
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Efficient State Space Models for

Edge-Based Spoken Language

Understanding: A Technical Report

Supervisors

Prof. Claudio PASSERONE

Candidate

Seyed Emadodin MOUSAVI

November 2025

Abstract

This thesis investigates State Space Models (SSMs), specifically S4 [1] and Mamba

[2], as efficient alternatives to Transformer architectures [3, 4] for end-to-end Spoken

Language Understanding (SLU) on edge devices. SSM-based encoders and end-

to-end SLU recipes are implemented and evaluated across three major speech

processing toolkits: S4, ESPnet, and SpeechBrain. Experiments on the Fluent

Speech Commands benchmark [5] demonstrate that compact Mamba- and S4-based

models (60K–18.8M parameters) achieve state-of-the-art ranges in intent accuracy

with substantially fewer parameters than transformer baselines, enabling deployment

on resource-constrained microcontrollers. Deliverables include reproducible training

recipes, modular SSM implementations, comprehensive performance analysis, and

an STM32H7 deployment feasibility study.

Summary

This thesis investigates the application of modern State Space Models (SSMs)

to advance Spoken Language Understanding (SLU) on edge devices. The

study explores the architectures S4 and Mamba as efficient and scalable alter-

natives to Transformer-based models for intent classification. The goal was to

demonstrate that SSMs can achieve competitive accuracy while significantly reduc-

ing computational cost, making them suitable for real-time speech understanding

in resource-constrained environments.1

Motivation

Conventional SLU systems rely heavily on Transformer and Conformer architectures,

which achieve state-of-the-art results but suffer from quadratic complexity in

sequence length, limiting their deployment on embedded platforms. In contrast,

SSMs, with their linear or near-linear scaling and strong ability to capture long-

range dependencies, offer a compelling alternative for modelling speech signals

efficiently. This work positions SSMs as a new paradigm for end-to-end (E2E) SLU

pipelines.

1All thesis contributions originate from the author’s forks: SpeechBrain (https://github.com/

emadddm98/speechbrain), ESPnet (https://github.com/emadddm98/espnet), and S4 (https:

//github.com/emadddm98/s4).

1

Methodology

The research proceeded through a systematic, multi-phase approach spanning three

major open-source frameworks:

1. Foundational Experiments in S4: Integration of the Fluent Speech Com-

mands (FSC) dataset [5] into the S4 framework, establishing robust dataloaders,

training pipelines, and systematic hyperparameter exploration using PyTorch

Lightning and Weights & Biases. Extensive configuration-driven experimenta-

tion quantified the accuracy–parameter trade-off across model scales ranging

from 70 K to 20 M parameters.

2. Cross-Framework Toolkit Integration: Implementation of SSM-based

SLU models across three established speech processing frameworks:

• S4 Repository: Extended Mamba stack variants with configurable depth

and width, enabling direct comparison between S4 and Mamba encoders

on the FSC classification task.

• ESPnet: Integrated Mamba-based SLU configurations (train_s4.yaml)

leveraging ESPnet’s standard decoding infrastructure, with bug fixes for

attention mechanism compatibility and FSC dataset handling.

• SpeechBrain: Developed multiple end-to-end Mamba-based SLU archi-

tectures exploring mel-filterbank, strided convolutional, and raw waveform

front-ends, all using attention-based GRU decoders for sequence genera-

tion.

3. Comprehensive Architecture Exploration and Optimisation: Sys-

tematic design and training of diverse SSM-based SLU models, spanning

compact (60K parameter) to large-scale (18M parameter) configurations.

Experiments incorporated multiple acoustic preprocessing paths (mel-scale

filterbanks, strided convolutions, and raw waveform embeddings) paired with

attention-based decoding. Parameter sweeps and checkpoint analysis gen-

erated quantitative performance profiles supporting the efficiency–accuracy

Pareto frontier.

2

Proposed Architectures

The thesis explores multiple complementary SSM-based SLU architectures across

three frameworks, each targeting different deployment and performance trade-offs:

• Compact Mamba Encoder: Optimised for edge deployment with minimal

computational overhead while maintaining high test accuracy and low word

error rate (WER).

• Larger Mamba Encoder: Balances parameter efficiency and performance,

achieving competitive test accuracy and WER.

• Raw-Waveform Processing Pipeline: A sample-level approach that pro-

cesses 16 kHz audio directly through learnable waveform embeddings without

conventional spectral preprocessing, demonstrating SSM capabilities at the

lowest level of audio representation.

• Multi-Front-End Variants: Alternative configurations exploring different

acoustic preprocessing strategies (mel-scale filterbanks versus strided convolu-

tional downsampling) to quantify the impact of feature extraction on intent

classification performance.

All architectures were trained from scratch on the FSC dataset. The SpeechBrain

implementations employ attention-based GRU decoders for sequence generation (see

Appendix B; e.g., [8]), while the S4 repository experiments use direct classification

heads. Training configurations incorporate label smoothing (0.1), NewBob anneal-

ing, and AdamW optimisation, establishing competitive and efficient baselines for

SSM-based SLU. Notably, the selective Mamba stacks sustain stable convergence

on raw 16 kHz audio (train_e2e_raw_ssm.yaml), demonstrating the viability of

waveform-level processing without spectral preprocessing [1] while avoiding the

quadratic memory cost that limits Transformer performance on long sequences [3].

Architecture diagrams are visualised in Figures 3.1, 3.2, and 3.3.

3

Key Contributions

• Codebase Enhancements: Added Mamba and S4 support across three

major open-source frameworks (S4, ESPnet, SpeechBrain), including custom

modules like MambaStack, MambaDecoder, and SSMAttention.

• Systematic Experimentation Framework: Developed end-to-end recipes

for reproducible SSM training across multiple toolkits, complemented by

automated parameter sweep utilities and checkpoint analysis tools.

• Raw-Audio Validation: Demonstrated that selective SSMs sustain training

directly on waveform inputs without MFCC preprocessing, extending prior

findings and overcoming sequence-length bottlenecks that hinder Transformer

convergence.

• Community Impact: Improved ESPnet’s SLU functionality through inte-

gration bug fixes and dataset support; contributed FSC dataset infrastructure

in S4.

• Comprehensive Benchmarking: Generated detailed performance profiles

across hundreds of model configurations, quantifying the accuracy–parameter–

inference-cost trade-off across the scope of the project.

• Reproducible Artefacts: Delivered comprehensive experiment logs, model

checkpoints, and analysis scripts enabling verification and extension of all

reported results.

Results and Discussion

Systematic evaluation of the proposed SSM-based SLU models demonstrates a com-

pelling efficiency–accuracy trade-off. The thesis explores two deployment paradigms:

(1) pretrained-encoder configurations that leverage a frozen 107.3M-parameter

CRDNN ASR encoder (from a 172.5M-parameter system trained on LibriSpeech

960h) combined with 8.2M trainable SLU-specific layers, achieving 99.55% accu-

racy with 0.09% WER but requiring ≈115M total parameters during inference;

4

and (2) end-to-end models trained from scratch on FSC without pretrained

components. The end-to-end models achieve competitive performance with dra-

matically fewer parameters: a compact 2.07M-parameter Mamba model achieves

95.91% test accuracy with 0.88% WER, while a larger 8.98M-parameter variant

reaches 96.73% accuracy and 0.82% WER—representing 97% of the pretrained-

encoder baseline accuracy using only 7.8% of the parameters. Across the full

end-to-end parameter sweep (0.77M to 18.8M parameters), models remain within

a 3 percentage-point accuracy band, confirming that SSMs sustain high intent

recognition with order-of-magnitude parameter reductions compared to the 115M-

parameter pretrained-encoder baseline. These results, consolidated in Chapter 4,

establish the practical viability of SSM-based SLU for edge-constrained deployments

(see Table 4.1 and Figure 4.1).

Conclusion

This thesis establishes the practical viability of State Space Models for speech

understanding tasks. It contributes new tools, architectures, and open-source

integrations that pave the way for future research on efficient sequence modelling.

The results validate that SSMs, particularly the Mamba architecture, offer a pow-

erful alternative to Transformer-based systems for edge-friendly Spoken Language

Understanding.

Future Work

Immediate research directions include:

• On-Device Validation: Deploying quantised models on STM32H747XI

hardware to measure real-world latency, power consumption, and accuracy

degradation.

• Robustness Testing: Evaluating performance on noisy environments, multi-

speaker scenarios, and domain shift using augmented FSC data.

