
POLITECNICO DI TORINO

Master’s Degree in
Electronic Engineering

Master’s Degree Thesis

Solid-State Simulations Advancing Conventional
Processes Toward Spin Qubit Technologies

Supervisors Candidate
prof. Gianluca PICCININI Lorenzo BARBERO
prof. Mariagrazia GRAZIANO
doc. Nicola CARBONETTA

Academic Year 2024-2025

Summary

Quantum computers are emerging as a revolutionary technology capable of performing
certain computations far more efficiently than classical computers. By exploiting the
principles of quantum mechanics, such as superposition and entanglement, these devices
can address problems that are currently beyond the reach of classical computers, includ-
ing complex optimization, large-scale data analysis, and molecular simulations. Quantum
computing has the potential to accelerate the development of new materials and phar-
maceuticals, improve financial modelling, enhance cybersecurity and support advances in
artificial intelligence. The investigation of state-of-the-art devices as potential platforms
for spin qubits is motivated by the pursuit of novel technological solutions that can deliver
quantum computing at lower cost, while retaining the remarkable performance character-
istics of such devices.

The goal of this work is to provide a versatile methodology for studying the behaviour
of custom semiconductor devices as hosts for spin qubits, achieved by engineering gate-
defined quantum dots. A key aspect is the investigation of approaches grounded in widely
adopted technological processes, thereby leveraging the existing capabilities of mature and
well-established manufacturing facilities. To this end, the primary technological architec-
ture considered is the planar Metal-Oxide-Semiconductor (MOS) on a Silicon-On-Insulator
(SOI) wafer substrate. This highly mature platform can be realized through well-known
processes that are extensively documented in the scientific literature and remain feasible
even for low-volume research laboratories. Several devices were modelled and simulated
in this work. While the primary focus was on planar devices fabricated on SOI wafer
substrates, the study was also extended to three-dimensional structures such as fins and
Gate-All-Around (GAA) nanowires. A three-dimensional representation of each device
geometry was first developed to define and analyze a given architecture, and subsequently
used for simulations of both static and dynamic confinement behaviour.

The primary tool employed for solid-state simulations is QTCAD, a quantum technol-
ogy simulation platform developed by Nanoacademic Technologies Inc. It enables finite-
element modelling based on suitable mesh files, in which each volume and relevant surfaces
are labelled within the open-source CAD software Gmsh to assign physical properties such
as materials and gate contacts. The geometries for each device are modelled in Fusion, a
versatile CAD software from Autodesk, in this work used under a personal non-commercial
licence. It enables the extrusion of solid geometries from two-dimensional sketches drawn
parametrically, allowing the use of variables that automatically update the entire geometry
when modified. The customizable nature of the exploited tools enabled the development
of a complete workflow to simulate custom-defined devices and to post-process the ob-
tained results, thereby allowing the study of parameter dependencies. Once quantum
confinement was verified, the fabrication process was simulated with Synopsys Sentaurus

1

Process in order to more accurately reflect realistic manufacturing scenarios. The de-
vices were designed with consideration for potential fabrication at the PiQuET research
laboratory in Turin, in collaboration with Politecnico di Torino. To account for this as-
pect, the laboratory’s capabilities were taken into account to better model the fabrication
simulation. Seven devices were defined: a planar single quantum dot (SQD) and dou-
ble quantum dot (DQD), along with two variants incorporating modelled doping profiles
(obtained by SProcess doping simulations via thermal diffusion) within the source/drain
contacts; a SQD FinFET-like structure; and both SQD and DQD Nanowire GAAFET-
like structures. Each device provided clear evidence that the confinement and transport
behaviour are satisfactory and consistent with expectations, demonstrating that the de-
veloped workflow performs as intended and constitutes a practical tool for investigating
the suitability of these devices as platforms for hosting spin qubits.

In the first part of this work, the theoretical concepts that form the foundation of the
study are reviewed. The discussion begins with the fundamentals of quantum mechanics,
then moves to the principles of spin qubits in solid-state systems, and finally addresses
how gate-defined quantum dots can be engineered and how state-of-the-art devices im-
plement these concepts. The second part of this work is dedicated to the implementation
and evaluation phase, where the methodology for simulating both the quantum behaviour
and the fabrication processes is explained in detail. This section not only explains the
simulation workflow step by step but also provides a structured reference to ensure the
reproducibility of the results.

2

Acknowledgements

Firstly, I would like to thank prof. Gianluca Piccinini, who, thanks to the Integrated
System Technology course at Politecnico di Torino, taught me the fundamental concepts
about semiconductor devices and state-of-the-art fabrication processes for CMOS/VLSI
and introduced and encouraged me into the complex field of quantum computing and
spin qubits. My gratitude also extends to prof. Mariagrazia Graziano, who supervised
this work and provided guidance in the design and study of nanodevices for quantum ap-
plications. Special thanks go to the doctoral researcher Nicola Carbonetta, who provided
invaluable assistance throughout all stages of this work, supervising both the simulation
of the fabrication processes and the writing of this thesis. I wish to recognize the con-
tribution of Leonardo Ossino, who assisted with the fabrication process simulations as
part of his internship at the Electronics and Telecommunications Department (DET) of
Politecnico di Torino. I wish to thank the postdoctoral researcher Fabrizio Mo, who of-
fered valuable help in the early stages of this work with technical support and research of
relevant study material. In addition, I wish to thank Yuri Ardesi for guidance regarding
the formalities and regulatory aspects of this thesis.

I would like to conclude by expressing my heartfelt thanks to my family and friends.
Thanks to my beloved parents, Katia and Mauro, my sister, Sara, and my beloved grand-
mother, Anna, who always encouraged me to pursue my goals to the fullest and supported
me throughout all my studies. My deepest thanks to Chiara, for her kindness, patience
and support throughout our studies together, who has been a true companion to me
throughout this journey.

3

Contents

List of Figures 7

List of Acronyms 9

I Theoretical Background 12

1 Introduction to Quantum Mechanics for Nanoscale Devices 13
1.1 Principles of Quantum Mechanics . 13

1.1.1 Quantum Interference and the Double Slit Experiment 15
1.1.2 Quantum Tunnelling . 16
1.1.3 Quantum Entanglement . 17

1.2 Schrödinger’s Wave Equation . 18
1.3 Trap a Quantum Particle . 20

1.3.1 Confinement Implementation . 22

2 Spin Qubits in Solid-State Systems 23
2.1 Qubits Fundamentals . 23

2.1.1 Spin Qubits . 26
2.1.2 DiVincenzo Criteria . 28

2.2 Encodings . 29
2.2.1 Loss-DiVincenzo . 29
2.2.2 Singlet-Triplet . 30
2.2.3 Exchange-Only . 31

2.3 Quantum Dots . 32
2.3.1 Gate Defined Quantum Dots . 34
2.3.2 Dopants . 37
2.3.3 Nitrogen-Vacancy Centers . 39

2.4 Noise, Decoherence and Error . 40
2.5 Transport Analysis . 41
2.6 Qubit Control . 44

2.6.1 Initialization . 44
2.6.2 Manipulation . 45
2.6.3 Readout . 47

4

3 Engineering a Gate-Defined Quantum Dot 49
3.1 Material Systems . 49
3.2 Technological Evolution of Gate-Defined QDs 52
3.3 State Of The Art Quantum Devices . 56

II Implementation and Evaluation 57

4 Thesis Outline 58
4.1 Development of a Robust Workflow for Custom Simulations 58
4.2 Study of Planar Devices Quantum Behaviour 59

4.2.1 Moving to Three-Dimensional Architectures 59
4.3 Device Fabrication Process Simulation . 59

5 Preliminary Setup 60
5.1 Workflow Outline . 60
5.2 Geometry Definition with Autodesk Fusion 61

5.2.1 Parameters Definition . 61
5.2.2 Parametric Sketching . 63
5.2.3 Parametric Extrusion . 64
5.2.4 Design Export . 65

5.3 Geometry Meshing with Gmsh . 66
5.3.1 Conformal Geometry Loading . 66
5.3.2 Physical Groups Assignment . 70
5.3.3 Meshing and Export . 75

6 Quantum Simulations With QTCAD 76
6.1 Device Layer Simulation . 78

6.1.1 Directory Organization . 79
6.1.2 Environment Definition . 80
6.1.3 Assigning Physical properties . 84
6.1.4 Poisson and Schrödinger Solvers . 87
6.1.5 Results Display . 89
6.1.6 Results Analysis in ParaView . 103

6.2 Batch Runner . 105
6.2.1 Scoring System . 109

6.3 Transport Layer Simulation . 110
6.3.1 Lever Arm . 111
6.3.2 Coulomb Diamonds . 114
6.3.3 Particle Addition Spectrum . 115

7 Fabrication Process Simulation 116
7.1 Engineer A Wafer For Quantum Computing 116

7.1.1 Prefabricated Wafer Selection . 117
7.1.2 Epitaxial Growth of Isotopically Enriched Silicon 117

5

7.2 Capabilities and Limitations at PiQuET 118
7.3 Device Fabrication Process in Sentaurus 119
7.4 Integration of Doping Profiles into Simulations 128

7.4.1 Definition Inside Autodesk Fusion 128
7.4.2 Handling in Gmsh . 130
7.4.3 QTCAD Code Adaptation . 131

7.5 Silicides . 132
7.6 Barrier Gate Manufacturing . 133

8 Experimental Results from QTCAD 138

9 Conclusions 155

10 Future Implementations 156
10.1 Simulating Process Variations . 157
10.2 Mesh Extraction From Sentaurus Process 161
10.3 Simulating Qubit Package . 161

III Attachments 162

A Python Tool Scripts 163
A.1 device_config.py . 163
A.2 mesh_volume.py . 165
A.3 z_for_threshold.py . 166
A.4 mat_merge.py . 167
A.5 dot_range.py . 168
A.6 x_for_threshold.py . 169
A.7 apex.py . 170
A.8 get_exported_parameters.py . 171
A.9 remove_fails.py . 172
A.10 compute_leverarm.py . 173
A.11 get_leverarm.py . 176

B Python Simulation Scripts 179
B.1 sim_dqd.py . 179
B.2 charge_stability_diagram.py . 193
B.3 particle_addition_spectrum.py . 196

C Python Additional Scripts 200
C.1 Batch Runner . 200
C.2 Process Variation Tool . 202

6

List of Figures

1.1 Double Slit Experiment . 15
1.2 Simplified Diagram of Quantum Tunnelling 16
1.3 Particle in a Box . 20
1.4 Particle in a Finite Potential Well . 21
1.5 Electrostatic Gates for Quantum Confinement 22
2.1 Bloch Sphere Representation of a Qubit 24
2.2 Fermi-Dirac Statistic - Energy and Temperature Dependence 26
2.3 Loss-DiVincenzo Qubit Encoding . 29
2.4 Singlet-Triplet Qubit Encoding . 30
2.5 Exchange-Only Qubit Encoding . 31
2.6 Debye Length of Different Materials Varying the Temperature 33
2.7 Band Structure Confinement . 34
2.8 Band Diagram and PDF of a Gate-defined Quantum Dot 35
2.9 Planar SOI Device with Two Barrier Gates and One Plunger Gate 36
2.10 Donors (Kane’s) Qubit . 38
2.11 NV-Center Quantum Dot . 39
2.12 Coulomb Blockade in a Single Electron Transistor 41
2.13 Transport Through a Quantum Dot . 42
2.14 SQD Coulomb Diamonds . 42
2.15 DQD Particle Addition Spectrum . 43
2.16 Elzerman Readout . 47
2.17 Pauli Spin Blockade Readout . 48
3.1 Accumulation Heterostructure . 52
3.2 SLEDGE Architecture . 53
3.3 Planar Structure . 54
3.4 Three-Dimensional Structure . 55
5.1 MOS-Like SOI Device Pen&Paper Model 61
5.2 MOS-Like SOI Device Parameters . 62
5.3 Sketch Selection . 63
5.4 MOS-Like SOI Device YoZ Sketch . 63
5.5 Parametric Extrusion . 64
5.6 Extrusion Steps . 64
5.7 MOS-Like SOI Device Section Analysis . 65
5.8 Overlapping Issue In Gmsh . 67

7

5.9 Geometry Degeneration . 67
5.10 Conformal Geometry . 68
5.11 Geometry Axes Check . 68
5.12 STEP vs IGES Labelling . 70
5.13 Surface Manual Selection . 72
5.14 3D Element Faces, Before and After . 73
5.15 Gmsh Incorrect Assignment Example . 74
6.1 Simulation Environment Directory Organization 79
6.2 Single Quantum Dot Output Image Example 102
6.3 Double Quantum Dot Output Image Example 102
6.4 ParaView VTU Import . 103
6.5 ParaView Clip . 103
6.6 Example of SQD Results in ParaView . 104
6.7 Example of DQD Results in ParaView . 104
6.8 Example of Batch Run Result . 107
6.9 Example of Lever Arm Computation . 113
6.10 Example of Coulomb Diamonds . 114
6.11 Example of Particle Addition Spectrum . 115
7.1 Device to be Simulated in Sentaurus . 119
7.2 Fabrication Steps - Substrate Definition . 121
7.3 Fabrication Steps - STI . 122
7.4 Fabrication Steps - Pre-Doping Masking 123
7.5 Fabrication Steps - Doping . 124
7.6 Fabrication Steps - Gate Oxide Deposition 125
7.7 Fabrication Steps - Contacts Definition . 126
7.8 Fabrication Steps - Device Mirroring . 127
7.9 Doping Profile Mesh Sketching . 128
7.10 Doping Profile Modelling . 129
7.11 Doping Profile Modelling Correction . 129
7.12 Doping Profile Handling in Gmsh . 130
7.13 Doping Profiles Meshed in Gmsh . 130
7.14 Silicidation Steps . 132
7.15 Barrier Gates Manufacturing Steps . 133
7.16 Barrier Gates Fabrication Steps - Gate Definition 134
7.17 Barrier Gates Fabrication Steps - PEO . 135
7.18 Barrier Gates Fabrication Steps - Metal Deposition 136
7.19 Barrier Gates Fabrication Steps - CMP + Mirroring 137
10.1 Gate Definition in Gmsh for Process Variations 160

8

List of Acronyms

AFM Atomic Force Microscope.

ALD Atomic Layer Deposition.

ALE Atomic Layer Etching.

API Application Programming Interface.

CMOS Complementary Metal-Oxide-Semiconductor.

CMP Chemical-Mechanical Polishing.

CNOT Controlled-NOT Gate.

CSV Comma-Separated Values.

CVD Chemical Vapor Deposition.

DPI Dots Per Inch.

DQD Double Quantum Dot.

EBL Electron Beam Lithography.

EDSR Electric Dipole Spin Resonance.

EPR Einstein-Podolsky-Rosen.

ESR Electron Spin Resonance.

FD Fully Depleted, or Fermi-Dirac.

FEM Finite Element Method.

FET Field-Effect Transistor.

FIB Focused Ion Beam.

FID Free Induction Decay.

9

FVM Finite Volume Method.

GAA Gate-All-Around.

ICP Inductively Coupled Plasma.

IEEE Institute of Electrical and Electronics Engineers.

IGES Initial Graphics Exchange Specification.

KMC Kinetic Monte Carlo.

LPCVD Low-Pressure Chemical Vapor Deposition.

MOS Metal-Oxide-Semiconductor.

NEGF Non-Equilibrium Green’s Function.

NURBS Non-Uniform Rational B-Splines.

NV Nitrogen Vacancy.

PDF Probability Density Function.

PEO Plasma Enhanced Oxidation.

PVD Physical Vapor Deposition.

QD Quantum Dot.

QPC Quantum Point Contact.

QTCAD Quantum Technology Computer-Aided Design.

QW Quantum Well.

RIE Reactive Ion Etching.

RMG Replace Metal Gate.

SEM Scanning Electron Microscope.

SET Single Electron Transistor.

SI International System of Units.

SMTP Simple Mail Transfer Protocol.

SOI Silicon-On-Insulator.

10

SOTA State Of The Art.

SQD Single Quantum Dot.

SSH Secure Shell.

STEP Standard for the Exchange of Product model data.

STI Shallow Trench Isolation.

TCAD Technology Computer-Aided Design.

TEM Transmission Electron Microscope.

TFET Tunnel Field-Effect Transistor.

UV Ultraviolet.

VLSI Very-Large-Scale Integration.

11

Part I

Theoretical Background

12

Chapter 1

Introduction to Quantum
Mechanics for Nanoscale
Devices

In this first chapter, the fundamental principles of quantum mechanics will be revisited.
Rather than offering a comprehensive treatment of the entire subject, this section aims to
provide a conceptual foundation to support the understanding of phenomena that emerge
in nanostructured electronic devices. This preliminary analysis is intended to prepare the
ground for more advanced and application-oriented topics that will be discussed in the
following chapters.

1.1 Principles of Quantum Mechanics
“Quantum mechanics was developed in the early decades of the 20th century, driven by
the need to explain phenomena that, in some cases, had been observed in earlier times.
Scientific inquiry into the wave nature of light began in the 17th and 18th centuries,
when scientists such as Robert Hooke, Christiaan Huygens and Leonhard Euler proposed
a wave theory of light based on experimental observations.” [3] Quantum mechanics is the
fundamental physical theory that describes the behaviour of physical systems at atomic
and subatomic scale. The need to branch from classical mechanics laws rises from the
fact that the latter model fails to provide accurate results at such scale. Unlike classical
physics, quantum mechanics addresses the probabilistic and discrete nature of the physical
quantities it describes. If we think of a physical object at a macroscopic scale, it is possi-
ble to compute precise results about it’s behaviour based on continuos and deterministic
variables, while, if it’s needed to study the trajectory or the position of a submicroscopic
particle, like an electron or a photon, probability and discretized variables comes into
play. Although quantum mechanics is generally associated with the study of microscopic
systems like atoms, molecules and subatomic particles, experimental evidence has shown
that its principles can also apply to larger structures, including complex molecules made of

13

Introduction to Quantum Mechanics for Nanoscale Devices

thousands of atoms [18]. This extension suggests that classical mechanics can actually be
seen as an approximation of quantum mechanics, valid only within everyday macroscopic
conditions [24].

A fundamental feature of quantum mechanics is that usually it is not possible to ex-
actly predict with absolute certainty the outcome you are looking to calculate, but only
to get a probability of what will happen. This probability can be observed in a func-
tion called probability amplitude, mathematically found by taking the square root of the
absolute value of a complex number. The German physicist Max Born formulated and
published in 1926 one of the key postulates of quantum mechanics known as the Born
rule, used to get the probability density of a physical system based on measurements on
it. These measurements directly gives results of the quantum state the systems belongs,
described in physics by a complex number called wavefunction and usually denoted by
the Greek letter ψ (lower-case psi). According to the de Broglie hypothesis, every object
in the universe is associated with a wave. Thus every object, from an elementary parti-
cle to atoms, molecules and on up to planets and beyond are subject to the uncertainty
principle.
Born rule says that if we have a normalized system wavefunction, depending for example
upon position coordinates (x,y,z) and a temporal coordinate t, the probability density p
for the result of a measurement of the system’s position at time t0 is [8]

p (x, y, z, t0) = |ψ (x, y, z, t0)|2 (1.1)

In probability theory, this is called a probability density function (PDF) and can be
integrated from two position points a and b in order to get the probability of finding, for
example a subatomic particle, between the two points along a specific direction

P[a ≤ X ≤ b] =
Ú b

a
|ψ(x)|2 dx (1.2)

One of the consequences derived from the mathematical structure of quantum mechanics is
a limitation in the simultaneous predictability of certain physical properties. This concept
is expressed by Heisenberg’s indeterminacy principle, often referred to as the uncertainty
principle, originally formulated in 1927 by the German physicist Werner Heisenberg. The
principle states that specific pairs of physical quantities, known as complementary or
canonically conjugate variables, such as position and momentum, cannot both be mea-
sured with unlimited precision. The more accurately one of the two variables is known,
the less precisely the other can be determined.
Formally, the indetermination rises from the formal inequality relating the standard de-
viation of position σx and the standard deviation of momentum σp [55]

σxσp ≥ h̄

2 (1.3)

where h̄ = h
2π is the reduced Plank constant.

14

Introduction to Quantum Mechanics for Nanoscale Devices

1.1.1 Quantum Interference and the Double Slit Experiment

Another result that comes from the mathematical framework of quantum mechanics is
quantum interference, which reflects the wave-like behaviour of particles. When a particle
or system can reach the same final state through multiple indistinguishable paths, the
probability amplitudes of each path add together. The actual probability is given by the
square of the total amplitude, so the paths can interfere with each other, either strength-
ening the result (constructive interference) or cancelling it out (destructive interference),
depending on how their phases relate. This phenomenon only shows up at the submi-
croscopic scale and has no direct equivalent in classical physics, playing a central role in
experiments like the double-slit experiment.

Figure 1.1: Double slit experiment

The experiment setup includes a source that emits particles, like electrons or photons,
toward a barrier with two narrow slits and a detection screen behind the slits. When
both slits are open and no measurement is made to find out which slit the particle goes
through, an interference pattern appears on the screen, showing alternating areas of high
and low detection probability, similar to what happens with classical waves. This suggests
that each particle acts as if it passes through both slits at the same time, interfering with
itself. However, when a measurement is made to determine the actual slit the particle goes
through, the interference pattern disappears and the result looks like classical particles
going through one slit or the other. This change depending on whether a measurement
is performed shows that quantum particle behavior cannot be fully explained by classical
mechanics.

The double-slit experiment thus played a crucial role in the discovery and understanding
of wave-particle duality, the idea that quantum entities, such as electrons and photons,
exhibit both wave-like and particle-like properties, depending on how they are observed.

15

Introduction to Quantum Mechanics for Nanoscale Devices

1.1.2 Quantum Tunnelling
Another non-classical phenomenon predicted by quantum mechanics is quantum tun-
nelling, where a particle that goes up against a potential barrier has a non-zero probability
to cross it, even if its kinetic energy is smaller than the maximum of the potential. This
effect arises from the wave nature of particles in quantum mechanics.

Figure 1.2: Simplified diagram of quantum tunnelling

In microelectronics, quantum tunnelling plays both positive and negative roles. It is used
in devices like tunnel diodes, where it allows very fast current flow and quick switching,
making them ideal for some high-frequency applications. In Tunnel Field-Effect Transis-
tors (TFETs), tunnelling is exploited to enable low-power operation, as electrons tunnel
through a potential barrier at the source-channel junction. This leads to a steep sub-
threshold slope and lower power use compared to traditional MOSFETs.

As devices continue to shrink, tunnelling also brings challenges. In modern transistors,
especially those with gate lengths of just a few nanometers, unwanted tunnelling currents
cause leakage, increasing power consumption and reducing efficiency. This issue limits
the performance and scaling of standard CMOS devices. Addressing tunnelling-related
problems is a major focus in developing future microelectronic technologies, through new
materials or innovative transistor designs.

16

Introduction to Quantum Mechanics for Nanoscale Devices

1.1.3 Quantum Entanglement
Quantum entanglement is among the most fascinating and fundamental phenomena in
quantum mechanics. It was initially described by Albert Einstein, Boris Podolsky and
Nathan Rosen in 1935 through the well-known EPR paradox [16], which challenged
whether quantum mechanics could fully describe physical reality. Later experiments,
especially those conducted by John Bell in the 1960s, offered strong evidence that quan-
tum entanglement is indeed a real and non-local effect.

It is the phenomenon where the quantum state of each particle in a group cannot be
described independently from the others, even when the particles are separated by large
distances. Measurements of properties like position, momentum, spin and polarization on
entangled particles can sometimes show perfect correlations. Although these correlations
happen instantly, even between particles light years apart, they cannot be used to send
information faster than light. This is explained by the no-communication theorem, which
states that during the measurement of an entangled state, one observer cannot transmit
information to another, no matter how far apart they are. The inherent randomness of
quantum measurements prevents using entanglement for faster-than-light communication,
preserving causality and aligning with special relativity.

Mathematically, quantum entanglement is often described using a superposition of states.
One of the most common entangled states of two particles is the Bell state. In Bra-ket
notation, one of the four Bell states (also known as an EPR state) [32] is:

|Ψ+⟩ = 1√
2

(|01⟩ + |10⟩) (1.4)

This represents an entangled state in which, for example, two electrons are correlated: if
one is measured in the state |0⟩, the other will be in |1⟩, and vice versa, each with 50%
probability. The measurement outcomes are probabilistic, with the probability of each re-
sult determined by the squared magnitudes of the coefficients of each possible state (here

1√
2 for both, so that the total probability is 1 without the need to normalize). The super-

position state holds until the presence of an observer. Here the wavefunction collapses to
one defined state, allowing the measurement to be made and so determine the quantum
state at the instant the measurement is carried out.

Entanglement plays a key role in several quantum technologies, such as quantum comput-
ing, quantum cryptography and quantum teleportation. It enables faster computation,
secure communication and the transfer of quantum states over distances. Despite being
counter-intuitive, quantum entanglement has been confirmed through experiments and
remains a central subject in both theoretical and experimental quantum research.

17

Introduction to Quantum Mechanics for Nanoscale Devices

1.2 Schrödinger’s Wave Equation
“The Schrödinger’s equation is a partial differential equation that governs the wave func-
tion of a non-relativistic quantum-mechanical system.”[19] It describes how the quantum
state of a particle evolves over time, assuming the particle moves much slower than the
speed of light. This equation allows us to calculate the probability of finding a particle
in a certain position and understand its behaviour at microscopic scales, where classical
mechanics no longer applies. The equation is named after Erwin Schrödinger, an Aus-
trian physicist who formulated it in 1925 and published it in 1926. This work laid the
foundation for research that earned him the Nobel Prize in Physics in 1933 [48][38]. Con-
ceptually, the Schrödinger equation serves as the quantum equivalent of Newton’s second
law in classical mechanics.

The equation can take different forms depending on the context, but the most general
one is the time-dependent Schrödinger equation, which describes how a system evolves
over time [40]:

ih̄
∂

∂t
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩ (1.5)

|Ψ(t)⟩ is the time-dependent state vector of the quantum system, defined in a separable
complex Hilbert space H, a vector space equipped with an inner product operation, pos-
tulated to be normalized such that ⟨ψ, ψ⟩ = 1. It is possible to relate this value to the
system wavefunction, which is the representation of the state vector in a specific basis, for
example, the position basis

ψ(x, t) = ⟨x|ψ(t)⟩ (1.6)

The wavefunction so is the projection of the state vector onto the position vector |x⟩. If
|ψ(x)⟩ is known, the state vector can be retrieved by doing the inverse of this projection,
by taking the superposition over all possible solutions. This translates to an integration
over the position vector

|Ψ(t)⟩ =
Ú
ψ(x, t)|x⟩dx (1.7)

Ĥ is the Hamiltonian of the system, an operator corresponding to the total energy of that
system, including both kinetic energy and potential energy. For a single particle moving
in a potential V (x), the Hamiltonian takes the form

Ĥ = T̂ + V̂ (x, t) (1.8)

where T̂ is the kinetic energy operator, defined as

T̂ = p̂2

2m = − h̄2

2m∇2 (1.9)

with p̂ being the momentum operator and m the mass of the particle and V̂ (x, t) is the
potential energy operator.

18

Introduction to Quantum Mechanics for Nanoscale Devices

To resolve the equation, the computation of the Hamiltonian operator is first needed,
then by placing it into the equation, then the resulting partial differential equation is
solved for the wave function. By taking the square of the absolute value, as the Born rule
says, the probability density function is obtained.

