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Abstract

In the era of technological innovation and increasing performance demands, in-
put/output (I/O) systems play a significant role in data exchange between the
components of electronic systems. Applications such as artificial intelligence, 5G
networks, high-performance computing (HPC), and advanced automotive systems
(ADAS) require faster and more efficient solutions for transmitting and receiving
large amounts of data.
In this context, high-speed SerDes (High-Speed Serializer/Deserializer) systems
have become a key technology, they currently represent the predominant implemen-
tation of I/O interfaces capable of supporting data transmission rates exceeding
100 Gbps.
A SerDes system is mainly composed of two functional blocks: the transmitter and
the receiver. The transmitter converts parallel data into a high-speed serial stream,
whereas the receiver deserializes the incoming stream to restore the original parallel
format.
The SerDes includes a Physical Medium Dependent (PMD) section, responsible
for the overall control of the components through multiple finite state machines
(FSMs). It manages power-up and power-down requests, rate change operations,
provides the interface with the firmware and performs limited data conditioning
functions.

The focus of this project, in collaboration with Synopsys, is on the power-state
management within the PMD. There is a Look-Up Table (LUT) storing the instruc-
tions and configuration data required to handle power state transitions efficiently.
Nowadays each command is mapped to a specific signal, that is conditioned by
some FSMs. This approach is highly rigid, as any modification of a command
requires rewriting the hardware description or, in the worst case, re-fabricating the
silicon.

The main goal is having a programmable hardware command in order to have more
flexibility.
Firstly, a new module was created. It manages both the existing hardware com-
mands and new ones, with the exception of one that has a dedicated FSM.
Then the module was instantiated in one of the modules in the PMD that han-
dles the power up/down sequences. The old and the new implementations were
simulated to actually check that the behavior was correct and equal. Finally,
the synthesis of both has been done in order to be able mainly to compare the
differences in area and power.
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Chapter 1

Introduction and Theoretical
Background

In the era of technological innovation and increasing performance demands, in-
put/output (I/O) systems play a significant role in data exchange between the
components of electronic systems. In this context, high-speed SerDes (High-Speed
Serializer/Deserializer) systems have become a key technology.
This introduction chapter addresses four main topics: High-Speed SerDes, Fi-
nite State Machines (FSMs), Digital Design Flow and the Thesis project,
which builds upon these concepts.

1.1 High-Speed SerDes
As described on the Synopsys website, a “SerDes is a functional block that Serial-
izes and Deserializes digital data used in high-speed chip-to-chip communication.
Modern SoCs for high-performance computing (HPC), artificial intelligence (AI),
automotive, mobile, and Internet-of-Things (IoT) applications implement SerDes
that can support multiple data rates and standards like PCI Express (PCIe), MIPI,
Ethernet, USB, USR/XSR.” [1]
A SerDes system is mainly composed of two functional blocks: the transmitter
and the receiver. The transmitter converts parallel data into a high-speed serial
stream, whereas the receiver deserializes the incoming stream to restore the original
parallel format. Figure 1.1 shows how the parallel data stream is turned into a
serial stream thanks to the use of a SerDes.

1



Introduction and Theoretical Background

Figure 1.1: SerDes implementation. Source: Synopsys, “What is SerDes?”, [1].

In the past, parallel data transmission was the most common approach. However,
as data rates increased, this method started to show significant limitations.
One issue is skew, which occurs because each signal line has slightly different
delays, making synchronization more difficult at higher speeds. Another problem
is crosstalk, where adjacent lines interfere with each other, degrading the overall
signal integrity.
This data conversion is also necessary because “In a parallel transfer, all bits move
at once from source to destination. In a serial transfer, the bits are sent one at a
time. That makes a parallel transfer faster but also requires multiple lanes or paths,
one per bit. Parallel transfers are more expensive as they require more hardware.[...]
Serial data transfers require only a single path or cable so less circuitry is needed.”
[2]. For these reasons, the main goal of SerDes is to minimize the number of
interconnections.

Figure 1.2: Parallel vs Serial. Source: Synopsys, “What is SerDes?”, Synopsys
Glossary, [1].

2
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Figure 1.2 shows a table summarizing the main differences between the two options
to transfer data between chips. Thus, the serial data transfer offers advantages in-
cluding reduced power consumption, good resistance to electromagnetic interference
and simplified packaging.

1.1.1 Types of SerDes
SerDes systems are often designed to group multiple transmission and/or reception
channels in a single device. These channels are known as lanes, each one operates
independently. The grouping of channels allows to share some circuits (e.g. the
PLL), and therefore the resulting block is more efficient in terms of chip area, cost
and power.
There are three different modes of communication: simplex, half-duplex and full-
duplex. For this reason, it is possible to distinguish three designs of the SerDes.

• SerDes Simplex: it has a one-way connection that works either for transmission
or reception.

• SerDes Half Duplex: it has a channel that allows transmission in both direc-
tions, but alternately over time.

• SerDes Full Duplex: it has a bidirectional electrical interface, which supports
transmission and reception simultaneously and independently.

The choice to use one type rather than another depends on the application context,
based on the communication protocol (Ethernet, USB, HDMI, etc.), modulation
technology (NRZ, PAM4), etc. This directly influences the complexity of the
SerDes design.

1.1.2 SerDes Architecture
In high-speed serial links, SerDes is the fundamental building block of a physical
layer (PHY) and works together with the Physical Coding Sublayer (PCS) [1]:

SerDes + PCS = PHY

The Physical Coding Sublayer is a digital logic block that interfaces with the SerDes
circuits. Its main functions are to prepare data for transmission by encoding and
scrambling it, and to process received data by descrambling and decoding it. So
the PCS makes sure that the digital signal is ready to be sent over the physical
medium. (The PCS is not the focus of this work)

Different protocols recommend a variety of abstraction division approaches for a
PHY.

3



Introduction and Theoretical Background

Providing a detailed overview of the typical structure of a SerDes, the transmitter
path includes several functional blocks. The Parallel-to-Serial Converter changes
the parallel data into a serial bitstream. A Data Encoder or Scrambler makes
sure there are enough signal transitions for reliable clock recovery. Pre-emphasis
and equalization circuits are used to compensate for high-frequency losses and
channel attenuation before transmission. Finally, the Clock Multiplier Unit (CMU)
generates the high-speed serial clock from a lower-frequency reference clock.
On the receiver path, the Clock and Data Recovery (CDR) circuit extracts the
clock in the incoming serial stream, making sure the data is sampled correctly. The
Equalizer, which can be used as a Continuous-Time Linear Equalizer (CTLE) or a
Decision Feedback Equalizer (DFE), reduces the effects of signal distortion and
improves signal quality. The Data Decoder or Descrambler puts the original bit
sequence back together, and the Serial-to-Parallel Converter restores the original
parallel form.

In addition to the main transmission and reception chains, a SerDes architec-
ture incorporates several common blocks that facilitate its overall operation. These
include the Phase-Locked Loop (PLL), which generates stable, synchronised in-
ternal clocks, and the Clock Distribution Network, which ensures these clocks are
properly aligned across the different functional units. The control logic manages
configuration, calibration and monitoring tasks. Finally, test and loopback circuits
are incorporated to verify link performance. [3]

The focus of this work is another important block: the Physical Medium De-
pendent (PMD). This section is responsible for controlling the components through
multiple finite state machines (FSMs). Its functions include managing power-up
and power-down requests and rate change operations, providing an interface with
the firmware, and performing limited data conditioning.
The following picture illustrates only a subset of the blocks contained within the
previously described component. A request reaches the PMD and is processed by
some logic that ensures that the signals go to activate the right blocks.