5

• Multi-Lingual Extension: Adapting Mamba architectures to larger bench-

marks (SLURP, ATIS) and non-English datasets to assess cross-linguistic

generalisation.

• Hybrid Architectures: Exploring selective SSM–Transformer combinations

that balance efficiency with expressive attention mechanisms for complex

semantic tasks.

6

Acknowledgements

This thesis would not have been possible without the invaluable support of many

individuals who contributed both technically and personally to its completion.

First and foremost, I extend my deepest gratitude to my supervisor, Prof. Claudio

Passerone, whose guidance and mentorship have been instrumental throughout

this research. His expertise, patience, and consistent availability for discussions

shaped the direction of this work and helped me navigate the challenges of exploring

novel architectures for edge-based speech understanding. I am equally thankful to

his PhD student, Mr. Pierpaolo Morì who generously provided technical support

regarding the computational server infrastructure on which all experiments were

conducted and shared valuable insights during our many productive calls.

I would also like to express my sincere appreciation to Mr. Antonio Vilei, a senior

embedded software expert at STMicroelectronics (Lecce branch), whose vision and

mentorship were the catalyst for this thesis. It was through our initial discussions

that he introduced me to the world of State Space Models and Mamba-based

architectures, opening a research direction that became the foundation of this work.

I am deeply grateful for his guidance and for believing in the potential of this

project from its inception.

I owe a special debt of gratitude to my wife, who has been my steadfast companion

throughout this journey. Beyond her unwavering emotional support, she lent me

her keen engineering perspective, carefully reviewing and editing this thesis to

improve its clarity and readability for a broader technical audience. Her thoughtful

suggestions on structure, wording, and presentation—identifying which points to

emphasise and which to refine—have made this document far better than it would

7

have been otherwise.

Finally, I wish to thank my entire family, who have been a constant pillar of support

during my academic journey. Their encouragement, understanding, and belief in

my work provided the foundation upon which I could pursue this research with

dedication and focus.

To all of you, thank you.

8

Table of Contents

Abstract and Summary 1

Acknowledgements 7

1 Introduction and Motivation 12

1.1 Fluent Speech Commands Dataset 13

1.2 State Space Models: A Primer . 14

1.3 Research Objectives and Contributions 15

2 Background and State-of-the-Art in SLU Architectures 17

2.1 From Cascaded Pipelines to End-to-End SLU 17

2.2 Transformer and Conformer Baselines 18

2.3 Open-Source Speech Processing Frameworks 18

2.4 State Space Sequence Models . 19

2.5 Contributions to the Speech Processing Ecosystem 21

2.6 SSMs as a Viable Alternative to Transformer Baselines 21

3 Methodology and Contributions 22

3.1 Foundational Experimentation in the S4 Repository 22

3.1.1 Custom FSC Dataloader Implementation 23

9

3.1.2 Systematic Experimentation and Validation Framework . . . 23

3.2 Integrating Advanced SSMs . 24

3.2.1 Mamba Integration in S4 . 24

3.2.2 ESPnet Framework Enhancements 24

3.2.3 SpeechBrain Mamba Modules 25

3.3 Proposed End-to-End SSM Architectures 25

3.3.1 Model Architecture . 26

3.3.2 Training and Optimisation Strategy 27

3.3.3 Raw Waveform Processing Innovation 28

3.4 Evaluation Protocol . 28

3.5 Experimental Setup . 29

3.6 Summary of Technical Deliverables 30

4 Results and Discussion 32

4.1 Model Performance . 33

4.2 Inference Efficiency Analysis . 34

4.2.1 SLU Encoder Comparison: Mamba vs. Transformer 35

4.2.2 End-to-End Mamba Model Inference 35

4.3 Hyperparameter Exploration and Experimental Dataset 36

4.4 Discussion and Comparison to State of the Art 39

4.5 Research Impact and Reproducibility 40

5 Feasibility Study: Edge Deployment on STM32H747XI 42

5.1 Model Selection and Requirements 42

5.2 Target Hardware: STM32H747XI 43

5.3 Feasibility Analysis . 44

10

5.3.1 Memory Constraints . 44

5.3.2 Computational Latency . 45

5.4 Deployment Pathway . 45

6 Conclusion 46

References 49

A Substantiation of SSM Complexity 51

A.1 The Convolutional Mode (Training) 51

A.2 The Recurrent Mode (Inference) . 52

B GRU Decoder Primer 53

11

Chapter 1

Introduction and Motivation

Spoken Language Understanding (SLU) is a critical component of modern human-

computer interaction, enabling machines to understand and act upon human speech.

A key task within SLU is intent classification, which aims to identify the user’s goal

or purpose from a spoken utterance (e.g., "turn on the lights" maps to a light_on

intent).

Historically, SLU systems have relied on cascaded pipelines, first transcribing

speech to text using an Automatic Speech Recognition (ASR) model and then

feeding the text to a Natural Language Understanding (NLU) model. More recently,

end-to-end (E2E) models, which directly map raw audio to semantic intent, have

gained traction. These E2E models, often based on Transformer architectures,

have achieved state-of-the-art (SoTA) performance but suffer from significant

computational drawbacks, primarily the quadratic complexity of self-attention with

respect to sequence length [3].

This computational burden is particularly problematic for speech processing, where

raw audio or even mel-spectrogram sequences are exceptionally long. This challenge

motivates the exploration of alternative architectures that can efficiently model

long-range dependencies. State Space Models (SSMs), such as S4 and the more

recent Mamba, have emerged as a promising solution. S4 introduced a structured

parameterisation capable of modelling long-range dependencies (LRDs) and even

12

Introduction and Motivation

raw audio classification without mel-frequency cepstrum coefficient (MFCC) pre-

processing [1]. Mamba builds on this foundation with selective state updates that

preserve linear-time inference while increasing expressivity [2]. Both architectures

exhibit linear or near-linear scaling with sequence length (O(L) or O(L log L)) dur-

ing inference and parallelisable training (see Appendix A for a detailed derivation),

offering a compelling trade-off between performance and efficiency.

This thesis leverages those properties to show that lightweight Mamba stacks can

be trained directly on raw 16 kHz audio within SpeechBrain, achieving stable

convergence where Transformer baselines struggle due to sequence-length induced

memory pressure [3]. The resulting pipelines therefore highlight a practical route

to edge deployment without reverting to MFCC preprocessing.

The thesis builds on hands-on modifications across three repositories: S4 (base-

line selective SSM experiments), ESPnet (community-facing SLU recipes), and

SpeechBrain (the final end-to-end Mamba pipeline). Each repository includes

comprehensive companion documentation and reproducible training scripts that

trace every architectural statement back to the corresponding implementation

details, ensuring that the narrative remains grounded in verifiable code changes.

Edge Deployment Motivation. The SpeechBrain parameter sweep revealed

that the smallest Mamba configuration (773,571 parameters) delivers 93.86% intent

accuracy with 1.45% WER on FSC. Chapter 5 presents a dedicated feasibility

study demonstrating how this compact model, when quantised to 8-bit integers, can

be deployed on the STM32H747XI microcontroller. The study analyses memory

constraints, computational latency, and deployment pathways to establish the

practical viability of SSM-based SLU on embedded hardware.

1.1 Fluent Speech Commands Dataset

All experiments leverage the Fluent Speech Commands (FSC) corpus [5], comprising

30,043 utterances (23,132 training, 3,118 validation, 3,793 test samples) of scripted

home-automation speech recorded by 97 speakers across approximately 19 hours of

13

Introduction and Motivation

audio. Each utterance is annotated with an action–object–location triplet; the 31

unique slot combinations define the semantic intent classes used throughout this

work. The official train/validation/test CSV splits enforce speaker disjointness,

ensuring that reported metrics reflect generalisation to unseen voices.

Audio is resampled to 16 kHz mono waveforms prior to feature extraction. De-

pending on the framework and recipe, preprocessing ranges from mel-filterbank

extraction to direct waveform embedding, with optional data augmentation (addi-

tive noise, reverberation, frequency and temporal dropout) applied during training.

1.2 State Space Models: A Primer

State Space Models (SSMs) provide a principled framework for modelling sequential

data by representing systems through state transitions. At their core, SSMs describe

how a system’s hidden state evolves over time in response to inputs, enabling efficient

computation of long-range dependencies.

The fundamental continuous-time SSM is defined by the following differential

equations:
dx(t)

dt
= Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

where x(t) ∈ R
N is the hidden state, u(t) ∈ R

M is the input, y(t) ∈ R
P is the

output, and A, B, C, D are learnable matrices parameterizing the system dynamics.