Another important form of the equation is the time-independent Schrödinger equation,
used when the Hamiltonian does not explicitly depend on time. It applies to systems
in stationary states, where the total energy remains constant over time. This form is
useful for solving problems where the quantum state can be separated into a spatial part,
describing properties like the particle’s position and a time-dependent phase factor. It
also describes standing waves, which oscillate in time but have a fixed amplitude profile
in space.

In this case, the equation has the form

Ĥ|Ψ⟩ = E|Ψ⟩ (1.10)

where E is the energy of the system. When you measure the energy of the system in
that state, the measurement will yield E every time, provided the system is in the state
described by |Ψ⟩. Mathematically, this is the eigenvalue corresponding to the eigenstates
of the state vector. Therefore, the wave function is an eigenfunction of the Hamiltonian
operator with corresponding eigenvalues E.

The time-independent Schrödinger equation is generally applied in situations such as:

• Energy eigenstates: to find stationary states with well-defined energy, where the
system’s energy remains constant over time.

• Bound states: describing particles confined within a region, like electrons in atoms
or particles trapped in a potential well.

• Stable equilibrium: used for quantum systems in stable equilibrium, where time
evolution is not taken into account.

• Separation of variables: applied when the time-dependent Schrödinger equation can
be separated into spatial and temporal parts, with the spatial part governed by the
time-independent equation.

19

Introduction to Quantum Mechanics for Nanoscale Devices

1.3 Trap a Quantum Particle
Understanding how quantum mechanical principles can be used to confine a quantum
particle, such as an electron, within a well-defined spatial region is of fundamental impor-
tance. A single particle is free to move in space and, relative to a Cartesian coordinate
system, has three degrees of freedom (x, y, z). Trapping a particle means restricting one
or more of these degrees of freedom, either partially or completely. This confinement
is achieved by introducing physical boundaries or, more commonly in quantum systems,
by engineering potential energy barriers. These barriers, whether electrostatic, magnetic,
or structural, modify the spatial distribution of the particle’s wavefunction, resulting in
discrete energy states typical of quantum confinement.

The particle in a box (also called particle in a one-dimensional potential well or infinite
potential well) is the simplest mathematical model illustrating how such restrictions cause
energy quantization. It describes a particle confined within an idealized, one-dimensional
potential well with infinitely high walls. Inside the box, the potential energy is zero, while
outside it is infinite [7].

Figure 1.3: Particle in a box

The setup, shown in figure 1.3, shows that no forces act upon the particle inside the box
and it can move freely in that region. However, infinitely large forces repel the particle
if it touches the walls of the box, preventing it from escaping. The wave function ψ(x, t)
can be found by solving the Schrödinger equation for the system [12]

ih̄
∂

∂t
ψ(x, t) = − h̄2

2m
∂2

∂x2ψ(x, t) + V (x)ψ(x, t) (1.11)

20

Introduction to Quantum Mechanics for Nanoscale Devices

While the particle in a box is an idealized system, it offers useful insight into how spatial
confinement leads to energy quantization. In real physical systems, however, potential
barriers are not infinite. This means the particle remains confined, but there is a non-zero
chance of finding it just outside the well, allowing for quantum tunnelling and causing
slight changes in the quantized energy levels. A more realistic model is the finite square
well, where the particle faces a potential drop inside a region and finite barriers outside.
In this case, the wavefunction does not drop to zero at the well’s edges but instead decays
exponentially into the barriers. This allows for leakage and tunnelling effects, which are
important in nanoscale devices like tunnel diodes and qubit readout systems.
As in the infinite well, energy quantization still happens, but only a limited number of
discrete energy levels exist within the well. These levels depend on the well’s depth and
width. The lowest energy states look like sine and cosine waves inside the well, smoothly
connecting to decaying tails outside. The first mode is usually symmetric, while higher
modes have more nodes and alternate between even and odd parity.

Figure 1.4: Particle in a finite potential well. First two modes.

To check for confinement, one can look at the first mode, or the first eigenfunction of
the wavefunction. This corresponds to the lowest energy state in a confined system. The
first eigenfunction typically represents the fundamental mode of the system, where the
particle is confined within the potential well. This mode serves as an initial indicator of
how the particle is localized within the position axis where the well is defined.

21

Introduction to Quantum Mechanics for Nanoscale Devices

1.3.1 Confinement Implementation
In real devices, it is needed to trap a particle in a well defined position in three-dimensional
space. If the particle looses a degree of freedom, the corresponding confinement is called
quantum well, if it looses two a quantum wire and if it looses all degrees of freedom,
so being trapped in a specific point where it cannot escape, it is called a quantum dot.
Confinement in all spatial dimensions is achieved in quantum dots, which localize electrons
and behave like artificial atoms. [26]
Confinement of quantum particles is achieved through several physical methods, each with
distinct mechanisms and applications. In nanoscale devices the main mechanisms are:

Electrostatic Gates

Electrostatic gates are commonly used in semiconductor-based devices to create poten-
tial barriers that confine particles. By applying voltage to these gates, an electric field
is generated, shaping the potential landscape and restricting the movement of carriers
(electrons or holes) in specific regions.

Figure 1.5: Left: Potential applied to an electrostatic gate. Right: Resulting band dia-
gram.

Bandgap Difference

A significant technique for quantum confinement involves the use of materials with differ-
ent bandgaps. This method relies on creating heterostructures where regions of different
materials are layered together. The particles are confined to regions with a lower bandgap,
where they cannot escape into regions with a higher bandgap, that creates a barrier for
the carriers. For example, in quantum wells, the confinement occurs in two dimensions,
where the particle is free to move within the well but is restricted in the perpendicular
direction due to the material’s bandgap contrast. This technique is usually exploited to
confine a collection of non-interacting free electrons called a gas of electrons (GAS) in the
interface between a semiconductor and a dielectric (e.g. Si/SiO2) or two semiconductors
(e.g. Si/SiGe, GaAs/AlGaAs).

22

Chapter 2

Spin Qubits in Solid-State
Systems

Building upon the foundational principles of quantum mechanics, this second chapter
introduces the concept of Qubits as the basic carriers of quantum information, focusing
on spin qubits, analysing various types of qubit encoding, quantum dots and problems
related to physical implementation.

2.1 Qubits Fundamentals
The term qubit, or quantum bit, coined by the American theoretical physicist Benjamin
Schumacher [39], is the basic unit of quantum information and can be seen as the quantum
version of the classic binary bit physically realized with a two-state device. Claude Shan-
non, an American mathematician known as the "father of information theory", defined
the classical bit as the amount of information required to eliminate uncertainty between
two equally probable and mutually exclusive outcomes [41]. In other words, one bit rep-
resents the information gained when one of two equally likely options is specified [28]. Its
quantum counterpart, the qubit, is a two-state (or two-level) quantum-mechanical system
used to encode such an event into a quantum of information. This refers to the smallest
indivisible unit of information that can be stored in a physical property of a particle, as
used in quantum computing. A qubit measurement yields one of two possible outcomes,
typically labelled as "0" and "1", similar to a classical bit. However, unlike a bit, which can
only be in one of these states at a time, a qubit can exist in a coherent superposition of
both states simultaneously, as described by quantum mechanics [33]. The general quan-
tum state of a qubit can be represented by a linear superposition of its two orthonormal
basis states (or basis vectors). These vectors are usually denoted as: [57]

|0⟩ =
51
0

6
, |1⟩ =

50
1

6
(2.1)

They are written in the conventional Dirac, or "bra–ket" notation, where the |0⟩ and |1⟩
are pronounced "ket 0" and "ket 1", respectively. These two orthonormal basis states,

23

Spin Qubits in Solid-State Systems

{|0⟩, |1⟩}, together called the computational basis, are said to span the two-dimensional
linear vector (Hilbert) space of the qubit.[58] In general, n qubits are represented by a
superposition state vector in 2n dimensional Hilbert space.[58]

A pure qubit state is a coherent superposition of the basis states. This means that a
single qubit can be described by a linear combination of ket 0 and ket 1 [11]

|ψ⟩ = α|0⟩ + β|1⟩ (2.2)

where α and β are the probability amplitudes. When a measure is performed on a qubit in
the standard basis, according to the Born rule, the probability of outcome |0⟩ with value
"0" is |α|2 and the probability of outcome |1⟩ with value "1" is |β|2. Because the absolute
squares of the amplitudes correspond to probabilities, α and β must satisfy the second
axiom of probability theory, leading to the constraint expressed in equation 2.3 [56].

|α|2 + |β|2 = 1 (2.3)

The probability amplitudes, α and β, encode more than just the probabilities of the out-
comes of a measurement. The relative phase between the two coefficients is, for example,
responsible for quantum interference, as seen in the double-slit experiment.

The possible quantum states for a single qubit can be visualised using a Bloch sphere,
a two-dimensional space which represents the observable state space of the pure qubit
states. This state space has two local degrees of freedom, which can be represented by the
two angles ϕ and θ. Since the global phase of a quantum state has no physical meaning,
any overall complex factor eiφ multiplying the state can be neglected. This makes it pos-
sible to express any pure qubit state in a simplified form, where θ and ϕ are real numbers.

Figure 2.1: Bloch sphere representation of a qubit

24

Spin Qubits in Solid-State Systems

Represented on a such sphere, a classical bit could only be at the "North Pole" or the
"South Pole", in the locations where |0⟩ and |1⟩ are respectively. The rest of the surface of
the Bloch sphere is inaccessible to a classical bit, but a pure qubit state can be represented
by any point on the surface. For example, the pure qubit state (|0⟩+ |1⟩)/

√
2 would lie on

the equator of the sphere at the positive x axis. In the classical limit, a qubit, which can
have quantum states anywhere on the Bloch sphere, reduces to the classical bit, which
can be found only at either poles.
Here, the probability amplitudes for the superposition state are given by: [33]

α = cos θ2 and β = eiφ sin θ2 (2.4)

To physically realize a qubit, it is needed to embed this mathematical concept into a
2-state system using quantum of information belonging to subatomic particles. The most
common types are:

• Superconducting Qubits: based on electrical circuits that display quantum be-
havior at cryogenic temperatures. These circuits use Josephson junctions to create
discrete energy levels representing quantum states. The most common design, the
transmon, is optimized to minimize sensitivity to charge noise.

• Trapped Ion Qubits: employ individual ions (charged atoms) confined in elec-
tromagnetic traps under vacuum. Quantum information is stored in the internal
electronic states of the ions and controlled using laser pulses.

• Spin Qubits: encode information in the spin state of single electrons or nuclei, typ-
ically trapped in quantum dots or bound to donor atoms like phosphorus in silicon.
A major advantage is their compatibility with standard semiconductor processes,
supporting scalability.

• Photonic Qubits: use photons to carry quantum information via polarization,
path, or time-bin encoding. Due to their weak interaction with the environment,
photons are well suited for long-distance quantum communication.

• Topological Qubits: rely on quasiparticles called anyons, found in certain two-
dimensional systems, which follow non-Abelian statistics. Information is stored non-
locally in the system’s topology. In 2025, Microsoft introduced a quantum processor
called Majorana 1 [1], based on topological qubits using Majorana fermions.

• Defect Qubits: store quantum information in the spin states of localized electrons
or nuclei linked to point defects in solid-state materials. A well-known example is the
nitrogen-vacancy (NV) center in diamond or silicon carbide, where a nitrogen atom
replaces a carbon atom next to a vacancy. These systems feature long coherence
times, even at room temperature and can be initialized and read out optically.

25

Spin Qubits in Solid-State Systems

2.1.1 Spin Qubits
Spin qubits have gained considerable interest in modern microelectronics thanks to their
compatibility with existing semiconductor fabrication techniques. This makes it possible
to integrate spin qubits into current microelectronic platforms, offering a promising path
toward scalable quantum processors. As previously mentioned, spin qubits store informa-
tion in the spin, an intrinsic form of angular momentum carried by elementary particles
and by composite systems like hadrons, atomic nuclei and atoms. Although nuclear spin is
used in the development of Donor (or Kane) qubits, where a donor atom is implanted into
a semiconductor lattice, only electronic spin qubits will be described, as they are more
directly relevant to the technological approaches and materials explored in this work.

In particle physics, an electron is a subatomic particle carrying a negative elementary
electric charge. It belongs to the group of fermions, particles with half-integer spin that
follow the Pauli exclusion principle. This principle states that two or more identical
fermions cannot occupy the same quantum state simultaneously within a system governed
by quantum mechanics. Austrian physicist Wolfgang Pauli formulated this principle in
1925 specifically for electrons, and it was later generalized to all fermions through his
spin–statistics theorem in 1940. Because fermions obey the Pauli exclusion principle,
they follow Fermi-Dirac statistics, a quantum statistical model describing how particles
occupy energy states in systems where quantum effects are significant, particularly at low
temperatures. This statistic gives the probability that an energy level is occupied by an
electron, taking into account that no two electrons can share the same state. At absolute
zero temperature, all states up to the Fermi energy are filled, while at higher tempera-
tures there is a gradual transition, with electrons able to thermally excite to higher energy
levels.

Figure 2.2: Fermi-Dirac Statistic - Energy and Temperature Dependence

In figure 2.2 it is possible to observe on the y-axis the average number of fermions in a
single-particle state n̄i, where k is the Boltzmann constant, T is the absolute temperature,
ϵ is the energy of the single-particle state i and µ is the total chemical potential.

26

Spin Qubits in Solid-State Systems

Electrons also belongs to the Leptons family, particles that does not undergo strong in-
teractions. [4]
As introduced before, the spin of an electron is a fundamental quantum property that
can be interpreted as an intrinsic form of angular momentum. It does not correspond to
any literal spinning motion of the particle, but it behaves mathematically in a way that
resembles angular momentum. The spin quantum number for an electron is s = 1

2 , mean-
ing that it can occupy one of two possible spin states, commonly referred to as “spin-up”
and “spin-down”. The concept is to exploit the two-state behaviour of the spin in order to
encode the quantum information in the state up and down. These two states are denoted
by the spin projections + h̄

2 and − h̄
2 along a chosen quantization axis, typically the z axis,

such that the total angular momentum along the z axis is SZ = ms · h̄ with ms = ±1
2 .

In simplified notation, these are labelled as:

+1
2 → Spin-up → | ↑⟩ or |0⟩

−1
2 → Spin-down → | ↓⟩ or |1⟩

In quantum information, the two states |0⟩ and |1⟩ form the computational basis of a
qubit, representing its two logical states. According to quantum mechanics, an electron
spin qubit can exist not only in these definite states but also in any superposition of
both, collapsing to a specific state only upon measurement. Although this work focuses
on the practical implementation of quantum dots for electrons, the mathematical models
discussed apply to any type of charge carrier. It is therefore possible to trap and manip-
ulate holes as well. This is commonly done in heterostructures, where holes often exhibit
stronger spin-orbit coupling, an interaction between a particle’s spin and its orbital mo-
tion, than electrons, especially in materials such as Germanium and III-V semiconductors.
Additionally, hole spins are generally less affected by hyperfine interactions with nuclear
spins, which can result in better coherence properties in certain materials.

It is also important to note that, like any quantum mechanical system, spin qubit states
are subject to the no-cloning theorem, which states that it is impossible to create an
independent and identical copy of an arbitrary unknown quantum state. To illustrate
this in practice, consider an atom from which an electron is borrowed and trapped in
a quantum dot, creating a spin qubit. When it is time to measure the spin, a process
called spin-charge conversion must be performed (discussed later in the readout section).
This requires the trapped electron to leave the quantum dot so its spin state can be de-
tected, effectively reading the information while destroying the original quantum state.
Afterwards, another electron can enter the quantum dot and the cycle repeats.

27

Spin Qubits in Solid-State Systems

2.1.2 DiVincenzo Criteria
In 2000, physicist David P. DiVincenzo introduced a set of requirements, now known as
the DiVincenzo criteria, to evaluate whether a physical system is suitable for building a
scalable quantum computer. These criteria have become a widely accepted benchmark for
evaluating different quantum computing platforms, including spin qubits in semiconduc-
tor quantum dots. Among these, semiconductor spin qubits constitute a platform that
satisfies the key requirements for implementing quantum computation [5]. The original
set consists of five requirements necessary for a functional quantum processor.

The five core criteria, taken from [14][15], are:

1. The elementary units of information need to be stored in a scalable quantum regis-
ter. In analogy with binary logic where bits take on the value of 0 or 1, quantum
information is typically stored in the form of quantum bits (qubits). A qubit is a
quantum two-level system with orthogonal, i.e., distinguishable, basis states |0⟩ and
|1⟩. Systems with spin 1

2 are perhaps the simplest example of this encoding, although
other spin-based possibilities exist.

2. A further requirement is that the qubits can be prepared in a fiducial state, for
example, |00..0⟩.

3. The quantum system must remain coherent for times much longer than the duration
of elementary logic gates since decoherence causes computational errors.

4. Along with maintaining coherence, a high-fidelity gate set (single-qubit and two-
qubit gates) must be attainable.

5. Finally, it is required that a sufficiently large part of the quantum register can be
read out at the end of a computation.

The spin degree of freedom naturally defines a qubit, with the two states corresponding
to spin-up and spin-down for a single electron [14], or alternatively to two distinct nuclear
spin states [25]. Spin qubits have been demonstrated to satisfy the DiVincenzo criteria.
Although the electron’s charge couples strongly to electric fields, enabling electrical control
of spin states, its small magnetic moment interacts only weakly with the environment,
resulting in long spin coherence times [5].

28

Spin Qubits in Solid-State Systems

2.2 Encodings
Since the spin of an electron naturally forms a two-level quantum system, it represents
a convenient and intuitive way to encode a quantum bit of information. This simplest
approach, where a single electron spin encodes a single qubit is conceptually straightfor-
ward and has been extensively studied both theoretically and experimentally. However,
in practical implementations, spin qubits are subject to various sources of noise and de-
coherence, including interactions with fluctuating magnetic and electric fields, spin–orbit
coupling and hyperfine interactions with nearby nuclear spins. To improve robustness,
enhance gate fidelities, or enable specific operations, researchers have developed a range
of alternative spin-based encodings. These schemes exploit the collective spin states of
two or more particles confined in coupled quantum dots, allowing for qubit encodings that
are less sensitive to certain types of noise or that facilitate more efficient control mech-
anisms. In the following section, the most relevant encoding strategies will be presented
and discussed.

2.2.1 Loss-DiVincenzo
One of the most influential and foundational proposals for realizing spin-based quantum
computation is the model developed by Daniel Loss and David P. DiVincenzo in 1997.
In this approach, known as the Loss–DiVincenzo spin qubit, a single electron is confined
within a quantum dot. The model is especially attractive for its compatibility with ex-
isting semiconductor fabrication technologies, making it a strong candidate for scalable
architectures. Moreover, it aligns well with the DiVincenzo criteria for a physical qubit
system: well-defined qubit states, initialization capability, long coherence times, universal
gate implementation and qubit-specific readout. A key feature of the Loss–DiVincenzo
model is its strategy for implementing two-qubit gates, which are essential for universal
quantum computation. When two quantum dots are placed in close proximity, each con-
taining a single electron, the exchange interaction between the two spins can be exploited
to entangle them. This interaction, which arises from the overlap of their wavefunctions,
can be dynamically controlled by adjusting the potential barrier between the dots.

Figure 2.3: Spin configuration, Bloch sphere and energy-level diagrams associated with
Loss-DiVincenzo single spin qubits [5]

Reprinted figure with permission from Guido Burkard et al., "Semiconductor spin qubits", Rev. Mod. Phys. 95, 025003
(2023). Copyright 2023 by the American Physical Society. http://dx.doi.org/10.1103/RevModPhys.95.025003

29

http://dx.doi.org/10.1103/RevModPhys.95.025003

Spin Qubits in Solid-State Systems

2.2.2 Singlet-Triplet
Both the Loss-DiVincenzo and Kane proposals for quantum computing involve single spin
qubits manipulated with a combination of static and oscillating electric and magnetic
fields. The oscillating fields can be difficult to localize in nanoscale devices and the power
dissipated by those fields can be problematic at cryogenic temperatures. In addition, the
main source of dephasing for single spin qubits is magnetic noise from the semiconductor
environment, which can be significant in materials like GaAs that contain spinful nuclei.
To address these control and dephasing challenges, spin qubits can also be implemented
using multispin states formed by groups of electrons. The simplest example of this ap-
proach is a qubit based on two electrons in a double quantum dot, where the controlled
singlet–triplet splitting provided by the exchange interaction defines the singlet–triplet
qubit [5].

The total spin configuration of two spin-½ particles spans a four-dimensional Hilbert
space: [49]

H2e− = span{| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩} (2.5)
These states can be grouped into a triplet subspace with total spin S = 1 and a singlet
state with total spin S = 0: [49]

• Triplet state (S = 1):
|T+⟩ = | ↑↑⟩, |T−⟩ = | ↓↓⟩

|T0⟩ = 1√
2

(| ↑↓⟩ + | ↓↑⟩)
(2.6)

• Singlet state (S = 0):
|T0⟩ = 1√

2
(| ↑↓⟩ − | ↓↑⟩) (2.7)

Encoding the qubit in the singlet–triplet basis of a double quantum dot allows a nearby
charge sensor to discriminate the qubit states with high fidelity, especially at low magnetic
fields. More about readout mechanisms can be found in Section 2.6.

Figure 2.4: Spin configuration, Bloch sphere and energy-level diagrams associated with
two-spin singlet triplet (ST0) qubits [5]

Reprinted figure with permission from Guido Burkard et al., "Semiconductor spin qubits", Rev. Mod. Phys. 95, 025003
(2023). Copyright 2023 by the American Physical Society. http://dx.doi.org/10.1103/RevModPhys.95.025003

30

http://dx.doi.org/10.1103/RevModPhys.95.025003

Spin Qubits in Solid-State Systems

2.2.3 Exchange-Only
Exchange-only is a type of spin-based qubit that encodes quantum information in the
collective spin state of three (or more) electrons confined in three coupled quantum dots.
Unlike single-spin or singlet–triplet qubits, which require local magnetic fields or magnetic
field gradients for qubit control, the exchange-only qubit is designed to be manipulated
purely by electrical means, using the exchange interaction between neighbouring electron
spins.

The three-electron system spans an 8-dimensional Hilbert space, corresponding to all
possible combinations of three spin-½ particles. Among these states, the total spin-½
subspace forms a natural two-level system that can be used to define a qubit. The logical
basis states are encoded in the spin-½ subspace with total spin projection SZ = ±1

2 .
A commonly used basis for SZ = +1

2 is: [37]

|0⟩ ≡ 1√
2

(|↑↓↑⟩ − |↓↑↑⟩) (2.8)

|1⟩ ≡ 1√
6

(2 |↑↑↓⟩ − |↑↓↑⟩ − |↓↑↑⟩) (2.9)

These states are entangled superpositions of spin configurations and are decoherence-free
with respect to global magnetic field fluctuations, making them robust against certain
types of noise. Applying voltages to the gates that define the potential barriers between
the dots will increase or decrease the overlap between the electronic wavefunctions. This,
in turn, modulates the exchange coupling, a quantum effect that favours the formation of
specific spin combinations when electrons interact. For example, if the exchange interac-
tion is turned on between the first and second electron, while the third remains weakly
coupled, the system will evolve in a way that rotates the qubit state within a specific axis
of its logical subspace. By then adjusting the exchange between the second and third
electrons, a different rotation is achieved. In this way, any single-qubit rotation can be
constructed through a sequence of controlled exchange pulses. What makes this scheme
particularly attractive is that no magnetic fields are needed for manipulation.

Figure 2.5: Spin configuration, Bloch sphere and energy-level diagrams associated with
three-spin Exchange-Only spin qubits [5]

Reprinted figure with permission from Guido Burkard et al., "Semiconductor spin qubits", Rev. Mod. Phys. 95, 025003
(2023). Copyright 2023 by the American Physical Society. http://dx.doi.org/10.1103/RevModPhys.95.025003

31

http://dx.doi.org/10.1103/RevModPhys.95.025003

Spin Qubits in Solid-State Systems

2.3 Quantum Dots
In order to exploit the quantum mechanical effects of a particle and use it as a qubit it
is firstly needed to constrain all of its degrees of freedom and trap it into a quantum dot,
previously defined as a space region where the particle cannot escape. Sometimes this
is called an "artificial atom" because, like real atoms, they confine electrons in all three
spatial dimensions, leading to discrete, quantized energy levels. This atom-like behaviour
arises from the nanoscale confinement potential, allowing quantum dots to mimic many
properties of atoms, such as optical transitions, shell structure and selection rules, within
a solid-state environment. This three-dimensional confinement can be exploited by elec-
trically restrict an electron movement in space or to physically embed them in a solid
material.

In order to have a quantum dot, a physical dimension called the Debye length has to
be taken into account. It is a fundamental concept in semiconductor physics and electro-
statics that describes the characteristic distance over which electric potentials are screened
or shielded by mobile charge carriers in a material. When a local electric field is intro-
duced, due to, for example, a charged impurity or a potential applied by a gate, the
surrounding free electrons and holes will rearrange themselves to counteract the field,
reducing its effect at larger distances. It represents the scale at which the electrostatic
potential drops by a factor of e−1. In practice, it determines how far a perturbation in
charge or potential can influence the surrounding medium.
The computation that is usually done consists in making the thermal energy smaller than
the energy of the first energy level of a quantum well: [34]

kBT <
h̄2π2

2meffL2 LQD < λDebye = h√
8meffkBT

(2.10)

Quantum confinement occurs when the dimensions of a system, such as a quantum dot,
become comparable to or smaller than the characteristic length scales of the carriers, such
as their de Broglie wavelength. In this regime, the energy levels of electrons or holes be-
come discrete and their behaviour must be described by quantum mechanics rather than
classical physics. The Debye length enters the picture as it defines how far electrostatic
potentials, such as those from gates or charged impurities, can influence the carrier dis-
tribution in a semiconductor. If the Debye length is longer than or comparable to the
size of the quantum dot, the external electrostatic environment can significantly affect the
confinement potential, tuning the energy levels and wavefunctions of the carriers inside
the dot. Conversely, in highly doped materials, where the Debye length becomes very
short, the ability of external gates to penetrate and modulate the potential landscape
is reduced, making it harder to achieve precise quantum confinement using electrostatic
control.
If the case of silicon is considered, it can be noticed that at room temperature confinement
would manifest only for dimensions below few nm. This means that in conventional CMOS
devices, even if the 2DEG is closed to the Si/SiO2 interface, confinement never happens
and it starts playing a role only in the very last technological nodes. On the other hand,
in materials like GaAs and InAs confinement begins for larger dimensions with respect

32

Spin Qubits in Solid-State Systems

to silicon at the same temperature. This is due to the fact that electrons in such materials
have a lower effective mass, and so a higher mobility. However, if cooled down to 4.2K
(the boiling point of He4), also in silicon quantum confinement starts manifesting in wells
smaller than about 60–80 nm. For this reason, quantum dots have a typical size of 50 nm
or less. [35]

There are various mathematical forms of the equation 2.10, by using the one shown in
2.11 [9]

λD =

ó
εkBT

ne2 (2.11)

and plotting by using permittivity of various materials at a carrier concentration of
1e20m−3 it is possible to see, in figure 2.6, the Debye length of various semiconductors
varying the temperature from absolute zero to room temperature.