4
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Figure 1.3: PMD Scheme

1.2 Finite State Machine (FSM)
“An FSM is a digital sequential circuit that can follow a number of predefined states
under the control of one or more inputs. Each state is a stable entity that the
machine can occupy. It can move from this state to another state under the control
of an outside-world input.” [4]
It can be classified as synchronous if its state transitions are controlled or synchro-
nized by a clock signal. A machine that functions independently of a clock signal
is designated as asynchronous.
Two main models of finite state machine can be distinguished: the Moore machine
and the Mealy machine. In a Moore machine, the output depends only on the
present state, whereas in a Mealy machine, the output is determined by both the
current inputs and the present state. Hybrid architectures may also exist, where
some outputs follow the Moore model and others follow the Mealy model.
Below are two schemes illustrating the two different types of FSMs described above.

5
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(a) Block diagram of a Moore FSM (b) Block diagram of a Mealy FSM

Figure 1.4: Moore vs. Mealy FSM block diagrams.
Source: Figure 1.3,1.4 of [4].

In general, an FSM has a limited number of states. For N variables, there are
between 2 and 2N possible states. The present state of a state machine is defined
by the values stored in the flip-flops within its sequential section, while the next
state is determined by the combinational logic that controls the state transitions.
A machine is typically defined by the number of inputs and outputs, the initial
state and the relationship between the present and next states. [5]

1.2.1 Bubble Diagram
The bubble diagram is an effective graphical representation of a finite state machine.
It can be described as a directed graph, where the nodes (represented by circles
containing state identifiers) correspond to machine states and the edges denote
transitions between them. Each transition is labeled with the input conditions that
cause a change of state. In the case of a Moore machine, the outputs are indicated
within the circles, immediately following the state label. In the case of a Mealy
machine, they are indicated alongside the transition lines, following the inputs.
The Figure below shows this representation method for both Moore machines and
Mealy machines.

6
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Figure 1.5: State Diagrams for (a) Moore and (b) Mealy Models
Source: Figure 9.5 of [6].

1.3 Digital Design Flow
The design of a digital circuit is typically characterized by a well-defined sequence
of steps. The main stages of this process are described below. [7]

• Pen & Paper design: analysis of the problem, definition of the architecture
and of the expected behavior.

• RTL description: the design is implemented at the register-transfer level
(RTL) using Verilog or VHDL languages.

• Linting, CDC and RDC static checks: static analysis tools are used to
detect issues relating to coding style, potential functional inconsistencies, and
structural design problems. This stage usually involves linting and checks for
Clock Domain Crossings (CDCs) and Reset Domain Crossings (RDCs). The
aim is to detect risks of metastability, missing or incorrect synchronizers, and
improper interactions within the reset domain.

• RTL functional simulation: a dedicated testbench is used to test the design
functionality.

• Synthesis: transformation of the RTL description into a gate-level netlist.

• Post-synthesis simulation: the synthesized netlist is verified in accordance
with the original RTL design.

7



Introduction and Theoretical Background

• Power estimation: accurate power analysis is performed, based on the gate-
level netlist and switching activity information extracted from post-synthesis
simulations (e.g., FSDB files) to estimate both dynamic and static power.

• Floorplanning: definition of the physical layout regions for the main func-
tional blocks, with the aim of optimizing performance and routing.

• Place & Route: the logic cells are placed and the connections routed to
create the final layout.

1.4 Thesis project: Programmable Hardware Com-
mand

My thesis project, conducted in collaboration with Synopsys, focuses on power-state
management within the PMD, a block of the SerDes.
A Look-Up Table (LUT) stores the instructions and configuration data required to
handle power state transitions efficiently. Currently, each command is mapped to a
specific signal that is conditioned by some finite state machines (FSMs).
This approach is highly rigid, as modifying a command requires either rewriting
the hardware description or, in the worst case, re-fabricating the silicon.

The main goal is to have programmable hardware commands to allow for greater
flexibility.

Firstly, a new module was created, following the steps described in Section 1.3.
This module is an FSM that manages both existing and new hardware commands,
except for one that has dedicated management. The module was then instantiated
in one of the PMD modules that handles the power-up/down sequences. Looking
at Figure 1.3, the block is the TX/RX power control FSMs, specifically the part
related to the transmitter, which will be referred to as PMD_TX_PWR_CTL.
The old and new implementations were simulated to verify that the behavior was
correct and consistent.
Finally, a synthesis of both versions of the PMD_TX_PWR_CTL was performed to make
a comparison of the differences in area and power.
The final two steps described in Section 1.3, i.e. Floorplanning and Place & Route,
were not included in this study.

The content presented in this chapter provides the essential background for under-
standing the development of the thesis work. There are three additional units.
The Methodology Chapter [2] provides a detailed description of the project speci-
fications, the expected system behavior, the tools adopted during the development

8
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process, and the analyses carried out to support the design choices.
The Results Chapter [3] presents and discusses the outcomes obtained through
the applied methodology.
The Conclusions and future perspectives Chapter [4] summarises the main
results of the work and outlines potential future developments.
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Chapter 2

Methodology

This chapter outlines the methodology used to develop and validate the thesis
project. The process is presented following the main stages of a standard digital
design flow: project specification and design, design checks, simulation, integration
within the target product, synthesis and optimizations, and finally power estimation.

2.1 Project specifications and design
The central focus of this project is the management of power states within the PMD
in the block PMD_TX_PWR_CTL. The instructions and configuration data required to
handle power state transitions efficiently are stored in a Look-Up Table (LUT).
Nowadays each entry of power-up/down LUTs is programmed with a 16-bit data
bus.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cmd[5:0] arg[2:0] FW skip0 skip1 skip2 skip3 RESERVED

Table 2.1: Actual organization

The command (cmd) field of 6 bits allows to encode up to 64 different HW com-
mands: each command is mapped to a specific signal (or a group of signals, in
some scenarios) that is conditioned by the PMD_TX_PWR_CTL FSMs.
The idea is to implement a programmable hardware command in order to remove
the dependency on internal FSMs and achieve a more flexible and customizable
behavior.

The PMD_HW_CMD_FSM is a new module with a new programmable FSM, that
can handle both the existing HW commands (with the only exception of DELAY
TOKEN which is already managed by a dedicated FSM) and new ones.

10
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The order of the bits in the Table 2.1 are rearranged, particularly those of the
command and argument (arg) fields.
Therefore the new programmable command is configured using a new set of registers
that are selected using some of the 9 bits of the arg field. The arg field has different
meanings depending on the command being executed (this will be analyzed later).

The cmd field is 3 bits: eight different commands can be configured.

Code Command Description
0 BASE_ASSIGN This command implements the programmable version of

the basic assignment category
1 COND_ASSIGN This command implements the programmable version of

the conditional assignment category
2 HANDSHAKE This command implements the programmable version of

both handshake categories
3 TIME_WAIT This command implements the programmable version of

the time waiting category
4 SIG_PULSE This command implements a programmable pulse (not

currently implemented by main HW FSM)
5 RESERVED This coding is currently spare
6 DELAY_TOKEN Not implemented by programmable HW command
7 FW_COMMAND Not implemented by programmable HW command

Table 2.2: Possible commands

A possible organization of each entry of LUTs is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
arg[8:0] cmd[2:0] skip0 skip1 skip2 skip3

Table 2.3: Future Organization

The bits[15:6] and the bits[1:0] of the old configuration are rearranged (FW com-
mand is merged in the new configuration). The skip bits are just translated.

The following provides an overview of the module interface and a detailed de-
scription of each command.

2.1.1 Interface of the module
This section outlines the interface of the module and the signals involved, as
illustrated also in the next figure.

11
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Figure 2.1: Interface of the module

The input and output signals that define the module interface are listed below.
The direction, width and description are provided for each signal.

clk_i (input, 1 bit) Clock signal of the module.

rstn_i (input, 1 bit) Asynchronous active-low reset.

cmd_en_i (input, 1 bit) Command enable signal: when set to 1 the command
is processed.

cmd_i (input, WIDTH_CMD) Command type identifier.

arg_i (input, WIDTH_ARG) Argument associated with the selected command.

cond_assign_en_i
(input, COND_ASSIGN_NREGS) Enables conditional assignment to se-
lected registers: 0 = no assignment; 1 = assignment allowed.

handshake_i
(input, HANDSHAKE_IN_NBITS × HANDSHAKE_SUPPORTED) Input hand-
shake bus. The handshake is completed when all bits are equal
to 1.

skip_cals_i
(input, 2CAL_HANDSHAKE_MODE× HANDSHAKE_SUPPORTED) Indicates whether
the calibration handshake should be performed (0) or skipped (1).

ref_range_i
(input, REF_RANGE_NBITS) Reference range of the clock.

