privacy-by-design = Size —7]
Large-scale (tens of thousands of principle é]] Small-scale (tens to hundreds of E]
% documents) ~50,000 chunks documents per session) ~50-500 chunks.
Use caseli i
Lifecycle Updated Polloy Quast: Lifecycle
periocically
N Query Document- D
@ Permanent I Specific === ==
Vectorstore | | Vectorstore
Created Persists Created Used during Deleted
once indefinitely Cross-Reference on-demand session automatically
(Future \

O

J

Figure 2.2: Theoretical separation between permanent knowledge base (policy
documents) and temporary knowledge base (session-scoped customer uploads),
showing lifecycle, retention policies, and privacy compliance characteristics

2.6.5 Chunking Strategies for Insurance Documents

Document chunking, the process of splitting long documents into segments for
embedding and retrieval, critically impacts Retrieval-Augmented Generation (RAG)
performance. Insurance policy documents, which often span tens of thousands of
words, must be segmented into semantically coherent units that balance retrieval
precision with context completeness.

Chunk size involves fundamental trade-offs. Small chunks of around 100 to
200 tokens provide precise retrieval of specific facts but offer limited context and
may fragment coherent explanations across multiple chunks. In contrast, large
chunks of 500 to 1000 tokens provide richer context for reasoning but reduce
embedding specificity and quickly consume the context windows of large language
models. Empirical findings suggest that a range of 256 to 512 tokens balances these
concerns effectively for question-answering tasks. For insurance policies, where
clauses typically span one to three paragraphs, chunk sizes between 300 and 500
tokens with overlap capture complete clauses while maintaining retrieval precision.

Semantic chunking respects document structure by splitting at natural bound-
aries such as section headers, paragraph breaks, or clause separators, rather than
at fixed character counts that risk fragmenting meaning. For hierarchically struc-
tured insurance policies, hybrid approaches work best. These approaches split at
subsection boundaries, for example “Glass Coverage” or “Deductible Provisions,’
but further divide subsections exceeding threshold lengths, such as 800 tokens,
at paragraph boundaries. This ensures that chunks remain appropriately sized

44

Y

Related Work Technologies

without breaking coherent content.

Chunk overlap, typically 10 to 20 percent (or about 50 to 100 tokens for a
500-token chunk), prevents the loss of information that spans chunk boundaries.
Without overlap, related content such as “Glass coverage applies to windshield,
side windows, and rear window. Deductible is €100 per incident” might be split
mid-sentence, severing the conceptual relationship between coverage and deductible.
Although overlap increases storage and retrieval costs, it usually provides net
benefits by preventing boundary-related information loss.

Metadata enrichment adds valuable context beyond the chunk content itself.
Hierarchical structure annotations, including section and subsection identifiers,
document-level metadata such as product type, effective date, and jurisdiction, and
chunk-specific metadata such as content type or keywords, all enhance filtering,
provide richer generation context, and improve ranking accuracy. ChromaDB’s
native metadata support simplifies this process through key-value dictionaries and
SQL-like filtering.

Insurance-specific considerations further refine chunking strategies. Tables,
including premium tables and coverage limits, require special handling, which may
involve treating them as single chunks, using specialized parsers, or processing them
with multimodal models. Cross-references between clauses benefit from metadata
links that maintain coherence across related chunks. Glossaries should be chunked
to ensure that each term-definition pair remains complete within a single chunk,
preserving semantic integrity. Multilingual policies also require consistent chunking
across languages, with language metadata included to enable accurate cross-lingual
queries.

2.7 LangChain Framework

2.7.1 LangChain Overview

LangChain is an open-source framework simplifying LLM application development
[64]. Released in late 2022, it provides high-level abstractions for recurring patterns:
constructing prompts with dynamic content, chaining LLM calls, retrieving context
from external knowledge bases, maintaining conversation state, and handling errors.
These abstractions enable focusing on application logic rather than low-level API
interactions.

LangChain’s design philosophy emphasizes composability (building complex
workflows from simple components), modularity (loosely coupled interfaces enabling
component swapping), and abstraction (unified interfaces for diverse backends like
ChromaDB, Pinecone, Weaviate, FAISS). Components support rapid prototyping
(in-memory stores, synchronous execution) and production deployment (persistent
storage, async execution, monitoring callbacks).

45

Related Work Technologies

Core abstractions include Models (interfaces to LLMs and embedding models
supporting OpenAl, Anthropic, Cohere, open-source models), Prompts (tools for
managing templates with variable substitution, few-shot examples, chat message
sequencing), Chains (sequences of operations from simple LLM calls to complex
workflows like ‘RetrievalQA‘ and ‘ConversationalRetrievalChain‘), Memory (sys-
tems maintaining conversation state via buffer memory, summary memory, entity
memory), and Retrievers (interfaces abstracting over vector databases, search
engines, SQL databases, supporting re-ranking, filtering, and fusion).

2.7.2 RAG Implementation with LangChain

LangChain provides specialized components that handle each stage of the Retrieval-
Augmented Generation (RAG) pipeline, substantially reducing engineering effort
compared to raw LLM API implementations.

Document loaders abstract format-specific parsing for more than one hundred
formats. In insurance applications, PDF loaders such as PyPDFLoader, PDFMin-
erLoader, and UnstructuredPDFLoader process policies with varying layouts, CSV
loaders handle customer records and claims history, and database loaders integrate
directly with SQL systems including PostgreSQL, MySQL, and SQLite. All loaders
return standardized Document objects containing page content and metadata,
which enables uniform processing regardless of the original source format.

Text splitters partition documents into manageable chunks for embedding. The
RecursiveCharacterTextSplitter attempts different separators, such as "", "', and
" " in order, preserving semantic coherence by preferring paragraph boundaries
over sentence or word boundaries. The TokenTextSplitter instead splits text by
token count using tiktoken, ensuring that chunks respect model context limits.
For insurance policy documents, using the RecursiveCharacterTextSplitter with
token-based measurement and an overlap of 10 to 20 percent preserves clause
boundaries while maintaining semantic completeness.

Vector store integrations provide standardized VectorStore interfaces supporting
local options such as ChromaDB and FAISS, cloud services like Pinecone and Weav-
iate, and existing enterprise infrastructure including Elasticsearch or PostgreSQL
with pgvector. This abstraction allows rapid prototyping with ChromaDB in local
environments and seamless deployment to managed services in production with
minimal code modification.

Retrieval chains encapsulate complete RAG workflows. The Retrieval QA chain
orchestrates the process of querying vector stores, combining the query and retrieved
documents into prompts, calling the LLM, and returning answers with optional
source citations. The ConversationalRetrievalChain extends this capability by
adding conversation memory for multi-turn dialogues in which follow-up questions
reference prior context, an essential feature for insurance customer interactions

46

Related Work Technologies

where dialogue continuity is critical.

2.7.3 Prompt Engineering with LangChain

Prompt engineering, the practice of carefully designing prompts to elicit desired
LLM behavior, is crucial for ensuring application quality. LangChain system-
atizes this process through tools that enable maintainable, versioned, and testable
prompts.

The PromptTemplate component separates prompt structure from runtime
data through variable placeholders that are filled at execution time. This design
allows centralized prompt management, version control, and template testing
using mock variables, ensuring consistent LLM behavior across queries. It also
includes validation to detect missing variables before the LLM is invoked. The
ChatPromptTemplate extends this capability by structuring prompts as ordered
message sequences, system, user, and assistant messages, thereby aligning with the
chat-optimized training paradigms of models such as GPT-3.5-turbo and GPT-4.

The FewShotPromptTemplate manages examples demonstrating desired input-
output behavior, guiding the LLM toward correct response patterns. In insurance
applications that require precise output formats, such as JSON with defined fields,
few-shot examples can illustrate field extraction, numerical formatting for currency
and percentages, expression of uncertainty, and citation of relevant policy clauses.
The template dynamically selects which examples to include when the full set
exceeds the prompt’s capacity, ensuring adaptability to context constraints.

Output parsers handle the structured extraction of data from model responses.
The PydanticOutputParser integrates with Pydantic to perform schema-based
validation, while the JSONOutputParser extracts valid JSON from free-form LLM
outputs, handling markdown fences and formatting inconsistencies. Specialized
parsers also exist for lists, datetimes, and enumerations. In insurance claims
processing, robust parsing ensures that extracted values such as amounts, dates,
and customer IDs are correctly formatted and validated before database insertion,
with retry or escalation logic triggered when parsing fails.

2.7.4 Conversation Memory and Context Management

Interactive insurance claims processing requires multi-turn dialogues; however,
large language models (LLMs) are stateless and lack inherent memory of previous
interactions.

Conversation memory systems address this limitation by maintaining state
across dialogue turns, thereby enabling natural and coherent exchanges. Without
such memory, follow-up questions like “What about for comprehensive coverage?”

47

Related Work Technologies

posed after an initial query such as “What is my glass coverage deductible?” would
lack necessary context and could not be accurately answered.

LangChain provides several memory implementations, each with distinct trade-
offs. Conversation buffer memory stores all messages and injects the complete
dialogue history into subsequent prompts, ensuring full context retention but
consuming tokens linearly with conversation length. For example, a ten-turn
conversation may require 2000 to 5000 tokens solely for history, eventually exceed-
ing model context limits. This approach suits short conversations or high-stakes
applications that demand complete context. Conversation summary memory, by
contrast, periodically summarizes older exchanges using the LLM, maintaining
bounded token consumption that supports indefinite conversations, though at the
cost of potential information loss and added summarization latency and expense.
Entity memory extracts and tracks specific entities such as customer IDs, policy
numbers, and dates rather than retaining raw conversation text. This method
is highly efficient in token usage but lossy for information that falls outside de-
fined entity categories. Windowed memory retains only a fixed number of recent
exchanges, for instance the last five turns, providing predictable and bounded
token use sufficient for maintaining immediate context, while sacrificing access to
longer-range dependencies.

For insurance claims processing, hybrid approaches tend to perform best. Entity
memory can be used to persistently track critical identifiers such as customer 1Ds
and policy numbers, windowed memory can preserve conversational flow across the
most recent three to five turns, and manual state management within application
logic can handle workflow tracking, ensuring that conversation stages are controlled
explicitly rather than inferred by the LLM. This combination balances accuracy,
since critical facts are never lost, with efficiency, through bounded token usage,
and usability, by maintaining a natural conversational experience.

2.7.5 LangChain for Production Deployments

Production deployment requires addressing scalability, reliability, observability, and
cost management. LangChain provides features that support these requirements,
although achieving production readiness still demands careful configuration beyond
default behaviors.

Asynchronous support enables efficient concurrent request handling. Insurance
claims systems must serve multiple users simultaneously, and synchronous code,
where each request blocks until completion, does not scale effectively. A slow
LLM call taking 2 to 5 seconds would block server threads and significantly
limit throughput. LangChain’s asynchronous variants, such as chain.ainvoke and
vectorstore.asimilarity search, leverage Python’s asyncio framework to enable
concurrent execution, allowing a single server process to handle dozens or even

48

Related Work Technologies

hundreds of concurrent queries. For FastAPI deployments, using asynchronous
methods consistently throughout the request pipeline is essential to maintain
performance under load.

Callbacks provide observability hooks into execution stages. Custom callback
functions can log operations for debugging and audit trails, which are critical for
insurance compliance, measure performance by tracking latency at each stage,
including retrieval and LLM inference, monitor costs by aggregating token usage for
budget control, and detect anomalies such as zero retrieved documents, timeouts,
or unexpected response lengths. For insurance applications processing thousands
of claims monthly, active cost monitoring prevents uncontrolled API usage that
could otherwise result in significant expenses.

Caching mechanisms optimize both cost and latency for repetitive queries that
are common in insurance contexts, for instance, when multiple customers ask “What
is the deductible for glass coverage?” for the same policy type. Exact match caching
returns stored responses for identical prompts, semantic caching addresses query
variations by leveraging embedding similarity, and intermediate result caching stores
retrieved documents for frequently asked questions. For insurance applications,
hybrid caching strategies, caching general policy information while excluding
customer-specific data, offer an effective balance between cost savings and response
correctness.

Error handling mechanisms ensure system robustness. These include retry logic
with exponential backoff for transient failures, fallback models that substitute
GPT-3.5-turbo when GPT-4 is unavailable, circuit breakers that prevent cascading
failures, and user-facing error messages that translate technical errors into clear,
actionable feedback.

Security and data privacy are paramount for handling sensitive insurance data.
Best practices include enforcing HT'TPS for encrypted data transmission, encrypting
storage at rest, implementing strict access controls such as customer-level query
filtering, managing data retention through automatic deletion of customer uploads in
compliance with GDPR and CCPA (via temporary vector store deletion), redacting
personally identifiable information from logs, and securely managing API keys.
While LangChain simplifies many of these concerns through built-in abstractions,
deploying robust insurance systems ultimately requires a thoughtfully designed
architecture that extends beyond the framework itself.

49

Related Work Technologies

2.8 Human-in-the-Loop AI Systems

2.8.1 Motivation for Human Oversight

Fully autonomous claims processing faces significant challenges. Insurance claims
involve substantial financial decisions, and errors can lead to customer dissatis-
faction, financial losses, or legal liabilities. Human oversight is therefore essential
to ensure that critical decisions are validated before finalization. Moreover, the
insurance industry is heavily regulated, and many jurisdictions explicitly require
human participation in claim decisions, particularly in cases involving denials or
high-value settlements. Al systems must therefore produce auditable decision trails
suitable for human review, providing clear explanations of how each conclusion was
reached.

Al systems also struggle with unusual situations, ambiguous policy language, or
novel scenarios that fall outside their training data, whereas human adjusters excel
at interpreting exceptional cases and exercising judgment. Customers are generally
more accepting of Al-assisted outcomes when they know that a human expert has
reviewed and approved the final decision.

Under regulatory frameworks such as the GDPR’s right to explanation and
the EU Insurance Distribution Directive (IDD), automated decisions that affect
customers must be both explainable and subject to human review. Retrieval-
Augmented Generation (RAG) architectures address these requirements effectively
through explicit source attribution and human-in-the-loop oversight. Each claim
decision can be traced to specific policy clauses via retrieved documents, forming a
transparent audit trail that human adjusters can verify. This approach balances
automation efficiency with regulatory obligations for transparency, accountability,
and human governance.

2.8.2 Levels of Automation

Human-in-the-loop systems can be designed with varying levels of automation. At
Level 1 (Al-Assisted), the AI provides information and recommendations while
humans make all final decisions. For example, optical character recognition (OCR)
may extract claim data, but adjusters manually verify and process the information.
Level 2 (AI-Recommended) allows the Al to propose a decision accompanied by
confidence scores, which humans then review and either approve or override. An
illustrative case is when the Al calculates a reimbursement amount and the adjuster
examines the calculation steps before granting approval. Level 3 (Conditional Au-
tonomy) enables the Al to process claims autonomously for simple, high-confidence
cases while escalating complex or uncertain ones to human experts. For instance,
claims under €500 with no detected anomalies might be automatically approved,

50

Related Work Technologies

whereas others would require human review. Finally, Level 4 (Full Autonomy with
Audit) represents a fully automated process in which the AI handles all claims
independently, while humans conduct periodic audits on sample cases to ensure
quality control and facilitate continuous improvement.

For the insurance domain, automation levels corresponding to Level 2 or Level
3 typically provide the optimal balance between operational efficiency and effective
risk management.

2.8.3 Design Patterns for Human-Al Collaboration

Designing effective collaboration between human experts and Al systems requires
careful consideration of interaction patterns, information flow, and the calibration
of trust. Insights from human—computer interaction research and practical deploy-
ments in high-stakes domains such as insurance, healthcare, and legal services have
given rise to several recurring design patterns that guide the development of such
systems.

A central principle in these designs is confidence-based escalation, in which Al
systems quantify their uncertainty and use these estimates to determine when
human oversight should intervene. In the context of insurance claims process-
ing, confidence scoring can incorporate multiple elements. Retrieval confidence
assesses how semantically similar the retrieved policy clauses are to the query:
high similarity indicates that the retrieved information is likely relevant, while
low similarity suggests that the question may concern a policy gap or edge case
that warrants human judgment. Extraction confidence, relevant to OCR-based
document processing, evaluates character- and field-level reliability of data such
as policy numbers, claim amounts, and dates, identifying cases that may require
human verification. Another key factor is answer consistency, which measures
whether the system provides stable responses when queried multiple times with
slightly different prompts; significant variance reveals uncertainty that should
prompt review. Finally, policy completeness examines whether the policy explicitly
addresses the claim scenario or whether interpretation of ambiguous or unstated
clauses is required, again indicating the need for escalation to a human expert.

Determining appropriate confidence thresholds is critical. Excessively sensitive
thresholds can overwhelm human reviewers by escalating too many cases, thereby
reducing automation benefits, whereas overly permissive thresholds risk allowing
uncertain or erroneous cases to be processed autonomously. The optimal balance
depends on the relative costs of different types of errors (such as false approvals
versus false denials), available human capacity, and acceptable levels of operational
risk. In practice, thresholds are best refined iteratively through human feedback:
cases in which human reviewers disagree with supposedly high-confidence Al
decisions provide valuable data for calibration and continuous improvement.

51

Related Work Technologies

Another key dimension of human—Al collaboration lies in explainable AT and
transparent reasoning. For human experts to effectively review and validate Al
outputs, they must be able to understand the reasoning process behind each deci-
sion. Retrieval-Augmented Generation (RAG) systems inherently offer advantages
in this regard because they ground responses in explicit, retrievable sources. Each
claim decision can thus cite the specific policy clauses from which its reasoning
derives, allowing human reviewers to verify that the citations are relevant, correctly
interpreted, and appropriately applied. When performing reimbursement calcu-
lations, for instance, the system should expose its reasoning in an interpretable
sequence of operations: “Claim amount €950 — Apply coverage limit (min(€950,
€1000) = €950) — Subtract deductible (€950 — €200 = €750) — Apply co-pay
(€750 x 0% = €0) — Final reimbursement €750.” Each computational step in
this trace should correspond to a verifiable policy clause. Moreover, the system
should decompose its overall confidence into components such as retrieval quality,
OCR accuracy, and policy applicability, enabling human reviewers to identify weak
points in the reasoning chain. When policy language is ambiguous, the system may
also present alternative interpretations, for example, noting that a case could be
treated as vandalism (covered under Clause 3.2) or intentional damage (excluded
under Clause 5.1), and recommend human review to determine intent.

Explainability must be balanced between completeness and conciseness. Pre-
senting excessive detail, such as full LLM prompts, every retrieved document, or
exhaustive calculation traces, can overwhelm human reviewers and obscure the
essential reasoning. Progressive disclosure, where a concise summary is presented
first with options to explore deeper layers of evidence, generally achieves better
usability and cognitive efficiency.

A further principle involves interactive refinement and learning from human
feedback. Human oversight not only serves as a safeguard but also provides a rich
source of information for improving Al performance. Effective systems capture
and learn from both explicit and implicit feedback. Explicit feedback arises when
human reviewers override Al decisions, often with short justifications such as
“Denied because damage predates policy start date (not detected by AI),” which
helps identify specific failure modes. Implicit feedback can be inferred from human
behavior: cases that require extended review time suggest model uncertainty, while
rapid approvals imply reliable Al decisions. Aggregated across many users, these
signals can reveal systematic weaknesses, for example, frequent overrides for certain
coverage types or document formats may point to the need for more targeted
retrieval or improved OCR preprocessing. In large organizations, this information
can further support Reinforcement Learning from Human Feedback (RLHF), where
human corrections are used to train reward models that fine-tune system behavior.
Although RLHF requires substantial amounts of labeled data and is practical
primarily for enterprises processing high claim volumes, it remains a powerful

52

Related Work Technologies

strategy for iterative system enhancement.

Equally important is workflow integration and cognitive fit. Effective Al systems
should complement, rather than replace, existing human workflows. In insurance
claims processing, for example, the workflow typically proceeds through stages
of intake, document review, coverage verification, valuation, and approval or
denial. AT should augment each stage by performing tasks such as automatic
data extraction during intake, highlighting relevant policy clauses during review,
and calculating valuations during assessment, all while preserving human control
over final decisions. Outputs must also be tailored to the information needs of
specific roles, since claims adjusters, underwriters, fraud investigators, and customer
service representatives require different types of contextual information. Moreover,
systems must respect professional expertise: experienced adjusters rely on years of
domain-specific heuristics and intuition, and Al systems that override such expertise
without transparent justification risk eroding trust. Framing Al as a “decision
support” or “second opinion” tool, rather than as an authoritative decision-maker,
aligns better with professional culture and promotes adoption. Positioning Al as a
supportive technology that allows experts to handle a larger volume of cases, focus
on complex scenarios, and reduce time spent on repetitive tasks such as data entry
and document retrieval further strengthens trust and user acceptance.

Finally, alert systems and anomaly detection play a vital role in ensuring
oversight and risk management. Beyond routine case processing, Al systems
should identify potential anomalies that require human investigation. These may
include policy issues such as expired policies, coverage gaps, or exclusions matching
claim descriptions (for instance, “Policy excludes water damage; claim mentions
flooding”), data inconsistencies such as mismatches between claimed amounts and
documentation, or duplicate claims for the same incident. Fraud-related patterns
may also trigger alerts, such as claims filed immediately after policy purchase,
exaggerated damage descriptions inconsistent with photographs, or histories of
frequent claims. High-value cases exceeding predefined thresholds, such as €5000,
should automatically be routed to senior adjusters regardless of Al confidence.

Alert systems must be carefully tuned to balance sensitivity and specificity.
Excessive false positives can desensitize human reviewers, diminishing the system’s
credibility, while false negatives allow problematic cases to pass unnoticed. Achiev-
ing optimal performance requires ongoing monitoring, regular threshold adjustment,
and feedback loops linking operational outcomes to alert calibration.

Through these combined mechanisms, confidence-based escalation, transparent
reasoning, feedback-driven refinement, workflow alignment, and proactive anomaly
detection, human-in-the-loop insurance systems can achieve an effective balance
between automation efficiency, expert oversight, and regulatory compliance.

53

Related Work Technologies

2.8.4 Human-Al Interface Design

The design of interfaces mediating human—AlI interaction profoundly influences
system effectiveness, user satisfaction, and error rates. Poorly designed interfaces
can undermine even the most sophisticated AI models by making verification
cumbersome, obscuring reasoning processes, or failing to accommodate expert
workflows. Research in human-computer interaction and explainable Al [65]
[66] provides established principles for creating interfaces that support effective,
transparent, and trustworthy decision making in Al-assisted systems.

In insurance claims processing, adjusters must review numerous cases each day,
making information architecture and dashboard design essential to efficiency and
accuracy. Interfaces should present essential information immediately while also
allowing deeper investigation when necessary. The primary information layer must
display all critical decision-relevant content, such as claim status, Al recommen-
dations, extracted data, validation results, and risk indicators, without requiring
scrolling or complex navigation. Clear visual cues, including consistent color seman-
tics (red for problems, yellow for caution, green for normal conditions), structured
layouts, and intuitive grouping of related elements, help adjusters identify the
claim’s current state and the Al’s recommended action at a glance. When well
designed, dashboards allow experienced professionals to make routine decisions
within seconds while still signaling when a case demands closer review.

Beyond the summary layer, interfaces should enable detailed examination
through progressive disclosure, revealing additional information only when re-
quested. This design principle allows users to verify Al outputs without being
overwhelmed by unnecessary data. For example, when a claim decision is selected,
retrieved documents and their similarity scores should appear alongside highlighted
excerpts of relevant text so that adjusters can confirm retrieval accuracy and
relevance. OCR results should be shown with the original document images and
confidence scores for each field, highlighting uncertain extractions and allowing
users to correct errors directly. When the Al provides reimbursement recommenda-
tions, the interface should make the reasoning trace explicit, showing the entire
calculation process, including coverage limits, deductibles, co-pay percentages, and
intermediate values, each linked to the policy clauses defining them. Ambiguous
cases benefit from the display of alternative interpretations, for instance, distin-
guishing between vandalism (covered) and intentional damage (excluded), with
a prompt for human judgment. Advanced users should also have the option to
access complete contextual information such as full policy documents, raw API
responses, and system logs, which supports transparency, training, and dispute
resolution. Progressive disclosure thus prevents information overload, allowing
novices to focus on essential elements while giving experts the means to drill into
fine-grained details when necessary.

o4

Related Work Technologies

Human override mechanisms form another critical aspect of interface design.
Adjusters must be able to correct AI recommendations easily, yet every override
should be traceable and justified. Interfaces should provide intuitive controls for
modifying outcomes, for example, changing an approval to a denial or adjusting
reimbursement amounts, without introducing excessive friction that might discour-
age necessary corrections. When an override occurs, the system should request
a concise justification, supported by predefined categories and optional free-text
input. This process not only fosters accountability but also generates structured
feedback that can be analyzed to identify recurring Al failure modes.

Comprehensive audit trails recording the timestamp, user identity, and rationale
for each override support both regulatory compliance, by demonstrating human
oversight, and organizational learning, by highlighting systematic discrepancies
between human and Al reasoning.

Managing cognitive load is equally important, as insurance claims involve
numerous complex and interdependent data points, including policy terms, coverage
limits, deductibles, exclusions, claim details, document content, and customer
history. Presenting all of this information simultaneously would exceed human
cognitive capacity and degrade performance.

Effective interfaces therefore emphasize focus through visual salience, using
text weight, color, and position to draw attention to the most relevant elements
for the decision at hand, and minimize clutter by showing only decision-critical
data by default while keeping technical metadata or peripheral details hidden until
needed. They also respect the limitations of working memory, which research
suggests can hold approximately four to seven items at once [67], by structuring
dashboards so that no more than a handful of key decision factors are visible on
the main view. Additionally, error-prevention mechanisms such as form validation,
confirmation prompts for irreversible actions, and sanity checks ensure that users do
not inadvertently approve claims exceeding coverage limits or enter invalid figures.

Research on decision support systems [68] [69] consistently shows that well-
designed interfaces enhance decision accuracy, reduce processing time, and increase
user satisfaction. These outcomes are particularly critical in insurance claims
processing, where both efficiency and accuracy directly affect customer experience,
compliance, and financial outcomes. A carefully designed interface therefore acts
not merely as a display mechanism but as a central component of human—Al
collaboration, shaping the reliability and accountability of the entire decision-
making process.

2.8.5 Evaluation Considerations

Human-in-the-loop systems must be evaluated across several interrelated dimen-
sions. The accuracy of optical character recognition directly influences the quality

59

Related Work Technologies

of extracted data, while the faithfulness of Retrieval-Augmented Generation deter-
mines the reliability of the system’s answers. Overall system performance affects
operational efficiency, and the degree of human—Al agreement provides a measure
of the system’s practical utility in real-world workflows. These evaluation aspects
are examined in detail in the empirical analysis presented in Chapter 4.

2.9 Technology Selection Criteria

This section outlines the criteria and rationale that guided the selection of tech-
nologies for Al-powered claims processing. Specific implementation details and the
description of architectural integration are presented in Chapter 3.

2.9.1 Model Selection Criteria

Model selection for insurance claims processing requires a careful balance among
reasoning complexity, latency tolerance, cost efficiency, multimodal capabilities,
and context window requirements. Effective systems rarely rely on a single model;
instead, they employ multiple models, each assigned to tasks that align with its
particular strengths.

Tasks that involve complex reasoning, such as policy interpretation with condi-
tional logic, multi-step reimbursement calculations, or detection of contradictions
across multiple documents, benefit from the superior analytical depth and long-
context consistency of GPT-4, which consistently outperforms other models on
multi-step reasoning benchmarks. Simpler extraction tasks, including identifying
customer IDs, extracting dates, or classifying claim types, can be handled effectively
by GPT-3.5-turbo with negligible differences in quality. Tiered configurations that
delegate extraction and classification to GPT-3.5-turbo while reserving GPT-4 for
reasoning and interpretation strike a practical balance between performance, cost,
and latency.

Latency tolerance varies across stakeholders and use cases. Customer-facing
chatbots, for instance, require rapid response times, as delays exceeding five to
seven seconds are typically perceived as sluggish. Such applications therefore
favor GPT-3.5-turbo, which achieves latencies of one to two seconds, over GPT-
4, which typically responds within three to five seconds. In contrast, claims
adjusters reviewing cases can tolerate higher latencies, often between ten and twenty
seconds, in exchange for greater accuracy, as they typically work on multiple claims
concurrently. Batch-processing workflows, where throughput is more important
than individual response time, can leverage slower but more thorough models or
even multi-engine ensembles to maximize overall efficiency.

Cost considerations remain a decisive factor in large-scale insurance operations.
GPT-4’s cost ranges from $0.03 to $0.06 per 1,000 tokens, compared to $0.001

56

Related Work Technologies

to $0.002 for GPT-3.5-turbo. A typical insurance retrieval-augmented generation
(RAG) query, encompassing 2,000 to 5,000 tokens of retrieved policy context, cus-
tomer data, and model-generated response, therefore costs between $0.10 and $0.25
when processed with GPT-4, but only $0.01 to $0.05 with GPT-3.5-turbo. At a
volume of 10,000 monthly queries, this difference translates to operational costs of
approximately $1,000 to $2,500 versus $10 to $50. To manage such disparities, sys-
tems can employ several optimization strategies, including selective model routing
(reserving GPT-4 for high-value or high-risk cases), prompt optimization (reducing
token usage from 3,000 to 2,000 yields roughly a 33% cost reduction), caching
frequent queries (potentially reducing LLM calls by 30-70%), and hybridization
with lightweight tools such as rule-based regular expressions for policy number
extraction or small classifiers for document-type identification, reserving LLMs for
tasks requiring language understanding and reasoning.

Multimodal requirements further dictate model routing strategies. Text-only
tasks, such as policy question answering, claim summarization, or structured data
extraction from textual sources, are efficiently handled by text-only models, which
are both faster and less expensive. However, tasks that require visual reasoning,
including the analysis of damage photographs, extraction from complex document
layouts, or the interpretation of handwriting, necessitate the use of GPT-4 Vision.
Selectively invoking multimodal models in this way minimizes expensive API usage
while ensuring that visual inputs are accurately processed.

Finally, context window requirements depend on the complexity of the input
documents. Moderate context capacities, such as the 8k to 16k token limits available
in GPT-3.5-turbo and standard GPT-4, are sufficient for most insurance queries.
These typically involve the retrieval of three to five policy chunks of approximately
400 to 500 tokens each, combined with customer data and task instructions, all of
which fit comfortably within the 8k-token limit. Larger context windows of 32k
tokens or more enable reasoning across full policies or comprehensive document
sets but come at the expense of increased inference time and cost. In edge cases
requiring extensive context, it is often more efficient to employ iterative retrieval
and summarization or to escalate the task for human review rather than relying
solely on large-context models.

2.9.2 RAG vs. Fine-Tuning: Strategic Considerations

Adapting general-purpose large language models (LLMs) to the insurance do-
main requires selecting between two principal strategies: Retrieval-Augmented
Generation (RAG), which provides domain knowledge through dynamically re-
trieved context, and fine-tuning, which embeds domain knowledge directly into
model parameters. Each approach entails distinct trade-offs that influence system
architecture, maintenance requirements, and overall performance.

57

Related Work Technologies

RAG-based systems retain the base model’s parameters in their original state
while augmenting each prompt with relevant information retrieved from external
sources. This design offers a major advantage for domains such as insurance, where
policies, coverage terms, and regulatory frameworks evolve frequently, often on
annual or quarterly cycles. Because RAG relies on external retrieval, updates to
policy content are immediately reflected in system outputs simply by refreshing
the vector database, eliminating the need for model retraining. In contrast, fine-
tuned systems require the collection and curation of new training data, followed
by retraining that can take hours or even days, and subsequent redeployment, an
operationally burdensome process for environments subject to frequent change.