Figure 2.6: Debye length of Silicon, Gallium Arsenide and Indium Arsenide, varying the
temperature from absolute zero to room temperature, carrier concentration 1e20m−3

It is possible to observe that at absolute zero the particle, completely drained of its total
energy, cannot escape the quantum dot. The Debye length it is not the only quantum
mechanical effect to respect, many other phenomenons will arise with the increase of just
few Kelvin. This is the reason why even modern technological nodes still tend to be
operated in a sub-kelvin regime.

33

Spin Qubits in Solid-State Systems

2.3.1 Gate Defined Quantum Dots
Trapping single spins requires quantum confinement, which is usually achieved through
a combination of material-defined and electrostatically defined spatial barriers [5]. Gate-
defined quantum dots are nanostructures formed in semiconductor materials through the
application of electrostatic potentials generated by metallic gates. The aim of these gates
is to reduce one or two degrees of freedom, usually x and/or y axis. The gates are patterned
on top of a semiconductor stack, typically a silicon-based MOS structure or a GaAs/Al-
GaAs heterostructure, where a two-dimensional electron gas (2DEG) or hole gas (2DHG)
is present at the interface, confining the carriers in the z axis. By applying voltages to
selected gate electrodes, the underlying carriers are locally depleted, creating potential
wells that confine a small number of charge carriers in all three spatial dimensions. So, in
order to obtain a gate-defined quantum dot, it is necessary to engineer:

Band structure (quantum well formation)

The first step is to reduce the carriers degrees of freedom by creating a quantum well.
This is done by exploiting the band structure of the different materials that compose the
device. It is possible to obtain, mainly, two types of material confinement:

• Semiconductor/oxide interface: as in MOS devices, the gas of electrons (or holes) is
present at the interface semiconductor/oxide, due to the bandgap difference of the
semiconductor and the dielectric. This is common in depletion-mode devices such
as Si-MOS and compatible with standard processes.

• Heterostructures: buried few nanometers below the semiconductor surface, an ad-
ditional layer of a different semiconductor is present. The most common types are
SiGe for the main semiconductor and Si or Ge for the buried layer. The different
bandgap of the two semiconductors lead to a confinement of carriers inside the thin
buried layer, forming a 2DEG (or 2DHG).

Figure 2.7: Physical structure with band diagram. In Si-MOS, electrons are localized at
the Si/SiO2 interface. In heterostructures, the electrons reside in a buried QW [5]

Reprinted figure with permission from Guido Burkard et al., "Semiconductor spin qubits", Rev. Mod. Phys. 95, 025003
(2023). Copyright 2023 by the American Physical Society. http://dx.doi.org/10.1103/RevModPhys.95.025003

34

http://dx.doi.org/10.1103/RevModPhys.95.025003

Spin Qubits in Solid-State Systems

Electrostatic gating (quantum dot formation)

Once a quantum well has been formed in a planar heterostructure, confinement in the in-
plane dimensions can further reduce the effective dimensionality of the electronic states.
In-plane confinement is achieved through the electrostatic potential, which is typically
induced by metal gate electrodes above the heterostructure. A confining potential along
one direction creates a quasi-1D channel, which can serve as a quantum point contact.
Applying finer electrostatic confinement along both in-plane directions can produce effec-
tively zero-dimensional quantum dots. The potential minima determine the locations of
the quantum dots where electrons can be trapped and variations in gate voltage modify
both the electrochemical potential of the dots and the shape of the confining potential [5].

Figure 2.8: Left: Band diagram of a gate-defined quantum dot, the central minima rep-
resent the dot, the two lateral walls represent a potential barrier that traps the carriers
in the potential minima. Right: normalized probability density function of the carriers
along the axis in which the channel extends

The simplest structure used to confine a carrier along one direction implies three gates
placed one after the other. The central one is called plunger gate and it is used to attract
the 2DEG to the interface semiconductor-oxide. The two gates at the side of the plunger
are the barrier gates, which are inversely polarized with respect to the plunger, in order
to create a potential barrier where carries cannot enter nor escape without tuning the
voltages. The behaviour described in figure 2.8 are directly taken from a quantum simula-
tion of such a device. Here the two barrier gates have a low-magnitude negative potential
(∼ −0.1V) that lead to the formation of the potential barriers, while the plunger gate
have a positive potential (∼ +0.6V) that flatten the bands in the central region, creat-
ing the dot. By finely tuning the voltages applied to the plunger and barrier gates, it is
possible to control the number of confined electrons with single-electron precision, a key
requirement for quantum information processing.

Moreover, by adding additional sets of gates, multiple quantum dots can be defined in
close proximity, enabling the study of tunnel coupling, charge hybridization and coherent
exchange interactions. These coupled quantum dot systems, often referred to as double

35

Spin Qubits in Solid-State Systems

quantum dots (DQDs) or linear arrays, are essential building blocks for scalable qubit
architectures. The ability to electrostatically manipulate confinement, tunnelling and
inter-dot coupling makes gate-defined quantum dots a versatile and widely studied plat-
form for the implementation of spin- and charge-based qubits in solid-state systems.

Figure 2.9: (a) Example of a planar device on SOI wafer with a two-barrier gates (in blue)
and one-plunger gate (in red) configuration. The grey areas are the n++ source/drain
areas and the orange areas represent the oxide, both lateral and buried. (b) Top view with
applied potential (white dotted line). (c) Side cut with probability density function |ψ(x)|2
computed in the silicon channel (orange dotted line) and spin qubit location (marked in
red)

In a double quantum dot, the interdot barrier height can be voltage controlled to modulate
the interdot tunnel coupling. Typical devices employ separate plunger and barrier gates to
control the quantum dot electrochemical potentials and the interdot barriers, respectively.
In practice, geometrical cross-capacitances affect the potential under neighbouring gates,
so voltage compensation across multiple gates is needed to control each dot independently,
a process often referred to as defining “virtual gates” [5].

36

Spin Qubits in Solid-State Systems

2.3.2 Dopants
In addition to gate-defined quantum dots, where electrostatic potentials are used to confine
electrons in a two-dimensional electron gas, an alternative and intrinsically atomic-scale
approach involves the use of dopant atoms embedded in a semiconductor crystal. These
so-called dopant-based quantum dots exploit the localized potential wells created by impu-
rity atoms, typically donors such as phosphorus in silicon, which can trap single electrons
in discrete, hydrogen-like bound states. When a group-V donor atom (e.g., phosphorus,
arsenic or antimony) is introduced into a silicon lattice, it donates a loosely bound elec-
tron that becomes confined in a Coulombic potential near the dopant nucleus. At low
temperatures and in the presence of appropriate gate control, the donor-bound electron
behaves similarly to an electron confined in a quantum dot, with discrete energy levels
and a well-defined spin state. This system forms a natural candidate for hosting a spin
qubit. Because the confinement is provided by the atomic potential of the dopant itself,
these structures are extremely small and reproducible at the atomic scale, offering excel-
lent charge and spin stability. Additionally, the nuclear spin of the donor atom can serve
as a second, highly coherent quantum degree of freedom, enabling hybrid electron–nuclear
spin qubit architectures.
The integration of dopants into silicon using standard ion implantation or scanning probe
lithography techniques also provides compatibility with conventional CMOS fabrication,
making dopant-based systems promising for scalable quantum device architectures.

Kane’s Qubit

Among all implementations, the most notable and historically significant dopant-based
spin qubit is the Kane qubit, proposed in 1998 by Bruce E. Kane. Soon after the Loss-
DiVincenzo proposal on quantum computation using quantum dots, Kane suggested using
the nuclear spins of 31P donor atoms in silicon to build a quantum computer [25]. Nuclear
spins are highly coherent since the nuclear gyromagnetic ratio for 31P is nearly 2000 times
smaller than the electron gyromagnetic ratio and their lack of mobility in a solid state
host inhibits charge-hybridizing or spin-orbit-related decoherence mechanisms. Control
over individual qubits is achieved through a combination of static magnetic fields and
voltage-controlled gates. Specifically, "A-gates" positioned above each donor atom mod-
ulate the hyperfine interaction between the donor’s nuclear spin and its bound electron.
By adjusting the voltage on these gates, the resonance frequency of individual nuclear
spins can be tuned, allowing for selective addressing and manipulation using radio fre-
quency pulses. Two-qubit operations are facilitated by "J-gates" located between adjacent
donor atoms. These gates control the exchange interaction between neighbouring donor
electrons. By temporarily transferring the quantum information from the nuclear spin
to the electron spin and then enabling interaction between electrons of adjacent donors,
entangling operations can be performed.

37

Spin Qubits in Solid-State Systems

The Kane model’s reliance on the nuclear spin’s long coherence time, combined with
the scalability potential of silicon-based fabrication techniques, makes it a compelling
approach within the Loss–DiVincenzo paradigm. However, challenges like the precise
placement of donor atoms and the control of individual qubits remain active areas of re-
search. Kane himself noted in 1998 the extreme difficulty of fabricating devices at the
single-atom level, yet he argued that the semiconductor industry’s progress in miniatur-
ization driven by Moore’s law would eventually enable the production of silicon devices
at the scale required for quantum computing [6].

Figure 2.10: Donor electrons are confined by the positive potential of the donor atom
and manipulated with gates defined through conventional or STM lithography [5]

Reprinted figure with permission from Guido Burkard et al., "Semiconductor spin qubits", Rev. Mod. Phys. 95, 025003
(2023). Copyright 2023 by the American Physical Society. http://dx.doi.org/10.1103/RevModPhys.95.025003

38

http://dx.doi.org/10.1103/RevModPhys.95.025003

Spin Qubits in Solid-State Systems

2.3.3 Nitrogen-Vacancy Centers
Nitrogen-Vacancy (NV) centers are point defects in crystalline materials that behave sim-
ilarly to quantum dots, providing discrete, atom-like energy levels within a solid-state
environment. They are among the most studied solid-state systems for quantum infor-
mation processing and sensing due to their unique combination of quantum coherence,
optical addressability and room-temperature operation. An NV center is formed when
a nitrogen atom substitutes for a carbon atom in the diamond lattice, adjacent to a va-
cant site where a second carbon atom is missing. This defect forms a localized electronic
structure that traps electrons and exhibits quantized energy levels similar to those of an
artificial atom. In its negatively charged state NV −, the center possesses an electronic
spin triplet ground state, which can be used to encode quantum information. The spin
sublevels of the NV − ground state can be selectively manipulated using microwave fields,
and their population can be initialized and read out optically, thanks to a spin-dependent
fluorescence response.

Figure 2.11: Atomic structure of silicon carbide, highlighting divacancy lattice defects.
Dotted blue and red circles indicate individual silicon and carbon vacancies. Four distinct
configurations of these vacancies can occur, depending on whether they occupy h or k
lattice sites [30]

The electron and nuclear spins associated with nitrogen–vacancy centers in diamond and
phosphorus impurities in silicon are among the most coherent quantum systems that have
been individually observed and manipulated in the solid state. These two materials offer
complementary advantages for potential spintronic applications: diamond provides opti-
cally accessible quantum states and supports room-temperature operation, while silicon
excels in fabrication and electrical interfacing. Silicon carbide, as a compound of these
two materials, could potentially combine the advantages of both, enabling a single opti-
cally addressable spin with long coherence times at room temperature, embedded within
a high-performance electronic platform [30].

39

Spin Qubits in Solid-State Systems

2.4 Noise, Decoherence and Error
Spin qubits are typically operated at cryogenic temperatures, often below 100mK, using
dilution helium refrigerators. These low temperatures serve two primary purposes. First,
they suppress thermal excitations that can randomly flip qubit states, ensuring that qubits
remain in their ground state and enabling initialization with high fidelity. Second, cryo-
genic conditions reduce the coupling of the qubit to environmental noise sources, thereby
extending coherence times. Spin qubits are not immune to noise and suffer from a phe-
nomena called decoherence, the loss of quantum coherence due to interactions with the
environment. As long as it maintain correctly the spin state, we call it in a coherent state,
while after some time it became decoherent with respect to what it should be and so the
quantum information is lost and so it is necessary to fill the dot again. This phenomena
limit the fidelity of quantum operations and are a major challenge for scalable quantum
computation. Understanding and mitigating these effects is critical for building reliable
quantum systems.
Two primary timescales characterize decoherence in spin qubits:

• Relaxation Time T1: This is the time over which a qubit loses energy to its
environment, transitioning from an excited state to its ground state. For electron
spin qubits in silicon quantum dots, T1 times can range from microseconds to seconds,
depending on the specific system and environmental conditions.

• Dephasing Time T2: This is the time over which a qubit loses phase coherence
without necessarily losing energy. T2 is often shorter than T1 and is influenced by
various dephasing mechanisms, including interactions with nuclear spins and charge
noise.

In many spin qubit systems, T1 is significantly longer than T2, indicating that dephasing
is the dominant decoherence mechanism. “For instance, in a silicon quantum dot system,
T1 has been measured at 280µs, while T2 is around 250µs at 0.35K.”[21] So, it is crucial
to end quantum computation with qubits before the decoherence time.

Several factors contribute to noise and decoherence in electron spin qubits:

• Environmental Noise: Fluctuating electric and magnetic fields from the environment
can couple to the qubit, causing dephasing or even bit flips. Magnetic noise can be
particularly harmful for spin qubits, but artificial controlled fields can be used to flip
the qubit as needed (more in Section 2.6).

• Hyperfine Interactions: In natural silicon or other host materials, the presence of
nuclear spins creates a fluctuating magnetic background, known as the hyperfine
interaction. This is a significant source of decoherence. Using isotopically purified
silicon reduces nuclear spin noise drastically, thereby improving coherence times
(more in Section 3.1).

• Material Imperfections: Defects, charge traps and interface roughness at the 2DEG
boundaries introduce local noise sources and variability in the qubit environment.

40

Spin Qubits in Solid-State Systems

2.5 Transport Analysis
The term "transport" refers to the movement of electrons through the quantum dot sys-
tem when a voltage is applied between the source and drain electrodes. Thus, while qubit
operations themselves are often isolated from transport, the transport regime is essential
during initialization, tuning and readout phases of the device. When a quantum dot is
weakly coupled to source and drain electrodes via tunnel barriers and a gate electrode
controls its electrochemical potential, it can exhibit a phenomenon known as Coulomb
blockade. The simplest device in which the effect of Coulomb blockade can be observed is
the so-called single-electron transistor (SET). It consists of two electrodes known as the
drain and the source, connected through tunnel junctions to one common electrode with
a low self-capacitance, known as the island. The electrical potential of the island can be
tuned by a third electrode, known as the gate, which is capacitively coupled to the island.

Figure 2.12: Coulomb blockade example, energy levels of source, island and drain in a
single-electron transistor. The energy levels of the island electrode are evenly spaced with
a separation of ∆E. (a) Blocking state. (b) Transmitting state.

In this configuration, electrons tunnel from the source to the quantum dot, causing a
transition from N to N + 1 electrons within the dot, followed by tunnelling toward the
drain. This sequence generates fluctuations in the electron number inside the dot, produc-
ing measurable conductance peaks, referred to as Coulomb peaks. These peaks appear at
specific gate voltages that allow the dot to be filled with electrons one by one [42]. In the
Coulomb blockade regime, the addition of a single electron to the dot requires overcom-
ing a charging energy due to electron–electron repulsion. As a result, electron transport
through the dot only occurs when the energy levels align appropriately with the chemical
potentials of the source and drain leads.
Another important graph is the so called charge stability diagram, that for a single quan-
tum dot shows the so called Coulomb diamond. It is a 2D map showing the differential
conductance (or current) as a function of source-drain bias voltage VSD (vertical axis)
and gate voltage VG (horizontal axis). It typically displays diamond-shaped regions of
zero conductance, the so-called Coulomb diamonds, each corresponding to a fixed number
of electrons in the quantum dot. Inside a diamond the dot is in Coulomb blockade and

41

Spin Qubits in Solid-State Systems

current is suppressed. At the diamond edges transport is allowed due to alignment of
dot energy levels with the source or drain. The half height of a diamond relates to the
charging energy EC , which is the energy required to add an extra electron to the dot.

Figure 2.13: Transport through a quantum dot. (a) Coulomb peaks in current versus gate
voltage in the linear-response regime. (b) Coulomb diamonds in differential conductance
versus VDS and Vg

Figure 2.14: Left: A graphic showing the distance-height (VG, VSD) relations between
diamonds. Right: simulated Coulomb diamonds.

The charging energy EC is given approximately by: [29]

EC = e2

CΣ
≫ kBT (2.12)

where e is the elementary charge and CΣ is the total capacitance of the quantum dot with
respect to its environment (including source, drain and gate electrodes). A taller diamond
therefore indicates a larger EC , this typically implies that the capacitance CΣ is smaller.
Consequently, the physical size of the quantum dot is smaller, since capacitance scales
with geometry. In general, a taller Coulomb diamond indicates stronger confinement and
smaller quantum dot size, which is generally advantageous for the stable operation of a
spin qubit.

42

Spin Qubits in Solid-State Systems

To interact with the qubit, it is usually coupled to another one in a double quantum
dot configuration. This configuration allow for interfacing via a quantum wire or SET
(more on section 2.6). Again, the charge stability diagram is a fundamental tool for char-
acterizing and operating double quantum dot systems. It represents the stable charge
configurations of the double quantum dot, usually measured by recording the current or
differential conductance of the system as a function of the two plunger gate voltages, which
control the chemical potential of each dot [31], typically denoted as VG1 and VG2. As it
denotes the carrier occupancies in a double quantum dot configuration, it is commonly
referred as the particle addition spectrum.
The plane defined by VG1 and VG2 is partitioned into regions where the number of electrons
on each dot remains constant. These regions often form a characteristic honeycomb pat-
tern, with each cell labelled by a pair of integers (N1, N2), representing the electron count
on dot 1 and dot 2, respectively. The boundaries between these regions correspond to
transitions where the addition or removal of an electron becomes energetically favourable,
leading to changes in the charge state of the system. At points where three regions meet,
known as triple points, the system can fluctuate between three different charge states.
These points are of particular interest because they allow for electron tunnelling between
the dots and the leads, facilitating transport measurements that are sensitive to the quan-
tum properties of the system.

Figure 2.15: Left: Particle addition spectrum with labelled dot occupations. [31] Right:
Charge stability diagram of double quantum dots acquired by scanning VG1, VG2. (a)
Uncoupled and (b) coupled quantum dots can be transformed reversibly into each other
by tuning Cm. Cm is the cross capacitance between the dots. The lines in the diagram
are the current signals while sweeping the voltage.[54][51]

When two quantum dots are strongly coupled, either capacitively or via tunnel coupling,
the charge stability diagram deviates from the idealized honeycomb pattern observed in
weakly coupled systems. In this case, the lines that separate different charge states begin
to bend, indicating that the dots are no longer isolated electrostatically but are forming
a coherent quantum system. This is noticeable in figure 2.15 (right, (b)).

43

Spin Qubits in Solid-State Systems

2.6 Qubit Control
The operation of spin qubits relies on three fundamental steps: initialization, manipula-
tion and readout. Each of these stages can be implemented in multiple ways depending
on the physical qubit architecture and the surrounding electronics. Here, the most com-
mon methods used to perform these operations in spin-based quantum dot systems are
reviewed.

2.6.1 Initialization
The initialization of spin qubits is a crucial step in quantum computation, as it prepares
the system in a well-defined quantum state from which controlled operations can be re-
liably performed. For electron spin qubits hosted in semiconductor quantum dots, the
goal is typically to initialize the system into a known spin state, usually the spin-down
(or spin-up) state depending on the applied magnetic field direction. Initialization is of-
ten achieved via energy-selective tunnelling, relaxation to the ground state, or adiabatic
preparation. The choice of initialization technique depends on the specific qubit encoding
and system architecture.

In the Loss-DiVincenzo single-spin encoding, initialization is typically achieved by tun-
ing the quantum dot so that an electron can tunnel in from a reservoir only if its spin
matches the ground state, determined by the Zeeman splitting in an external magnetic
field. While the original proposal suggested using spin-selective ferromagnetic elements,
practical implementations rely on spin-selective tunnelling to a fermionic electron bath. A
large static magnetic field B ≫ kBTe = gµB ensures that the higher-energy spin state can
tunnel to the Fermi sea, while tunnelling from the lower-energy state is energetically for-
bidden. Sensitive charge detectors measure the presence or absence of tunnelling events,
allowing the electron spin orientation to be inferred. This spin-selective tunnelling enables
high-fidelity initialization of the qubit into a well-defined spin state [5].
For Singlet–Triplet qubits, which encode information in the two-electron spin states within
a double quantum dot, initialization is typically performed by biasing the system into the
(0,2) charge configuration, where both electrons occupy the same dot and relax to a spin-
singlet ground state due to the Pauli exclusion principle and exchange interaction. The
system can then be adiabatically brought to the (1,1) configuration, preserving the singlet
spin character.
In the case of Exchange-only qubits, a common strategy is to first prepare a singlet state
in one of the dot pairs, then load the third electron and manipulate the exchange couplings
so that the system evolves into the logical |0⟩ state within the encoded basis. This often
involves careful pulse sequences and gate voltage tuning.

Overall, reliable initialization is essential for achieving high-fidelity quantum operations
and ongoing research continues to optimize these techniques for speed, scalability and
compatibility with cryogenic control electronics.

44

Spin Qubits in Solid-State Systems

2.6.2 Manipulation
Qubit manipulation can be carried out in many ways, depending on the type of qubit and
quantum dot implementation. The main idea is to coherently controlling their quantum
state by inducing transitions between the basis states |0⟩ and |1⟩, like in classical bits.
The main techniques involve applying resonant microwave pulses tuned to the qubit’s
Larmor frequency [6], the rate at which a spin precesses around an external static magnetic
field due to the Zeeman interaction, which is defined as: [5]

fL = gµBB

h
(2.13)

where g is the Landé g-factor, µB is the Bohr magneton, B is the static magnetic field
and h is Planck’s constant. The Larmor frequency sets the energy difference between
the spin states and determines the frequency of the driving field required for coherent
control. When a spin qubit is driven by such a resonant oscillating field, it undergoes
Rabi oscillations, coherent oscillations of a qubit’s state population that occur when it is
driven by an external oscillating field at or near the Larmor frequency. The probability of
finding the spin in a particular state oscillates sinusoidally as a function of the duration
of the driving pulse. The oscillation frequency, known as the Rabi frequency, depends on
the strength of the driving field and determines the speed of spin rotations on the Bloch
sphere. The duration and amplitude of the control pulse allow for precise rotations of the
qubit state on the Bloch sphere.

Electron Spin Resonance (ESR)

Electron Spin Resonance is one of the most fundamental techniques for manipulating spin
qubits. It involves applying an oscillating magnetic field perpendicular to a static external
magnetic field to induce coherent transitions between the spin-up and spin-down states.
A static magnetic field B0 is first applied to lift the degeneracy of the spin states via the
Zeeman effect, creating an energy splitting: [5]

∆E = gµBB0 (2.14)

To manipulate the spin, an alternating magnetic field B1, typically in the microwave fre-
quency range, is applied at the Larmor frequency corresponding to the Zeeman splitting
(see equation 2.13). When the microwave field is on resonance with this frequency, the
spin undergoes Rabi oscillations, enabling arbitrary single-qubit rotations by controlling
the duration and amplitude of the microwave pulse.
ESR is primarily used to control single-spin qubits, such as those described by the
Loss–DiVincenzo encoding, where a qubit is defined by the spin state of a single elec-
tron confined in a quantum dot. Because ESR addresses individual spins using magnetic
resonance, it is best suited for architectures where each spin qubit can be isolated and
selectively driven, such as single quantum dots with local microwave antennas or silicon-
based devices where spin coherence times are relatively long. ESR is not typically used for
multi-spin encodings like singlet–triplet or exchange-only qubits, which rely on exchange
interactions and electric control rather than magnetic resonance for manipulation.

45

Spin Qubits in Solid-State Systems

Electric Dipole Spin Resonance (EDSR)

Electric Dipole Spin Resonance is a technique used to manipulate spin qubits by applying
an oscillating electric field, rather than a magnetic field, to induce spin rotations. This
method exploits the coupling between the electron’s spin and its orbital motion through
mechanisms such as spin–orbit interaction or an artificial magnetic field gradient. In sys-
tems with sufficient spin–orbit coupling (such as III–V semiconductors like InAs or GaAs),
an electric field can induce an effective magnetic field in the rest frame of the electron, al-
lowing transitions between spin states when the field is applied at the Larmor frequency.
In silicon-based quantum dots, where intrinsic spin–orbit coupling is weaker, EDSR is
often enabled by introducing a static magnetic field gradient, typically using a nearby
micromagnet. As the electron is displaced by the oscillating electric field, it experiences
a time-varying magnetic field due to the gradient, which drives spin rotations. EDSR is
especially attractive for scalable quantum computing architectures because electric fields
are easier to generate, confine and integrate than magnetic fields.
Like ESR, EDSR is used with single-spin qubits and generally not for multi-spin qubit en-
codings like singlet–triplet or exchange-only ones, which rely on direct control of exchange
interactions instead.

Exchange-Based Gates

Exchange-based gates are quantum operations that manipulate spin qubits by controlling
the exchange interaction, a quantum mechanical effect that couples the spins of two nearby
electrons. Unlike ESR or EDSR, which require oscillating magnetic or electric fields to
induce spin rotations, exchange-based gates rely purely on electrostatic control of gate
voltages that modulate the tunnel coupling between quantum dots.
When two electrons are placed in adjacent quantum dots and their wavefunctions overlap,
an exchange interaction J arises, described by the Heisenberg Hamiltonian: [5]

H = J(t)S⃗1 · S⃗2 (2.15)

Here S⃗1 and S⃗2 are the spin operators for the two electrons and J(t) is a time-dependent
exchange coupling that can be tuned by adjusting gate voltages. This interaction causes
the two-spin state to evolve coherently, enabling entangling gates (such as the

√
SWAP

or full SWAP) and, with proper encoding, single-qubit rotations as well.

Exchange-based gates are essential for controlling qubit encodings that use multiple spins,
such as singlet–triplet qubits, where the logical qubit is defined by the spin configuration
of two electrons in a double quantum dot and exchange-only qubits, where three electron
spins are used to define a logical qubit and all operations are performed using only the
exchange interaction, without requiring spin resonance techniques.

46

Spin Qubits in Solid-State Systems

2.6.3 Readout
Accurate and efficient readout of spin qubit states is a crucial step in any quantum com-
puting protocol. The readout process involves measuring the spin state of the qubit and
converting this quantum information into a classical signal that can be processed and
analyzed. Due to the fragile nature of spin states and their susceptibility to decoherence,
readout techniques must be both highly sensitive and minimally invasive to preserve qubit
coherence for subsequent operations. A key principle underlying most spin qubit readout
methods is spin-to-charge conversion. Because direct measurement of the electron spin is
challenging, this technique translates the spin information into a detectable charge state
change. This conversion enables the use of sensitive charge sensors to perform high-fidelity
spin state measurements indirectly.

Elzerman Method

The Elzerman method is a widely used technique for reading out the spin state of a
single electron confined in a quantum dot, firstly proposed by J. M. Elzerman in 2004
and therefore it carries his name [17]. It exploits spin-dependent tunnelling between the
quantum dot and a nearby electron reservoir under the influence of a carefully tuned
magnetic field and electrostatic potential. Due to the Zeeman splitting induced by an
external magnetic field, the spin-up and spin-down states have different energies. By
adjusting the quantum dot’s energy levels relative to the reservoir’s Fermi level, it is
possible to selectively allow an electron with one spin orientation (typically spin-up) to
tunnel out of the dot, while the other spin state remains trapped.
During the readout process:

• If the electron is in the spin state allowed to tunnel out (spin-up or |0⟩), it leaves
the dot, creating a temporary change in the dot’s charge state. This charge change
is detected by a nearby charge sensor, such as a quantum point contact or a single-
electron transistor.