12
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skip_waits_i
(input, 1 bit) Indicates whether the TIME WAIT command should
be executed (0) or skipped (1).

cmd_done_o
(output, 1 bit) Asserted when the command execution is completed.

base_assign_o
(output, BASE_ASSIGN_VAL_NBITS × BASE_ASSIGN_NREGS) Output
registers of the base assignment command.

cond_assign_o
(output, COND_ASSIGN_VAL_NBITS × COND_ASSIGN_NREGS) Output
registers of the conditional assignment command.

handshake_o
(output, HANDSHAKE_OUT_NBITS × HANDSHAKE_SUPPORTED) Output
registers related to the handshake command.

sig_pulse_o
(output, SIG_PULSE_SUPPORTED) Output register for the signal pulse
command.

It can be seen that the widths of some input and output signals are parametric.
This offers an additional degree of flexibility, as it allows these widths to be defined
when the PMD_HW_CMD_FSM is instantiated into other modules, adapting them to
specific requirements and optimizing the area. The following table shows the
allowed values for these parameters.

Name Min Max Default
WIDTH_CMD 1 3 3
WIDTH_ARG 1 9 9
BASE_ASSIGN_VAL_NBITS 1 3 3
BASE_ASSIGN_NREGS 2 64 64
COND_ASSIGN_VAL_NBITS 1 2 2
COND_ASSIGN_NREGS 2 64 64
HANDSHAKE_IN_NBITS 1 3 3
CAL_HANDSHAKE_MODE 1 2 2
HANDSHAKE_OUT_NBITS 2 4 4
HANDSHAKE_SUPPORTED 2 32 32
REF_RANGE_NBITS 1 4 4
SIG_PULSE_SUPPORTED 2 8 8

Table 2.4: Complete set of parameters.
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There are two additional parameters that must be defined when the module is
instantiated:

• RESET_BASE_ASSIGN: this is a two-dimensional parameter whose size
is BASE_ASSIGN_VAL_NBITS × BASE_ASSIGN_NREGS. It is used to reset the
base-assign command registers to the desired initial values. (Default value =
’0)

• SP_PHASE_NBITS: number of bits used for the pulse phases. It can be
either 1 or 2. (Max value = 2, Default value = 2)

The analysis of each command provides more details about the choice of all of
these parameters.

2.1.2 Base assign
This command implements the assignment of the value to the selected register.
The arg field is divided in two sections :

8 7 6 5 4 3 2 1 0
Select Value

Table 2.5: arg field for BASE ASSIGN command

The value field is the value to assign to the selected register.
The select field is the selected register to update.

It is possible to assign values of 1,2 or 3 bits and this information can be provided
to the module through BASE_ASSIGN_VAL_NBITS. The value will always be placed
in the LSBs of the argument.
BASE_ASSIGN_NREGS is set to indicate how many registers need to be instantiated.
The information of which register should be written is encoded in bits 3 to 8 of the
argument.
The following timing diagram is to be expected :
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Figure 2.2: Timing Diagram of the BASE ASSIGN Command

Red arrow: the cmd_done_o is asserted after the value has been assigned.
Green arrow: highlights the handshake between cmd_done_o and cmd_en_i.

2.1.3 Conditional assign
This command implements the assignment of the value to the selected register if
the cond_assign_en_i corresponding to that register is equal to 1, or if the force
bit is set to 1. If neither of these conditions is met, the assigned value is 0.
The arg field is divided in three sections :

8 7 6 5 4 3 2 1 0
Select Force Value

Table 2.6: arg field for COND ASSIGN command

The value field is the value to assign to the selected register.
The force field is a single bit which specifies that the value has to be assigned,
neglecting the input signal cond_assign_en_i.
The select field is the selected register to update.

It is possible to assign values of 1 or 2 bits and this information can be pro-
vided to the module through COND_ASSIGN_VAL_NBITS. The value will always be
placed in the LSBs of the argument.
COND_ASSIGN_NREGS is set to indicate how many registers need to be instantiated.
The information of which register should be written is encoded in bits 3 to 8 of the
argument.
The following timing diagram is to be expected :
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Figure 2.3: Timing Diagram of the COND ASSIGN Command

Red arrow: the cmd_done_o is asserted after the value has been assigned.
Green arrow: highlights the handshake between cmd_done_o and cmd_en_i.

2.1.4 Handshake
The module implements two different types of handshake mechanism. The MSB
of the arg field, named ’cal’, determines if the command is a calibration hanshake
(=1) or a generic handshake (=0).

8 7 6 5 4 3 2 1 0
cal

Table 2.7: arg field for HANDSHAKE command

The meaning of the 8 LSBs is different depending on the type of handshake.

The values of the parameters related to this command must be defined in a way that
is consistent with both handshake types. The parameter HANDSHAKE_IN_NBITS de-
pends on the generic handshake command. It can be 1,2 or 3 and must correspond
to the bit-width of the value to be written to the output register. This parameter
represents the size of the external feedback signal that indicates the handshake can
be concluded.
The parameters HANDSHAKE_OUT_NBITS and HANDSHAKE_SUPPORTED define the out-
put size related to the handshake command. The parameter HANDSHAKE_OUT_NBITS
must consider the size of the value to be written for the generic handshake, but
it mainly depends on the outputs expected from the calibration handshake (see
subsection below 2.1.4).
HANDSHAKE_SUPPORTED is set to indicate how many registers need to be instantiated
for both handshake types. The information of which register should be written is
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encoded in bits 4 to 7 of the argument for the generic handshake, instead from bits
3 to 7 for the calibration handshake.

Generic Handshake

This command performs the value assignment to the selected register, and waits for
every bit of the corresponding handshake_i to go high before asserting cmd_done_o.
If the bypass bit is set 1, a basic assignment is executed.
The arg field is divided in three sections :

7 6 5 4 3 2 1 0
Select Bypass Value

Table 2.8: arg field for GENERIC HANDSHAKE command

The value field is the value to assign to the selected register.
The bypass field is a single bit which specifies that the value has to be assigned
without performing the handshake.
The select field is the selected register to update.

The following timing diagram is to be expected :

Figure 2.4: Timing Diagram of the GENERIC HANDSHAKE Command

Blue arrow: the cmd_done_o is asserted after the handshake is completed.
Red arrow: the cmd_done_o is asserted after the value has been assigned.
Green arrow : highlights the handshake between cmd_done_o and cmd_en_i.
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Calibration handshake

This command performs the value assignment to the selected register and sets its
LSB to 1. Then it monitors the corresponding handshake_i[0] : when the signal
goes high the LSB is deasserted, when the signal returns low the cmd_done_o is
asserted .
If the correspondig skip_cals_i[cal_mode] is equal to 1, the value of cal_mode
and cal_sel are updated without enabling the calibration.
The arg field is divided in three sections :

7 6 5 4 3 2 1 0
Select cal_sel cal_mode

Table 2.9: arg field for CALIBRATION HANDSHAKE command

The cal_mode field and the cal_sel field are the values to assign to the selected
register (both of these are not necessarily required).
The select field is the selected register to update.
Table 2.4 shows that, in addition to the width that defines the output for this
command, one of the parameters is the width of cal_mode. So four different scenario
exist for the width of HANDSHAKE_OUT_NBITS, depending on both the type of infor-
mation to be provided as output and the size of parameter CAL_HANDSHAKE_MODE.
The LSB of the output is always occupied by the bit that interacts with the external
modules. It can represents an enable or a request.
The different cases are :

1. HANDSHAKE_OUT_NBITS=2 with CAL_HANDSHAKE_MODE=1

cal_mode fixed LSB

2. HANDSHAKE_OUT_NBITS=3 with CAL_HANDSHAKE_MODE=1

cal_sel cal_mode fixed LSB

3. HANDSHAKE_OUT_NBITS=3 with CAL_HANDSHAKE_MODE=2

cal_mode[1] cal_mode[0] fixed LSB

4. HANDSHAKE_OUT_NBITS=4 with CAL_HANDSHAKE_MODE=2

cal_sel cal_mode[1] cal_mode[0] fixed LSB
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The following timing diagram is to be expected :

Figure 2.5: Timing Diagram of the CALIBRATION HANDSHAKE Command

Blue arrow: depending on the value of handshake_i[select][0] the handshake_o[select][0] is
deasserted and the cmd_done_o is asserted.
Red arrow: the cmd_done_o is asserted after the value has been assigned.
Green arrow: highlights the handshake between cmd_done_o and cmd_en_i.

