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Abstract

The objective of this thesis is to characterize and model an optical micror-
ing resonator (MRR) in the silicon-insulator-silicon capacitor platform (SISCAP)
composed of an hybrid silicon–polysilicon (Si–PolySi) ring waveguides, here we
investigate its potential for neuromorphic computing applications, specifically using
the reservoir computing (RC) approach.

The first part of the work focuses on the study and analysis of the non-linear
optical behavior of the Si–PolySi microring resonator: at high optical power
injection, two-photon absorption (TPA) generates free carriers, which modify the
refractive index through free-carrier dispersion (FCD). This leads to a power-
dependent shift of the resonance wavelength and a distortion of the transmission
spectrum, revealing the strong non-linear response of the ring. The dynamics of the
free carriers create a temporal memory effect in the ring, which can be exploited
as the nonlinear node of a reservoir computing network. In this configuration,
the response of the system to a given input bit depends on the residual carrier
population generated by the previous bits, enabling the processing of temporal
correlations within the input sequence.

The experimental work includes a pump–probe setup, as it allows monitoring
the carrier dynamics response of the device during operation in neuromorphic
computing experiments.

As in previous studies on fully silicon microrings, the objective is to verify
whether the carrier dynamics in the Si–PolySi ring can provide the non-linear and
memory responses necessary for RC tasks. The specific application investigated in
this thesis is the one-bit XOR predictor.

The main idea is to exploit the faster carrier dynamics in polysilicon, due to
its shorter carrier lifetime compared to pure silicon, to achieve higher bitrates in
temporal computing applications. However, laboratory measurements show that the
prediction accuracy obtained from experimental traces is lower than that reported
for full silicon rings in previous studies. At high bitrates, the ring response cannot
follow the input accurately, as the trap-dominated dynamic of silicon prevails over
the faster carrier response of polysilicon.

Furthermore, the thermal transient (often neglected in theory) is actually not
negligible, and the output response is distorted due to thermal effects.

We therefore conclude that the two effects limit the performance of this device
for reservoir computing applications.

This work provides a comprehensive characterization and modeling of Si–PolySi
microrings, highlighting the limitations imposed by thermal effects and offering
insights for future improvements in high-speed photonic neuromorphic computing.



Summary

The use of silicon microring resonators in add-drop configuration has been widely
explored as a nonlinear element within reservoir computing architectures. Silicon
exhibits nonlinear mechanism such as Two-Photon Absorption (TPA) and Free-
Carrier Dispersion (FCD) that can be advantageously exploited in neuromorphic
and AI-oriented applications to enable high-speed and energy-efficient optical neural
networks. In this thesis, the nonlinear node of the reservoir is implemented using
a microring resonator based on the silicon–insulator–silicon capacitor (SISCAP)
platform. The device consists of a hybrid silicon–polysilicon (Si–PolySi) ring
waveguide, selected for its faster carrier dynamics due to the much shorter polysilicon
carrier lifetime, on the order of a few hundred picoseconds, compared to crystalline
silicon. The main objective is to evaluate whether this Si–PolySi microring can
function as an effective nonlinear node for temporal reservoir computing and to
compare its performance with pure-silicon microrings for the 1-bit delayed XOR
task. The dominant mechanisms responsible for spectral distortion in microrings are
Two-Photon-absorption (TPA) and Free-Carrier Absorption (FCA). These effects
increase the optical loss and reduce the resonator quality factor. Free carriers
also induce a refractive index change through FCD, which shifts the resonance
towards shorter wavelengths. Conversely, carrier relaxation through Shockley-
Read-Hall processes releases heat, increasing the ring temperature and causing a
thermally induced red shift. The balance between these competing blue and red
shift mechanisms defines the dynamic response of the resonator under high optical
power.

Static measurements were first performed to characterize both Si and Si-PolySi
rings. Linear transmission spectra were fitted to extract resonator parameters, while
nonlinear steady-state measurements provided the resonance shift as a function of
the input power. The Si-PolySi ring exhibits a significantly lower quality factor
than a silicon ring, implying weaker nonlinear effects for the same circulating power.
At high power injection, in steady-state condition, self-oscillation prevents stable
acquisition of the nonlinear transmission spectrum, leading to deviations between
measured and expected resonance shifts. Pump and probe measurements allow the
monitoring and identification of nonlinear effects. Two optical signals, a high-power
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pump and a low-power probe, are injected at adjacent resonances of the microring.
The pump generates free carriers, while the probe monitors the corresponding
resonance shift.

The pump-probe experiment was reproduced using isolated pulses and binary
bit sequences at the input of the MRR. These measurements provide insight into
how thermal and free-carrier effects evolve with bitrate. At low bitrates, logical “1”
bits generate pronounced temperature peaks, inducing large thermally driven red
shifts. Even though partial cooling occurs between bits, thermal dynamics remain
dominant, strongly distorting the output waveform and making it highly sensitive
to the chosen probe detuning. As the bitrate increases, temperature excursions
become smaller, but the reduced cooling time leads to a quasi-steady thermal offset.

Above approximately 500 Mbps, the bit period becomes too short for full carrier
recombination in silicon, causing carrier accumulation. This results in a sustained
FCD-induced blue shift superimposed on the thermal drift. The combined shift
depends strongly on bitrate, rendering detuning of the probe signal with respect to
the cold resonance ineffective. At very high bitrates, the contribution of shorter
carrier lifetime of polysilicon is negligible, with silicon carriers dominating the
refractive-index dynamics. Meanwhile, the overall resonance shift decreases in
magnitude, reducing probe-signal visibility and limiting experimental measurability.

The performance of the Si-PolySi microring as a nonlinear node for the 1-bit
delayed XOR task reflects these limitations. With a fixed detuning, the experimental
accuracy varies significantly with bitrate. At 50 Mbps and 10 dBm pump power,
an accuracy of about 92% is achieved, confirming the feasibility of the experiment
despite thermal distortion, but still below the ideal 100% obtained with pure-
silicon microrings. The faster carrier dynamics of polysilicon do not provide an
improvement: in simulation, accuracy decreases from 93% at 1 GHz to 82% at
5 GHz and 68% at 10 GHz. At such high speeds, the combined detuning sensitivity,
measurement noise, and setup limitations make experimental validation impractical.

Simulations using the theoretical model yield higher accuracies, particularly
in the intermediate bitrate range (100-500 Mbps), where thermal drift is more
stable. Increasing the number of virtual nodes slightly improves performance:
raising Nv from 3 to 6 suffices to reach 100% accuracy in simulations, with a slight
improvement also observed experimentally. Simulations also show that lowering
pump power reduces both FCD and thermally induced resonance shifts, enabling
100% simulated accuracy even with Nv = 3. Experimentally, however, reducing
pump power decreases FCD induced resonance shifts making the probe trace more
subjected to noise, with a consequent degradation in accuracy. Experimentally,
at both 6 dBm and 10 dBm pump power, the classification accuracy obtained
from the probe is consistently lower than that extracted directly from the pump
input signal, confirming that, under the explored operating conditions, the hybrid
Si–PolySi resonator does not offer any computational advantage.

ii



iii



Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Introduction to Artificial Neural Networks . . . . . . . . . . . . . . 2

1.1.1 Structure and functioning of Artificial Neural Networks . . . 3

2 Modelling of microring resonators 11
2.1 Fundamental concepts of microring resonators . . . . . . . . . . . . 11
2.2 Thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Overview of Nonlinear Effects in Silicon . . . . . . . . . . . . . . . . 21
2.4 Static Analysis and SRH model for carrier recombination . . . . . . 22

2.4.1 Phase variation . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Propagation losses . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Refractive index variation . . . . . . . . . . . . . . . . . . . 23
2.4.4 Differential equations for free carriers density . . . . . . . . 24
2.4.5 Pump-probe differential equations . . . . . . . . . . . . . . . 26

2.5 Si-PolySi Ring Modelling . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Characterization of the Si PolySi microring resonator 30
3.1 Si-PolySi ring resonator . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Steady state set up . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Linear regime measurements and fitting . . . . . . . . . . . . . . . . 34
3.4 Non linear regime measurements . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Self-Oscillation Regime . . . . . . . . . . . . . . . . . . . . . 39

4 Pump and probe experiment 43
4.0.1 Pump and probe experimental set up . . . . . . . . . . . . . 43
4.0.2 Pulse response measurements . . . . . . . . . . . . . . . . . 45
4.0.3 100 ns pulse width . . . . . . . . . . . . . . . . . . . . . . . 46

iv



4.0.4 1 ns pulse width . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.0.5 100 ps pulse width . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 XOR sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Neuromorphic Computing Application 63
5.1 1-Bit Delayed XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.2 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Classification accuracy results . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusions 70

Bibliography 72

v



List of Tables

2.1 Thermal parameters of the Foster model nodes. . . . . . . . . . . . 21

3.1 Geometrical parameters of the Si and PolySi ring resonator. . . . . 30
3.2 Measured coupling losses and splitter ratio for the Si-PolySi ring

resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Extracted parameters of the Si-PolySi MRR at port 2. . . . . . . . 35

4.1 Traps densities for silicon and polysilicon implemented in the model. 45
4.2 Experimental initial carrier lifetimes in Si-PolySi ring resonator,

from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



List of Figures

1.1 General scheme of a feedforward neural network. Red circles repre-
sent artificial neurons. Reprinted from [3]. . . . . . . . . . . . . . . 5

1.2 General scheme of a recurrent neural network. Reprinted from [3]. . 6
1.3 General scheme of a reservoir computing system. Yellow connections

represent trainable weights. Reprinted from [3]. . . . . . . . . . . . 7

2.1 (A) All-pass and (B) add-drop ring resonator configurations. . . . . 12
2.2 Spectral response of an add-drop MRR. The extinction ratio (ER)

is defined as: ER = Pthr,out,res
Pthr,res

, where Pthr,out,res and Pthr,res are the
output powers at the through port out of resonance and at resonance,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Zoom in the bus-ring coupling region. . . . . . . . . . . . . . . . . . 13
2.4 Comparison of the ratio between Pc and Pbus as a function of the

finesse at resonance, with and without losses. The blue line represents
the ideal case without losses, while the red line corresponds to the
case including losses with a = 0.9928, η2 = 0.0073, and L = 79.42 µm. 17

2.5 Ring configuration with a single input and a splitter. . . . . . . . . 17
2.6 Spectral response of a ring resonator with radius r = 2µm at Port

1 and Port 2 with the parameters: κ1 = 0.17, κ2 = 0.21, α0 =
1.02dB/cm, αrad = 1.73dB/cm, ng = 4.2, neff = 2.35, η2 = 0.004. . 18

2.7 Cross-section of a silicon MRR. . . . . . . . . . . . . . . . . . . . . 19
2.8 Foster model equivalent thermal circuit. . . . . . . . . . . . . . . . 20
2.9 Schematic of the nonlinear effects in Si. Reprinted from [5]. . . . . . 22
2.10 Schematic overview of the nonlinear effects in the pump-probe ex-

periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Structure and configuration of the Si-PolySi MRR under test. . . . 31
3.2 Measurement and fitting of bend losses for a Si-PolySi MRR with

2µm radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



3.3 Laboratory setup: the chip is mounted on a Peltier cell, with two
hexapod, used to align precisely the fiber at the input and at the
output of the chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Fiber coupling at the input and output of the chip. . . . . . . . . . 33
3.5 Measured transmission coefficients and fittings of the MRR at two

resonances.(a) and (b) are port1 and port 2 at the first resonance,
(c) and (d) are port 1 and port 2 at the second resonance. . . . . . 34

3.6 Measured transmission coefficient and fitting of a pure silicon MRR:
the quality factor extracted from the fitting is 4145. . . . . . . . . . 36

3.7 Non linear measurements performed on a Si MRR. . . . . . . . . . 37
3.8 Extracted resonance wavelength shift (a) and the transmission coef-

ficient variation (b) for the Si ring resonator. . . . . . . . . . . . . . 37
3.9 Measurements of the Si-PolySi MRR transmission oefficient varying

the input power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.10 Comparison of resonance shift and threshold transmission shift. . . 39
3.11 Transmission spectra corresponding to the outcome values of the

resonance shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.12 Comparison of self-oscillation cases (a)–(d). . . . . . . . . . . . . . 41
3.13 Full oscillating regime for Pbus = 6.7dBm . . . . . . . . . . . . . . 42

4.1 Experimental setup implemented in pump and probe measurements.
The amplifier placed after the AWG is required to ensure the maxi-
mum modulation depth of the MZI. Polarization controllers (PC)
are employed to optimize the optical power of both the pump and
probe signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Measured pump optical pulse at the output of the microring res-
onator, with 100 ns duration. . . . . . . . . . . . . . . . . . . . . . 46

4.3 Probe traces measured for different detuning values during 100 ns
pump pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Fitting of the model on the probe traces measured in laboratory for
two values of detuning δλ. . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Temporal evolution of the circulating powers for the pump and probe
signals during a 100 ns pump pulse. . . . . . . . . . . . . . . . . . . 48