The cost differential between these approaches is also significant. RAG primarily
incurs a one-time cost for document embedding, typically around ten to twenty
dollars for a 100,000-chunk corpus, while fine-tuning requires thousands of carefully
labeled examples, substantial GPU computation, and additional engineering effort.
Moreover, RAG offers inherent advantages in transparency and regulatory compli-
ance: because retrieved text is explicitly cited, users can trace each output back to
its source, for example, a statement such as “Your glass deductible is €100” can be
directly linked to the specific policy clause from which it was drawn. Fine-tuned
models, by contrast, internalize such information within their parameters, making
it effectively opaque and difficult to verify, an important limitation in regulated
industries requiring auditability and explainability.

RAG also accommodates heterogeneous information sources, such as policies,
legal regulations, procedural guidelines, and frequently asked questions, all of which
can coexist within a single retrieval framework. Fine-tuning, on the other hand,
requires all such knowledge to be represented as training examples, complicating
data preparation and limiting adaptability. Nonetheless, RAG’s performance is
bounded by the quality of its retrieval mechanism; if retrieval fails to identify the
most relevant content, model accuracy suffers.

Furthermore, the retrieval process introduces additional latency, typically be-
tween twenty and one hundred milliseconds, although this overhead is often negli-
gible relative to overall inference time.

Fine-tuning offers complementary advantages by embedding domain knowledge
directly into model parameters. This eliminates retrieval latency, saving approxi-
mately fifty to one hundred milliseconds per query, and can improve coherence for
narrowly defined, repetitive tasks. However, these gains come at the expense of
flexibility. Each policy update or regulatory change requires retraining to incorpo-
rate new information. Effective fine-tuning also demands large, diverse datasets to
prevent overfitting, a condition that many insurance organizations struggle to meet
due to limited labeled data. Fine-tuned models lack explicit source attribution,
meaning that verifying outputs requires manual document review, and integrating
new content involves repeating the fine-tuning cycle rather than simply adding

58

Related Work Technologies

documents to a retrieval corpus.

In practice, hybrid strategies often deliver the best balance between adaptability
and precision. One common approach involves fine-tuning models to align them
with domain-specific style, terminology, and communication conventions, while
using RAG to provide up-to-date policy content and factual grounding. Another
configuration uses fine-tuned lightweight models for narrowly scoped tasks such
as entity extraction, complemented by a RAG-based architecture for open-ended
reasoning and contextual question answering. For insurance claims processing,
however, RAG generally represents the superior primary choice, combining in-
terpretability, maintainability, and regulatory transparency. Fine-tuning remains
valuable for auxiliary subtasks where explainability and adaptability are less critical,
but for core decision-support applications, RAG’s dynamic and auditable nature
provides a more robust foundation.

2.9.3 Hybrid OCR Strategy Rationale

Insurance claims processing involves a wide variety of document sources, including
digitally created PDFs, scanned paper documents, and hybrid files containing both
text and images. Because no single extraction method performs optimally across
all of these formats, hybrid strategies that adaptively select extraction techniques
based on document characteristics offer the best balance between accuracy, speed,
and cost.

Native PDF text extraction using tools such as PyMuPDF or PDFMiner reads
text directly from the PDF’s internal data structures, bypassing optical character
recognition (OCR) entirely and thereby eliminating recognition errors. For well-
formed digital PDFs, the error rate is effectively zero, compared to typical OCR
error rates of one to ten percent. Moreover, native extraction operates between ten
times and one hundred times faster than OCR, on the order of milliseconds rather
than seconds per page, making it particularly advantageous for high-volume claims
processing environments. However, this method fails completely for scanned or
image-based PDFs, which lack embedded text. To address this, systems employ au-
tomatic quality assessment mechanisms that analyze metrics such as total character
count, character distribution, and the presence of expected content elements. When
these heuristics indicate that native extraction has yielded sparse or low-quality
output, the system automatically triggers an OCR fallback, thus optimizing for
speed whenever possible while maintaining accuracy when necessary.

For documents that are particularly difficult to process, such as degraded scans,
handwritten forms, or irregular layouts, multi-engine ensemble approaches can
further enhance reliability. Running multiple OCR engines in parallel, such as
Tesseract, Google Cloud Vision API, and AWS Textract, allows the system to
aggregate results through voting or confidence-based selection, often reducing error

59

Related Work Technologies

rates by 20 to 40 percent compared to single-engine solutions. However, this
improvement comes at a cost: the computational and financial expenses scale
with the number of engines employed. Because cloud OCR APIs typically charge
around $1.50 per 1,000 pages, ensemble processing can quickly become costly when
applied indiscriminately. Consequently, selective ensemble deployment represents a
pragmatic compromise. Routine documents can be processed using a single, cost-
effective engine such as Tesseract, while multi-engine ensembles are reserved for
high-value claims or for cases where initial confidence scores fall below acceptable
thresholds. This strategy maintains high accuracy where it matters most without
incurring excessive operational costs.

Reliable quality assessment underpins the effectiveness of all these hybrid strate-
gies. Extraction quality can be evaluated using several complementary criteria.
Heuristic checks examine basic statistical properties such as character count, symbol
distribution, and the presence of key policy identifiers or financial values. OCR
confidence scores, available from Tesseract and most cloud-based OCR services,
provide more granular information at the word or character level. Mean confidence
thresholds, for example, an average confidence below 70 percent, can automatically
trigger human review or reprocessing. Cross-validation between native and OCR-
based outputs also serves as a powerful diagnostic tool: significant discrepancies
between the two often indicate problematic PDFs; encoding errors, or OCR failures
that warrant further inspection.

Through this layered approach, combining native extraction, OCR fallback,
multi-engine ensembles, and dynamic quality assessment, insurance claims systems
achieve a resilient and efficient text extraction pipeline that accommodates the full
spectrum of document types encountered in real-world operations.

2.9.4 Dual Vectorstore Architecture Rationale

The rationale for the dual vectorstore architecture, discussed in detail in chapter
2.6.4, lies in the need to address the distinct lifecycles, security requirements, and
usage patterns of different document categories. By maintaining separate databases
for permanent policy documents and temporary customer uploads, the system
ensures both operational efficiency and data protection.

2.9.5 Technology Selection Summary

Technology selection was guided by a balance among performance, cost, main-
tainability, integration complexity, and regulatory compliance. The final choices
combine mature, production-proven technologies with state-of-the-art Al capabili-
ties, achieving an equilibrium between innovation and reliability that aligns with the
conservative nature of the insurance industry and its low tolerance for operational

60

Related Work Technologies

failures. Chapter 3 provides a detailed discussion of the architectural integration,
data flows, API contracts, and deployment configurations that implement these
design principles.

2.10 Chapter Summary

This chapter has surveyed the technologies and methodologies underpinning AI-
powered insurance claims assessment. It began with a review of prior work in
claims automation, tracing the evolution from rule-based expert systems and
traditional machine learning approaches to contemporary methods that leverage
Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), and
advanced optical character recognition (OCR) techniques.

The discussion of LLMs focused on the Transformer architecture and the GPT
family of models, including GPT-3, GPT-3.5-turbo, GPT-4, and GPT-4 Vision. We
examined their capabilities in natural language understanding, reasoning, and text
generation, as well as their limitations in terms of hallucinations, interpretability,
and bias. These challenges highlighted the necessity of grounding techniques and
human oversight to ensure reliability and transparency in insurance applications.

RAG was presented as a key solution to issues of hallucination and knowledge
cutoff inherent in standalone LLMs. Its architecture, comprising a knowledge base,
retriever, and generator, was analyzed in depth, along with the role of dense vector
embeddings and vector databases such as ChromaDB employing HNSW indexing.
The advantages of RAG for insurance applications were emphasized, particularly
in terms of accuracy, transparency, and maintainability, while challenges such as
retrieval quality, chunking strategies, and metadata filtering were also discussed. Ad-
vanced retrieval techniques, including hypothetical document embeddings (HyDE),
reranking, and recursive retrieval, were introduced as mechanisms for improving
retrieval precision.

The chapter also examined OCR technologies, tracing their evolution from
traditional computer vision methods to modern deep learning architectures such
as Tesseract, LayoutLM, and Donut. It explored domain-specific challenges in
processing insurance documents, including handwriting, mixed content, and complex
layouts, and discussed preprocessing techniques such as binarization, deskewing,
and dewarping. Hybrid extraction strategies combining native PDF parsing and
OCR, as well as the emerging role of GPT-4 Vision in multimodal document
understanding, were analyzed for their potential to enhance document intelligence
in claims workflows.

Subsequent sections addressed semantic retrieval through vector embeddings,
charting progress from early word embeddings such as Word2Vec and GloVe to

61

Related Work Technologies

contextualized embeddings produced by BERT and OpenAl’s text-embedding-ada-
002. Vector databases, dual vectorstore architectures, and document chunking
strategies were discussed in the context of scalable, high-precision semantic search
for insurance documents.

The LangChain framework was introduced as a unifying layer for orchestrating
LLM-based applications, integrating components such as models, chains, retrievers,
and memory systems. Its role in implementing RAG pipelines, managing prompts,
maintaining conversational context, and supporting production deployment was
analyzed, highlighting its utility for rapid development and system modularity.

The human-in-the-loop design paradigm was then examined, emphasizing the
importance of human oversight in high-stakes and regulated domains. We discussed
varying levels of automation, design patterns such as confidence-based escalation
and explainable reasoning, and strategies for aligning Al systems with existing
workflows. Principles of interface design were explored, focusing on information
hierarchy, explainability, and cognitive load management. Evaluation metrics were
also reviewed, including character and word error rates (CER/WER) for OCR,
faithfulness measures for RAG, and latency and cost indicators for overall system
performance. The chapter noted that explainability and auditability, achieved
through RAG’s explicit source attribution and structured human review, support
compliance with key regulatory frameworks such as the GDPR and the Insurance
Distribution Directive (IDD).

Finally, the chapter outlined the key criteria guiding technology selection, in-
cluding model choice based on reasoning complexity, latency, cost, and context
requirements; the trade-offs between RAG and fine-tuning; hybrid OCR strategies;
and the rationale for adopting a dual vectorstore architecture.

Collectively, the technologies and methods reviewed in this chapter establish
the foundation for the system design and implementation described in Chapter
3, which details the overall architecture, component integration, and workflow
design. Chapter 4 then presents the empirical evaluation, covering OCR accuracy
(measured via CER/WER and precision-recall-F1 metrics), RAG faithfulness, and
system performance in terms of latency, cost, and throughput.

62

Chapter 3

System Architecture

3.1 Problem Definition and Objectives

3.1.1 Formal Problem Statement

Insurance claims processing suffers from inefficiencies rooted in manual workflows,
inconsistent policy interpretation, and lengthy processing times. The central
problem can be formalized as follows: given heterogeneous claim documents D
(scanned forms, photographs, receipts, policy texts), a natural language query Q
from a customer or adjuster, and a structured knowledge base K containing policy
contracts and customer records, the system must produce an accurate, explainable
answer A grounded in verifiable sources from K and relevant extractions from D,
while satisfying regulatory transparency requirements, maintaining data privacy,
and achieving interactive processing latencies suitable for production deployment.

The problem decomposes into five interconnected challenges, each presenting
distinct technical obstacles. Document understanding requires extracting structured
text from documents varying in quality, such as digital PDFs with embedded text,
degraded scans exhibiting noise and skew, and handwritten forms with high inter-
person variability, as well as in format, including continuous text paragraphs,
structured tables with merged cells, checkboxes indicating coverage selections,
and damage photographs requiring visual interpretation, and in language, such as
Italian policy language, English technical terminology, or mixed-language claim
descriptions. A single claim submission might include a digitally generated policy
PDF requiring native text extraction, a scanned handwritten claim form demanding
OCR with aggressive preprocessing, and damage photographs needing computer
vision analysis. This heterogeneity necessitates hybrid extraction strategies that
adaptively select methods based on document characteristics, combining native
PDF parsing, which is fast and accurate for digital documents, with image-based
OCR employing deskewing, contrast enhancement, and noise reduction, which is

63

System Architecture

robust for degraded scans, while maintaining quality assessment throughout to flag
uncertain extractions for human verification.

Semantic retrieval demands identifying relevant policy clauses despite substantial
vocabulary mismatches between natural language queries and formal contract
language. A customer asking "Is my windshield covered?" must retrieve policy
sections discussing "automotive glass damage" or "cristalli," Italian for glass, where
lexical overlap is minimal but semantic equivalence is clear. This requires dense
embeddings mapping text to high-dimensional vectors where semantic similarity
corresponds to geometric proximity, approximate nearest neighbor algorithms
providing logarithmic search complexity over large policy corpora containing tens
of thousands of chunks, and metadata-aware retrieval combining vector similarity
with structured filters such as customer ID, coverage type, and policy version to
ensure only relevant documents are considered.

Grounded generation synthesizes factually accurate answers by integrating
retrieved policy clauses and OCR-extracted content while citing specific sources,
a requirement that distinguishes insurance applications from general chatbots.
The system must avoid hallucinations where plausible but incorrect coverage
interpretations could lead to financial losses or customer disputes, maintain strict
context conditioning ensuring answers derive exclusively from retrieved documents
rather than parametric model knowledge, adapt tone and detail level for different
audiences since customers require accessible explanations, adjusters need technical
precision, and regulators demand audit trails, and structure outputs consistently
in numbered sections or formatted text to support frontend rendering and human
review workflows.

Policy validation and financial calculation integrate business logic with Al
outputs, verifying that customers hold active policies covering the claimed damage
types, applying coverage limits by taking the minimum between requested amounts
and policy maximums, deducting fixed or percentage-based deductibles using
exact decimal arithmetic to avoid floating-point rounding errors, computing co-
payments when applicable, generating detailed calculation traces documenting each
transformation with intermediate values and applied rules, and emitting alerts
for exceptional conditions such as coverage limit exceedance requiring customer
notification, missing mandatory documents like police reports for theft claims, high-
value claims exceeding thresholds demanding senior review, or policy exclusions
detected through substring matching in claim descriptions. These calculations
must be deterministic, auditable, and compliant with insurance industry financial
standards.

Privacy and compliance maintenance address regulatory obligations through ar-
chitectural design rather than post-hoc additions. The system separates ephemeral
customer uploads, including claim forms, receipts, and damage photos contain-
ing personally identifiable information, from persistent policy documents such

64

System Architecture

as generic contracts without customer data, automatically deletes session-scoped
temporary data upon session termination to satisfy GDPR’s storage limitation
principle and right-to-erasure requirements, provides explainable decisions through
RAG’s source attribution where every answer cites specific policy clauses supporting
IDD mandates for transparency in automated decisions, logs all processing stages
with pseudonymous customer identifiers while excluding personally identifiable
information from logs to prevent inadvertent exposure, and supports human-in-
the-loop oversight through confidence-based escalation that flags uncertain OCR
extractions, low-similarity retrievals, or ambiguous policy interpretations for expert
review.

3.1.2 System Objectives and Success Criteria

Five primary objectives guided system design. Accuracy ensures that policy in-
terpretations align with contract language, OCR extractions reproduce document
content faithfully, and financial calculations generate verifiable reimbursement
amounts with complete audit trails. Transparency requires that answers cite spe-
cific policy clauses, calculation steps document intermediate values and applied
rules, and confidence scores flag uncertain cases for review. Efficiency targets
interactive query completion within ten seconds for policy questions and thirty
seconds for document analysis, batch throughput sufficient for operational vol-
umes, and economically sustainable API costs achieved through selective model
routing and caching. Scalability demands accommodation of growing corpora
without performance degradation, achieved through logarithmic retrieval latency
enabled by approximate nearest neighbor indexing and stateless service architectures
supporting horizontal scaling. Compliance safeguards customer privacy through
session-scoped storage and automatic deletion, provides explainable decisions with
source attribution satisfying GDPR and IDD requirements, and supports human
oversight through confidence-based escalation and audit logging.

Success criteria establish quantitative thresholds. OCR accuracy targets char-
acter error rates below five percent for digital PDFs and fifteen percent for scans,
word error rates below ten percent for print and twenty-five percent for handwriting,
and precision, recall, and F1 scores above ninety percent for field extraction. RAG
faithfulness requires source citations for all factual claims, hallucination rates below
five percent, and answer relevance exceeding eighty percent. System performance
targets end-to-end latency below ten seconds for interactive queries and thirty
seconds for document uploads, throughput sufficient to handle claim surges, and
per-claim API costs remaining within operational budgets.

Human—AI agreement should exceed seventy-five percent, with disagreement
patterns analyzed to identify systematic weaknesses and guide model or process
refinements. Chapter 4 evaluates these criteria empirically.

65

System Architecture

3.1.3 Solution Approach Overview

The solution integrates three core technological components described in Chapter
2: Retrieval-Augmented Generation for grounded policy question answering, hybrid
OCR with advanced preprocessing for robust document understanding, and human-
in-the-loop design patterns for confidence-based escalation and transparent decision
support. The system architecture follows a service-oriented paradigm that separates
concerns across layers, comprising a web backend exposing REST APIs for frontend
interaction, orchestration services coordinating workflows across subsystems, core
AT components implementing RAG retrieval and generation, OCR extraction,
and claims validation logic, a data layer managing structured customer records
in SQLite and vectorized policy embeddings in ChromaDB, and a React-based
frontend offering conversational interfaces and progressive disclosure dashboards.

The dual vectorstore architecture, detailed in section 2.6.4, maintains distinct
embeddings for permanent policy documents and ephemeral customer uploads,
ensuring privacy-compliant session management and consistent performance. The
hybrid OCR strategy, presented in section 2.9.3, routes digital PDFs to native text
extraction for maximum speed and accuracy while applying image-based OCR with
multi-stage preprocessing for scanned documents, selecting the optimal extraction
method adaptively according to document characteristics. The tiered LLM selection
approach, discussed in section 2.9.1, assigns simple extraction tasks to fast and cost-
efficient models such as GPT-3.5-turbo while reserving complex reasoning and policy
interpretation for GPT-4, achieving a balanced trade-off between accuracy and
operational cost. These architectural principles translate the theoretical foundations
of Chapter 2 into a concrete, production-ready implementation designed to support
real-world insurance claims workflows efficiently and transparently.

3.2 System Architecture Overview

3.2.1 Component Topology

The system follows a layered architecture with clear separation of responsibilities
across five distinct tiers, each abstracting complexity from the layers above while
exposing well-defined interfaces. The presentation layer consists of a React-based
web application providing chat interfaces for policy questions, document upload
controls with drag-and-drop support, result dashboards displaying answers with
progressive disclosure of OCR confidence and field comparisons, and health status
indicators polling backend readiness. The frontend communicates exclusively via
HTTP APIs with the backend, ensuring clean separation that enables independent
deployment, version control, and scaling. This decoupling allows frontend updates
such as UI improvements or new visualizations without backend modifications, and

66

System Architecture

backend enhancements like new Al models or improved extraction algorithms with-
out frontend changes, supporting parallel development and incremental deployment
strategies.

The application layer implements a FastAPI server exposing REST endpoints for
chat, which manages policy question answering with conversation context, upload-
and-analyze, which handles OCR-augmented document queries, process-claim,
which executes the full claim workflow including validation and reimbursement
calculation, health checks verifying component readiness and configuration, vector-
store status for monitoring RAG initialization, and temporary document cleanup
for session management. Endpoint handlers remain deliberately thin, focusing on
HTTP-specific concerns such as request validation via Pydantic schemas ensuring
type safety and mandatory field presence, response serialization converting Python
objects to JSON with appropriate status codes, and error translation mapping tech-
nical exceptions like ValueError, ConnectionError, or TimeoutError to user-friendly
messages with domain-appropriate HT'TP responses. CORS configuration permits
cross-origin requests during development while restricting origins in production.
Business logic resides in orchestration services, maintaining handlers concise and
easily maintainable so that endpoint updates require minimal code modification.

The service layer encapsulates workflow orchestration coordinating subsystem
interactions while enforcing business rules and data flow contracts. The chat service
executes the policy question workflow, extracting client IDs from conversation
context through regex patterns and LLM-based extraction, querying SQLite for
policy data and formatting results as structured facts, appending output formatting
constraints specifying section numbering, citation style, and deductible application,
invoking the full RAG pipeline including client validation, retrieval, and grounded
reasoning, and updating conversation context to preserve coherence across turns.
The document service manages OCR-augmented workflows with higher complexity,
extracting identifiers from context, question text, and OCR content in prioritized
order, matching customers in the database through fallback strategies such as ID
match, name combination, or license plate when available, constructing enhanced
queries merging OCR previews and policy context, invoking RAG with OCR
grounding to cross-reference uploaded documents with contract clauses, comparing
extracted fields to database values to flag discrepancies, and returning comprehen-
sive responses containing summaries, field comparisons, and metadata for frontend
visualization.

The initialization service coordinates cold-start procedures ensuring resource
availability before serving requests. It verifies database existence, rebuilding from
CSV sources if missing, validates the document corpus, triggering PDF parsing
and GPT-4 Vision extraction when necessary, loads dataframes into memory with
appropriate encodings, initializes RAG instances lazily with parallel warm-up
across LLM clients to minimize startup time, constructs or reloads vectorstores

67

System Architecture

while logging token counts and costs, and performs validation prompts to confirm
system health. Utility services centralize reusable logic, including customer service
providing ID extraction and normalization methods, matching service implementing
schema-agnostic resolution strategies, and policy service formatting SQL results
into structured policy fact blocks. This modular structure enhances maintainability,
reusability, and testability by isolating concerns and minimizing code duplication.

The Al integration layer provides the core intelligence through two advanced sub-
systems exposing concise interfaces while encapsulating complex internal logic. The
RAG subsystem manages retrieval-augmented generation using lazy-loaded LLM
clients configured with deterministic parameters—GPT-4 for reasoning and GPT-
3.5-turbo for fast extraction—alongside OpenAl’s embeddings client supporting
batch operations with retry and timeout handling. It maintains dual vectorstores
with separate persistence directories and lifecycle policies, permanent for static
contracts and temporary for session-based uploads, ensuring privacy compliance.
LangChain retrieval chains orchestrate embedding, similarity search, and context
construction, while conversation management tracks client identity and coverage
context for multi-turn coherence. The OCR subsystem coordinates hybrid PDF and
image extraction, iterating through PyMuPDF, PDFMiner, and PyPDF for digital
text and applying a six-stage preprocessing pipeline for scanned images including
grayscale conversion, deskewing, contrast enhancement via CLAHE, denoising,
adaptive thresholding with Otsu or Sauvola methods, and morphological cleanup.
It selects optimal page segmentation modes based on document type, supports
bilingual Italian-English OCR through parallel inference, aggregates per-word con-
fidences for quality scoring, and applies regex-based field extraction merging OCR
with contextual data. Both subsystems expose unified methods for initialization,
execution, document addition, and health reporting, abstracting extensive logic
behind minimal interfaces.

The data layer ensures reliable persistence through three complementary mech-
anisms with distinct lifecycles. SQLite manages structured policy and customer
data across normalized tables storing risk attestations, policy summaries, and
optional coverage details, queried via parameterized SQL to prevent injection and
accessed through pandas dataframes for ease of manipulation. The processed
contract corpus, stored as TSV files, contains hierarchically structured policy text
with metadata enabling semantic chunking, citation, and content categorization,
built through offline parsing and GPT-4 Vision extraction for tables and glossaries.
ChromaDB maintains dual vectorstores persisting embeddings, metadata, and
HNSW indexes as binary and SQLite-backed files, allowing rapid loading of precom-
puted embeddings for permanent stores while generating temporary, session-scoped
stores for uploaded documents. This combination of lightweight relational storage,
editable text-based corpora, and high-performance vector retrieval underpins both
scalability and compliance by balancing persistence, transparency, and privacy.

68

System Architecture

Presentation @ React Web App
Layer - Chat Ul, Upload Ul, Results Dashboard
User
JSON over HTTP
Application FastAPI Backend
Layer [/chat] [/upload_and_analyze] [Iprocess_claim] [/health]
lBusiness calls
i Utility Services
sf YIS ChatService DocumentService InitializationService Cuslome:sletyrwce‘ MmmgSem
ayer PolicyService
l RAG / OCR requests
Al Integration [RAG Subsystem (ClaimRAG)] [OCR Subsystem]
Layer LLMs (GPT-4, GPT-3.5), Embeddings PDF Extractor, Image OCR + Preprocessing

l SQL / Vector queries
T =

e /
i [\ Processed
SQlLite Temporary Vectorstore
Contract :
Data Layer @ Dotabiss Cg;\pﬁas o [PermanentVectorstoreJ [(session-scoped)

Figure 3.1: Five-tier layered architecture showing Presentation, Application,
Service, Al Integration, and Data layers with data flow paths from user requests
through processing to responses

3.2.2 Request Lifecycle and Data Flow

Policy question workflow: The user submits a question through the frontend, which
transmits JSON data to the chat endpoint. The endpoint validates the schema and
forwards the request to the chat service, which extracts the client ID from either
the question text or the conversation context, enabling follow-up questions without
requiring ID repetition. The service queries SQLite for the corresponding customer
policy data and formats it into a structured policy facts block including coverage
types, limits, deductibles, vehicle details, and premiums. This facts block, together
with formatting rules, is appended to the user query. The RAG subsystem embeds
the question into a 1536-dimensional vector, performs coverage type extraction
through targeted retrieval using both metadata and semantic similarity, executes a
second retrieval focused on the detected coverage, and constructs a comprehensive
prompt integrating the retrieved passages, customer facts, and user question. The
LLM, configured as GPT-4 with temperature zero and a five-hundred-token cap,
generates a grounded response.

Post-processing standardizes bullet formatting, removes empty lines, and enforces
consistent structure. Finally, the chat service updates conversation context to
retain the client ID and coverage keywords, returning the cleaned and formatted
answer to the frontend for rendering.

Document upload workflow: Users upload files with an accompanying question
via multipart form-data sent to the upload-and-analyze endpoint. The endpoint
validates file extensions (PDF, PNG, JPG, JPEG, TIFF, BMP) and size limits

69

System Architecture

(default twenty megabytes), stores files temporarily, and initiates OCR processing,.
For PDFs, the system first attempts native text extraction via PyMuPDF, achieving
zero error for embedded text and millisecond-level processing time. When extrac-
tion quality is low, determined by sparse text coverage below fifty percent, the
pipeline automatically falls back to image-based OCR. For image files, a six-stage
preprocessing pipeline—grayscale conversion, deskewing, contrast enhancement
via CLAHE, denoising, adaptive thresholding with Otsu or Sauvola methods, and
morphological cleanup—optimizes input for Tesseract, which performs recognition
using a page segmentation mode selected according to document type (PSM 11 for
sparse receipts, PSM 6 for uniform policies, PSM 3 for automotive forms). Low-
confidence OCR outputs, below sixty percent mean confidence, trigger automatic
fallback testing across alternative PSM modes (6, 7, 8, 11, 13) to select the most
reliable result.

OCR results are passed to the document service, which extracts key identifiers
from conversation context, question text, and OCR output such as cliente id,
nome, cognome, targa, and franchigia. It matches these against the database using
prioritized resolution strategies—ID exact match, name combination, or license
plate correlation—then formats corresponding database and policy blocks if a match
is found. The system constructs an enhanced question combining OCR-derived
text and policy context, invokes RAG with OCR grounding to cross-reference
extracted information with contract clauses, compares OCR-extracted fields with
database values to flag discrepancies, and returns a structured response including
the generated answer, document summary with filename and confidence metrics,
field-level comparison, and metadata for verification. The frontend renders this
information using progressive disclosure to balance clarity and transparency, while
temporary files are asynchronously deleted by background cleanup tasks to ensure
privacy compliance.

3.2.3 Design Principles

Six design principles guided the architectural decisions. Separation of concerns
decouples transport, orchestration, and domain logic, ensuring that endpoint
handlers manage HT'TP communication, services coordinate workflows, and Al
components implement intelligence. This separation allows each layer to be tested,
deployed, and scaled independently. Fail-safe defaults guarantee graceful degra-
dation through automatic fallback mechanisms, such as switching to OCR when
native PDF extraction fails, reverting to GPT-3.5-turbo when GPT-4 times out,
or using pattern-based extraction when LLM inference becomes too costly. Lazy
initialization defers the creation of computationally expensive resources like LLM
clients and vectorstores until they are first needed, minimizing cold-start latency
and optimizing startup efficiency. Privacy by design embeds data protection into

70

System Architecture

the architecture through session-scoped temporary storage, strict separation of
permanent and ephemeral embeddings, and systematic exclusion of personally
identifiable information from logs. Explicit over implicit promotes traceable and
auditable data flows by incorporating structured logging at every critical checkpoint,
including client ID extraction, database queries, retrieval operations, LLM invoca-
tions, and financial calculations, enabling precise debugging and post-hoc audit
reconstruction. Cost awareness constrains operational expenses by enforcing token
usage limits, employing selective model routing, leveraging caching mechanisms,
and integrating observability hooks that record token consumption and API costs
for continuous monitoring and optimization.

3.3 Backend Architecture and API Design

3.3.1 Application Framework and Lifecycle Management

The backend employs FastAPI, chosen for its native async/await capabilities that
enable efficient concurrent request handling, automatic OpenAPI documentation
generation at the /docs endpoint, seamless integration with Pydantic for declarative
schema validation, dependency injection facilitating clean separation of concerns,
and compatibility with LangChain for Al orchestration. Uvicorn serves as the ASGI
server on port 8001, configured with hot-reload in development and production-
optimized settings using multiple workers and suppressed access logging to reduce
overhead.

Application lifecycle management uses asynchronous context managers defining
startup and shutdown handlers. During startup, the system ensures the existence
of the permanent vectorstore directory (data/databases/chroma_db_permanent),
cleans the temporary vectorstore directory (data/temp/chroma_db_temp) to
remove residual session data, configures logging hierarchies with application modules
at INFO level and third-party libraries at WARNING to reduce verbosity, and
enables CORS middleware for the development frontend (http://localhost:8000),
with stricter origin restrictions enforced in production environments.

The OCR processor initializes synchronously based on the OCR,__ MODE en-
vironment variable, which selects among three operational profiles: fast mode
with a ten-megabyte limit and minimal preprocessing, standard mode with a
twenty-megabyte limit and full six-stage preprocessing, and quality mode with
a fifty-megabyte limit and exhaustive preprocessing including PSM fallback. If
initialization fails, the processor is set to None, causing OCR endpoints to return
HTTP 503 Service Unavailable while allowing non-OCR endpoints such as chat
and health checks to remain fully functional, ensuring graceful degradation under
partial system failure.

The RAG subsystem initializes asynchronously in a background task to prevent

71

System Architecture

blocking health-check requests. The initialization service verifies the presence
of essential resources, rebuilding the SQLite database from CSV files if absent,
reconstructing the document corpus by triggering PDF parsing and GPT-4 Vision
extraction if missing, and loading dataframes with UTF-8 encoding and tab-
separated formatting. It then creates a ClaimRAG instance and executes parallel
warm-up across the fast LLM, main LLM, and embeddings client while loading or
building the permanent vectorstore. Warm-up latency typically ranges from eight
to fifteen seconds when reusing existing vectorstores, or several minutes during the
initial embedding phase on first deployment. Initialization errors are logged but do
not halt application startup; affected endpoints temporarily return “initializing”
messages or HT'TP 503 responses until the process completes.

During shutdown, the RAG subsystem performs cleanup by closing tempo-
rary vectorstore connections, deleting temporary persistence directories through
shutil.rmtree, nullifying in-memory attributes, and clearing caches and conversation
context. The OCR processor releases internal database connections. A final utility
function executes a comprehensive cleanup of temporary vectorstore data, ensuring
that no customer uploads persist beyond the application lifecycle. This behavior
enforces privacy-by-design principles, guaranteeing automatic deletion of ephemeral
data even under abnormal termination conditions.