• If the electron spin state is not allowed to tunnel out (spin-down or |1⟩), it remains
in the dot, no charge change is detected.

Figure 2.16: Elzerman readout configuration

47

Spin Qubits in Solid-State Systems

By monitoring the charge sensor signal in time, the spin state can be inferred with high
fidelity. The Elzerman method effectively converts the spin information into a measurable
charge signal, leveraging spin-to-charge conversion. This method requires relatively long
spin relaxation times (so the electron does not flip spin spontaneously during readout)
and precise tuning of the dot’s energy levels, but it provides a robust and accessible way
to perform single-shot spin readout.

Pauli Spin Blockade Method

The Elzerman technique provides the simplest method for readout, but it has a significant
limitation: an electron reservoir must be accessible near each quantum dot to perform
the measurement. [13] This matter is solved through the Pauli Spin Blockade, a readout
mechanism used primarily in double quantum dot systems to distinguish between different
spin states of two electrons. It exploits the Pauli exclusion principle, which forbids two
electrons with the same spin state from occupying the same quantum state. It removes
the need of reservoirs and instead makes use of ancilla qubits to create a double quantum
dot systems with the target qubits to extract their state. In a typical double quantum dot
setup, two electrons can occupy either separate dots or the same dot. When the electrons
are arranged in certain spin configurations, the transition of electrons between dots can
be blocked due to spin selection rules:

• If the two electrons form a triplet state (both spins aligned), Pauli exclusion prevents
them from occupying the same dot, effectively blocking the tunnelling transition.

• Conversely, if the electrons are in a singlet state (opposite spins), tunnelling is al-
lowed.

This difference in tunnelling behaviour creates a measurable difference in the charge config-
uration of the double dot, which can be detected by nearby charge sensors. By monitoring
this charge state, the spin state of the electron pair can be inferred. Pauli Spin Blockade
thus provides a method for spin-to-charge conversion in multi-spin qubit systems.

Figure 2.17: Pauli Spin Blockade readout configuration

48

Chapter 3

Engineering a Gate-Defined
Quantum Dot

In this chapter the main structures and techniques for the engineering of gate-defined
quantum dots will be illustrated. Engineering such quantum dots involves the precise de-
sign and fabrication of nanoscale gate electrodes, which, when biased appropriately, create
tunable electrostatic potentials in a two-dimensional electron gas or similar semiconduc-
tor heterostructures. Understanding these engineering aspects is essential for developing
reliable and scalable quantum dot devices suitable for spin qubit operation. The focus will
be on gate defined quantum dots that are promising in terms of compatibility with the
current state-of-the-art semiconductor processes. Thus, only structures based on SiMOS
and heterostructures will be illustrated.

3.1 Material Systems
Before diving in the physical implementation of the quantum dots, it is necessary to study
the material systems that will host the qubits. The choice of material system plays a cru-
cial role in the performance and scalability of spin qubits. The intrinsic properties of
the semiconductor host, such as nuclear spin environment, electron mobility and interface
quality, directly impact qubit coherence times, control fidelity and device reliability. The
first and most important aspect is that is to reduce to the minimum the noise given by
hyperfine interactions. As described before, this type of interaction between electron spins
and nuclear spins introduces a substantial quantity of noise, that will lead to decoherence
much faster than in an optimum medium.
The fact is that in nature, most elements exist in a form called isotopes, atoms of the
same element that have the same number of protons but differ in the number of neutrons.
The different number of nucleoids do not change the material itself nor the total charge
of the atom, but may introduce a variation in the nuclear spin. The best scenario for
a qubit platform is a material with zero nuclear spin, so that it cannot interfere with
quantum operation or contribute to decoherence speed-up. Usually, for such applications,
only stable isotopes are taken into account, due to the fact that radioactive ones are not

49

Engineering a Gate-Defined Quantum Dot

useful for electronics, emits radioactive rays and will decay into some other element.
The main stable isotopes used in standard semiconductor devices are:

Nuclide #protons #neutrons Spin Natural abundance
28Si • 14 14 0+ 92.23%
29Si • 14 15 1

2+ 4.68%
30Si • 14 16 0+ 3.09%
70Ge • 32 38 0+ 20.52%
72Ge • 32 40 0+ 27.45%
73Ge • 32 41 9

2+ 7.76%
74Ge • 32 42 0+ 36.52%

Table 3.1: Stable isotopes of Silicon and Germanium

In table 3.1 the isotopes marked with • represents the non null nuclear spin ones and
must be avoided when developing a suitable qubit structure. The ones marked with • are
possible candidates but not utilized due to low abundance on nature or other technological
aspects. Finally, the ones marked with • are the commonly used for quantum technology.
To make this compatible with standard CMOS processes, a standard wafer is used, then,
taking silicon as an example, an additional layer of pure 28Si is grown on top via epitaxy.
This is usually called isotopically enriched silicon or isotopically pure silicon, where the
concentration of other isotopic atoms is lower than 800 ÷ 1000 ppm. Commercially, a
purity term is used with the N-notation, where the number preceding N is the number of
nines composing the percentage of the purity:

Name Purity Impurity

3N 99.9% 1000ppm

4N 99.99% 100ppm

5N 99.999% 10ppm

Table 3.2: Purity levels comparison

For quantum computing, a purity grade of 3N to 4N is enough to guarantee low hyperfine
interactions. To grow such a isotopically enriched silicon, the precursor of silicon is needed,
silane gas (SiH4 or SiF4) that was enriched before hand. An epitaxial growth follows to
deposit a thin film of pure 28Si. For instance, ASP Isotopes Inc. uses a technique called
"Aerodynamic Separation Process" (ASP) to enrich 28Si silane gas. “The ASP enrichment
process uses an aerodynamic technique similar to a stationary wall centrifuge. The isotope
material in raw gas form enters the stationary tube at high speed by tangential injection

50

Engineering a Gate-Defined Quantum Dot

through finely placed and sized openings in the surface of the tube. The gas then follows
a flow pattern that results in two gas vortexes occurring around the geometrical axis of
the separator. The isotope material becomes separated in the radial dimension as a result
of the spin speed of the isotope material reaching several hundred meters per second. An
axial mass flow component in each tube feeds isotope material to the respective ends of
the separator where collection of the portions of isotope material is accomplished.”[2]

Several material systems are suitable for gate-controlled spin qubits, each offering particu-
lar advantages and disadvantages depending on the application. These include engineered
heterostructures, where charge carriers are strongly confined along the growth direction,
nanowires, which provide natural confinement in two directions and planar semiconductor
platforms. [6]

Starting in 2005, the first experiments demonstrating spin qubits were reported in GaAs-
AlGaAs heterostructures [36], where the two-dimensional electron gas (2DEG) in the
GaAs layer is depleted by negative gate electrodes to trap individual electrons for qubit
operations. The GaAs platform benefits from relatively simple fabrication and favourable
electronic properties, such as a single conduction band valley and a small effective mass,
which reduces lithographic constraints. However, all atoms in the lattice carry non-zero
nuclear spin, making hyperfine interactions a significant source of decoherence and result-
ing in intrinsic inhomogeneous dephasing times of approximately T ∗

2 ≈ 10 ns. Here T ∗
2

differs from T2 due to Free Induction Decay (FID) that occurs when slow, inhomogeneous
fluctuations are not refocused, leading to a shorter dephasing time compared to T2. T ∗

2
can be extended by using spin-echo techniques, where a π-pulse (a rotation of the spin by
180◦ on the Bloch sphere) is applied, through a resonant microwave burst that generates
an oscillating magnetic field at the qubit’s Larmor frequency, midway through the evolu-
tion to refocus dephasing.

Currently, silicon spin qubits are among the most coherent, with gate-controlled implemen-
tations achieving (dynamically decoupled) coherence times up to 28 ms [52]. Nevertheless,
challenges remain [60]. In silicon, devices must be smaller than their GaAs counterparts
due to the larger effective mass of electrons and fabrication reproducibility is not yet at
the same level. Valley degeneracy can lead to low-lying leakage states that may be ther-
mally populated even at low temperatures [60]. Future research on silicon qubits must
address scalability issues, as valley splitting is sensitive to unavoidable fabrication defects,
inhomogeneities and step edges in nanowires, interfaces, or heterostructures [6].

51

Engineering a Gate-Defined Quantum Dot

3.2 Technological Evolution of Gate-Defined QDs
The development of gate-defined quantum dots began in the early 1990s with devices based
onGaAs/AlGaAs heterostructures. A straightforward implementation of a heterostructure-
based quantum well exploits the bandgap offset between materials such as silicon, germa-
nium or other III–V compound semiconductors. For instance, in Si/SiGe heterostruc-
tures, the electrons reside in a buried quantum well [5], where electrons are naturally
confined due to the conduction band offset. The heterostructure is engineered through
epitaxial growth or chemical vapour deposition, allowing for precise control over mate-
rial composition, layer thickness and interface quality. Gate electrodes, fabricated using
the same lithographic techniques employed in MOS architectures, are then patterned on
top of an insulating oxide layer to locally define quantum dots and control electron ac-
cumulation. These systems provided an exceptionally clean two-dimensional electron gas
(2DEG) with high mobility and low disorder, offering an ideal platform for demonstrat-
ing electrostatic confinement at the single-electron level. Early implementations operated
in depletion mode, where the 2DEG is present by default, and negatively biased gates
are used to locally deplete the electron gas and define quantum dots via tunnel barri-
ers. This approach enabled the first clear demonstrations of Coulomb blockade, charge
quantization, and later spin manipulation in semiconductor nanostructures, establishing
the foundational techniques that would influence all subsequent quantum-dot technolo-
gies. Nowadays, heterostructure-based devices operate in accumulation mode. In this
regime, quantum dots are formed by positively biasing gate electrodes to locally accumu-
late electrons from the 2DEG. This approach offers several advantages, including a cleaner
electrostatic environment and more flexible quantum dot design, due to the absence of
parasitic conduction paths and fixed charge at the oxide-semiconductor interface. In fig-
ure 3.1 a heterostructure-based accumulation mode device representation in shown, where
the plunger gates models the potential landscape to define a potential minima inside the
2DEG layer, forming a quantum dot. It is common to see implementations with a scaled-
up version of these gates used to define a 2DEG reservoir, often called accumulation gates.

Figure 3.1: Accumulation heterostructure
Reprinted figure with permission from Guido Burkard et al., "Semiconductor spin qubits", Rev. Mod. Phys. 95, 025003

(2023). Copyright 2023 by the American Physical Society. http://dx.doi.org/10.1103/RevModPhys.95.025003

52

http://dx.doi.org/10.1103/RevModPhys.95.025003

Engineering a Gate-Defined Quantum Dot

A more recent reinterpretation of heterostructure-based architectures is the so-called
SLEDGE device. Much of the progress on silicon qubits to date has relied on gate struc-
tures fabricated using lift-off metallization techniques [53, 59], which suffers from poor
wafer-level process control and has long been abandoned in mainstream silicon integrated
circuit foundries, where it has not been used for several decades [22]. To overcome this
problem, a research team at HRL Laboratories, led by Matthew G. Borselli, developed
a new structure called SLEDGE (Single-Layer Etch-Defined Gate Electrode). This inno-
vative approach was first detailed in a 2021 publication titled "A flexible design platform
for Si/SiGe exchange-only qubits with low disorder" [20] published in Nano Letters. Their
work introduced a flexible design platform for exchange-only qubits based on Si/SiGe
heterostructures, characterized by gate electrodes defined through a single-layer etching
process. This design reduces electrostatic disorder compared to traditional devices. The
heterostructure consists of a tensile-strained silicon quantum well epitaxially grown on a
strain-relaxed Si1−xGex (x = 0.25 ÷ 0.35) buffer, followed by a SiGe capping layer of the
same stoichiometry as the buffer [20]. In traditional silicon qubit devices, gate electrodes
are often formed by lift-off metallization, a process in which metal films are deposited over
a patterned resist and then lifted off to leave behind the desired gate geometry. While
lift-off is simple to implement at the laboratory scale, it inherently suffers from limited
control over feature uniformity, edge definition and metal adhesion across an entire wafer.
These shortcomings translate into variability in gate dimensions, irregular side-wall pro-
files and non-uniform film thickness, all of which degrade qubit performance and yield.
The SLEDGE architecture directly addresses these issues by replacing lift-off gates with a
single-layer, etch-defined gate electrode process. Firstly, a blanket metal film is deposited
over the oxide and then patterned by a highly controllable dry-etch step, rather than
relying on resist undercuts and solvent lift-off. This etch-first approach ensures uniform
gate widths, vertical sidewalls and excellent alignment accuracy from die to die and wafer
to wafer. The entire fabrication process is explained in detail in the original paper [20].

Figure 3.2: SLEDGE architecture
Reprinted figure with permission from Guido Burkard et al., "Semiconductor spin qubits", Rev. Mod. Phys. 95, 025003

(2023). Copyright 2023 by the American Physical Society. http://dx.doi.org/10.1103/RevModPhys.95.025003

53

http://dx.doi.org/10.1103/RevModPhys.95.025003

Engineering a Gate-Defined Quantum Dot

The transition from heterostructure-based quantum dots to silicon-based devices began
in the early 2000s and accelerated during the following decade. While III-V compound
semiconductors devices offered high electron mobility and mature fabrication techniques,
their electron spins suffered from rapid decoherence due to the presence of nuclear spins in
the host material. Isotopically purified 28Si provides a nuclear-spin-free environment, dra-
matically increasing spin coherence times up to several microseconds (free induction decay
time T ∗

2 ≈ 120µs)[52]. Moreover, silicon-based quantum dots are compatible with stan-
dard CMOS technology, enabling more straightforward scaling toward larger qubit arrays.
This combination of enhanced coherence and technological compatibility has made silicon
the preferred platform for spin qubits in recent years. Silicon Metal-Oxide-Semiconductor
refers to a class of semiconductor devices built using a layered structure consisting of
a silicon substrate, a thin insulating layer of silicon dioxide, or other dielectric materi-
als with silicon dioxide as the interface and a conductive gate, historically aluminium or
polysilicon, now replaced with metal gates. This architecture forms the basis of the MOS-
FET, the fundamental building block of modern digital electronics. The Si-MOS platform
became dominant due to the excellent native oxide properties of silicon, enabling mass
production of transistors with high yield and reliability. It laid the foundation for CMOS
technology, which now underpins virtually all microprocessors, memory chips and digital
logic circuits. In the context of quantum computing, Si-MOS technology offers a familiar
and mature fabrication ecosystem, making it attractive for developing scalable spin qubits.
Among the several Si-MOS structures, the planar one represents the most straightforward
and historically established for realizing silicon-based qubits. The metal gates deposited
on the surface serve different roles, typically classified as barrier gates and plunger gates,
used to define quantum dots through electrostatic confinement in the x and y axis, while
the interface between Si/SiO2 provide confinement along the z axis. The planar ge-
ometry allows for relatively simple fabrication processes, as it relies on 2D lithographic
patterning and deposition techniques widely used in CMOS technology. This makes the
planar qubit a favourable candidate for early-stage research and prototyping. Moreover,
its compatibility with standard silicon wafers facilitates integration and scalability.

Figure 3.3: Planar structure
Reprinted figure with permission from Guido Burkard et al., "Semiconductor spin qubits", Rev. Mod. Phys. 95, 025003

(2023). Copyright 2023 by the American Physical Society. http://dx.doi.org/10.1103/RevModPhys.95.025003

54

http://dx.doi.org/10.1103/RevModPhys.95.025003

Engineering a Gate-Defined Quantum Dot

The migration from planar to three-dimensional architectures marks a significant advance-
ment in the development of semiconductor-based qubits. This transition brings several
key advantages in terms of quantum confinement, gate control and integration density.
In three-dimensional structures, the vertical confinement of the charge carriers remains
governed by the Si/SiO2 interface, as in planar devices. However, the electrostatic con-
finement is substantially improved due to the introduction of gate electrodes that wrap
around the semiconductor channel on multiple sides. In the FinFET geometry, for in-
stance, the gate surrounds the fin-shaped channel on three sides, top and lateral, pro-
viding superior electrostatic control over the quantum dot. This enhanced control allows
for tighter confinement of single electrons and increased tunability of the dot’s potential
landscape. Moreover, the use of Silicon-On-Insulator wafers in conjunction with three-
dimensional structures offers additional benefits. SOI technology incorporates a buried
oxide layer beneath a thin silicon device layer (often called silicon overlay), electrically
isolating the active region from the bulk substrate. This reduces parasitic capacitance,
suppresses charge noise from the substrate and confine electrons in the thin semiconductor
layer, all of which contribute to improved coherence times and better qubit fidelity. This
thin silicon layer in SOI wafers so facilitates precise vertical confinement and allows for
more reproducible quantum dot formation. The similarity of FinFETs to modern CMOS
transistors opens the door to hybrid quantum-classical systems and monolithic integration
with control electronics, potentially on the same chip. Despite the increased fabrication
complexity compared to planar structures, three-dimensional qubit architectures are in-
creasingly viewed as a promising pathway toward scalable quantum processors. Experi-
mental demonstrations of single and multiple qubit operations in FinFET-based systems
have already shown high levels of control and coherence, validating their potential for
next-generation quantum technologies. One of the key challenges in this type of archi-
tecture is the integration of isotopically enriched semiconductors (such as 28Si) into the
device layer of SOI wafers, which is essential for reducing decoherence caused by nuclear
spin noise. More on this topic is reviewed in Section 7.1.

Figure 3.4: Three-dimensional structure
Reprinted figure with permission from Guido Burkard et al., "Semiconductor spin qubits", Rev. Mod. Phys. 95, 025003

(2023). Copyright 2023 by the American Physical Society. http://dx.doi.org/10.1103/RevModPhys.95.025003

55

http://dx.doi.org/10.1103/RevModPhys.95.025003

Engineering a Gate-Defined Quantum Dot

3.3 State Of The Art Quantum Devices
Currently, the state-of-the-art implementation of spin qubits is predominantly based on
planar silicon MOS devices operating in accumulation mode. In this configuration, elec-
trons are accumulated under the gate, and the quantum dots are defined electrostatically.
Qubits are typically encoded using the Loss–DiVincenzo single-spin scheme, although in
some experiments singlet-triplet encoding is also employed. Plunger and tunnel gates can
be patterned accordingly to standard architectures found in literature, while the depletion
barriers, used to define the quantum dot inside an uniform 2DEG layer, can be replaced
by the bandgap offset offered by the Si/SiO2 interface, realized with Shallow Trench Iso-
lation process.
For qubit readout, electron spins are manipulated via electron spin resonance (ESR). A
static magnetic field B0 of a few tesla (∼ 1 ÷ 2) produces a Zeeman splitting that defines
the spin quantization axis. This field is typically generated by an off-chip component,
such as a wire coil or an integrated coil. A dynamic magnetic field B1 of a few millitesla,
orthogonal to B0, is used to drive coherent spin rotations. This field is generated by
the application of a microwave signal to a in situ antenna, called ESR line. This can be
patterned in the same way used for the other metallic gates. The readout circuitry can
be either a Single Electron Transistor (SET) or a Quantum Point Contact (QPC). SOTA
devices uses a SET manufactured next to the quantum dot so that they are capacitively
coupled. It consists of a small conducting island connected to source and drain electrodes
via tunnel barriers. They allow electrons to move one at a time, while the gate voltage
controls the electrostatic potential of the island. By tuning the gate, the energy levels
of the island can be aligned with the source and drain, enabling or suppressing electron
tunnelling. This gives rise to Coulomb blockade conditions, where the current through
the device shows discrete peaks corresponding to the addition of single electrons, making
SETs highly sensitive charge sensors. When the SET is capacitively coupled to a nearby
qubit, its spin state modifies the electrostatic environment of the SET, thereby changing
its current. This principle allows spin-to-charge conversion and single-shot qubit readout,
where the spin state of an electron in a quantum dot is detected via the change in SET
current. The readout mechanism and associated circuitry are beyond the scope of this
work and are therefore not considered in either the quantum or fabrication process simu-
lations.
While single quantum dots are easier to define, simulate and manufacture, double quan-
tum dots are studied more extensively due to several advantages for qubit control and
readout. In DQDs, qubits can be encoded using singlet–triplet states or specific charge
configurations, allowing spin-to-charge conversion and readout via a nearby single elec-
tron transistor. DQDs also enable precise control of the exchange interaction between
electrons, which is essential for implementing two-qubit gates such as CNOT. Moreover,
DQDs exhibit richer phenomena, including Pauli spin blockade and honeycomb-like charge
stability diagrams, which offer detailed insight into tunnelling, capacitive coupling, and
spin dynamics. In contrast, single quantum dots are limited to isolated spins, with more
challenging readout and less versatile qubit operations. Due to these reasons, in this work
the study of quantum dots was extended to DQDs for both the quantum and fabrication
process simulations.

56

Part II

Implementation and
Evaluation

57

Chapter 4

Thesis Outline

4.1 Development of a Robust Workflow for Custom
Simulations

The goal of this work is to study the behaviour of custom-defined semiconductor devices as
a candidate host platform for spin qubits, exploiting standard state-of-the-art fabrication
processes used for CMOS and VLSI applications. In many courses in my master’s degree
program it was explained how to electrically characterize a device, exploiting the result-
ing geometry from fabrication process simulations inside Sentaurus Process. To study
its behaviour in terms of quantum confinement, it is necessary to use external tools, as
Sentaurus Device cannot handle this specific type of analysis. To do so, a tool from Nanoa-
cademic Technologies named QTCAD was used. It is essentially a python-based API that
provides a way to simulate quantum behaviour via Poisson, Schrödinger, Many-body,
Junction and many other solvers. To simulate a device, an open-source CAD software
called Gmsh is used, as addressed in the official documentation of QTCAD. It enables
the definition of the geometry via its proprietary language that allows the definition of
points, curves and volumes. Surfaces and volumes of the resulting geometry are then
properly labelled to reflect boundary conditions and physical materials to be simulated
inside QTCAD. If the workflow wants to be adapted in order to define parametric and
complex geometries, it is necessary to define the geometry outside Gmsh, as these features
are not natively supported and defining such geometries using its proprietary code would
be tedious and time-consuming. The device geometries were defined in a powerful CAD
software from Autodesk, called Fusion. It allows parametric sketching and extrusion,
generating a three-dimensional model that can be resized or reshaped using numerical
parameters. Since the use of external CAD files inside Gmsh is possible but not natively
supported, a workaround was exploited to instruct the graphics kernel OpenCascade on
how to handle an external geometry, making it compatible with the assignment of phys-
ical groups to surfaces and volumes, which is essential to obtain realistic results inside
QTCAD. Once a strong and reliable way was found to correctly mesh a device geometry,
many simulation scripts were created in order to simulate the architecture and give insight
about the creation and occupancy of quantum dots.

58

Thesis Outline

4.2 Study of Planar Devices Quantum Behaviour
Analysing how a custom defined device act as a platform for a quantum dot is crucial. The
study of quantum confinement is performed in QTCAD by simulating devices that models
their potential landscape with barrier (or tunnel) and plunger gates. This is computed
with the Poisson solver, while the Schrödinger one enables the visualization of the device
wavefunction and probability density function along certain directions. The obtained data
is then post-processed in order to retrieve important plots, supported by input or other
retrieved parameters, that describes the potential landscape and wavefunctions along the
main planes. The results can be exported in VTU format to be visualized as a colormap
applied to the simulated mesh inside a software called ParaView.

Quantum confinement alone is not sufficient, as it only reveals how the quantum dot
behaves under certain static conditions. A transport analysis is then performed, where
the source contact act as carrier reservoir and the dynamic application of different voltages
provides insight into the dot’s carrier occupancies for both single and multidot configu-
rations. This ensures that the device behaves as expected and can be considered a valid
candidate to host spin qubits.

4.2.1 Moving to Three-Dimensional Architectures
Once the simulation scripts demonstrate reliability for both static and dynamic scenarios,
the investigation can be extended to three-dimensional architectures, such as FinFETs
and Gate-All-Around FETs (here the FET suffix is intended as a reference to the original
architecture).
As for MOS devices, the three-dimensionality provides a way to apply an electrostatic
control by the gates that is spread over a larger surface with respect to planar devices,
thus enhancing quantum confinement and shielding from external sources of noise and
decoherence due to a shared substrate.

4.3 Device Fabrication Process Simulation
After a given device is simulated in QTCAD and its quantum confinement guaranteed,
the physical dimensions and architecture are transferred into Synopsys Sentaurus Process
to simulate its fabrication process. Since the fabrication simulation of three-dimensional
architectures is complex and the readout of a single quantum dot device cannot be car-
ried out without a quantum point contact or by exploiting Pauli exclusion principle, a
double quantum dot device was chosen for process simulation inside SProcess, as stated
in Section 3.3. This phase is essential to provide realistic insight about the feasibility of
manufacturing, especially for a low-volume research laboratory as PiQuET.

59

Chapter 5

Preliminary Setup

The primary objective is to analyze the device in terms of quantum confinement and
technological feasibility. To do so, it is necessary to define a model of the desired device.
This translates into the modelling of a geometrical representation of the device. The
resulting mesh is then used in the quantum simulation environment. The following sections
present the main techniques used to achieve these goals.

5.1 Workflow Outline
The first aspect to be addressed is the selection of the target device type. This work aims
at adapting current state-of-the-art VLSI technological processes for the fabrication of a
MOS-like structure capable of hosting spin qubits. It was therefore decided to adapt a
planar MOS structure by adding extra gates to function as barrier and plunger gates,
in order to ensure carrier confinement within the silicon channel. As stated in section
3.3, depletion barriers were substituted by Shallow Trench Insulation. The first step is
to define the device geometry in a CAD software and then convert it into a suitable
mesh format. This mesh is subsequently used in the QTCAD simulation environment to
extract information about quantum confinement. Once confinement is confirmed by the
simulation results, it is possible moving to Synopsys Sentaurus to perform a preliminary
analysis of the fabrication process and assess the feasibility of the device at the nanoscale.
Additional constraints were added due to the capabilities of the fab that Politecnico
di Torino relies on, a research laboratory in Turin called PiQuET, Piemonte Quantum
Enabling Technology. More on this topic is covered in the dedicated section 7.2.
A lot of geometries were made to be simulated in QTCAD, with different dimensions and
technological features (planar, Fin, Gate-All-Around). To illustrate the modelling and
meshing steps for the next sections, a simple planar SQD SOI MOS-like device will be
used. It consist of an adaptation of a typical SOI planar MOSFET with the addition of
two additional gates, so that the configuration for quantum confinement can be guaranteed
by the plunger gate, that bends the energy band to create a local minima and the two
barrier gates, that, in a single-dot configuration, act as barriers toward the lead contacts.
In a multidot configuration they also serve to tune the interdot coupling.