4.6 Carrier density dynamic during a 100 ns pulse. . . . . . . . . . . . 49
4.7 Temporal evolution of temperature and resonance shift during a

100 ns pump pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8 Comparison between the effects of free-carrier dispersion (FCD) and

temperature on the variation of the effective refractive index neff

during a 100 ns pump pulse. (a) Full time scale; (b) zoom on the
pulse duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



4.9 Measured pump optical pulse at the output of the microring res-
onator, with 1 ns duration. . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 Probe traces measured for different detuning values during 1 ns
pump pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.11 Fitting of the model on the probe trace measured in laboratory for
δλ = −0.6nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.12 Temporal evolution of temperature, resonance shift, carrier density,
and effective index variation during a 1 ns pump pulse. . . . . . . . 53

4.13 Probe traces measured for different detuning values during 100 ps
pump pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.14 Fitting of the model on the probe trace measured in laboratory for
δλ = 0.4nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.15 Temporal evolution of resonance shift, temperature variation, carrier
density and effective index variation during a 100 ps pump pulse. . 55

4.16 Experimental trace at 10 Mbps with δλprobe = 0.4 nm (top) and
corresponding model trace with δλprobe = 0.02 nm (bottom). . . . . 57

4.17 Initial transient of the pump bit sequence at the input of the ring.
The transient exhibits a temporarily higher optical power, attributed
to the EDFA gain dynamics. . . . . . . . . . . . . . . . . . . . . . 58

4.18 Thermal variation over time at 10 Mbps in the considered portion of
the trace. It is evident that the accumulated heat is fully dissipated
only after a sufficiently long sequence of zeros. . . . . . . . . . . . 58

4.19 (a) Resonance shift and (b) carrier dynamics over time for the
10 Mbps sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.20 Simulated probe trace at 500 Mbps with δλ = 0.4nm. . . . . . . . . 59
4.21 Thermal and free-carrier–induced effective index variations at 500

Mbps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.22 Simulated probe trace at 2 Gbps with δλ = 0.4nm. . . . . . . . . . 61
4.23 Thermal and free-carrier–induced effective index variations at 2 Gbps. 61
4.24 Carrier dynamics over time at 2 Gbps. . . . . . . . . . . . . . . . . 62

5.1 Example of sampling each bit of a probe out trace at 10 Mbps with
3 Nv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Simulated and experimental results for Pavg = 10dBm. Increasing
from 3 to 6 virtual nodes slightly improves the results. . . . . . . . 67

5.3 Confusion matrix obtained from the sampled measured probe signal
with Pavg = 10dBm, δλ = −0.1nm at 50Mbps. The classification
accuracy is 92%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Accuracy obtained from the model at various bitrate. . . . . . . . . 68

ix



5.5 Classification accuracy comparison between model and experimental
accuracies for two average pump powers. Detuning is +0.1 nm
experimentally, corresponding to -0.28 nm in the model. . . . . . . 68

5.6 Classification accuracy comparison between Si MRR and Si-PolySi
MRR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



Chapter 1

Introduction

Neuromorphic computing is a computing techinique that aim to emulate the
behavior of biological neurons and their communication mechanisms using electronic
circuits. In recent years, technological progress has accelerated rapidly, driven by
increasingly powerful digital processing units and more sophisticated algorithms.
Among these, artificial neural networks (ANNs) have emerged as one of the most
influential tools in modern machine learning and artificial intelligence.

Among neuromorphic architectures, Reservoir Computing (RC) has attracted
growing interests due to its trade-off between performance and training complex-
ity [1]. RC is inspired by recurrent neural networks (RNNs): the input signal excites
the nonlinear dynamics of a high dimensional network, typically composed of many
nodes, with fixed and sparsely connected weights. The network transforms the
input into a higher-dimensional representation, enhancing the linear separability of
the data. In contrast to conventional neural networks, in RC only the readout layer
is trained, as the reservoir’s complex nonlinear dynamics inherently provide the
required computational richness. In this work will be analyzed the computational
task of the 1-Bit Delayed XOR, since the XOR operation is a clear example of
an operation that cannot be linearly separated in a two-dimensional space, but it
becomes linearly separable in a three-dimensional space, making the classification
problem simple and linear.

The integration of silicon photonics has opened a new path toward implementing
neural network based computation beyond traditional electronic platforms. Pho-
tonics infact offers several key advantages, including large bandwidth, intrinsic
parallelism enabled by wavelength-division multiplexing (WDM), improved en-
ergy efficiency, low latency, high throughput, and immunity to electromagnetic
interference. Within this context, optical microring resonators (MRRs) stand out
as promising building blocks for neuromorphic systems thanks to their nonlinear
behavior.
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In other works [2, 3, 4] the use of a silicon microring resonator in add-drop con-
figuration as a nonlinear element within a reservoir computing neural architecture
has been discussed. Silicon as an optical medium exhibits nonlinear absorption
mechanisms that introduce power dependent losses. These effects are particularly
pronounced in microring resonators, where the circulating optical intensity can be
significantly enhanced, altering the spectral response. However, these nonlinearities
that create challenges in classical photonics can be advantageously exploited for
neuromorphic and AI-related tasks, enabling optical neural networks capable of
operating with high speed and low energy consumption.

In this thesis, the nonlinear node of the reservoir is not a pure silicon microring
but a microring based on the silicon–insulator–silicon capacitor (SISCAP) platform.
The device consists of a hybrid silicon–polysilicon (Si–PolySi) ring waveguide,
chosen specifically for its faster carrier dynamics enabled by the reduced carrier
lifetime of polysilicon compared to pure crystalline silicon. The aim of this work
is therefore to assess whether the Si–PolySi microring can serve as an effective
nonlinear node for temporal reservoir computing and to compare its performance
with pure silicon solutions for the 1-Bit Delayed XOR computational task.

This thesis is structured as follows. First, the fundamental principles of microring
resonators (MRRs) are introduced, together with the key parameters that describe
their behavior, with particular attention to the modeling of nonlinear effects. The
characterization of the specific ring used in this work is then presented. Subsequently,
the model developed by Marco Novarese in [5] is adapted to the characteristics
of the hybrid Si-PolySi ring under study. The model is experimentally validated,
and finally, the neural network developed by Salvatore Salpietro in [3] is applied in
order to evaluate the performance of the device and compare it with that of a pure
silicon ring.

1.1 Introduction to Artificial Neural Networks
Artificial neural networks (ANNs) are computational models inspired by the human
brain, designed to emulate how neurons communicate and process information.
They consist of interconnected nodes, or artificial neurons, which sum their weighted
inputs and apply a nonlinear activation function:

y = fa

 NuØ
i=1

wiui + w0

,

where ui are the inputs, wi the weights, w0 the bias, Nu the number of inputs,
and fa a nonlinear function. The weights determine the influence of each input
and are adjusted during training to guide the network toward the desired output.

2
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Nonlinear activation functions are essential, as they allow the network to model
complex relationships; without them, multiple layers collapse to the equivalent of a
single neuron, limiting computational power. This capability is crucial for solving
problems that are not linearly separable, such as the 1-bit delayed XOR task. By
stacking multiple layers with nonlinear activations, the network transforms inputs
into a higher-dimensional space, increasing the likelihood that the final layer can
linearly separate the outputs.

Training a neural network typically involves two stages: feedforward propa-
gation, where inputs pass through the layers to produce outputs, and backpropa-
gation, where errors are propagated backward to update the weights. Details of
the training procedure are discussed in subsequent sections.

1.1.1 Structure and functioning of Artificial Neural Net-
works

Neural networks can be classified into two main categories: feedforward neural
networks (FFNNs) and recurrent neural networks (RNNs). Both types are
typically organized into an input layer, one or more hidden layers, and an output
layer. The key components of these networks are:

• Input vector:

u(n) =


u1(n)
u2(n)

...
uNu(n)

 ∈ RNu ,

where Nu is the input dimensionality and n denotes the time step.

• Network state vector:

x(n) =


x1(n)
x2(n)

...
xNx(n)

 ∈ RNx ,

which represents the internal states responsible for memory and information
processing.

• Output vector:

y(n) =


y1(n)
y2(n)

...
yNy(n)

 ∈ RNy ,

3
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where Ny is the output dimensionality.

• Weight matrices:

– Input-to-hidden weights: Wu = (wu,ij) ∈ RNx×Nu

– Hidden-to-hidden weights: Wx = (wx,ij) ∈ RNx×Nx

– Hidden-to-output weights: Wy = (wy,ij) ∈ RNy×Nx

– Optional output-to-hidden feedback: Wfb = (wfb,ij) ∈ RNx×Ny , which
enhances the network’s memory.

General Training Procedure for Artificial Neural Networks

Neural networks can be trained using three main learning paradigms:

1. Supervised learning: The network is trained on a dataset consisting of
inputs and their corresponding target outputs. The goal is to minimize the
error between the predicted and desired outputs.

2. Unsupervised learning: No target outputs are provided. The network
identifies patterns or structures within the data.

3. Reinforcement learning: The network learns through trial and error to
achieve a predefined goal, receiving feedback in the form of rewards or penalties.

In supervised learning, a common training method is gradient descent, which
iteratively updates the network weights to minimize a loss function L. The weight
update at step i is given by:

w′ = wi − η
∂L

∂wi

,

where w′ are the updated weights, η is the learning rate controlling the conver-
gence speed, and L is the loss function.

To improve convergence, input features can be scaled using:

• Min-max scaling: Normalizes features within a specific range, e.g., [0,1] or
[-1,1].

• Z-score normalization: Centers features around zero:

ui = ui − µi

σi

,

where µi and σi are the mean and standard deviation of the feature ui.
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Training recurrent neural networks (RNNs) is more complex due to temporal
dependencies. The backpropagation through time (BPTT) algorithm unrolls the
network over time, updating all weights, which requires significant computational
resources.

An alternative approach is reservoir computing, which simplifies training by
keeping the internal weights of the reservoir fixed and training only the readout
layer connecting reservoir states to outputs, enabling faster and more efficient
learning.

Feedforward Neural Networks

Feedforward neural networks (FFNNs) are composed of sequential layers: an input
layer, one or more hidden layers, and an output layer (see Figure 1.1). In these
networks, each neuron is connected only to neurons in the previous layer through
weighted connections, and information flows in one direction, from input to output.

FFNNs have no memory of past activations; their output depends solely on the
current input. The state of a neuron in layer i + 1 is given by:

xi+1 = f(Wxxi + bi),

where f is a nonlinear activation function, Wx is the weight matrix connecting
layer i to i + 1, and bi is the bias vector. If a neuron’s input is inactive, its output
remains inactive.

Figure 1.1: General scheme of a feedforward neural network. Red circles represent
artificial neurons. Reprinted from [3].
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Recurrent Neural Networks

Recurrent neural networks (RNNs) differ from FFNNs because they have memory.
Feedback loops can exist within the same neuron or directed to previous layers (see
Figure 1.2). All connections must be trained. Consequently, the internal states of
RNNs depend on both the current input and past states, providing the network
with memory. This makes RNNs suitable for tasks like time series prediction or
natural language processing.

The state update equation for RNNs is:

x(n + 1) = f(Wuu(n + 1) + Wxx(n) + Wfby(n)),

where Wu, Wx, and Wfb are the input, hidden, and feedback weight matrices,
respectively, and f is a nonlinear activation function such as tanh or the logistic
sigmoid. The output is calculated as:

ŷ(n + 1) = g(Wyx(n + 1) + Wyu(n + 1)),

with g as the output activation function.

Figure 1.2: General scheme of a recurrent neural network. Reprinted from [3].

Reservoir Computing

Reservoir computing (RC) is a technique based on RNNs, specifically for this thesis
work the Echo State Network (ESN) will be employed. In RC, the internal weights
of the reservoir are fixed and randomly assigned, while only the connections from
the readout layer to the output layer are trained (see Figure 1.3). The reservoir
transforms inputs through nonlinear dynamics into a higher-dimensional space,
enhancing the linear separability of the data. For example, the result of the XOR
operation cannot be linearly separated in a two-dimensional space, but by mapping
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Introduction

it into a three-dimensional space, the classification problem becomes simple and
linear.

Figure 1.3: General scheme of a reservoir computing system. Yellow connections
represent trainable weights. Reprinted from [3].

Reservoir computing can be implemented in two main ways: spatial reservoirs,
where neurons are distributed and connected in space, and delay-based reservoirs
(temporal multiplexing), where inputs are sequentially injected into a single nonlin-
ear node. In this work, we employ temporal multiplexing, a technique commonly
used in delay-based photonic reservoirs using the MRR as the nonlinear node.
Temporal multiplexing increases the effective dimensionality of the reservoir by
creating virtual nodes along a feedback delay line. These virtual nodes represent
delayed versions of the nonlinearly transformed signal, separated by a temporal
interval θ. The delay line, whose length and material determine the memory and
dynamics of the system, allows the reservoir to retain past information and improves
performance on tasks requiring extended temporal memory.