3.3.2 Static Asset Serving and Frontend Integration

The backend serves the production-built frontend as static assets mounted under
the /static and /assets paths, with explicit routes defined for the favicon and logo.
A catch-all route delivers frontend files or returns index.html to support client-side
routing while explicitly excluding API paths such as /chat, /upload_and_ analyze,
and /health to prevent HTML responses from interfering with API consumers.
During development, the frontend and backend operate on separate ports, 8000 and
8001 respectively, with CORS enabled to permit cross-origin communication. In
production, static files are bundled together with the backend, allowing both the API
and the user interface to be served from port 8001. This unified deployment model
simplifies configuration and maintenance, offering a streamlined setup particularly
suitable for small-to-medium insurance operations.

3.3.3 Endpoint Design and API Contracts

Six primary endpoints expose the system’s capabilities through clearly defined
request-response contracts. The health endpoint (GET /health) functions as a live-
ness and readiness probe, returning structured JSON with multiple diagnostic fields.
The top-level status field reports "ready" when all components are initialized, "initial-
izing" during warm-up, or "degraded" when any subsystem fails. The ready boolean

72

System Architecture

is true only when both the RAG and OCR components are fully functional. A
nested component__status object details the state of each subsystem (ocr_available,
rag_initialized, database connected, permanent_vectorstore loaded), including
boolean indicators and optional error messages for failed components.

The configuration object exposes non-sensitive runtime settings such as ocr__mode|
max_file size, log level, and a boolean api_key configured, while the iso_timestamp|
provides temporal correlation for logs. The frontend polls this endpoint every sec-
ond during initialization, displaying progress indicators with contextual messages
such as “Initializing RAG system...” or “Loading vectorstore...” until readiness is
confirmed, preventing premature API calls that would otherwise return HTTP 503
responses.

The chat endpoint (POST /chat) accepts JSON payloads validated by Pydantic
schemas requiring a non-empty question string (maximum length of ten thousand
characters to prevent misuse) and an optional context dictionary preserving con-
versational continuity. The endpoint delegates to the chat service, which performs
client ID extraction via regex and LLM fallback, retrieves policy data from SQLite,
constructs a structured facts block, augments the question with formatting and
context, and executes the full RAG pipeline (validation, retrieval, grounded reason-
ing). Responses include the generated answer string, updated context (tracking
last__client_id and last__coverage for follow-up queries), and an optional process-
ing time ms metric. Input validation errors return HT'TP 400 with localized
[talian messages such as "Specifica il cliente id nella domanda" for direct user
feedback.

Connection failures with OpenAl APIs trigger automatic RAG cleanup to prevent
state corruption and return HTTP 500 with sanitized error messages. Requests
exceeding three minutes are aborted with HTTP 504.

The upload-and-analyze endpoint (POST /upload and_ analyze) accepts multi-
part form-data containing a question field and an array of uploaded files. Validation
enforces file type restrictions (pdf, png, jpg, jpeg, tiff, bmp) and a default twenty-
megabyte size limit, rejecting invalid inputs with HT'TP 400 and explicit reasons.
Accepted files are stored temporarily using UUID-prefixed filenames before being
processed by the OCR pipeline. The OCR output is passed to the document service,
which extracts identifiers, matches customers, builds structured contexts, invokes
RAG with OCR grounding, and performs field comparison. Responses include
the generated answer, document__summary (filename, confidence, text preview),
field comparison (document and database values, match booleans for key fields),
extracted identifiers, database info, and matching strategy. The frontend visual-
izes this information with confidence badges (green for >90%, yellow for 60-90%,
red for <60), tabular field comparisons, and collapsible text previews. Background
cleanup tasks delete temporary files immediately after response delivery.

The process-claim endpoint (POST /process_ claim) orchestrates the complete

73

System Architecture

insurance claim lifecycle. It accepts structured fields including customer id,
date, location, description, damage_type, requested amount, third parties, doc-
uments, and files. Uploaded materials are validated and passed to the OCR
processor’s process claim method, which performs extraction, pattern-based field
recognition, merges results with user-submitted form data, constructs normalized
ClaimData objects with decimal precision, queries policy data from the database,
validates coverage, and calculates reimbursements with full traceability. Re-
sponses return customer id, merged claim_ data, coverage status (covered, applica-
ble_coverage, missing coverage), missing data, limits (coverage limit, deductible,
co_pay_ percentage), estimated_ reimbursement, alerts (coverage limit_exceeded,
missing_ police report, high value claim, policy exclusion detected), calcula-
tion_ trace (including steps, reasoning, and timestamps), documents_processed,
processing time ms, and a success boolean. This output supports internal audit
dashboards and adjuster review workflows.

Auxiliary endpoints facilitate development and maintenance. The context end-
point (GET /context) exposes the current RAG conversation state for debugging.
The vectorstore status endpoint (GET /vectorstore status) reports initialization
progress, file paths, and memory statistics. The cleanup_ temp_documents end-
point (POST /cleanup_ temp documents) triggers manual deletion of temporary
session data. These endpoints are restricted to internal or administrative use,
ensuring that production users access only core business functionalities.

3.4 Service Layer and Workflow Orchestration

3.4.1 Chat Service: Policy Question Answering

The chat service orchestrates RAG-based policy question answering through its
process chat request method, which encapsulates the complete workflow from
user input to grounded response. The method accepts four inputs: the question
string containing the user’s query, an optional conversation context dictionary
preserving dialogue state across turns, the rag instance managing retrieval and
generation, and the dataframe storing structured policy documents. It returns two
outputs: the answer string generated by the LLM with document grounding, and
the updated rag_instance reflecting the revised conversation context for subsequent
queries.

The workflow begins with intent detection and slot management before proceed-
ing to the standard RAG pipeline. The process executes through the following stages.
First, intent classification and slot extraction analyze the user’s question to deter-
mine the primary intent using LLM-based classification. Supported intents include
compute_refund (calculating reimbursement amounts), determine_fault (assessing
liability), coverage validation (verifying policy coverage), document__consistency

74

System Architecture

(checking document alignment), and policy_lookup (general policy questions).
The system then extracts required slots from multiple sources following a priority
hierarchy: conversation context (previously filled slots), question text (via pattern
matching and LLM extraction), and OCR documents (when available). For each
intent, specific slots are required: for example, compute refund requires client_ id,
coverage_type, and damage amount. If the system detects that the user wants to
start a new case (through keywords like 'nuovo sinistro’ or LLM-based detection),
it resets all stored slots to begin fresh.

Second, missing slot detection and clarification occurs if any required slots
are missing after extraction. The system accumulates the user’s question in a
pending questions dictionary keyed by intent, stores the intent as pending intent
in conversation context, and generates a clarification message. The clarification uses
the fast LLM (GPT-3.5-turbo) to create a natural-language prompt asking only
for the missing information, ensuring the message is concise (maximum 15 words)
and contextually appropriate. The system returns this clarification immediately
without proceeding to RAG execution, enabling multi-turn information gathering
where users provide required data incrementally.

Third, client ID extraction and name matching employs a multi-layered strategy
that prioritizes existing context before invoking pattern recognition. The service
first checks the conversation context for a previously identified client, enabling
follow-up questions without re-specification. If unavailable, it applies regex-based
matching to detect hexadecimal IDs (for example, "7e460f44"). Additionally, the
system extracts nome and cognome from the question text using pattern matching
(e.g., 'Marco Rossi’) and attempts to match them against the database to derive
the client_id. If nome and cognome are provided in the current question, they take
priority over any client_ id from context, ensuring that explicit name-based queries
are handled correctly. As a last resort, it performs an LLM-based extraction using
the fast GPT-3.5-turbo model for natural-language formulations ("for my policy
ending in 44"). Extracted IDs are validated against the database to ensure they
correspond to actual customers, preventing queries about non-existent or inactive
records.

Fourth, slot validation occurs once all required slots are present. The system
validates them using business rules specific to each intent type. For compute refund
intent, it ensures damage amounts are positive numeric values, validates that
coverage types match event types (e.g., 'garanzia cristalli’ covers 'vetro rotto’), and
normalizes deductible overrides if provided. For coverage validation, it verifies that
both coverage type and event type are present and compatible. For determine fault,
it ensures event details contain sufficient description (minimum 10 characters).
Validation failures return error messages in Italian, guiding users to correct their
input.

75

System Architecture

Fifth, policy facts block construction queries the SQLite database through pa-
rameterized SQL joins across three tables: attestato_di_rischio_linked (containing
identifiers and metadata), scheda polizza rca_linked (mandatory coverage data),
and garanzie opzionali allianz direct_linked (optional coverage information).
The combined dataset is formatted as JSON containing cliente id, coverage types
(RCA, cristalli, furto, incendio), corresponding limits, deductibles, co-pay percent-
ages, vehicle specifications, premium amounts, and claims history. This structured
facts block provides comprehensive factual grounding to ensure contractually correct
interpretation during generation.

Sixth, question enhancement augments the user query with formatting directives
that enforce response consistency. These rules specify numbered sections, hyphen-
based lists, exclusion of inline formatting such as Markdown or HTML, and
restriction of citations to contractual clauses only. Shared coverage limit guidelines
are also appended, ensuring that the model references policy text consistently
across all responses and avoids stylistic variability that might confuse downstream
consumers.

Seventh, refund payload computation occurs when the primary intent is com-
pute_refund and all required slots are present. The system automatically computes
the reimbursement amount using the compute refund payload method in the
RAG instance. This method prioritizes data sources in the following order: (1)
claim payload objects derived from OCR documents (highest priority, as they
represent verified document extractions), (2) slot values extracted from the current
question or conversation context. The computation considers damage amounts,
deductibles, co-pay percentages, coverage limits, and coverage percentages, pro-
ducing a structured payload that includes intermediate calculation steps and final
reimbursement amount. This payload is stored in the filled slots and can be used
by the RAG pipeline to provide precise financial answers.

Eighth, RAG execution invokes the run_ full pipeline_parallel method, which
now accepts slots and conversation context parameters in addition to the question
and dataframe. These parameters enable the RAG subsystem to tailor its reasoning
based on the detected intent and extracted information, potentially using pre-
computed refund payloads for financial queries. The method performs client
validation, executes database retrieval, extracts relevant coverage sections using
targeted metadata-based search, and constructs a structured reasoning prompt
combining retrieved passages, policy facts, user question, and formatting rules. The
LLM (GPT-4, temperature set to zero, maximum five hundred tokens) generates
the grounded answer asynchronously. The system logs retrieved passages, coverage
matches, and the generated response for auditing and reproducibility.

Ninth, conversation context update analyzes the generated answer to extract
any coverage keywords (cristalli, RCA, kasko, furto, incendio) or client identifiers,
automatically persisting them into the session context. The system updates

76

System Architecture

conversation state by storing filled slots in a slots dictionary organized by intent,
enabling slot reuse across conversation turns. It also records the last client ID and
coverage type for follow-up question handling. Additionally, if a refund payload
was computed, it may be persisted in the conversation context for reference in
subsequent queries. This mechanism enables seamless multi-turn dialogue where
subsequent questions ("and what about theft?") inherit the prior context without
requiring explicit re-entry of identifiers or coverage details.

Tenth, answer normalization standardizes the final output by converting Unicode
bullets to hyphens, collapsing redundant line breaks, and trimming trailing whites-
pace. This ensures consistent formatting across sessions and mitigates stylistic
variance introduced by LLM sampling.

Validation errors produce localized Italian messages to facilitate user under-
standing: "Specifica il cliente_id nella domanda" (no client ID extracted), "Cliente
non trovato nel database" (invalid or missing customer record), "Nessuna copertura
trovata' (no relevant policy coverage identified), and "Errore durante la generazione
della risposta" (unexpected internal failure).

input text User Question g‘:.:,_-:::%

Intent & Slot Management YES Data Preparation

— =
((stage 0:Itent Classifcation & Siot Extraction HReset AlSlots) [[stage 2: Policy Facts Block Construction [| &
Detects intent (compute_refund, defermine_fault SQlte query (3 tables), formats JSCN

coverage_validation, ocument_consistency, policy_lookup) | Context - Que":zun ->0CR 8
Stage 3: Question Enhancement

‘Appends formatting rules

YES Compute
Dalls\o(spresen refund_payload

S(ore in slots

NO Generate End

==/ Clarification O
lessage

[E5) Accumlate f s missing & o

((stage 1: Client ID Extraction & Name Matching)
QFallback: Context — Regex — Name Matching — LLM

RAG Processing

Stage 4: RAG Execution m

"2 GPT4, temp=0,
Calls un_ull_oipeline_paralel i sots & conert @ max 500 takens

Sub-steps: client validation — DB retrieval -> coverage extraction —» structured
reasoning —» LLM generation
Post-Processing
| I Stage 5: Conversation Context Update | |
Exiracts coverage keywords, dlient IDs; updates last_client id, last_coverage

Stage 8: Answer Normalization

® Converts Unicode bulles, removes empty ines, s whitespace

Continue

Return Answer to User /' output

Figure 3.2: Complete workflow from user question to answer, showing ten stages
including intent classification, slot extraction, client ID matching, validation, RAG
execution, and context update

3.4.2 Document Service: OCR-Augmented Analysis

The document service orchestrates OCR-augmented query answering through an
intent-driven workflow that integrates document processing with slot management.
The method accepts five inputs: the question string containing the user query,
an array of OCR-processed documents (each including filename, extracted text,

7

System Architecture

and confidence_score), an optional conversation_context dictionary preserving dia-
logue state, the rag instance handling retrieval and generation, and the dataframe
containing structured policy data. It returns six outputs: the generated answer
string grounded in OCR and database context, a field comparison object identify-
ing mismatches between extracted and database values, an extracted identifiers
object summarizing all detected identifiers, a database_info object containing
matched customer records, a matching strategy string describing the identification
method used ("cliente id", "nome cognome", "targa', or null if unmatched), and a
document_summary array with metadata for each processed file.

The process executes through the following stages. First, new case detection
and payload initialization checks if the user wants to start a new case using the
same detection mechanism as the chat service. If detected, it resets all stored
slots and clears any existing claim payload. The system then initializes or loads
a structured ClaimPayload object from conversation context, which aggregates
extracted information across multiple conversation turns. This payload object
maintains field values with confidence scores and document provenance, enabling
incremental information gathering where users can provide additional documents
or details in subsequent turns.

Second, document usability classification separates documents into two categories
before processing: usable documents (those with successful OCR extraction and
non-empty text) and unreadable documents (those that failed OCR or produced no
extractable text). If all documents are unreadable, the system immediately returns
an error message without proceeding. If some documents are unreadable, the system
continues processing with usable documents but flags the failures for inclusion in
the final response, ensuring partial success scenarios are handled gracefully.

Third, intent classification and slot extraction from documents applies the same
intent detection and slot extraction workflow as the chat service, but with OCR
documents included as an additional source. The analyse request function receives
the question text and the list of usable documents, extracting slots from both
sources. Document-extracted fields (such as damage amounts, coverage types,
or client identifiers) are aggregated into the claim payload object, with higher-
confidence extractions taking precedence when multiple sources provide conflicting
values. If required slots are missing, the system generates clarification messages
and returns immediately, just as in the chat workflow.

Fourth, slot validation occurs once all required slots are present. The system
validates them using the same business rules as the chat service, ensuring coverage
types match event types, amounts are valid numeric values, and fault determination
requests include sufficient detail. Validation failures return error messages without
proceeding to RAG execution.

Fifth, identifier extraction and aggregation executes after intent classification
and slot extraction, extracting client identifiers from multiple sources following

78

System Architecture

a priority hierarchy: conversation context (previously identified client), question
text (via pattern matching), and OCR documents (via field extraction). It targets
key entities including cliente_id (hexadecimal IDs using /[0-9a-f]6,8/i), nome and
cognome (via keyword matching and name heuristics), targa (license plate patterns
/[A-Z]23[A-Z]2/), and franchigia (monetary amounts via currency-aware regex).
The extraction process aggregates fields from all usable documents, combining
nome, cognome, targa, and franchigia values. The claim payload manager updates
the payload object with any newly extracted fields, maintaining confidence scores
and document sources for auditability. Context-provided identifiers take precedence
over OCR-derived ones, which in turn override those extracted from the question,

maintaining a reliability hierarchy that favors previously validated information.

Sixth, database matching applies cascading strategies to locate customer records.
The system first attempts an exact ID match; if successful, it immediately re-
turns results with matching strategy set to "cliente id". If unsuccessful, it at-
tempts a combined name match using normalized name-surname concatenation
("mome_ cognome" strategy), followed by a license plate match ("targa' strategy)
for automobile-related queries. If all strategies fail, the system continues gracefully
with null matching strategy, allowing downstream RAG execution with placeholder
values instead of halting the workflow.

Seventh, database information formatting constructs structured context blocks
from matched records, including identifiers, policy metadata, coverage limits,
and historical claims. It reuses the same SQL joins as the chat service (attes-
tato_di_rischio_linked, scheda_polizza_rca_ linked, garanzie opzionali allianz_direct_ linked)
ensuring consistent policy representation. If no match is found, the block popu-
lates "Non disponibile" placeholders to maintain prompt integrity for the RAG
subsystem while signaling incomplete data. Eighth, enhanced question construc-
tion builds an enhanced question that integrates OCR results, policy context,
and database information. The system concatenates extracted text snippets from
usable documents—truncated to one thousand characters per document for effi-
ciency—formatted with normalized bullets for consistency, separated by visual
delimiters and appended to the user’s question along with database context and
formatting rules. If unreadable documents exist, their filenames and error messages
are appended to the prompt for reference, though they are explicitly marked as un-
available to the model. The enhanced question also includes database information
blocks and policy facts, creating a comprehensive context for RAG reasoning. The
question is constructed with the same formatting rules as the chat service, ensuring
consistent output structure. Explicit OCR usage instructions guide the LLM to
rely on extracted content for grounding, enabling precise cross-referencing between
scanned document data and contractual clauses.

Ninth, RAG execution with intent-aware processing performs the main reasoning
phase. The system invokes the RAG pipeline with the enhanced question, passing

79

System Architecture

slots and conversation context parameters. For valid customer IDs, it executes the
standard pipeline—client validation, policy data retrieval, coverage extraction via
metadata-filtered similarity search, structured reasoning, and deterministic GPT-4
generation (temperature zero, maximum five hundred tokens). When customer
matching fails, it gracefully degrades to general policy reasoning with placeholders,
still generating contextually useful responses grounded in available policy data and
extracted text. In both cases, the slots parameter enables intent-specific reasoning,
and the conversation context provides access to the claim payload for financial
computations or validation checks.

Tenth, field comparison evaluates extracted identifiers against authoritative
database values, creating triplets of document_ value, database value, and match
boolean flags. The field comparison now includes franchise (franchigia) comparison
when available, checking both document-extracted and database values for consis-
tency. Discrepancies are categorized as OCR recognition errors, record mismatches,
or potential data inconsistencies. The frontend visualizes comparison results using
a traffic-light scheme: green for matches, yellow for minor deviations, and red for
critical conflicts that require manual review.

Eleventh, unreadable document notification appends a notification to the answer
if any documents were unreadable, explaining which documents could not be pro-
cessed and why, ensuring users are informed about partial processing failures. This
notification is generated using fallback message builders that create contextually
appropriate Italian messages.

Twelfth, result packaging aggregates all artifacts into a unified response struc-
ture. The return value includes the generated answer, field comparison results
(comparing extracted identifiers against database values), extracted identifiers
summary, database information for matched customers, matching strategy used
(cliente id, nome_cognome, or targa), and the updated RAG instance. Each
document’s summary includes filename, confidence score, text_preview, and
processing_time_ms, while accompanying objects include field comparison, ex-
tracted identifiers, database info, and matching strategy. This comprehensive
structure enables the frontend to render interactive views with confidence indicators,
collapsible OCR previews, side-by-side comparison tables, and customer profile
cards, facilitating transparent human verification and end-to-end traceability.

80

System Architecture

User Upload + Question
(Files + Text Query)

OCR Processing Sub-flow ;

Document Processing & Classification Identifier Extraction & Matching

Stage 0: New Case Detection
Payload initialization

Stage 1; Identier Extvaction)) ¢__ Pririy: Context— @
& Aggregation Questlon > OCR
Native Extraction
Stage 2:
Database Maiching

Fallback: ID — Name — License Plate

Quality

Sk-Stage
Preprocessing

Tesseract OCR

PSM Selection &
Fallback

_________ Flag unreadable 'Set matching_strate ‘Set matching_strate
> for tter noication = ome. cagnome’” T

e_ci
Intent & Slot Management ,{ |

Comparison & Packaging =

S
3 Includes franchise
Stage 6: Field Comparion Je— oludes fa
Question Stage 3: Database
Enhancement Information Formatting
&RAG Stage 6.5; Unreadable
Stage 4: Enhanced Question Consirucion Dociment Nothcatisy
Stage 3: RAG Execution with Intent-Aware Processing
Slots + Context Ay unreadable™~, YES., (Append Notiication
YES ocuments? fo Answer

Retum error
message

ent. i Standard
and C"E"‘J”. run_full_pipeline._parallel T
Comparison-free Pipeline " Stage 7: Result "__ Retum Complate

Packaging Response to-User

Retum to User

Figure 3.3: Twelve-stage workflow for OCR-augmented queries, including docu-
ment classification, intent detection, identifier extraction, database matching, RAG
execution, and field comparison

3.4.3 Initialization and Utility Services

The initialization service bootstraps the system through its initialize system
method, executing four idempotent verification steps that ensure all resources exist
and are correctly configured before serving user requests.

First, database existence verification checks for the presence of assicurazioni.db.
If the file is missing, it rebuilds the database from three canonical CSV sources: attes-
tato_di_rischio_linked (identifiers and metadata), garanzie opzionali_allianz_direct_ linked|
(optional coverage details), and scheda_polizza_rca_linked (mandatory coverage).
The initialization process defines tables with appropriate data types, primary keys,
and indexes to support efficient querying. This ensures consistent schema recon-
struction across deployments while maintaining referential integrity between the
core entities.

Second, document corpus verification ensures the existence of the processed
policy file documento_assicurativo.txt. If absent, the system invokes the CGA
parser to rebuild it by parsing raw policy PDFs using the Fitz library for text
extraction, invoking GPT-4 Vision for glossary and table recognition, and merging
outputs into a structured TSV file. Each record contains section, subsection,
title, text, page, and type columns, preserving document hierarchy and enabling
semantic chunking during retrieval. This process transforms unstructured policy
PDFs into machine-readable corpora suitable for vectorization and downstream
RAG operations.

81

System Architecture

Third, dataframe loading reads the TSV corpus into a pandas dataframe using
explicit configuration (tab separator, UTF-8 encoding, enforced column schema).
Missing values are filled with nulls to ensure downstream compatibility. The
dataframe is cached in memory to provide low-latency access during RAG retrieval,
supporting metadata filtering and search operations without repeated disk reads.
This memory-resident structure becomes the central reference for document queries
and citation lookups.

Fourth, RAG initialization constructs a ClaimRAG instance and performs
parallel warm-up using asynchronous execution (asyncio.gather). Three components
initialize concurrently: the fast LLM for lightweight extraction tasks, the main LLM
for reasoning and generation, and the embeddings client for document retrieval.
The service builds or loads the permanent vectorstore containing precomputed
embeddings, metadata, and HNSW indexes stored in a combination of binary and
SQLite formats. It validates readiness by issuing test prompts and automatically
reinitializes any stale or unresponsive components. Warm-up typically completes
within eight to fifteen seconds if vectorstores exist or several minutes during first-
time embedding.

Complementing the initialization process, additional utility services provide
specialized functionality for intent-driven workflows and structured data manage-
ment. The slot manager service centralizes intent detection and slot extraction
logic, enabling the system to classify user requests into specific action types
(compute_ refund, determine_ fault, coverage validation, document__consistency,
policy lookup) and extract required information fields from multiple sources. It
implements a priority hierarchy for slot extraction: conversation context (previously
filled slots that can be reused), question text (via pattern matching and LLM-based
extraction), and OCR documents (via structured field extraction).

The service maintains a lexicon of coverage keywords that maps natural language
terms to standardized coverage types (e.g., cristalli’, 'vetro’, lunotto’ map to
‘garanzia cristalli’), enabling robust coverage type inference. It also implements
slot collection logic that aggregates values from all sources, with higher-confidence
extractions taking precedence when conflicts occur. The validation service enforces
business rules specific to each intent type, ensuring that extracted slots meet quality
and consistency requirements.

For compute refund intent, it validates that damage amounts are positive
numeric values, normalizes monetary amounts to two-decimal precision, and veri-
fies that coverage types are compatible with event types (e.g., ensuring ’garanzia
cristalli’ covers events like 'vetro rotto’). For coverage validation intent, it ensures
both coverage type and event type are present and compatible. For determine fault
intent, it verifies that event details contain sufficient description (minimum 10
characters) to enable meaningful fault assessment. The payload service man-
ages structured ClaimPayload objects that aggregate extracted information across

82

System Architecture

multiple conversation turns, maintaining field values with confidence scores and
document provenance. It implements a priority-based field assignment system
where higher-confidence extractions replace lower-confidence ones, ensuring that
document-derived information (typically higher confidence) takes precedence over
question-extracted values. The payload object maintains separate sections for
identifiers (cliente_id, policy_id, targa), coverage information (coverage type,
deductible, co_pay_ percentage, coverage percentage, limits), event details (date,
location, description), financial information (damage amounts), and document meta-
data. This structured representation enables incremental information gathering
where users can provide additional documents or details in subsequent conversation
turns, with the system automatically merging new information into the existing
payload.

The customer service provides field extraction and normalization utilities used
throughout the system, including by the slot manager for extracting identifiers
from text. It defines regex patterns for common insurance fields—cliente_id
(/[0-9a-1]6,8/1), targa (/[A-Z]23[A-Z]2/), nome and cognome via keyword-based
heuristics, and franchigia through currency-aware expressions. It aggregates fields
from multiple sources, normalizes strings, converts bullets to hyphens, cleans
irregular responses, and enforces the extraction priority order (context — question
— OCR). The service also provides text cleaning utilities that normalize bullet
formatting, remove empty lines, and standardize response structure.

The matching service resolves customer identities using prioritized strategies:
exact ID match, combined name-surname match, and license plate match. It
accommodates schema variations by performing adaptive column detection and
returns a matched database row along with a matching strategy indicator or an
empty dictionary if unresolved. This service is used by both the chat service (for
name-based client identification) and the document service (for matching extracted
identifiers against the database), enabling the system to report how customer
identification was achieved.

Finally, the policy service formats retrieved database rows into structured in-
formation blocks containing identifiers, customer details, vehicle plate, insurance
class, and claims history. It queries for policy facts—coverage types, limits, de-
ductibles—via SQL joins across the three primary tables. Missing data are replaced
with "Non disponibile" placeholders to preserve structural consistency. Schema-
agnostic column detection ensures compatibility with heterogeneous datasets, al-
lowing flexible ingestion of new insurance schemas without manual reconfiguration.

83

System Architecture

3.5 Retrieval-Augmented Generation Subsystem

3.5.1 Architecture and Component Responsibilities

The RAG subsystem, implemented in the ClaimRAG class, orchestrates the com-
plete retrieval-augmented generation workflow for grounded policy question an-
swering. It manages three principal resources: large language models responsible
for reasoning and information extraction, an embeddings model supporting se-
mantic retrieval, and dual vectorstores handling permanent contract documents
and temporary OCR uploads. The subsystem exposes a concise public interface
including methods for parallel warm-up of models, building and loading vector-
stores from document corpora, executing the full RAG pipeline for policy queries,
adding or clearing temporary OCR-derived documents, and querying vectorstore
status for operational observability. Internally, it employs lazy initialization to
defer expensive resource creation until first use, document and token count caching
to optimize performance, asynchronous concurrency across all major operations,
conversation context tracking to preserve continuity in follow-up questions, and
structured logging capturing latency breakdowns and component-level execution
times for performance monitoring.

The subsystem maintains strict persistence separation between its two vector-
stores to enforce data lifecycle and privacy guarantees. The permanent vectorstore,
located at data/databases/chroma_ db_ permanent, stores embeddings derived
from official contract documents. It persists across application restarts, allowing
the embedded corpus to be reused without recomputation unless new policy docu-
ments are added or existing ones are updated. This ensures both efficiency and
consistency of retrieval results across sessions.

The temporary vectorstore, located at data/temp/chroma_db_temp, stores
embeddings generated from customer-uploaded OCR documents. It is session-
scoped and automatically deleted during both startup and shutdown procedures,
preventing any residual personal data from persisting beyond its intended use.
This isolation guarantees that ephemeral, customer-specific data and persistent,
institution-wide policy data remain entirely separate.

84

System Architecture

LLM & Embeddings Layer Caching Layer
gl] FastLLM (GPT-3.5-turho) < =
P.- Extraction tasks, temp=0, 5 token limit 3 - =
v, [©) Embeddings Client 3 =8
- (text-embedding-ada-002)

Startup s} Main LLM (GPT-4) &2 OpenAl API 1536 dimensions, batch processing Do‘;::cmh:nl
! Parallel ~-»| Reasoning & generation, temp=0, \———)
: Warm-up 500 token limit Query Embedding /

' —_—
)
| &
' Vectorstore Layer Vectorstore Add to Temporary —»
| v l Retrieval / / Vectorstore Token
: PR} AT S b Count
: - & =2 eche
i Load or Build | R e e]
E Permanent % Permanent Vectorstore : @ Temporary Vectorstore 1 Y
i
1 Vectorstore | BN Location: data/databases/chroma_db_permanent | Location: data/temp/chroma_db_temp DELEMEY
Contents: Policy documents embeddings | Contents: OCR document embeddings 1 =
g&?:::::{;z’éms across restarts, HNSW index, | Properties: Session-scuped, deleted at cleanup ' gg
A ke 1 i
Size indicator: Tens of thousands of chunks ! SEgipccatciyss bl ity Client ID
R e ot Cache

Created once, persists indefinitely Created on-demand, deleted at session end

OCR
Documents J F ing Pipeline Retrieved Retrieved
Passages Passages E
f
A A 4
L. Client ID i Ci ge Type Inf d i

User Query | Context check — Regex — Targeted retrieval (k=1) > Query embedding -)

Name matching = LLM Metadata analysis — Default Vectorstore retrieval = Prompt

i LLM i

fallback fallback

OCR ‘ Complete Prompt G
Documents Answer

Figure 3.4: Internal RAG components showing LLM clients, embeddings, dual
vectorstores, and pipeline stages (client ID extraction, coverage inference, structured
reasoning) with data flows

3.5.2 Lazy Initialization and Parallel Warm-Up

All expensive resources in the subsystem implement lazy initialization through
Python property decorators, ensuring that objects are instantiated only when first
accessed. This design minimizes startup latency and conserves memory by avoiding
unnecessary resource creation. The embedding model lazily instantiates an OpenAl
Embeddings client configured for one-thousand-token chunk size, three automatic
retries, and a one-hundred-twenty-second timeout. The main LLM property initial-
izes a ChatOpenAl GPT-4 client configured with zero temperature for deterministic
outputs, a ninety-second timeout, and a five-hundred-token generation limit suitable
for reasoning tasks. The fast LLM property creates a GPT-3.5-turbo client with
zero temperature, a thirty-second timeout, and a five-token limit optimized for
rapid extraction operations. Because these clients establish connections only when
invoked, the application achieves near-instant startup even while asynchronous
warm-up continues in the background. Selective initialization further optimizes
resource usage: components remain inactive unless explicitly required, such as
the temporary vectorstore, which is created only when OCR workflows execute,
minimizing memory footprint and avoiding redundant API sessions.

Vectorstores follow the same deferred-initialization principle. The permanent

85

System Architecture

vectorstore loads within the build_vectorstore_async routine, first verifying the
presence of its persistence directory. If an existing database is found, it loads
the HNSW index and SQLite metadata directly; if absent, it embeds the docu-
ment corpus using Chroma.from documents, persists the resulting vectors and
metadata for reuse, and logs the operation. The temporary vectorstore initializes
dynamically when OCR documents are added through add_temp_documents,
generating a session-scoped Chroma instance tied to the current workflow. Each
initialization event records detailed logs including status (loading versus embed-
ding), token counts, and elapsed time, providing transparency for performance and
cost monitoring.