60

Preliminary Setup

5.2 Geometry Definition with Autodesk Fusion
Fusion, sometimes referred as Fusion360, is a versatile CAD software from Autodesk
widely used for designing products and simulating mechanical structures. One of the key
advantages of the software is its capability to define parametric sketches, allowing precise
control over dimensions and relationships between geometric features. This makes it par-
ticularly suitable for designing tree-dimensional geometries with single features that can
be resized automatically simply by changing its parameters. In this work, it is employed
under a free personal non-commercial license.
Fusion, unfortunately, has a steep learning curve and can take several years to master
fully. However, for the purpose of this work, it is only necessary to learn how to create
sketches and how to extrude and combine three-dimensional volumes. It is important to
keep in mind that the choice of this software is completely personal and any other CAD
software can be used to define the device geometry. The software was selected due to
the candidate’s extensive experience with it and the considerable time savings offered by
parametric design. If it is needed to simulate the exact same device but with a differ-
ent feature size, the parametric drawing allows to get the new design by modifying the
parameters, without the need to model the device again. Furthermore, the parameters
are saved in a .csv file that can be exported along the geometry to automatically obtain
significant physical dimensions inside the quantum simulation environment.

5.2.1 Parameters Definition
A 2D drawing placed in a specific plane, inside Fusion, its called a sketch. From the
resulting surfaces it is possible to extrude volumes, so it is the first thing to do. Before
start drawing inside the software it is necessary to sketch by hand a rough shape of the
device. This is useful to note all the desired physical dimensions to be parametrized.

Figure 5.1: Device pen&paper model

It is important to note that QTCAD does not support metals, the contacts are so directly
placed on oxide or semiconductor surfaces and then the metal workfunction can be defined
in order to simulate different metal contacts. It is so necessary to not model the metal
gates but to define the oxide region where an hypothetical metal gate will sit on. If no
separation of the oxide volume is done then the resulting geometry will lack a surface
where to place the contact, as explained in Section 5.3.2.

61

Preliminary Setup

At the end, the desired parameters for the device are:

Figure 5.2: Device parameters

Notice that the parameter channel_length has as expression composed of other param-
eters, in particular:

pluger_gate+ 2 ∗ barrier_gate+ 2 ∗ spacers+ 2 ∗ contact_spacers

Thus, the channel length is not a fixed value but the sum of the dimensions of the gates
and the spaces between them. This approach allows the channel length to scale consis-
tently with the gate contacts.
The last column shows the value, which is the result of the expression. This value is
dimensionless because the software interprets it according to the project’s standard mea-
surement unit, in this case millimeters. The choice of millimeters was mandatory: using
an SI unit such as meters would result in an exported model scaled by a factor of 103,
since millimeters are the default metric unit in Fusion (or inches if the imperial scale is se-
lected). Modelling in millimeters ensures that the exported geometry retains the intended
dimensions without any scaling. In this context, it is possible to work in millimeters while
treating them as nanometers, as will be specified later in the simulation environment.

After identifying all the desired parameters it is possible to add them to Fusion workspace
by selecting, in the Solid tab, Modify > Change Parameters and then adding one by
using the plus icon.

62

Preliminary Setup

5.2.2 Parametric Sketching
It is possible to select one plane and start a sketch. To do so in Fusion, use the Create
Sketch feature and selecting the YoZ plane it is possible to define the lateral profile of the
device, then extruding it in the x axis.

Figure 5.3: Sketch Selection

For this example, it is just needed to define the channel profile, the lateral oxide and the
top gates oxide in a single sketch, as shown in figure 5.4.

Figure 5.4: Device YoZ Sketch

Each dimension is labelled as “fx: xx.00”, the “fx” appendix shows that the final number
is not fixed but is the result of a n expression. For instance, the “fx: 10.00” that appears in
the upper-left corner is the result of the parameter channel_width, while the “fx: 14.00”
below the result of the expression “2 * oxide_lateral + channel_width”. To ensure
coherence across all workflow steps, the origin of the sketch, and so of the geometry, was
set at the expected dot location, in case of a fully symmetrical device, while the channel
protrude along the x direction. For this device, the geometry will have symmetry along
the x- and y-axis, but not on the z axis. In this case, the origin was set at the center of the
channel at the interface between the latter and the gate oxide. For this simple example,
this sketch is all that is needed to get the full device and it is ready to be extruded.

63

Preliminary Setup

5.2.3 Parametric Extrusion
Once the sketch is complete, the extrusion feature can be used to generate a volume from
a surface. The extrusion steps must be performed parametrically to preserve the original
intention of creating a resizeable geometry. In figure 5.5 it is possible to see how each
extrusion takes a dimension parameter. This can be set to the name of a parameter, or a
generic expression, to be extruded as intended.

Figure 5.5: Parametric extrusion along the x axis

In figure 5.6 it is possible to observe the 6 main extrusion steps to get the full geometry:

1. Extrusion of the channel

2. Addition of lead contact areas to the side of the channel

3. Addition of lateral oxide

4. Addition of gates (blue and red) and spacers (momentarily gray)

5. Raising of lateral oxide and spacers merge

6. Addition of lead contacts lateral oxide

Figure 5.6: Extrusion steps

64

Preliminary Setup

In figure 5.6 the yellow area is the oxide, the green one the silicon channel, the red one the
plunger gate, the blue ones the barrier gates, the light gray ones the contacts and the dark
grey ones are the oxide areas that separate the gates and will be merge to the total oxide
volume, becoming yellow. This includes the buried oxide, the shallow trench isolation and
the gates and contacts spacers. The colors were manually selected and assigned within
the CAD software.
Once the device is completely extruded, a section analysis can be done to check the cor-
rectness of the volumes.

Figure 5.7: Section analysis

5.2.4 Design Export
Now the geometry is ready to be exported. For reasons explained in the next section,
it is necessary to export the CAD file in two different extensions. Go to the upper-left
file-shaped icon and select Export, choose a suitable name and then export as a .STEP
file. Then repeat the process and export in .IGES file. The two files must have the same
name but different extensions. Then go to the parameters window and export them by
clicking the file-shaped icon with the arrow pointing out of it. Select the .CSV extension
and give it the same name used for the geometry file.

The export procedure generates three files:

• device_name.step - STEP geometry file

• device_name.iges - IGES geometry file

• device_name.csv - Exported parameters

Now the geometry files are ready to be processed into GMSH.

65

Preliminary Setup

5.3 Geometry Meshing with Gmsh
Gmsh is an open-source 3D finite element mesh generator with a built-in CAD engine and
post-processor. It is widely used for creating complex geometries and generating high-
quality meshes for numerical simulations, particularly in finite element analysis. In this
work, it is used to generate a suitable mesh for simulation in QTCAD. Three-dimensional
meshes are generated starting from a geometry, a representation of an object using points,
curves, surfaces and volumes. Gmsh allows assigning physical properties to each element,
enabling accurate finite-element simulation. In practice, volumes are labelled to specify
the material they consist of, while surfaces are labelled to define boundary conditions,
such as gate or lead contacts. The type of contact (Ohmic, Schottky, etc.) can be defined
later in QTCAD simulations (as shown in section 6). The main steps for correctly meshing
a geometry coming from an external CAD are now explained in details.

5.3.1 Conformal Geometry Loading
The workspace of Gmsh is connected to a .geo file. It is necessary to create a new
geometry file and ensure the workspace is related to the latter. From this point forward,
the code will be presented and explained line by line, offering a step-by-step guide for its
construction. The first step is to load the preferred kernel, in this case OpenCascade, a
powerful open-source geometry engine that enables advanced modelling operations such
as Boolean operations, extrusion and complex surface handling. It is now important to
define the tolerance of the boolean operator. This is crucial for the next steps. Now, the
mesh can be loaded by the command Merge.

SetFactory("OpenCASCADE");
Geometry.ToleranceBoolean = 1e-3;
Merge "geometry_file.step";

The following command is crucial for the correct processing of the geometry. The com-
mand Coherence calls the integrated boolean operator inside OpenCascade and performs
a series of operations to make the geometry conformal.

Coherence;

The issue is that the import of a geometry defined in a .step or .iges file will load into
Gmsh a model that includes overlapping elements. This often includes lines, curves and
surfaces. If overlapping elements are exported to make quantum simulations, boundary
conditions and physical volumes properties may be set to both a surface/volume belonging
to a specific element of the geometry and another one that should not. This is noticeable
by enabling the curve or surface labels view in Tools > Options and then Geometry
> Visibility > Curve Labels or Surface Labels. It is possible to observe elements
overlap in figure 5.8, by zooming into the geometry and search for overlapping labels.
Unfortunately, this is the only way to notice an element overlap.

66

Preliminary Setup

Figure 5.8: Left: Lines/curves overlap. Right: Surfaces overlap.

In order to completely overcome this issue, as of today, the only way is to play with the
parameter Geometry.ToleranceBoolean, which start from a default value of 1e− 6 and
increase it until all of the overlapping elements are merged by the boolean operations did
by the kernel via the Coherence command. Visual inspection is the only way to see if
the command run successfully without degenerating the mesh shape. By steps of decades,
increase the parameter if there are still overlapping elements. If geometry deformation
starts to occur it is necessary to lower and fine tune the tolerance.

Figure 5.9: Left: Correct geometry (tol = 0.01). Right: Degenerated geometry (tol = 1).

The term conformal refers to a geometry which does not have overlapping elements and
can be correctly processed for quantum simulations. The tolerance parameter must be set
correctly and may vary from geometry to geometry. The presence of curves (not straight
lines) seems to play a role in the correct function of the Coherence command. The Gmsh
console log should not raise any errors and preferably nor any warnings. Some geome-
tries may work even with the raise of the warnings BOPAlgo_AlertSelfInterferingShape,
BOPAlgo_AlertTooSmallEdge, BOPAlgo_AlertBadPositioning and BOPAlgo_AlertSelf.
The final check must be done by counting the number of volumes before and after the
use of the Coherence command. It is possible to edit the file and reload it in Gmsh by
using the left lateral menu Modules > Geometry > Reload script. Open the visibility
windows, Tools > Visibility > List and then, in the bottom left menu, order by el-
ementary entities. By default the order starts with the volumes and with the associated
number. Here it is possible to see the number of volumes and check that by modifying the
tolerance parameter this number does not change. A different number of volumes almost
always translates to an incorrect conformal conversion.

67

Preliminary Setup

Figure 5.10: Left: Conformal geometry. Right: Volumes count check.

Once again, it is possible to check if the scaling and axes origin are set correctly by loading
the geometry. Open Tools > Options > General > Axes > Axes mode and select Full
grid. In figure 5.11 is is possible to observe that the zero (or very small values) represents
the origin of the relative planes and that the axes origin correctly meet the origin point
chosen in the modelling step.

Figure 5.11: Geometry with full grid axes shown. The origin is marked with a red star
and each plane is highlighted with a different colour.

The grid encapsulating the geometry also shows the coordinates of the boundaries. Here
it is possible to check that the dimensions are the same with respect to the model in the
CAD software where the geometry was defined. If the scale is off (e.g. 16e3 instead of
16) it is probable that the scale set in the CAD software is different with the one set with
Gmsh. Here is necessary to scale the geometry inside Gmsh or to go back to the CAD
and specify a different unit for the workspace and then export the model again. A correct
geometry must have coordinate numbers without any scale applied (e.g. 16, not 16e− 9)
so it can be correctly loaded in QTCAD and can be scaled to the desired unit (nm, µm,
etc.) there. If everything is correctly set, it is now possible to move to the assignment to
physical groups.

68

Preliminary Setup

STEP vs IGES: Guidelines for Choosing the Right Format

By applying the Coherence command within the OpenCascade kernel, Gmsh attempts
to remove duplicate elements and generate a conformal geometry. This procedure often
appears to work more reliably with IGES files compared to STEP and the reason lies
in how the two formats represent geometry and topology, as well as how OpenCascade
interprets them.

• STEP is designed as a modern standard to encode full B-Rep (Boundary Represen-
tation) solids, a way of describing an object by storing its boundaries, such as faces,
edges and vertices. Each face belongs to a closed shell and is unambiguously linked
to its adjacent edges and vertices. When two solids are adjacent, their contact faces
are defined twice, each as part of a different shell. During coherence, OpenCascade
must recognize that these faces are not only geometrically coincident but also topo-
logically redundant. This recognition is sensitive to numerical tolerances and small
discrepancies in the parametrization of the surfaces. As a result, coincident faces are
not always merged successfully.

• IGES, on the other hand, is an older and less structured format. It typically encodes
collections of trimmed NURBS (Non-Uniform Rational B-Splines) surfaces rather
than topologically closed solids. NURBS represents features like flexible curves or
surfaces controlled by a set of points, where each point influences the shape with
a certain weight. When imported into Gmsh, the kernel reconstructs the topol-
ogy directly from the raw geometric definitions. This reconstruction phase often
allows coincident surfaces to be detected and unified more easily. The lack of rigid
topological constraints in IGES seems to makes it simpler for the kernel to iden-
tify duplicates during the coherence operation, even though the format itself is less
robust for representing solid models.

Another important factor is tolerance management. STEP preserves topological defini-
tions very precisely, so if the contact faces differ by only a small offset or parametrization,
they may still be treated as distinct entities. IGES, on the other hand, it is imported
deriving the topology from scratch, which can reduce inconsistencies and favour merging.

While careful tuning of the tolerance parameter is often necessary, persistent issues in
the conformal conversion of the geometry may be resolved by switching to the alternative
format. Therefore, it is advisable to test both formats in practice. The final verification
should be performed during the assignment of physical groups to ensure that all intended
labels are correctly recognized. Further details are provided in the following section.

69

Preliminary Setup

5.3.2 Physical Groups Assignment
These steps aim to assign the appropriate labels to each volume and selected surfaces,
ensuring their correct recognition within QTCAD. This process is essential for accurately
defining material properties and boundary conditions within the simulator. Although
there are several methods for setting these attributes, the most straightforward approach
is outlined below, with a distinction between volumes and surfaces.

Volumes

Each volume should be labelled in order to specify the material later on. So if a mesh have
n volumes, it is compulsory to label n of them. The assignment can be done manually
inside the Gmsh GUI. In this case, the software highlights with a small sphere the center
of each volume and it is possible to perform assignment by typing the desired name and
then clicking the corresponding volume center. The issue with symmetrical geometries is
that many volumes may have the same center and so they may overlap while choosing
the correct volume, by selecting the corresponding center. A better way is to merge the
.iges type, which preserves the bodies names defined inside the CAD software, so it is
possible to see, in the visibility window, the volume number and the relative name.

Figure 5.12: Left: STEP file merge. Right: IGES file merge.

Even if, for the reasons explained in Section 5.3.2, it may be necessary to switch from
the IGES type to STEP type, the numbering does not change. So it is possible to always
start by loading the IGES file, define physical groups for the volumes and then switch
to the format that guarantees a correct meshing procedure. A generic volume n remains
the same in both formats because the numbering reflects the order in which the volumes
were defined in the CAD software. Extra care should be taken while assigning surface
physical groups, as the numbering of the surfaces may vary with file type and resulting
geometry from the use of the Coherence command, which is critically reliant on the
tolerance parameter. The last statement seems to be particularly valid in the context of
complex geometries that feature curved or round surfaces (e.g. nanowires).

70

Preliminary Setup

The command to assign a physical group to a volume is:

Physical Volume("label_name") = {volumes};

It is possible to place inside volumes the number (or numbers, separated by a comma) of
all the volumes to be labelled with that name. An example of a single quantum dot with
two barrier gates and a plunger gate physical group assignment follows:

Physical Volume("semi_channel") = {1};
Physical Volume("nsemi_source") = {3};
Physical Volume("nsemi_drain") = {2};
Physical Volume("diel_oxide") = {4};
Physical Volume("diel_plunger") = {5};
Physical Volume("diel_barrier_1") = {6};
Physical Volume("diel_barrier_2") = {7};

Here, the gate oxides for the plunger and the two barriers were defined separately with
respect to the diel_oxide tag (which includes buried oxide, Shallow Trench Isolation and
contacts spacers volumes), allowing the assignment of different types of dielectric if needed.

The prefixes semi_, nsemi_, psemi_ and diel_ are used, along with the relative ones
defined for the surfaces, in order to automatically generate a QTCAD-API Python code.
This code can then be copied and pasted into the simulation script to streamline the
setup process and avoid unnecessary manual work. To do so a Python script called
device_config.py has been created. It can be seen in the attachments appendix as
script A.1.
It can be called by the command

python device_config.py input_file.geo

and takes as input the Gmsh geometry file .geo and generates a text file called device_config.txt
containing all the code to be copied into the simulation script. The use of this program
is completely optional.

71

Preliminary Setup

Surfaces

Unlike the assignment of volumes, not all surfaces should be labelled. Here the goal is to
assign surfaces in order to represent contacts where voltages will be applied later in the
simulation environment. Mainly, if working with a MOS-like structure the main elements
are the source and drain contacts, the gate contacts and, if needed, a backgate contact.
QTCAD does not support metals, the contacts are so directly placed on oxide or semi-
conductor surfaces and then the metal workfunction can be defined in order to simulate
different metal contacts. QTCAD supports different types of contacts, as reviewed in
Chapter 6, but in this step, to perform a correct physical assignment to surfaces, it is not
necessary to know which type. It is possible to assign a surface physical group to each
element that need a contact.

The command to assign a physical group to a surface is:

Physical Surface("label_name") = {surfaces};

Like for the assignment of physical groups to volumes, it is possible to define surfaces
with the number of each surface composing the contact. In this case, the meshing of a
planar device, all the contacts are plane surfaces and so only one number is defined. In
complex geometries it is often necessary to specify multiple surface numbers, separated
by a comma. Here, the visibility window, used for identify the volume numbers with ease,
does not provide any help regarding the identification of surfaces. The correct surface
number should be picked manually. To do so it is necessary to enable surface visibility,
Tools > Options > Geometry > Visibility and check the Surfaces option. Dotted
grey lines will appear to show the surfaces, defined by blue lines. Placing the cursor on
the dotted lines of a surface shows information about the latter, including the surface
number.

Figure 5.13: Manual selection of the surface of the drain contact. False colour: highlighted
in green is the surface, in red the dotted lines. The surface number, in this case, is 13.

72

Preliminary Setup

Therefore, by placing the cursor on the lines the surface number is shown and it can be
placed in the assignment of surface labels. For the same example, a single quantum dot
with two barrier gates and a plunger gate, the physical group assignment follows:

Physical Surface("ohmicbnd_drain") = {13};
Physical Surface("ohmicbnd_source") = {19};
Physical Surface("gatebnd_barrier_1") = {44};
Physical Surface("gatebnd_barrier_2") = {45};
Physical Surface("gatebnd_plunger") = {43};

As for the volumes labelling, the prefixes ohmicbnd_ and gatebnd_ are used in the
device_config.py script in order to speed up the generation of the QTCAD-API Python
code.

Assignment Check

The final check should be carried out in order to guarantee that the physical groups
assignment was successfully. This new code line is so added:

Mesh.ColorCarousel = 2;

This set the colouring mode of the mesh according to physical groups. To perform a
preliminary meshing to check this condition a large element size is defined (details on
section 5.3.3) in order to generate a coarse grain mesh.

Mesh.MeshSizeFactor = 5;
Mesh.MeshSizeMax = 1;

These commands allows to perform a preliminary meshing within seconds. It is now possi-
ble to reload the script and perform a 3D meshing by selecting in the left menu of the GUI
Modules > Mesh > 3D. Then it is necessary to show the mesh faces, Tools > Options
> Mesh > Visibility and check 3D element faces.

Figure 5.14: 3D element faces - Left: Before enabling. Right: After enabling.

73

Preliminary Setup

It is also possible to uncheck the tag 2D element edges to better visualize the mesh. The
colours are set by the default value of Gmsh, but, for a better and consistent view of the
mesh, it is possible to define custom colours which reflects material, matching with the
colours in the CAD software.

Mesh.Color.Zero = {200, 200, 200}; // NO PHYSICAL GROUP - GRAY
Mesh.Color.One = {150, 255, 150}; // CHANNEL - LIGHT GREEN
Mesh.Color.Two = { 0, 255, 0}; // SOURCE - GREEN
Mesh.Color.Three = { 0, 255, 0}; // DRAIN - GREEN
Mesh.Color.Four = {255, 190, 60}; // OXIDE (BURIED + STI) - ORANGE
Mesh.Color.Five = {255, 0, 0}; // PLUNGER - RED
Mesh.Color.Six = { 0, 0, 255}; // BARRIER 1 - BLUE
Mesh.Color.Seven = { 0, 0, 255}; // BARRIER 2 - BLUE

The colour Zero represents elements which are not assigned to any physical group. Even
if all volumes were labelled, errors in the Coherence command may lead to incorrect la-
belling. This is noticeable by looking at the mesh and notice areas with the same colour
defined for the zero group (gray in this case). All the other numbers reflects the physical
groups. It is possible to check for the physical group number in the visibility windows and
group by physical group (menu on the bottom left) but the most straightforward way to
know the physical group number is to look at the order the volumes were labelled. The
channel was the first one, so Mesh.Color.One represent the colour of the group called
semi_channel.
The very simple geometry used in this example does not manifest any gray area. An
example of a wrong assignment is shown in figure 5.15 with the meshing of a FinFET-like
structure. The solution to this problem for this structure was to switch from IGES to
STEP format.

Figure 5.15: FinFET-like device with physical group colouring mode. Left: incorrect
assignment (IGES format). Right: correct assignment (STEP format).

74

Preliminary Setup

5.3.3 Meshing and Export
Meshing refers to the process of discretizing a geometric domain into a finite set of elements
(such as triangles, quadrilaterals, tetrahedra, or hexahedra) suitable for computational
analysis. This step is fundamental in methods like the Finite Element Method (FEM) or
Finite Volume Method (FVM), where the accuracy and stability of the solution strongly
depend on the quality of the mesh.
The two main parameters that dictates the resolution of the output mesh are:

Mesh.MeshSizeFactor = 1;
Mesh.MeshSizeMax = 0.2;

To determine the actual mesh size at any given point in the model, Gmsh evaluates differ-
ent mesh size constraints and selects the smallest value. The resulting value is further con-
strained in the interval [Mesh.MeshSizeMin, Mesh.MeshSizeMax]. The resulting value
is then finally multiplied by Mesh.MeshSizeFactor. By setting the mesh size factor to 1
it is possible to tune the mesh granularity by the parameter MeshSizeMax. In the context
of solid state quantum simulations, with no scale applied to the geometrical coordinates,
0.2 represent a good starting point to obtain trustworthy results. An additional Python
script called mesh_volume.py was created to calculate the mesh volume. This was done
to calculate the minimum number of nodes the mesh must have in order to fulfil a density
constraint. For instance, if a density of 100 nodes per square nanometer is set, the mesh
showed in this workflow, with a volume of 3136nm3, must have at least 313.600 nodes.
The meshing step is computationally intensive. For this simple mesh, Gmsh took 48
seconds to allocate 311.087 nodes on an AMD Ryzen 9 8945HS processor and occupied
1,2GB of RAM with the parameter MeshSizeMax set to 0.2, generating a 92,7MB mesh
file. Geometries with higher volumes and/or lower value of the latter parameter seems to
increase the meshing time and output file size in a very fast way.
The meshing is divided in three steps, 1D, 2D and 3D. Each step quantize a degree in
space and allocates nodes along lines, surfaces and volumes, accordingly. It is possible
to perform each step individually or to do all three together by directly choosing the 3D
meshing. To do so select in the left menu Modules > Mesh > 3D. It is possible to look
at the progress in the console log, accessible by clicking the bar at the bottom of the screen.

Once the meshing algorithm ends it is possible to export the mesh via File > Export.
Choose a suitable name and type the extension .msh2, which is one of the two mesh for-
mats compatible with QTCAD along with .msh4, even if the first one (version 2) seems
to work better in a variety of conditions (version 4 is slightly more compressed and some-
times its import in QTCAD raises errors). Then a pop-up window will appear, select
Version 2 ASCII format and leave unchecked the two options Save all elements and
Save parametric coordinates. The mesh has been correctly exported and it is ready for
simulation.

75

Chapter 6

Quantum Simulations With
QTCAD

QTCAD (Quantum-Technology Computer-Aided Design) is a simulation platform for
quantum technology developed by Nanoacademic Technologies Inc. [23] It combines finite
element and atomistic modelling, allowing multiscale analysis of quantum devices such as
spin and superconducting qubits. Its modules cover electrostatics, capacitance extraction,
Maxwell eigenmode analysis, valley splitting, g-tensor evaluation, many-body Coulomb
interactions and transport through master equation or nonequilibrium Green’s function
approaches. QTCAD also supports cryogenic simulations and the recently added realistic
atomistic models that include disorder and strain. Practically, it consists of a Python
API through which complex simulation environments can be developed. QTCAD is a
demanding simulation platform and the hardware requirements depend on the complexity
of the simulations. For basic tasks with relatively small meshes, a standard modern pro-
cessor, around 8 GB of RAM and a solid-state drive provide sufficient performance. More
complex simulations, involving large meshes and multiple quantum devices, benefit from
a high-performance processor and several GB of RAM. Relying on python, the software
runs on Windows, macOS and Linux and it is managed through a Conda environment.
Performance also depends on solver choice, mesh size and convergence settings, so users
may need to optimize their system based on the specific simulations they plan to run.
For this work, the software was run on a RockyLinux dedicated server, with a 32 core
Intel Xeon processor and 128GB of RAM. Thread-level parallelization is not supported
in QTCAD. Nevertheless, section 6.2 describes a workaround based on process-level par-
allelization in order to run several instances of the simulation script with different input
parameters. The aim of these simulations is to study the behaviour of quantum con-
finement in the device over a wide range of results obtained from different simulations.
Subsequently, the effects of transport can be investigated, resulting in important outputs
that describes the device in a non-static condition. This work focuses primarily on the
static study of the device under test, in order to fully understand its behaviour in terms
of quantum confinement. Subsequently, some analyses were carried out to investigate the
device behaviour at the transport level. Both are analyzed in the following section.

76

Quantum Simulations With QTCAD

As reviewed before, all the simulations were performed on a dedicated server located
within the university. To access it and interact with the GUI, a software called X2Go
was used to establish a connection with XFCE, a lightweight desktop environment for
Unix-like operating systems built on the GTK toolkit. The simulations, especially when
involving large meshes, can take several minutes to complete. In this context, a problem
arises. After a period of inactivity, the server stops responding to commands, making it
necessary to restart the remote desktop environment. This results in the loss of work, as
all processes are terminated. To address this, the simulations can be called by a terminal
on a local machine via the command ssh. When running scripts remotely via SSH, one
common issue is that the connection may be interrupted due to network instability or
inactivity, as for the dedicated Linux server. If the SSH session is closed for any reason,
all processes that were started within that session are usually terminated by the system.
This can be particularly problematic for long-running simulations or computational tasks,
which may take several hours to complete. To prevent this, it is possible to use the nohup
command in Linux. This utility allows a command to continue running even after the
terminal is closed or the SSH session is disconnected. It effectively detaches the process
from the session, redirecting its standard output and standard error to a file, by default
nohup.out if not otherwise specified.
After a SSH session is established, a long-running script can be called with
nohup python long_script.py > output.log 2>&1 &

detaching its execution from the SSH session while redirecting its standard output and
error to a log file. For long simulations, it is also possible to implement an email noti-
fication system using an SMTP server and email delivery platform, such as Mailgun. A
custom function, based on the smtplib library, can be invoked at any point in the code
to send an email, providing real-time updates on the simulation progress.

import smtplib
from email.mime.text import MIMEText

def send_email(subject, text, receiver):
msg = MIMEText(text)
msg["Subject"] = subject
msg["From"] = email
msg["To"] = receiver

with smtplib.SMTP_SSL("smtp.mailgun.org", 465) as server:
server.login(email, app_pw)
server.send_message(msg)

print("[EMAIL] Sent")

A dummy email address was created on Mailgun, along with its app password and used
as the sender. It is necessary to configure a filter on the receiver account to prevent these
messages from being automatically directed to the spam folder.