2.1.5 Time wait
This command simulates a waiting time.
The arg field is divided in two sections :

8 7 6 5 4 3 2 1 0
Count Timescale

Table 2.10: arg field for TIME WAIT command

The timescale field selects which timescale to use for this command:

• 00: 40ns
• 01: 1us
• 10: 10us
• 11: 100us

The count field is the amount of timescale units to count before issuing the signal
cmd_done_o.
The actual clock periods between cmd_en_i assertion and cmd_done_o rising
edge will be timescale*(count+1). In this way also the 0 is meaningful.
The time to be waited is independent of the reference clock frequency that is
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provided to the module, so the input ref_range_i is used to adjust the internal
counter to keep the waiting time consistent. The ref_range_i can be:

• 0000: 25MHz
• 0001: 50MHz
• 0010: 75MHz
• 0011: 100MHz
• ...
• 1111: 400MHz

The following timing diagram is to be expected :

Figure 2.6: Timing Diagram of the TIME WAIT Command

Blue arrow: the elapsed time matches the duration required by the command, the cmd_done_o
can be asserted.
Green arrow: highlights the handshake between cmd_done_o and cmd_en_i.

2.1.6 Signal pulse
This is a new command designed to generate a pulse with a programmable duration.
The arg field is divided in four sections :

8 7 6 5 4 3 2 1 0
Select t3 t2 t1

Table 2.11: arg field for SIG PULSE command

The t1, t2 and t3 fields are the duration of the three pulse phases, as follow :

• 00: 40ns
• 01: 80ns
• 10: 120ns
• 11: 160ns
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The time to be waited is independent of the reference clock frequency that is
provided to the module, so the input ref_range_i is used to adjust the internal
counter to keep the waiting time consistent (same of TIME WAIT command).
The select field is the selected register to update.

The parameter SIG_PULSE_SUPPORTED defines how many registers need to be
instantiated for the sig pulse command. Its maximum value defines the fixed size
of the select field. The information of which register should be written is encoded
in bits 6 to 8 of the argument.
The parameter SP_PHASE_NBITS defines the size of the three phases of the pulse
and its maximum value defines the fixed size of the t1, t2 and t3 fields.
The following timing diagram is to be expected :

Figure 2.7: Timing Diagram of the SIG PULSE Command

Green arrow: highlights the handshake between cmd_done_o and cmd_en_i.

2.2 Design Verification
According to the digital design flow (1.3), after the project specifications are
defined, the expected behaviour is outlined and the RTL description of the module
is implemented, static checks and simulation are carried out.

2.2.1 Design Checks: Lint, CDC and RDC
As system-on-a-chip (SoC) systems become more complex, it is important to verify
that RTL, clock domain crossing (CDC) and reset domain crossing (RDC) are
constructed correctly. This should be done early in the RTL phase of development.
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Synopsys VC SpyGlass is an advanced algorithm- and analysis-based tool that
provides designers with detailed information and insights about their design much
earlier in the RTL phase.[8]

The first level of verification consists of linting, which allows to identify stylistic
problems, syntactic errors and potential coding bugs, improving the overall quality
of the code. RTL linting detects several types of problems: syntactically, it reports
errors or warnings when code doesn’t adhere to the reference language; semanti-
cally, it identifies incomplete cases, missing default conditions or else clauses, and
uninitialized ports. At the synthesis level, RTL linting identifies non-synthesizable
constructs such as delays or unrecorded input/output blocks; for simulation, it
verifies incomplete sensitivity lists and incorrect use of blocking/non-blocking as-
signments. Structural analysis enables the identification of issues that could affect
functionality or performance, such as combinational loops, clock, select, and enable
management, multiple drivers, unmanned signals, unconnected nets and floating
pins.
VC SpyGlass Lint, which is part of VC Spyglasss, detects coding issues and en-
hances code quality, leading to faster and more efficient verification cycles. [9]

In order to start the linting analysis, the tool requires a set of inputs: the RTL
design to be analyzed and a TCL file containing the tool configuration, including
the inclusion of standard cell libraries and the list of rules or goals to be verified.
It also requires the constraints applied to the design and finally the waivers list,
which collects the exceptions to be excluded during the checks.
The following instructions outline some of the PMD_HW_CMD_FSM’s constraints.

• create_reset “rstn_i” -async -type reset -value low: this command defines an
active low asynchronous reset signal.

• create_clock -name clk_i -period 10 clk_i: this command defines a clock
signal with a period of 10ns.

• set_input_delay 0.0 -clock clk_i cmd_en_i: specifies that the input signal
cmd_en_i is considered synchronous with respect to the clock clk_i.

As previously mentioned, some waivers are applied to exclude reports that are not
relevant to the functional correctness of the design. In particular, the following
waiver is used:

//spyglass disable ImproperRangeIndex-ML

which is applied in cases where the width of the selection signal is found to have a
maximum value higher than the one actually required, generating a warning that
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is not significant for the implementation.
The linting process contributed to the production of well-structured and error-free
RTL code, preparing it for the subsequent stages of the design flow.

The second verification step is dedicated to identifying problems related to Clock
Domain Crossing (CDC). In complex designs, the presence of multiple clock do-
mains with different frequencies and phases is common, which can generate various
critical issues.
The main problems are: metastability, compliance with synchronous reset con-
ventions, correct clock assignment to all flip-flops, verification that no flip-flop is
controlled by more than one clock, and verification that no more clocks have been
defined on the same clock path.
A typical issue arises when data is transferred between flip-flops controlled by
asynchronous clocks, that is, whenever a signal crosses different clock domains.
VC SpyGlass CDC correlates control and data signals resulting in a good un-
derstanding of the design intent for the lowest possible noise. It also integrates
structural and functional CDC analysis.[10]

The clock is unique in the case of the developed module. After doing this analysis,
the tool did not report any errors.

The third step of the verification concerns Reset Domain Crossing (RDC) is-
sues, which occur when asynchronous resets are asserted within the same clock
domain. Similar to CDC problems, these scenarios can cause metastability and gen-
erate unpredictable behavior in the circuit. In particular, traversing asynchronous
reset signals can lead to conditions where some flip-flops are not reset correctly or
receive undefined intermediate values, compromising the consistency of the design
state. Testing RDC issues, therefore, focuses on the correct use of asynchronous
resets, ensuring that they do not generate conflicts within the same clock domain
and that all affected flip-flops are initialized consistently and reliably.

This analysis is also performed using the VCSpyglass tool and no errors are
generated.

2.2.2 Functional Verification: Testbench and Verdi
A testbench is developed for the module under study and simulations are performed
using Synopsys’ Verdi platform.
Verdi is a comprehensive solution for debugging and managing the verification of
digital designs. It enables the organisation, execution and monitoring of simulations,
and provides advanced tools for understanding and analysing design behaviour.[11]
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The simulation environment is designed to cover a wide range of scenarios and
ensure the correct functionality of the module. To this purpose, randomized inputs
are applied and variable time intervals are introduced between consecutive com-
mands. The values of the parameters that define the widths of the module’s input
and output interfaces are also assigned randomly.