Warm-up executes asynchronously across three parallel tasks coordinated through
asyncio.gather: a fast LLM check sending a single-token test (“ID”), a main LLM
check using a short validation prompt (“Test”), and an embeddings check embed-
ding a test query. Running these in parallel reduces warm-up duration from the
cumulative latency of all components to the maximum latency among them. If
a dataframe is provided, vectorstore initialization occurs after model warm-up
to preserve dependency order, since embeddings rely on initialized clients. The
subsystem implements graceful error handling: if a component fails during warm-up,
it retries upon first use without affecting other successfully initialized components.

A global warm-up flag enforces idempotence, ensuring that initialization routines
run only once per session regardless of concurrent requests.

3.5.3 Client ID Extraction with Context Tracking

Client ID extraction follows a multi-layered strategy designed to maximize speed,
accuracy, and cost efficiency. The extract_ cliente id method executes this process
through prioritized sequential checks that escalate in computational complexity
only as needed.

The first stage performs follow-up detection using lightweight heuristics to
recognize when a user question implicitly refers to a previously identified client.
The method searches for contextual keywords such as “questo cliente,” “il cliente,”
“ha avuto,” or “quanti,” combined with the absence of explicit ID patterns. When
this condition is met, it reuses the last client id from conversation context,
incurring zero latency and no API cost. This mechanism supports natural multi-
turn dialogues without requiring the user to repeat the client ID in every question.

If the query is not a follow-up, the second stage applies regex-based pattern
matching to detect explicit identifiers, typically six or more alphanumeric characters
containing at least one letter and one digit (for example, “7e460f44”). Regex
evaluation executes locally and instantly; when a match is found, the method
returns immediately, bypassing further computation.

86

System Architecture

When both heuristic reuse and pattern matching fail, the third stage in-
vokes LLM-based extraction using the fast GPT-3.5-turbo model. A minimal
prompt—-“extract only client ID”"—guides the model to output the identifier with
no extraneous text. The response is validated by the same regex used in the
previous stage to ensure structural correctness. Results are cached by question
text, so identical or paraphrased queries retrieve previously extracted IDs without
re-invoking the LLM.

A fallback mechanism ensures graceful degradation. If no valid identifier is
found after all steps, the system checks for an ID stored in conversation context
before raising a ValueError, returning an Italian message prompting the user to
specify the client ID explicitly (“Specifica il cliente_id nella domanda”).

After successful extraction, the subsystem updates conversation state, recording
last client_id, refreshing _conversation_ context, and incrementing a question
counter for structured logging and dialogue tracking.

This tiered approach achieves an optimal balance:

— Accuracy through hybrid detection combining rule-based precision with LLM
semantic understanding,

— Latency efficiency by prioritizing instant context reuse and regex matching
before invoking an external model, and

— Cost control through response caching and selective use of the low-cost LLM
only when necessary.

3.5.4 Coverage Type Inference and Targeted Retrieval

Coverage inference enhances retrieval precision by determining the most relevant
insurance coverage category before executing the main retrieval phase. The ex-
tract__coverage type method accomplishes this through a lightweight, low-latency
embedding query that retrieves the single most semantically similar document
to the user’s question. It then examines document metadata—particularly the
section and subsection fields—for coverage-related keywords such as “garanzia
RCA,” “garanzia cristalli,” “garanzia furto,” “garanzia incendio,” and “garanzia
eventi naturali.” If no match is found within metadata, the method performs a
secondary search directly within the document page content, scanning for the
same set of keywords to infer coverage context. When both checks fail, the system
defaults to “garanzia RCA,” ensuring that the pipeline always continues with a
valid coverage reference rather than interrupting processing.

This early-stage classification precedes structured_reasoning parallel, allowing
subsequent retrieval queries to be coverage-targeted. For instance, a question
concerning glass repair deductibles triggers a focused retrieval instruction such as
“Mostra solo il paragrafo che descrive la garanzia cristalli”, thereby isolating the
relevant section instead of mixing unrelated coverages like theft or fire.

87

W

System Architecture

Operationally, coverage inference is highly efficient: it requires only a single
embedding computation and a single vectorstore query (k=1), yielding typical
latencies between one hundred and three hundred milliseconds—negligible compared
to full pipeline execution time. In cases of retrieval or classification failure, the
fallback to the default RCA coverage guarantees resilience, maintaining full workflow
continuity with only minor precision degradation.

By constraining retrieval scope early in the process, this method significantly im-
proves downstream reasoning accuracy, reduces hallucination risks, and accelerates
policy interpretation by filtering the search space to the most relevant coverage
subset.

3.5.5 Structured Reasoning and Prompt Construction

The structured_reasoning parallel method coordinates the two critical phases
of grounded question answering—targeted retrieval and large language model
reasoning—within a unified, asynchronous workflow. It begins by constructing
a coverage-specific Italian query that explicitly focuses retrieval on the relevant
policy section, for example "Mostra solo il paragrafo che descrive la garanzia
cristalli." This targeted phrasing prevents irrelevant passages from entering the
reasoning context. The method then invokes the RAG chain’s ask function, which
queries the permanent vectorstore using the question embedding and retrieves
the most semantically aligned passages. These grounding documents, typically
returned within two hundred to five hundred milliseconds, are concatenated into a
coherent text block for inclusion in the LLM prompt. The prompt template now
follows a five-section structure that incorporates intent-specific instructions and
extracted slot information, ensuring completeness, interpretability, and consistent
formatting across responses while adapting to different user intents. The first
section, "Dati cliente," presents the customer’s structured policy information in
JSON format, including fields such as cliente id, coverage history, policy types,
limits, deductibles, and co-pay percentages. The second section, "Dati confermati
dalla richiesta" (Confirmed Data from Request), embeds the extracted slots as a
JSON object, including client_id, coverage type, damage amount, intent, and
any computed refund_payload. This section provides the model with structured
information that has already been validated and normalized, enabling it to focus
on reasoning rather than extraction. When a refund_payload is present (for
compute_refund intent), it contains pre-computed financial calculations including
intermediate steps, final reimbursement amount, and applied rules, allowing the
model to present results without recalculating. The third section, "Documenti di
contratto," embeds the retrieved grounding passages, preserving source structure for
traceability. The fourth section, "Domanda," contains the user’s natural language
question, possibly enriched with conversational context or OCR-derived excerpts.

88

System Architecture

The final section, "ISTRUZIONI PER LA RISPOSTA" (Answer Instructions),
now provides intent-specific guidance rather than generic formatting rules. For
compute refund intent with a refund payload, the instructions direct the model
to use the pre-computed payload without recalculating numbers, present the net
reimbursement in a discursive sentence, list each calculation step from the payload
in natural language (e.g., "Base dopo franchigia: 1.200,00 - 500,00 = 700,00"),
and reference deductible, co-pay, and coverage limits only from values present in
the payload or policy facts. If the refund payload is missing, the instructions
direct the model to declare that calculation is unavailable and indicate which data
(damage amount, deductible, co-pay, coverage limit) are needed, without estimating
amounts. For determine_ fault intent, the instructions require synthesizing the event
dynamics, indicating whether fault is present, absent, or information is unavailable,
and citing any relevant notes from historical claims. For coverage validation
intent, the instructions require indicating whether the coverage applies to the
requested event, explaining the reasoning by citing relevant policy clauses, and
highlighting any conditions or exclusions. For policy_lookup intent (the default),
the instructions require providing a comprehensive answer that summarizes relevant
coverages and responds exhaustively to the question. All intent-specific instructions
are followed by the standard formatting rules (numbered sections, lists, etc.) and
explicit prohibitions against inventing examples or amounts.

The prompt construction process also incorporates slot-based coverage type
selection. While the system typically extracts coverage type through retrieval-based
inference (querying the vectorstore for the most semantically similar document and
examining its metadata), if a coverage type is present in the slots (extracted from
the user’s question or OCR documents), it takes precedence over the retrieval-based
result. This ensures that explicit user specifications are respected, improving
accuracy for cases where users directly state their coverage type.

The LLM invocation employs GPT-4 with zero temperature for deterministic
outputs, a five-hundred-token cap to control verbosity and cost, and asynchronous
execution enabling concurrent reasoning when multiple queries run in parallel. The
method now accepts a slots parameter that influences both prompt construction
(through the "Dati confermati" section) and instruction selection (through intent-
specific guidance), enabling the model to provide more targeted and accurate
responses based on the detected user intent and extracted information. Integrated
observability hooks record token usage, execution time, and estimated API costs
for each call, facilitating operational monitoring and optimization. Overall, the
method achieves end-to-end reasoning latency of approximately three to eight
seconds depending on passage length and model load, well within interactive
thresholds for production environments. Upon completion, it returns the fully
grounded LLM response, marking the final stage of the reasoning process before
normalization and frontend delivery.

89

System Architecture

3.5.6 Conversation Context and Follow-Up Question Han-
dling

Stateful conversation tracking sustains coherent multi-turn dialogues through
multiple persistent internal attributes that maintain context across user interactions
within a session. The conversation context has been extended beyond simple client
and coverage tracking to support intent-driven workflows with structured slot
management. The first attribute, last_client_id, stores the most recently identified
customer, serving as the implicit reference for subsequent follow-up questions
that omit explicit identifiers. The second attribute, conversation context, is an
extensible dictionary that has been significantly expanded to support intent-driven
workflows. It now includes a slots dictionary that stores filled slots organized
by intent, enabling the system to reuse previously extracted information (such
as client_id, coverage type, or damage amount) across multiple conversation
turns. For example, if a user first asks about coverage for a specific client, the
client__id slot is stored under the policy lookup intent. If the user then asks to
compute a refund for the same client, the system can reuse the client_id from the
stored slots, requiring only the missing slots (coverage type and damage amount)
to be provided. The context also includes a pending questions dictionary that
accumulates user input when required slots are missing, keyed by intent. This
enables the system to combine information from multiple turns: if a user first asks
"Calcola il rimborso" without specifying the damage amount, the question is stored
in pending questions[’compute_ refund’]. When the user provides the amount in a
subsequent turn (e.g., "Il danno e 500 euro"), the system combines both turns into a
complete request. A pending intent field tracks which intent is currently waiting for
missing slots, ensuring that clarification prompts and subsequent inputs are correctly
associated with the intended action. Additionally, a claim__ payload object maintains
structured claim information extracted from documents, with field values tracked
along with their confidence scores and source documents, supporting incremental
information gathering across multiple conversation turns. The context also retains
the original last_ client_id and last_ coverage fields for backward compatibility
with follow-up detection logic. The third attribute, question_ counter, increments
with each processed query, facilitating structured logging, trace segmentation, and
correlation across logs for debugging or performance analysis. These attributes
persist throughout a user session but reset automatically during application restart
or explicit cleanup, ensuring privacy compliance and preventing data leakage
between sessions.

Follow-up detection, implemented in the is_ followup_ question method, deter-
mines when a query refers to the previously active client without restating their
identifier. It analyzes linguistic patterns and contextual cues, searching for indica-
tor phrases such as "questo cliente," "il cliente," "ha avuto," "quanti," "garanzie,"

90

System Architecture

"copertura,' or "polizza." The detection logic filters out common standalone terms
like "cliente" or "questo" to avoid false positives and requires the absence of explicit
client ID patterns before classifying a question as a follow-up. This flexible linguistic
approach avoids brittle rule-based dependencies, enabling natural conversation
flows. For instance, after the user asks "Quali garanzie ha il cliente 7e460f447" the
system correctly interprets the follow-up "E la copertura furto?" as referring to the
same client. Conversely, the system also implements new case detection through
the detect new case method, which identifies when users want to start a fresh
claim or switch to a different client. This detection uses both keyword heuristics
(searching for phrases like "nuovo sinistro," "nuovo caso," "caso diverso," "cliente
diverso," or "resetta") and LLM-based classification when available. When a new
case is detected, the system automatically resets all stored slots, clears pending
questions, removes the pending intent, and clears the claim payload, ensuring a
clean state for the new interaction. Conversely, when a new explicit ID appears
in the question, the previous context is overridden, ensuring unambiguous session
transitions between customers.

After each response generation, context updating occurs automatically. The
chat service scans the generated answer for coverage-related keywords (such as
"cristalli," "RCA," "kasko," "furto," or "incendio") and explicit client IDs, updating
the conversation__context dictionary accordingly. Additionally, filled slots are stored
in the slots dictionary organized by intent, enabling reuse in subsequent queries. If
a refund payload was computed, it may be stored in the conversation context for
reference. The claim payload manager updates the payload object with any new
information extracted from documents, maintaining confidence scores and document
provenance. This mechanism allows nuanced follow-up handling; for example, if the
prior answer discusses glass coverage, the follow-up "Qual e la franchigia?" correctly
infers that the user is asking about the deductible for the same coverage. The
current implementation maintains a focused scope that balances dialogue continuity
with memory efficiency, providing robust multi-turn interactions while minimizing
token consumption and maintaining privacy compliance through session-scoped
storage.

The slot reuse mechanism enables particularly efficient multi-turn interactions.
When slots are stored in conversation context, they are marked as "reusable" based
on the intent’s requirements. For example, client_id is reusable across all intents,
meaning once a user identifies themselves for a policy lookup, they don’t need to
repeat their ID when requesting a refund calculation. The system checks stored
slots before attempting extraction from the current question, significantly reducing
the need for repeated LLM calls or pattern matching. This design supports natural
conversation flows where users can progressively provide information across multiple
turns, with the system intelligently combining partial inputs into complete requests.

91

System Architecture

3.5.7 Dual Vectorstore Operations and Caching

The dual vectorstore architecture enforces a strict separation between persistent pol-
icy knowledge and transient customer-uploaded data, optimizing both performance
and regulatory compliance. The permanent vectorstore, represented internally by
_ permanent_db and _permanent_ retriever, stores long-lived embeddings of policy
contracts—typically tens of thousands of chunks—persisted across sessions using
SQLite metadata and HNSW proximity graphs. This store is read-heavy, serving
the majority of retrieval operations for policy interpretation and coverage reason-
ing. Because embeddings are stable and updates occur infrequently (quarterly
or annually when new policy versions are released), the permanent store can be
precomputed offline, reloaded in seconds without re-embedding, and reused across
application restarts.

In contrast, the temporary vectorstore, managed through _temp db and
_ temp_retriever, handles ephemeral embeddings derived from OCR-extracted
customer uploads such as claim forms, receipts, and scanned policy amendments.
These datasets are small (typically tens to hundreds of chunks), but write-heavy
during active upload sessions. The temporary store is created on demand via
the add_ temp_documents method, which batches document embeddings, logs
processed counts, and integrates the results into a session-specific Chroma in-
stance located under data/temp/chroma db_temp. Privacy-by-design princi-
ples dictate that this directory and its contents are strictly session-scoped: the
cleanup temp documents method closes active connections, nullifies the tem-
porary vectorstore attributes, deletes the persistence directory recursively using
shutil.rmtree, clears caches, and resets conversation context. This guarantees that
no customer-uploaded data survives beyond its processing lifecycle, maintaining
GDPR and IDD compliance.

Multiple caching layers further optimize efficiency and cost by eliminating redun-
dant computation. The _documents_ cache retains LangChain Document objects
constructed from the dataframe after initial processing, avoiding repeated conver-
sions during subsequent retrievals. The _token count_ cache stores tokenization
results using the tiktoken encoder, enabling rapid corpus size estimation and token
budgeting for prompt construction. The _client_id_cache maps question text
to extracted client IDs, preventing unnecessary LLM invocations for repeated or
paraphrased identification queries. All caches are fully cleared during cleanup to
prevent stale references or memory leaks.

While LangChain supports additional built-in caching mechanisms—such as
exact-match, semantic, and retrieval-level caching—these remain unimplemented
in the current deployment but are identified as low-effort extensions for future
optimization.

Resource utilization is further improved through connection reuse, ensuring

92

System Architecture

persistent LLM clients and vectorstore handles remain active throughout the appli-
cation lifecycle. Asynchronous invocation enables concurrent handling of multiple
queries, improving throughput under load. Structured latency logging decomposes
total request time into retrieval, embedding, and generation phases, highlight-
ing bottlenecks such as oversized prompts or suboptimal k retrieval parameters.
Together, these strategies create a balanced system architecture that combines
speed, scalability, and privacy guarantees without sacrificing interpretability or
maintainability.

& 2\ 1 2
PERMANENT VECTORSTORE 1 (TEMPORARY VECTORSTORE
1 >
(‘LocaTION (Path): data/databases/chroma_db_permanent) 1 LOCATION (Path): data/temp/chroma_db_temp
— 1
CONTENTS (Data Source): ((SIZE (Scale):) I CONTENTS (Data Sur): :
= 1
~50,000 I ~50-500 chunks
chunks s“;m (per session)
Policy document embeddings G OCR documem embeddings
SEPARATION
(Geneic polcy PDFs,no customerdata) | | Tensofthousandsofchunks) | SEPAR (Customer-ploaded documerts) Tens to hundreds of chunks
commingling
STORAGE FORMAT (Technical Details): (PRIVACY STATUS: b | - DnMerse‘m STORAGE FORMAT (Technical Details): | [PRIVACY STATUS:
N 7 persistence N ;
4 pe % 5
HNSW index (binary files) GDPR-compliantfor -n'.'c:::::fs HNSW index (binary files) A Contains Pll
SQLite metadata databs | storage m SQLite metadata databs
@ e | (No PIl) 3 « ifferent g L e (elelee Ty Automatically purged
Embedding vectos (1536-dim) | | P | Embedding vectors (1536-dim) D (coer comiance
LIFECYCLE FLOW (Long-term Persistence) ~ Read-heavy, shared across all users : LIFECYCLE FLOW (Ephemeral, Session-scoped)
VES : : Write-heavy during upload, read during query PO~ ’O
e - Load from disk s Load from disk 1 [et Dait dievin
initsization (seconds) slon] | e (shutimee) cuhu
A (minttes) H —->O— 02050 >0
checktf "0 Buld Enbed Grete Persst oy by Persist 1 ol Exel Qi Cieees P 0 Retreve from ! Delete directory
exists Exists? from documents unsw todisk Update 1 up o temnoury documents. HNSW Processing temporary '>@--->0---»@
e s 1 (on-demand) dire sgplcaton clarall peleedon
\ lunlessmlnw clelnupi} 1 N\ = s u';)
1

\QUERY ROUTING (Optional)
Policy Questions —————— Query Permanent Document-Specific Questions . Query Temporary Cross Reference Queries ——— nuery Both
L D e Queries

Figure 3.5: Implementation showing permanent vectorstore (persistent policy
documents) and temporary vectorstore (session-scoped uploads) with lifecycle,
storage locations, and privacy compliance indicators

3.6 OCR and Document Processing Pipeline

3.6.1 Pipeline Architecture and Hybrid Extraction

The OCR subsystem converts heterogeneous uploaded documents into structured,
machine-readable text through a four-stage pipeline that integrates validation,
extraction, interpretation, and packaging. This process ensures consistent, high-
quality outputs suitable for downstream policy validation and claims reasoning.
The first stage, validation and routing, enforces file integrity and format com-
pliance before any processing occurs. Uploaded files undergo extension and
size checks—supported formats include PDF, PNG, JPG, JPEG, TIFF, and
BMP-—against mode-specific thresholds configured as environment variables (fast,
standard, or high-quality). Each mode defines progressively higher file size limits

93

System Architecture

and preprocessing complexity, balancing speed and accuracy. The system auto-
matically routes digital PDFs containing embedded text to native extraction for
near-zero-error results and image-based documents to the OCR pipeline. This early
classification minimizes wasted computation and prevents downstream errors due
to unsupported formats or oversized uploads.

The second stage, text extraction, employs a dual-strategy approach. The PDF
text extractor coordinates multiple libraries in sequence—PyMuPDF, PDFMiner,
and PyPDF—providing robust fallback behavior for malformed or partially encoded
PDFs. If native extraction yields insufficient content (e.g., fewer than fifty characters
or low alphanumeric density), the pipeline switches automatically to image-based
OCR. The enhanced image OCR module applies a six-stage preprocessing chain
designed to optimize character legibility: grayscale conversion, Hough-transform
deskewing, CLAHE-based local contrast enhancement, non-local means denoising,
adaptive Otsu/Sauvola thresholding, and morphological cleanup (opening and
closing). This pipeline mitigates noise, skew, and lighting inconsistencies typical of
scanned or photographed documents. Tesseract serves as the recognition backend,
with Page Segmentation Mode (PSM) dynamically selected based on detected
document type (PSM 11 for sparse receipts, PSM 6 for uniform policies, PSM 3
for auto layouts). Confidence-weighted fallback tests alternate PSMs to maximize
recognition quality.

The third stage, information extraction, structures recognized text through
pattern-based parsing. Regular expressions and domain-specific heuristics identify
key fields such as cliente id, targa, nome, cognome, franchigia, dates, and monetary
amounts. Extracted values merge across multiple pages or sources using a priority
scheme—context identifiers override OCR~derived values, which in turn override
user-supplied question text—to maximize reliability. The claims validator compo-
nent subsequently cross-checks these extracted fields against the policy database,
verifying identifier consistency, coverage applicability, and financial terms (limits,
deductibles, and co-pay percentages).

The fourth stage, result packaging, consolidates processed outputs into a unified
JSON structure containing the full extracted text, confidence scores, field extrac-
tions, and metadata such as filename, processing time, and preprocessing mode.
These structured results feed directly into the document service, where RAG-based
reasoning integrates OCR-derived content with policy context for grounded answers.

All functionality is encapsulated in the OCRClaimsProcessor class, which or-
chestrates three modular components: the PDF text extractor, the enhanced image
OCR engine, and the claims validator. The processor supports three operating
modes—single-document processing, complete claim processing (including OCR,
policy validation, and reimbursement computation), and batch processing for high-
volume parallel execution. Configuration parameters govern file handling, maximum
sizes per mode, supported formats, and database connection details. This modular,

94

System Architecture

configurable design allows flexible adaptation to operational constraints, enabling
reliable document understanding across diverse insurance workflows.

3.6.2 PDF Extraction and Confidence-Based Classification

The PDF extraction subsystem implements a three-tiered fallback mechanism
designed to maximize robustness across diverse document types and encodings.
The extraction process sequentially attempts PyMuPDF, PDFMiner, and PyPDF,
continuing until a valid, high-confidence result is obtained—defined as exceeding
fifty characters of extracted text and achieving a non-zero confidence score. This
hierarchical approach ensures that both simple and complex PDFs are handled
gracefully without user intervention.

The first tier, PyMuPDF, serves as the primary extractor due to its superior
speed and accuracy on digital PDFs containing embedded text. Leveraging the
get_ text() method, it processes clean, natively generated documents in milliseconds
per page with effectively zero character error rate. Its direct access to PDF text
layers eliminates the need for OCR and preserves structural fidelity such as spacing
and punctuation.

The second tier, PDFMiner, activates when PyMuPDF fails or produces incom-
plete output. Configured with optimized LAParams settings (character margin,
line margin, and word margin tuned for document density), PDFMiner excels at
reconstructing complex layouts including multi-column policies, footnotes, and em-
bedded metadata. Although slower than PyMuPDF, it compensates by recovering
structured text from challenging PDFs that mix text streams and vector graphics.

The third tier, PyPDF, functions as a compatibility fallback. While less precise
in layout reconstruction, it handles malformed or encrypted PDFs that the previous
extractors may reject. Its simplicity provides a final safety net ensuring at least
partial text recovery in otherwise unreadable files.

For every successfully parsed document, each extractor computes a confidence
score through a weighted heuristic combining four dimensions:

1. Length-based factor — longer outputs indicate more complete extraction;
truncated results reduce confidence.

2. Structural factor — higher line and paragraph counts correlate with successful
parsing.

3. Content-based factor — presence of insurance-related keywords such as policy,
claim, coverage, amount, or date raises confidence, as does detection of numerical
patterns.

4. Formatting factor — detection of currency symbols (€ or $), punctuation
variety, and mixed alphanumeric ratios signal meaningful, non-artifactual text.

These metrics aggregate into a normalized confidence score ranging from 0.0 to
1.0. Scores guide subsequent routing decisions, allowing the system to autonomously

95

System Architecture

decide between native extraction and OCR.

The is_scanned_ pdf method formalizes this decision process. PDFs exhibiting
any of the following characteristics—aggregate confidence below 0.3, extracted
text shorter than one hundred characters, or explicit indicators such as “[image]”,
“[graphic]”; or “scanned”—are classified as image-based and automatically routed
to the OCR pipeline. All others proceed with native text extraction, ensuring
maximum throughput and minimal recognition error.

This automated classification underpins the hybrid extraction strategy described
in Section 2.9.3, enabling the system to dynamically select the most suitable
extraction pathway without manual configuration. By combining adaptive fallback
logic with heuristic-driven confidence assessment, the subsystem delivers both
efficiency for clean digital documents and resilience for degraded or non-text PDFs,
achieving high reliability across the full spectrum of insurance claim document

types.

3.6.3 Image OCR Preprocessing and PSM Selection

The image OCR pipeline enhances recognition quality for degraded insurance docu-
ments through a six-stage preprocessing sequence designed to restore legibility and
structural consistency before text extraction. Each stage contributes to mitigating
common artifacts such as skew, low contrast, and background noise—factors that
otherwise reduce OCR accuracy by ten to thirty percent, as identified in section
2.5.2.

The first stage, grayscale conversion, reduces image dimensionality using OpenCV’s
cvtColor, transforming RGB or CMYK color data into a single intensity channel.
This simplification focuses processing on luminance variation, improving subsequent
thresholding and morphological operations while reducing computational cost.

The second stage, deskewing, corrects angular misalignment that occurs during
scanning or photographing. The algorithm applies Hough line detection to identify
dominant text baselines, computes the median angle from the top ten detected lines,
and rotates the image via an affine transformation matrix to align text horizontally.
Even small skews of two to three degrees can reduce Tesseract accuracy by five to
ten percent, making this correction essential for reliable recognition.

The third stage, contrast enhancement, employs Contrast Limited Adaptive His-
togram Equalization (CLAHE) with a clip limit of 2.0 and an 8x8 tile grid. CLAHE
enhances local contrast without over-amplifying noise, particularly beneficial for
faded or unevenly illuminated pages such as aged policy scans or photocopied claim
forms.

The fourth stage, noise reduction, applies fast non-local means denoising with
a filtering strength of 10. This method smooths random pixel variations while
preserving edges critical for character shapes, outperforming basic median or

96

System Architecture

Gaussian filters in preserving textual integrity.

The fifth stage, adaptive thresholding, converts the enhanced grayscale image
to binary format, isolating text from background. The pipeline dynamically
selects between Otsu’s global method and Gaussian adaptive thresholding based
on document characteristics, guided by Sauvola-style density heuristics measuring
foreground coverage between 10 and 30 percent. Parameters use a 25-pixel window
and an offset of 2, adapting to local lighting variations typical of scanned forms or
photographed receipts.

The sixth stage, morphological operations, refines the binary mask to repair
broken characters and eliminate residual noise. Closing operations (dilation followed
by erosion) reconnect fragmented strokes, while opening (erosion followed by
dilation) removes isolated specks. Kernel sizes range from 1x1 to 2x2 depending
on font size and resolution.

Following preprocessing, Tesseract performs text recognition with adaptive Page
Segmentation Mode (PSM) selection determined by filename and inferred document
type. Receipts and small fragments (containing keywords like receipt, ricevuta,
scontrino) use PSM 11 optimized for sparse text. Invoices and policies (invoice,
fattura, policy, polizza) use PSM 6 suited for dense uniform blocks. All other cases
default to PSM 3 for automatic segmentation.

If the initial OCR confidence falls below 60 percent, an automatic PSM fall-
back routine executes, reprocessing the image through PSMs 6, 7, 8, 11, and
13, evaluating results based on a composite score combining confidence and text
length. The best-performing configuration is selected for output. While multi-
mode evaluation increases computational cost by two to five times, it substantially
improves robustness across heterogeneous insurance document types—particularly
those combining tables, handwriting, and stamps—delivering consistently higher
accuracy for production-grade claims processing.

97

System Architecture

Raw Stage 1: Stage 2: Stage 3: Stage 5: Stage 6: (Optimized)
hote D i Contrast Adaptive Morphological Binary Image
graphed Conversion Tl it 0 i
Image E
Before After Before After Before After Before After Before After
~ © < © ©
Process: 1 | Process: 1 | Process: 1 | Process: 1 | Process: 1 | Process:
RGB/CMYK — | = | Hough line > CLAHE 2 Fast Non-Local Y Dynamic 2 Closing (dilation
Single intensity | © | detection — = (Contrast Limited 2 Means 2 selection: Olsu’s| 2 | +erosion) -
channel. & | Angle & | Adaptive & | Denoising. & | method OR & | Opening (erosion
—{ computation — —{ Histogram —> —»{ Gaussian > + dllation).
Affine rotation. Equalization). Parameters: adaptive.
Purpose: Filtering Selection Purpose:
Reduce Purpose: Parameters: strength: 10. criteria: Repair broken o
dimensionality, Correct angular Clip limit: 2.0, Based on A
focus on misalignment. Tile grid: 8x8. Purpose: foreground remove noise
luminance. Remove coverage (10- 3
Note: Even 2-3° Purpose: random pixel 30%).
skew reduces Enhance local variations, Kernel sizes:
accuracy by 5- contrast preserve Parameters: 1x1 to 2x2
X without noise edges. Window: 25px, (font:
amplification. Offset: 2.
Purpose:
Convert to
binary (text vs
background)
Quality metrics
Input confidence: ~40-60% Output confidence: ~70-95% Improvement: +10-30% accuracy

Figure 3.6: Six-stage image preprocessing sequence (grayscale, deskewing, contrast
enhancement, denoising, thresholding, morphological operations) transforming
degraded scans into optimized binary images for OCR

3.6.4 Multi-Language, Confidence Scoring, and Field Ex-
traction

The OCR subsystem supports multilingual text recognition by configuring Tesseract
with combined Italian and English language packs ("itat-eng'), enabling simulta-
neous application of both statistical models during decoding. This dual-model
approach improves recognition accuracy on documents containing mixed-language
content—a common scenario in international insurance operations where Italian
policy terms and English technical labels frequently coexist. By evaluating compet-
ing character sequences according to linguistic plausibility (for example, resolving
ambiguity between “rn” and “m” in assicurazione), the language models refine
recognition paths and reduce character error rates by five to fifteen percent on
bilingual content. The system’s architecture remains extensible, requiring only the
installation of additional language packs such as "deu", "fra", or "spa" to support
over one hundred languages, including non-Latin alphabets. Integration of dynamic
language detection libraries like langdetect or fastText can further automate model
selection, detecting predominant language per region, line, or page for adaptive
multilingual handling.

Confidence scoring aggregates Tesseract’s per-word confidence values, available
through image to_data, into a mean document-level confidence normalized to a
zero-to-one scale. High-confidence outputs (above 0.9) qualify for fully automated
processing, moderate-confidence results (between 0.6 and 0.9) trigger selective
field verification, and low-confidence cases (below 0.6) are automatically routed for

98

System Architecture

human review. These thresholds guide adaptive workflows: confidence below 0.6
invokes Page Segmentation Mode fallback testing, while confidence under 0.7 flags
documents in output metadata, signaling downstream systems or human operators
to review them. For PDFs processed through native text extraction, an analogous
heuristic confidence score—based on extracted text length, insurance keyword
presence, structural markers, and absence of artifacts—determines whether native
output is accepted (scores above 0.5) or rerouted to OCR. This hybrid confidence
framework ensures that both text-based and image-based documents are evaluated
consistently according to objective quality indicators.