77

Quantum Simulations With QTCAD

6.1 Device Layer Simulation
The device package is one of the core components of QTCAD, providing the tools needed
to model realistic nanodevices through the Device class. This class serves as the main
entry point for building systems where both electrostatics and quantum effects need to be
captured. Nanoacademic Technologies offers a set of tutorials and practical examples to
help users become familiar with the API and develop code tailored to their needs. The
Device class supports the solution of Schrödinger and Poisson equations on both static
and adaptive meshes, the inclusion of user-defined charge distributions and the study of
band alignment, spin–orbit coupling, strain effects and valley physics. It also enables
the modelling of quantum wells, donor states and quantum dots in various geometries,
including FD-SOI, with extensions to many-body interactions and coupling phenomena.
Visualization of simulation results is supported via ParaView, as shown in Section 6.1.6.

This package is the first layer among the three offered by QTCAD and lays the foun-
dation for transport simulations. In this phase, a device object is defined, composed by a
mesh file and some other parameters. The device can be modelled to host both electrons
and holes as charge carriers and can rely on Fermi-Dirac distribution or an approximated
model in order to greatly reduce simulation times. The full Fermi-Dirac distribution sig-
nificantly slows down the simulator because it involves repeated evaluation of exponential
functions and numerical integration of Fermi-Dirac integrals, which are computationally
expensive. In contrast, common approximations (such as the Maxwell-Boltzmann limit
or rational fits) replace these with simpler closed-form expressions, avoiding costly inte-
grations and leading to much faster simulations.

After the device is created, physical properties are assigned to volumes and surfaces of
the mesh, previously prepared in Gmsh. After the mesh and device are completely and
correctly defined, they are fed to Poisson and Schrödinger solvers. The Poisson simulator
calculates the electrostatic potential throughout the device by solving Poisson’s equation,
taking into account the distribution of charges, doping profiles and applied voltages. The
Schrödinger simulator, on the other hand, solves the Schrödinger equation to determine
the quantum states, wavefunctions and energy levels of carriers under confinement, pro-
viding insight into quantum effects such as tunnelling and discrete energy levels that are
not captured by classical models. Finally, the results are processed and stored in an op-
timal manner.

The code will now be explained in detail.

78

Quantum Simulations With QTCAD

6.1.1 Directory Organization
Before starting reviewing the code, it is necessary to understand the directory organiza-
tion, schematically represented in figure 6.1.

Figure 6.1: Simulation environment di-
rectory organization

The main directory contains all the simulation
scripts, in this case the main script sim.py is
shown, that executes Poisson and Schrödinger
analysis. Then the directory must include the
results folder, where all the results, mainly
the image and Matlab file, are stored. The
config folder contains all the files required for
simulation:

• All the CAD files used for generating
the mesh in Gmsh. The files saved here
are not used in the simulations, but are
placed in this folder to maintain a unified,
consistent and organized project directory
across all the steps preceding the QTCAD
simulation.

• meshes: it contains all the meshes used to
define the devices in the simulation script.

• images: each mesh file is associated with
an image, which is included in the output
to provide a visual representation of the
device.

• exported_parameters: this folder in-
cludes all the parameters exported from
Fusion to automatically compute dimen-
sions for the device simulation.

It is important to note that the simulation file can handle the same type or structure
of device, even if the dimensions or meshing steps differ. This means that the same device
can be exported in multiple variants and then simulated by simply referring to its name
in the simulation script. To achieve this, it is essential to assign the same name to the
mesh, image and parameter files, while QTCAD distinguishes them based on their file
extensions.

79

Quantum Simulations With QTCAD

6.1.2 Environment Definition
The first step is to import all the libraries and define the input and output paths. While the
relevant QTCAD API and custom libraries can be seen in the full code in the attachment
B.1, the definition of the I/O paths are now reviewed.

Paths Definition

The definition of I/O paths is important to let the python script know where to take
and put files, while maintaining a coherent simulation environment. The paradigm is
to have the input files named the same, with different extensions. The definition of the
device under test is defined through the variable device_name, while appending the file
extensions informs the program which files to locate. The environment uses the three files
described in the previous section, namely one mesh file, one image and one parameters
file.

--
DEFINE PATHS TO INPUT AND OUTPUT FILES
--

script_dir = pathlib.Path(__file__).parent.resolve()

DEFINE DEVICE NAME, USED TO FIND INPUT FILES
device_name = "sqd_soi_planar"

mesh_name = device_name + ".msh2"
image_name = device_name + ".png"
parameters_name = device_name + ".csv"

config_dir = script_dir / "config"

path_mesh = config_dir / "meshes" / mesh_name
path_image = config_dir / "images" / image_name
path_parameters = config_dir / "exported_parameters" /

parameters_nameñ→

Since these files are stored in their respective folders, the program requires the parent
folder, named config and can then locate each file by searching within this folder, specif-
ically in meshes, images and exported_parameters, storing the path for each file.
Then, the folder where all the results will be saved is defined, named results. The
paths, including file names, are defined for some important output files. The .hdf5 and
.vtu are files generated from the simulations that stores informations about the device
object and can be seen in ParaView (more on section 6.1.6), while the path_results_img
and path_results_mat are used to save, respectively, an output image, containing some
important plots and the simulation results in a Matlab file.

80

Quantum Simulations With QTCAD

results_dir = script_dir / "results"

path_hdf5 = results_dir / "device_results.hdf5"
path_psi0 = results_dir / "device_psi0.vtu"
path_psi1 = results_dir / "device_psi1.vtu"

path_results_mat = results_dir / "device_results.mat"
path_results_img = results_dir / "device_results.png"

Parameters Definition and Geometrical Features Extraction

Next, it is important to know the physical dimensions of the device, bearing in mind that
the entire setup was developed to operate in units of nanometers. The custom function
get_parameter_value was developed to extract the value of a specific parameter from
the parameters CSV file. The function is available in the attachments appendix inside the
script A.8. Each value is then multiplied by 1e− 9 to convert the value to nanometers.

EXTRACT THE GEOMETRICAL DIMENSIONS FROM THE .CSV FILE EXPORTED
FROM FUSION360ñ→

gate_oxide = get_parameter_value(path_parameters,
"gate_oxide_thickness")*1e-9ñ→

lateral_oxide = get_parameter_value(path_parameters,
"oxide_lateral")*1e-9ñ→

plunger_length = get_parameter_value(path_parameters,
"plunger_gate")*1e-9ñ→

barrier_length = get_parameter_value(path_parameters,
"barrier_gate")*1e-9ñ→

plunger_width = get_parameter_value(path_parameters,
"channel_width")*1e-9ñ→

spacers = get_parameter_value(path_parameters, "spacers")*1e-9
contact_spacers = get_parameter_value(path_parameters,

"contact_spacers")*1e-9ñ→

plunger_x_coordinate = 0

Here the plunger_x_coordinate is set to zero due to the symmetry of the device mesh
and the choice to place the plunger gate at the origin, but for multidot devices it may
be necessary to define multiple plunger coordinates, one for each dot. This can be done
automatically, as shown for the double quantum dot example in Section 6.1.3.
Then some variables are defined to store informations about the device temperature,
materials, dopings and voltages. The package mt is an alias for the materials library,
from qtcad.device. Storing the semiconductor and dielectric material choice inside a
variable enables the simulation of different materials later on. As said before, QTCAD

81

Quantum Simulations With QTCAD

does not support metal contacts. Instead it simulates the interface between a metal and
other surfaces by applying a specific type of boundary condition and the desired metal
workfunction, expressed in Joules.

DEFINE THE DEVICE WORKING TEMPERATURE IN KELVIN
device_temperature = 0.01

DEFINE PHYSICAL MATERIALS
semiconductor = mt.Si # Silicon as semiconductor
dielectric = mt.SiO2 # Silicon dioxide as the dielectric
metal_workfunction = 4.33 * ct.e # Titanium workfunction (Joules)

DEFINE DOPING AND VOLTAGES
n_doping = 1e18*1e6
V_plunger = 0.5
V_barrier_1 = -0.1
V_barrier_2 = -0.1

Then, the backgate properties are defined. Here, it is assumed that the semiconductor
below the buried oxide, which is in contact with the back gate, is n-doped silicon with a
dopant concentration of 1015cm−3. In addition, a dopant ionization energy of 46meV is
used, which is appropriate for phosphorus donors.

DEFINE BACKGATE PROPERTIES
use_backgate = False # Backgate only defined if this is set True
V_backgate = -0.5
backgate_doping = "n"
backgate_dose = 1e15*1e6
backgate_binding_energy = 46e-3*ct.e # Dopant ionization energy for

phosphorus donorsñ→

Next, some boolean flag variables are defined to control whether the HDF5 and VTU files
are saved. Since these files are large and can take considerable time to export, setting the
corresponding flag allows them to be generated only when needed.

CHOOSE IF SAVING THE HDF5 FILE, USED FOR THE TRANSPORT LAYER
SIMULATIONñ→

save_hdf5 = True

CHOOSE IF SAVING THE EIGENSTATES IN .VTU FORMAT
save_psi0_vtu = True
save_psi1_vtu = False

82

Quantum Simulations With QTCAD

Mesh Loading and Device Initialization

Now the mesh can be loaded into a mesh object with the relative scaling of 1e − 9, to
set the unit to nanometers. With the command glob_nodes it is possible to retrieve
the coordinates of each node of the mesh. Then by summing the absolute value of the
minimum and the maximum vale of those, thanks to the device symmetry, the full device
dimensions is calculated for each axis. To get the device length, here stored in the variable
device_length, the total dimension in the x axis is subtracted from the two lateral
shallow trench isolation oxide barriers. Keep in mind that the dim_ variables are not in
nanometers.

SET MESH SCALING FACTOR TO NANOMETERS
scaling = 1e-9

DEFINE MESH VIA SCALING FACTOR AND MESH PATH
mesh = Mesh(scaling, path_mesh)

GLOBAL NODES OF FULL DEVICE
x = mesh.glob_nodes[:, 0]
y = mesh.glob_nodes[:, 1]
z = mesh.glob_nodes[:, 2]

FULL DIMENSIONS OF THE DEVICE IN NANOMETERS
dim_x = np.abs(np.min(x)*1e9)+np.abs(np.max(x)*1e9)
dim_y = np.abs(np.min(y)*1e9)+np.abs(np.max(y)*1e9)
dim_z = np.abs(np.min(z)*1e9)+np.abs(np.max(z)*1e9)

DEFINE THE DEVICE LENGTH AS THE TOTAL LENGTH MINUS THE LATERAL
OXIDEñ→

device_length = dim_x*1e-9 - 2*lateral_oxide

Now the Device object can be instantiated, linking it to the mesh and setting the confined
carries to electrons. It follows that the implied statistic distribution is the Fermi-Dirac
one. Here we use the approximated one to save simulation time. The device temperature
is also set.

CREATE DEVICE FROM MESH AND SET CONFINED CARRIERS TO ELECTRONS
d = Device(mesh, conf_carriers = "e")
d.set_temperature(device_temperature)
d.statistics = "FD_approx" # Aproximated Fermi-Dirac distribution

83

Quantum Simulations With QTCAD

6.1.3 Assigning Physical properties
The assignment of physical properties allows the simulator to understand what part of
the mesh corresponds to what material or contact. The labels defined in Gmsh are used
to make this associations. The volumes are assigned to a specific material and surfaces to
a specific boundary condition.

To specify a volume material the command new_region is used, taking as argument
the volume label as well as the material, previously defined in distinct variables for the
semiconductor and the dielectric. For the source and drain volumes, the doping concen-
tration is defined via the two parameters pdoping and ndoping. In Section 7.4 it is shown
how to include different volumes for source and drain to simulate the effects of doping
diffusion gradients. The key idea is to provide a good ohmic contact for the electrons
where tunnel from, acting as a local carrier reservoir. The channel is kept intrinsic to
minimize noise arising from crystal imperfections. If doping were introduced, free carriers
would be present, which are likely to have poor confinement due to their relatively high
energy, even at low temperatures, making it difficult to localize them in a quantum dot
and potentially reducing coherence times. Additionally, the dopant-induced electric fields
could perturb the confinement potential, introducing local dipoles due to differences in
electronegativity and atomic number, thereby increasing the risk of quantum decoherence
and shortening qubit lifetimes.

DEFINE VOLUME PHYSICAL CONDITIONS
d.new_region("semi_channel", semiconductor)

d.new_region("nsemi_source", semiconductor, pdoping=0,
ndoping=n_doping)ñ→

d.new_region("nsemi_drain", semiconductor, pdoping=0,
ndoping=n_doping)ñ→

d.new_region("diel_oxide", dielectric)
d.new_region("diel_barrier_1", dielectric)
d.new_region("diel_barrier_2", dielectric)
d.new_region("diel_plunger", dielectric)

Then, the surfaces boundary conditions are applied, to simulate the effects of contacts.
The metal-semiconductor leads form an ohmic contact, instantiated by the command
new_ohmic_bnd specifying the name of the label used in Gmsh. Then, for the metal-oxide
gate contacts it is necessary to use the new_gate_bnd command, that takes as arguments
also the applied potential and the metal workfunction it is needed to simulate.

84

Quantum Simulations With QTCAD

DEFINE SURFACES BOUNDARY CONDITIONS
d.new_ohmic_bnd("ohmicbnd_drain")
d.new_ohmic_bnd("ohmicbnd_source")

d.new_gate_bnd("gatebnd_barrier_1", V_barrier_1, metal_workfunction)
d.new_gate_bnd("gatebnd_barrier_2", V_barrier_2, metal_workfunction)
d.new_gate_bnd("gatebnd_plunger", V_plunger_1, metal_workfunction)

If the boolean flag for the use of the backgate is set to True, a new boundary condition
is instantiated for the backgate contact. A Frozen boundary condition is applied, which
is suitable for ohmic contacts in weakly doped semiconductors at cryogenic temperatures.
This choice ensures that the potential at the backgate remains fixed during the simulation,
reflecting the behaviour of a real backgate contact in UTBB technologies.

if use_backgate:
d.new_frozen_bnd("gatebnd_backgate", V_backgate, semiconductor,

backgate_dose, backgate_doping, backgate_binding_energy)ñ→

Then, it is necessary to define a list of regions, called dot_region, where no classical
charge is allowed. The regions include those that accommodate the quantum dot, like
the channel, as well as all other regions that forms a bandgap difference barrier, such
as the oxide. If a region is not included in this array, it will not be taken into account
for Schrödinger simulation. Finally, the dot region is passed to the device object via the
set_dot_region command.

DEFINE THE DOT REGION AS A LIST OF REGION LABELS THAT COMPOSE THE
DOT MEDIUM AND BARRIERSñ→

dot_region = ["semi_channel", "diel_oxide", "diel_barrier_1",
"diel_barrier_2", "diel_plunger"]ñ→

SET UP THE DOT REGION IN WHICH NO CLASSICAL CHARGE IS ALLOWED
d.set_dot_region(dot_region)

The device is now ready to be fed to the Poisson and Schrödinger solvers.

85

Quantum Simulations With QTCAD

Extension for Double Quantum Dot Devices

Some modifications can be introduced in order to adapt the code for multidot devices.
Firstly, some physical dimensions can be calculated automatically from the exported pa-
rameters. In this example, the x coordinate of the plunger gate was defined for the one near
the drain. In a multidot device, each plunger gate coordinate can be defined to perform
analysis on each of them. Follows an example for a double quantum dot configuration.

COMPUTE SOME DIMENSIONS FROM EXTRACTED PARAMETERS
contact_dot_spacing = spacers + contact_spacers + barrier_length +

plunger_length/2ñ→

opposite_contact_dot_spacing = 3*spacers + contact_spacers +
2*barrier_length + plunger_length*3/2ñ→

dot_spacing = barrier_length + 2*spacers + plunger_length
plunger_x_coordinate = (barrier_length + plunger_length)/2 + spacers

Then, the voltages for the additional gates are defined and the physical properties are
updated to accommodate the changes, including them in the dot_region variable.

n_doping = 1e18*1e6
V_plunger_1 = 0.5
V_plunger_2 = 0.5
V_barrier_1 = -0.1
V_barrier_2 = -0.2
V_barrier_3 = -0.1

d.new_region("diel_barrier_1", dielectric)
d.new_region("diel_barrier_2", dielectric)
d.new_region("diel_barrier_3", dielectric)
d.new_region("diel_plunger_1", dielectric)
d.new_region("diel_plunger_2", dielectric)

d.new_gate_bnd("gatebnd_barrier_1", V_barrier_1, metal_workfunction)
d.new_gate_bnd("gatebnd_barrier_2", V_barrier_2, metal_workfunction)
d.new_gate_bnd("gatebnd_barrier_3", V_barrier_3, metal_workfunction)
d.new_gate_bnd("gatebnd_plunger_1", V_plunger_1, metal_workfunction)
d.new_gate_bnd("gatebnd_plunger_2", V_plunger_2, metal_workfunction)

dot_region = ["semi_channel", "diel_oxide", "diel_barrier_1",
"diel_barrier_2", "diel_barrier_3", "diel_plunger_1",
"diel_plunger_2"]

ñ→

ñ→

86

Quantum Simulations With QTCAD

6.1.4 Poisson and Schrödinger Solvers
Now that the device object is completed, it is possible to define a PoissonSolver object
with its relative PoissonSolverParams. The only set parameter is the tolerance between
two successive Poisson iterations, in volts. QTCAD supports an adaptive Poisson solver,
that can work with a .geo_unrolled file. This derives from Gmsh and contains all the
informations required to do a local meshing of a geometry. By providing the solver with
a coarse-grained mesh along with its corresponding .geo_unrolled file, it is possible to
perform a meshing algorithm on the geometry if the Poisson iterations fail to converge
after a certain number of loops. This approach allows the use of coarse meshes, saving
time in the meshing step in Gmsh and saving space on the hard drive. Unfortunately,
this method seems to work only for geometries defined inside Gmsh with its proprietary
.geo compatible commands. Importing a geometry from an external CAD software could
trigger errors during the local meshing step, indicating that some curves do not close
properly. This is likely caused by the use of the Coherence command, which was applied
to make the geometry conformal. The use of the adaptive Poisson solver is the preferred
choice. However, some adjustments are required to adapt the workflow and prevent errors
during the local meshing step. Due to these issues, the standard non-linear Poisson solver
was implied, which simply iterates until the error falls below the specified tolerance.
After the simulation is done, the results can be stored inside the HDF5 file, if the corre-
sponding boolean flag is set to True.

--
NON-LINEAR POISSON SOLVER
--

CREATE A POISSON SOLVER PARAMETERS OBJECT
params_poisson = PoissonSolverParams()

The tolerance attribute tol specifies the maximum acceptable
potential difference (in Volts) between two successive
self-consistent-loop iterations

ñ→

ñ→

params_poisson.tol = 1e-5

CREATE AND SOLVE A NON-LINEAR POISSON SOLVER
s = PoissonSolver(d, solver_params=params_poisson)
s.solve()

SAVE POISSON RESULTS IN THE HDF5 FILE
if save_hdf5:

io.save(str(path_hdf5), {"n": d.n/1e6, "p": d.p/1e6, "phi":
d.phi, "EC": d.cond_band_edge()/ct.e, "EV":
d.vlnce_band_edge()/ct.e})

ñ→

ñ→

87

Quantum Simulations With QTCAD

As for the Poisson solver, the Schrödinger solver is defined with its tolerance parameter.
Here, the potential landscape is firstly set from Poisson with the command set_V_from_phi.
To start a Schrödinger simulation, it is necessary to not use the same device object as
before, but a SubDevice and a SubMesh, composed only by the dot_region defined for
the mesh. For this example, only the source and drain contacts were excluded from the
simulation.
After the simulation ends, the eigenenergies are displayed.

--
SCHRODINGER SOLVER
--

GET THE POTENTIAL ENERGY FROM THE BAND EDGE FOR USAGE IN THE
SCHRODINGER SOLVERñ→

d.set_V_from_phi()

CREATE A SUBMESH INCLUDING ONLY THE DOT REGION AND A SUBDEVICE FOR
THE LATTERñ→

submesh = SubMesh(d.mesh, dot_region)
subdevice = SubDevice(d, submesh)

CREATE A SCHRODINGER SOLVER PARAMETERS OBJECT
params_schrod = SchrodingerSolverParams()
params_schrod.num_states = 4 # Specify the number of eigenstates

and energies to consider in the diagonalization of the dot
Hamiltonian

ñ→

ñ→

params_schrod.tol = 1e-12 # Set the tolerance for convergence on
energies in electron-voltsñ→

CREATE AND SOLVE A SCHRODINGER SOLVER
schrod_solver = SchrodingerSolver(subdevice)
schrod_solver.solve()

PRINT EIGENENERGIES
subdevice.print_energies()

Now the main simulation steps are done. The results are now ready to be processed to
extract the information of interest. The next section addresses these step in details.

88

Quantum Simulations With QTCAD

6.1.5 Results Display
Now that the simulation is complete, it is necessary to correctly process and plot the
results, in order to get the most out of those. The first step is to define the dimensions of
the subdevice used for Schrödinger simulation. This is done as before using glob_nodes
of the submesh linked to the subdevice.

GLOBAL NODES FOR THE SUBDEVICE
xdot = submesh.glob_nodes[:, 0]
ydot = submesh.glob_nodes[:, 1]
zdot = submesh.glob_nodes[:, 2]

In order to place linecuts at exactly the dot location it is needed to find the max probability
amplitude of the z axis, known that the device is fully symmetrical on the y axis and so
setting the y coordinate to zero.

START BY FINDING MAX PROBABILITY FOR Z AXIS UNDER THE PLUNGER GATE
THEN PLACE X AND Y LINECUTS AT THAT Z COORDINATE
psi0 = np.abs(subdevice.eigenfunctions[:, 0])**2

With psi0 found, it is possible to perform a linecut in the ZoY plane by setting the
starting point from the top of the silicon, at the interface with the gate oxide and the
end at the bottom, at the interface with the BOX. Both point are fixed at the plunger
gate x coordinate, which in the case of a single quantum dot modelled symmetrical in
each direction, corresponds to zero. This is done for both the ground state eigenfunction
and the applied potential, used for plotting them in conjunction. Then, for plotting
consistency, the two results psiposz (a function of psiz0) and V_plungerosz (a function
of Vz) are inverted and shifted by their maximum value in order to align them with the
gate oxide interface, where the zero of the z axis is defined. Then the z coordinate of the
peak of the wavefunction is obtained by taking the psiposz value at maximum psiz0.

WAVEFUNCTION AND POTENTIAL ENERGY IN THE ZoY PLANE
beginz = (plunger_x_coordinate, 0, np.max(zdot))
endz = (plunger_x_coordinate, 0, np.min(zdot))
psiposz, psiz0 = linecut(submesh, psi0, beginz, endz)
psiposz = -psiposz
psiposz += np.max(zdot)
V_plungerosz, Vz = linecut(mesh, d.V, beginz, endz)
V_plungerosz = -V_plungerosz
V_plungerosz += np.max(z)

FIND MAXIMA OF PSI0_Z AND PSI0_X
dot_z_position = psiposz[np.argmax(psiz0)]

89

Quantum Simulations With QTCAD

Now that the z position of the dot is known it is possible to proceed with the definition
of the linecuts of the XoZ and XoY planes, both by fixing the z coordinate to the dot
location just calculated. In the first case the x axis sweeps from the center to the two
sides with magnitude device_length/2, while in the second case the x coordinate is fixed
to the plunger coordinate and the y axis sweeps to the maximum and minimum node,
corresponding to the top of the gate oxide and bottom of BOX (where the backgate is
localized).

WAVEFUNCTION AND POTENTIAL ENERGY IN THE XoZ PLANE
beginx = (-device_length/2, 0, dot_z_position)
endx = (device_length/2, 0, dot_z_position)
psiposx, psix0 = linecut(submesh, psi0, beginx, endx)
psiposx += (np.min(xdot) + lateral_oxide)
V_plungerosx, Vx = linecut(mesh, d.V, beginx, endx)
V_plungerosx += (np.min(x) + lateral_oxide)

WAVEFUNCTION AND POTENTIAL ENERGY IN THE YoX PLANE
beginy = (plunger_x_coordinate, np.min(y), dot_z_position)
endy = (plunger_x_coordinate, np.max(y), dot_z_position)
psiposy, psiy0 = linecut(submesh, psi0, beginy, endy)
psiposy += np.min(ydot)
V_plungerosy, Vy = linecut(mesh, d.V, beginy, endy)
V_plungerosy += np.min(y)

Along with the wavefunction, the potential landscape is found as before. This is done
to plot the two quantities together and see how the potential affects the bending of the
conduction band and so the wavefunction localization. One of the first things to notice is
how local minima in the conduction band lead to local maxima in the wavefunction.

Now a simple code follows, used to determine if the dot is effectively confined under the
plunger gate. The wavefunction along x is firstly normalized and then cropped around the
plunger gate. To do so a custom function called crop_around_coordinate is used, cutting
the values of normalized_psix0 around the plunger gate with length plunger_length.
The function is available in the attachments appendix inside the script A.6. Then, the
maximum vale of this subsection of the wavefunction is found. This is done to find for
the local maximum near the plunger gate, useful when the device is multidot. A custom
function called is_within_percentage is used to check if the x position of the peak of
the wavefunction is in the neighbourhood of the plunger gate center position with a de-
fined deviation threshold percentage, in this case 20%. The function is available in the
attachments appendix inside the script A.5. It returns a boolean, so can be placed inside
an if statement to directly print on the terminal if the dot is localized under the plunger
gate or not.

90

Quantum Simulations With QTCAD

FIND MAXIMA OF PSI0_X
normalized_psix0 = psix0/np.max(psix0)

dot1_x, dot1_psix0 = crop_around_coordinate(psiposx,
normalized_psix0, np.abs(plunger_x_coordinate), plunger_length)ñ→

dot1_x_position = dot1_x[np.argmax(dot1_psix0)]

localized_dot=False
if is_within_percentage(np.abs(dot1_x_position*1e9),

np.abs(plunger_x_coordinate*1e9), 20):ñ→

localized_dot=True

if localized_dot:
print("[OK] Dot is localized under the plunger gate!")

else:
print("[KO] Dot IS NOT localized under the plunger gate!")

Then, additional informations can be printed regarding the confinement along the z and
x coordinates before the export of the final images. Firstly, the z and x locations of the
dot are printed. Then the function x_for_threshold is used, as for the previous one,
available in the script A.6. It calculates the ratio between the area of the wavefunction
cropped around the plunger gate and the area of the total wavefunction. This is done to
calculate how much the dot is localized under the plunger gate. For a single quantum dot,
the best possible result is 100% (dot completely constrained under the plunger gate).

print(f"Quantum dots found at z = { dot_z_position*1e9: .2f} nm")

print(f"Quantum dot found at x = { dot1_x_position*1e9: .2f} nm vs
plunger at { np.abs(plunger_x_coordinate*1e9): .2f} nm")ñ→

dot1_x_confinement = x_for_threshold(psiposx, normalized_psix0,
-np.abs(plunger_x_coordinate), plunger_length)ñ→

print(f"Quantum dot confinement = { dot1_x_confinement*100: .2f} %")

The next step is to calculate and print the cumulative confinement levels associated to
the z-axis probability density function. In this work, the Nσ notation is used to indicate
the confinement level corresponding to a cumulative probability containing N nines, from
2σ = 99% to 6σ = 99.9999%. To do so, a function called z_for_threshold is used,
available in the attachments appendix inside the script A.3. It takes as input the z
coordinate (in nanometers), the normalized probability density function along that axis
and a threshold factor. It calculates where the integral of the normalized probability

91

Quantum Simulations With QTCAD

density function starting from the beginning of the z axis reach the threshold parameter.
By calling the function for different thresholds of number of nines it is possible to calculate
and plot all the z coordinates where the dot is localized from 99% to 99.9999%.