The main steps of reservoir computing are:

1. Reservoir preparation: Split the dataset into training and test sets (e.g.,
70%-30%). Input signals utrain(t) generate internal states xi(t) in the readout
layer.

2. Execution: Collect readout states xtrain,i(t) and compute the output as a
weighted combination. Only the readout weights are trained.

3. Role of the readout function G: The function G maps readout states to
the desired output. Training adjusts G to minimize the difference between
predicted ŷ(t) and target y(t).

4. Training: Minimize the loss function L(ytrain, ŷ) over all training samples.

5. Testing: Evaluate the reservoir on the test set, typically using accuracy as
the performance metric.
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Linear Regression

Linear Regression is a supervised learning technique used to estimate a linear
relationship between two variables. In the context of this thesis, it is employed to
map the states of the readout layer to the desired outputs by finding the optimal
weight matrix Wy that minimizes the Mean Squared Error (MSE) between the
predicted output ŷ(t) and the target output ytrain(t):

Wy = arg min
Wy

NxØ
i=1

(Wyxi − yi,train)2 , (1.1)

which is equivalent to the closed-form solution:

Wy = (XTX)−1XTYtrain, (1.2)

where:

• X is the matrix of reservoir states (each row corresponds to a state at time t),

• XT is the transpose of X,

• Ytrain is the vector of target outputs,

• (XTX)−1 is the Moore-Penrose pseudo-inverse of the product.

Squaring the differences gives more weight to larger errors. Once Wy is trained
on the dataset, the readout function G can predict outputs for unseen inputs, with
accuracy depending on the amount of training data.

Linear regression can also be implemented in hardware [ref6]. For classification
tasks, a typical output encoding is one-hot encoding, where the output vector has a
position representing the class and a value representing the probability of belonging
to that class. The winner-takes-all technique, which selects the class with the
highest value, is used in this thesis.

Ridge Regression

Linear regression can suffer from two main problems: overfitting and underfitting.
Overfitting occurs when the model is too complex and fits the training data too
well, capturing noise and random fluctuations, which reduces its generalization
capability. Underfitting happens when the model is too simple, failing to capture
the underlying patterns of the data. Figure ?? illustrates an example of overfitting
in (a) and a correct model fit in (b).

One solution to overfitting is to reduce the number of features or to use ridge
regression, which introduces regularization by adding a penalty term λ to the loss
function. Unlike simple linear regression, ridge regression reduces the magnitude of
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the weights without removing features. A smaller weight magnitude corresponds
to a less complex model.

Common regularization methods include:

• LASSO (L1 penalty): penalizes the sum of absolute values of the weights.
The loss function is

Cost Function =
Ø

(squared residuals) + λ
Ø

|wi|.

• Ridge Regression (L2 penalty): penalizes the sum of squares of the weights.
The loss function is

Cost Function =
Ø

(squared residuals) + λ
Ø

|wi|2.

Ridge regression is particularly effective when variables are highly correlated. It
minimizes the following objective:

Wy = arg min
Wy

NxØ
i=1

(Wyxi − yi,train)2 + λ∥Wy∥2
2, (1.3)

where ∥Wy∥2
2 is the squared norm of the weight matrix, preventing the weights

from growing too large.
To solve for Wy, we compute the gradient with respect to Wy and set it to zero:

∂

∂Wy

3
∥Ytrain − WyX∥2

2 + λ∥Wy∥2
2

4
= 0.

Expanding and simplifying gives:

−2YtrainXT + 2WyXXT + 2λWy = 0,

which leads to the closed-form solution:

Wy = (YtrainXT)(XXT + λI)−1, (1.4)

where I is the identity matrix. A larger λ penalizes large weights more, reducing the
model’s sensitivity to individual training examples and improving generalization.

Cross Validation

The choice of λ is crucial: small values may lead to overfitting, while large values
may underfit the model. Cross-validation is a standard technique to select the
optimal λ. Among the common methods are 5-Fold or 10-Fold Cross-Validation.
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In k-fold cross-validation, the dataset is split into k subsets, called folds. For
a chosen λ, the model is trained on k − 1 folds and tested on the remaining fold,
calculating the accuracy. This process is repeated k times, each time using a
different fold as the test set. The average accuracy over the k iterations is then
computed.

The procedure is repeated for different λ values. The optimal λ is the one that
maximizes the average accuracy, balancing model complexity and generalization.
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Chapter 2

Modelling of microring
resonators

2.1 Fundamental concepts of microring resonators
Microring resonators play a crucial role in the advancement of silicon photonics,
thanks to significant advances in photonic integration and the availability of CMOS-
compatible fabrication technologies.

A generic ring resonator consists of an optical waveguide that is looped back on
itself and a coupling mechanism to access the loop. The resonance occurs when
the optical path length of the loop is an integer multiple of the wavelength of the
optical waves at the input.

In this condition, the waves circulating in the loop accumulate a round-trip
phase shift equal to an integer multiple of 2π, so they interfere constructively, and
the cavity is in resonance [6].

As a result, ring resonators support multiple resonant modes, whose spacing,
the free spectral range (FSR), depends on the optical length of the resonator, and
therefore on its radius.

The microring resonator can be implemented in two different configurations:
the all-pass and the add-drop. The first one consists of a single bus waveguide
placed adjacent to a closed-loop waveguide, while the second one, which is the
configuration analyzed in this work, includes two bus waveguides coupled to the
ring. Figure 2.1 illustrates the schematic of the MRR in both the configurations.

Light can be coupled into the MRR through evanescent coupling from one
waveguide in the all-pass configuration, or from two straight waveguides in the
add-drop configuration, represented by the coupling coefficient κ.

In the add-drop configuration, destructive interference takes place at the through
port, resulting in a minimum of transmitted power, while the drop port exhibits a
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Figure 2.1: (A) All-pass and (B) add-drop ring resonator configurations.

maximum in output power due to the circulating power enhancement. Therefore,
a MRR supports multiple resonances, meaning that its spectral response shows
periodic peaks and dips at the drop and through ports, respectively, as illustrated
in Fig. 2.2.

Figure 2.2: Spectral response of an add-drop MRR. The extinction ratio (ER) is
defined as: ER = Pthr,out,res

Pthr,res
, where Pthr,out,res and Pthr,res are the output powers at

the through port out of resonance and at resonance, respectively.
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The resonance wavelength λ0 for a microring is given by:

λ0 = neff,0 L

m
, m = 1, 2, 3, . . . (2.1)

where neff,0 is the effective refractive index of the waveguide, L is the total length
of the MRR, and m is an integer representing the resonance order.

The coupling loss in the bus-ring coupling region is indicated by the parameter
η2. Defining Pbus as the power entering the coupler, the power loss per round trip
in this region can be expressed as η2 · Pbus.

Here we assume that the coupling coefficients of the top and bottom bus
waveguides, i.e., κ1 and κ2 respectively, are equal. This assumption is not true in
the case of Si-PolySi ring analyzed in this work, where they are generally different.

The power conservation in the bus-ring coupling region is therefore given by:

t2 + κ2(1 − η2) + η2 = 1, (2.2)

from which we obtain:
t2 = (1 − κ2)(1 − η2). (2.3)

Figure 2.3: Zoom in the bus-ring coupling region.

From Fig. 2.3 we can observe a zoom in the bus-ring coupling region. The
parameter t represents the proportion of field that remains in the bus waveguide
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after passing through the coupler, while κ describes the fraction of field traveling
along the bus waveguide that is actually coupled into the microring.

During propagation in the ring, the optical field experiences modal losses, which
can be expressed as:

a = e−αeffL/2, (2.4)

where the effective loss coefficient αeff is defined as:

αeff = α0 + αrad, (2.5)

with α0 representing the linear losses due to light scattering, residual doping, and
single-photon absorption, and αrad representing the losses due to light irradiated
into the cladding.

With this formulation, the power transmission coefficients at the through port
is given by:

Tthr = t2

---1 − (1 − η2)aejθ
---2

|1 − t2aejθ|2
, (2.6)

while at the drop port it is as follows:

Tdrop = κ4(1 − η2)2a

|1 − t2aejθ|2
. (2.7)

To obtain the circulating power inside the ring, we consider that the total
circulating field is the sum of all contributions associated with the multiple round
trips within the ring. The first term corresponds to the input field Ein in the
add-drop MRR, given by −κ · (1 − η2)Ein.

All subsequent terms can be expressed as:

Ec(ω) = −κ · (1 − η2)Ein(1 + t2aejθ + t4a2e2jθ + . . . ), (2.8)

where the series
1 + t2aejθ + t4a2e2jθ + . . .

is a geometric progression that can be written as:

1
1 − t2aejθ

=
∞Ø

n=0
(t2aejθ)n.

Therefore, the total circulating field becomes:

Ec(ω) = −κ(1 − η2)Ein

1 − t2aejθ
,
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and the corresponding circulating power is:

Pc = |Ec|2 = Pbus · κ2(1 − η2)
|1 − t2aejθ|2

. (2.9)

Here, θ is the total phase variation per round trip, expressed as:

θ = θ0 + ng

c
(ω − ω0)L, (2.10)

where θ0 is the phase variation per round trip at the reference angular frequency
ω0, and ng is the group refractive index of the resonator mode, which depends on
the effective refractive index:

ng = neff,0 − λ
∂neff,0

∂λ
. (2.11)

This definition accounts for the dispersion of the effective refractive index of the
propagating mode in the waveguide.

Other important figures of merit (FOMs) in the description of microring res-
onators are the free spectral range (FSR), quality factor (Q), and finesse (F). The
FSR corresponds to the wavelength spacing between two adjacent resonance peaks,
whereas the quality factor characterizes the sharpness of a specific resonance. It is
defined as:

Q = λ0

FWHM , (2.12)

where FWHM is the full-width at half-maximum of the resonance peak, as
illustrated in Figure 2.2.

The quality factor also provides an indication of the circulating power Pc in
the MRR: a larger Q results in a higher Pc, which leads to stronger non-linear
effects compared to a resonator with smaller Q, given the same input power and
round-trip losses.

The finesse (F) is defined as:

F = FSR
FWHM , (2.13)

where the Free Spectral Range (FSR) represents the wavelength spacing between
two consecutive resonances, and the Full Width at Half Maximum (FWHM) denotes
the width of a resonance at half of its maximum intensity.

For an add-drop ring resonator with t1 = t2 = t, the finesse can be expressed as:

F = πt
√

a

1 − t2a
. (2.14)
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Assuming the case where κ ≪ 1 and both propagation and coupling losses are
negligible (a = 1, η = 0), it can be demonstrated that:

t2 = (1 − κ2)(1 − η2) ≈ 1.

The resulting finesse F is therefore given by:

F = π
√

t2a

1 − t2a
= πt

1 − t2 ≈ π

κ2 .

From this, it follows that:
κ2 ≈ π

F
.

Hence, the circulating power at resonance is:

Pc = Pbus · π

F
· 1

(1 − t2)2 = Pbus · F
πt2 ≈ Pbus · F

π
.

Thus, the ratio between the circulating power and the input power is:
Pc

Pbus
= F

π
.

In the general case, considering non-negligible propagation and coupling losses,
the circulating power Pc at resonance can be expressed in terms of the self-coupling
coefficient t and the coupling coefficient k as:

Pc = k2 Pbus
(1 − η2)2

|1 − t2a|2
. (2.15)

By solving for t in terms of the finesse F and the round-trip losses a, the
expression can be simplified to a compact form:

Pc = Pbus(1 − η2)F2

π2

C
4F2(1 − η2)

2π2 + 4F 2 − 2π
√

π2 + 4F2
− 1

a

D
. (2.16)

Finally, expressing the finesse in terms of the quality factor Q via

F = Q λres

ngL
,

we obtain a final formula for the circulating power in terms of Q:

Pc = Pbus (1 − η2)

1
Q λres
ngL

22

π2

 4
1

Q λres
ngL

22
(1 − η2)

2π2 + 4
1

Q λres
ngL

22
− 2π

ò
π2 + 4

1
Q λres
ngL

22
− 1

a

.

(2.17)

16



Modelling of microring resonators

Figure 2.4: Comparison of the ratio between Pc and Pbus as a function of the
finesse at resonance, with and without losses. The blue line represents the ideal
case without losses, while the red line corresponds to the case including losses with
a = 0.9928, η2 = 0.0073, and L = 79.42 µm.

This expression provides a direct relationship between the circulating power
in the microring and the quality factor Q, taking into account both coupling and
propagation losses.

In this work, the microring resonator adopts the configuration shown in Fig. 2.5,
where the two through ports (Port 1 and Port 2) share the same input. The light
enters from a single input port and encounters a splitter that divides it into the
two bus waveguides.

Figure 2.5: Ring configuration with a single input and a splitter.
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In this configuration, the output power can be collected either from the top
or bottom right output ports, which are both considered through ports. For
convenience, these ports are labeled as Port 1 and Port 2. Accordingly, eq. 2.6 can
be expressed for each port as follows.