The result of the simulations are shown in Section 3.1.1.

2.3 Integration in product
Once the PMD_HW_CMD_FSM module is described and implemented in SystemVer-
ilog and subsequently tested, the study proceeds with its integration into the
company product. As previously indicated, the part of the product involved con-
cerns the management of power states in the PMD for the transmitter, namely
PMD_TX_PWR_CTL. The module is instantiated through a macro so that, when the
macro is defined, the PMD_TX_PWR_CTL uses the newly integrated FSM, while when
it is not defined, the original behavior can be restored. In this way, it is possible to
analyze both operating modes of the PMD_TX_PWR_CTL and observe the effects of
the new implementation.

To ensure a correct integration, an additional module called bridge_tx is cre-
ated. Its function is simply to reorganize the input signals to the PMD_HW_CMD_FSM,
moving from the structure shown in Table 2.1 to that of Table 2.3. This approach
is adopted because the work is still in the project phase, and before rewriting the
firmware, it is necessary to verify the efficiency of the new implementation.

As in the previous case, the design flow steps described in Section 1.3 are fol-
lowed. After drafting the RTL description in SystemVerilog, static checks are
performed using the VC Spyglass environment in line with the company’s workflow.
These checks did not reveal any errors.
A testbench is then created to simulate the behaviour of the PMD_TX_PWR_CTL
module with the macro both defined and undefined. Following the simulations
performed on Verdi, it is observed that the module exhibits identical behavior in
both implementations.

The result of the simulations are shown in Section 3.1.2.
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2.4 RTL Synthesis and Optimization in Design
Compiler NXT

The next step in the digital design flow 1.3 is the synthesis, which is performed
using Synopsys Design Compiler NXT. This is an RTL synthesis tool that trans-
lates hardware descriptions written in languages such as Verilog or VHDL into an
optimized gate-level netlist. During this phase, the RTL description of the module
is analyzed and transformed, applying optimizations to meet timing, area, and
power constraints, while ensuring that the functional behavior of the design is
preserved. The resulting netlist is then ready to be used in the subsequent stages
of integrated circuit design.[12]

The synthesis of a digital module involves a series of well-defined steps: the
RTL description is analyzed, elaborated, linked to the technology libraries, and
finally optimized to generate a gate-level netlist.
The main commands used in this flow are listed and described below.

• source -echo -verbose $rtl_tcl_path : read all RTL design files composing
the entire design to be synthesized.

• analyze -format sverilog -lib work $ALL_FILES -define $SYN_DEFINE:
analyzes the specified SystemVerilog files and stores their intermediate rep-
resentation into the designated library, allowing the tool to create linkable
design units.
The variable SYN_DEFINE contains a list of macros and parameters used to
select whether the synthesis should be performed on the original module or
the version integrating the newly developed functionality.

• elaborate $DESIGN -lib work : builds the design hierarchy from its interme-
diate representation, applying the parameters and configurations previously
defined.

• link: resolves all design references by connecting the current design to the
library elements it depends on. A design is considered complete only when
every referenced cell or module is connected to the appropriate component
within the technology libraries. The purpose of this command is therefore to
locate and bind all referenced elements, ensuring functional completeness and
consistency of the design hierarchy.

Before compilation, all required constraints must be applied (these constraints are
detailed in Section 2.4.1).
Next, the technology node associated with the process must be specified:
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• set_technology -node $TECH_NODE

After defining the technology, several "set_app_var" commands are issued to
configure internal application variables that control the synthesis behavior. Ad-
ditional optimization directives are also applied to prepare the environment for
design compilation.

At this stage of the flow, the design is ready to be compiled, and different compila-
tion strategies can be adopted depending on the desired level of optimization.
The simplest option is the compile command, which optimizes the logic and gates
in the current design. Its behavior is driven by the user-specified constraints that
express objectives such as minimizing area or meeting timing requirements. The
optimization process of compile evaluates timing–area trade-offs to produce the
smallest possible circuit that still satisfies the imposed timing constraints. These
constraints are generally classified as design-rule constraints, which are mandatory
technology-dependent rules, or optimization constraints, which express desirable
but non-critical design objectives.

In this work, a higher-effort compilation strategy has been used:

• compile_ultra -no_autoungroup -no_seq_output_inversion
-gate_clock -retime

The compile_ultra command enables an advanced optimization process designed
to enhance performance and quality of result (QoR). This process is particularly
well-suited to designs with tight timing constraints.
The options of this command operate as follows :

• -no_autoungroup: disables automatic hierarchy ungrouping, preserving the
module structure unless explicitly specified.

• -no_seq_output_inversion: prevents the tool from inverting sequential
outputs, ensuring consistency between RTL and gate-level sequential behavior.

• -gate_clock: enables the clock-gating technique for optimization, allowing
the tool to automatically insert or remove clock-gating cells.

• -retime: activates adaptive retiming to reduce critical path delays through
register repositioning.

A second compilation step is then executed:

• compile_ultra -incremental
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Running the command in incremental mode enables the tool to refine only those
parts of the design that could still benefit from optimization, without having to
run a full mapping again.

Before writing the final netlist, the following command is performed:

• change_names -rules CASEINS -hierarchy -verbose

This command adjusts the names of ports, cells (including physical-only cells)
and nets, so that they comply with the specified naming rules. The use of
change_names ensures that the object names within the tool are aligned with
those that will appear in the generated design files, resulting in consistent naming
across reports and netlists. It also enables the implementation of naming conven-
tions required by the target environment.

The gate-level netlist is then generated through:

• write -format verilog -hier -output $netlist_path/$DESIGN.v

The -hier flag ensures that all hierarchical submodules are also written to the
output file.

After the netlist generation, additional structural checks and synthesis reports can
be produced to validate and evaluate the quality of the implementation.
The corresponding commands and results are directly analyzed in Section 3.2.

Finally, equivalence checking is performed using Formality (see Section 2.4.2).

All the steps in this section are done twice. This is to synthesize the PMD_TX_PWR_CTL
module, both in its original and new implementation.
Once the two netlists are generated, a simulation is performed to verify the behav-
ior’s correspondence with the RTL description.
Since the results confirmed functional equivalence, waveforms are not reported, as
they are considered redundant for analysis purposes.

2.4.1 Constraints
In the synthesis flow, it is necessary to define the set of constraints applied to the
design. In the following, the constraints related to the clock signals and to the
input/output interfaces are reported.
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Clock

The first step in the constraint definition is setting the units of measurement used
throughout the synthesis process:

• set_units -time ns
• set_units -capacitance pF

The design operates with two clock signals: pmd_refclk_i, with a frequency of 400
MHz, and pmd_pclk_i, with a frequency of 500 MHz.

Subsequently, several variables are defined to parameterize the characteristics
of these clocks, including period, duty-cycle error and waveform generation.