COMPUTE Z-AXIS CUMULATIVE CONFINEMENT LEVELS
z_thresh_2N = z_for_threshold(psiposz*1e9, psiz0/np.max(psiz0),

threshold=0.99)*1e-9ñ→

z_thresh_3N = z_for_threshold(psiposz*1e9, psiz0/np.max(psiz0),
threshold=0.999)*1e-9ñ→

z_thresh_4N = z_for_threshold(psiposz*1e9, psiz0/np.max(psiz0),
threshold=0.9999)*1e-9ñ→

z_thresh_5N = z_for_threshold(psiposz*1e9, psiz0/np.max(psiz0),
threshold=0.99999)*1e-9ñ→

z_thresh_6N = z_for_threshold(psiposz*1e9, psiz0/np.max(psiz0),
threshold=0.999999)*1e-9ñ→

print(f"2N threshold for quantum dot at z = { z_thresh_2N*1e9: .2f}
nm")ñ→

print(f"3N threshold for quantum dot at z = { z_thresh_3N*1e9: .2f}
nm")ñ→

print(f"4N threshold for quantum dot at z = { z_thresh_4N*1e9: .2f}
nm")ñ→

print(f"5N threshold for quantum dot at z = { z_thresh_5N*1e9: .2f}
nm")ñ→

print(f"6N threshold for quantum dot at z = { z_thresh_6N*1e9: .2f}
nm")ñ→

Matlab amd VTU Export

Now that all the information that can be printed in the terminal has been displayed,
it is possible to proceed with saving all the results into a MATLAB file. This is useful
as all the informations can be displayed and processed inside Matlab, without the need
to perform the simulation again later on. The file has a .mat extension and there is
a dedicated function called savemat for formatting and saving a Matlab file inside the
library scipy.io. Here it is possible to include all the required variables. For convenience,
all positions and dimensions are normalized to 100, removing the nanometer scale in order
to speed up execution in MATLAB and enhance numerical accuracy.
The function needs a file path and a list of couples key:value, in order to save the data
correctly. Later in Matlab, the values (for example psi0_x) will be accessible by using
the command:
data = load(’device_results.mat’);
psix0 = data.psi0_x;

92

Quantum Simulations With QTCAD

SAVE DEVICE RESULTS IN THE .MAT FILE
savemat(path_results_mat, {
"x":psiposx/1e-9,
"y":psiposy/1e-9,
"z":psiposz/1e-9,
"psi0_x":psix0,
"psi0_y":psiy0,
"psi0_z":psiz0,
"V_x":Vx/ct.e,
"V_y":Vy/ct.e,
"V_z":Vz/ct.e,
"doping":n_doping,
"V_plunger":V_plunger,
"V_barrier":V_barrier,
"dot_z":dot_z_position/1e9,
"dot_z_threshold_2N":z_thresh_2N/1e9,
"dot_z_threshold_3N":z_thresh_3N/1e9,
"dot_z_threshold_4N":z_thresh_4N/1e9,
"dot_z_threshold_5N":z_thresh_5N/1e9,
"dot_z_threshold_6N":z_thresh_6N/1e9,
"energies":subdevice.energies/ct.e
})

Furthermore, it is possible to export the ground state and first excited state (or more
if needed) inside a dedicated .vtu file to be seen later in ParaView (more on this topic
in Section 6.1.6). These files are large and require significant storage space. Therefore,
saving is enabled only when needed, by setting the associated boolean option variables to
True in the script header.

SAVE SCHRODINGER RESULTS IN .VTU FORMAT
if save_psi0_vtu:

io.save(path_psi0, np.abs(subdevice.eigenfunctions[:, 0])**2,
submesh)ñ→

if save_psi1_vtu:
io.save(path_psi1, np.abs(subdevice.eigenfunctions[:, 1])**2,

submesh)ñ→

93

Quantum Simulations With QTCAD

Image Export

It is now possible to export plots as images to better illustrate the confinement behaviour.
To provide a clear and structured understanding of the device, a single composite im-
age was generated, arranged into four quadrants, each containing different informations.
Firstly, some text is declared. Mainly to display informations about the mesh, like node
number and physical dimensions. In the script this is called title. Then the second and
third texts, named text_vars and text_desc respectively, contains general informations
about the simulation variables and device results. The last text text_conf contains infor-
mation about the z-axis cumulative confinement levels, as described in the previous pages.
In the text text_desc the variables leverarm and score were retained in this example,
although its introduction will be discussed later in Section 6.3.1 and 6.2.1, respectively.
In the text text_vars a custom function called get_apex is used to display scientific
notation, available in the attachments appendix as script A.7.

title = (
fr'{ mesh_name} ' + '\n' +
fr'{ mesh.node_number} nodes, { dim_x: .1f} x{ dim_y: .1f} x{ dim_z: .1f}

nm'ñ→

)
text_vars = (
fr'T = { device_temperature: .2f} K' + '\n' +
fr'$dose_{{\mathrm{{n}}}}$ = ' + get_apex(n_doping) + '

$m^{{\mathrm{{-3}}}}$' + '\n' +ñ→

fr'$V_{{\mathrm{{plunger}}}}$ = { V_plunger: .2f} V' + '\n' +
fr'$V_{{\mathrm{{b_lateral}}}}$ = { V_barrier_1: .2f} V' + '\n' +
fr'$V_{{\mathrm{{b_central}}}}$ = { V_barrier_2: .2f} V'
)

text_desc=(
fr'$z_{{\mathrm{{dot}}}}$ = { dot_z_position*1e9: .2f} nm' + '\n' +
fr'2σ = { z_thresh_2N*1e9: .2f} nm' + '\n' +
fr'α = { leverarm*1000: .1f} meV/V' + '\n' +
fr'score = { int(score)} pt'
)

text_conf=(
fr'$z_{{\mathrm{{dot}}}}$ = { dot_z_position*1e9: .2f} nm' + '\n' +
fr'2σ = { z_thresh_2N*1e9: .2f} nm' + '\n' +
fr'3σ = { z_thresh_3N*1e9: .2f} nm' + '\n' +
fr'4σ = { z_thresh_4N*1e9: .2f} nm' + '\n' +
fr'5σ = { z_thresh_5N*1e9: .2f} nm' + '\n' +
fr'6σ = { z_thresh_6N*1e9: .2f} nm'
)

94

Quantum Simulations With QTCAD

Now that the text is ready, it is possible to define dimensions and DPI (Dots Per Inch)
resolution for the image. By choosing the 2x2 format, as shown in the code, the figure can
be created with the command plt.figure, where plt is an alias for the function pyplot
inside the library matplotlib.

DPI AND ORIGINAL DIMENSIONS FOR A SINGLE PLOT
dpi = 300
single_w_px = 1500
single_h_px = 1000

2 COLUMNS x 2 ROWS
fig_w_px = single_w_px * 2
fig_h_px = single_h_px * 2

fig = plt.figure(figsize=(fig_w_px/dpi, fig_h_px/dpi), dpi=dpi)

SPACING
w_frac = 0.36
h_frac = 0.375

Next, a variable text_loc is defined. Later this will be set as the prefix of the image
file name, where if the dot, interpreted as the peak of the x-axis wavefunction, is local-
ized under the plunger gate the prefix will be the score of the configuration (more on
section 6.2.1), while if the dot is not localized the prefix will be an X, identifying a wrong
configuration.

text_loc="X"
if localized_dot:

text_loc=f"{ int(score)} "

The first quadrant of the figure is then filled with the mesh name and image, defined in
the paths at the beginning of the script. All the informations included in the three text
variables defined before are displayed. It is important to keep in mind that the quadrant
order follows a row by row and column by column ordering, so the first quadrant is the
upper left, the second the upper right, the third the bottom left and the fourth the bottom
right.

95

Quantum Simulations With QTCAD

QUADRANT 1: DEVICE INFORMATIONS AND SIMULATION VARIABLES
ax_text = fig.add_axes([0.02, 0.52, w_frac, h_frac])
ax_text.axis('off')
ax_text.text(0.5, 0.95, title, fontsize=15, ha='center', va='center',

wrap=True)ñ→

ax_text.text(-0.025, 0.15, textstr, fontsize=14, ha='left',
va='center', wrap=True)ñ→

ax_text.text(0.625, 0.15, text_desc, fontsize=14, ha='left',
va='center', wrap=True)ñ→

img = mpimg.imread(path_image)
imagebox = OffsetImage(img, zoom=0.1)
ab = AnnotationBbox(imagebox, (0.5, 0.65), frameon=False,

xycoords='axes fraction')ñ→

ax_text.add_artist(ab)

Then the second quadrant can be defined. It includes the plots of the x-axis wavefunction
and potential. Some key results were added in order to get information about the x-axis
confinement goodness. The two main informations added here are:

• The percentage of confinement of the dot under the plunger gate. This is shown in a
blue box and it was computed before with the x_for_threshold function and stored
in the variable dot1_x_confinement. This parameter can be computed for each dot
of the device. In Section 6.1.5 an example for a double quantum dot is shown.

• The x coordinate of the peak of the wavefunction. This is shown in a green box and
it was computed before with the crop_around_coordinate function and stored in
the variable dot1_x_position. This was the same variable used to verify that the
dot is localized under the plunger gate. Although the device is fully symmetrical, in
some cases, particularly for multidot devices, the dot position along the x axis may
deviate. Ideally, this value should coincide with the plunger gate location, namely
with its center along the x axis.

Also, in the title of the plot the z coordinate of the dot is displayed.

96

Quantum Simulations With QTCAD

QUADRANT 2: LINECUT ALONG CHANNEL
y_percentage_label_coordinate = 0.5
ax1 = fig.add_axes([0.52, 0.52, w_frac, h_frac])
ax2 = ax1.twinx()
ax1.set_title(fr'Linecut along channel (x) @ $z_{{\mathrm{{dot}}}}

= { dot_z_position*1e9: .2f} \,\mathrm{{nm}}$')ñ→

ax1.plot(psiposx / 1e-9, psix0/np.max(psix0), linewidth=2)
ax2.plot(V_plungerosx / 1e-9, Vx / ct.e, '--r')
ax1.grid()
ax1.set_xlabel("x [nm]")
ax1.set_ylabel(r"Normalized $|\Psi(x, 0, z_{dot})|^2 [m^{-3}]$",

color='blue')ñ→

ax2.set_ylabel(r"$V [eV]$", color='red')
for label in ax1.get_yticklabels():

label.set_color('blue')
for label in ax2.get_yticklabels():

label.set_color('red')
Add confinement percentage and peak x location on each dot
ax2.text(((-np.abs(dot1_x_position)+device_length/2)/device_length),

y_percentage_label_coordinate, f"{ dot1_x_confinement*100: .1f} %",ñ→

transform=ax1.transAxes,
fontsize=10,
zorder=10,
verticalalignment='center',
horizontalalignment='center',
bbox=dict(boxstyle='round,pad=0.2', facecolor='white',

alpha=0.8, edgecolor='blue'))ñ→

ax2.text(((dot1_x_position+device_length/2)/device_length),
np.max(dot1_psix0)-0.05, f"{ dot1_x_position*1e9: .1f} nm",ñ→

transform=ax1.transAxes,
fontsize=10,
zorder=10,
verticalalignment='center',
horizontalalignment='center',
bbox=dict(boxstyle='round,pad=0.2', facecolor='white',

alpha=0.8, edgecolor='green'))ñ→

For the third quadrant, only the wavefunction and potential along y axis is shown. The
linecut should be placed under a plunger gate so that the wavefunction correspond to a
dot. In a multidot device it is possible to plot one or more by modifying the code.

97

Quantum Simulations With QTCAD

QUADRANT 3: LINECUT ALONG Y
ax3 = fig.add_axes([0.02, 0.02, w_frac, h_frac])
ax4 = ax3.twinx()
ax3.set_title(fr'Linecut along y @ $z_{{\mathrm{{dot}}}}$,

$x_{{\mathrm{{plunger}}}}$')ñ→

ax3.plot(psiposy / 1e-9, psiy0/np.max(psiy0), linewidth=2)
ax4.plot(V_plungerosy / 1e-9, Vy / ct.e, '--r')
ax3.grid()
ax3.set_xlabel("y [nm]")
ax3.set_ylabel(r"Normalized $|\Psi(x_{plunger} , y, z_{dot})|^2

[m^{-3}]$", color='blue')ñ→

ax4.set_ylabel(r"$V [eV]$", color='red')
for label in ax3.get_yticklabels():

label.set_color('blue')
for label in ax4.get_yticklabels():

label.set_color('red')

The fourth and final quadrant is then defined, showing the wavefunction and potential
along the z axis. In this case, the values were previously reversed and shifted to ensure
consistency with each other and with the axis reference. Since the mesh places the origin of
all axes, including the z axis, at the semiconductor/oxide interface, this point corresponds
to 0 in the plot. Positive values represent the potential within the oxide, while for negative
values the effect of the applied plunger voltage produces an energy band bending that leads
to the localization of the probability density function at the interface.
Then, the text containing information about the z-axis confinement, with the different
values of sigma, is placed in the top-left corner. As for quadrant two, the title indicates
where the linecut was done, in this case the plunger x coordinate contained in the variable
plunger_x_coordinate.

98

Quantum Simulations With QTCAD

QUADRANT 4: LINECUT ALONG Z
ax5 = fig.add_axes([0.52, 0.02, w_frac, h_frac])
ax6 = ax5.twinx()
ax5.set_title(fr'Linecut along z @ $x_{{\mathrm{{plunger}}}} =

{ plunger_x_coordinate*1e9: .2f} \,\mathrm{{nm}}$')ñ→

ax5.plot(psiposz / 1e-9, psiz0/np.max(psiz0), linewidth=2)
ax6.plot(V_plungerosz / 1e-9, Vz / ct.e, '--r')
ax5.grid()
ax5.set_xlabel("z [nm]")
ax5.set_ylabel(r"Normalized $|\Psi(x_{plunger} , 0, z)|^2 [m^{-3}]$",

color='blue')ñ→

ax6.set_ylabel(r"$V [eV]$", color='red')
for label in ax5.get_yticklabels():

label.set_color('blue')
for label in ax6.get_yticklabels():

label.set_color('red')
ax6.text(0.02, 0.98, text_conf,

transform=ax6.transAxes,
fontsize=11,
zorder=10,
verticalalignment='top',
horizontalalignment='left',
bbox=dict(boxstyle='round,pad=0.2', facecolor='white',

alpha=0.7, edgecolor='none'))ñ→

Finally, the image can be saved with the previously defined path and DPI.

SAVE IMAGE
plt.savefig(path_results_img, dpi=dpi, bbox_inches='tight')

The simulation via the device package is now complete.

99

Quantum Simulations With QTCAD

Double Quantum Dot Results

The code can be modified to host a multidot configuration and, knowing the target location
of each quantum dot, it is possible to extract important parameters that not only describes
the quantum confinement for each one but also the interdot coupling and interferences
of gates. For this work, it was important to study the behaviour of double quantum dot
devices as a starting point to use one as a spin qubit and the other one as a spin-to-charge
conversion dot for Pauli spin blockade readout, analyzed in Section 2.6.3.
In a DQD the same results can be extracted as for the first one, like the position and
confinement with respect to the plunger area.

dot1_x, dot1_psix0 = crop_around_coordinate(psiposx,
normalized_psix0, -np.abs(plunger_x_coordinate), plunger_length)ñ→

dot2_x, dot2_psix0 = crop_around_coordinate(psiposx,
normalized_psix0, np.abs(plunger_x_coordinate), plunger_length)ñ→

dot1_x_position = dot1_x[np.argmax(dot1_psix0)]
dot2_x_position = dot2_x[np.argmax(dot2_psix0)]

dot1_x_confinement = x_for_threshold(psiposx, normalized_psix0,
-np.abs(plunger_x_coordinate), plunger_length)ñ→

dot2_x_confinement = x_for_threshold(psiposx, normalized_psix0,
np.abs(plunger_x_coordinate), plunger_length)ñ→

The localization of the dot under a plunger gate, with the exploit of the functions
is_within_percentage, can be done for both the dots. Then it is possible to display
the informations about the second dot. By finding the difference between the two confine-
ment areas, found integrating under the plunger area the wavefunction cropped for each
dot, it is possible to display the difference (or delta) of confinement.

print(f"1st quantum dot found at x = { dot1_x_position*1e9: .2f} nm vs
plunger at { -np.abs(plunger_x_coordinate*1e9): .2f} nm")ñ→

print(f"2nd quantum dot found at x = { dot2_x_position*1e9: .2f} nm vs
plunger at { np.abs(plunger_x_coordinate*1e9): .2f} nm")ñ→

print(f"1st quantum dot confinement = { dot1_x_confinement*100: .2f} %
(DQD) - { dot1_x_confinement*200: .2f} % (SQD)")ñ→

print(f"2nd quantum dot confinement = { dot2_x_confinement*100: .2f} %
(DQD) - { dot2_x_confinement*200: .2f} % (SQD)")ñ→

print(f"Delta confinement = { np.abs((dot1_x_confinement/0.5) -
(dot2_x_confinement/0.5))*500: .2f} %")ñ→

In the best scenario, the two dots are localized at the exact same coordinate with respect
to a common symmetry axis, same z coordinate for the peak of the wavefunction and same

100

Quantum Simulations With QTCAD

area. But, the eigenstates are not localized in one dot but form symmetric (bonding) and
antisymmetric (antibonding) superpositions spread over both dots. Any asymmetry, due
to disorder, gate fluctuations, or even numerical imperfections, breaks this balance and
makes the wavefunction appear more localized in one dot. It is important to include the
asymmetry analisis for multidot configurations.

Now it is possible to plot these informations in the second quadrant of the image. The
other plots, in the third and fourth quadrants, remain unchanged. The linecuts defined
for these plots are taken at a specific x coordinate, namely at the center of the plunger
gate. It is possible to investigate confinement along the y and z axes by selecting one of
the available plunger gates, or by modifying the code to plot all of them. However, con-
finement along these axes usually remains the same, so this step is not strictly necessary.
For the x-axis confinement plot, two additional textboxes are included to display the x-
coordinate of the wavefunction peak and the confinement area under the relative plunger
gate.

ax2.text(((np.abs(dot2_x_position)+device_length/2)/device_length),
y_percentage_label_coordinate, f"{ dot2_x_confinement*100: .1f} %",ñ→

transform=ax1.transAxes,
fontsize=10,
zorder=10,
verticalalignment='center',
horizontalalignment='center',
bbox=dict(boxstyle='round,pad=0.2', facecolor='white',

alpha=0.8, edgecolor='blue'))ñ→

ax2.text(((dot2_x_position+device_length/2)/device_length),
np.max(dot2_psix0)-0.05, f"{ dot2_x_position*1e9: .1f} nm",ñ→

transform=ax1.transAxes,
fontsize=10,
zorder=10,
verticalalignment='center',
horizontalalignment='center',
bbox=dict(boxstyle='round,pad=0.2', facecolor='white',

alpha=0.8, edgecolor='green'))ñ→

101

Quantum Simulations With QTCAD

Examples

The images 6.2 and 6.3 shows, respectively, the confinement results images of the devices
sqd_soi_planar_dp and dqd_soi_planar_dp. Full results are presented in Chapter 8.

Figure 6.2: sqd_soi_planar_dp confinement results image, low mesh node density

Figure 6.3: dqd_soi_planar_dp confinement results image, high mesh node density

102

Quantum Simulations With QTCAD

6.1.6 Results Analysis in ParaView
ParaView is an open-source software designed for visualizing large and complex datasets.
It allows users to explore and analyze data in three dimensions, providing a wide range
of tools for rendering, filtering and plotting results. In this work, as suggested by Nanoa-
cademic Technologies, ParaView is used to inspect simulation outputs, giving a clear and
intuitive representation of the device physical quantities, which helps in understanding
the behaviour of the system.
In this example the analysis of the VTU file containing information about the eigenstate
probability density function, defined as |ψ(x, y, z)|2, is shown. The firsts step is to open
the file, by using the top menu File > Open. Once the file is loaded it is necessary to
click the Apply to show the mesh in the 3D workspace.

Figure 6.4: ParaView VTU import

The mesh is coloured with respect to the exported value. Right now the mesh is fully
visible so the inner colouring is hidden. To show the dots one can set the opacity factor
to a lower value than 1, like 0.1, and see the dots by rotating the mesh. Another way is to
perform a clip, dividing the mesh by using a tool plane. To do so, the feature "Clip with
an implicit function" is used. By modifying the "Origin" and "Normal" values of the plane
it can be rotated. By setting the second value, so the y axis, of both fields to 1 and the
others to 0 the resulting plane will be an XoZ and it can cut the device in half showing
the channel along the x axis.

Figure 6.5: ParaView clip command

103

Quantum Simulations With QTCAD

By deselecting "Show Plane" and "Invert", enabled by default and click Apply the clip is
complete and the inside of the device became visible. On the right menu it is possible to
select a colormap and perform additional operations to the dataset.
An example of how a quantum dot should appear is shown in figures 6.6 for a SQD device
and figure 6.7 for a DQD one, where the asymmetry of the two dots is noticeable by the
different colouring.

Figure 6.6: Device sqd_soi_planar results in ParaView

Figure 6.7: Device dqd_soi_planar_dp results in ParaView

A line can be defined from two points in space and plotted on a Cartesian graph using the
"Plot Over Line" feature. However, it is recommended to use the device_results.mat
output file from the simulation for processing in Matlab, which allows for more advanced
analysis, while in ParaView it is only possible to plot the data and export it as a CSV
file.

ParaView is a powerful tool for visualizing and inspecting scientific data, but in this
work it was only employed to graphically inspect the quantum dots.

104

Quantum Simulations With QTCAD

6.2 Batch Runner
The long simulation times needed to understand the effects of a small change in simula-
tion parameters lead to the realization of a pilot python script that, given a set of input
parameters, creates a set of configurations and feed those to a series of simulation scripts
to be run in parallel as subprocesses. This was called batch runner and enables process-
level parallelization for the simulations. With this approach, the time required for a single
simulation still remains the same, but in that time the runner return multiple results from
multiple configurations, for the same device. The pilot code, available in the attachments
appendix as script C.1, is now examined in detail.

First of all, it is necessary to understand how many subprocesses can be instantiated
while maintaining the machine load under a reasonable threshold. On the server used for
the simulations, setting the number of workers (parallel threads) to half of the total CPU
count proved to be a good compromise between the number of simulations run simultane-
ously and the overall system load. To check for that, the top command displays real-time
information about system resource usage, including CPU and memory consumption, ac-
tive processes and system load. The latter is shown in the top-right corner under the name
load average. The first number shows the average over the last minute and should not
exceed, as a rule of thumb, two thirds of the available cores. Keeping the load below this
threshold ensures system stability by leaving resources available for system processes, I/O
and memory management, preventing slowdowns or simulation crashes.

WORKERS = int(os.cpu_count()/2)

Then, it is possible to define the variables to sweep and define them via a linspace
command, or manually. Then, the itertools module generates combinations of values
using those defined earlier. If n variables are defined, each with k values, the total number
of combinations will be kn.

DEFINE PARAMETERS TO WEEP
plunger_values = [0.5, 0.6, 0.8, 1.0, 1.1]
doping_values = [1e18*1e6,1e17*1e6,1e18*1e6,1e19*1e6,1e20*1e6]

COMBINATIONS
combinations = list(itertools.product(plunger_values, doping_values))

As the variables are passed to the simulation script as environment variables, a copy,
called env, of the current ones is created, in order to append the needed configuration.
Then, the base output folder is set. If the batch_results folder does not exists, the script
creates it.

105

Quantum Simulations With QTCAD

DEFINE ENVIRONMENTAL VARIABLES
env = os.environ.copy()

BASE OUTPUT FOLDER
base_output = Path("batch_results")
base_output.mkdir(exist_ok=True)

The run_simulation function mainly does three things:

• It creates a string with the parameters value and impose that as the current working
directory seen by the subprocess. It does this to have inside the batch_results
folder a set of subfolders named as the simulation configuration. In the next section,
the modification added to the simulation script shows that the paths in case of a
batch run are modified in order to store the results in the cwd instead of the results
folder.

• It adds new environment variables to pass the simulation inputs to the subprocess.
A boolean flag called BATCH was added to let the script know that it was run from the
batch runner, modifying some paths and taking the parameters from the environment
variables instead of the default ones hard coded inside the script.

• It starts a subprocess calling the script name, in this example sim_v4.py, inhibiting
its output on the console and passing it the cwd and environment variables.

def run_simulation(plunger, doping):
Define directory name for the single simulation
label = f"V{ plunger} _N{ int(doping): .0e} "
output_dir = base_output / label
output_dir.mkdir(exist_ok=True)

env["V_PLUNGER"] = str(plunger)
env["N_DOPING"] = str(doping)

env["BATCH"] = str("True")

print(f"[INFO] Running sim: { label} ")

subprocess.run(
["python", str(Path(__file__).parent/"sim_v4.py")],
cwd=output_dir, # save files inside simulation directory
env=env,
stdout=subprocess.DEVNULL

)

106

Quantum Simulations With QTCAD

Finally, when the script is run from the terminal, the ProcessPoolExecutor instantiates
the predefined number of workers, each handling one of the required combinations. If the
number of combinations exceeds the number of workers, new subprocesses can only start
once a previously running thread has completed its execution.

PARALLELIZZAZION
if __name__ == "__main__":

with ProcessPoolExecutor(max_workers=WORKERS) as executor:
futures = [executor.submit(run_simulation, v, n) for v, n in

combinations]ñ→

for f in futures:
f.result()

merge_dot_results()

At the end, the custom function merge_dot_result merges all the desired output vari-
ables, stored in the file device_results.mat for each configuration, into one Matlab file.
This final file is then used to perform the analysis across all configurations and observe
correlation between parameters. The function is available in the attachments appendix
inside the script A.4.
An example of merged result, based on a batch simulation, is observable in figure 6.8,
where the wavefunction peak location in the z axis and relative cumulative confinement
levels starting from the silicon interface with the gate oxide, are put in relation with the
applied plunger voltage and source/drain doping concentration.

Figure 6.8: Example of batch run result

In this case, the plot was generated in Matlab with a dataset of 600 values from a batch
of 100 simulations, requiring about 10 minutes only.

107

Quantum Simulations With QTCAD

Modifications To The Simulation Script

To perform a batch run, the simulation script needs to be modified in order to work in both
conditions of a single or batch run. Mainly, the script need to know if it is in a batch run
to update some paths and retrieve the configuration from the environment variables. The
values from the environmental variables can be retrieved with the command os.getenv,
that take as argument a variable tag and a default variable to adopt if the addressed
one does not exist. The first one, is the BATCH, that tells the program if it was run from
a batch. The default value False is used to not adopt these modifications in a single
simulation. If the variable is true, thus existing inside the environment variables, this
means that the cwd of the script is changed as simulation/batch_results/config_name
where config_name can be something like V0.5_N1e+25. Modification to the paths of the
input files are done at the beginning of the script in order to still retrieve the files from
the simulation/config directory and to save HDF5 and Matlab files inside the cwd.