At Port 1, the transmission is given by:

Tthr, Port1 =
-----t2 − κ2

1t2aejθ(1 − η2)
1 − t1t2aejθ

-----
2

, (2.18)

while at Port 2, it becomes:

Tthr, Port2 =
-----t2 − κ2

2t1aejθ(1 − η2)
1 − t1t2aejθ

-----
2

. (2.19)

Figure 2.6 shows an example of the transmission spectra at both port 1 and
port 2 for a microring resonator with a radius of r = 5 µm.

Figure 2.6: Spectral response of a ring resonator with radius r = 2µm at Port 1
and Port 2 with the parameters: κ1 = 0.17, κ2 = 0.21, α0 = 1.02dB/cm, αrad =
1.73dB/cm, ng = 4.2, neff = 2.35, η2 = 0.004.

2.2 Thermal model
It is crucial to analyze the thermal behavior of the MRR to understand the influence
of temperature on the silicon and polysilicon refractive index. Relaxation and
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recombination of free carriers, generated by TPA and FCA, result in self-heating
of the MRR, which can be modeled by its thermal impedance ZT , which for strip
waveguides, that is the case analyzed in this work, is defined as:

ZT = ∆T

Pabs
(2.20)

with ∆T = Tmax − T0. Here, Tmax represents the internal core temperature
reached as a consequence of the absorbed power Pabs, starting from the ambient
temperature T0, set at 293.15K.

A larger value of ZT corresponds to a poorer thermal conductivity, meaning
that heat remains confined within the MRR due to inefficient transfer towards the
substrate.

Thermal impedance is highly dependent on the material and on the geometrical
design: the silicon core of the strip waveguide is surrounded by SiO2 and the
distance between the core and the substrate plays a crucial role since an higher
thickness of SiO2 is associated with lower thermal conductivity, which leads to an
increase in the value of the thermal impedance ZT .

Figure 2.7: Cross-section of a silicon MRR.

From the design point of view, the thermal impedance decreases as the resonator
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length increases, since the area where heat can be dissipated is larger, allowing the
structure to release heat more efficiently.

To have a better understanding of heat transfer within the MRR, the Foster
model is employed. This model consists of an equivalent electrical circuit formed
by a series of n nodes, each represented by an RC block as shown below, where
∆Ti denotes the temperature variation at the i-th node. The total temperature
variation over time is then given by:

∆T (t) =
nØ

i=1
∆Ti

3
1 − e

t
ZT,iCi

4
(2.21)

Figure 2.8: Foster model equivalent thermal circuit.

The thermal impedance values are obtained using the COMSOL Multiphysics
thermodynamic software. The simulation of the thermal behavior consists of
injecting a circulating power of 10 mW inside the ring at t = 0. The simulation is
run until the temperature variation reaches saturation, after which the resulting
transient curve is fitted. A reliable fitting cannot be achieved with a single time
constant, instead, multiple nodes are required to accurately model the transient
thermal response. Each node is associated with a thermal time constant and in
particular every node represents a partial temperature variation ∆Ti. According
to Eq. (2.20) the corresponding thermal impedance ZT,i of each node can be
determined by knowing the power absorbed in the waveguide core.

From the Foster model it is observed that each node is represented by the
parallel connection of a thermal impedance ZT and a thermal capacitance C. The
capacitance can be obtained by knowing the thermal time constant value of the
node, according to the following relation:

τth,i = ZT,iCi (2.22)

In the table 2.1, the values of the thermal time constants, thermal impedances,
and capacitances for each node, obtained from the simulation, are shown.
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Table 2.1: Thermal parameters of the Foster model nodes.

Node τth,i [s] ZT,i [Ω] Ci [F]
1 1.9253 × 10−7 9.245 × 103 3.12 × 10−10

2 9.246 × 10−8 5.790 × 103 1.60 × 10−9

3 2.4335 × 10−7 3.792 × 103 1.28 × 10−8

4 4.83 × 10−8 1.272 × 103 1.90 × 10−7

2.3 Overview of Nonlinear Effects in Silicon

Microring resonators exhibit non-linear effects when the power injected in the ring
increases. These effects cause wavelength shifts and distortions of the ring’s spectral
response.

The main effects responsible for spectral distortion are two-photon absorption
(TPA) and free carrier absorption (FCA). TPA occurs when the combined energy of
two photons is sufficient to excite an electron from the valence band to the conduc-
tion band, creating an electron-hole pair. This mechanism generates free carriers,
which can subsequently absorb additional photons through FCA, promoting carriers
to higher energy levels within the conduction or valence bands. Consequently, TPA
and FCA increase the overall optical loss, leading to a reduction of the resonator’s
quality factor and consequent distortion of the optical response.

The generated free carriers (FCs) also induce a change in the refractive index.
This effect is known as Free-Carrier Dispersion (FCD), which is responsible for a
shift of the ring’s resonance towards shorter wavelengths. On the other hand, the
relaxation (thermalization) and recombination of FCs through Shockley–Read–Hall
(SRH) processes release energy in the form of heat (self-heating), leading to a
temperature increase in the resonator. This thermal effect modifies the refractive
index and results in a shift of the resonant wavelength towards longer wavelengths.
The Kerr effect is also taken into account as it induces a slight shift towards longer
wavelengths to the resonance, even if its contribution is much smaller compared to
FCA and self-heating.
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Figure 2.9: Schematic of the nonlinear effects in Si. Reprinted from [5].

2.4 Static Analysis and SRH model for carrier
recombination

2.4.1 Phase variation

The overall phase accumulation in Eq. 2.10 is influenced by nonlinearities, thermal
effects, and the Kerr effect, all accounted in the term ∆θ(Pc, ∆T ). Consequently,
the phase becomes a function of the circulating optical power, the resonator
temperature, and the free carrier densities ne and pe, and can be written as:

θ(Pc, T, ne, pe) = θ0 + ng

c
(ω − ω0)L + ∆θ(Pc, T, ne, pe). (2.23)

The nonlinear term is related to the effective refractive index variation ∆neff(Pc, T, ne, pe)
as ∆θ = 2πL

λ0
∆neff.
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2.4.2 Propagation losses
In addition to the modal losses experienced by the field during propagation in the
ring, further losses must be considered because of nonlinear effects. Referring to
free carriers as the carrier densities per unit volume, ne for electrons and pe for
holes, these effective losses can be expressed as:

αeff(Pc, ne, pe) = α0 + αrad + ∆α(Pc, ne, pe), (2.24)

with
∆α(Pc, ne, pe) = αTPA(Pc) + ∆αFCA(ne, pe). (2.25)

The last term is related to the nonlinear losses and it is composed by αTPA(Pc),
the losses due to two-photon absorption, which depends linearly on the circulating
power in the ring, as expressed by the following relation:

αTPA(Pc) = βTPA

Aeff
Pc, (2.26)

where βTPA is the two-photon absorption coefficient and Aeff is the effective area,
a measure of the nonlinear interaction of the optical field with silicon.

The other term, αFCA(ne, pe), corresponds to the losses induced by
free-carrier absorption and is expressed through the following empirical expres-

sion [7]:

∆αFCA(ne, pe) = Γ
1
8.88 · 10−21 n1.167

e + 5.84 · 10−20 p1.109
e

2
, (2.27)

where Γ is the mode confinement factor, ne is the electron density, and pe is the
hole density, both expressed in [cm−3].

2.4.3 Refractive index variation
The total refractive index variation is the sum of different contributions, related to
the free carriers and to self-heating:

∆neff = ∆neff,FCD + ∆neff,Kerr + ∆neff,T, (2.28)

where ∆neff,FCD is the variation due to free-carrier dispersion (FCD), ∆neff,Kerr
is the variation induced by the Kerr effect and ∆neff,T is the contribution related
to thermalization and consequent self-heating of the ring.

The FCD contribution is given by the following empirical relation [7]:

∆neff,FCD = −Γ
1
5.4 · 10−22 n1.011

e + 1.53 · 10−18 p0.838
e

2
, (2.29)

The contribution due to the Kerr effect (SPM) can be expressed as:
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∆neff,Kerr = Γn2
Pc

Aeff
, (2.30)

where n2 is the Kerr coefficient in silicon.

Thermal dispersion

For the refractive index variation due to self-heating, it is necessary to quantify
the power absorbed by the ring, that is the fraction of optical power converted into
heat. This absorbed power is a function of the circulating power and it is expressed
as:

Pabs = Pc (1 − aabs)
1
1 + t2 · a

2
, (2.31)

where
aabs = e−(α0+∆α(Pc))·L/2. (2.32)

So the absorbed power originates from linear propagation loss, two-photon
absorption (TPA), and free-carrier absorption (FCA), and is converted into heat in
the silicon core.

The circulating power therefore determines the amount of absorbed power,
which is used as the input of the RC thermal network to calculate the temperature
variation at the different nodes:

dTi

dt
= −Ti

τi

+ Pabs

Ci

, i = 1, . . . ,4, (2.33)

After evaluating the total temperature variation as the sum of the contributions
of each node as:

∆T =
Ø

i

∆Ti. (2.34)

we obtain the effective refractive index change due to self-heating:

∆neff,T = Γ dnSi

dT
∆Ttot, (2.35)

where dnSi

dT
is the silicon thermo-optic coefficient.

2.4.4 Differential equations for free carriers density
Since the nonlinear effects depend mainly on the free carrier density as can be
seen from 2.27 and 2.29, this subsection focuses on the differential equations that
describes the generation and the dynamics of free carriers.
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The rate equation for free carriers is in the following form:

dN

dt
= Ggen − Rrec, (2.36)

where Ggen is the carrier generation rate, which will be discussed later, and Rrec
is the total recombination rate.

In the case of silicon microring resonators, the only recombination mechanism is
non-radiative and it is the Shockley–Read–Hall (SRH) recombination: free carriers
are captured by defects or impurities within the crystal lattice, which act as traps.
Electrons and holes then recombine through the energy levels associated with these
traps, releasing energy in the form of heat.

The time evolution of the excess carrier densities in the semiconductor can be
described by the following Shockley–Read–Hall (SRH) rate equations [ref9]:

dne

dt
= G − 1

τn0

C
(n0 + n1 + ne)(ne − pe)

Nf

+ nen1

n0 + n1

D
, (2.37)

dpe

dt
= G − 1

τp0

C
(p0 + p1 + pe)(pe − ne)

Nf

+ pep1

p0 + p1

D
, (2.38)

where:

• ne and pe are the excess electron and hole densities, respectively,

• n0 and n1 are the electron concentrations under equilibrium conditions,

• p0 and p1 are the hole concentrations under equilibrium conditions,

• Nf is the trap density,

• τn0 and τp0 are the recombination lifetimes for electrons and holes, respectively.

In both equations, the first term represents the carrier generation rate G, while
the second term represents SRH recombination through traps.

For the total SRH generation rate G, both carriers generated by Two-Photon
Absorption (TPA) and Surface-Charge Absorption (SCA) must be taken into
account. SCA consists of the absorption of a single photon that promotes an
electron from an intra-gap state located at defects near the waveguide. Usually
this contribution can be neglected.

The total generation rate can be expressed as:

G = α0 ηSCA Pc

ℏω0 A Aeff
+ αTPAP 2

c

2ℏω0A
, (2.39)

where ηSCA is the SCA efficiency, ℏω0 is the photon energy, A is the waveguide
cross-sectional area.
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2.4.5 Pump-probe differential equations
In the pump–probe experiment, two signals are injected into the MRR, corre-
sponding to the pump and probe fields, at two different wavelengths set at two
adjacent resonances, λ0,1 and λ0,2 of the MRR. The pump signal, at high power,
is responsible for inducing nonlinear effects in the ring through the generation of
a large number of free carriers, while the probe signal, at low power, is used to
monitor the dynamics of the ring and the effects induced by the pump signal.

In this subsection, the field equations for the pump and probe signals are
analyzed with the effects coming from the interaction of the two fields on the
nonlinearities of the MRR.

Therefore, two circulating fields are present in the ring, defined as:

Ering,1(t) = Ec,1(t) e−jω0,1t, Ering,2(t) = Ec,2(t) e−jω0,2t. (2.40)
The differential equations for the circulating fields of the pump and probe signals

are:

∂Ec,1

∂t
= − 1

τg,1

κ1
√

1 − η2

t2
1 a1(t)

Ebus,1 + Ec,1(t)
A

1
t2
1a1(t)

− 1
B

+ j
3

L

c
∆ωr,1(t) + τg,1δω1

4
Ec,1(t)

.

(2.41)

∂Ec,2

∂t
= − 1

τg,2

κ2

ñ
1 − η2

2

t2
2 a2(t)

Ebus,2 + Ec,2(t)
A

1
t2
2a2(t)

− 1
B

+ j
3

L

c
∆ωr,2(t) + τg,2δω2

4
Ec,2(t)

.

(2.42)

With Pbus,1,2 = |Ebus,1,2|2, Pc,1,2 = |Ec,1,2|2, ∆ωr,1,2 = ω0,1,2 · ∆neff,1,2, and τg,1,2 =
L · ng,1,2/c. Here, δω1,2 is the pump and probe detuning with respect to the cold
resonances. Usually in the pump-probe experiment the pump detuning is set to zero
in order to maximize the circulating field and hence carrier generation, while on the
other hand the probe can be detuned around λ0,2 depending on the application.