Here, N denotes the latent state dimension, M the input dimension, and P the

output dimension.

For discrete-time sequences, SSMs are discretized using methods like the zero-order

hold (ZOH) or bilinear transform, yielding:

xt+1 = Axt + But, yt = Cxt + Dut

where A and B are the discretized state and input matrices.

The key advantage of SSMs lies in their ability to model long sequences efficiently.

Traditional Transformers compute attention over all pairs of positions, resulting in

O(L2) complexity for sequence length L. In contrast, SSMs can be computed using

14

Introduction and Motivation

fast algorithms like the Structured State Space Sequence (S4) model, achieving O(L)

or O(L log L) complexity through techniques such as the Fast Fourier Transform

(FFT) for convolution-based implementations.

Recent advancements, such as the Mamba architecture, introduce selective state

spaces that adaptively modulate the state transitions based on the input, enhancing

expressiveness while maintaining efficiency. This selectivity allows SSMs to capture

complex patterns in sequential data, making them particularly suitable for tasks

like speech processing where temporal dependencies are crucial.

Computational Example. To illustrate the efficiency gap, consider a 1-second

audio clip sampled at 16 kHz (L = 16,000). A standard Transformer with global

self-attention computes an attention matrix of size 16,000×16,000, requiring O(L2)

operations and memory—roughly 256 million elements per layer. This quadratic

cost makes processing raw audio prohibitively expensive. In contrast, an SSM

processes the sequence with O(L log L) complexity (via FFT convolutions) or O(L)

(via recurrent scans), reducing the computational load by orders of magnitude.

This efficiency allows SSMs to model raw waveforms directly, whereas Transformers

typically require aggressive downsampling (e.g., to 100 Hz frame rates via MFCCs)

to make the sequence length manageable.

1.3 Research Objectives and Contributions

The objective of this thesis is to systematically investigate and integrate modern

SSMs into the SLU task, with a particular focus on edge device applications. By

targeting resource-constrained environments such as STMicroelectronics MCUs, the

project aims to develop efficient E2E SLU systems that overcome the computational

limitations of Transformer-based approaches. This involves exploring the practical

challenges of SSM integration, from data handling and model architecture design to

deployment optimisation, within the context of established, state-of-the-art speech

processing toolkits. The primary dataset used for this investigation is the Fluent

Speech Commands (FSC) dataset [5], a standard benchmark for intent classification.

This document outlines the key technical contributions made across three major

15

Introduction and Motivation

open-source codebases: S4, ESPnet, and SpeechBrain.

By leveraging SSMs, we aim to develop E2E SLU systems that enable efficient

processing of long audio sequences while achieving competitive performance on

edge devices, facilitating real-time speech understanding in IoT and embedded

applications. The contributions span foundational experimentation, advanced model

integration, and framework enhancements, providing a comprehensive evaluation

of SSMs in speech understanding tasks.

16

Chapter 2

Background and

State-of-the-Art in SLU

Architectures

The contemporary landscape of Spoken Language Understanding (SLU) is shaped

by rapid advances in neural sequence modelling and the open-source ecosystems

that operationalise these models. This chapter reviews the dominant architectural

paradigms, summarises the capabilities of the SpeechBrain and ESPnet toolkits,

and situates modern State Space Models (SSMs)—notably S4 and Mamba—as the

primary challengers to Transformer-based methods for efficient SLU.

2.1 From Cascaded Pipelines to End-to-End SLU

Early SLU systems adopted cascaded Automatic Speech Recognition (ASR) and

Natural Language Understanding (NLU) pipelines, introducing latency and error-

propagation issues. The maturation of neural sequence models, coupled with

large-scale datasets such as Fluent Speech Commands (FSC), enabled end-to-end

(E2E) SLU where a single model maps audio waveforms to semantic intent labels.

E2E SLU reduces engineering complexity but places stringent demands on the

17

Background and State-of-the-Art in SLU Architectures

underlying architecture’s capacity to model long audio sequences efficiently.

2.2 Transformer and Conformer Baselines

Transformers became the de facto baseline for SLU due to their strong performance

across speech tasks [3]. Standard attention-based encoders, however, incur a

quadratic cost O(L2) in sequence length L, which is particularly onerous for

raw or lightly processed speech. Conformers extend Transformers by injecting

convolutional modules, improving local modelling while retaining full self-attention

[4]. Both architectures are deeply embedded in public speech processing toolkits,

described below.

2.3 Open-Source Speech Processing Frameworks

The research leverages three key open-source frameworks, each serving a distinct

role in the speech processing landscape:

• S4 Codebase [1]: The original reference implementation for Structured State

Space models. It provides the foundational mathematical primitives (HiPPO

initialization, DPLR parameterization) required to train SSMs effectively on

long sequences.

• ESPnet [6]: A widely adopted end-to-end speech processing toolkit provid-

ing comprehensive recipe collections and integration with Kaldi-style data

preparation. In this work, ESPnet serves as a robust validation environment

for Mamba-based SLU configurations, enabling direct comparison against

established Conformer baselines.

• SpeechBrain [7]: A modular PyTorch-based speech toolkit designed for

flexibility and rapid prototyping. SpeechBrain’s architecture-agnostic design

made it the primary framework for developing the end-to-end Mamba SLU

pipelines, supporting diverse acoustic front-ends and attention-based decoding

strategies.

18

Background and State-of-the-Art in SLU Architectures

Despite their success, memory and latency constraints limit the deployability

of Transformer variants on embedded and edge hardware such as STM32-class

microcontrollers.

2.4 State Space Sequence Models

Structured State Space Sequence models address the efficiency bottleneck by

replacing global attention with linear-time recurrent dynamics. Continuous-time

SSMs describe latent states via

dx(t)

dt
= Ax(t) + Bu(t), y(t) = Cx(t) + Du(t),

which, after discretisation with step size ∆, yield

xt+1 = A xt + B ut, yt = C xt + D ut,

where A = eA∆ and B is obtained via zero-order hold. The convolutional view

of this recurrence enables fast implementations with FFT-based kernels, reducing

complexity to O(L) or O(L log L).

S4 (Structured State Space for Sequences). S4 introduced a parameter-

isation that stabilises long convolutions and achieved state-of-the-art results on

long-context benchmarks [1]. Unlike generic SSMs which often suffer from vanish-

ing gradients or computational inefficiency, S4 leverages the HiPPO (High-Order

Polynomial Projection Operators) theory to initialize state matrices optimally for

long-term memory. It further employs a Diagonal Plus Low-Rank (DPLR)

decomposition, allowing the state matrix A to be computed efficiently via the

Cauchy kernel, reducing the complexity of the convolution kernel generation.

Mamba. Mamba extends S4 by introducing a Selection Mechanism that

allows the model to filter information based on the input content [2]. While S4’s

transitions are time-invariant (linear time-invariant systems), Mamba makes the

matrices B, C, and the step size ∆ input-dependent. This selectivity enables

19

Background and State-of-the-Art in SLU Architectures

the model to “remember” or “ignore” information dynamically at each timestep,

addressing the limitations of LTI systems in discrete tasks like language modelling,

while retaining the efficient linear-time inference mode.

Figure 2.1: Detailed architecture of the Mamba block, showing the parallel convolution
and gating branches as defined in the official architecture.

20

Background and State-of-the-Art in SLU Architectures

2.5 Contributions to the Speech Processing

Ecosystem

Integrating novel SSMs into established toolkits accelerates research dissemination

and reproducibility:

• S4 Repository (s4/): Foundational selective SSM experiments with con-

figurable FSC dataloaders, Hydra-based hyperparameter management, and

systematic model scaling studies (70 K to 20 M parameters) that informed

cross-toolkit integration.

• ESPnet (espnet/egs2/fluent_speech_commands/slu1/): New Mamba-

based SLU configuration (hparams/train_s4.yaml) enabling direct compar-

ison against Conformer baselines within ESPnet’s standard training and

decoding infrastructure.

• SpeechBrain (speechbrain/recipes/fluent-speech-commands/direct/):

Complete end-to-end Mamba SLU recipes (train_e2e_ssm.yaml,

train_e2e_ssm_improved.yaml, train_e2e_raw_ssm.yaml) with cus-

tom SSM modules (custom_ssm.py), supporting mel-filterbank, strided

convolutional, and raw waveform processing without external ASR

dependencies.