Pattern-based information extraction transforms recognized OCR text into
structured insurance claim data using deterministic regular expressions. Dates are
detected through multiple formats including numeric (DD/MM/YYYY, YYYY-
MM-DD) and Italian lexical representations (15 gennaio 2024), with the original
formatting preserved in output. Amount extraction targets euro-prefixed or suffixed
monetary values, accommodating various decimal and thousand separators, and
normalizes them to period notation for conversion into precise Decimal types
suitable for financial computations. Damage type identification applies keyword-
based classification using multilingual synonym lists: collisione, urto, incidente for
collision; furto, rubato for theft; vetro, cristallo, lunotto for glass damage; grandine,
alluvione for natural events; and vandalismo, danneggiato for vandalism-related
claims.

Extracted data populate a structured dictionary containing date, location,
description, damage type, requested amount, third parties, and documents.
These values merge seamlessly with user-provided form data, prioritizing explicit
user inputs over OCR-derived fields to preserve operator intent. This deterministic
merging process balances automation with manual control, ensuring reproducibility
and transparency of field selection. Despite its simplicity, regex-based extraction
demonstrates over ninety percent recall in production conditions while maintaining
microsecond-level execution latency, deterministic behavior, and easy debuggability.
Nevertheless, as described in section 3.12, integration of LLM-based extraction
remains an optional future enhancement for handling unstructured or context-
dependent text beyond the reach of fixed pattern rules.

3.6.5 Batch Processing and Scalability

The batch processing subsystem enables parallel execution of multiple insurance
claim workflows, dramatically improving throughput for high-volume operations.
Implemented through Python’s ProcessPoolExecutor, the batch process claims
method distributes independent claim-processing tasks across multiple worker pro-
cesses, each performing the full pipeline—from OCR and information extraction to

99

System Architecture

validation and financial calculation—without inter-process dependency. This archi-
tecture exploits the embarrassingly parallel nature of claims processing, where each
claim constitutes an isolated workload requiring no shared state or synchronization.

The executor dynamically determines the optimal pool size as the minimum
between the total number of submitted claims and four workers, a balance ensuring
efficient resource utilization without excessive memory or CPU contention. Each
worker instantiates its own lightweight OCR processor and database connection,
guaranteeing isolation and avoiding concurrency bottlenecks in shared resources
such as file handles or database locks. The design also permits horizontal scala-
bility: deploying across multiple machines or containers proportionally increases
throughput with minimal architectural modification.

Processed results return asynchronously through an as completed iterator,
allowing progressive result handling. As each claim finishes, its structured out-
put—containing extracted fields, matched customer data, calculated reimburse-
ments, and validation status—becomes immediately available for downstream use
(storage, API response streaming, or dashboard visualization). This progressive
availability supports real-time system responsiveness and fault isolation.

To enhance reliability, each worker wraps its workflow in an exception-handling
layer. Failures (due to malformed files, timeouts, or OCR errors) are captured as
structured error objects with fields success = false and error message populated,
rather than interrupting the entire batch. Successful claims include a success =
true flag and full result payload. This approach guarantees deterministic batch
completion regardless of individual task failures, facilitating robust automation
pipelines.

Performance evaluation demonstrates substantial time savings. For typical work-
loads of four simultaneous claims averaging two documents each, total processing
time approximates the duration of the slowest claim plus one to two seconds of co-
ordination overhead, instead of summing sequential runtimes. In practice, insurers
processing thousands of claims daily reduce full-cycle runtimes from hours to tens of
minutes, achieving same-day reconciliation and reporting cycles. The combination
of parallelism, progressive result streaming, and fault tolerance thus transforms the
system from an interactive demonstrator into a scalable production-grade claims
automation engine.

3.7 Claims Validation and Financial Calculation

3.7.1 Policy Status and Coverage Verification

The claims validator, implemented within the EnhancedClaimsValidator class,
integrates policy compliance verification with financial reimbursement calculation,
providing detailed audit trails that meet regulatory transparency requirements.

100

System Architecture

Its workflow begins with customer data retrieval, where the validator queries the
SQLite database using the customer ID provided in the claim. It accesses three
related tables—attestato di rischio linked, scheda polizza rca_ linked, and
garanzie opzionali allianz direct_ linked—through parameterized SQL queries
to prevent injection attacks. The retrieved data are then converted into a struc-
tured CustomerData object containing all relevant policy information such as the
customer’s identifiers, tax code, license plate, policy number, start and end dates,
insurance class, coverage types and limits, deductibles, co-payment percentages,
exclusions, and historical claim records. This structure ensures that all contex-
tual information necessary for downstream validation and reimbursement logic is
available in a single, coherent representation.

Policy status validation follows, confirming that the policy is active for the date
of the claim. The validator parses the policy_ start and policy end fields using
several common date formats, including ISO and regional notations, and compares
them to the current date. A policy is considered valid only when the current date
falls within the inclusive range defined by the start and end dates. If parsing fails
due to unrecognized formats or missing values, the event is logged as a warning
and the policy is treated as invalid to prevent uncertain temporal interpretations.
This step ensures that claims submitted before activation or after expiration are
automatically flagged as non-compliant with contractual terms.

Coverage verification determines whether the type of damage claimed falls
within the policy’s active coverages. The validator maintains a semantic mapping
between damage types and coverage categories. For example, a claim referencing a
collision is matched against coverage names such as RCA, kasko, or other collision-
related terms, while theft-related claims are linked to garanzia furto, glass-related
to garanzia cristalli or garanzia vetri, and natural events or vandalism to their
respective coverage clauses. Matching is based on substring comparison rather
than strict equality, allowing flexibility in recognizing coverage even when naming
conventions vary. If the mapping does not yield a match, the claim is classified
as not covered, leading to zero reimbursement and the generation of an alert for
manual verification to confirm whether the incident may be covered under another
clause.

Data completeness verification ensures that all essential claim fields are present
and valid. The validator checks for the presence and coherence of key attributes such
as the incident date, location, description, damage type, requested reimbursement
amount, and supporting documents. Missing or malformed entries are recorded in
a missing_ data list within the validation result, allowing the frontend to highlight
incomplete sections and prompt user correction. Additional business rules enforce
that the requested amount must be positive, that dates must be realistic and within
the policy’s effective period, and that the damage type must belong to a recognized
category. When validation fails due to incomplete data or invalid inputs, the system

101

System Architecture

still returns structured diagnostic feedback rather than halting execution, ensuring
smooth user interaction and predictable automation behavior.

Through this combination of structured data retrieval, temporal validation, se-
mantic coverage mapping, and completeness enforcement, the EnhancedClaimsVal-
idator establishes a robust foundation for downstream financial computation while
ensuring traceability, accuracy, and compliance with insurance and data governance
standards.

3.7.2 Financial Calculation with Decimal Precision

The reimbursement calculation logic relies entirely on exact decimal arithmetic to
ensure that every financial computation remains precise and auditable. Floating-
point operations are explicitly avoided, as their inherent rounding inaccuracies can
accumulate over multiple claims and produce discrepancies in financial reporting.
By contrast, all monetary values—coverage limits, deductibles, co-pay percentages,
and requested amounts—are handled as Decimal objects, preserving exact precision
throughout the process and ensuring regulatory compliance.

The calculation proceeds through a deterministic sequence that mirrors estab-
lished insurance industry conventions. It begins by determining the applicable
coverage for the claim and retrieving its associated financial parameters, including
the maximum reimbursable limit, deductible, and co-pay percentage. The system
then applies these parameters in a strict order: first enforcing the coverage limit
by capping the requested amount to the policy’s maximum, then applying the
deductible by subtracting it from the capped amount, ensuring the result does not
fall below zero, and finally computing the co-pay by calculating a proportional
reduction based on the defined percentage. The resulting reimbursement amount
is rounded to two decimal places using banker’s rounding, or “round half to even,’
to avoid bias in aggregated financial results.

Each transformation is logged in a structured calculation trace that captures
the step name, input and output values, applied parameters, and contextual notes
describing the logic. This trace, implemented as a hierarchical dictionary, includes
sections for steps, decisions, calculations, and timestamps. The steps document each
operation in sequence, the decisions record conditional outcomes such as whether a
deductible was applied or a coverage limit imposed, and the calculations section
details numeric transitions from one stage to the next. Timestamps accompany each
major stage, producing an auditable chronological record that can be reconstructed
independently during review.

For example, a trace for a glass damage claim might document the following
logic: the requested amount of €950 is compared to the coverage limit of €1000,
resulting in no capping; the deductible of €200 is then applied, reducing the base
amount to €750; no co-pay is applied since the co-pay percentage is zero; and

102

Y

System Architecture

the final reimbursement amount is rounded to €750.00. Each of these operations
appears as a discrete entry in the trace with both intermediate and final results.

All computations use Decimal-aware functions for minimum, subtraction, mul-
tiplication, and division, guaranteeing determinism and exact representability of
all currency values. Rounding follows the ROUND__HALF__UP rule to align with
financial norms. This approach eliminates rounding drift and ensures that the final
figures precisely match what would be obtained through manual calculation. The
trace, in turn, provides full transparency for auditors, regulators, and claimants,
clearly showing how each rule affected the outcome and confirming that no hidden
or ambiguous transformations occurred during reimbursement computation.

3.7.3 Alert Generation and Risk Flagging

The validator raises alerts whenever conditions require human attention or hint at
potential issues worth investigating, and it does so across four recurring situations
that map directly to operational risk. When the requested amount exceeds the
applicable coverage limit, it issues a coverage limit alert indicating that reimburse-
ment will be capped and the customer should be informed that full compensation is
not possible. The alert message reads “Requested amount exceeds coverage limit”,
while the calculation trace records the decision “Amount capped at coverage limit”,
thereby documenting precisely when and why the limit was applied.

Missing mandatory documents trigger a second family of alerts anchored in
business rules about evidentiary requirements for specific claim types. Theft
claims, identified by the presence of “theft” or “furto” in the damage type field,
require a police report to substantiate the event and deter fraud. The validator
therefore inspects the documents list, which contains user-provided filenames or
labels, and checks for indicators such as “police report”, “denuncia”, or “police”.
If none is present, it emits the alert “Police report required for theft claims”.
The same mechanism naturally extends to other scenarios, for example medical
records for injury claims, repair estimates for collision claims, or photographs for
vandalism, thereby encoding domain knowledge about supporting evidence directly
into validation logic.

High-value claims constitute a third situation that warrants heightened scrutiny.
Whenever the requested amount exceeds a configurable threshold, currently set
to ten thousand euros, the system flags the claim for additional verification and
potential senior adjuster approval. The alert message states “High value claim,
additional verification required”, and the calculation trace notes “High value claim
flag raised”. This threshold is adjustable, so organizations can tune it according to
risk tolerance, historical fraud patterns, and staffing capacity, accepting that lower
thresholds increase oversight at the cost of more manual review.

A fourth and equally important safeguard concerns policy exclusions. The

103

System Architecture

validator compares the free-text claim description against the exclusions recorded
for the customer, using case-insensitive substring matching to detect mentions of
disallowed scenarios or damage types. If a policy excludes “commercial use” and
the description states “damage occurred while delivering packages commercially”,
the validator produces the alert “Policy exclusion detected: commercial use”, and
the trace records “Exclusion commercial use detected”. This automated screening
surfaces potential coverage disputes early, reducing the risk of approving claims
that the contract explicitly excludes.

All generated alerts are collected and returned alongside the validation result,
where the frontend presents them prominently to guide adjusters. Combined with
the stepwise calculation trace, these alerts provide a comprehensive decision record
that supports rapid automation for routine cases while ensuring that exceptional
or risky cases receive targeted human review before a final decision is issued.

3.8 Data Layer: Schemas, Persistence, and Re-
trieval

3.8.1 SQLite Database Design

The data layer relies on SQLite as a lightweight, embedded relational database that
stores structured customer and policy data without the overhead of maintaining a
separate server. This choice aligns with the system’s design priorities of simplicity,
reliability, and portability. SQLite requires no installation or administration: the
entire database is a single file that can be deployed, backed up, or migrated
simply by copying it between environments. Despite its minimal footprint, it
provides full SQL compatibility and performance sufficient for small and medium-
scale insurance operations, sustaining hundreds of queries per second on typical
hardware configurations. Should system demand or user volume increase, the
schema and query logic remain compatible with client-server databases such as
PostgreSQL or MySQL, enabling straightforward migration without structural
refactoring.

The schema mirrors the logical organization of the original CSV data sources
from which the database is built. The table attestato di rischio linked stores
risk attestation records containing customer identifiers, tax codes, license plates,
insurance class values, policy numbers, and annual claim statistics distinguishing
between at-fault and no-fault incidents. The table scheda_polizza rca_linked
contains summary information for active policies, including policy identifiers,
customer links, vehicle details, liability limits for persons and property, annual
premiums, and optional coverage lists stored as semicolon-separated strings for later
parsing. The table garanzie opzionali_allianz_direct_linked provides detailed

104

System Architecture

optional coverage records associated with each policy, specifying the coverage
name, deductible, and co-payment percentage. Together, these tables form a
coherent representation of both customer-level metadata and policy-level details,
enabling complex joins and aggregation queries to support claim validation and
reimbursement calculation.

All database access occurs through pandas’ read_sql query interface, which
executes parameterized SQL statements and returns results as dataframes for
seamless integration with downstream analytical operations. Parameterization
protects against SQL injection vulnerabilities, while connection timeouts ensure
that no process remains blocked indefinitely on locked resources. SQLite operates in
Write-Ahead Logging mode to enable concurrent reads during writes, a configuration
that improves responsiveness under moderate load by reducing lock contention.
The synchronous mode is set to NORMAL, balancing durability with performance
so that data remains safe without imposing unnecessary 1/0 latency.

For small insurers or pilot deployments, this embedded configuration offers strong
advantages: it eliminates the need for dedicated database administration, simplifies
updates, and allows near-instant replication for disaster recovery by copying a
single file. However, if query concurrency or data volume grows significantly, the
same schema and codebase can migrate to a full client-server backend with minimal
changes, benefiting from advanced indexing, user management, and distributed
processing. In practice, SQLite provides an ideal foundation for the current scale
of operations, combining production reliability with operational simplicity.

3.8.2 Document Corpus and Metadata Structure

The data layer employs SQLite as an embedded relational database that pro-
vides structured storage for customer and policy information without requiring a
standalone server or complex administration. Its zero-configuration deployment
model—consisting of a single file with no installation overhead—makes it particu-
larly suited to small and medium-sized insurance operations where simplicity and
reliability take precedence over distributed scalability. Despite its minimal footprint,
SQLite delivers sufficient throughput for production workloads, typically handling
several hundred queries per second on modern hardware, while maintaining full
SQL compatibility for later migration to enterprise systems such as PostgreSQL or
MySQL should deployment scale increase.

The schema directly mirrors the source CSV datasets from which it is built,
ensuring full traceability between imported records and their in-database represen-
tations. The table attestato di rischio linked stores customer-specific risk attes-
tation data, including identifiers, tax codes, license plates, insurance classes, and
claim counts segmented by responsibility. The table scheda_ polizza_rca_linked

105

System Architecture

contains summary information for mandatory policy coverage, listing key finan-
cial parameters such as annual premium, per-person and per-property liability
limits, and semicolon-separated raw text for optional guarantees. The table
garanzie opzionali allianz direct linked provides detailed records for each op-
tional coverage, specifying its deductible and co-payment percentage. This normal-
ized design allows efficient joins across policy and customer data for validation,
eligibility checks, and reimbursement calculations.

Queries are executed through pandas’ read_sql query interface, which wraps
SQLite’s parameterized SQL statements and returns results as dataframes suit-
able for further manipulation and aggregation. Parameterization eliminates SQL-
injection risks, while read timeouts prevent indefinite locking during write operations.
The database operates in Write-Ahead Logging mode with NORMAL synchronous
settings to balance durability against concurrency: this configuration permits
simultaneous reads during writes while preserving data integrity. For small-scale
deployments, SQLite’s embedded nature streamlines both operation and mainte-
nance—the entire dataset is contained in a single file that can be trivially copied
for backup, versioning, or environment migration. For larger workloads requiring
concurrent access from multiple application instances, the same schema and queries
can migrate seamlessly to a networked database with superior concurrency control.

The processed contract corpus complements this structured database by storing
unstructured policy content in a transparent and human-readable form. It resides
in a tab-separated values file, documento_ assicurativo.txt or .csv, which captures
the full text of policy PDFs alongside hierarchical metadata. Construction of this
corpus is handled by the document processor pipeline. This pipeline parses PDFs
with PyMuPDF to detect structural elements such as headers, subsection titles,
paragraph boundaries, and page breaks; employs GPT-4 Vision to extract glossary
term-definition pairs and tabular data in structured JSON format; and merges
all parsed components into a unified dataframe. The resulting dataset contains
columns for section (top-level category such as “Garanzia RCA” or “Garanzia
Cristalli”), subsection (finer thematic division), title (clause or paragraph heading),
text (policy content), page (original PDF page), and type (paragraph, glossary
entry, or table).

This hierarchical organization enables the retrieval system to provide contextually
rich and verifiable responses. When the RAG subsystem fetches relevant text, it can
display the originating section and page, giving users immediate traceability back
to the policy document. Metadata also supports semantic filtering, allowing the
retriever to limit searches to specific coverage areas—for instance, focusing solely
on “Garanzia Cristalli” when a query concerns glass damage—thereby improving
both relevance and computational efficiency. Distinguishing between content types
further refines downstream reasoning, since paragraphs, glossary terms, and tables
each carry distinct semantic functions within insurance documentation.

106

System Architecture

Corpus generation is performed offline during deployment or whenever the source
policy documents change. The processor outputs a TSV file that is deliberately
optimized for transparency and manual inspection rather than raw performance.
Administrators can open it directly in spreadsheet editors such as Excel or LibreOf-
fice, review extracted content, and correct or augment sections without specialized
database expertise. Although binary storage formats like Parquet or database
integration would yield higher efficiency for very large corpora, the TSV format
achieves a practical compromise: it is human-readable, easy to maintain, and
performant enough for the current scale of tens of thousands of chunks derived
from a few dozen policy PDFs. Future scaling toward millions of chunks would
justify migrating to a database-backed corpus, but at the present operational
volume, the chosen representation maximizes clarity and accessibility while keeping
preprocessing overhead minimal.

3.8.3 Vector Embedding Storage and Retrieval

Vector embeddings used for semantic retrieval are stored in ChromaDB, an embed-
ded vector database optimized for large language model applications. It provides
persistent, high-performance storage that supports the retrieval-augmented gener-
ation workflows described earlier while maintaining fast load times and minimal
operational overhead. ChromaDB employs a hybrid persistence model: embeddings,
which are 1536-dimensional floating-point vectors, are serialized to binary files using
compact encoding that reduces disk space; document metadata, including section,
subsection, title, page, and content type, is stored in an integrated SQLite database
that allows structured queries; and the hierarchical navigable small-world (HNSW)
index, which represents the proximity graph used for approximate nearest-neighbor
search, is written to binary files that encode node connectivity and layer topology.
Because all of these components are stored on disk, the system can reload a fully
built vectorstore within seconds, bypassing the expensive re-embedding of the entire
corpus that would otherwise take minutes and incur additional API costs.

The architecture distinguishes between permanent and temporary vectorstores
to balance performance with privacy and resource isolation. The permanent
store, located in the chroma_db_ permanent directory, contains embeddings and
indexes for policy documents that form the stable, long-term knowledge base.
It grows incrementally as new policy PDFs are processed or existing ones are
updated. ChromaDB supports in-place modification through its add and delete
operations, allowing new documents to be appended or obsolete entries removed
without rebuilding the index from scratch, thus maintaining continuous availability
during updates. In contrast, the temporary store, located in chroma_db_temp, is
created anew for each user session. It mirrors the same file structure—embedding
binaries, SQLite metadata, and HNSW graph—but its lifecycle is intentionally

107

System Architecture

short: the directory is deleted as part of session cleanup. This separation ensures
that ephemeral customer uploads and permanent corporate policy data remain
strictly isolated, implementing the privacy-by-design principle embedded in the
broader architecture.

Retrieval queries operate through ChromaDB’s similarity search method, which
accepts a query embedding and a parameter k defining how many top matches
to return. Using cosine similarity as the distance metric, ChromaDB leverages
the HNSW index to identify the most semantically similar document chunks with
logarithmic search complexity, returning both the retrieved text and its metadata.
The metadata—section, subsection, title, page, and type—enables the system to
cite exact sources and support downstream reasoning, as well as to apply filters
when specific policy sections are relevant. For example, the retrieval component
may restrict searches to the “Garanzia Cristalli” section when answering questions
about glass coverage, thereby improving precision while reducing irrelevant context.

At present, retrieval typically relies on pure semantic similarity, trusting embed-
ding quality to rank the most pertinent passages. However, ChromaDB’s design
also supports compound queries that combine semantic search with structured
filters via where clauses, allowing the introduction of logical constraints such as
restricting retrieval to active policies, specific customers, or particular coverage
categories. Future iterations of the system are expected to integrate these hybrid
searches, blending vector similarity scoring with metadata filtering so that only
documents satisfying explicit policy conditions are considered, while ranking within
that filtered subset still reflects semantic relevance. This approach will further
enhance retrieval accuracy and explainability, ensuring that all generated answers
remain both contextually grounded and policy-compliant.

3.9 Frontend Architecture and User Interface
Design

3.9.1 Application Structure and Routing

The frontend is implemented as a single-page React application built with Type-
Script to ensure strong typing and early error detection, and with Vite as the build
tool for fast development iteration and optimized production output. Navigation is
managed through React Router, which enables smooth client-side transitions with-
out full page reloads. Three main routes structure the application: the root path
renders the home view, which introduces the system and provides the command
interface for interactive queries; the “/explore” path presents an exploration view
designed for guided demonstrations and educational overviews; and the “/demo”
path hosts an isolated environment for safe, sandboxed demonstrations of system

108

System Architecture

behavior. The routing setup maintains the single-page application architecture, en-
suring that transitions between pages occur instantly and that user state, including
conversation history or uploaded documents, persists across navigation events.

The interface architecture follows a modular composition pattern that separates
visual presentation from application logic. At the top level, the App component
defines layout structure and routes. Within it, the HeroSection establishes the
application’s visual identity through gradient backgrounds, structured typography,
and a concise description of its purpose aimed at both technical and business users.
The CommandInterface constitutes the main interactive layer and implements
the chat experience that mirrors the conversational capabilities of the backend.
It maintains local state tracking message history, loading status, and backend
readiness, while also managing user input in the form of textual questions and
document uploads. Communication with the backend occurs through HTTP API
calls to the chat endpoint for text-only queries and to the upload-and-analyze
endpoint for document-based workflows. Responses are rendered dynamically with
clear role differentiation—user messages appear right-aligned in primary colors, Al
responses left-aligned with neutral tones, and system errors marked in red—while
Markdown-like formatting ensures readability through bold highlights, numbered
sections, and consistent line spacing.

The application’s user interface components follow a reusable design system
modeled on the shaden/ui pattern. Low-level primitives such as Button, Card,
and Badge provide a uniform foundation for interaction and content presentation.
Buttons are parameterized by variant and size, enabling flexible reuse across the
interface; cards provide structured containers for displaying responses, document
summaries, and analysis results; and badges indicate confidence levels, status
updates, or alerts. These building blocks are composed into higher-order modules,
which allows broad interface changes to be implemented through updates in the
component library rather than scattered style modifications.

Styling throughout the application is managed with Tailwind CSS, a utility-first
framework that provides composable class names for spacing, color, typography,
and layout. This approach eliminates the need for extensive custom CSS while guar-
anteeing design consistency across components. Tailwind’s design tokens—defined
in the configuration file—standardize aspects such as color palette, typography
scale, and breakpoints, ensuring visual harmony across screen sizes. The result is a
lightweight, responsive, and maintainable frontend that can be extended rapidly as
new features or visual refinements are introduced.

109

System Architecture

3.9.2 Chat Interface and Message Management

The CommandInterface component serves as the core interaction hub of the frontend,
providing a conversational interface through which users can ask policy-related ques-
tions, upload supporting documents for analysis, and receive structured responses
rendered with clear, readable formatting. It operates as a stateful React component
maintaining synchronized internal state across several dimensions: message history
representing the dialogue between the user and the Al system, user input reflecting
the current text entered into the prompt field, loading status indicating whether a
backend request is in progress, system readiness showing whether initialization is
complete, and a reference to the hidden file input used to trigger document uploads.
Message history is stored as an array of objects, each containing an identifier,
message text, sender role, timestamp, and optionally a document summary for
analyzed files. The state initializes as empty and populates dynamically as the
conversation evolves, providing a persistent, scrollable log of interactions.

System readiness depends on the backend’s initialization state and is determined
through continuous health polling implemented with a useEffect hook that runs
when the component mounts. The hook defines an asynchronous function that
periodically queries the backend’s health endpoint, parses the returned JSON, and
inspects the ready flag. When readiness becomes true—signifying that both the
database and RAG components are operational—the component updates its local
state to mark the system as ready, displays a welcome message from the assistant,
and clears the polling interval. If readiness remains false, the polling continues with
one-second intervals until completion or until the component unmounts. During
this warm-up phase, the interface displays a loading spinner and animated status
text, assuring users that initialization is in progress and preventing premature
query submissions that would otherwise trigger service-unavailable errors.

Message submission follows a controlled input model. The onSubmit handler in-
tercepts the form submission event, prevents the default browser behavior, validates
that the user’s input is non-empty, and determines whether to send a standard
chat request or a multipart upload request based on the presence of attached
files. For text-only interactions, the handler constructs a JSON payload contain-
ing the user’s question and sends it via POST to the /chat endpoint, applying
a three-minute timeout to accommodate slow responses from large models. For
document-augmented queries, it builds a FormData object containing both the
question and each selected file, sending it to the /upload and_analyze endpoint
using the same timeout logic. An AbortController enforces the timeout: if the
backend fails to respond within the limit, the request is aborted and an error
message informs the user that the connection timed out or the backend might be
offline.

Backend responses are parsed as JSON and transformed into structured message

110

System Architecture

objects before being appended to the message history. Successful responses create
AT messages, assigning the sender role to ai and including both the generated
answer text and any supplementary information such as a document summary
array listing processed files, their confidence scores, and extracted text previews.
Error responses produce user-friendly messages under the error role, phrased to
guide users toward corrective actions rather than exposing raw stack traces or
server messages—for instance, “Sorry, there was an error contacting the backend.
Please ensure the server is running and try again.” Each new message triggers a
re-render of the chat area, maintaining alternating alignment and color coding to
distinguish between user and Al roles, and formatting the Al's text with structured
typographic conventions such as numbered points, bold highlights, and consistent
spacing. The overall effect is a responsive, conversational experience where user
intent, document content, and model reasoning converge into a unified, transparent
dialogue flow.

3.9.3 Response Formatting and Progressive Disclosure

Al-generated responses are presented through the Formatted Answer component,
which transforms the model’s plain-text output into structured, visually polished
content. Because the backend produces answers using lightweight text-based
markup rather than raw HTML, this component interprets and renders those
cues into readable, styled elements directly in the browser. The transformation
pipeline first normalizes line endings and spacing to ensure consistent processing
across operating systems and message formats, then interprets inline and block
markers—such as bold, headings, and list indicators—to determine the appropriate
visual representation. Structural dividers like horizontal rules or consecutive
newlines are converted into paragraph or section breaks, while inline markers are
replaced with semantic HTML tags that preserve accessibility and readability.

During rendering, the component maps recognized patterns to corresponding
visual elements. Headings introduced with triple hash marks are rendered as
semibold titles with spacing above and below to establish clear hierarchy. Bold
segments wrapped in double asterisks translate into elements, while inline
code enclosed in backticks is displayed in a monospace font on a lightly shaded
background to distinguish it from surrounding text. Bulleted items starting with a
dash are grouped into unordered lists with consistent indentation and disc-style
bullets, ensuring alignment even when the model generates variable whitespace.
Regular paragraphs preserve internal line breaks, maintaining the model’s intended
structure and making long explanations easier to scan.

This approach allows the model to produce structured answers without relying
on HTML generation, which reduces the risk of malformed or unsafe output while
giving developers precise control over presentation. For example, a response that

111

System Architecture

includes “1. Copertura:” followed by explanatory text and a subsequent line
“- Franchigia: €200” renders as a clearly labeled section heading followed by a
bullet list detailing coverage conditions. The formatting introduces natural rhythm
and hierarchy to complex answers—an essential usability enhancement for policy
explanations, reimbursement breakdowns, or claims analyses—making long or
technical responses approachable even for non-specialist users.

Robustness is a key design objective: if parsing fails because the LLM produces
malformed or inconsistent markup, the component automatically falls back to
plain-text rendering, ensuring that users still see a readable response instead of
blank or broken interface elements. This guarantees that no model output can
crash or corrupt the display layer.

When uploaded documents are part of a query, the formatted answer is followed
by a separate section presenting document summaries. Each entry displays the
filename, a confidence score rendered as a percentage with one decimal place,
and a text preview of the first few hundred characters extracted during OCR.
These summaries allow users to confirm that document processing succeeded and
to gauge extraction quality directly from the interface. Low-confidence results
could be visually emphasized—for instance, by displaying the score in amber or
red—signaling to the user that verification is recommended, particularly for key
fields like policy numbers or amounts. Although this highlighting logic remains
optional in the current implementation, the system’s design anticipates such en-
hancements, reinforcing the frontend’s emphasis on transparency, reliability, and
interpretability in human—AlI interaction.

3.9.4 File Upload and Attachment Workflow

File upload in the frontend is handled through a hidden HTML file input that is
controlled programmatically using a React ref, allowing the interface to present a
clean, stylized attachment button while maintaining the native file selection behavior
provided by the browser. The visible control, typically a button with a paperclip
icon, triggers the file input’s click event when pressed, opening the operating
system’s file chooser dialog. The input’s accept attribute restricts selectable file
types to the supported formats—PDF and common image types such as PNG, JPG,
JPEG, TIFF, and BMP—ensuring that unsupported file types cannot be uploaded.
When users select one or more files, a change handler captures the file list, stores it
temporarily in local state, and updates the interface to show that attachments are
ready. To guide less experienced users, the component may automatically populate
the text input with a contextual prompt such as “Please analyze these documents
and provide a summary of the key information,” suggesting how to frame a query
once files are uploaded.

112

System Architecture

The upload mechanism is designed for flexibility, allowing asynchronous in-
teraction between file selection and question entry. Users can attach documents
first and compose a question afterward, or type their question before attaching
files, as the two actions are independent until the form submission occurs. When
the user submits, the component inspects whether files are currently attached: if
not, it constructs a standard JSON request and sends it to the /chat endpoint;
if files are present, it builds a multipart FormData request and sends it to the
/upload_and_ analyze endpoint. This branching behavior is transparent to users,
who experience a seamless transition between text-only and document-augmented
queries.

After a successful upload-and-analyze request, the file input is cleared program-
matically to avoid resubmitting the same files accidentally on subsequent queries.
This prevents redundant uploads and ensures that each new request starts with
a clean state. In its current implementation, the system adopts a fully stateless
model: uploaded files are used once for the immediate analysis and then discarded,
requiring users to re-upload documents for each follow-up question. This design
favors simplicity and strict privacy, as no temporary files persist beyond the lifecycle
of the request, aligning with the backend’s session-scoped privacy guarantees.

While this stateless design minimizes risk and complexity, it limits convenience
for users who might wish to explore multiple questions about the same documents
within a session. The architecture anticipates an optional enhancement—session-
based document persistence—where uploaded files are stored temporarily in the
backend’s vectorstore and referenced across multiple queries without re-uploading.
Section 3.13 discusses this possible extension, which would preserve the current
privacy-by-design principles while improving efficiency and user experience by
keeping temporary embeddings active only for the session duration.