• set JITTER_FACTOR 0.90

• set PMD_REF_PERIOD [expr $JITTER_FACTOR*2.50 ] ;

• set PMD_P_PERIOD [expr $JITTER_FACTOR*2.00] ;

• set PMD_REF_DC_ERROR [expr $PMD_REF_PERIOD*0.00]

• set PMD_P_DC_ERROR [expr $PMD_P_PERIOD*0.00]

• set PMD_REF_HALF_PERIOD [expr ($PMD_REF_PERIOD/2)
+($DUTYCYCLE_ERROR_FACTOR*$PMD_REF_DC_ERROR)]

• set PMD_P_HALF_PERIOD [expr ($PMD_P_PERIOD/2)
+($DUTYCYCLE_ERROR_FACTOR*$PMD_P_DC_ERROR)]

• set wave_PMD_REF_HALF_PERIOD [list 0 $PMD_REF_HALF_PERIOD]

• set wave_PMD_P_HALF_PERIOD [list 0 $PMD_P_HALF_PERIOD]

Once these parameters are defined, the actual clock objects are created.
The -waveform option specifies the rise and fall edges over one full clock period.
If omitted, a default waveform with a rising edge at 0 and a falling edge at half the
period would be assumed. Here, the waveform is explicitly defined:

• create_clock -name PMD_REF_CLK -period $PMD_REF_PERIOD
-waveform $wave_PMD_REF_HALF_PERIOD [get_port pmd_refclk_i]

• create_clock -name PMD_P_CLK -period $PMD_P_PERIOD
-waveform $wave_PMD_P_HALF_PERIOD [get_port pmd_pclk_i]
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Finally, it is necessary to specify that the two clocks are asynchronous. Declaring
asynchronous clock groups prevents the timing engine from analyzing paths between
them:

• set_clock_groups -asynchronous -group [list PMD_REF_CLK]
-group [list PMD_P_CLK]

The -asynchronous option indicates that the clocks have no phase relationship,
therefore no timing paths should be evaluated between the two domains.

Input-output

To properly constrain inputs and outputs, a set of timing margins is first defined:

• set PMD_REF_CLK_INPUT_MARGIN_MIN [expr 0]
set PMD_REF_CLK_INPUT_MARGIN_MAX [expr 0.10*$PMD_REF_PERIOD]

• set PMD_REF_CLK_OUTPUT_MARGIN_MIN [expr 0]
set PMD_REF_CLK_OUTPUT_MARGIN_MAX [expr 0.10*$PMD_REF_PERIOD]

• set PMD_P_CLK_OUTPUT_MARGIN_MIN [expr 0]

• set PMD_P_CLK_OUTPUT_MARGIN_MAX [expr 0.10*$PMD_P_PERIOD]

Two lists containing all synchronous inputs and outputs are created:

• set synch_input_list[...] : this command creates the input list.

• set synch_output_list[...] : this command creates the output list.

Once the lists are defined, input delays can be applied relative to the reference
clock:

• set_input_delay -clock PMD_REF_CLK -min -add_delay [expr
$PMD_REF_CLK_INPUT_MARGIN_MIN] [get_port $synch_input_list]

• set_input_delay -clock PMD_REF_CLK -max -add_delay [expr
$PMD_REF_CLK_INPUT_MARGIN_MAX] [get_port $synch_input_list]

The same process is applied to the output signals, in this case associated with both
clocks:

• set_output_delay -clock PMD_REF_CLK -min -add_delay [expr
$PMD_REF_CLK_OUTPUT_MARGIN_MIN] [get_port $synch_output_list]

• set_output_delay -clock PMD_REF_CLK -max -add_delay [expr
$PMD_REF_CLK_OUTPUT_MARGIN_MAX] [get_port $synch_output_list]
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• set_output_delay -clock PMD_P_CLK -min -add_delay [expr
$PMD_P_CLK_OUTPUT_MARGIN_MIN] [get_port sreg_fw_cmd_en_o]

• set_output_delay -clock PMD_P_CLK -max -add_delay [expr
$PMD_P_CLK_OUTPUT_MARGIN_MAX] [get_port sreg_fw_cmd_en_o]

After constraining synchronous paths, asynchronous input and output lists must
be generated by removing the synchronous elements:

• set false_inputs [remove_from_collection [all_inputs] [get_ports
$synch_input_list]]

• set false_outputs [remove_from_collection [all_outputs] [get_ports
$synch_output_list]]

• set false_outputs [remove_from_collection $false_outputs [get_ports
sreg_fw_cmd_en_o]]

The instructions below are used to remove timing constraints and make these
signals asynchronous :

• set_false_path -from [get_ports $false_inputs] -to [all_clocks]

• set_false_path -to $false_outputs -from [all_clocks]

Finally, it is necessary to specify the load attributes and to associate an external
driving cell with the relevant ports and nets of the design. This is done to model
external circuitry :

• set_load 0.005 [get_ports *]

• set_driving_cell -lib_cell $DRIVING_CELL [all_inputs]

2.4.2 Formality
After performing synthesis, a verification step is carried out to ensure that the gen-
erated gate-level netlist matches the intended behavior described in the RTL. This
check, performed using the Synopsys’ Formality tool, confirms that the synthesis
process or any manual modifications have not introduced functional errors.
Formality uses formal methods to compare two designs and verify their functional
equivalence, supporting RTL-to-RTL, RTL-to-gate, and gate-to-gate comparisons.
This verification focuses only on functionality and does not consider timing, making
it a static analysis process.

Both the netlists passed this test.
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2.5 Power estimation: PrimePower
During the synthesis phase, the tool used also generated reports on power con-
sumption. However, these reports are not sufficiently accurate. For this reason,
the PrimePower tool is employed for detailed analysis.

PrimePower provides precise gate-level power analysis reports, enabling SoC design-
ers to perform timely optimizations and achieve power targets during implementa-
tion and signoff. The supported analysis modes include average power, peak power,
glitch power, clock network power, dynamic and leakage power, and multi-voltage
power, using activity derived from RTL vectors, gate-level simulation and emulation
vectors, or vectorless analysis.[13]

In order to perform this power analysis, the FSDB files generated from both
the netlist simulation are required, as they contain the switching activity of the
design.
Furthermore, it is necessary to define a specific time window in order to focus the
analysis on the portion of interest within the simulation.

For both designs under examination, the supply voltage is set to 0.675 V, en-
suring consistency in the comparison of power consumption results.

The results are reported in Section 3.3.
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Results

3.1 Simulation with Verdi
These are the results of the simulation performed as described in Section 2.2.2.
Looking at them, it is possible to notice that the implementation is consistent with
the specifications described in Section 2.1.

3.1.1 PMD_HW_CMD_FSM module
The figures below show the simulation of the PMD_HW_CMD_FSM module, highlighting
in detail the execution of each command.

Figure 3.1: Waveform of the BASE ASSIGN command

In the figure above, the expected behavior of the BASE ASSIGN command is shown.
The following figure instead illustrates three scenarios for the COND ASSIGN com-
mand: first, the case where the corresponding input signal cond_assign_en_i is set
to 1, then the case where it is 0 and finally the situation in which the assignment
is forced.
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Figure 3.2: Waveform of the CONDITIONAL ASSIGN command

The two cases of the HANDSHAKE command are also shown in the two figures below,
each exhibiting behavior consistent with the expected design operation.

Figure 3.3: Waveform of the GENERIC HANDSHAKE command

Figure 3.4: Waveform of the CALIBRATION HANDSHAKE command

Figure 3.5 illustrates the behavior of the TIME WAIT command in two situations:
when the waiting phase is skipped, and when the clock has different reference range.
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(a) Example of skip the command

(b) Example with two different reference range

Figure 3.5: Waveforms of the TIME WAIT command

An example of the generation of a pulse is shown in the following figure.

Figure 3.6: Waveform of the SIGNAL PULSE command

3.1.2 Integration in product
These results are related to the behavior of the module PMD_HW_CMD_FSM integrated
within the company product.
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Figure 3.7: A frame of the integration waveforms

The Figure 3.7 shows that when there is a FIRMWARE command (like
TXCMD_ANA_PLLCLK_MUX_EN) or the DLY TOKEN command, the enable signal
newFSM_cmd_en_r of the new module is zero. This is consistent because
these two commands are not managed by the PMD_HW_CMD_FSM.
There is also the TX_VREG_WAIT command, which is treated as a HANDSHAKE com-
mand. Unlike other handshake commands, it does not produce any output; it
simply waits for a feedback signal before proceeding.

Figure 3.8: A frame of the integration waveforms
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In the figure above, the TXCMD_VREG_EN corresponds to a BASE ASSIGN command.
Whereas the TXCMD_VCM_HOLD_EN is a HANDSHAKE command. These are just some
examples.