Regarding the thermal response, since two fields are present, two absorbed
powers must be considered. Therefore, 2.33 is evaluated separately for the pump
and probe fields:

dT
(1)
i

dt
= −T

(1)
i

τi

+ Pabs,1

Ci

,

dT
(2)
i

dt
= −T

(2)
i

τi

+ Pabs,2

Ci

,

i = 1, . . . ,4. (2.43)
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The total temperature variation is then obtained as the sum of the contributions
from both fields:

∆Ti(t) = T
(1)
i (t) + T

(2)
i (t), i = 1, . . . ,4. (2.44)

Finally the refractive index variation due to self heating in the pump-probe
experiment is computed as:

∆n
(1,2)
eff,T = Γ1,2

dnSi

dT
∆Ttot (2.45)

where Γ1,2 are the confinement factor respectively of the pump and probe fields.
For what regards the pump-probe experiment, additional terms for the nonlinear

effects induced in the MRR dyamic must be taken into account. With two different
signals of pump and probe, the absorption of one photon from the pump together
with one photon from the probe leads to additional effective losses, known as cross
Two-Photon Absorption (XTPA). Similarly, the probe and pump fields induce
reciprocal phase variations through the Kerr effect, a mechanism referred to as
cross-phase modulation (XPM).

Figure 2.10: Schematic overview of the nonlinear effects in the pump-probe
experiment.
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These nonlinear interactions are therefore included in the formulation of the
pump-probe effective losses αeff,1/2(t) and the carrier generation rate G(t).

For the pump field, the effective losses are given by:

αeff,1 = α0 + βTPA

Aeff,1
Pc,1 + 2 βTPA

Aeff,av
Pc,2 + Γ1∆αFCA, (2.46)

while for the probe field:

αeff,2 = α0 + βTPA

Aeff,2
Pc,2 + 2 βTPA

Aeff,av
Pc,1 + Γ2∆αFCA, (2.47)

where Aeff,av =
ñ

Aeff,1 Aeff,2.
The total free carrier generation rate, including XTPA, can be expressed as:

G = GSCA,1 +
βTPAP 2

c,1

2ℏω0,1AAeff,1
+

βTPAP 2
c,2

2ℏω0,2AAeff,2

+ βTPAPc,1Pc,2

ℏω0,1AAeff,av
+ βTPAPc,1Pc,2

ℏω0,2AAeff,av
.

(2.48)

The first three terms correspond to the SCA and TPA contributions from the
pump and probe, the last two terms represent the generation of free carriers due to
cross Two-Photon Absorption (XTPA) between the pump and probe fields.

Finally, the pump and probe fields also interact through the cross-phase modu-
lation (XPM) effect, which adds to the self-phase modulation (SPM):

∆n
(1,2)
eff,Kerr = Γ1,2n2

A
Pc,1,2

Aeff,1,2
+ 2 Pc,2,1

Aeff,av

B
. (2.49)

2.5 Si-PolySi Ring Modelling
The case of interest of this work consists of a waveguide composed of two slabs,
silicon and polysilicon, stacked on top of each other.

For materials different from crystalline silicon, such as polysilicon, the optical
confinement factors ΓSi and Γpoly-Si are introduced to weight the contribution of
the two waveguides to the propagating field. This type of waveguide allows the
field to be confined almost equally in both silicon and polysilicon, resulting in very
similar confinement factors. The effective FCA losses can be expressed as:

∆αFCA,exp(t) = ΓSi ∆αFCA,exp,Si(t) + Γpoly-Si ∆αFCA,exp,poly-Si(t). (2.50)
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Similarly, for the refractive index variation due to free-carrier dispersion (FCD),
we can write:

∆neff,FCD,exp(t) = ΓSi ∆neff,FCD,exp,Si(t) + Γpoly-Si ∆neff,FCD,exp,poly-Si(t). (2.51)

Here, ∆αFCA,exp,Si(t) and ∆αFCA,exp,poly-Si(t) represent the FCA losses in the sili-
con and polysilicon waveguides, respectively, while ∆neff,FCD,exp,Si(t) and ∆neff,FCD,exp,poly-Si(t)
represent the variation of the refractive index due to FCD in the two waveguides.

In polysilicon, the FCA can be expressed as:

∆αFCA,poly = Γpoly-Si
1
5.2 × 10−20 n1.167

e + 1.2 × 10−19 p1.109
e

2
, (2.52)

and the corresponding refractive index variation due to FCD is:

∆neff,FCD,poly = −Γpoly-Si
1
6.6 × 10−22 n1.011

e + 2.4 × 10−18 p0.838
e

2
. (2.53)

Polysilicon is characterized by the presence of defects within its crystalline
grains, which act as recombination centers for free carriers. The grain size and
the large number of grain boundaries strongly affect carrier mobility, trap density,
and thermal conductivity. As a consequence of these defects, polysilicon typically
exhibits larger linear losses. Furthermore, polysilicon experiences stronger FCA
compared to crystalline silicon; however, the same defects also dramatically reduce
the free-carrier lifetimes, leading to a consequently reduced impact of FCA.
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Chapter 3

Characterization of the Si
PolySi microring resonator

In this chapter will be discussed the characterization of the silicon and polysilicon
microring resonator selected for the pump and probe experiment. Steady-state
measurements of the transmission coefficient of the MRR have been performed both
in the linear regime, in order to perform a fitting and extract the characteristic
parameters of the ring, and in the non linear regime where the effects described in
Chapter 2 are observed.

3.1 Si-PolySi ring resonator
The Si–PolySi ring resonator under test is based on the SISCAP platform [8], where
the ring waveguide consists of a rectangular undoped polysilicon core placed on
top of a silicon core, as shown in Figure 3.1. The ring configuration features a
single input waveguide that also functions as a drop port, connected through an
optical splitter, and two through ports. The main geometrical dimensions of the
ring resonator are reported in Table 3.1.

Table 3.1: Geometrical parameters of the Si and PolySi ring resonator.

Parameter
Ring Si/PolySi

Unit
Si PolySi

Radius 2 µm

W 400 400 nm

h 115 125 nm
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The coupling technique used is an edge coupling technique adopted with a Spot
Size Converter (SSC). Table 3.2 reports the values of the splitter and the coupling
losses at the input and output for both ports 1 and 2. The input coupling losses
were measured using an optical circulator. Once the input losses were estimated,
the output coupling losses were derived by measuring the insertion loss of the ring
with the laser wavelength set outside the resonance condition.

Figure 3.1: Structure and configuration of the Si-PolySi MRR under test.

Table 3.2: Measured coupling losses and splitter ratio for the Si-PolySi ring
resonator.

Parameter Value Unit

Coupling losses input 2.5 dB
Coupling losses output Port 1 7.5 dB
Coupling losses output Port 2 6.0 dB

Splitter ratio 0.5 –

As can be observed, port 2 exhibits lower coupling losses compared to port 1.
For this reason, in the pump and probe experiment, port 2 is used as the output of
the ring.

Figure 3.2 shows the fitting of the measured bend losses for a Si-PolySi ring
with a radius of 2 µm. These extracted values are implemented in the model to
estimate the radiative losses αrad.
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Figure 3.2: Measurement and fitting of bend losses for a Si-PolySi MRR with
2µm radius.

3.2 Steady state set up

In order to perform the steady state measurements in both the linear and non linear
conditions the optical power is injected into the bus waveguide from a tunable laser
(Hewlett Packard 8168F). In order to reach high power level, for the non linear
measurements, the optical signal is amplified by means of an Erbium-Doped Fiber
Amplifier (EDFA) followed by an optical filter (JDS TB9 Optical Grating Filter) to
reduce the residual Amplified Spontaneous Emission (ASE). Before coupling into
the ring, a polarization controller (PC) is also employed to ensure that the incident
light on the SSCs is TE polarized, as the converters are designed to operate only for
this polarization. The transmission coefficient measurements of the Si-PolySi MRRs
are strongly polarization dependent. For this reason, the polarization controller is
adjusted in order to have the output power from the ring symmetric on both sides
of the resonance.

The tunable laser wavelength is then swept around the resonant wavelength of
the ring, λ0,1. The transmission coefficient at the through port is obtained as the
ratio between the input power and the output power at the through port, measured
using an optical power meter.

The fiber-to-chip alignment is achieved by means of a 6-degree mechanical stage
positioning system with a precision of ±0.06 µm. The chip is mounted on a Peltier
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cell, with the temperature stabilized at 25◦C using a Thermo Electric Cooler (TEC)
controller.

Figure 3.3: Laboratory setup: the chip is mounted on a Peltier cell, with two
hexapod, used to align precisely the fiber at the input and at the output of the
chip.

(a) Input fiber coupling (b) Output fiber coupling

Figure 3.4: Fiber coupling at the input and output of the chip.
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3.3 Linear regime measurements and fitting

The following section aims to extract the characteristic parameters of the MRR in
order to identify the ring suitable for the pump and probe experiment.

After identifying two adjacent resonances by means of an Optical Spectrum
Analyzer (OSA), measurements in the linear regime are carried out by setting the
tunable laser power at 10 µW in order to inject in the MRR low power to avoid the
occurrence of non linear effects in both silicon and polysilicon. Then the wavelength
sweep is performed and the transmission coefficient for both resonances is measured
at ports 1 and 2 of the MRR. The measured spectra with their corresponding
fittings are reported below.

(a) (b)

(c) (d)

Figure 3.5: Measured transmission coefficients and fittings of the MRR at two
resonances.(a) and (b) are port1 and port 2 at the first resonance, (c) and (d) are
port 1 and port 2 at the second resonance.
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The fitting is performed by fixing certain parameters, such as the intrinsic losses
α0, the coupling-related losses η, and the group index ng. Since port 2 present the
best fit and lower output coupling losses, as previously explained, it is therefore
preferred for the pump and probe experiment. Extracted parameters are in the
table 3.3. In the fitting procedure optical refractive index neff for PolySi is assumed
to be the same as for Si.

Table 3.3: Extracted parameters of the Si-PolySi MRR at port 2.

Parameter
Pump Probe

Unit
Si PolySi Si PolySi

λres 1527.9 1572.5 nm

Q 1015 680 –
κ2 0.1177 0.1751 –
α0 1.02 8 1.02 8 dB/cm

η2 0.004 0.004 –
ng 4.2 4.2 –

αrad 1.53 5.2 dB/cm

neff 2.34 2.25 –
Γ 0.50 0.50 0.46 0.51 –

Aeff 0.140 0.165 0.177 0.159 µm2

It is important to note that, in general, the Si-PolySi ring exhibits a quality
factor Q that is significantly lower than the one of a silicon ring, as can be seen in
Figure 3.6, which shows the fitting of a linear measurement for a silicon ring. This
implies that, for the same circulating power in the MRR, the non linear effects
observed in a silicon ring are expected to be stronger than those in the Si-PolySi
ring.
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Figure 3.6: Measured transmission coefficient and fitting of a pure silicon MRR:
the quality factor extracted from the fitting is 4145.

3.4 Non linear regime measurements

After extracting the main figures of merit of the MRR, the behavior of the transmis-
sion coefficient is analyzed as a function of the input power. The measurements are
performed following the same procedure as in the linear regime, with the addition
of an EDFA, followed by the optical filter, to amplify the optical signal and achieve
power levels sufficient to trigger non linear effects in both silicon and polysilicon.

The bus power (Pbus) for each transmission coefficient measurement is estimated
by measuring the non-normalized transmission coefficient at both sides of the
resonance, performing a linear fitting, and evaluating the corresponding power
value at the resonance wavelength of the curve. The output coupling losses are
then added to obtain the total bus power.

Initially, non linear measurements were performed on a Si ring resonator (fig-
ure 3.7), from which the resonance shift and the transmission coefficient variation
as a function of the input power were extracted, as shown in figure 3.8.

Subsequently, the same type of measurement was performed on the Si-PolySi
ring resonator. In this case, the measurements are focused on the resonance at
1527.9 nm, referred to as the pump. Figure 3.9 shows the nonlinear measurements,
while Figure 3.10 reports the corresponding resonance shift and transmission
coefficient.
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Figure 3.7: Non linear measurements performed on a Si MRR.

(a) Resonance wavelength shift. (b) Transmission shift at the through port.

Figure 3.8: Extracted resonance wavelength shift (a) and the transmission
coefficient variation (b) for the Si ring resonator.
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Figure 3.9: Measurements of the Si-PolySi MRR transmission oefficient varying
the input power.

Let’s focus on the Si-PolySi case: up to a bus power of Pbus = −6 dBm, the
spectrum corresponds to the linear response. As the power increase, non linear
effects start to appear: the quality factor of the transmission spectrum degrades
due to the rise of optical losses caused by the high number of free carriers. Under
continuous-wave (CW) injection, the resonance shift towards shorter wavelengths
(blue shift) due to free-carrier dispersion (FCD) is not observed, since in this
condition the thermal effect dominates, resulting only in a measurable shift towards
longer wavelengths (red shift). This behavior is attributed to the higher thermal
impedance of the Si/Poly-Si ring. In fact, in other works [3], where measurements
were carried out on pure silicon rings, an initial blue shift is observed, caused by
the variation of the refractive index due to FCD being dominant over the thermal
effect.