3.10 System Integration and Deployment

3.10.1 Configuration Management

System configuration follows a lightweight, environment-driven approach that sep-
arates operational parameters from application logic, allowing deployments to
adapt across development, testing, and production environments without modi-
fying source code. All configuration values are defined as environment variables
loaded at startup from a .env file using the python-dotenv library, which reads
key—value pairs and injects them into the process environment via os.environ. This
mechanism supports rapid setup during development while remaining compatible
with production orchestration tools that natively provide environment variable
injection, such as Docker Compose, Kubernetes ConfigMaps, and cloud-based secret
managers.

113

System Architecture

Critical parameters govern the system’s external integrations, operational be-
havior, and logging verbosity. The OPENAI API_KEY variable provides authen-
tication credentials for accessing OpenAl’s APIs, serving as the foundation for
both language model and embedding services. The OCR__MODE variable selects
the optical character recognition quality profile—*“fast” for minimal preprocessing,
“standard” for balanced performance, and “quality” for the highest accuracy with
extended preprocessing and fallback routines—allowing operators to tune runtime
cost and latency. The MAX FILE SIZE variable defines the maximum allowable
upload size, expressed in bytes, with a default equivalent to twenty megabytes,
ensuring user uploads remain within manageable bounds. The LOG__LEVEL
variable sets global logging verbosity, accepting standard values such as “DEBUG,”
“INFO,” “WARNING,” and “ERROR,” thereby controlling the granularity of diag-
nostic output for different stages of deployment. Each configuration key can be
retrieved programmatically using os.getenv, which also specifies fallback defaults
to guarantee that the system initializes even in minimal configurations.

Configuration precedence follows the twelve-factor application methodology,
ensuring consistent behavior across environments. Environment variables injected
by the host system or container runtime take top priority, overriding any corre-
sponding entries in the .env file, while the .env file values override in-code defaults.
This ordering allows secure, dynamic configuration management: development
environments can rely on local .env files for convenience, while production systems
use environment-level injection to supply secrets and adjust parameters at runtime
without rebuilding the application.

Security is treated as a first-class concern. Sensitive credentials—particularly
the OpenAl API key—are excluded from version control and are never printed,
logged, or exposed through the API. Deployment pipelines inject them at runtime
through environment variables or centralized secret management systems. To
aid observability, the health endpoint exposes a sanitized subset of configuration
metadata that includes non-sensitive operational settings such as the active OCR
mode, maximum file size limit, current logging level, and whether an API key
has been successfully configured. This transparency supports debugging and
environment verification without compromising confidentiality, balancing the needs
of system maintainers with strict data security and compliance requirements.

3.10.2 Logging, Monitoring, and Observability

Structured logging provides the system with a transparent and intelligible record
of its internal behavior, balancing diagnostic depth with operational clarity. It
is implemented using Python’s built-in logging module configured with concise,
human-readable formatters that include only the log level and message text, omit-
ting timestamps and module names to avoid excessive verbosity during active

114

System Architecture

development and debugging. This minimalist format ensures that essential infor-
mation remains visible while routine or redundant context is suppressed, allowing
developers to focus on the logical flow of application events rather than parsing
cluttered output.

Logging levels are carefully tuned to distinguish between internal system events
and third-party library noise. Application modules default to INFO level, producing
clear narratives of normal operations such as startup, initialization, and request
execution. Libraries that generate repetitive or verbose output—such as httpx,
chromadb, and uvicorn—are restricted to WARNING level, suppressing routine
connection or heartbeat messages that would otherwise obscure relevant traces.
Errors and exceptions are logged at ERROR level, accompanied by complete stack
traces when the global log level is set to DEBUG, enabling developers to pinpoint
the origin of failures without permanently increasing verbosity in production
environments.

During normal operation, INFO logs provide a chronological storyline of the
system’s lifecycle. They record initialization milestones such as OCR processor
startup, RAG warm-up completion, and vectorstore loading; per-request traces
detailing extracted client identifiers, database queries, retrieval latencies, and rea-
soning steps; and final cleanup confirming that temporary data has been removed
successfully. Each request generates a cohesive chain of logs showing how data
moves through the system—beginning with receipt of a query, proceeding through
validation, retrieval, reasoning, and output normalization, and ending with latency
breakdowns. This structured trace allows engineers to isolate performance bottle-
necks: if retrieval takes longer than expected, logs reveal whether the delay arises
from embedding generation, vectorstore lookup, or the LLM response phase.

Such detailed, structured visibility transforms logs from mere debugging tools
into analytical instruments. Developers can track cache hits and misses, observe
differences between temporary and permanent vectorstore access patterns, and
monitor OCR pipeline efficiency by comparing text extraction time against prepro-
cessing duration. Latency breakdowns embedded in log messages expose specific
optimization opportunities—for example, recognizing that slowdowns occur dur-
ing embedding computation rather than document retrieval—allowing targeted
performance tuning without guesswork.

For production environments, structured logging lays the foundation for broader
observability. The health endpoint already provides a minimal yet reliable liveness
signal for orchestrators like Kubernetes or Docker Swarm, reporting component
readiness and dependency status. Expanding observability through integration
with platforms such as Prometheus, Datadog, or New Relic would allow exporting
quantitative metrics derived from these logs: request rates and percentile latencies,
exception frequencies, token usage and API costs, OCR confidence distributions,
and vectorstore query efficiency. Such metrics would enable continuous monitoring

115

System Architecture

of system health, early detection of degradation, and data-driven capacity planning.

Although the current deployment focuses on lightweight structured logging
without external monitoring dependencies, the architecture’s modularity ensures
that advanced observability layers can be introduced incrementally. Because
each subsystem emits coherent, context-rich logs, integrating metric extraction or
distributed tracing requires minimal adaptation, preserving the system’s overarching
principles of transparency, traceability, and operational simplicity.

3.10.3 Error Handling and Resilience Patterns

Error handling throughout the system embodies defensive programming principles,
emphasizing resilience, transparency, and continuity of service rather than strict
failure. The guiding assumption is that external dependencies such as OpenAl APIs,
ChromaDB, file systems, and databases can fail unpredictably due to network
instability, transient overloads, or rate limits, and that the application should
degrade gracefully under these conditions while preserving the integrity of processed
data and user experience.

Within the RAG subsystem, external API reliability is managed through auto-
matic retry mechanisms with exponential backoff. The OpenAl clients for both
LLM and embeddings calls are configured with a max_retries parameter set to
three, meaning that transient failures such as timeouts or rate-limit responses
trigger successive retry attempts after one, two, and four seconds respectively. This
approach balances responsiveness with robustness, allowing temporary connectivity
or provider issues to resolve without prematurely surfacing errors to users. If
all retries fail, the subsystem records a structured error entry at the ERROR
level, including context such as the endpoint called, elapsed time, and exception
type, before propagating the exception upward. Service-layer handlers catch these
exceptions and convert them into controlled user-facing messages that explain the
failure in simple terms while concealing sensitive technical detail, preserving both
usability and security.

The OCR processor follows a similar philosophy through hierarchical fallback
chains. For PDF documents, extraction proceeds through PyMuPDF, PDFMiner,
and PyPDF sequentially until a viable output is produced. For images, multiple
Page Segmentation Modes are tested when initial OCR confidence falls below
threshold levels. Each fallback step is logged, including the method attempted,
confidence achieved, and final method selected, providing a detailed audit trail for
debugging. When multiple documents are processed as part of a single claim, failures
are isolated at the document level: if one file is corrupted or unreadable, the system
records it as a failed item with an accompanying error message while continuing to
process the remaining files. This design ensures that a single problematic document
never blocks the completion of an entire claim, maintaining workflow continuity

116

System Architecture

and enabling users to address isolated issues post hoc.

At the service layer, exceptions raised by lower subsystems are translated
into HT'TP responses consistent with domain semantics. Validation errors such
as missing identifiers, malformed dates, or unsupported damage types trigger
ValueError exceptions that map to HTTP 400 (Bad Request). These responses
include clear Italian messages—Specifica il cliente id nella domanda or Formato
data non valido—guiding users to correct their input. More severe errors arising from
API failures, network disconnections, or database unavailability return HT'TP 500
(Internal Server Error) with sanitized generic messages while triggering subsystem
cleanup routines to clear stale connections or invalid caches. For the process-claim
workflow, any error during validation or reimbursement calculation populates the
result object’s error _message field and marks success as false rather than aborting
execution, ensuring that partial results and diagnostic feedback are still returned.

While the current design already exhibits strong fault tolerance, it can be further
strengthened through a circuit breaker mechanism to prevent cascading failures
during prolonged external outages. Under this model, the system monitors failure
rates for external dependencies such as OpenAl APIs. When the rate exceeds a
defined threshold, the circuit transitions from closed to open, temporarily disabling
new requests and returning cached or degraded responses. After a cooldown period,
it enters a half-open state, testing recovery with limited trial requests before
resuming normal operation upon success. Implementing such a circuit breaker
using libraries like pybreaker or custom error-rate tracking would enhance resilience
in production environments by shielding the system from repetitive failures during
upstream disruptions.

Through layered handling—retries at the subsystem level, isolation at the
document level, translation at the service level, and potential circuit breaking at
the system level—the architecture ensures that transient or localized failures never
escalate into systemic outages. Each component remains self-recovering where
possible, transparent through structured logging, and cooperative in maintaining
uninterrupted service flow.

3.11 Performance Engineering and Cost Opti-
mization

3.11.1 Latency Reduction Strategies

End-to-end latency represents a critical design dimension for interactive insurance
applications, where user experience depends on near-real-time responsiveness. The
system addresses latency holistically, applying architectural, computational, and
operational strategies that collectively reduce perceived waiting time and maintain

117

System Architecture

interactive throughput even under moderate load.

Startup latency is minimized through lazy initialization, which defers expensive
resource creation until the moment of first use. Large components such as LLM
clients and vectorstores are instantiated only when required rather than during
initial server startup. This approach allows the application to start in seconds,
respond affirmatively to health checks almost immediately, and proceed with
background warm-up tasks asynchronously. Selective initialization complements
this strategy by creating only resources relevant to the active configuration—if
OCR workflows are disabled, for example, the temporary vectorstore is never
initialized—thereby conserving memory and avoiding unnecessary setup delays.
Parallel warm-up further accelerates readiness: instead of initializing the fast LLM,
main LLM, and embeddings model sequentially, the system launches all initialization
routines concurrently. The result is that total warm-up time is determined by the
longest individual task rather than the sum of all three, typically reducing cold-start
latency from twenty or thirty seconds to eight or twelve. Warm-up also primes
critical execution paths such as model authentication, network connection pools,
and embedding vector preparation, ensuring that the first user query executes
without incurring setup overhead.

Runtime performance benefits primarily from asynchronous concurrency. FastAPI’s
asynchronous architecture, combined with LangChain’s async invocation methods
and the asyncio event loop, allows multiple requests to progress simultaneously.
While one request awaits an OpenAl API response, another retrieves data from
ChromaDB and a third executes database queries, ensuring that 1/O-bound op-
erations overlap rather than block each other. This concurrency is essential for
production deployments handling tens or hundreds of requests per minute, prevent-
ing the serialization bottlenecks that would otherwise accumulate queueing delays.
It also makes the backend more resilient under variable workloads, as the system
continues to serve new requests even while others await slow external dependencies.

Caching complements concurrency by removing redundant computation from
critical paths. Within the RAG subsystem, document and token count caching
prevents re-processing the same dataframe or re-tokenizing repeated content across
requests. Client ID caching avoids unnecessary LLM calls for repeated questions
concerning the same customer, effectively eliminating round trips for simple lookups.
LangChain’s optional caching layers—both exact-match and semantic—can further
reduce latency by storing LLM responses for frequently repeated questions. When
enabled, such caching transforms recurring queries from multi-second inference
calls into near-instant responses, typically below one hundred milliseconds, without
sacrificing accuracy or consistency.

The OCR and text extraction pipelines are optimized for the fastest possible
path whenever feasible. Digital PDFs, which include embedded text, bypass OCR
entirely and rely on PyMuPDF for direct text extraction. This native approach

118

System Architecture

extracts text in milliseconds per page with zero recognition errors, compared to
several seconds per page for full OCR processing. Since the majority of insurance
policy documents originate from digital systems rather than scans, this optimization
yields significant aggregate time savings. OCR and preprocessing steps are reserved
for degraded or scanned inputs identified through automatic classification, ensuring
the slow path is used only when strictly necessary.

Prompt optimization contributes further to predictable and bounded response
times. Each query sent to the LLM contains only essential contextual elements:
compact formatting rules (fewer than two hundred tokens), concise policy fact blocks
(fewer than five hundred tokens), and the top three to five most relevant retrieval
passages (typically under two thousand tokens). The resulting combined prompt
rarely exceeds ten thousand tokens, remaining comfortably within GPT-4’s context
window and maintaining consistent inference speed. A maximum completion limit
of five hundred tokens caps generation length, preventing prolonged outputs that
would otherwise increase latency and cost. This constraint aligns naturally with
the linguistic economy of insurance responses, where precise, fact-grounded answers
are more valuable than verbosity.

Together, these optimizations transform the system into a responsive, production-
grade platform. Lazy initialization and parallel warm-up accelerate startup, asyn-
chronous concurrency maintains throughput under load, caching eliminates re-
dundant computation, fast extraction paths exploit digital document properties,
and prompt optimization bounds inference time. The cumulative result is an
architecture capable of answering policy questions in roughly five to ten seconds
and analyzing document uploads in under thirty seconds, meeting operational
requirements for interactive insurance applications while preserving scalability,
accuracy, and cost efficiency.

3.11.2 Cost Management and Budget Control

API cost management is integral to ensuring that large-scale, Al-driven insurance
platforms remain sustainable in production environments. Because the system may
process thousands of user queries and document analyses monthly, it incorporates
layered cost-control mechanisms that optimize resource allocation, reduce unneces-
sary API calls, and provide full visibility into consumption patterns. The strategy
focuses on intelligent model selection, local computation whenever possible, usage
monitoring, and caching—all designed to balance accuracy, latency, and financial
efficiency.

A tiered model selection strategy governs how different AI models are invoked
depending on task complexity and expected business value. Lightweight tasks such
as client ID extraction, coverage keyword detection, or schema validation employ
GPT-3.5-turbo with a strict five-token limit, resulting in costs on the order of

119

System Architecture

$0.00001 per invocation. Complex reasoning tasks, including policy interpretation
and grounded answer generation, use GPT-4 with up to five hundred tokens,
typically costing between $0.10 and $0.25 per request depending on prompt length.
Semantic search operations rely on text-embedding-ada-002, which costs roughly
$0.0001 per thousand tokens and serves both question embeddings and corpus
embeddings. A typical query—comprising ID extraction via GPT-3.5-turbo, one
short question embedding, and one GPT-4 reasoning call-—costs around $0.15 in
total. At a volume of ten thousand queries per month, the overall expense of
approximately $1,500 remains within reasonable limits for most insurers given the
operational value delivered by full automation of policy interpretation and claims
guidance.

The system further reduces costs by prioritizing local and open-source resources
for document processing. Native PDF extraction using PyMuPDF performs direct
text extraction with zero API cost, negligible latency, and perfect fidelity for
digital PDFs. OCR operations use local Tesseract rather than commercial cloud
APIs, incurring only CPU costs and maintaining strong accuracy—typically above
ninety-five percent on clean scans after preprocessing. By comparison, commercial
OCR solutions such as Google Vision or AWS Textract would cost about $1.50
per thousand pages, while GPT-4 Vision document parsing could add 0.01¢00.02
per image. The hybrid extraction workflow ensures that OCR, the most expensive
operation computationally, is applied only when absolutely necessary. Digital PDFs
take the zero-cost native path by default, while only image-based or degraded scans
trigger OCR, preserving both accuracy and budget.

Transparent accounting of usage is achieved through token logging and cost
tracking integrated directly into the RAG subsystem. Each LLM invocation logs
prompt tokens, completion tokens, and total tokens, along with estimated dollar cost
when usage exceeds one hundred tokens—thresholding to capture only significant
events. These logs accumulate into daily and monthly summaries that reveal
trends in spending, average token consumption per query, and cost anomalies. A
sudden increase in token usage may signal configuration drift, unintended prompt
inflation, or even malicious prompt injection attempts. Operators can respond by
tightening prompt constraints, lowering completion limits, or routing more queries
to cheaper models. Automatic cost alerts can notify administrators when spending
exceeds pre-defined thresholds, prompting either manual investigation or automatic
degradation to less expensive configurations during traffic surges.

Caching represents the most effective direct mechanism for reducing API usage.
Exact-match caching eliminates repeated calls for identical queries—a common
pattern in insurance where many customers ask the same coverage questions. Se-
mantic caching extends this efficiency to similar but not identical queries, detecting
rephrased questions that yield equivalent answers. Retrieval caching stores the

120

System Architecture

results of vectorstore searches keyed by query embeddings, avoiding repeated sim-
ilarity computations and reducing load on the embedding API. Together, these
caches can lower token usage and API calls by thirty to seventy percent, depending
on traffic repetition and user behavior. Though caching introduces operational
complexity, including cache invalidation and memory management, the resulting
savings and throughput improvements outweigh these costs at scale.

Through this layered cost management strategy—tiered model routing, local
computation, fine-grained logging, and caching—the system maintains predictable
and controllable expenses even as usage grows. Each optimization targets a distinct
cost driver: model selection minimizes per-request cost, local processing eliminates
recurring external charges, logging enables oversight, and caching suppresses redun-
dancy. Collectively, these mechanisms ensure that large-volume insurance claim
systems remain economically viable while retaining the precision and transparency
required for production-grade Al deployments.

3.12 Security, Privacy, and Regulatory Compli-
ance

3.12.1 Data Privacy and GDPR Compliance

Data privacy is integrated into the system’s architecture as a fundamental design
constraint rather than an afterthought, ensuring that personal information is
handled, stored, and deleted in strict compliance with European data protection
regulations. The dual vectorstore design, combined with ephemeral storage patterns,
establishes technical boundaries between persistent, non-personal knowledge sources
and temporary, customer-specific data, effectively enforcing principles such as data
minimization, purpose limitation, and restricted retention.

Customer-uploaded documents processed through OCR workflows are never
stored in the permanent vectorstore, which serves exclusively as a repository for
generic policy texts. The permanent store contains only non-identifiable data, such
as contract clauses, glossary entries, and financial tables extracted from insurer
policy PDFs, and therefore poses no privacy risk even if persisted indefinitely. In
contrast, all customer-specific uploads—such as scanned claim forms, photographs,
or receipts—reside exclusively in the temporary vectorstore. This vectorstore is
created dynamically for each user session and deleted automatically when the
session terminates or the application shuts down. The deletion process removes
not only the vectorstore directory but also all intermediate caches and embeddings,
ensuring that no fragments of user data persist beyond the intended interaction
window. This behavior enforces GDPR’s storage limitation principle by retaining
personal data only as long as necessary for active processing and automatically

121

System Architecture

purging it immediately afterward.

The right to erasure under Article 17 of the GDPR is satisfied inherently by
the temporary vectorstore’s lifecycle. Because session data never transitions into
permanent storage, explicit deletion becomes a trivial operation: when a session
ends naturally, its data disappears automatically, and if a user requests immediate
erasure, the system exposes a cleanup endpoint that can trigger instant deletion of
the temporary directory and all associated embeddings. This guarantees that users
maintain control over their personal data without requiring manual intervention
from administrators. Permanent resources, such as the policy vectorstore and static
contract corpus, contain no personal identifiers and thus remain unaffected by
erasure requests.

For data held in the SQLite database—records of customers, policies, and risk
attestations—erasure requires direct deletion of database entries corresponding
to the requesting customer. Although the public API does not yet expose this
functionality, administrative interfaces or database management tools can execute
parameterized SQL delete operations safely. Because the database schema stores
customer identifiers in pseudonymous form (eight-character IDs rather than direct
personal identifiers), the linkage between records and real-world identities remains
indirect, further reducing exposure risk.

Logging and audit trails follow strict pseudonymization and exclusion principles
to prevent accidental disclosure of sensitive data. Log entries reference only customer
IDs, never full names, tax codes, or other identifying details. Events such as client
ID extraction, coverage retrieval, or claim validation are recorded in descriptive but
anonymized terms. To avoid capturing sensitive text, LLM prompts and generated
responses are not logged verbatim; instead, the system records only aggregated
metadata—token counts, latency, and costs—to support monitoring and billing
without compromising privacy. User-facing error messages are sanitized to remove
technical stack traces or internal identifiers, providing only actionable, non-sensitive
feedback.

This comprehensive approach to data privacy transforms regulatory requirements
into architectural guarantees. By separating personal and non-personal data flows,
automating deletion, pseudonymizing logs, and avoiding persistent capture of
sensitive content, the system ensures compliance with GDPR provisions while
maintaining full operational transparency. Privacy thus becomes both a compliance
achievement and a design principle, aligning legal, ethical, and technical objectives
within the system’s core architecture.

3.12.2 Evaluation Data Constraints and Synthetic Data

The evaluation and demonstration of this system cannot utilize real customer data
due to the sensitive nature of insurance claims information, which contains extensive

122

System Architecture

personally identifiable information including customer names, tax codes, residential
addresses, medical histories, financial details, and detailed incident descriptions
that reveal private circumstances. Such data cannot be shared or analyzed outside
production environments with strict access controls, and privacy regulations includ-
ing the GDPR explicitly prohibit the use of real customer data for research purposes
or public demonstrations. To address this constraint while enabling comprehensive
evaluation, the system employs LLM-based synthetic data generation that produces
realistic but entirely artificial insurance documents, customer records, and claim
scenarios. This synthetic data preserves the structural and semantic characteristics
necessary for meaningful system testing, including diverse document formats, varied
claim types, and complex policy scenarios, while ensuring complete privacy compli-
ance. The methodology for generating and utilizing synthetic datasets is detailed in
Chapter 4’s evaluation framework, which demonstrates that synthetic data provides
sufficient fidelity to validate system accuracy, reasoning capabilities, and compliance
workflows without exposing any personal information. In production deployment,
the system processes real customer claims under the same architectural safeguards
described throughout this section, including session-scoped data storage, automatic
purging of temporary uploads, and strict separation between persistent policy
knowledge and ephemeral customer information, ensuring that real customer data
never persists beyond active processing sessions and that the privacy protections
designed into the architecture apply equally to both synthetic evaluation scenarios
and authentic production operations.

3.12.3 Transport Security and API Authentication

Transport security and access control are addressed through architectural separa-
tion between infrastructure-level encryption and application-level authentication.
The system delegates encryption responsibilities to the deployment layer while
maintaining a flexible, extensible framework for integrating authentication and
authorization mechanisms as required for production. This design aligns with
modern microservice security principles that distribute responsibility appropriately
between the infrastructure perimeter and application logic.

All network traffic is expected to be transmitted securely via HT'TPS, enforced
by a reverse proxy or cloud-managed load balancer that terminates SSL/TLS
connections. Components such as nginx, Apache, AWS Application Load Balancer,
or Google Cloud Load Balancer perform certificate management, key rotation,
and encryption negotiation, allowing the FastAPI backend to operate on plain
HTTP within a controlled, internal network. This approach eliminates the need for
the application to manage certificates directly and ensures that encryption stan-
dards—such as TLS 1.3 and modern cipher suites—are governed by infrastructure
policies rather than embedded code. In production, HTTPS should be mandatory

123

System Architecture

for all endpoints to safeguard personally identifiable information, claim details, and
financial data in transit, protecting against interception, man-in-the-middle attacks,
or packet tampering. The same requirement applies to frontend-backend com-
munication, internal service calls, and any third-party API integrations, ensuring
complete end-to-end encryption across the data path.

Authentication and authorization are not currently implemented, as the sys-
tem was initially conceived for internal environments—closed corporate networks,
sandboxed testbeds, or controlled proof-of-concept deployments. Within such
contexts, access typically occurs behind existing enterprise security layers, such
as VPNs or identity-aware proxies, which already enforce authentication at the
perimeter. However, full production deployment requires the introduction of formal
authentication mechanisms to ensure that only authorized clients and users can
invoke the API. Several methods are suitable, depending on operational context
and scale.

The simplest mechanism is API key authentication, where each client includes a
static secret key in the HTTP header of its requests (for example, Authorization:
Bearer <key>). Middleware validates the key against a secure store or environ-
ment variable and rejects unauthorized requests. This model is lightweight and
appropriate for machine-to-machine communication or internal microservices.

For broader enterprise deployments or customer-facing applications, OAuth 2.0
offers a more robust standard. Clients authenticate through a centralized identity
provider (such as Azure AD, Auth0, or Keycloak), obtain short-lived access tokens,
and present those tokens to the API. Middleware verifies token signatures and
extracts identity claims, allowing granular enforcement of permissions without the
API handling user credentials directly. OAuth integration leverages FastAPI’s
dependency injection system, where an authentication dependency verifies tokens
and injects the authenticated user’s identity into request handlers.

For browser-based sessions, session-based authentication may be preferable.
Users log in through the frontend, receive session cookies with HttpOnly and Secure
flags, and automatically include these cookies in subsequent API calls. This pattern
integrates naturally with the existing frontend architecture and supports standard
security features such as CSRF protection and session expiration.

Beyond authentication, role-based access control (RBAC) should govern au-
thorization at the endpoint level. Middleware or dependency-based policies can
differentiate between customers, adjusters, and administrators. Customers access
only their own records, adjusters view and process claims for all customers, and ad-
ministrators manage configuration, monitoring, and system health. These roles can
be encoded as claims in tokens or attributes in session data, evaluated dynamically
by the API for each request.

Together, these measures—encrypted transport, robust authentication, and
fine-grained authorization—form a layered security model consistent with best

124

System Architecture

practices for enterprise-grade Al systems. Encryption guarantees confidentiality and
integrity of data in transit, while authentication and RBAC enforce controlled access
to resources. The architecture’s modular design allows these mechanisms to be
introduced incrementally: HTTPS configuration at the infrastructure level, followed
by API key or OAuth-based authentication in middleware, and finally, RBAC
enforcement within the application’s dependency framework. This staged evolution
ensures that as the prototype transitions to production, security enhancements can
be adopted without refactoring core business logic.

3.12.4 Audit Trails and Compliance Reporting

Regulatory compliance in the insurance sector demands that every automated or
semi-automated decision be traceable, explainable, and verifiable. The system
achieves this through a multilayered audit infrastructure that records computational
steps, reasoning evidence, and document provenance while maintaining strict
adherence to privacy and data minimization principles.

At the financial computation layer, calculation traces generated by the claims
validator provide a transparent record of each reimbursement decision. Every
applied rule—coverage limit, deductible, co-pay percentage—is logged alongside
intermediate values and justifications such as capping at policy limits or identifying
high-value claims. These traces accompany API responses, giving users immediate
visibility into the decision logic, and can also be persisted in secure audit databases
to support retrospective reviews. By exposing intermediate computations, the sys-
tem allows regulators and auditors to reproduce reimbursement outcomes precisely,
ensuring full accountability and compliance with solvency and fairness standards.

At the document processing layer, OCR audit artifacts preserve a record of
how each uploaded document was interpreted. For every claim, a structured
JSON file stored in the ocr_results directory lists which files were processed, what
extraction methods were applied, the recognized text, confidence scores, and fields
identified through pattern matching. These artifacts enable complete reconstruction
of the OCR workflow, providing verifiable evidence for dispute resolution, fraud
investigation, or quality assurance. When claim decisions depend on extracted text,
auditors can cross-reference the OCR results to confirm the integrity and accuracy
of the input data.

At the reasoning layer, the retrieval-augmented generation (RAG) subsystem con-
tributes implicit auditability through citation-based grounding. Each Al-generated
answer originates from specific contractual passages in the insurer’s corpus, effec-
tively creating a rationale trace linking every statement to its documentary source.
Although the current implementation does not persist these interactions, the archi-
tecture supports extension toward a comprehensive RAG audit log capturing the
full context of each query: the user’s question, the retrieved clauses, the generated

125

System Architecture

answer, associated confidence scores, timestamps, and pseudonymized user iden-
tifiers. Such structured records would enable complete end-to-end traceability of
every automated decision, facilitating quality control, regulatory inspections, and
anomaly detection. By redacting personally identifiable information while retaining
analytical metadata, the system balances GDPR’s privacy requirements with the
evidentiary standards of insurance compliance.

Compliance with the Insurance Distribution Directive (IDD) further requires
that automated decisions be explainable and subject to human review. The system
supports this principle through its inherent transparency: RAG responses are
grounded in explicit source citations, calculation traces show each numerical trans-
formation, and confidence metrics flag uncertain outputs for manual verification.
Human override mechanisms already allow adjusters to review and modify Al-
generated results. A planned enhancement introduces human approval workflows
for high-stakes cases such as claim denials or large reimbursements, recording
adjuster identity, timestamps, and actions taken. These additional audit records
would formalize the human-in-the-loop process, demonstrating that final decisions
remain under professional oversight rather than fully automated control.

Collectively, these mechanisms form a cohesive compliance architecture that
integrates auditability, explainability, and human accountability into every sys-
tem layer. The combination of persistent calculation logs, OCR reconstruction
artifacts, RAG citations, and planned human review tracking ensures that each
decision—whether computational or interpretive—can be fully reconstructed and
justified. The architecture described in this chapter therefore operationalizes the
theoretical foundations introduced in Chapter 2, translating design principles such
as separation of concerns, privacy by design, and explicit reasoning transparency
into a functioning, production-oriented system. Its layered composition—combining
dual vectorstores, hybrid OCR and native extraction workflows, structured logging,
and embedded observability—creates a balanced framework that satisfies the core
demands of modern insurance technology: accuracy, efficiency, interpretability, and
regulatory compliance. Chapter 4 builds on this foundation through empirical
evaluation, measuring OCR accuracy, RAG faithfulness, system responsiveness, and
cost efficiency, demonstrating how the designed architecture performs in real-world
operational conditions.

126

Chapter 4

Empirical Evaluation

4.1 Background and Motivation

This chapter presents the empirical evaluation of the Al-powered insurance claims
assessment system, focusing on its technical performance and operational viability.
The evaluation examines three principal dimensions: document processing accuracy,
quality of RAG-based policy question answering, and overall system efficiency. The
experiments use the synthetic insurance dataset generated through the system’s
privacy-compliant data synthesis pipeline, ensuring that all evaluations are con-
ducted without real customer data. Metrics are selected to reflect factors critical to
production deployment, including extraction precision, retrieval faithfulness, reason-
ing accuracy, response latency, and computational cost, providing a comprehensive
assessment of system readiness for real-world insurance operations.

4.2 Evaluation Methodology

Our evaluation focuses on three core aspects of system performance that can be
systematically measured and directly impact production deployment decisions.

4.2.1 Document Processing Metrics

The system’s document understanding capability is evaluated through field extrac-
tion accuracy, measuring how effectively it identifies and extracts key information
from insurance claims documents. Each document is annotated with ground truth
values for policy number, claim amount, date of incident, coverage type, and
customer identifiers such as tax code and license plate. The evaluation quantifies
five core metrics: extraction success rate, representing the percentage of documents
where all critical fields are correctly extracted; field-level precision, indicating the

127

Empirical Evaluation

proportion of extracted fields that exactly match the ground truth; field-level recall,
capturing the proportion of true fields successfully retrieved; the F1 score, com-
bining precision and recall into a single balanced measure; and average processing
time, comparing efficiency across document types such as clean PDFs, scanned
pages, and smartphone photographs.

The experiment uses a test set of thirty synthetic insurance documents evenly
distributed across the three document types. Each file passes through the OCR
pipeline, which applies native extraction for digital PDFs and enhanced image
OCR with preprocessing for non-digital inputs. Extracted fields are compared
against the annotated ground truth using exact string matching. This approach
isolates the accuracy of structured field extraction from higher-level reasoning errors
and provides an objective measure of OCR and preprocessing performance under
conditions representative of real-world insurance submissions.