3.2 Synthesis report
The synthesis is performed with the constraints discussed in Section 2.4.1.
It must be recalled that the synthesis was performed twice on the company product
module: the first on the original version and the second on the version that includes
the instantiation of the new module.
Some reports are generated by Design Compiler NXT about timing, clock, area,
constraints,etc. Let’s analyze some of these data.

After having done the synthesis of a design, it is important to verify first the
consistency of the work done. The following are important checks to do.

• check_design
The check_design command is used to verify the internal representation of the
current design for consistency, issuing error or warning messages whenever potential
issues are detected. It also highlights cases where a design is instantiated multiple
times within a system, generating a warning if the same design appears in different
instances. Among the issues that can be identified are unloaded input ports or
undriven output ports, nets lacking drivers or loads or with multiple drivers, cells
or designs without defined inputs or outputs, mismatches between instance and
reference pin counts, tristate buses driven by non-tristate elements, and wire loops
(timing loops without intervening cells) across hierarchical levels. Other similar
structural inconsistencies can also be detected

The report regarding the original module gives these information:

Unconnected ports = 5
Warning: In design ’pmd_tx_pwr_ctl’, port ’tx_vcm_lp_la_clk_i’ is not con-
nected to any nets.
Warning: In design ’pmd_tx_pwr_ctl’, port ’reg_tx_disable_mask_i[4]’ is not
connected to any nets.
Warning: In design ’pmd_tx_pwr_ctl’, port ’reg_tx_disable_mask_i[3]’ is not
connected to any nets.
Warning: In design ’pmd_tx_pwr_ctl’, port ’reg_bg_rdy_mask_i[4]’ is not
connected to any nets.
Warning: In design ’pmd_tx_pwr_ctl’, port ’reg_bg_rdy_mask_i[3]’ is not
connected to any nets.
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This is what is expected, as those wires are not connected to anything.

Instead for what concerns the module with the integration: the check_design
shows both the above warnings and in addition other unconnected signals. This is
because the new module PMD_HW_CMD_FSM is able to implement more operations
with respect to those present in pmd_tx_pwr_ctl.
An example is the output signal of the SIG_PULSE command, which is not among
the stored commands in the LUT of the PMD_TX_PWR_CTL.
In addition, some input and output signals related to the HANDSHAKE command are
reported as unconnected ports. This was also foreseen because it is remembered
that this command performs both the generic and the calibration handshake. In
this case the calibration forces the output port to be declared wider even for generic
handshakes.

• check_timing
This command checks the timing attributes placed on the current design and issues
warning messages for possible problems.
For both cases under analysis, those inputs and outputs that do not have clock
constraints are reported because they are asynchronous, consistently with that
reported in the Section 2.4.1.

• report_constraint -all_violators -nosplit -max_delay
This instruction displays whether the constraint was violated or met, by how much
it was violated or met and the design object that was the worst violator.
For both cases, the outcome of this analysis is:

This design has no violated constraints.

After performing these standard checks, the synthesis reports of interest are pro-
duced and their contents are examined in detail in the following sections.

3.2.1 Report timing and clock
• report_clock

This command displays all clock-related information for a design. Below is the
result of the report, which is the same for both the original module and the module
with integration.
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Clock Period Waveform Sources
PMD_P_CLK 1.8000 0 0.9 pmd_pclk_i
PMD_REF_CLK 2.2500 0 1.125 pmd_refclk_i

Table 3.1: Clock information

• report_timing $rpt_timing_common_options -slack_lesser_than
0

The report_timing command provides a report of timing information for the
design under analysis. By default, this command reports the single worst setup
path in each clock group. Here is specified that only those paths with a slack less
than 0 are to be reported.
The outcome for both cases is: “No paths”. This means that all the critical paths
are above the threshold.

• report_timing -loops -max_paths 10
It reports only the timing loops in the design.
The outcome for both cases is: “No loops”.

• report_clock_gating
This command reports information about clock-gating cells and gated and ungated
registers in the design. To generate the report, the report_clock_gating command
uses clock-gating attributes added on the clock-gating cells, by the tool. Below are
reported the results.

Number of Clock gating elements 6
Number of Gated registers 81 (79.41%)

Number of Ungated registers 21 (20.59%)
Total number of registers 102

Table 3.2: Clock Gating Summary - Original PMD_TX_PWR_CTL

Number of Clock gating elements 12
Number of Gated registers 85 (77.27%)

Number of Ungated registers 25 (22.73%)
Total number of registers 110

Table 3.3: Clock Gating Summary - New implementation of PMD_TX_PWR_CTL
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3.2.2 Report area
The report_area command displays area information for the design. The unit of
measurement is µm2.

Number of ports 1973
Number of nets 4092
Number of cells 2226
Number of combinational cells 2067
Number of sequential cells 97
Number of macros/black boxes 11
Number of buf/inv 159
Number of references 59
Combinational area 488.954893
Buf/Inv area 17.003520
Noncombinational area 104.768638
Macro/Black Box area 30.222720
Net Interconnect area undefined (Wire load has zero net area)
Total cell area 623.946251

Table 3.4: Area report - Original PMD_TX_PWR_CTL

Number of ports 2102
Number of nets 4248
Number of cells 2279
Number of combinational cells 2098
Number of sequential cells 111
Number of macros/black boxes 11
Number of buf/inv 181
Number of references 56
Combinational area 496.886413
Buf/Inv area 19.284480
Noncombinational area 118.765438
Macro/Black Box area 30.222720
Net Interconnect area undefined (Wire load has zero net area)
Total cell area 645.874571

Table 3.5: Area report - New implementation of PMD_TX_PWR_CTL

According to these data, there is an increase of about 3.5% of the area with respect
to the original implementation of PMD_TX_PWR_CTL.
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It is also known that the area per Kgate, while for the original implementation
is 2.407 Kgate, for the module with integration is 2.492 Kgate. To perform this
calculation, the value of the area of a NAND with two inputs into the library
technology used was taken as a reference.
The increase in area is expected, as the new module implements a larger number
of commands and therefore requires additional combinational and sequential logic
compared to the previous solution.
However, this is not a negative result, since the increase in area is negligible and is
balanced by the significant advantages in terms of flexibility introduced by the new
implementation.

3.2.3 Report power from Design Compiler NXT
This instruction generates the power consumption report. Results for both imple-
mentations are reported.

• report_power

Cell Internal Power 104.2374 uW (77%)
Net Switching Power 30.9000 uW (23%)
Total Dynamic Power 135.1375 uW (100%)
Cell Leakage Power 2.6251 nW

Table 3.6: Power report from DC - Original PMD_TX_PWR_CTL

Cell Internal Power 110.2987 uW (78%)
Net Switching Power 30.8221 uW (22%)
Total Dynamic Power 141.1208 uW (100%)
Cell Leakage Power 2.7419 nW

Table 3.7: Power report from DC - New implementation of PMD_TX_PWR_CTL

The increase in power consumption for the new implementation is primarily due to
the additional logic introduced. A larger number of gates and sequential elements
results in greater switching activity, which directly raises dynamic power. If the
signals of the new implementation toggle more frequently or if the design now
includes more complex datapaths, the overall activity factor also grows, reinforcing
this effect. As a result, the modified module naturally shows higher power compared
to the original implementation.
Although, as previously discussed, this power report is not fully accurate, it still
consistently reflects an increase in consumption following the introduction of the
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new module. This trend is meaningful and aligns with expectations, regardless of
the limited precision of the estimation.

3.3 Power estimation report
This section shows the results relating to the Section 2.5.
Below the tables are generated by this command:

• report_power
The summary power report displays internal, leakage, switching and total power.
The peak power, peak time, glitching power and X transition power are reported
below the table. The summary power report also reports power for seven predefined
power group:

1. io_pad: Cells defined as part of the pad_cell group in the library.

2. memory: Cells defined as part of the memory group in the library.

3. black_box: Cells with no functional description in the library.

4. clock_network: Cells in the clock_network excluding io_pad cells.

5. register: Latches and flip-flops driven by the clock network excluding io_pads
and black_boxes.