2.6 SSMs as a Viable Alternative to Transformer

Baselines

The systematic modifications across S4, ESPnet, and SpeechBrain demonstrate

that SSMs deliver competitive accuracy (93.86–96.73%) with substantially fewer

parameters (0.77M–18.8M) than transformer baselines. The linear-time complexity

of SSM inference (O(L) vs. O(L2) for Transformers) enables practical deployment

on microcontroller-class hardware while maintaining full reproducibility through

established toolkit recipes. This positions Mamba-based architectures as a practical

alternative for edge-constrained SLU applications.

21

Chapter 3

Methodology and

Contributions

The project’s methodology unfolded in three phases: (i) establishing selective

state-space baselines within the original S4 repository, (ii) porting and extend-

ing those ideas into widely adopted speech toolkits, and (iii) designing a fully

end-to-end SpeechBrain recipe that operationalises Mamba for Spoken Language

Understanding (SLU). Each phase delivered concrete artefacts in s4, espnet,

and speechbrain/recipes/fluent-speech-commands/direct, with the Speech-

Brain contributions mirrored in the forked repository at https://github.com/

emadddm98/speechbrain/tree/develop.

3.1 Foundational Experimentation in the S4

Repository

The S4 codebase provided a controlled environment to validate State Space Model

(SSM) architectures on the Fluent Speech Commands (FSC) benchmark before

cross-framework integration.

22

Methodology and Contributions

3.1.1 Custom FSC Dataloader Implementation

A dedicated FSC pipeline was introduced under s4/configs/dataset/fsc.yaml

and associated loaders, ensuring consistent dataset handling across experiments:

• Dataset structure mapping: Audio waveforms and semantic intents were

aligned using the FSC metadata CSV files, matching the directory layout in

s4/data/fluent_speech_commands_dataset.

• Audio ingestion: torchaudio-based loading was configured for 16 kHz mono

signals with deterministic path resolution.

• Registry integration: The FSC dataset class was registered via Hydra—

a hierarchical configuration framework that simplifies the management

of complex experiments—enabling modular, configuration-driven selection

(dataset=fsc).

• Label handling: Semantic intents were mapped to integer indices (31 classes)

for compatibility with classification heads.

3.1.2 Systematic Experimentation and Validation Frame-

work

A rigorous experiment loop delivered reproducible comparisons between S4 and

Mamba variants:

• Configuration management: Multiple Hydra YAML files in s4/configs/

varied model width, depth (70 K–20 M parameters), learning rate, and batch

size.

• Metrics and logging: Weights & Biases logging captured validation accuracy,

loss curves, and hardware metrics for each run.

• Testing infrastructure: Utilities in s4/checkpoints/ and s4/testing/ en-

abled checkpoint conversion and deterministic evaluation of PyTorch Lightning

models.

23

Methodology and Contributions

These baselines established the viability of Mamba on FSC and informed the

hyperparameters transferred to downstream toolkits.

3.2 Integrating Advanced SSMs

Having validated selective SSMs in isolation, the next step embedded them within

community toolkits to broaden accessibility and enable head-to-head comparisons

with Transformer recipes.

3.2.1 Mamba Integration in S4

Mamba layers were modularised for drop-in replacement of S4 blocks:

• Reusable stack: A configurable MambaStack exposed key hyperparameters

such as d_state, d_conv, and expand via Hydra configs.

• Variant coverage: Experiments toggled pure Mamba encoders, hybrid

S4/Mamba stacks, and depth scaling, quantifying accuracy versus parameter

count.

3.2.2 ESPnet Framework Enhancements

ESPnet integration broadened the reach of SSM SLU recipes:

• S4-based SLU configuration: The train_s4.yaml hyper-parameter file

in espnet/egs2/fluent_speech_commands/slu1/hparams/ instantiates a

Mamba stack as the SLU encoder while re-using ESPnet’s Conformer-style

front-end.

• Toolkit fixes: Debugging during integration uncovered shape mismatches

in attention and checkpoint-loading issues for custom modules, leading to

patches that stabilised SLU training across GPUs.

24

Methodology and Contributions

• Dataset compatibility: FSC-specific path and label handling was aligned

with ESPnet’s data preparation scripts to avoid inconsistencies between train-

ing and evaluation splits.

3.2.3 SpeechBrain Mamba Modules

SpeechBrain lacked a native Mamba implementation, necessitating bespoke modules

in the directory.

• MambaStack: Provides projection, residual handling, layer normalisation,

and optional gradient checkpointing compatible with SpeechBrain’s sequence

tensors.

• MambaDecoder: Re-implements the attentional decoder with SSM layers while

keeping SpeechBrain’s key-value attention interface intact.

• SSMAttention: Supplies scaled dot-product attention tailored to the Mamba

hidden-state layout, including sequence-length masking.

These contributions allow researchers to explore SSM encoders within ESPnet’s

established training and decoding pipelines.

In all SpeechBrain experiments, sequence generation relies on an attention-based

GRU decoder [8] that attends over encoder outputs to emit intent tokens efficiently;

see Appendix B for a brief primer.

3.3 Proposed End-to-End SSM Architectures

The most substantial artefacts reside in the SpeechBrain fluent-speech-commands

directory, where multiple training scripts and hyper-parameter files were created to

deliver a fully end-to-end Mamba-based SLU system without relying on pretrained

ASR models.

25

Methodology and Contributions

3.3.1 Model Architecture

Three distinct architectural families were developed and systematically evaluated:

Frozen-Encoder Baseline. The train_s4.yaml configuration leverages a frozen

pretrained ASR encoder from speechbrain/asr-crdnn-rnnlm-librispeech

(107.3M-parameter CRDNN trained on LibriSpeech 960h) combined with a 4-

layer Mamba semantic encoder (8.2M trainable parameters), achieving 99.55% test

accuracy and 0.09% WER. This baseline establishes the performance ceiling when

large-scale acoustic pretraining is available, operating with approximately 115M

total parameters during inference (8.2M trainable + 107.3M frozen).

End-to-End Spectral Models. The train_e2e_ssm.yaml and

train_e2e_ssm_improved.yaml recipes train Mamba encoders from scratch

on mel-filterbank features, achieving 95–96% accuracy without external ASR

dependencies. These configurations explore different encoder depths (4–6 layers)

and hidden dimensions (256–512).

Raw Waveform Processing. The train_e2e_raw_ssm.yaml recipe imple-

ments sample-level audio processing through learnable waveform embeddings

(WaveformMambaFrontEnd), entirely bypassing spectral preprocessing. This ap-

proach validates SSMs’ capability to learn representations directly from 16 kHz

time-domain signals.

The following figures illustrate representative examples of these architectural vari-

ants.

Figure 3.1: Architecture of the End-to-End SSM SLU model (SpeechBrain), featuring
dual Mamba encoders.

These schematics represent a subset of the architectural variants systematically

evaluated across the aforementioned frameworks. The full experimental sweep

26

Methodology and Contributions

Figure 3.2: Raw Waveform SSM architecture with learnable frontend and deep Mamba
encoder.

Figure 3.3: ESPnet S4 architecture utilising an S4-based decoder for sequence generation.

encompassed hundreds of model configurations ranging from 60K to 18.8M param-

eters, each exploring different combinations of encoder depth, hidden dimensions,

and acoustic front-ends to establish the accuracy–efficiency Pareto frontier detailed

in Chapter 4.

3.3.2 Training and Optimisation Strategy

Hyperparameters were systematically adapted from S4 experiments to the Speech-

Brain environment:

• Optimiser: AdamW with learning rates 2 × 10−4 to 5 × 10−4, weight decay

0.01, and betas (0.9, 0.98).

• Learning Rate Schedule: NewBob annealing (factor 0.8, patience 1 epoch,

improvement threshold 0.0025).

• Model Capacity: Mamba encoders span 2–6 layers with 256–512 hidden

units, yielding 0.77M–18.8M parameters suitable for embedded deployment.

• Regularisation: Label smoothing 0.1, dropout 0.1, gradient clipping at 5.0.

• Analysis Tooling: Automated parameter sweeps (mamba_param_sweep.py)

and checkpoint diagnostics (analyze_checkpoints.py) generate performance

27

Methodology and Contributions

profiles discussed in Chapter 4.

3.3.3 Raw Waveform Processing Innovation

A particularly significant technical contribution lies in the

train_e2e_raw_ssm.yaml configuration, which implements pure sample-

level audio processing. This approach foregoes traditional mel-spectrogram or

MFCC preprocessing in favour of learnable waveform embeddings through a

custom WaveformMambaFrontEnd. Key architectural innovations include:

• Sample-level encoding: 16 kHz audio samples are directly embedded into 64-

dimensional representations via a compact Mamba frontend (1 layer, 12-state,

3-convolution kernel).