For high values of Pbus, starting from 6 dBm, we can observe a sharp increase
of the transmission coefficient. This is a consequence of the ring entering the
bistability region, which results in a transmission spectrum characterized by a
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hysteresis that depends on the direction of the wavelength sweep, i.e., from low to
high wavelength or from high to low wavelength.

As anticipated, from the non linear measurements, the data regarding the
resonance shift ∆λ, defined as the difference between the measured wavelength
resonance λres and the cold resonance λ0, and the variation of the transmission
coefficient were collected.

(a) Resonance shift (b) Threshold transmission shift

Figure 3.10: Comparison of resonance shift and threshold transmission shift.

From the resonance shift graph, a discrepancy between the expected and the
measured values can be observed at higher input power. This is due to the fact that
the MRR enters, for many input wavelengths, a self-oscillating regime in which a
well-defined transmission spectrum cannot be obtained. For wavelengths injected
around the resonance and with sufficient input power, the optical power measured
at the through port oscillates over time; however, the optical power meter records
only the average value of this oscillating signal. In this scenario, the ring does not
operate effectively, and the measured transmission cannot be considered a reliable
metric for quantifying its static non linear response.

3.4.1 Self-Oscillation Regime
In some specific conditions, involving a particular input wavelength and a given
level of injected power in continuous-wave regime, the microring resonator can enter
a self-oscillation regime. This condition is characterized by periodic oscillations of
the resonant wavelength. During these oscillations, the optical power circulating
within the ring becomes sufficiently high that the free-carrier lifetime becomes
comparable to the thermal time constant of the resonator reported in 2.1.

To better understand the behavior of this condition, the process can be divided
into four main steps.
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At first, when the optical signal is aligned with the cold resonance wavelength
λ0, the circulating power inside the ring increases significantly. This results in
intense free-carrier generation, which induces a shift of the resonance towards
shorter wavelengths due to free-carrier dispersion. At this point, the signal becomes
detuned from the cold resonance, causing a rapid decrease in circulating power.
Meanwhile, the heat generated by free-carrier absorption leads to a shift of the
resonance towards longer wavelengths, gradually restoring the alignment between
the signal and the cold resonance. As this occurs, both FCD and self-heating
effects becomes more evident because the circulating power increases again as the
detuned resonance approaches its initial wavelength. However, when the resonance
returns to its initial position, the maximum achievable circulating power is reduced
compared to the initial condition, since the quality factor has been degraded by the
high density of free carriers. The absorbed carriers generate additional heat, further
shifting the resonance towards longer wavelengths and decreasing the circulating
power. At the end of the process, as heat dissipates, the ring gradually cools down
and returns to its initial state. This continuous sequence of carrier generation,
absorption, and thermal recovery results in periodic self-oscillations of the resonance
wavelength.

As anticipated in section 3.4 to detect the self-oscillations, the output signal
from the through port is monitored using an optical receiver and an oscilloscope
with bandwidth of 300 MHz. In order to detect the self-oscillations, the analysis
was first carried out on the measured transmission spectrum for input power levels
corresponding to a resonance shift equal to some of the outcome values reported in
Fig. 3.10a.

Figure 3.11: Transmission spectra corresponding to the outcome values of the
resonance shift.
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The analysis continues by setting the input power equal to the one used for the
transmission spectra shown above, and tuning the signal wavelength to the points
highlighted in the figure 3.11. Using the APD and the oscilloscope, the following
traces in figure 3.12 are obtained. It can be observed that the fluctuations occur
on the millisecond timescale and become more pronounced for Pbus above 5.6 dBm,
especially when the signal wavelength is set closer to the cold resonance value. At
higher power levels, the ring operates in a fully oscillating regime, as shown in
figure 3.13.

(a) (b)

(c) (d)

Figure 3.12: Comparison of self-oscillation cases (a)–(d).
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Figure 3.13: Full oscillating regime for Pbus = 6.7dBm
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Chapter 4

Pump and probe experiment

This chapter focuses on the pump and probe experiment and its application to
the Si-PolySi microring resonator [9]. A set of dynamic measurements is presented
and compared with simulations obtained from the theoretical model in order to
validate it. The first set of measurements were carried out with single pulses of
different durations. Afterwards, the experiment was extended to the case of a
binary sequence. The analysis of the model simulations allows the identification
and quantification of the different dynamic effects previously introduced.

4.0.1 Pump and probe experimental set up
In order to perform a pump and probe experiment, two different continuous-wave
(CW) tunable lasers are employed: a probe laser (Hewlett Packard 8168F) and a
pump laser (Agilent N7714A Multiport). The pump and probe wavelengths are
tuned to adjacent ring resonances separated by one free spectral range (FSR),
namely λ0,pump and λ0,probe.

The high-power CW pump signal is first modulated by a Mach–Zehnder inter-
ferometer (JDS Uniphase N-334711A), and then amplified by an erbium-doped
fiber amplifier (EDFA) to achieve high peak power pulses. A waveform generator
(Anritsu WFG, bandwidth = 40 GHz) allows the generation of pump pulses with
periods as short as 100 ps. Meanwhile, the CW probe power in the bus waveguide
is kept low to avoid any nonlinear effects or self-heating induced by the probe.

Filter 1 (JDS TB9 Optical Grating Filter), an optical grating filter centered at
the pump wavelength, is used to suppress the amplified spontaneous emission (ASE)
produced by the EDFA. The two signals are then coupled with a 50:50 coupler,
instead of the 90:10 splitter used in other works [2, 3], since the ring exhibits higher
coupling losses at both the input and output ports. For this reason, when using
the 90:10 splitter, the signal detected by the APD was too weak to be measured
reliably.
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Since We can observe from Table 3.3 that the quality factor (Q) of the MRR
decreases as the resonance wavelength increases, due to dispersion effects. Since
a higher quality factor leads to stronger optical field enhancement, resulting in
increased circulating power, higher free-carrier generation, and enhanced nonlinear
effects, in the context of the pump and probe experiment, where the main effect
of interest is the resonance shift, the pump wavelength is set at the resonance
corresponding to the highest quality factor, in order to maximize the induced
resonance shift.

So the pump wavelength is fixed at λ0,pump, while the probe wavelength λprobe
is fixed around its corresponding resonance λ0,probe with a small detuning. When
two-photon absorption (TPA) and free-carrier absorption (FCA) occur, the pump
pulse partially depletes and generates free electrons and holes. The CW probe
monitors the resulting nonlinear temporal response of the ring.

The weak probe signal collected at the resonator output is detected by an
avalanche photodiode (APD, Lab Buddy, bandwidth = 7 GHz) and recorded using
a high-speed oscilloscope (Agilent Infinium 86100A, bandwidth = 50 GHz), after
the residual pump pulses are removed by Filter 2 (JDS TB9 Optical Grating Filter).
The measurements performed with the binary sequence were carried out using a
different arbitrary waveform generator (AWG, Agilent 33220A) and an oscilloscope
(Agilent DSO5034A) with a bandwidth of 300 MHz, suitable for bit rates below 60
Mbps.

Figure 4.1: Experimental setup implemented in pump and probe measurements.
The amplifier placed after the AWG is required to ensure the maximum modulation
depth of the MZI. Polarization controllers (PC) are employed to optimize the
optical power of both the pump and probe signals.
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4.0.2 Pulse response measurements
By using short high-power pump pulses, it is possible to generate a large number of
free carriers inside the ring while keeping the self-heating effect negligible. For such
short pulses, the resulting temperature increase is estimated to be on the order of
mK, allowing the pump–probe technique to isolate predominantly carrier-induced
nonlinear effects. However, as will be shown later, when longer pump pulses are
employed, the thermal contribution is no longer negligible and must be taken into
account.

In the pulse response measurements, different pump pulse width were inves-
tigated, namely 100 ns, 1 ns, and 100 ps. Each measurement was performed by
sending a single pulse with the desired width and a sufficiently long period between
consecutive pulses, allowing the thermal effect to fully dissipate and all free carriers
to recombine before the arrival of the next pulse. In this way, the temporal response
to each pulse is not affected by the previous one.

In the model, the traps densities for silicon and polysilicon were set to fit the
experimental measurements, as reported in Table 4.1.

Table 4.1: Traps densities for silicon and polysilicon implemented in the model.

Parameter
Material

Unit
Si PolySi

Traps densities 4.89 × 1015 5.36 × 1017 cm−3
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4.0.3 100 ns pulse width

For the 100 ns pulse measurements, a periodic pump waveform was applied,
consisting of high-level optical pulses lasting 100 ns, followed by a low-level interval
completing a total period of 1.6 µs. The estimated peak power was approximately
17 dBm. Figure 4.2 shows the pump signal trace measured with the oscilloscope,
while Figure 4.3 reports the probe signal traces for different detuning values δλ.

Figure 4.2: Measured pump optical pulse at the output of the microring resonator,
with 100 ns duration.

For the probe trace a few detuning cases are analyzed in order to understand
the behavior of non linear effects and temperature and how they interact with
each other. To better understand the behavior of the pump and probe traces, it
is necessary to analyze the individual contributions by means of the model. As
shown in Figure 4.4, the model simulations accurately fit the measured probe traces
obtained in the laboratory. Any small mismatches can be attributed to non-optimal
biasing of the MZI. The model provides useful information for studying the behavior
of the ring resonator. Let’s first analyze the case of detuning δλ = −0.6nm reported
in Figure 4.4a.
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(a) δλ = −0.6 nm (b) δλ = 0 nm

(c) δλ = 0.1 nm (d) δλ = 0.6 nm

Figure 4.3: Probe traces measured for different detuning values during 100 ns
pump pulses.

(a) δλ = −0.6 nm (b) δλ = 0.4 nm

Figure 4.4: Fitting of the model on the probe traces measured in laboratory for
two values of detuning δλ. 47
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In Figure 4.5 the temporal evolution of the circulating powers of both the pump
and probe signals can be analyzed: at the beginning of the pulse, the resonance is
at its cold position λ0, which allows the circulating pump power to quickly reach
its peak. Subsequently, as the circulating power increase, the concentration of
free carriers increase rapidly as show in Figure 4.6 and the resonance shifts to the
left due to the Free-Carrier-Dispersion effect, causing the pump signal to become
detuned from the resonance, and consequently the circulating power decreases.
When the resonance returns to its cold position because of the thermal effect,
the circulating power increases again due to the realignment between the pump
wavelength and the resonance. After the end of the pulse, the circulating pump
power returns to zero. The probe circulating power, on the other hand, is never
completely switched off and follows the evolution of the resonance shift over time.

(a) Circulating pump power. (b) Circulating probe power.

Figure 4.5: Temporal evolution of the circulating powers for the pump and probe
signals during a 100 ns pump pulse.

Analyzing the carrier dynamics in Fig. 4.6, once the resonance has shifted to the
left, the carrier density grows more slowly, due to the reduced circulating power in
the ring. When the resonance returns to the cold resonance because of the thermal
effect, the circulating power increases again, leading to a peak in carrier density.
After this point, the temperature continues to rise, shifting the resonance further to
the right. The circulating power then decreases, reducing both carrier generation
and the FCD contribution.

By examining the contributions of the FCD and temperature to the resonance
shift during the pulse duration, it can be observed that the thermal effect is very
strong for long pulses, even for the same optical power, as will be shown later
for shorter pulse durations. During the pulse, the ring experiences a temperature
increase of approximately 14K, as shown in Fig. 4.7a.
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Figure 4.6: Carrier density dynamic during a 100 ns pulse.

Analyzing the resonance shift in Fig. 4.7b and the contributions of Free-Carrier
Dispersion and thermal effects on the variation of neff in Fig. 4.8, it can be seen
that between 0 and 40 ns the FCD dominates, causing a left shift of the resonance,
and consequently a decrease in the probe transmission. Gradually, the temperature
increases and compensates for the FCD induced variation of neff , driving the
resonance back to its initial position (cold resonance).

(a) Temperature variation during a 100 ns
pulse. (b) Resonance shift during a 100 ns pulse.

Figure 4.7: Temporal evolution of temperature and resonance shift during a
100 ns pump pulse.
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(a) (b)

Figure 4.8: Comparison between the effects of free-carrier dispersion (FCD) and
temperature on the variation of the effective refractive index neff during a 100 ns
pump pulse. (a) Full time scale; (b) zoom on the pulse duration.

After the end of the pulse, carriers recombine much faster than the thermal
dissipation time, resulting in a rapid rightward shift of the resonance at the falling
edge of the pulse, leading to a fast increase in the probe transmission.