6. combinational: Nonsequential cells with a functional description.

7. sequential: Latches and flip-flops clocked by signals other than those in the
clock network.

Power group Internal
Power

Switching
Power

Leakage
Power

Total
Power

( % )

clock_network 1.969e-05 0.0000 2.410e-11 1.969e-05 92.78%
register 3.604e-07 9.693e-08 9.252e-10 4.582e-07 2.16%
combinational 4.605e-07 6.132e-07 1.647e-09 1.075e-06 5.07%
sequential 0.0000 0.0000 0.0000 0.0000 0.00%
memory 0.0000 0.0000 0.0000 0.0000 0.00%
io_pad 0.0000 0.0000 0.0000 0. 0.00%
black_box 0.0000 0.0000 0.0000 0.0000 0.00%

Table 3.8: Power report - Original PMD_TX_PWR_CTL
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Net Switching Power = 7.101e-07 ( 3.35%)
Cell Internal Power = 2.051e-05 (96.64%)
Cell Leakage Power = 2.597e-09 (0.0/1%)

————————————————————
Total Power = 2.123e-05 (100.00%)

X Transition Power = 0.0000
CAPP Estimated Glitching Power = 0.0000
Peak Power = 1.033e-04
Peak Time = 5422.25

Power group Internal
Power

Switching
Power

Leakage
Power

Total
Power

( % )

clock_network 2.189e-05 0.0000 4.817e-11 2.189e-05 93.64%
register 3.226e-07 1.057e-07 9.584e-10 4.292e-07 1.84%
combinational 4.843e-07 5.712e-07 1.704e-09 1.057e-06 4.52%
sequential 0.0000 0.0000 0.0000 0.0000 0.00%
memory 0.0000 0.0000 0.0000 0.0000 0.00%
io_pad 0.0000 0.0000 0.0000 0. 0.00%
black_box 0.0000 0.0000 0.0000 0.0000 0.00%

Table 3.9: Power report - New implementation of PMD_TX_PWR_CTL

Net Switching Power = 6.769e-07 ( 2.90%)
Cell Internal Power = 2.270e-05 (97.09%)
Cell Leakage Power = 2.711e-09 ( 0.01%)

————————————————————
Total Power = 2.338e-05 (100.00%)

X Transition Power = 0.0000
CAPP Estimated Glitching Power = 0.0000
Peak Power = 1.128e-04
Peak Time = 5404.25

Using the command report_power -nosplit -groups $power_groups it is
possible to know the contribution of the power of each instance in the module.
The total power of the instance bridge_tx is the 0.47% of the whole module, that is
1.092e-07 W. Since this block is temporary in the implementation of the integration,
its contribution is subtracted to have a more realistic result.

From the data, it can be noticed an increase of about 9.7% of the power with
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respect to the original implementation of the PMD_TX_PWR_CTL.
The reasons are the same explained in the Section 3.2.3
It is evident how this analysis is more accurate compared to the one reported in
the mentioned section.

Adding some options to the previous command, more details on these power
contributions for each cell can be analyzed. For example:

• report_power -hierarchy -sort_by cell_internal_power -leaf
-power_greater_than 0

The option leaf is used to indicate that the power report must traverse the
hierarchy and report the nets or cells at lower-levels. Hierarchy option gener-
ates the hierarchy-based power report, while sort_by sort_method specifies
the sorting mode for the net or cell order in the power report. The option
power_greater_than threshold is used to report only the nets or cells with
total power value equal to or greater than threshold value.
The results of this command are not reported since there are confidential company
data.

• report_power -threshold_voltage_group
This option is used to report the leakage power for each voltage threshold group.
In this analysis, three groups are considered: LVT (Low Voltage Threshold), SVT
(Standard Voltage Threshold) and UVT (Ultra-Low Voltage Threshold).

Power group LVT leakage (%) SVT leakage (%) Total leakage (%)
memory 0.0000 ( 0.00%) 0.0000 ( 0.00%) 0.0000 ( 0.00%)
io_pad 0.0000 ( 0.00%) 0.0000 ( 0.00%) 0.0000 ( 0.00%)
clock_network 0.0000 ( 0.00%) 2.410e-11 (100.00%) 2.410e-11 (100.00%)
black_box 0.0000 ( 0.00%) 0.0000 ( 0.00%) 0.0000 ( 0.00%)
combinational 0.0000 ( 0.00%) 1.647e-09 (100.00%) 1.647e-09 (100.00%)
register 5.429e-10 ( 58.68%) 3.822e-10 ( 41.32%) 9.252e-10 (100.00%)
sequential 0.0000 ( 0.00%) 0.0000 ( 0.00%) 0.0000 ( 0.00%)
Total 5.429e-10 ( 20.91%) 2.054e-09 ( 79.09%) 2.597e-09 (100.00%)

Table 3.10: Report threshold voltage - Original PMD_TX_PWR_CTL
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Power group LVT leakage (%) SVT leakage (%) Total leakage (%)
memory 0.0000 ( 0.00%) 0.0000 ( 0.00%) 0.0000 ( 0.00%)
io_pad 0.0000 ( 0.00%) 0.0000 ( 0.00%) 0.0000 ( 0.00%)
clock_network 0.0000 ( 0.00%) 4.817e-11 (100.00%) 4.817e-11 (100.00%)
black_box 0.0000 ( 0.00%) 0.0000 ( 0.00%) 0.0000 ( 0.00%)
combinational 0.0000 ( 0.00%) 1.704e-09 (100.00%) 1.704e-09 (100.00%)
register 5.429e-10 ( 56.65%) 4.155e-10 ( 43.35%) 9.584e-10 (100.00%)
sequential 0.0000 ( 0.00%) 0.0000 ( 0.00%) 0.0000 ( 0.00%)
Total 5.429e-10 ( 20.03%) 2.168e-09 ( 79.97%) 2.711e-09 (100.00%)

Table 3.11: Report threshold voltage - New implementation of PMD_TX_PWR_CTL

Since there are no critical timing paths, the majority of cells used belong to the
SVT group, while UVT cells are not employed.
There are no relevant differences between the two implementations because the
timing is not altered by the new module.
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Chapter 4

Conclusions and future
perspectives

This thesis work, carried out in collaboration with Synopsys, focused on the man-
agement of power states within the PMD, aiming to overcome the current rigidity
of hardware commands. In the original system, each command is associated with a
dedicated signal and controlled by specific FSMs; this makes any functional modifi-
cation particularly complex, potentially requiring, in the worst case, a complete
re-fabrication of the silicon.

To overcome this issue, a new module, PMD_HW_CMD_FSM, was designed to han-
dle both existing and new commands, thus providing a level of programmability in
hardware behavior that was not present in the previous solution. Once defined, the
module was integrated into the PMD block responsible for power state transitions
of the transmitter, allowing verification of its functionality within the real system
context.

The work followed the traditional digital design flow, including RTL description
of the component, simulations, synthesis, and quantitative analysis. Comparative
simulations between the original and updated versions confirmed the full functional
equivalence of the two approaches. Subsequently, synthesis of both designs allowed
evaluation of the differences in terms of area and power: the results show a 3.5%
increase in area and a 9.7% increase in power consumption.
These values are entirely acceptable, as they represent a minor cost considering the
significant benefits introduced in terms of system flexibility and programmability.
Moving from a rigid command management approach to a configurable one indeed
provides substantial advantages for the future evolution of the product.
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Conclusions and future perspectives

Looking ahead, future developments could include extending the new module to the
reception path as well, thereby fully unifying the control architecture. Firmware
modifications will also be necessary to reconfigure inputs and fully exploit the
configurability introduced in the PMD. Only after this complete integration will
the system be able to fully benefit from the flexibility provided by this project.

In conclusion, the work demonstrates that it is possible to introduce programmabil-
ity and adaptability into the PMD without compromising system behavior and with
a minimal impact on design resources, laying the foundation for a more advanced
and reconfigurable approach to power-state management in SerDes.
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