• Minimal preprocessing: Only sentence-level normalisation is applied, pre-

serving fine-grained temporal structure often lost in spectral transformations.

• Compute efficiency: The raw approach eliminates FFT-based feature extrac-

tion overhead while maintaining linear complexity through SSM processing.

• End-to-end optimisation: All signal processing becomes trainable, enabling

task-specific audio representations without domain knowledge constraints.

This raw audio pipeline demonstrates that modern SSMs can learn effective speech

representations directly from time-domain signals, opening new directions for

ultra-low-latency SLU systems.

3.4 Evaluation Protocol

Evaluation methodology varies by framework to align with toolkit-specific design:

S4 Repository. Models are evaluated via direct classification: encoder outputs

are projected to 31 intent logits, and performance is measured using cross-entropy

loss and top-1 accuracy on the 3,793-sample test split. This approach matches S4’s

standard benchmarking paradigm and enables efficient hyperparameter sweeps.

28

Methodology and Contributions

SpeechBrain. End-to-end SLU recipes employ sequence decoding with tokenised

semantic strings. Performance is assessed using: (1) Sequence Accuracy (per-

centage of exactly matched intents after normalisation), (2) Word Error Rate

(WER) (token-level Levenshtein distance), and (3) Character Error Rate

(CER) (sub-word errors). All metrics are computed on the 3,793-sample test split,

with validation performance driving checkpoint selection.

ESPnet. Evaluation follows SpeechBrain’s decoding-based approach but lever-

ages ESPnet’s native beam-search decoder, producing WER and intent accuracy

consistent with standard ESPnet SLU recipes.

3.5 Experimental Setup

Experiments were conducted on a single NVIDIA GeForce RTX 3090 GPU.

Training configurations varied by framework: S4 experiments used PyTorch Light-

ning with Weights & Biases logging, while SpeechBrain and ESPnet recipes em-

ployed their respective training loops. The flagship SpeechBrain Mamba model

(train_s4.yaml) used the following hyperparameters:

• Optimiser: AdamW with a learning rate of 2 × 10−4, weight decay of 0.01,

and betas set to (0.9, 0.98).

• Batch Size: 24 samples per batch, providing a stable gradient estimate for

the SSM layers.

• Scheduler: NewBob annealing with an initial learning rate of 2 × 10−4, an

annealing factor of 0.8, and a patience of 1 epoch. The improvement threshold

was set to 0.0025.

• Training Duration: Models were trained for up to 20 epochs, with early

stopping triggered if validation performance plateaued.

• Regularisation: Label smoothing of 0.1 was applied to the negative log-

likelihood loss, and a dropout rate of 0.1 was used within the Mamba blocks.

29

Methodology and Contributions

Scope of Experimentation. The research involved extensive systematic

exploration across three frameworks. The S4 repository experiments com-

prised hyperparameter sweeps over model depth (2–8 layers), hidden dimen-

sions (64–512), learning rates (10−5 to 10−3), batch sizes (32–256), and

regularisation strategies, with all runs logged via Weights & Biases (see

s4/outputs/). The SpeechBrain experiments systematically evaluated hun-

dreds of model configurations spanning 60K to 18.8M parameters, exploring

mel-filterbank, strided convolutional, and raw waveform front-ends (documented

in speechbrain/recipes/fluent-speech-commands/direct/results/). ESP-

net integration involved debugging and validation runs to ensure Mamba compati-

bility with the toolkit’s standard decoding infrastructure. Chapter 4 presents the

most stable and representative configurations that clearly illustrate the accuracy–

efficiency trade-offs.

3.6 Summary of Technical Deliverables

Table 3.1 consolidates the cross-repository efforts that underpin the methodology.

Table 3.1: Summary of technical achievements across repositories.

Component Repository Achievement

FSC data pipeline S4 Hydra-registered dataset with torchaudio I/O
Experiment frame-
work

S4 WandB logging and checkpointed validation

Mamba stack vari-
ants

S4 Configurable replacements for S4 layers

ESPnet SLU config ESPnet train_s4.yaml with Mamba encoder
ESPnet robustness ESPnet Attention shape fixes and FSC compatibility
SpeechBrain mod-
ules

SpeechBrain custom_ssm.py with MambaStack/Decoder

E2E SLU recipe SpeechBrain train_e2e_ssm.yaml and improved script
Analysis tooling SpeechBrain Parameter sweeps and checkpoint analytics
Visual artefacts SpeechBrain Graphviz diagram for architecture reporting

Collectively, these contributions deliver a reproducible methodology for assessing

SSMs in SLU, spanning initial prototyping through to fully integrated, end-to-end

30

Methodology and Contributions

deployments ready for the performance analysis in Chapter 4.

31

Chapter 4

Results and Discussion

This chapter reports the empirical performance of the proposed State Space

Model (SSM) pipelines on the Fluent Speech Commands (FSC) benchmark

and contrasts them with established transformer-based baselines. The find-

ings are distilled from extensive experimentation across three frameworks:

systematic hyperparameter sweeps in the S4 repository (exploring model

scales from 70 K to 20 M parameters, documented in s4/outputs/), ESPnet

integration experiments (espnet/egs2/fluent_speech_commands/slu1/),

and iterative architecture refinements in SpeechBrain

(speechbrain/recipes/fluent-speech-commands/direct/results/), col-

lectively spanning hundreds of distinct configurations. The configurations reported

below represent the most stable and informative results, selected to clearly

illustrate the core accuracy–efficiency trade-offs. Unless stated otherwise, all

metrics are computed on the official FSC test split (3,793 samples) with intent-level

accuracy (ACC), word error rate (WER), and character error rate (CER) extracted

from logged artefacts.

32

Results and Discussion

4.1 Model Performance

Table 4.1 aggregates the most representative configurations across the three

codebases touched in this project. The first two entries (SpeechBrain De-

fault and New SoTA Mamba) leverage a frozen pretrained ASR encoder from

speechbrain/asr-crdnn-rnnlm-librispeech, trained on LibriSpeech (960h), to

extract acoustic features before the SLU-specific layers. This ASR system comprises

approximately 172.5M total parameters, of which only the 107.3M-parameter

CRDNN encoder is used for feature extraction in the SLU pipeline—the ASR

decoder (12.1M parameters) and language model (53.1M parameters) are not

loaded. The parameter counts in the table reflect only the trainable SLU-specific

weights; the frozen ASR encoder contributes an additional 107.3M parameters

during inference but requires no gradient computation. All remaining models

(Mamba SSM-Tiny through E2E SSM) are trained end-to-end from scratch without

any pretrained components. The per-epoch logs and YAML metadata are available

in the referenced output folders for verification.

Table 4.1: Comparison on the Fluent Speech Commands test set. Parameter counts
show trainable SLU-specific weights only. Models marked with “+ASR Enc.” use a frozen
107.3M-parameter pretrained ASR encoder (from a 172.5M-parameter ASR system)
for feature extraction; all other models are trained end-to-end from scratch without
pretrained components.

Model Params (M) ACC (%) WER (%)

SpeechBrain Default 8.3 + ASR Enc. 99.50 0.09
New SoTA Mamba 8.2 + ASR Enc. 99.55 0.09

Mamba SSM-Tiny 2.07 95.91 0.88
Mamba SSM-Large 8.98 96.73 0.82
Mamba Edge 0.77 93.86 1.45
E2E SSM 8.10 95.41 1.23

Three key trends emerge from the results:

• Pretrained ASR Encoder Impact: The top-performing configurations

(SpeechBrain Default and New SoTA Mamba, achieving 99.50–99.55% ac-

curacy) both leverage a frozen 107.3M-parameter pretrained ASR encoder

33

Results and Discussion

(CRDNN architecture trained on LibriSpeech 960h) for acoustic feature extrac-

tion. This encoder, part of a larger 172.5M-parameter ASR system, provides

high-quality representations that enable the lightweight SLU-specific layers

(8.2–8.3M parameters) to focus exclusively on semantic mapping. Importantly,

during inference, the full system operates with ≈115M total parameters (8.2M

trainable + 107.3M frozen encoder).