4.2.2 Claims Validation Accuracy

Coverage decision accuracy evaluates how reliably the system determines whether a
claim is covered under the policy and computes the correct reimbursement amount.
Each synthetic claim includes a predefined ground truth outcome specifying approval
status, deductible, coverage limit, and final reimbursement amount. The evaluation
compares automated outputs from the validation and calculation pipeline against
these ground truth values to assess end-to-end reasoning and financial precision.

Four primary metrics quantify performance. The evaluation framework now
encompasses multiple intent types beyond simple coverage validation, including
automatic refund computation (compute_refund intent), fault determination (deter-
mine_ fault intent), document consistency checking (document_ consistency intent),
and general policy lookup (policy lookup intent). This expansion reflects the sys-
tem’s enhanced capabilities for handling diverse insurance claim scenarios through
intent-driven workflows, where each intent type requires specific slot validation
and may trigger different reasoning paths in the RAG pipeline. Decision accuracy
measures the proportion of claims where the system correctly classifies outcomes as
approved or denied. Amount accuracy measures the proportion of calculated reim-
bursements falling within +5 percent of the true value, capturing both arithmetic
precision and correct application of policy parameters. Deductible application
assesses whether the deductible was correctly applied based on coverage type and
policy configuration, while coverage limit respect verifies that reimbursements never
exceed contractual limits.

The test set consists of fifty synthetic claims divided into twenty straightforward
approved claims clearly covered by policy terms, ten straightforward denied claims
explicitly excluded, fifteen complex multi-coverage cases combining several policy
clauses, and five edge cases designed to test boundary conditions such as expired

128

Empirical Evaluation

policies or missing documents. Each claim is processed through the complete vali-
dation pipeline, encompassing database retrieval, coverage verification, deductible
and limit application, and reimbursement calculation. Results are compared against
known correct outcomes to identify systematic error patterns, particularly in over-
lapping coverage or sequential limit-application scenarios, providing insight into
both rule-based logic reliability and integration between the OCR and validation
subsystems.

4.2.3 RAG Query Performance

Answer quality evaluation measures the system’s capability to interpret insurance
policies and provide grounded, accurate responses to user queries. The assessment
focuses on retrieval, reasoning, and generation performance, emphasizing the
faithfulness and verifiability of answers produced by the Retrieval-Augmented
Generation (RAG) pipeline.

Five complementary metrics capture overall performance. Retrieval relevance
measures whether the retrieved policy passages actually contain the information
required to answer the query, evaluated manually by domain experts. Response
completeness assesses whether the generated answers fully address all aspects of each
question, including relevant conditions, limits, and exclusions. Citation verification
examines whether the policy clauses cited in the answer genuinely support the
stated claims, ensuring that answers remain grounded in authoritative contract
text. Query latency measures the total response time from query submission to
answer delivery, reflecting system responsiveness for interactive use. Cost per
query estimates average API expenditure per request, combining embedding and
generation token usage to evaluate economic sustainability.

The evaluation dataset comprises forty synthetic queries representative of real
customer interactions, including twenty coverage-related questions, ten about
exclusions, five focusing on deductibles, and five involving complex multi-clause
reasoning. Each query is processed through the complete RAG pipeline, including
embedding, retrieval, and GPT-4 generation. Human evaluators review retrieved
passages and generated responses against the synthetic policy corpus, assigning
binary or ordinal judgments for relevance, completeness, and citation validity.
Latency and cost are measured automatically through system logs. Together, these
measurements provide a comprehensive assessment of the system’s interpretive
accuracy, factual grounding, and operational efficiency in policy question answering.

4.2.4 System Performance

Efficiency is evaluated along four dimensions, end-to-end processing time capturing
total latency from document upload to final decision, component latency reporting

129

Empirical Evaluation

the breakdown across OCR, validation, and RAG queries, API cost per claim aggre-
gating OpenAl usage for embeddings and generation, and memory usage measuring
peak consumption during processing. Measurement proceeds by instrumenting the
codebase with timestamps at each pipeline stage, computing descriptive statistics
over one hundred claim runs, and correlating logged token counts with the OpenAl
usage dashboard to derive per-claim costs, while runtime profiling captures peak
resident set size to quantify memory usage.

4.3 Experimental Setup

4.3.1 Test Datasets

All evaluation experiments are conducted entirely on synthetic data produced by
the system’s LLM-based data generation pipeline, ensuring full privacy compliance
while preserving the structural and linguistic realism required for reproducible
testing.

The document processing test set comprises thirty insurance-related documents
representing diverse real-world conditions, including ten clean digital PDFs con-
taining machine-readable policy text, ten scanned claim forms exhibiting simulated
noise and skew, and ten smartphone photos of receipts with perspective distortion
and lighting variation. Each document has manually verified ground truth values
for extracted fields such as policy number, claim amount, date, and customer
identification, enabling precise measurement of OCR accuracy and field extraction
reliability.

The claims validation test set includes fifty synthetic insurance claims covering
a spectrum of scenarios, twenty straightforward approved claims clearly covered by
policy terms, ten straightforward denied claims explicitly excluded, fifteen complex
multi-coverage cases involving partial reimbursements or overlapping clauses, and
five edge cases testing boundaries such as policy limits and ambiguous contract
language. Each claim includes manually computed ground truth coverage decisions
and reimbursement amounts to evaluate the system’s validation and calculation
logic.

The RAG query test set consists of forty natural-language policy questions
representing customer interactions, twenty coverage questions phrased as “Am
I covered for X,” ten exclusion-related queries testing detection of disallowed
scenarios, five financial queries focusing on deductibles and coverage limits, and
five multi-clause reasoning questions requiring synthesis across multiple policy
sections. Each query has a manually verified ground truth answer referencing the
corresponding policy clauses, supporting evaluation of retrieval relevance, response
completeness, and citation accuracy.

130

Empirical Evaluation

4.3.2 Baseline Comparisons

Document processing evaluation compares the hybrid PDF and OCR pipeline
with a PDF-only extraction baseline to quantify accuracy improvements gained
through adaptive routing and preprocessing. The analysis also examines the effect
of individual preprocessing steps such as deskewing, denoising, and thresholding on
extraction accuracy across document types. Claims validation evaluation contrasts
the full hybrid system combining LLM reasoning with deterministic rules against
a purely rule-based implementation to measure the incremental contribution of
Al components to decision accuracy and coverage interpretation. System cost
evaluation measures end-to-end operational expenses per processed claim, including
API costs for LLM and embeddings calls, to determine the system’s economic
viability under realistic deployment conditions.

4.3.3 Evaluation Implementation

Automated metrics are computed through Python scripts that evaluate field ex-
traction accuracy using exact string matching against ground truth values, verify
financial calculation correctness with Decimal arithmetic to ensure cent-level pre-
cision, measure total and component processing times using time.perf counter(),
and track OpenAl API usage and associated costs through aggregated usage logs.
Manual evaluation complements quantitative metrics by assessing RAG query
quality through expert review, determining whether retrieved policy documents
contain the necessary information, whether generated answers faithfully reflect
the contractual terms, and whether citations correctly reference the supporting
source material. Error analysis categorizes observed failures into five types, in-
cluding OCR misreads caused by poor image quality, field extraction failures due
to parsing limitations, coverage logic errors arising from policy misclassification,
calculation precision discrepancies resulting from rounding or data type issues,
and RAG-related errors such as hallucinations or irrelevant document retrievals,
enabling targeted refinement of system components.

4.4 Results and Analysis

4.4.1 Document Processing Performance

We evaluated document processing accuracy and efficiency across 30 test documents,
measuring both field extraction correctness and processing speed.

131

Empirical Evaluation

Table 4.1: Field extraction accuracy by document type

Document Type Documents Precision Recall F1 Score Avg Time (s)

Clean PDFs 10 98.5% 97.2% 97.8% 0.012
Scanned Images 10 87.3% 84.6% 85.9% 2.34
Smartphone Photos 10 72.1% 68.4% 70.2% 3.87
Overall 30 86.0% 83.4% 84.7% 2.08

Average Processing Time by Document Type

3.87s

Overall Average: 2.08s

Time (seconds)

0.1 5

0.012s
0.01

T
Clean Digital PDFs Scanned Images Smartphone Photos

Note: Native PDFs require minimal processing; image-based OCR takes significantly longer.

Figure 4.1: Processing time comparison showing native PDF extraction speed
advantage versus OCR-based methods for scanned and photographed documents

Table 4.2: Field-level extraction results

Field Type Total Fields Correctly Extracted Extraction Rate
Policy Number 30 28 93.3%
Claim Amount 30 26 86.7%
Date of Incident 30 25 83.3%
Coverage Type 30 27 90.0%
Customer Tax Code 30 24 80.0%
Total 150 130 86.7%

Clean PDFs achieve the highest extraction accuracy because native text extrac-
tion bypasses OCR entirely and avoids recognition errors. Scanned documents
produce moderate results depending on image clarity, skew, and resolution, while

132

Empirical Evaluation

smartphone photos remain the most difficult due to lighting inconsistencies, re-
flections, and motion blur. The hybrid pipeline combining native PDF extraction
with enhanced OCR fallback effectively routes each document to the most suitable
method, maintaining robust performance across diverse formats. Common errors
include date format variations that fail to match expected patterns, handwritten
annotations that OCR cannot interpret, poor lighting or glare obscuring text, and
multi-column layouts that occasionally cause field misalignment or incorrect data
association.

4.4.2 RAG Query Performance

We evaluated the RAG system’s ability to answer policy-related questions accurately
and efficiently across 40 test queries.

Table 4.3: RAG answer quality assessment

Query Category Queries Correct Answers Accuracy Avg Latency (s)

Coverage Questions 20 18 90.0% 5.42
Exclusion Queries 10 9 90.0% 6.18
Financial Questions 5 4 80.0% 4.85
Complex Reasoning 5 3 60.0% 9.64
Total 40 34 85.0% 6.27

W Accuracy (%) =@= Avg Latency (s)
100 4

9.64s

801

60

Accuracy (%)
o~
Average Latency (s)

40 A

201

Coverage Questions Exclusion Queries Financial Questions Complex Reasoning
(n=20) (n=10) (n=5) (n=5)

[Note: Complex reasoning queries show lower accuracy (60%) and higher latency (9.645)J

Figure 4.2: Answer accuracy and query latency across four query categories
(coverage, exclusion, financial, complex reasoning) based on 40 synthetic queries

133

Empirical Evaluation

Table 4.4: Citation and retrieval quality

Metric Count/Rate Percentage
Queries with Citations 38 95.0%
Valid Citations 35 87.5%
Invalid /Missing Citations 5 12.5%
Queries with Relevant Retrieval 36 90.0%
Failed Retrievals 4 10.0%

The RAG system performs strongly on straightforward coverage and exclusion
questions where policy language is clear and unambiguous. Complex multi-clause
reasoning scenarios remain more difficult, occasionally requiring multiple retrieval
passes or human verification to ensure accuracy. The dual vectorstore architecture
effectively separates permanent policy documents from temporary customer uploads
while maintaining negligible performance overhead. Manual verification shows that
most citations accurately reference the correct policy clauses, with occasional
minor imprecision in clause-level references. The citation mechanism substantially
reduces hallucination risk compared to unguided LLM generation, improving
trustworthiness and regulatory alignment. Average query latency varies by query
complexity: straightforward coverage and exclusion queries average approximately
5-6 seconds, while complex reasoning queries require up to 10 seconds. The overall
average latency of 6.27 seconds remains acceptable for customer-facing applications,
though complex queries may benefit from asynchronous processing. Embedding
operations contribute minimal cost thanks to caching, while LLM generation
constitutes the main cost driver. Retrieval consistently surfaces between three and
five relevant document chunks per query, balancing completeness and efficiency.

4.4.3 Claims Validation Accuracy

We processed 50 synthetic claims through the full validation pipeline, comparing
automated decisions and calculations against ground truth.

Claim Type Total Claims Correct Decisions Accuracy Avg Time (s)
Straightforward Approved 20 19 95.0% 4.62
Straightforward Denied 10 9 90.0% 4.38
Complex Multi-Coverage 15 12 80.0% 6.87
Edge Cases 5 3 60.0% 8.24
Overall 50 43 86.0% 5.53

Table 4.5: Coverage decision accuracy by claim type

134

Empirical Evaluation

Coverage Decision Accuracy by Claim Type
100

95,0

(15/20)
90.0%
©110)

80.0%
a2n1s)
80

60.0%
(3/5)
60 4

40

Decision Accuracy (%)

204

Straightforward Approved Straightforward Denied Complex Multi-Coverage Edge Cases

Decision Accurac y Avg. Processing Time

Note: Edge cases show lowest accuracy (60%) and highest processing time (8.24s), indicating need for human review

Figure 4.3: Decision accuracy and processing time across four claim types
(straightforward approved/denied, complex multi-coverage, edge cases) from 50
synthetic claims

Table 4.6: Financial calculation accuracy

Metric Value Target Threshold
Calculations Within +5% 47 (94.0%) > 95%

Mean Absolute Error (€) 12.34 < 50

Max Error (€) 87.50 < 200
Deductible Application Errors 2 0
Coverage Limit Violations 0 0

The hybrid validation system combining LLM-based extraction, rule-based
validation, and precise Decimal arithmetic delivers high accuracy on straightforward
claims. Using Python’s Decimal class ensures financial computations remain
exact, avoiding rounding errors that can occur with floating-point arithmetic.
Complex multi-coverage scenarios occasionally require human oversight, especially
when multiple deductibles or limits interact in ways that demand contextual
interpretation. Most observed errors originate from upstream OCR inaccuracies,
such as missing or misread fields, rather than flaws in the validation or calculation
logic itself. When input data is correct, the deterministic components perform
consistently and reliably. Compared with rule-based-only approaches, the inclusion
of LLM components enhances flexibility in interpreting diverse input formats and

135

Empirical Evaluation

extracting information from unstructured text, while the rule-based layer guarantees
deterministic validation and financially precise computations.

4.4.4 End-to-End System Performance

We measured system efficiency by processing 100 claims and tracking latency,

throughput, and costs.

Table 4.7: Processing time breakdown

Component Avg Time (s) % of Total Notes
Document Upload 0.15 2.4% File transfer + validation
OCR Processing 2.08 33.5% Varies by document type
Field Extraction 0.42 6.8% Pattern matching + parsing
Validation Logic 0.35 5.6% Policy checks + calculations
RAG Queries (if needed) 3.21 51.7% Average 1-2 queries/claim
Total End-to-End 6.21 100% Target: < 10s

Processing Time Breakdown per Claim

Varies by document type

|
1—Document Upload: 0.15s (2.4%) ‘ Validation Logic: 0.35s (5.6%)
Field Extraction: 0.42s (6.8%)

RAG Queries account for
51.7% of total processing time

OCR Processing: 2.08s (33.5%) RAG Queries (if needed): 3.21s (51.7%)

Target met (actual
6.21s < 10s target)

Total End-to-End Time:
6.21s

Target Threshold:
< 10 seconds

Figure 4.4: Component-level time breakdown showing contributions from docu-
ment upload, OCR, field extraction, validation, and RAG queries, with 5-second

target threshold

136

Empirical Evaluation

Table 4.8: Cost analysis per claim

Cost Component Cost per Claim (€) Percentage
Document Embeddings 0.0008 2.7%
RAG Query Generation 0.0285 96.3%
Policy Embeddings (amortized) 0.0002 0.7%
Total 0.0295 100%

API Cost Breakdown per Claim

Policy Embeddings ~— Document
(amortized), | Embeddings,
€0.0002, 0.7% €0.0008, 2.7%

Document Embeddings,
€0.0008, 2.7%

RAG Query
Generation,
€0.0285,
96.3%

Total: €0.0295 per claim

| Note: RAG Query Generation accounts for 96.3% of total cost (€0.0285 per claim) |

Figure 4.5: API cost breakdown per claim showing document embeddings,
RAG generation, and amortized policy embeddings components with percentage
contributions

Table 4.9: Scalability estimate

Monthly Volume Total Monthly Cost (€) Cost per Claim (€)

1,000 claims 29.50 0.0295
5,000 claims 147.50 0.0295
10,000 claims 295.00 0.0295

End-to-end processing times remain comfortably within thresholds suitable for
customer-facing use, providing near-interactive performance. OCR contributes
most to latency, particularly for scanned or photographed documents that require
preprocessing, while native PDFs process almost instantly. Retrieval and generation
through the RAG subsystem add modest additional latency, occurring only for

137

Empirical Evaluation

claims that require policy interpretation, roughly one third of total cases. LLM
generation represents the dominant share of per-claim costs, while embedding
expenses are negligible thanks to caching and one-time embedding of policy doc-
uments. As query volume scales, fixed costs for embeddings and infrastructure
are amortized, improving cost efficiency. The single-server deployment supports
sequential processing adequate for small and mid-sized insurers, while horizontal
scaling through additional worker instances could easily extend throughput capacity
due to the stateless design of the API and separation of databases and vectorstores.

4.5 Discussion

4.5.1 Key Findings Summary

The hybrid PDF and OCR pipeline efficiently accommodates diverse document
types. Clean PDFs yield near-perfect extraction accuracy through native text pars-
ing, while image documents gain substantial improvements from preprocessing that
enhances OCR reliability. The main limitation persists with low-quality smartphone
photos where blur, glare, and skew reduce legibility, even after enhancement. Intel-
ligent document-type routing proves crucial, as applying intensive preprocessing to
digital PDFs adds unnecessary overhead without accuracy benefits. The integration
of LLM-based extraction with rule-based validation and precise Decimal arithmetic
ensures consistent coverage assessments and financially accurate calculations for
standard claims. Most observed errors originate from OCR inaccuracies rather
than logic faults, and complex multi-coverage claims with multiple interacting
deductibles or limits remain best reviewed by human adjusters. The modular
architecture enables insurers to calibrate automation thresholds to align with their
operational risk tolerance.

RAG-based policy interpretation performs effectively for interactive insurance
applications, delivering grounded and verifiable answers. The inclusion of explicit
citation mechanisms minimizes hallucination risk and supports compliance with
explainability requirements, though human verification remains advisable for critical
or high-value cases. The dual vectorstore approach meets privacy constraints
while maintaining efficient retrieval performance. Query latency and operational
costs remain comfortably within production-ready limits for small and mid-sized
deployments.

Overall system efficiency aligns with interactive usage expectations. End-to-end
processing latency remains low enough for real-time or near-real-time use, and
overall cost per claim is primarily influenced by LLM generation frequency. Limiting
high-cost model usage to cases that truly require reasoning or policy interpretation
yields substantial cost savings. The stateless API architecture supports horizontal
scaling across multiple worker instances, ensuring scalability for growing workloads,

138

Empirical Evaluation

although external API rate limits could become a bottleneck under very high
transaction volumes.

4.5.2 Limitations and Constraints

The evaluation is based entirely on synthetic data generated within the system,
ensuring full privacy compliance but potentially omitting the irregularities and
edge cases common in real-world insurance workflows. While the test sets of thirty
documents, fifty claims, and forty policy queries provide a solid foundation for
measuring performance and validating system behavior, they do not capture the
statistical diversity necessary to expose rare or adversarial failures. Transitioning
to production deployment should therefore include continuous monitoring with real
anonymized claims data to confirm robustness and refine model calibration over
time.

The system’s current scope is limited to standard property and automotive
claims where document structures and decision logic are relatively consistent. More
complex claim types such as liability, medical, or multi-party disputes remain
beyond the present evaluation and would require significant domain adaptation.
OCR performance is strong for printed text but still challenged by handwriting, non-
Latin scripts, and documents with dense tabular or highly formatted layouts. The
implementation targets Italian and English contexts, meaning broader international
deployment would necessitate localized models, language handling, and regulatory
adaptation.

System reliability and economics remain closely tied to external technology
dependencies, particularly the OpenAI API, whose model pricing, throughput limits,
and latency variability directly influence both performance and cost predictability.
Sustained production use would benefit from model diversification, with fallbacks or
fine-tuned local models mitigating risks of dependency, pricing changes, or service
disruption while allowing continuous optimization of the accuracy—cost balance.

4.5.3 Practical Deployment Considerations

Automation delivers its greatest benefit in high-volume, routine claims where
documentation is complete and policy interpretation follows predictable patterns. In
these cases, automated workflows can process claims efficiently, applying consistent
logic and producing verifiable results with minimal human intervention. The system
is particularly well suited for low to medium value claims, for instance those below
five thousand euros, and for coverage types governed by clear contractual terms.
Cases involving high claim values, ambiguous or contradictory policy language,
incomplete documentation, or scenarios near coverage boundaries remain better
suited for human review, allowing expert oversight in decisions that carry greater

139

Empirical Evaluation

financial or regulatory risk.

From an economic perspective, the system presents a favorable cost—benefit
balance once claim volumes reach several thousand per month. Fixed investments
in infrastructure, embeddings, and development amortize quickly across large
workloads, while per-claim variable costs tied to LLM usage remain manageable
through selective model invocation and caching. A complete break-even analysis
should account for labor savings, improvements in customer satisfaction resulting
from faster turnaround times, and reductions in error rates due to deterministic
validation and consistent application of policy rules.

Deployment in production environments requires integration with existing claims
management systems, customer databases, and policy repositories. The modular
API-based architecture simplifies this integration, allowing the system to act as
an intelligent processing layer between front-end interfaces and legacy systems.
Rigorous data validation at integration points ensures consistency and prevents
propagation of erroneous inputs. Built-in audit logging and explainability features
reinforce regulatory compliance, enabling transparent review of each automated
decision and supporting internal quality assurance procedures.

4.6 Chapter Summary

This chapter evaluated the Al-powered insurance claims processing system across
document processing accuracy, claims validation performance, RAG-based policy
interpretation, and overall system efficiency using synthetic datasets.

Results show that field extraction performs with near-perfect accuracy on digital
PDFs and acceptable accuracy on scanned documents, while smartphone images
remain the most error-prone due to lighting, skew, and resolution issues. The
hybrid PDF and OCR pipeline, supported by intelligent document-type routing,
significantly improves robustness and minimizes unnecessary computation. Claims
validation achieves consistent accuracy on routine cases, combining the flexibility
of LLM-based extraction with the determinism of rule-based validation and exact
decimal arithmetic. Most residual errors arise from OCR inaccuracies rather than
logic failures, indicating that upstream extraction quality remains the main factor
influencing end-to-end reliability.

RAG-based policy interpretation demonstrates strong practical viability for
customer queries, successfully grounding responses in retrieved clauses and reducing
hallucination risk through explicit citation enforcement. The dual vectorstore design
achieves full privacy compliance without compromising retrieval speed or accuracy.
Query latency and cost remain well within production thresholds, confirming
scalability for real-world deployment.

140

Empirical Evaluation

Overall system efficiency meets interactive expectations, with end-to-end pro-
cessing times suitable for customer-facing applications and costs scaling predictably
when LLM usage is optimized. The stateless API design enables straightforward
horizontal scaling across multiple workers, supporting future expansion for higher
claim volumes.

The evaluation’s scope, limited to synthetic datasets and straightforward prop-
erty and automotive claims, restricts statistical generalization and omits complex
domains such as liability and medical claims. Nevertheless, the results provide
a clear foundation for production deployment under a confidence-based routing
strategy, automating standard cases while routing uncertain or high-value claims
for human review. Continuous monitoring with real claims data will be essen-
tial to validate performance, refine thresholds, and ensure sustained compliance.
These findings confirm that Al-driven claims automation can substantially enhance
efficiency and consistency in insurance operations when combined with human over-
sight, demonstrating that hybrid human-Al workflows can meet both operational
and regulatory standards.

141

Chapter 5

Conclusions

5.1 Background and Motivation

5.2 Summary of Contributions

This thesis explored the automation of insurance claims assessment through the
integration of Large Language Models, Retrieval-Augmented Generation, and
advanced OCR techniques, demonstrating that intelligent automation can transform
a traditionally manual and time-consuming process into a streamlined, data-driven
workflow. The research shows that Al-powered systems can deliver significant
gains in processing speed and cost efficiency while maintaining the high standards
of accuracy, interpretability, and regulatory compliance required in the insurance
sector. By combining scalable machine intelligence with transparent reasoning
and human oversight mechanisms, the implemented architecture illustrates how
next-generation insurance platforms can achieve operational excellence without
sacrificing trust, accountability, or customer confidence.

5.2.1 Technical Contributions

The central technical contribution of this thesis lies in the design and implementation
of a production-grade system architecture that integrates multiple Al components,
retrieval-augmented generation, optical character recognition, and large language
model orchestration, into a unified and regulatory-compliant workflow for insurance
claims processing. Each subsystem embodies a design pattern that addresses a
specific technical and compliance challenge while remaining generalizable to other
data-intensive and privacy-sensitive domains.

The dual vectorstore architecture represents a foundational advance in the
application of RAG within regulated environments. By maintaining strict separation

142

Conclusions

between permanent and ephemeral knowledge stores, it resolves the tension between
retrieval performance and data protection. Permanent corporate documents such
as policy texts and contractual terms reside indefinitely in a persistent ChromaDB
instance optimized for large-scale semantic retrieval, while customer-uploaded
materials are stored in a temporary vectorstore created per session and automatically
deleted upon cleanup or system shutdown. This design enforces GDPR’s principles
of storage limitation and data minimization at the architectural level, ensuring
that personal data never becomes entangled with permanent knowledge sources.
Beyond insurance, this separation model offers a reusable blueprint for sectors such
as finance, healthcare, and legal services, where retrieval systems must balance
persistent institutional memory with transient and privacy-constrained user data.

The hybrid OCR processing pipeline advances document understanding by
tailoring processing to document characteristics rather than relying on a uni-
form approach. Digital PDFs are routed through native text extractors such as
PyMuPDF and PDFMiner, providing near-instant results with perfect fidelity
when structured text layers are available. Scanned or degraded documents are
automatically detected and processed through a six-stage enhancement pipeline con-
sisting of grayscale normalization, deskewing, contrast-limited adaptive histogram
equalization, denoising, adaptive thresholding, and morphological refinement before
being interpreted via Tesseract OCR. This adaptive routing minimizes unnecessary
computational cost and maximizes recognition accuracy across heterogeneous docu-
ment types. The result is a cost-efficient and high-accuracy OCR subsystem capable
of handling real-world insurance artifacts ranging from machine-generated policies
to low-quality mobile photographs, all within a unified abstraction accessible to
upstream services.

The tiered LLM selection strategy contributes an empirically validated frame-
work for optimizing quality and cost balance in multi-model production systems.
Lightweight models such as GPT-3.5-turbo are allocated to deterministic and low-
context tasks including identifier extraction, coverage classification, and structured
field parsing, while GPT-4 is reserved for tasks requiring deep contextual reasoning
such as interpreting multi-clause policy wording or evaluating borderline claim
scenarios. Benchmarking shows that this task-based tiering achieves comparable
decision quality to all-GPT-4 configurations while reducing token costs by over
half, providing a scalable operational template for any enterprise deploying LLMs
under budgetary constraints. This cost-aware orchestration strategy demonstrates
how careful task decomposition can preserve reasoning fidelity while maintaining
economic feasibility.

Finally, the grounded generation mechanisms provide a structural safeguard
against hallucination, a critical requirement in compliance-bound sectors. By
embedding citation prompts into RAG queries and validating that generated
responses reference retrieved contract clauses, the system ensures factual grounding

143

Conclusions

of every answer. The resulting Al behavior remains transparent and verifiable, as
each response can be traced back to the precise contractual provisions that informed
it. This explicit grounding not only prevents the dissemination of fabricated or
non-contractual information but also satisfies explainability and accountability
requirements under frameworks such as the Insurance Distribution Directive and
the EU AI Act. In doing so, it bridges the operational advantages of Al-driven
automation with the evidentiary rigor demanded by regulatory oversight.

Together, these innovations, privacy-preserving vectorstore separation, adaptive
OCR orchestration, model-tiered reasoning, and citation-grounded generation,
constitute a cohesive architecture that demonstrates how advanced Al technologies
can be responsibly deployed in safety-critical and legally regulated domains.

5.2.2 Methodological Contributions

The synthetic data generation methodology establishes a privacy-compliant foun-
dation for evaluating Al systems in data-sensitive environments. By using GPT-4
to generate realistic yet artificial insurance datasets that include customer records,
policy contracts, and claim scenarios, structured through carefully designed prompts
with built-in consistency validation, the approach allows end-to-end testing without
exposing personal information. It enables rigorous experimentation, benchmark-
ing, and public demonstration while adhering to privacy regulations that prohibit
sharing real customer data. Although synthetic data lacks the full variability and
subtlety of real-world datasets, it captures sufficient structural and semantic fidelity
to meaningfully evaluate model reasoning, system integration, and compliance
workflows, thus offering a viable substitute for sensitive proprietary data.

The evaluation framework redefines Al performance assessment for the insurance
context by replacing general-purpose linguistic metrics with retrieval-augmented
generation measures that reflect regulatory and operational priorities. Metrics
such as faithfulness, citation accuracy, and hallucination rate directly evaluate the
factual integrity and explainability of generated outputs, aligning model assessment
with compliance standards that require verifiable and traceable decision logic. The
evaluation spans multiple dimensions including OCR extraction accuracy, RAG
faithfulness, overall system responsiveness, cost efficiency, and agreement between
Al-generated and human-reviewed decisions, providing a holistic validation of both
technical robustness and business readiness. This framework offers a replicable
model for assessing Al systems in regulated domains where reliability, interpretabil-
ity, and accountability are more critical than stylistic or lexical precision.

144

Conclusions

5.3 Limitations and Future Enhancements

While the system demonstrates technical feasibility and operational viability, several
limitations suggest directions for future research and development.

5.3.1 Data and Evaluation Limitations

The most significant limitation is evaluation on synthetic rather than real data, since
although synthetic data generation enabled privacy-compliant experimentation and
comprehensive testing, such datasets inevitably fail to reproduce the full complexity
and irregularity of real insurance claims. Actual claims often contain heterogeneous
document structures, ambiguous or contradictory statements, incomplete informa-
tion, and even adversarial content such as fraudulent or misleading submissions,
all of which challenge Al systems in ways that curated synthetic data rarely does.
To ensure robustness and external validity, future research should incorporate real
insurance data obtained under controlled privacy agreements, enabling quantitative
measurement of generalization from synthetic to authentic conditions and precise
identification of failure modes that emerge only in production environments.
Human evaluation limitations further constrain confidence in RAG faithfulness
and reliability assessments, as manual verification of faithfulness, citation accuracy,
and hallucination rate remains time-consuming, subjective, and sensitive to annota-
tor interpretation. The limited scale of human review restricts statistical confidence
and reproducibility, making it difficult to detect subtle degradations across updates
or model versions. Future work should develop automated or semi-automated
faithfulness metrics based on natural language inference and factual consistency
modeling to approximate human judgments at scale, enabling continuous, low-cost
monitoring of model integrity. Moreover, the current evaluation framework provides
only a static snapshot of performance; it does not measure longitudinal stability
as policies evolve, new claim categories appear, or underlying LLM APIs change.
Implementing continuous evaluation pipelines that periodically re-assess accuracy,
grounding quality, and system cost-efficiency would ensure sustained compliance
and performance over time, a prerequisite for dependable production deployment.

5.3.2 Functional Enhancements

Client identification could be extended beyond current capabilities to support
broader input formats and ambiguity resolution. While the system currently handles
explicit customer IDs and name-based matching, further improvements could enable
identification through alternative identifiers such as policy numbers, partial names,
or incomplete information. This could involve integrating lightweight Named Entity
Recognition models fine-tuned on insurance-specific entities, or adopting few-shot

145

Conclusions

prompting strategies where LLMs are guided with examples of valid identifiers.
Such enhancements would allow the system to infer intent and identify customers
even when information is indirect or incomplete, aligning more closely with natural
conversational behavior.