For the probe detuning case of δλ = 0.4 nm in figure 4.4b it can be observed
that, at the beginning of the pulse, the probe transmission increases due to the
resonance shift toward longer wavelengths caused by the FCD effect. Subsequently,
the transmission decreases as the thermal effect induces a resonance shift in the
opposite direction.
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4.0.4 1 ns pulse width
For the 1 ns pulse measurement, pump pulses with a duration of 1 ns and a period
of 100 ns were applied. As in the previous case, the following figures show the
pump signal from the output of the ring and the probe traces for two different
detuning values.

Figure 4.9: Measured pump optical pulse at the output of the microring resonator,
with 1 ns duration.

(a) δλ = −0.6 nm (b) δλ = 0.4 nm

Figure 4.10: Probe traces measured for different detuning values during 1 ns
pump pulses.

For the 1 ns case, only one detuning condition is analyzed. As shown in
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Figure 4.11, the model fits reasonably well the experimental probe trace measured
in the laboratory for a detuning of δλ = −0.6 nm.

Figure 4.11: Fitting of the model on the probe trace measured in laboratory for
δλ = −0.6nm.

The most relevant informations extracted from the model are shown in Fig-
ure 4.12. The temperature variation during the pulse is drastically reduced respect
to the case of 100 ns pulse width, reaching a peak value of only 0.09 K, making the
thermal effect almost negligible. The resonance shift is also much smaller, with a
maximum left shift of about −0.2 nm. Neglecting the thermal effect, the resonance
shift back toward its initial position is only due to carrier recombination as we can
see from the Figure 4.12d.

The smaller resonance shift can be attributed to a lower concentration of free
carriers generated during the pulse, as shown in Figure 4.12c.
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(a) Temperature variation during a 1 ns
pulse. (b) Resonance shift during a 1 ns pulse.

(c) Carrier density dynamics during a 1 ns
pulse.

(d) Comparison between FCD-induced and
thermal-induced ∆neff during a 1 ns pulse.

Figure 4.12: Temporal evolution of temperature, resonance shift, carrier density,
and effective index variation during a 1 ns pump pulse.

4.0.5 100 ps pulse width

For the 100 ps pulse measurements, consecutive pump pulses with a duration of
100 ps and a period of 25 ns were applied.

In the following, the traces of the pump signal at the ring output and the probe
signal for two different detuning values are reported.

Also in this case, the model accurately fits the measured probe trace as shown
in Figure 4.14.
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(a) δλ = −0.6nm (b) δλ = +0.4nm

Figure 4.13: Probe traces measured for different detuning values during 100 ps
pump pulse.

Figure 4.14: Fitting of the model on the probe trace measured in laboratory for
δλ = 0.4nm.

Regarding the 100ps pump pulse, it can be observed that shortening the pulse
duration reduces both the resonance shift and the peak temperature variation as
shown in figure 4.15, as a consequence of the lower carrier concentration generated
inside the ring. From previous works [5], and consistently with the 100ps pulse
measurement, it is possible to extract the initial carrier lifetimes in silicon and
polysilicon waveguides, as show in table 4.2.
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Table 4.2: Experimental initial carrier lifetimes in Si-PolySi ring resonator,
from [5].

τ [ns] Silicon Polysilicon

τn 6.4 0.17
τp 7.7 0.20

(a) Resonance shift during a 100 ps pulse.
(b) Temperature variation during a 100 ps
pulse.

(c) Carrier dynamics during a 100 ps pulse.
(d) ∆neff induced by the PolySi and Si slab
waveguide during a 100 ps pulse.

Figure 4.15: Temporal evolution of resonance shift, temperature variation, carrier
density and effective index variation during a 100 ps pump pulse.

We observe that in polysilicon the free-carrier lifetime is strongly reduced due
to the high density of trap states, which leads to faster carrier recombination. As
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a consequence, the effective refractive-index variation induced by the polysilicon
region exhibits a much more rapid initial response compared to crystalline silicon,
as illustrated by the fast initial transient in Fig. 4.15d.

4.1 XOR sequence
After analyzing the response to single pump pulses, the next step is to investigate
the behavior of the probe trace under a bit sequence, with the goal of evaluating
the suitability of the ring resonator for neuromorphic computing applications.

The measurements were performed by driving the AWG with a sequence of 5000
random bits, separated by 100 zeros in order to clearly identify the beginning and
the end of the sequence on the oscilloscope. The estimated bus power for each
measurement is approximately 10 dBm.

Measurements were carried out at different bitrates in order to better observe
the dynamic behavior of the ring.

In figure 4.16 a portion of the experimentally measured trace at 10 Mbps with
a probe detuning of δλprobe = 0.4 nm is shown, together with the corresponding
model simulation.

For the simulation, a peak power of 11 dBm was used instead of the 13 dBm
measured experimentally. This value was obtained by evaluating the average optical
power of the bit sequence and considering its 50:50 duty cycle. In the simulation,
the probe detuning was set to 0.02 nm.

The discrepancy between the experimental and simulated detuning values is
attributed to the different thermal dynamics occurring at the beginning of the bit
sequence. In the experiment, the injected optical power during the initial portion of
the sequence is temporarily higher as reported in figure 4.17, because of the EDFA
gain dynamics. This transient power behavior induces an additional thermal red
shift, causing the resonance to move further to the red compared to the simulation.

In addition to the initial shift, both experiment and simulation exhibit a thermal
red shift along the bit sequence. At 10 Mbps, the bit duration is long enough for
each logical ’1’ to generate a significant amount of heat, pushing the resonance
toward longer wavelengths. Logical ’0’s provide partial thermal relaxation, and
the temperature decreases only when sufficiently long zero intervals are present.
On the other hand, an isolated ’0’ does not allow enough time for cooling, so the
resonance remains thermally shifted. As shown in Fig. 4.18, the heat generated
during each ’1’ is not fully dissipated before the next bit arrives, leading to a
cumulative temperature rise and a gradual drift of the resonance. The ring returns
to its cold position only after a sufficiently long sequence of logical ’0’s.

In Figure 4.19, the resonance shift and the carrier concentration over time are
extracted from the simulation. From the resonance shift graph, the thermal red

56



Pump and probe experiment

Figure 4.16: Experimental trace at 10 Mbps with δλprobe = 0.4 nm (top) and
corresponding model trace with δλprobe = 0.02 nm (bottom).

shift caused by heat accumulation can be clearly seen. From the carrier dynamics,
it can be observed that at a bitrate of 10 Mbps, the carrier lifetime in both silicon
and polysilicon is sufficiently short for complete recombination before the coming of
the successive bit. Therefore, since the FCD effect vanishes quickly, the discrepancy
between the input sequence and the probe trace is solely due to the thermal effect.
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Figure 4.17: Initial transient of the pump bit sequence at the input of the ring.
The transient exhibits a temporarily higher optical power, attributed to the EDFA
gain dynamics.

Figure 4.18: Thermal variation over time at 10 Mbps in the considered portion
of the trace. It is evident that the accumulated heat is fully dissipated only after a
sufficiently long sequence of zeros.

When the bitrate increases, the situation changes. Figure 4.20 shows the
simulated probe trace at 500 Mbps, obtained with a peak power of 11 dBm and a
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(a) (b)

Figure 4.19: (a) Resonance shift and (b) carrier dynamics over time for the
10 Mbps sequence.

probe detuning δλ of 0.4 nm.

Figure 4.20: Simulated probe trace at 500 Mbps with δλ = 0.4nm.

The peak temperature, shown in figure 4.21a reached during each bit ’1’ decreases
because the bit duration is shorter. Nevertheless, thermal dissipation becomes less
effective: the zeros are now too short to significantly cool the ring. Therefore, a
thermal shift is still present, but its variation over time becomes smoother. In
other words, the temperature-induced variation of the effective index approaches a
quasi-static value, instead of oscillating strongly as in the 10 Mbps case.
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(a) Temperature variation over time at 500
Mbps.

(b) |∆neff | induced by FCD over time at
500 Mbps.

Figure 4.21: Thermal and free-carrier–induced effective index variations at 500
Mbps.

This leads to an important consequence: at higher bitrates, the thermal con-
tribution becomes almost constant, and the probe signal follows more closely
the instantaneous resonance shift induced by FCD. In figure 4.21b, the temporal
evolution of the effective index variation induced by FCD is shown in absolute
value.

The figure 4.22 shows the simulation of the model for a probe trace at a bitrate of
2 Gbps. The most significant aspect in this case is the behavior of the contribution
due to FCD shown in figure 4.23b.

At 2 Gbps, the probe trace mainly follows the variation of the effective index
induced by FCD. However, since the carrier concentration generated in silicon
is significantly higher than that in polysilicon, and because the carrier lifetime
is much longer than the duration of a single bit at 2 Gbps, the carriers do not
recombine completely before the arrival of the next bit.

As a result, a progressive accumulation of carriers in silicon occurs, leading to
an increasing resonance shift caused by FCD, in addition to the nearly constant
thermal shift.
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Figure 4.22: Simulated probe trace at 2 Gbps with δλ = 0.4nm.

(a) Temperature variation over time at 2
Gbps.

(b) |∆neff | induced by FCD over time at
2 Gbps.

Figure 4.23: Thermal and free-carrier–induced effective index variations at 2
Gbps.

By analyzing the probe trace at different bitrates, the following conclusions can
be drawn regarding the thermal and carrier-induced dynamics of the Si-PolySi ring
resonator:

• Thermal effects at low bitrates: At low bitrates, logical ‘1’s generate high
temperature peaks that significantly shift the resonance. The relatively long
intervals between bits allow partial cooling, enabling the resonance to return
close to its cold position. Hence, at low bitrates, the resonance shift cannot be
attributed solely to FCD; thermal effects play a substantial role that highly
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Figure 4.24: Carrier dynamics over time at 2 Gbps.

distorces the input bit sequence.

• Thermal effects at intermediate bitrates: As the bitrate increases,
temperature peaks during logical ‘1’s decrease, but the available cooling time
is shorter. This results in a more persistent thermal red shift, which becomes
relatively constant over time.

• Carrier accumulation at high bitrates: Above 500 Mbps, the bit duration
is too short for complete carrier recombination in silicon. This leads to a
steady FCD-induced resonance shift in addition to the thermal effect.

• Impact on probe detuning: The combined thermal and FCD shifts make
the choice of probe detuning challenging, as the resonance position depends
strongly on the bitrate. The detuning relative to the cold resonance loses
practical significance.

• Negligible polysilicon contribution at high bitrates: At very high
bitrates, carriers in polysilicon have a minor impact. Despite shorter carrier
lifetimes in polysilicon, the higher carrier concentration in silicon dominates
the resonance dynamics, rendering the polysilicon response negligible in the
probe trace.

• Measurability limitations: As bitrate increases, the resonance shift follows
the carrier concentration more closely, but its magnitude decreases. This
reduces the measurability of the probe signal in the laboratory, particularly
when using an avalanche photodetector.
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Chapter 5

Neuromorphic Computing
Application

5.1 1-Bit Delayed XOR
The 1-bit delayed XOR task consists of predicting the XOR of each bit in a
binary sequence with its immediately preceding bit. Since the microring resonator
operates as a continuous-time optical reservoir and only the readout layer is
trained, a dedicated pre-processing and post-processing pipeline, developed in [3],
is necessary. The following sections describe how the input sequence is encoded,
how the reservoir states are extracted and organized, and how the linear readout is
trained and evaluated.

5.1.1 Pre-processing
Bit-stream generation and target construction

A random binary sequence of 5000 bits is generated to form the input stream.
For each bit, the XOR operation with the preceding bit is computed, yielding the
target sequence. To enable supervised learning, the XOR outputs are converted to
a one-hot representation:

XOR = 0 → [1 0]T , XOR = 1 → [0 1]T ,

resulting in a 2 × N label matrix for the entire sequence.

Input encoding and virtual node expansion

Each bit is converted into a continuous-time optical waveform by the microring
modulator. Since the reservoir operates in continuous time, the optical waveform
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must be sampled to obtain discrete-time states. Each bit is uniformly sampled at
Nv time points, generating Nv virtual nodes as shown in figure 5.1.

Figure 5.1: Example of sampling each bit of a probe out trace at 10 Mbps with 3
Nv.

The samples for each bit are stacked as a column vector to form the initial
reservoir state matrix:

X ∈ RNv×Nbits .

Here, each column represents the reservoir response associated with one input bit.
So, in the experiment X has dimensions 3 × 4998 (for 3 virtual nodes per bit). The
first two bits are discarded since they cannot be paired with a previous bit).

State reordering for temporal dependency

The 1-bit delayed XOR task requires the system to retain information about the
previous bit. To encode this temporal dependency, the state matrix X is reorganized
so that each training sample contains the virtual node responses of both the current
bit and the previous bit.

Specifically, for bit index i, the samples corresponding to bit i−1 are concatenated
on top of those of bit i, producing the final matrix:

Xfinal ∈ R2Nv×Nbits .
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The top Nv rows contain the previous bit’s states, and the bottom Nv rows the
current bit’s states.

In our case, the matrix X is first reshaped to 6 × 2499 by concatenating
consecutive bits, and then further reorganized to 6 × 4997, ensuring that each bit
appears in the correct temporal context: once as the previous bit and once as the
current bit.