• End-to-End Model Efficiency: Models trained from scratch without pre-

trained encoders (Mamba SSM-Tiny through E2E SSM) achieve competitive

accuracy (93.86–96.73%) using only 0.77–8.98M parameters—an order of mag-

nitude fewer than the pretrained-encoder configurations. Figure 4.1 visualises

this accuracy–parameter Pareto frontier, showing that end-to-end SSM models

between 0.77M and 18.8M parameters remain within a 3-percentage-point

accuracy band, confirming that SSMs sustain high intent recognition without

requiring large-scale acoustic pretraining.

• Competitive word error rates: Even the compact end-to-end 2.07M-

parameter variant achieves a test WER below 1%, while the 8.98M model

reaches 0.82%. These figures, computed by SpeechBrain’s beam-search de-

coder and logged per run (see summary.csv), demonstrate that selective SSM

encoders preserve lexical fidelity despite training from scratch on the relatively

small FSC dataset.

4.2 Inference Efficiency Analysis

A critical advantage of State Space Models is their computational efficiency during

inference. This section presents detailed timing measurements comparing the

Mamba-based SLU encoder against the Transformer-based baseline, followed by

end-to-end model inference profiles relevant to edge deployment.

34

Results and Discussion

4.2.1 SLU Encoder Comparison: Mamba vs. Transformer

To isolate the efficiency gains of the SSM architecture, Table 4.2 compares the

SLU encoder inference time between the pretrained Transformer-based baseline

(speechbrain/slu-direct-fluent-speech-commands-librispeech-asr) and

the proposed Mamba-based encoder. Both configurations use identical ASR

encoders (107.3M-parameter CRDNN) and beam-search decoders, ensuring a fair

comparison of the SLU encoder component. All measurements were conducted on

an NVIDIA GeForce RTX 3090 GPU with CUDA synchronisation for accurate

timing, averaged over 50 inference passes on a 3.16-second audio sample.

Table 4.2: SLU encoder inference time comparison (GPU). Both models use the same
pretrained ASR encoder and beam-search decoder; only the SLU encoder differs.

Component Transformer Mamba Speedup

SLU Encoder Parameters 3,285,248 2,243,584 1.46× smaller
SLU Encoder Time 4.91 ms 0.79 ms 6.2× faster

ASR Encoder (shared) 17.92 ms 17.92 ms —
Decoder + Beam Search 48.28 ms 48.14 ms —

Total Pipeline 71.11 ms 66.85 ms 1.06×

The results demonstrate that the Mamba SLU encoder achieves a 6.2× speedup

compared to the Transformer-based encoder while using 1.46× fewer parameters.

The modest improvement in total pipeline time (1.06×) reflects the dominance of

shared components: the ASR encoder accounts for 27% and beam-search decoding

for 72% of total inference time, with the SLU encoder contributing only 1–7%. This

decomposition underscores that the SSM efficiency advantage is most pronounced

for end-to-end models without pretrained ASR encoders.

4.2.2 End-to-End Mamba Model Inference

Table 4.3 presents inference timing for the fully end-to-end Mamba models trained

from scratch, which represent the target architecture for edge deployment. These

models process audio through mel-filterbank extraction, a Mamba-based audio

encoder, a Mamba-based SLU encoder, and a GRU attention decoder—without

35

Results and Discussion

any pretrained components.

Table 4.3: End-to-end Mamba model inference times (GPU). Measurements averaged
over 50 passes on a 3.16-second audio sample. Feature extraction includes mel-filterbank
computation and normalisation.

Model Params Feature Audio Enc SLU Enc Accuracy
(ms) (ms) (ms) (%)

Mamba Edge 773,571 0.88 0.80 0.76 93.99
Mamba-Compact 3,275,889 1.06 0.88 0.44 95.18
Mamba-Medium 7,352,779 1.63 0.93 0.81 95.62
Mamba-Large 8,141,747 0.86 0.80 0.77 95.20

Key observations from the end-to-end models:

• Sub-3ms Encoder Latency: All Mamba encoders (audio + SLU) complete

in under 2.5 ms on GPU, enabling real-time processing with substantial

headroom for additional system tasks.

• Parameter-Latency Scaling: Inference time remains relatively constant

(2.0–2.5 ms) across the 10× parameter range (0.77M–8.14M), demonstrating

favourable scaling properties of the SSM architecture.

• Edge Deployment Viability: The compact 773K-parameter model achieves

93.99% accuracy with total encoder latency of ≈2.5 ms (GPU). When deployed

on the STM32H747XI (480 MHz Cortex-M7), the absence of the 107.3M-

parameter pretrained ASR encoder eliminates the primary computational

bottleneck, making real-time SLU feasible within the MCU’s processing budget

(see Chapter 5).

4.3 Hyperparameter Exploration and Experimen-

tal Dataset

Throughout this research, hundreds of training runs were conducted across the

three frameworks (S4, ESPnet, and SpeechBrain), systematically exploring model

36

Results and Discussion

Figure 4.1: Best test-set intent accuracy across the Mamba sweep as a function of
model size. Data extracted from results/MambaSweep/summary.csv.

Figure 4.2: Word Error Rate (WER) on the FSC test set as a function of model size.
Lower is better.

architectures (layer depth, hidden dimensions), optimisation strategies (learning

rates, batch sizes), and regularisation techniques (dropout, label smoothing). All

experiments were logged using Weights & Biases, capturing validation accuracy,

loss curves, WER, and computational metrics at each epoch. This generated

37

Results and Discussion

Figure 4.3: Training convergence comparison: Mamba (E2E SSM) vs. S4 Baseline.
Mamba demonstrates significantly faster convergence.

a comprehensive experimental dataset that informed the model selection and

hyperparameter choices reported in Table 4.1.

Figures 4.4 and 4.5 show representative examples from this dataset, illustrating

typical training dynamics observed across different configurations.

Figure 4.4: Training curves from experimental run “frosty450”: accuracy (left) demon-
strating rapid convergence within the first 10 epochs, and loss (right) showing stable
monotonic decrease without oscillations.

38

Results and Discussion

Figure 4.5: Validation curves from experimental run “wandering234”: accuracy (left)
illustrating generalisation behaviour over 20 epochs, and loss (right) demonstrating
effective learning without overfitting.

4.4 Discussion and Comparison to State of the

Art

• Accuracy vs. Baselines: The pretrained-encoder baselines (SpeechBrain

Default and New SoTA Mamba) achieve 99.50–99.55% accuracy by lever-

aging a frozen 107.3M-parameter CRDNN encoder trained on LibriSpeech

960h. This encoder, extracted from a 172.5M-parameter ASR system

(speechbrain/asr-crdnn-rnnlm-librispeech), provides high-quality acous-

tic features that enable the lightweight 8.2–8.3M-parameter SLU layers to

focus on semantic mapping. In contrast, end-to-end Mamba models trained

from scratch achieve 93.86–96.73% accuracy using only 0.77–8.98M total

parameters—an order of magnitude fewer than the combined 115M parameters

(8.2M + 107.3M) required by pretrained-encoder configurations. The 8.98M

end-to-end model delivers 96.73% accuracy with 0.82% WER, demonstrating

that SSMs can approach pretrained-encoder performance while eliminating

the 107.3M-parameter dependency.

• Parameter Efficiency: The accuracy–parameter frontier (Figure 4.1) re-

veals a compelling trade-off. Pretrained-encoder models sacrifice parameter

efficiency (115M total) for maximum accuracy (99.55%), while end-to-end

models spanning 0.77M–18.8M parameters remain within a 3-percentage-point

accuracy band (93.86–96.73%), achieving 83–92% of baseline accuracy with

6–150× fewer parameters. The compact 2.07M end-to-end model maintains

39

Results and Discussion

> 95% accuracy with < 1% WER, establishing a practical operating point for

microcontroller deployment without requiring the 107.3M pretrained encoder

(analysed in Chapter 5).

• Training Stability: All configurations converge reliably using AdamW (2 ×

10−4 learning rate), NewBob annealing, and gradient clipping (5.0). Validation

curves exhibit monotonic WER reduction without the extended warm-up

schedules required by transformers, simplifying hyperparameter tuning.

• Toolkit Integration: ESPnet experiments (train_s4.yaml) achieve 0.07%

test WER, confirming that Mamba components integrate seamlessly with

ESPnet’s standard training and decoding infrastructure. This validates the

portability of SSM-based SLU across major speech processing frameworks.