Unified cross-vectorstore retrieval would enable seamless reasoning across per-
manent and temporary knowledge sources. At present, policy-related queries access
only the permanent vectorstore while uploaded documents are handled separately.
Implementing joint retrieval that simultaneously queries both sources, merges re-
sults according to normalized similarity scores, and removes duplicates would allow
cross-referenced analysis such as verifying whether an uploaded receipt aligns with
a policy’s deductible clause. This enhancement requires intelligent result fusion
and context window optimization to prevent prompt overloading while maintaining
balanced coverage between persistent and transient content.

Multi-modal evidence processing presents another direction for advancement.
The current OCR pipeline processes textual information effectively, yet insurance
claims frequently include images of vehicle damage, scanned signatures, or diagrams
that require visual understanding. Incorporating multi-modal models such as GPT-
4 Vision would enable direct reasoning over visual content, supporting use cases
like verifying whether photographed damage corresponds to the claim description
or whether a signature matches stored templates. Given the high computational
and financial cost of visual models, future versions could apply selective activation,
invoking vision-based analysis only when image metadata or context indicates
potential relevance.

Session-based conversation management would improve continuity and efficiency
in user interaction. Each current request is stateless, requiring users to repeat
identifiers or reintroduce context for follow-up questions. Introducing session
persistence, either through browser-side local storage or server-managed session
databases with expiration policies, would allow the system to remember recent
clients, coverage types, and retrieved documents. This enhancement would enable
fluid multi-turn dialogues where users can naturally refine or extend previous
queries without re-specification, creating a more conversational and user-friendly
experience while preserving privacy through scoped, time-limited session memory.

5.3.3 Production Readiness Enhancements

Role-based access control (RBAC) is essential to enforce least-privilege principles
and safeguard sensitive data. The current architecture allows unrestricted access
to all API endpoints, which is acceptable for internal or prototype deployments
but insufficient for production environments handling real customer data. Intro-
ducing RBAC would restrict endpoint access according to user roles, ensuring that
customers can query only their own policies, adjusters can view claims within their

146

Conclusions

jurisdiction, and administrators can modify configuration or monitor system health.
This can be achieved through OAuth 2.0 or comparable authentication frameworks,
integrating identity providers for token-based verification and augmenting database
queries with row-level security, ensuring alignment with enterprise-grade security
standards and regulatory expectations for controlled data access.

Rate limiting and abuse protection are critical to maintaining operational
stability and cost predictability. In the absence of rate limits, a malfunctioning
client or intentional misuse could trigger excessive queries, exhausting API quotas
or generating unbounded expenses. Implementing tiered limits based on user roles,
for example ten queries per minute for customers, one hundred for adjusters, and
unrestricted access for administrators, would preserve fair resource allocation while
preventing denial of service conditions. Graceful degradation mechanisms, such as
temporary queuing rather than abrupt rejection near thresholds, would maintain
service continuity while discouraging overuse.

Comprehensive audit logging strengthens regulatory compliance and operational
transparency. Extending the existing structured logging system into a full audit
trail would record user identities, action categories, timestamps, data accessed, and
decision outcomes in immutable, tamper-evident storage. Such logs would support
compliance audits by demonstrating human oversight in automated decisions, enable
forensic analysis of security incidents, and facilitate continuous quality assurance
by detecting recurring model errors or anomalous user behavior. Audit record
retention and access policies would need to follow GDPR and IDD constraints,
balancing accountability with privacy.

Distributed vectorstore deployment represents a key scalability enhancement.
The embedded configuration of ChromaDB limits concurrency and dataset size to a
single host, constraining throughput for large-scale insurance operations. Migrating
to a distributed configuration, either through ChromaDB’s client-server mode
or managed vector database platforms such as Pinecone, Weaviate, or Qdrant,
would allow the system to handle millions of document chunks and thousands
of simultaneous queries. This transition introduces infrastructure complexity,
requiring network orchestration, replica synchronization, and observability, but
enables horizontal scaling and fault-tolerant retrieval suitable for enterprise-grade
deployments.

5.4 Concluding Remarks

The integration of Large Language Models, Retrieval-Augmented Generation, and
advanced OCR processing represents a major advancement in insurance claims au-
tomation, showing that modern AI can effectively support human decision-making
in complex regulated domains while preserving the transparency, accountability,

147

Conclusions

and human oversight demanded by law and customer trust. This thesis demon-
strates that Al-powered claims processing is not only technically feasible but also
operationally viable, achieving interactive response times, economically sustainable
costs, and accuracy levels comparable to human adjusters in routine cases.

The architectural patterns developed in this research, including dual vectorstore
separation, hybrid document processing, tiered LLM selection, and grounded gen-
eration with explicit citations, extend beyond the insurance industry and can be
applied to other regulated sectors facing similar challenges. Healthcare organiza-
tions managing medical records and knowledge repositories, financial institutions
processing loan applications under strict regulatory frameworks, legal professionals
interpreting case law and statutes, and government agencies administering benefits
programs all encounter comparable requirements. They must combine large, persis-
tent knowledge bases with sensitive, short-lived user data, handle diverse document
formats, perform complex reasoning grounded in authoritative sources, and comply
with stringent transparency and auditability standards. The system architecture
and evaluation methodology presented in this thesis provide a transferable blueprint
for deploying AI solutions that satisfy these cross-domain demands.

The human-in-the-loop design philosophy underpinning the system embodies a
pragmatic vision of Al deployment in high-stakes environments. Instead of seeking
full automation, the system uses Al to resolve routine cases representing roughly
half of all claims while escalating ambiguous or low-confidence cases to human
experts. This balanced approach maximizes efficiency by automating predictable
tasks while retaining expert oversight where judgment and context are critical.
As model performance and retrieval precision improve, the boundary between
automated and human-reviewed cases will continue to evolve, yet the guiding
principle of Al augmentation rather than replacement will remain essential in
sectors where accountability and trust define legitimacy.

Future progress will emerge from the convergence of increasingly capable foun-
dation models, enhanced retrieval and grounding mechanisms, and richer domain-
specific training datasets. However, success will depend as much on governance
as on technology. Effective Al deployment in regulated environments demands
attention to compliance, privacy, explainability, and oversight from the earliest
design stages. This thesis illustrates that these constraints, far from limiting inno-
vation, can shape architectures that are more resilient, transparent, and aligned
with institutional and societal expectations. Sustainable Al in regulated domains is
achieved not by circumventing regulation but by internalizing it, turning compliance
into a structural principle that strengthens both technical integrity and public
confidence.

148

Bibliography

Frederick Hayes-Roth, D. A. Waterman, and Douglas B. Lenat. Building
FExpert Systems. Accessed: 2025-11-27. Addison-Wesley Pub. Co., 1983. 1SBN:
0201106868. URL: https://archive.org/details/buildingexpertsy00te
md (cit. on p. 7).

S. Mori, C.Y. Suen, and K. Yamamoto. «Historical review of OCR research
and development». In: Proceedings of the IEEE 80.7 (1992), pp. 1029-1058.
DOI: 10.1109/5.156468 (cit. on pp. 7, 28).

Stijn Viaene, Richard A. Derrig, Bart Baesens, and Guido Dedene. « A Com-
parison of State-of-the-Art Classification Techniques for Expert Automo-
bile Insurance Claim Fraud Detection». In: Journal of Risk and Insurance
69.3 (2002), pp. 373-421. DOI: 10.1111/1539-6975.00023. URL: https :
//doi .org/10.1111/1539-6975.00023 (cit. on p. 7).

Sharmila Subudhi and Suvasini Panigrahi. «Use of optimized Fuzzy C-Means
clustering and supervised classifiers for automobile insurance fraud detection.
In: Journal of King Saud University - Computer and Information Sciences
32.5 (2020), pp. 568-575. 1SsN: 1319-1578. DOI: https://doi.org/10.1016/
j.jksuci.2017.09.010. URL: https://www.sciencedirect.com/science/
article/pii/S1319157817301672 (cit. on p. 7).

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. «Gradient-based learning
applied to document recognition». In: Proceedings of the IEEE 86.11 (1998),
pp. 2278-2324. DOL: 10.1109/5.726791 (cit. on p. 8).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. arXiv: 15612 .03385 [cs.CV]. URL:
https://arxiv.org/abs/1512.03385 (cit. on p. 8).

R. Smith. «An Overview of the Tesseract OCR Engine». In: Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR 2007).
Vol. 2. 2007, pp. 629-633. DOI: 10.1109/ICDAR.2007.4376991 (cit. on pp. 8,
28).

149

https://archive.org/details/buildingexpertsy00temd
https://archive.org/details/buildingexpertsy00temd
https://doi.org/10.1109/5.156468
https://doi.org/10.1111/1539-6975.00023
https://doi.org/10.1111/1539-6975.00023
https://doi.org/10.1111/1539-6975.00023
https://doi.org/https://doi.org/10.1016/j.jksuci.2017.09.010
https://doi.org/https://doi.org/10.1016/j.jksuci.2017.09.010
https://www.sciencedirect.com/science/article/pii/S1319157817301672
https://www.sciencedirect.com/science/article/pii/S1319157817301672
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/ICDAR.2007.4376991

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

Alex Graves, Marcus Liwicki, Santiago Fernandez, Ramon Bertolami, Horst
Bunke, and Jiirgen Schmidhuber. «A novel connectionist system for uncon-
strained handwriting recognition». In: IEEFE Transactions on Pattern Analysis
and Machine Intelligence 31.5 (2009), pp. 855-868. DOI: 10.1109/TPAMI .
2008.137. URL: https://doi.org/10.1109/TPAMI.2008.137 (Cit. on p. 8).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2023. arXiv: 1706.03762 [cs.CL]. URL: https://arxiv.org/abs/
1706.03762 (cit. on p. 8).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv: 1810.04805 [cs.CL]. URL: https://arxiv.org/abs/1810.
04805 (cit. on pp. 8, 40).

Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv:
2005.14165 [cs.CL]. URL: https://arxiv.org/abs/2005.14165 (cit. on
pp. 8, 10-12).

OpenAl et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL].
URL: https://arxiv.org/abs/2303.08774 (cit. on p. 8).

Jason Wei et al. Emergent Abilities of Large Language Models. 2022. arXiv:
2206.07682 [cs.CL]. URL: https://arxiv.org/abs/2206.07682 (cit. on
pp. 8, 12, 15).

Michael Bommarito II and Daniel Martin Katz. GPT Takes the Bar Exam.
2022. arXiv: 2212.14402 [cs.CL]. URL: https://arxiv.org/abs/2212.
14402 (cit. on p. 9).

Daniel M. Katz, Michael J. Bommarito, Shang Gao, and Pablo Arredondo.
«GPT4 passes the bar exam». In: Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 382.2246 (2024).
DOI: 10.1098/rsta.2023.0179. URL: https://doi.org/10.1098/rsta.
2023.0179 (cit. on p. 9).

Patrick Lewis et al. Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks. 2021. arXiv: 2005.11401 [cs.CL]. URL: https://arxiv.org/
abs/2005.11401 (cit. on pp. 9, 24).

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise Zero-Shot
Dense Retrieval without Relevance Labels. 2022. arXiv: 2212.10496 [cs.IR].
URL: https://arxiv.org/abs/2212.10496 (cit. on pp. 9, 24).

150

https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1109/TPAMI.2008.137
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2212.14402
https://arxiv.org/abs/2212.14402
https://arxiv.org/abs/2212.14402
https://doi.org/10.1098/rsta.2023.0179
https://doi.org/10.1098/rsta.2023.0179
https://doi.org/10.1098/rsta.2023.0179
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2212.10496

BIBLIOGRAPHY

[18]

[20]

[21]

[22]

23]

[24]

[26]

[27]

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. «Learning
representations by back-propagating errors». In: Nature 323.6088 (1986),
pp. 533-536. DOI: 10.1038/323533a0. URL: https://doi.org/10.1038/
323533a0 (cit. on p. 10).

Sepp Hochreiter and Jiirgen Schmidhuber. «Long Short-Term Memory». In:
Neural Computation 9.8 (1997), pp. 1735-1780. DOI: 10.1162/neco.1997.
9.8.1735. URL: https://doi.org/10.1162/neco.1997.9.8.1735 (cit. on
p. 10).

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating Long
Sequences with Sparse Transformers. 2019. arXiv: 1904.10509 [cs.LG]. URL:
https://arxiv.org/abs/1904.10509 (cit. on p. 10).

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret.
Transformers are RNNs: Fast Autoregressive Transformers with Linear At-
tention. 2020. arXiv: 2006.16236 [cs.LG]. URL: https://arxiv.org/abs/
2006.16236 (cit. on p. 10).

Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs).
2023. arXiv: 1606 .08415 [cs.LG]. URL: https://arxiv.org/abs/1606.
08415 (cit. on p. 10).

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with Relative
Position Representations. 2018. arXiv: 1803.02155 [cs.CL]. URL: https:
//arxiv.org/abs/1803.02155 (cit. on p. 11).

Ruibin Xiong et al. On Layer Normalization in the Transformer Architecture.
2020. arXiv: 2002.04745 [cs.LG]. URL: https://arxiv.org/abs/2002.
04745 (cit. on p. 11).

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. «Im-
proving Language Understanding by Generative Pre-Training». In: (2018).
preprint. URL: https://cdn. openai.com/research-covers/language-
unsupervised/language_understanding paper.pdf (cit. on p. 11).

Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning
for Text Classification. 2018. arXiv: 1801 . 06146 [cs.CL]. URL: https:
//arxiv.org/abs/1801.06146 (cit. on p. 11).

Rico Sennrich, Barry Haddow, and Alexandra Birch. «Neural Machine Trans-
lation of Rare Words with Subword Units». In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Ed. by Katrin Erk and Noah A. Smith. Berlin, Germany:
Association for Computational Linguistics, Aug. 2016, pp. 1715-1725. DOTI:
10.18653/v1/P16-1162. URL: https://aclanthology.org/P16-1162/
(cit. on p. 11).

151

https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2002.04745
https://arxiv.org/abs/2002.04745
https://arxiv.org/abs/2002.04745
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162/

BIBLIOGRAPHY

28]

[30]

[31]

32]

[33]

[34]

Taku Kudo and John Richardson. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Processing.
2018. arXiv: 1808.06226 [cs.CL]. URL: https://arxiv.org/abs/1808.
06226 (cit. on p. 11).

James Kirkpatrick et al. «Overcoming catastrophic forgetting in neural net-
worksy. In: Proceedings of the National Academy of Sciences 114.13 (Mar.
2017), pp. 3521-3526. 1SSN: 1091-6490. DOIL: 10.1073/pnas.1611835114. URL:
http://dx.doi.org/10.1073/pnas.1611835114 (cit. on p. 12).

Jared Kaplan et al. Scaling Laws for Neural Language Models. 2020. arXiv:
2001.08361 [cs.LG]. URL: https://arxiv.org/abs/2001.08361 (cit. on
p. 12).

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and
Dario Amodei. Deep reinforcement learning from human preferences. 2023.
arXiv: 1706.03741 [stat.ML]. URL: https://arxiv.org/abs/1706.03741
(cit. on p. 13).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Prozimal Policy Optimization Algorithms. 2017. arXiv: 1707 .06347
[cs.LG]. URL: https://arxiv.org/abs/1707.06347 (cit. on p. 13).

Ziwei Ji et al. «Survey of Hallucination in Natural Language Generation». In:
ACM Computing Surveys 55.12 (Mar. 2023), pp. 1-38. 1sSSN: 1557-7341. DOTI:
10.1145/3571730. URL: http://dx.doi.org/10.1145/3571730 (Cit. on
p. 15).

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. «On
Faithfulness and Factuality in Abstractive Summarization». In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics.
Ed. by Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault. Online:
Association for Computational Linguistics, July 2020, pp. 1906-1919. DOI:
10.18653/v1/2020.acl-main. 173. URL: https://aclanthology.org/
2020.acl-main.173/ (cit. on p. 15).

Emily M. Bender and Alexander Koller. «Climbing towards NLU: On Meaning,
Form, and Understanding in the Age of Datay. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Ed. by
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault. Online:
Association for Computational Linguistics, July 2020, pp. 5185-5198. DOI:
10.18653/v1/2020.acl-main.463. URL: https://aclanthology.org/
2020.acl-main.463/ (cit. on p. 16).

152

https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
https://doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3571730
http://dx.doi.org/10.1145/3571730
https://doi.org/10.18653/v1/2020.acl-main.173
https://aclanthology.org/2020.acl-main.173/
https://aclanthology.org/2020.acl-main.173/
https://doi.org/10.18653/v1/2020.acl-main.463
https://aclanthology.org/2020.acl-main.463/
https://aclanthology.org/2020.acl-main.463/

BIBLIOGRAPHY

[36]

[37]

[42]

[43]

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. «On the Dangers of Stochastic Parrots: Can Language Models
Be Too Big?» In: Proceedings of the 2021 ACM Conference on Fuairness,
Accountability, and Transparency (FAccT ’21). 2021, pp. 610-623. DOI: 10.
1145 /3442188 . 3445922. URL: https://dl.acm.org/doi/10.1145/
3442188 .3445922 (Cit. on p. 16).

Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and
Adam Kalai. Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings. 2016. arXiv: 1607 .06520 [cs.CL]. URL: https:
//arxiv.org/abs/1607.06520 (cit. on p. 16).

Zachary C. Lipton. The Mythos of Model Interpretability. 2017. arXiv: 1606.
03490 [cs.LG]. URL: https://arxiv.org/abs/1606.03490 (cit. on p. 17).

Gautier Izacard and Edouard Grave. Leveraging Passage Retrieval with Gener-
ative Models for Open Domain Question Answering. 2021. arXiv: 2007.01282
[cs.CL]. URL: https://arxiv.org/abs/2007.01282 (cit. on p. 17).

Omar Khattab and Matei Zaharia. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. 2020. arXiv: 2004 .
12832 [cs.IR]. URL: https://arxiv.org/abs/2004.12832 (cit. on p. 17).

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu,
Sergey Edunov, Danqgi Chen, and Wen-tau Yih. Dense Passage Retrieval for
Open-Domain Question Answering. 2020. arXiv: 2004.04906 [cs.CL]. URL:
https://arxiv.org/abs/2004.04906 (cit. on p. 19).

Stephen E. Robertson and Hugo Zaragoza. «The Probabilistic Relevance
Framework: BM25 and Beyond». In: Foundations and Trends® in Information
Retrieval 3.4 (2009), pp. 333-389. DOI: 10.1561/1500000019. URL: https:
//doi.org/10.1561/1500000019 (cit. on p. 19).

Nils Reimers and Iryna Gurevych. «Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks». In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Ed. by
Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan. Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 3982-3992. DOT1:
10.18653/v1/D19-1410. URL: https://aclanthology.org/D19-1410/
(cit. on pp. 19, 40).

Arvind Neelakantan et al. Text and Code Embeddings by Contrastive Pre-
Training. 2022. arXiv: 2201.10005 [cs.CL]. URL: https://arxiv.org/abs/
2201.10005 (cit. on pp. 20, 41).

153

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1606.03490
https://arxiv.org/abs/1606.03490
https://arxiv.org/abs/1606.03490
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2007.01282
https://arxiv.org/abs/2004.12832
https://arxiv.org/abs/2004.12832
https://arxiv.org/abs/2004.12832
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D19-1410/
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005
https://arxiv.org/abs/2201.10005

BIBLIOGRAPHY

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Gee Y. Lee, Scott Manski, and Tapabrata Maiti. « Actuarial Applications Of
Word Embedding Models». In: ASTIN Bulletin 50.1 (2020), pp. 1-24. por:
10.1017/AST.2019.19 (cit. on p. 20).

Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest
neighbor search using Hierarchical Navigable Small World graphs. 2018. arXiv:
1603.09320 [cs.DS]. URL: https://arxiv.org/abs/1603.09320 (cit. on
pp. 20, 42).

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search
with GPUs. 2017. arXiv: 1702.08734 [cs.CV]. URL: https://arxiv.org/
abs/1702.08734 (cit. on p. 21).

Herve Jégou, Matthijs Douze, and Cordelia Schmid. «Product Quantization
for Nearest Neighbor Search». In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 33.1 (2011), pp. 117-128. por: 10.1109/TPAMI.2010.57
(cit. on p. 21).

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. Lost in the Middle: How Language Models
Use Long Contexts. 2023. arXiv: 2307.03172 [cs.CL]. URL: https://arxiv.
org/abs/2307.03172 (cit. on p. 26).

Rodrigo Nogueira and Kyunghyun Cho. Passage Re-ranking with BERT. 2020.
arXiv: 1901.04085 [cs.IR]. URL: https://arxiv.org/abs/1901.04085
(cit. on p. 27).

Anthony Kay. «Tesseract: an Open-Source Optical Character Recognition
Engine». In: Linux Journal 2007.155 (2007). Accessed: 2025-11-27. URL:
https://dl.acm.org/doi/fullHtml/10.5555/1288165.1288167 (cit. on
p. 28).

Baoguang Shi, Xiang Bai, and Cong Yao. An End-to-End Trainable Neural
Network for Image-based Sequence Recognition and Its Application to Scene
Text Recognition. 2015. arXiv: 1607.056717 [cs.CV]. URL: https://arxiv.
org/abs/1507.05717 (cit. on p. 29).

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming
Zhou. «LayoutLM: Pre-training of Text and Layout for Document Image
Understanding». In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery amp; Data Mining. KDD '20. ACM,
Aug. 2020, pp. 1192-1200. DOT: 10.1145/3394486 . 3403172. URL: http:
//dx.doi.org/10.1145/3394486.3403172 (cit. on p. 29).

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. LayoutL Muv3:
Pre-training for Document Al with Unified Text and Image Masking. 2022.
arXiv: 2204.08387 [cs.CL]. URL: https://arxiv.org/abs/2204.08387
(cit. on p. 29).

154

https://doi.org/10.1017/AST.2019.19
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/1702.08734
https://doi.org/10.1109/TPAMI.2010.57
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
https://dl.acm.org/doi/fullHtml/10.5555/1288165.1288167
https://arxiv.org/abs/1507.05717
https://arxiv.org/abs/1507.05717
https://arxiv.org/abs/1507.05717
https://doi.org/10.1145/3394486.3403172
http://dx.doi.org/10.1145/3394486.3403172
http://dx.doi.org/10.1145/3394486.3403172
https://arxiv.org/abs/2204.08387
https://arxiv.org/abs/2204.08387

BIBLIOGRAPHY

[58]

[61]

[62]

[63]

[64]

Geewook Kim et al. OCR-free Document Understanding Transformer. 2022.
arXiv: 2111.15664 [cs.LG]. URL: https://arxiv.org/abs/2111.15664
(cit. on p. 29).

Nobuyuki Otsu. « A Threshold Selection Method from Gray-Level Histograms».
In: IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62—
66. DOI: 10.1109/TSMC. 1979.4310076 (cit. on p. 32).

Jaakko Sauvola and Mika Pietikdinen. « Adaptive document image binariza-
tiony. In: Pattern Recognition 33.2 (2000), pp. 225-236. DOI: 10.1016/30031~
3203(99) 00055-2. URL: https://www.sciencedirect . com/science/
article/pii/S0031320399000552 (cit. on p. 32).

C. Tomasi and R. Manduchi. «Bilateral filtering for gray and color im-
agesy». In: Sixth International Conference on Computer Vision (IEEE Cat.
No.98CH36271). 1998, pp. 839-846. DOI: 10.1109/ICCV.1998.710815 (cit.
on p. 32).

D. S. Le, G. R. Thoma, and H. Wechsler. « Automated page orientation and
skew angle detection for binary document images». In: Pattern Recognition

27.10 (1994), pp. 1325 1344 (cit. on p. 32).

M.S. Brown and W.B. Seales. « Document restoration using 3D shape: a general
deskewing algorithm for arbitrarily warped documents». In: Proceedings Eighth
IEEE International Conference on Computer Vision. ICCV 2001. Vol. 2. 2001,
367-374 vol.2. DOI: 10.1109/ICCV.2001.937649 (Cit. on p. 33).

Ram Krishna Pandey and A G Ramakrishnan. Language Independent Single
Document Image Super-Resolution using CNN for improved recognition. 2017.
arXiv: 1701.08835 [cs.CV]. URL: https://arxiv.org/abs/1701.08835
(cit. on p. 33).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Esti-
mation of Word Representations in Vector Space. 2013. arXiv: 1301.3781
[cs.CL]. URL: https://arxiv.org/abs/1301.3781 (cit. on p. 40).

Jeffrey Pennington, Richard Socher, and Christopher Manning. «GloVe:
Global Vectors for Word Representation». In: Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP).
Ed. by Alessandro Moschitti, Bo Pang, and Walter Daelemans. Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 1532-1543. DOI:
10.3115/v1/D14-1162. URL: https://aclanthology.org/D14-1162/
(cit. on p. 40).

Harrison Chase. LangChain: Building applications with LLMs through com-
posability. https : //github . com/langchain-ai/langchain. Accessed:
2025-11-27. 2022 (cit. on p. 45).

155

https://arxiv.org/abs/2111.15664
https://arxiv.org/abs/2111.15664
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/S0031-3203(99)00055-2
https://doi.org/10.1016/S0031-3203(99)00055-2
https://www.sciencedirect.com/science/article/pii/S0031320399000552
https://www.sciencedirect.com/science/article/pii/S0031320399000552
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1109/ICCV.2001.937649
https://arxiv.org/abs/1701.08835
https://arxiv.org/abs/1701.08835
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162/
https://github.com/langchain-ai/langchain

BIBLIOGRAPHY

[68]

[69]

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust
You?": FExplaining the Predictions of Any Classifier. 2016. arXiv: 1602.04938
[cs.LG]. URL: https://arxiv.org/abs/1602.04938 (cit. on p. 54).

Tim Miller. «Explanation in artificial intelligence: Insights from the social
sciencesy. In: Artificial Intelligence 267 (2019), pp. 1-38. 1sSN: 0004-3702.
DOI: https://doi.org/10.1016/j.artint.2018.07.007. URL: https:
//www .sciencedirect.com/science/article/pii/S0004370218305988
(cit. on p. 54).

Nelson Cowan. «The magical number 4 in short-term memory: A recon-
sideration of mental storage capacity». In: Behavioral and Brain Sciences
24.1 (2001), pp. 87-185. pOI: 10.1017/S0140525X01003922. URL: https:
//doi.org/10.1017/80140525X01003922 (cit. on p. 55).

David B. Kaber and Mica R. Endsley. «The effects of level of automation
and adaptive automation on human performance, situation awareness and
workload in a dynamic control task». In: Theoretical Issues in Ergonomics
Science 5.2 (2004), pp. 113-153. DOI: 10.1080/1463922021000054335. URL:
https://doi.org/10.1080/1463922021000054335 (Cit. on p. 55).

Raja Parasuraman and Victor Riley. « Humans and Automation: Use, Misuse,
Disuse, Abuse». In: Human Factors 39.2 (1997), pp. 230-253. DOI: 10.1518/00
1872097778543886. URL: https://doi.org/10.1518/001872097778543886
(cit. on p. 55).

156

https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1080/1463922021000054335
https://doi.org/10.1080/1463922021000054335
https://doi.org/10.1518/001872097778543886
https://doi.org/10.1518/001872097778543886
https://doi.org/10.1518/001872097778543886

	List of Figures
	Introduction
	Background and Motivation
	Problem Statement
	Research Objectives
	Contributions
	Thesis Organization

	Related Work Technologies
	Introduction
	AI in Insurance Claims Management: State of the Art
	Traditional Claims Processing Challenges
	Early Automation Attempts
	Modern AI Technologies
	Industry Applications and Research

	Large Language Models (LLMs)
	the Transformer Architecture
	Pre-training and Fine-tuning Paradigm
	GPT Family: Evolution and Capabilities
	LLM Capabilities Relevant to Insurance
	Limitations and Challenges

	Retrieval Augmented Generation (RAG)
	Motivation and Architecture
	Retrieval Process
	Vector Databases
	RAG Workflow
	Advantages for Insurance Applications
	Challenges and Advanced RAG Techniques

	Optical Character Recognition (OCR) and Document Processing
	OCR Technology Evolution
	OCR Challenges in Insurance Documents
	Image Preprocessing Techniques
	Hybrid OCR Strategies
	Tesseract OCR: Architecture and Usage
	Advanced Document Processing: GPT-4 Vision

	Vector Embeddings and Semantic Search
	Text Embeddings: From Words to Vectors
	OpenAI text-embedding-ada-002
	ChromaDB: Vector Database for LLM Applications
	Dual Vectorstore Architecture
	Chunking Strategies for Insurance Documents

	LangChain Framework
	LangChain Overview
	RAG Implementation with LangChain
	Prompt Engineering with LangChain
	Conversation Memory and Context Management
	LangChain for Production Deployments

	Human-in-the-Loop AI Systems
	Motivation for Human Oversight
	Levels of Automation
	Design Patterns for Human-AI Collaboration
	Human-AI Interface Design
	Evaluation Considerations

	Technology Selection Criteria
	Model Selection Criteria
	RAG vs. Fine-Tuning: Strategic Considerations
	Hybrid OCR Strategy Rationale
	Dual Vectorstore Architecture Rationale
	Technology Selection Summary

	Chapter Summary

	System Architecture
	Problem Definition and Objectives
	Formal Problem Statement
	System Objectives and Success Criteria
	Solution Approach Overview

	System Architecture Overview
	Component Topology
	Request Lifecycle and Data Flow
	Design Principles

	Backend Architecture and API Design
	Application Framework and Lifecycle Management
	Static Asset Serving and Frontend Integration
	Endpoint Design and API Contracts

	Service Layer and Workflow Orchestration
	Chat Service: Policy Question Answering
	Document Service: OCR-Augmented Analysis
	Initialization and Utility Services

	Retrieval-Augmented Generation Subsystem
	Architecture and Component Responsibilities
	Lazy Initialization and Parallel Warm-Up
	Client ID Extraction with Context Tracking
	Coverage Type Inference and Targeted Retrieval
	Structured Reasoning and Prompt Construction
	Conversation Context and Follow-Up Question Handling
	Dual Vectorstore Operations and Caching

	OCR and Document Processing Pipeline
	Pipeline Architecture and Hybrid Extraction
	PDF Extraction and Confidence-Based Classification
	Image OCR Preprocessing and PSM Selection
	Multi-Language, Confidence Scoring, and Field Extraction
	Batch Processing and Scalability

	Claims Validation and Financial Calculation
	Policy Status and Coverage Verification
	Financial Calculation with Decimal Precision
	Alert Generation and Risk Flagging

	Data Layer: Schemas, Persistence, and Retrieval
	SQLite Database Design
	Document Corpus and Metadata Structure
	Vector Embedding Storage and Retrieval

	Frontend Architecture and User Interface Design
	Application Structure and Routing
	Chat Interface and Message Management
	Response Formatting and Progressive Disclosure
	File Upload and Attachment Workflow

	System Integration and Deployment
	Configuration Management
	Logging, Monitoring, and Observability
	Error Handling and Resilience Patterns

	Performance Engineering and Cost Optimization
	Latency Reduction Strategies
	Cost Management and Budget Control

	Security, Privacy, and Regulatory Compliance
	Data Privacy and GDPR Compliance
	Evaluation Data Constraints and Synthetic Data
	Transport Security and API Authentication
	Audit Trails and Compliance Reporting

	Empirical Evaluation
	Background and Motivation
	Evaluation Methodology
	Document Processing Metrics
	Claims Validation Accuracy
	RAG Query Performance
	System Performance

	Experimental Setup
	Test Datasets
	Baseline Comparisons
	Evaluation Implementation

	Results and Analysis
	Document Processing Performance
	RAG Query Performance
	Claims Validation Accuracy
	End-to-End System Performance

	Discussion
	Key Findings Summary
	Limitations and Constraints
	Practical Deployment Considerations

	Chapter Summary

	Conclusions
	Background and Motivation
	Summary of Contributions
	Technical Contributions
	Methodological Contributions

	Limitations and Future Enhancements
	Data and Evaluation Limitations
	Functional Enhancements
	Production Readiness Enhancements

	Concluding Remarks

	Bibliography