This final organization ensures that the readout layer can exploit the fading-
memory effect of the reservoir, which is essential for the delayed-XOR computation.

5.1.2 Post-processing
Dataset splitting

The reorganized state matrix Xfinal and the one-hot label matrix are divided into
training and test sets to allow for proper evaluation on unseen sequences. The split
is performed with a 70% training set and a 30% test set.

Linear readout training

Only the readout layer is trained using ridge regression:

Wout = YtrainXT
train

XtrainXT
train + λI

,

where λ is the regularization parameter. This matrix W maps the 2Nv virtual node
states to the two output classes.

Classification and decoding

For each test sample, the trained readout produces a two dimensional output vector:

output = WoutXtest.

The predicted class is determined using a winner-take-all rule:

ŷ(i) = arg max
j

output(j, i),

yielding the predicted XOR bit sequence.

Accuracy evaluation

The predicted sequence is compared with the ground truth to compute classification
accuracy, bit-error rate, and confusion matrices. These metrics quantify the
reservoir’s ability to extract and generalize the temporal XOR relationship from
the continuous-time dynamics.
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5.2 Classification accuracy results
In this section, we analyze the classification results produced by the neural network
for the 1-bit XOR predictor. Multiple traces of the same 5000 bit sequence were
examined, varying both detuning of the probe signal and average pump power.
Using the model, as we have seen, it is possible to replicate the probe output trace
from the ring with reasonable similarity. This will be useful for estimating the
upper bound of accuracy that the network can achieve.

Figure 5.2a shows the accuracies achieved by the neural network in solving the
previously described task with Nv equal to 3, both for the experimental traces and
for the traces simulated by the model. For each trace, different detunings δλprobe

were considered, and the best result was taken. The experimentally measured
average pump power is 10 dBm.

As observed, the experimental trace at low bitrates does not achieve sufficiently
high accuracy to consider the experiment successful. In contrast, the model yields
significantly higher accuracies, up to 96%. This demonstrates how laboratory
measurements are affected by non-idealities that strongly impact accuracy results,
such as coupling losses, the nonlinear gain dynamics of the EDFA, incorrect
polarization optimization and improper biasing of the MZI.

The trace at 50 Mbps, for which both experimental and theoretical results reach
approximately 92% accuracy, indicates that the experiment is nonetheless feasible
In figure 5.3 the extracted confusion matrix is reported.

Figure 5.2b illustrates how the choice of the number of virtual nodes plays
a crucial role in determining the accuracy of the results. In general, selecting
the number of nodes represents a trade-off between the required complexity of
information processing, which typically increases with Nv, and the operational
speed [10].

Increasing the number of virtual nodes from 3 to 6 leads to slightly higher
accuracies.

Using the model, it is possible to obtain the probe output traces at high bitrates,
since, as previously explained, experimental measurements at these bitrates were
not feasible due to APD noise and the very weak signal resulting from very small
resonance shifts. In figure 5.4 it is observed that the shorter carrier lifetime in
polysilicon does not improve accuracy at high bitrates, as the performance drops
above the GHz range. A slight improvement is seen at intermediate bitrates
(100–500 Mbps), where, as discussed in section 4.1, the thermal effect is more stable.
The different simulated traces where obtained with Nv = 3, the same detuning
δλ = 0.02nm and Pavg = 10dBm.

The following analysis examines how different average pump powers affect the
accuracy. Two figures are reported in Fig. 5.5, showing both the experimental
and theoretical accuracies obtained from the probe out traces at average pump
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(a) Accuracy with 3 virtual nodes. (b) Accuracy with 6 virtual nodes.

Figure 5.2: Simulated and experimental results for Pavg = 10dBm. Increasing
from 3 to 6 virtual nodes slightly improves the results.

Figure 5.3: Confusion matrix obtained from the sampled measured probe signal
with Pavg = 10dBm, δλ = −0.1nm at 50Mbps. The classification accuracy is 92%.

powers of 10 dBm and 6 dBm. The detuning was kept fixed at +0.1 nm in the
experimental setup, which corresponds to −0.28 nm in the model because of the
additional thermal shift already mentioned in 4.1. From the model results, it can
be observed that reducing the average pump power and therefore the resonance
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Figure 5.4: Accuracy obtained from the model at various bitrate.

shift and the thermal effects, allows achieving 100% accuracy even when using only
Nv = 3. On the other hand, in the experimental measurements, lowering the pump
power leads to a noisier probe out trace, and consequently the accuracy degrades
rather than improving.

(a) Model accuracy at different average
pump powers.

(b) Experimental accuracy at different av-
erage pump powers.

Figure 5.5: Classification accuracy comparison between model and experimental
accuracies for two average pump powers. Detuning is +0.1 nm experimentally,
corresponding to -0.28 nm in the model.
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Finally, a comparison is made with the results obtained using the pure silicon
ring presented in [3]. In Fig. 5.6, the low-bitrate classification accuracy is reported
for the input pump trace, the Si probe-out trace, and the Si–PolySi probe-out trace.
For the Si–PolySi device, results are shown for both 6 dBm and 10 dBm average
pump power, while keeping a fixed detuning of δλ = 0.1 nm for all the analyzed
bitrates. The results clearly indicate that, even when increasing the pump power
from 6 dBm to 10 dBm, the experiment with the silicon–polysilicon ring does not
succeed. The classification accuracy obtained from the probe out signal remains
lower than that of the input pump trace, demonstrating that the ring does not
provide any computational benefit under these operating conditions.

Figure 5.6: Classification accuracy comparison between Si MRR and Si-PolySi
MRR.
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Conclusions

In this work, the previously developed pump and probe setup and theoretical model
were extended to the case of a different microring resonator. The experimental
procedure was adapted to characterize and analyse the dynamics of a hybrid Si-
PolySi microring resonator. In particular, the model was extended to reproduce
the response of the ring under bit-sequence excitation, enabling the extraction of
detailed information on the free-carriers and thermal dynamics, showing how these
effects shape the device response across different bitrates.

At low bitrates, logical ‘1’ bits generate significant temperature peaks, producing
resonance shifts that are not negligible; despite partial cooling between bits, thermal
dynamics still introduce substantial distortions in the sequence at the output of
the MRR that depends strongly on the choice of the detuning of the probe signal.
As the bitrate increases, these temperature excursions diminish, yet the reduced
cooling time leads to a persistent thermal red shift that gradually approaches a
quasi-steady value.

At higher bitrates (above approximately 500 Mbps), the bit period becomes too
short for complete carrier recombination in silicon, resulting in carrier accumulation
and a sustained FCD induced shift superimposed on the thermal contribution. This
combined effect complicates the choice of probe detuning, as the resonance position
becomes strongly dependent on the bitrate, making detuning relative to the cold
resonance largely impractical. Moreover, although carriers in polysilicon recombine
more rapidly, their contribution becomes negligible at very high bitrates, where
the higher silicon carrier density dominates the refractive-index dynamics.

Finally, as the bitrate increases further, the resonance shift follows the carrier
density more closely while decreasing in magnitude, reducing the visibility of the
probe modulation and ultimately limiting the measurable signal in laboratory
conditions, particularly when using avalanche photodetectors.

The results obtained for the 1-bit delayed XOR task further illustrate the
limitations imposed by the strong dependence of the resonance position on the
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bitrate, which complicates the choice of probe detuning. As a consequence, the
experimental traces do not consistently yield high classification accuracies when
using a fixed detuning. At 50 Mbps, for instance, an average pump power of
10 dBm leads to a classification accuracy of approximately 92%. This confirms
that, despite the strong thermal distortion affecting the waveform at low bitrates,
the experiment remains feasible. Nevertheless, such performance does not reach the
100% accuracy observed with pure silicon microrings. The presence of polysilicon
and its faster carrier dynamics does not provide any improvement; in the GHz
range, the accuracy obtained from training the simulated bit sequences decreases
from 93% at 1 GHz, to 82% at 5 GHz, and down to 68% at 10 GHz. At these
high bitrates, the combined difficulties in selecting an optimal detuning, together
with noise and other non-idealities (e.g., non-optimal setup conditions), make
experimental measurements effectively impractical.

The traces obtained from model, by contrast, delivers higher accuracies, partic-
ularly at intermediate bitrates (100-500 Mbps), where the thermal effect becomes
more stable than at very low bitrates. Achieving 100% accuracy requires increasing
the number of virtual nodes: Raising Nv from 3 to 6 is sufficient to achieve per-
fect accuracy in the simulations, with a slight improvement also observed in the
experimental trace.

Additional simulations also show how different pump powers influence accuracy:
reducing the pump power and thus decreasing both the resonance shift induced by
FCD and the thermal effects enables 100% accuracy even with Nv = 3. Experi-
mentally, however, lowering the pump power leads to a noisier probe trace, causing
the accuracy to degrade rather than improve.

As future work, one potential direction is to optimize the design of the Si-PolySi
microring in order to reduce its thermal impedance and consequently mitigate the
dominant thermal effects observed in the current device. A possible approach is to
decrease the distance between the slab waveguide and the substrate, which would
enhance heat dissipation; however, this modification inevitably increases radiation
losses, which must be carefully considered during the design process.

Another avenue for future research is to investigate the performance of this
microring in the context of the IRIS species recognition task. In this scenario, it
will be necessary to assess whether the dynamic response of the ring, including
the thermo-optic and carrier-induced effects, is compatible with the computational
requirements of the application, and whether structural optimizations could further
improve overall efficiency and accuracy.

71



Bibliography

[1] Herbert Jaeger. The Echo State Approach to Analysing and Training Recurrent
Neural Networks. Tech. rep. GMD Report 148. With an erratum note. Bonn,
Germany: German National Research Center for Information Technology
(GMD), 2001 (cit. on p. 1).

[2] M. Borghi, S. Biasi, and L. Pavesi. «Reservoir computing based on a sili-
con microring and time multiplexing for binary and analog operations». In:
Scientific Reports 11 (2021) (cit. on pp. 2, 43).

[3] Salvatore Salpietro. «Study of Microring Nonlinearities in Silicon Photonics
for Neuromorphic Computing». MA thesis. Torino: Politecnico di Torino,
2024 (cit. on pp. 2, 5–7, 38, 43, 63, 69).

[4] S. Salpietro, M. Novarese, and et al. «Non-linear Effects in Silicon Photonics
Microring for Reservoir Computing: Modeling and Experiments». In: European
Conference on Integrated Optics (ECIO). European Conference on Integrated
Optics ECIO 2025. Cardiff, Wales, 2025 (cit. on p. 2).

[5] Marco Novarese. «Modelling and characterisation of microrings for semicon-
dunctor lasers integrated in the Silicon Photonics platform». PhD thesis.
Torino: Politecnico di Torino, 2023 (cit. on pp. 2, 22, 54, 55).

[6] Wim Bogaerts et al. «Silicon Microring Resonators». In: Laser Photonics
Reviews (2012), p. 2 (cit. on p. 11).

[7] Milos Nedeljkovic, Richard Soref, and Goran Z. Mashanovich. «Free-carrier
electrorefraction and electroabsorption modulation predictions for silicon over
the 1–14-m infrared wavelength range». In: IEEE Photonics Journal, 3(6)
(2011), pp. 1171–1180 (cit. on p. 23).

[8] M. Webster, C. Appel, P. Gothoskar, S. Sunder, B. Dama, and K. Shastri.
«Silicon photonic modulator based on a mos-capacitor and a cmos driver».
In: IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)
(2014), pp. 1–4 (cit. on p. 30).

72



BIBLIOGRAPHY

[9] M. Novarese and et al. «Dynamics of Free Carrier Absorption and Refrac-
tive Index Dispersion in Si and Si/polySi Microrings». In: IEEE Photonics
Technology Letters 35 (2023), p. 4 (cit. on p. 43).

[10] K. Takano et al. «Compact reservoir computing with a photonic integrated
circuit». In: Opt. Express 26 (2018), pp. 29424–29439 (cit. on p. 66).

73


	List of Tables
	List of Figures
	Introduction
	Introduction to Artificial Neural Networks
	Structure and functioning of Artificial Neural Networks


	Modelling of microring resonators
	Fundamental concepts of microring resonators
	Thermal model
	Overview of Nonlinear Effects in Silicon
	Static Analysis and SRH model for carrier recombination
	Phase variation
	Propagation losses
	Refractive index variation
	Differential equations for free carriers density
	Pump-probe differential equations

	Si-PolySi Ring Modelling

	Characterization of the Si PolySi microring resonator
	Si-PolySi ring resonator
	Steady state set up
	Linear regime measurements and fitting
	Non linear regime measurements
	Self-Oscillation Regime


	Pump and probe experiment 
	Pump and probe experimental set up
	Pulse response measurements
	100 ns pulse width
	1 ns pulse width
	100 ps pulse width

	XOR sequence

	Neuromorphic Computing Application
	1-Bit Delayed XOR
	Pre-processing
	Post-processing

	Classification accuracy results

	Conclusions
	Bibliography