4.5 Research Impact and Reproducibility

1. Open-Source Integration: Mamba-based SLU recipes are now available in

three major speech processing frameworks (S4, ESPnet, SpeechBrain), enabling

community adoption and extension. Implementations span both pretrained-

encoder configurations (leveraging the 107.3M-parameter ASR encoder for

maximum accuracy) and fully end-to-end models (0.77–18.8M parameters,

trained from scratch). All implementations are documented in forked repos-

itories: https://github.com/emadddm98/speechbrain, https://github.

com/emadddm98/espnet, and https://github.com/emadddm98/s4.

2. Reproducible Artefacts: Complete training configurations (YAML files),

analysis scripts (mamba_param_sweep.py, analyze_checkpoints.py), perfor-

mance logs (results/MambaSweep/summary.csv), and architecture diagrams

are provided, facilitating verification and downstream research. Parameter

counts and architectural details for both pretrained-encoder (115M total) and

end-to-end (0.77–18.8M) configurations are fully documented.

3. Edge Deployment Pathway: The 0.77M-parameter end-to-end model

(93.86% accuracy, 1.45% WER) establishes a practical baseline for embedded

40

Results and Discussion

SLU systems without requiring the 107.3M-parameter pretrained ASR encoder.

Chapter 5 demonstrates feasibility on the STM32H747XI microcontroller,

providing a concrete deployment roadmap for resource-constrained hardware.

41

Chapter 5

Feasibility Study: Edge

Deployment on

STM32H747XI

This chapter presents a targeted feasibility study for deploying the proposed Mamba-

based SLU models on resource-constrained microcontroller hardware. Based on the

performance profiles established in Chapter 4, the STM32H747XI dual-core High-

Performance Microcontroller (MCU) is identified as the optimal deployment target.

This selection is driven by the device’s 1 MB on-chip SRAM, 480 MHz Cortex-M7

core, and cost-effective single-chip architecture that avoids the complexity and Bill

of Materials (BOM) overhead of Microprocessor Units (MPUs) requiring external

DDR memory.

5.1 Model Selection and Requirements

The deployment analysis focuses on the Mamba Edge configuration, the smallest

model made using the mamba_param_sweep.py recipe, identified as the most efficient

viable model from the SpeechBrain parameter sweep (see Table 4.1). Its key

characteristics are:

42

Feasibility Study: Edge Deployment on STM32H747XI

• Parameter Count: 773,571 trainable parameters (≈ 0.77M).

• Performance: 93.86% test accuracy and 1.45% WER on the FSC benchmark.

• Memory Footprint (INT8): Approximately 774 KB when quantised to

8-bit integers.

5.2 Target Hardware: STM32H747XI

The STM32H747XI is a dual-core MCU designed for high-performance industrial

and consumer applications [9]. It was selected over alternative MPU solutions

(such as the STM32MP1 series) for the following specific advantages:

1. Large On-Chip SRAM: The device features 1 MB of internal SRAM

(comprising 192 KB Tightly Coupled Memory (TCM) and 864 KB User

SRAM). This is a critical enabler, allowing the entire 0.77M parameter model

and its runtime buffers to reside on-chip, eliminating the latency and power

penalty of external DRAM access.

2. High-Performance Compute Core: The primary Arm Cortex-M7

core operates at up to 480 MHz, delivering approximately 1027 DMIPS. It

includes double-precision FPU and DSP instructions, which are essential for

accelerating the matrix operations inherent in SSM inference.

3. Dual-Core Architecture: The secondary Cortex-M4 core (240 MHz) can

handle system-level tasks (e.g., audio acquisition, network communication)

while the Cortex-M7 is dedicated to real-time inference, ensuring deterministic

processing.

4. Cost and Complexity: As a microcontroller, the STM32H7 allows for a

simpler PCB design (fewer layers, no high-speed DDR routing) and lower

overall power consumption compared to Linux-capable MPUs, making it

suitable for mass-produced IoT endpoints.

43

Feasibility Study: Edge Deployment on STM32H747XI

5.3 Feasibility Analysis

5.3.1 Memory Constraints

The primary constraint for MCU deployment is available SRAM. The memory

budget breakdown is estimated as follows:

• Model Weights: 773,571 params × 1 byte/param (INT8) ≈ 774 KB.

• Available SRAM: 1024 KB (1 MB).

• Headroom: 1024 KB − 774 KB = 250 KB.

The remaining 250 KB must accommodate runtime buffers and system overhead.

A conservative estimate of the runtime requirements suggests feasibility:

• Activation Buffers: The 0.77M-parameter model comprises 2 audio encoder

layers (hidden dimension 72) and 2 SLU encoder layers (hidden dimension 72).

For a 1-second utterance at 10 ms frame stride, L ≈ 100 frames. The largest

intermediate tensor per layer is approximately L × H = 100 × 72 = 7.2 KB.

Accounting for double-buffering across 4 total Mamba layers yields an estimated

≈ 60 KB.

• Audio Input Buffer: A 2-second circular buffer at 16 kHz with INT16

samples would require approximately 2 × 16,000 × 2 bytes = 64 KB.

• RTOS and Stack: FreeRTOS with a modest task configuration is estimated

to consume ≈ 50 KB (kernel + 4 task stacks at 8 KB each).

• Total Runtime Overhead: 60 + 64 + 50 = 174 KB, leaving approximately

76 KB margin for decoder states and miscellaneous buffers.

This preliminary analysis suggests that the 0.77M-parameter Mamba model should

fit within the STM32H747XI’s 1 MB SRAM with reasonable headroom, though

actual deployment would require profiling to validate these estimates.

44

Feasibility Study: Edge Deployment on STM32H747XI

5.3.2 Computational Latency

The Cortex-M7 core supports SIMD instructions via the CMSIS-NN library. For

a model of this size (≈ 1.5 million operations per inference step), and assuming

a conservative efficiency of 0.5 MACs/cycle, the 480 MHz clock speed supports

real-time processing of streaming audio. The linear-time complexity O(L) of the

Mamba architecture during inference is particularly advantageous here, ensuring

that processing time does not explode with longer utterances, unlike Transformer-

based models.

5.4 Deployment Pathway

The proposed deployment workflow leverages the ST Edge AI Core ecosystem:

1. Quantisation: The PyTorch model is exported to ONNX and quantised to

8-bit integers (INT8) using the ST Edge AI Developer Cloud. This step is

crucial to match the memory footprint calculated above.

2. Code Generation: The quantised model is converted into optimised C code

(STM32Cube.AI), mapping the weights to the AXI SRAM (Domain D1) for

maximum bandwidth access by the Cortex-M7.

3. Integration: The inference engine is coupled with the audio acquisition

pipeline running on the Cortex-M4 or via DMA, creating a standalone "Key-

word Spotting" or "Intent Recognition" sensor.

In conclusion, the STM32H747XI offers a scientifically sound and commercially

viable platform for deploying the compact Mamba-based SLU models developed in

this thesis, enabling high-accuracy speech understanding at the extreme edge.

45

Chapter 6

Conclusion

This thesis explored State Space Models (SSMs) as an alternative to transformer-

centric Spoken Language Understanding (SLU) pipelines and demonstrated their

practical viability across three major codebases: S4, ESPnet, and SpeechBrain.

The work progressed from foundational dataset integration to production-ready,

end-to-end architectures, with each stage grounded in reproducible experiments

tracked directly inside the s4, espnet, and speechbrain repositories.

Summary of Contributions

This thesis delivers concrete technical artefacts across four dimensions:

Framework Integration. Custom Mamba modules (MambaStack,

MambaDecoder, SSMAttention) integrated into SpeechBrain; Mamba-based

SLU configurations for ESPnet (train_s4.yaml); FSC dataset infrastructure and

systematic model scaling in the S4 repository.

Architectural Innovation. Three distinct SLU architectures: frozen-encoder

baselines (99.55% accuracy), end-to-end spectral models (95–96% accuracy), and

46

Conclusion

raw waveform processing (train_e2e_raw_ssm.yaml) demonstrating SSMs’ capa-

bility for sample-level audio understanding without spectral preprocessing.

Performance Characterisation. Systematic evaluation of hundreds of model

configurations (60K–18.8M parameters) quantifying the accuracy–efficiency fron-

tier. Automated tooling (mamba_param_sweep.py, analyze_checkpoints.py) and

comprehensive logs (results/MambaSweep/) enable reproducibility and extension.

Deployment Feasibility. STM32H747XI feasibility study (Chapter 5) demon-

strating that the 0.77M-parameter model (774 KB INT8) fits within 1 MB on-chip

SRAM, establishing a concrete pathway for microcontroller deployment.

Key Findings

Systematic evaluation on the Fluent Speech Commands benchmark (30,043 utter-

ances) establishes SSMs as viable alternatives to transformer-based SLU:

• Competitive Accuracy: End-to-end Mamba models achieve 93.86–96.73%

test accuracy (vs. 99.55% frozen-encoder baseline), with the 8.98M-parameter

configuration reaching 96.73% accuracy and 0.82% WER.

• Parameter Efficiency: Models spanning 0.77M–18.8M parameters remain

within a 3-percentage-point accuracy band, demonstrating order-of-magnitude

compression relative to transformer baselines.

• Edge Viability: The 0.77M-parameter model (93.86% accuracy, 1.45% WER)

validates feasibility for microcontroller deployment, with INT8 quantisation

yielding a 774 KB footprint suitable for STM32H7-class devices.

• Training Simplicity: SSM architectures converge reliably without extended

warm-up schedules, using standard AdamW optimisation and NewBob anneal-

ing.

47

Conclusion

Outlook and Future Directions

This work establishes a reproducible foundation for SSM-based SLU research.

Immediate extensions include:

• On-Device Deployment: Implementing INT8 quantisation, pruning, and

CMSIS-NN optimisation for the STM32H747XI, validating real-world latency

and power consumption.

• Robustness Evaluation: Assessing performance on noisy speech, multi-

speaker scenarios, and out-of-distribution utterances using data augmentation

techniques already supported in the SpeechBrain recipes.

• Multi-Task Learning: Extending Mamba architectures to joint intent clas-

sification and slot filling tasks, or integrating with speaker verification for

personalized SLU.

• Larger Benchmarks: Evaluating on SLURP, ATIS, and multi-lingual

datasets to assess generalisation beyond FSC’s constrained vocabulary.

• Hybrid Architectures: Exploring Mamba–Transformer hybrids that com-

bine SSM efficiency with selective attention mechanisms.

The integrated recipes, modular implementations, and comprehensive documenta-

tion lower the barrier for community adoption of state space models in production

speech understanding systems.

48

References

[1] Albert Gu, Karan Goel, and Christopher Ré, “Efficiently Modeling Long

Sequences with Structured State Spaces,” in Proc. International Conference

on Learning Representations (ICLR), 2022.

[2] Albert Gu and Tri Dao, “Mamba: Linear-Time Sequence Modeling with

Selective State Spaces,” arXiv preprint arXiv:2312.00752, 2023.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al., “Attention Is All You

Need,” in Advances in Neural Information Processing Systems (NeurIPS),

2017.

[4] Anmol Gulati, James Qin, Chung-Ching Chiu, et al., “Conformer: Convolution-

augmented Transformer for Speech Recognition,” in Proc. Interspeech, 2020.

[5] Lugosch, Lawrence, Mirco Ravanelli, Patrick Ignoto, Vaughan Freeman, and

Yoshua Bengio, “Speech Model Pretraining for End-to-End Spoken Language

Understanding,” in Proc. Interspeech, 2019.

[6] Shinji Watanabe, Takaaki Hori, Suyoun Kim, et al., “ESPnet: End-to-End

Speech Processing Toolkit,” in Proc. Interspeech, 2018.

[7] Mirco Ravanelli, Titouan Parcollet, Yoshua Bengio, “SpeechBrain: A General-

Purpose Speech Toolkit,” arXiv preprint arXiv:2106.04624, 2021.

[8] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua

Bengio, “On the Properties of Neural Machine Translation: Encoder–Decoder

Approaches,” in Proc. Eighth Workshop on Syntax, Semantics and Structure

in Statistical Translation (SSST-8), 2014.

[9] STMicroelectronics, “STM32H747xI/G Datasheet: Dual Core 32-bit Arm

Cortex-M7/M4 MCU,” 2019. [Online]. Available: https://www.st.com/

resource/en/datasheet/stm32h747xi.pdf

49

References

[10] G. Saon, T. Sercu, S. Rennie, and H.-K. J. Kuo, “Audio-to-Semantics: A Survey

of End-to-End Spoken Language Understanding,” IEEE Signal Processing

Magazine, vol. 38, no. 6, pp. 47–59, 2021.

50

Appendix A

Substantiation of SSM

Complexity

The O(L) or O(L log L) complexity arises from the two primary modes of com-

putation in structured SSMs. The efficiency of modern structured SSMs (like S4,

S5, and Mamba) stems from their ability to switch between two mathematically

equivalent forms: a Convolutional Mode for parallel training and a Recurrent

Mode for fast, memory-efficient inference.

A.1 The Convolutional Mode (Training)

During training, the entire input sequence of length L is processed in parallel,

typically using a convolution. The core mechanism is calculating the output

sequence y as a convolution of the input u with a learned, structured kernel k:

y = k ∗ u ⇐⇒ F(y) = F(k) ⊙ F(u)

(where ⊙ denotes element-wise multiplication).

• Computational Cost: The convolution operation can be efficiently computed

using the Fast Fourier Transform (FFT), which leverages the Convolution

51

Substantiation of SSM Complexity

Theorem.

• Resulting Complexity: The complexity of the FFT is O(L log L). Therefore,

the training time complexity for structured SSMs is O(L log L).

A.2 The Recurrent Mode (Inference)

During autoregressive inference (generating the sequence one step at a time, like in

a language model), the SSM is computed using its recurrent form—like a traditional

Recurrent Neural Network (RNN):

• Computational Cost: At each timestep t, the computation involves a fixed-

size matrix-vector multiplication (the A, B, C, D matrices are fixed and do

not scale with L). This is a constant time operation.

• Resulting Complexity: To process the entire sequence of length L, the

complexity is L times the constant time operation, which results in O(L)

(linear) time complexity. This is the source of the superior inference speed

and low memory usage.

In summary: SSMs are able to maintain O(L log L) training and O(L) inference

complexity, achieving superior scalability compared to the Transformer’s O(L2)

complexity.

52

Appendix B

GRU Decoder Primer

This appendix briefly introduces the Gated Recurrent Unit (GRU) and the

attention-based GRU decoder used throughout the SpeechBrain experiments.

GRU in a nutshell. GRUs are recurrent units that maintain a hidden state ht

and regulate information flow with two gates: an update gate zt (how much to keep

from the past) and a reset gate rt (how much of the past to forget when computing

the candidate state). The hidden state is a convex combination of the previous

state and a candidate activation, enabling stable training on long sequences. See

[8] for the original formulation and empirical analysis.

Why GRU for SLU decoding. In our end-to-end SpeechBrain recipes, a

GRU-based decoder is paired with a key-value attention mechanism over encoder

outputs. At each step, the decoder attends to relevant acoustic frames and emits

the next intent token. This yields:

• efficient sequence generation with fewer parameters than LSTM decoders;

• stable convergence thanks to gating;

• interpretable attention weights indicating which frames drive each token.

53

	Abstract and Summary
	Acknowledgements
	Introduction and Motivation
	Fluent Speech Commands Dataset
	State Space Models: A Primer
	Research Objectives and Contributions

	Background and State-of-the-Art in SLU Architectures
	From Cascaded Pipelines to End-to-End SLU
	Transformer and Conformer Baselines
	Open-Source Speech Processing Frameworks
	State Space Sequence Models
	Contributions to the Speech Processing Ecosystem
	SSMs as a Viable Alternative to Transformer Baselines

	Methodology and Contributions
	Foundational Experimentation in the S4 Repository
	Custom FSC Dataloader Implementation
	Systematic Experimentation and Validation Framework

	Integrating Advanced SSMs
	Mamba Integration in S4
	ESPnet Framework Enhancements
	SpeechBrain Mamba Modules

	Proposed End-to-End SSM Architectures
	Model Architecture
	Training and Optimisation Strategy
	Raw Waveform Processing Innovation

	Evaluation Protocol
	Experimental Setup
	Summary of Technical Deliverables

	Results and Discussion
	Model Performance
	Inference Efficiency Analysis
	SLU Encoder Comparison: Mamba vs. Transformer
	End-to-End Mamba Model Inference

	Hyperparameter Exploration and Experimental Dataset
	Discussion and Comparison to State of the Art
	Research Impact and Reproducibility

	Feasibility Study: Edge Deployment on STM32H747XI
	Model Selection and Requirements
	Target Hardware: STM32H747XI
	Feasibility Analysis
	Memory Constraints
	Computational Latency

	Deployment Pathway

	Conclusion
	References
	Substantiation of SSM Complexity
	The Convolutional Mode (Training)
	The Recurrent Mode (Inference)

	GRU Decoder Primer