IMMEDIATELY FIND OUT IF BATCH RUNNING IS ENABLED
batch = os.getenv("BATCH", "False")

CHECK IF WE ARE IN BATCHING AND UPDATE SOME PATHS
if batch == "True":

path_parameters = Path("../../config/exported_parameters") /
parameters_nameñ→

path_hdf5 = "device_results.hdf5"
path_results_mat = "device_results.mat"

Then, a default value for the variables used for simulation can be defined, used when the
environmental tag does not exist, thus indicating the script was run singly. Again, the
values are retrieved with the os.getenv command.

default_n_doping = 1e18*1e6
default_plunger_voltage = 0.5
n_doping = float(os.getenv("N_DOPING", default_n_doping))
V_plunger_1 = float(os.getenv("V_PLUNGER", default_plunger_voltage))

Lastly, if we are in a batch run the image need to be saved directly inside the cwd the
runner defined, in order to avoid excessive use of subfolders. The text_loc variable is
explained in the next section.

SAVE IMAGE
if batch == "True":

path_results_img = "../" + text_loc + "_" +
f"V{ V_plunger_1} _N{ int(n_doping): .0e} " + ".png"ñ→

plt.savefig(path_results_img, dpi=dpi, bbox_inches='tight')

108

Quantum Simulations With QTCAD

6.2.1 Scoring System
The batch runner allows the simulation of multiple configurations in parallel, thus saving
time, with a speed-up factor proportional to the number of instantiated workers. Having
a large number of results introduces the issue that analysing them requires considerable
time, which counteracts the benefits and time savings achieved through batch execution.
To address this problem, a scoring system is introduced. The working principle is to assign
a score to the configuration. The simulation adds points if some criteria have been met
and removed if other problems occurs. Firstly a score variable needs to be defined at the
beginning of the code.

score = 0

Then, after Poisson and Schrödinger solvers are done, it is possible to assign score point
with the processed results. An example for a double quantum dot device could be:

UPDATE DEVICE CONFIGURATION SCORE
score += (dot1_x_confinement/0.5)*100
score += (dot2_x_confinement/0.5)*100
score += 50*np.exp(-5*np.abs(np.abs(dot1_x_position*1e9) -

np.abs(plunger_x_coordinate*1e9)))ñ→

score += 50*np.exp(-5*np.abs(np.abs(dot2_x_position*1e9) -
np.abs(plunger_x_coordinate*1e9)))ñ→

score += 100*np.exp(-np.abs(dot_z_position*1e9))
score -= 100*np.exp(-5*np.abs((dot1_x_confinement/0.5) -

(dot2_x_confinement/0.5)))ñ→

The example code attempts to assess the confinement of individual dots as well as the
interdot coupling and asymmetry. Unfortunately, it currently struggles to provide an ac-
curate assessment of system performance. Fine-tuning of the scoring algorithm is required
to achieve the desired robustness of the paradigm.
Then the score can be displayed in the output image inside the text in the first quadrant,
as shown in Section 6.1.5. The variable text_loc is set as the prefix to the file name.
It is set to an X if the dot is not localized under the plunger gate, therefore identifying
a not-working configuration. They can be automatically deleted by the use of the script
remove_fails.py, available in the attachments appendix as script A.9. Otherwise, it is
set to the score.

text_loc="X"
if localized_dot:

text_loc=f"{ int(score)} "

By ordering alphabetically the output images, which are all stored in the batch_results
folder, it becomes possible to instantly identify the best-performing configurations.

109

Quantum Simulations With QTCAD

6.3 Transport Layer Simulation
Quantum transport simulations offer a way to study how carriers move through a device
and how it responds to different electrical conditions. By explicitly modelling the flow
of carriers, the transport simulations provide detailed insight into the mechanisms that
govern device operation, including tunnelling, confinement effects and blockade phenom-
ena. They enable the evaluation of device performance from a fully quantum mechanical
perspective, capturing effects that classical transport models cannot describe. This ap-
proach allows for predicting the behaviour of nanoscale devices, assessing their stability
and identifying the factors that influence their electronic properties, making it an essential
step in the design and optimization of quantum systems.

QTCAD provides a framework for simulating quantum transport, employing a many-
body approach, including Coulomb interactions between electrons. Coupling between the
device and the leads is modelled through tunnelling events, described by a Hamiltonian
based on single-electron eigenfunctions. The Hamiltonian is defined in the so called Fock
basis, a way to describe a quantum system in terms of the number of particles occupying
each possible state. Each basis state specifies how many particles are in each level, making
it ideal for systems with indistinguishable particles like electrons or photons. It naturally
accounts for quantum statistics, such as the Pauli exclusion principle for fermions and is
widely used to model many-body phenomena like single-electron tunnelling and Coulomb
blockade.
This approach enables the simulation of transport phenomena under strong quantum con-
finement, capturing effects such as Coulomb blockade. The junction concept in QTCAD
allows for the computation of Coulomb peaks and charge-stability diagrams, which are
crucial for analysing the single-electron regime in quantum devices. [47][45]
It also supports transport simulations via the non-equilibrium Green’s function (NEGF)
formalism, which accounts for non-equilibrium quantum statistics and can model both
classical transport, like thermionic emission and quantum transport, including tunnelling
through potential barriers. The NEGF module enables the calculation of charge density
and electric potential under nonequilibrium conditions through NEGF-Poisson simula-
tions and allows for the evaluation of electric current, density of states and other relevant
quantities. However, the NEGF approach does not include electron-electron interactions,
so it cannot capture Coulomb blockade effects. [44] For simulations where Coulomb in-
teractions are important, the junction module remains the preferred choice.

In this work, the transport layer was employed to simulate Coulomb interactions, en-
abling the generation of the charge stability diagram. This diagram provides insight into
the blockade regimes, the number of carriers confined within a specific dot in single quan-
tum dot devices and the particle addition spectrum of double quantum dots.

110

Quantum Simulations With QTCAD

6.3.1 Lever Arm
Although the lever arm is an intrinsic property of the device, it is discussed in the trans-
port section because of its greater relevance in this context rather than in confinement.
The term lever arm (or leverarm) αG refers to the proportionality factor that links varia-
tions in gate voltage φG

bias to changes in the electrochemical potential µ of the dot. [43]
µ = µ0 − e · αG · φG

bias (6.1)
where e is the elementary charger and µ0 = µ|φG

bias
=0. The electrochemical potential for a

transition between the (N-1)-electron and N-electron ground states of a quantum dot is
µ(N) = Etot(N) − Etot(N − 1) (6.2)

where Etot is the total energy of the dot in the N-electron ground state. [43]
Within the constant-interaction model, the lever arm of gate G on the dot is given by the
ratio of the capacitance between the dot gate G and the self capacitance of the dot.

αG = −C0G

Cq (6.3)

In QTCAD, the lever arm can be determined without explicitly evaluating the individual
capacitances, since the full device geometry is taken into account rather than approximat-
ing it with a lumped-element circuit model. The approach relies on directly computing
how the electronic structure of the quantum dot responds to variations in gate bias, from
which the lever arm is obtained through a linear fit of the resulting behaviour. [43]

To handle the lever arm inside the simulations many scripts are involved. Mainly, the
script get_leverarm.py manages the coefficients inside a Matlab file called lever_arm.mat,
which are created by the script compute_leverarm.py. Both are available in the attach-
ments appendix as, respectively, script A.11 and A.10. The paradigm is to obtain the lever
arm coefficient for a device gate in a straightforward manner, without having to compute
it each time, since such simulations are often time-consuming. It if was computed previ-
ously, it simply retrieve the coefficient from the .mat file, otherwise it calculates it. It is
important to have the Matlab file before starting a batch run, otherwise many instances
are created, each one trying to write to the same file, leading to errors. The main functions
used to handle the coefficients are now explained.

def get_lever_arm(device, boundary):
mat_file_path = get_parent_mat_path()
if not os.path.isfile(mat_file_path):

compute_lever_arm(device, boundary)

mat_contents = sio.loadmat(mat_file_path)

lever_arm_value = float(mat_contents['lever_arm'].squeeze())
return lever_arm_value

111

Quantum Simulations With QTCAD

This function can be called from the simulation script as
leverarm = get_lever_arm(d, "gatebnd_plunger_1")
and checks for the presence of the lever arm Matlab file, otherwise it calls the function
compute_lever_arm, now analyzed.

Each lever arm computation, whether for a single or multiple values, is carried out by
defining the parameters for the Poisson and Schrödinger solvers, which are included within
the lever arm calculation. To speed up the simulation, the number of states to be simu-
lated can be reduced.

params_poisson = PoissonSolverParams()
params_poisson.tol = 1e-5
params_schrod = SchrodingerSolverParams()
params_schrod.num_states = 10

lever_arm_solver_params = LeverArmSolverParams({
"pot_solver_params": params_poisson,
"schrod_solver_params": params_schrod

})

Then, it is possible to choose the span of the gate voltages. If a single coefficient is needed,
it is sufficient to specify a bias value and then perform simulation for that value and for
two additional ones at a ϵ distance, in the example set to 0.05V . If the whole curve of the
proportionality factor is needed, a linspace command is used to define a range of gate
voltage values, in the example from 0V to 1V with 21 values, corresponding to a 0.5V
step size.

Example of a reduced voltage set
plunger_voltages = [bias-0.05, bias, bias+0.05]

Example of a voltage set defined with linspace
plunger_voltages = np.linspace(0, 1, 21)

Then, the lever arm solver can be instantiated by passing the device, previously defined in
the simulation script and passed as argument by the intermediary script get_lever_arm.py,
the list (in this case just one value) of surface boundary labels, the voltages, the dot region
and finally the parameters. By calling the solve function, the lever arm calculation is
initiated and for each voltage value, a simulation is performed, therefore requiring a sig-
nificant amount of time to complete. Then, the lever arm value can be returned by taking
the absolute value of the first coefficient (ground state) and dividing it by the elementary
charge to have it in eV/V.

112

Quantum Simulations With QTCAD

lever_arm_slv = LeverArmSolver(device,
[boundary],
plunger_voltages,
dot_region=device.dot_region,
solver_params=lever_arm_solver_params)

poly_coeffs = lever_arm_slv.solve()

lever_arm_value = np.abs(poly_coeffs[0]) / ct.e

Then, for each simulated energy state, the results are stored inside the Matlab file as the
pair bias:energy, as well as the ground state lever arm coefficient.

mat_data = {"lever_arm": lever_arm_value}

for i, data in enumerate(lever_arm_slv.energies.T / ct.e):
ax1.plot(plunger_voltages, data, label=f"state { i} ")
Save bias and energy for each state
mat_data[f"bias_{ i} "] = plunger_voltages
mat_data[f"energy_{ i} "] = data

Save the dictionary into a .mat file
savemat("lever_arm.mat", mat_data)

In figure 6.9 it is possible to observe the lever arm curves for different energy states related
to a MOS-like SOI planar device. In Chapter 8, the main parameters affecting the lever
arm coefficients are reviewed.

Figure 6.9: Example of lever arm computation

113

Quantum Simulations With QTCAD

6.3.2 Coulomb Diamonds
The term Coulomb diamonds refers to the diamond-shaped regions that appear in a
charge stability diagram of a quantum dot. They indicate Coulomb blockade, revealing
the discrete electron occupation states and the energy required to add or remove elec-
trons from the dot. By analysing these diamonds, it is possible to know the number
of confined carriers of a quantum dot. To compute the diagram, a complete Poisson-
Schrödinger simulation need to be carried out. After that, it is possible to call the function
compute_charge_stability_diagram that takes as argument the device to simulate and
automatically computes the diagram. After the full device package simulation, the many-
body solver is instantiated, a package designed to include electron-electron interactions
that cannot be captured within a single-particle approximation. By solving the many-
body Hamiltonian, it provides access to correlated electronic states, charge configurations
and excitation spectra in quantum dots. Here the parameters can be set in order to take
into account the levels to keep and the lever arm coefficient. Then, a junction is defined,
representing a transport system consisting of a quantum dot connected between two leads
(source and drain). It enables simulation of electron transport through sequential tun-
nelling. By using these two object it is possible to compute the charge stability diagram.
Unlike the code developed for the device simulation using the device package, the imple-
mentation for the transport simulation closely follows the original QTCAD tutorial. For
this reason, the full code will not be analyzed in detail within this work. Instead, it can
be accessed directly at the tutorial official webpage:
https://docs.nanoacademic.com/qtcad/practical_application/6-stability/
The full code, including the modifications required to adapt it to these simulations, is
available in the attachments appendix as script B.2. As an example, the charge stability
diagram of the SQD device sqd_soi_planar_dp is shown in figure 6.10.

Figure 6.10: Coulomb diamonds of the device sqd_soi_planar_dp

114

https://docs.nanoacademic.com/qtcad/practical_application/6-stability/

Quantum Simulations With QTCAD

6.3.3 Particle Addition Spectrum
A charge stability diagram for a double quantum dot takes the name "particle addition
spectrum". It is a graphical representation of the electron occupancy in each dot as a
function of the applied gate voltages, showing regions of stable charge configurations sep-
arated by lines where electron transitions occur due to Coulomb blockade effects. The
diagram provides insight into interdot coupling, charging energies and the electronic con-
figuration of the system, making it a key tool to characterize and control double quantum
dots. The goal is to analyze electron occupancy and Coulomb blockade regions in a double
quantum dot device. A full simulation would sequentially solve the Poisson, Schrödinger,
many-body and master equations for each gate bias, but this is computationally inten-
sive. To reduce cost, approximations such as the lever arm method, Hubbard model
simplifications and near-equilibrium response functions are used. These approaches allow
estimation of energy level shifts, Coulomb interactions and charge transitions efficiently.
As for the Coulomb diamonds computation, the implementation for this diagram closely
follows the original QTCAD tutorial. For this reason, the full code will not be analyzed in
detail within this work. Instead, it can be accessed directly at the tutorial official webpage:
https://docs.nanoacademic.com/qtcad/tutorials/transport/double_dot_stability/
The full code, including the modifications required to adapt it to these simulations, is
available in the attachments appendix as script B.3. As an example, the charge stability
diagram of the DQD device qqd_soi_planar_dp, with the addition of dot occupancies, is
shown in figure 6.11.

Figure 6.11: Particle addition spectrum with dot occupancies of the device
dqd_soi_planar_dp

115

https://docs.nanoacademic.com/qtcad/tutorials/transport/double_dot_stability/

Chapter 7

Fabrication Process Simulation

7.1 Engineer A Wafer For Quantum Computing
As reviewed in Section 3.1, the primary material for carrier confinement is isotopically
purified (or isotopically enriched) 28Si, the isotope of silicon which has 14 neutrons inside
the nucleus. Besides the fact that it is the most abundant isotope in nature, it has zero
nuclear spin, not interacting with the carrier spin and so solving the problem of hyperfine
interaction. To host spin qubits it is necessary to use a high purity (3N or above) silicon
alloy that unfortunately it is not present on state-of-the-art ready to sell stocks of wafers.
It is so compulsory to grow a layer of 28Si before any other fabrication step. Veldhorst et
al. demonstrated that using isotopically enriched silicon can increase decoherence times,
with T2 extended by up to 30x and T ∗

2 by up to 120x. [52]
The two main growth techniques are:

• Epitaxial growth of 28Si on a seed layer: here it is possible to use a FD-SOI wafer
with the thinnest silicon layer possible, both by buying it thin or by doing a partial
etchback of the silicon overlay. The latter is not recommended because, even when
highly diluting the acids used for silicon etching, extreme caution is required. At
nanometer scale even a slight over-etch can remove a significant amount of material.

• Deposition of 28Si on oxide layer: this method involves complex processes such as
hybrid MBE/CVD, ALD, or ALE (Atomic Layer Epitaxy) and therefore was not
analyzed in detail.

Due to the complexity of the process, the isotopically enriched silicon layer was assumed to
be grown epitaxially, starting from a silicon seed located in the overlay of a pre-fabricated
Silicon-On-Insulator wafer. In the simulations, the silicon channel thickness results from
the combination of the original overlay and the epitaxially grown enriched layer. By
analyzing the z-axis cumulative confinement levels, it is possible to assume how hyperfine
interactions would influence both the spatial confinement and the overall qubit behaviour.
It is therefore essential to maximize the distance between the expected quantum dot
location and the non-enriched silicon layer. An in-depth analysis of hyperfine interactions
was not addressed, since it goes beyond the objectives of this work.

116

Fabrication Process Simulation

7.1.1 Prefabricated Wafer Selection
In order to have a state-of-the-art substrate for the analyzed devices, the wafer was se-
lected to be readily available for purchase from a European manufacturer. Some research
was conducted to identify a supplier for a quantum-ready wafer available in reasonable
quantities. Unfortunately, no retailer was found that could provide the required spec-
ifications. Therefore, the device was designed using planar SOI technology, given the
widespread availability of SOI wafers, which have been well established and widely used
in the industry for several decades. One of the largest and well known manufacturer of
wafer in Europe is Soitec, a French company and a global leader in semiconductor ma-
terials, specialized in the production of SOI wafers, with manufacturing sites in France,
Singapore and China. Its wafers are used in a wide range of applications, including mo-
bile devices, automotive components, optical sensors and radio-frequency circuits. For
the following section, where the main fabrication steps are done in order to simulate the
manufacturing of the device, a SOI wafer from Soitec FD-SOI wafer line was chosen. In
addition to the typical benefits of this type of wafer for standard CMOS technology, it
was chosen for having the thinnest silicon overlay, serving as a seed layer for the isotopi-
cally enriched layer and maximizing the enriched silicon over the standard alloy thickness
ratio. A wafer with a 6nm overlay was chosen, onto which an additional 10 ÷ 15nm of
28Si needs to be grown. The thickness of the enriched silicon layer can be increased if
the z-axis confinement indicates that a quantum dot is too close to the standard alloy,
potentially being affected by hyperfine interactions.
For simulations, the buried oxide thickness is not critical, as it can be reduced to save
simulation time and generate a lighter mesh file. It only becomes relevant when a backgate
is used, in which case the actual thickness must be considered to accurately compute the
capacitive coupling.

7.1.2 Epitaxial Growth of Isotopically Enriched Silicon
To grow a silicon layer it is necessary to use silane gas (SiH4). Few companies in Europe
manufacture the enriched silane gas for small volume manufacturing. One of the compa-
nies is Orano Group and its activity called Stable Isotopes. Operating from its specialized
laboratory at Centre Nucléaire de Production d’Électricite du Tricastin (southern France),
Orano applies advanced centrifugation technology, originally developed for uranium, to
purify and enrich isotopes such as silicon-28, xenon-136 and molybdenum. They produce
enriched 28Si under the chemical form of SiF4, with an isotopic grade over 4N (99.99%)
and deliver under gaseous form (28SiF4 and 28SiH4) or silica (28SiO2). Knowing that
there is a readily accessible manufacturer of isotopically enriched silane in Europe pro-
vides an excellent starting point, supporting the feasibility of production at PiQuET and
confirming the theoretical framework.

117

Fabrication Process Simulation

7.2 Capabilities and Limitations at PiQuET
PiQuET (Piemonte Quantum Enabling Technology) is a state-of-the-art applied research
infrastructure located in Turin, Italy. Established under the POR FESR 2014-2020 ini-
tiative and co-managed by the National Institute of Metrological Research (INRiM), Po-
litecnico di Torino and University of Turin, its mission is to enable advanced research and
industrial innovation in quantum, micro and nanotechnologies. It features a 400m2 ISO-
classified cleanroom, specialized laboratories in quantum metrology, microfluidics and
additive manufacturing. PiQuET supports prototyping, device characterization, rapid
material development and customized fabrication services.
PiQuET’s clean-room facilities provide a wide range of advanced micro- and nanofabrica-
tion, as well as characterization tools. In particular, they support:

• Quantum device characterization (quantum clocks, atomic sensors, quantum elec-
tronic, photonics) for metrology and standard development.

• Deposition, Growth and Thermal Treatment (ALD, LPCVD, ICP-CVD, sputtering,
graphene CVD, hot embossing, thermal processing).

• Lithography across diverse methods including laser writing, UV exposure, mask
alignment, 2PP and upcoming EBL.

• Dry and wet etching, with secure wet processing environments.

• Chemical processing, from cleaning and resist handling to CMP and metal plating
under clean conditions.

• Device packaging technologies such as flip-chip, wire bonding, wafer bonding, dicing
and embossing.

• Advanced characterization instrumentation (SEM, FIB, TEM, AFM, probe stations,
ellipsometry, profilometry) for assessing micro and nanodevices.

Throughout the development of this work, the possibility of fabricating a potential device
at PiQuET has always been taken into account, given its close collaboration with the Po-
litecnico di Torino. This perspective ensured that the proposed concepts were considered
not only from a theoretical standpoint but also with regard to their practical realization
in a state-of-the-art cleanroom environment. However, the current absence of some key
equipment, such as the ion implanter and the electron-beam lithography system (still in
the installation phase), has led not only to the analysis of state-of-the-art fabrication pro-
cesses but also to the investigation of possible alternatives aimed at adapting the process
flow and making the realization of a device at PiQuET feasible.
Since for small production volumes mask-based lithography is not usually employed due
to the high costs, it is mandatory to rely on electron-beam lithography, meaning that
fabrication must wait until this tool becomes available. For the device doping, thermal
diffusion and silicide processes have been considered as alternatives to ion implantation.

118

Fabrication Process Simulation

7.3 Device Fabrication Process in Sentaurus
After confirming that a device exhibits proper confinement behavior through simulations
in QTCAD, it is fundamentally important to simulate its fabrication in a TCAD tool such
as Synopsys Sentaurus. The aim of this work is to adapt state-of-the-art VLSI and CMOS
processes to leverage existing manufacturing facilities for the realization of quantum de-
vices based on gate-defined quantum dots on silicon substrates. The process simulation
work was carried out together with Leonardo Ossino, an intern at Politecnico di Torino,
who participated to study semiconductor qubit devices and to complement his training by
using a professional TCAD tool such as Synopsys Sentaurus. His work was supervised by
the candidate and Nicola Carbonetta, a PhD student who also supervised the candidate’s
thesis work and provided guidance throughout the project.

Although many device variants were simulated in Sentaurus, the main focus was a planar
SOI double quantum dot. The study of a DQD device was conducted at the end of the
work, thereby building on the analysis of solid-state devices and quantum confinement, as
well as the investigation of interdot coupling and phenomena related to multidot config-
urations. For the device, referred as dqd_soi_planar_dp, the geometry and dimensions
are shown in figure 7.1. This model incorporates the doping profiles derived from the
simulation of an identical structure in which those regions were not modelled.

Figure 7.1: Device to be simulated in Sentaurus

As a starting point, the wafer, described in Section 7.1.1, was selected as a generic Soitec
FD-SOI with a 6nm silicon overlay. Next, as reviewed in Section 7.1.2, the epitaxial
growth of isotopically enriched silicon via silane gas was carried out. Shallow trench isola-
tion is then performed to isolate the device as a single silicon island. The source and drain
doping was performed via thermal diffusion, since the ion implanter is not yet available
at PiQuET. After the deposition of the gate oxide ad the patterning of the metal gates,
the geometry is mirrored to produce the final device.

The main simulation steps are now described.

119

Fabrication Process Simulation

First, certain dimensions are defined to specify the substrate and model only a quarter
of the actual device, reducing computational time. By defining the three main layers,
the SOI wafer substrate is defined. The use of tags makes coordinate values accessible
throughout the entire code, while the use of variables increases its reusability. The full
geometry can later be reconstructed using two mirroring steps.

STEP 1: SILICON OVER INSULATION WAFER DEFINITION

line x location= 0.0<nm> tag= Si28_top
line x location= @t_Si28@ tag= Si_ov_top
line x location= 16.0<nm> tag= BOX_top
line x location= 36.0<nm> tag= substrate_top
line x location= 86.0<nm> tag= substrate_bottom

line y location= 0.0 tag= Mid_ch
line y location= @L_halfCh@ tag= End_ch
line y location= 33.2<nm> tag= End_drain
line y location= 43.2<nm> tag= Right_STI
line y location= @L_halfWafer@ tag= End_wafer

line z location= 0.0 tag= Back_ch
line z location= @W_halfCh@ tag= Front_ch
line z location= 15.0<nm> tag= Front_STI
line z location= @W_halfWafer@ tag= Front_wafer

Silicon overlay
region Silicon xlo= Si_ov_top xhi= BOX_top ylo= Mid_ch yhi=

End_wafer zlo= Back_ch zhi= Front_waferñ→

Buried oxide
region Oxide xlo= BOX_top xhi= substrate_top ylo= Mid_ch yhi=

End_wafer zlo= Back_ch zhi= Front_waferñ→

Silicon substrate
region Silicon xlo= substrate_top xhi= substrate_bottom ylo= Mid_ch

yhi= End_wafer zlo= Back_ch zhi= Front_waferñ→

init !DelayFullD

120

Fabrication Process Simulation

Next, the enriched silicon layer needs to be grown on top of the silicon overlay of the
wafer, used as a seed layer. As explained in Section 7.1.2, the growth of this layer needs
to be done epitaxially. To model this process more realistically, an epitaxial ambient was
defined, instead of performing a simple deposition. The shape of the growing epitaxial
layer can be controlled using lattice kinetic Monte Carlo, which allows for more realistic
deposition profiles without the computational cost of a fully atomistic approach. To en-
able this mode, it is necessary to specify lkmc in the diffuse command and set the PDB
(Parameter Database Browser) parameter as KMC Epitaxy. Then, the epitaxial growth is
activated by specifying an Epi-type ambient in the diffuse command. During the diffu-
sion step, the same equations applied to single-crystal silicon are solved for the epitaxial
layer. The grow rate was set as the desired 28Si layer thickness with an additional value
of 2nm. This was done in order to compensate for the thin film oxide, later realized via
dry oxidation, that leads to the consumption of a portion (around 45%) of the silicon
underneath.

STEP 2: 28-SI EPITAXIAL GROWTH

pdbSet KMC Epitaxy 1
diffuse time= 1<s> temperature= 550 Epi lkmc epi.thickness= [expr

@t_Si28@+0.002]ñ→

The final substrate, composed by the original Soitec wafer and the epitaxially grown en-
riched layer, is shown in figure 7.2.

Figure 7.2: Original wafer (left) and epitaxial growth of enriched layer (right)

121

Fabrication Process Simulation

Next, a shallow trench isolation (STI) is performed in order to isolate the active area of
the device, forming an island, to shield it from surrounding silicon. A new mask is defined
in order to perform a dry etch via reactive ion etching (RIE). A dry oxidation step follows
to create an oxide thin film as a seed to deposit a thick layer via CVD to fill the trench.
After a chemical mechanical polishing (CMP) step, the device is planarized and the silicon
layer is freshly exposed.

STEP 3: SHALLOW TRENCH ISOLATION

mask name= Si_etching left= -1<nm> right= 33.2<nm> back= -1<nm>
front= 5<nm>ñ→

mask name= Si_etching left= 43.2<nm> right= 50.0<nm> back=-1<nm>
front= 20.0<nm>ñ→

mask name= Si_etching left= -1<nm> right= 50.0<nm> back=15.0<nm>
front= 20.0<nm>ñ→

etch material= {Silicon} type= anisotropic time= 1<min> rate= {0.02}
mask= Si_etchingñ→

diffuse temperature=900<C> time=1<s> O2

deposit material= {Oxide} type= anisotropic time= 1<min> rate= {0.05}

etch material= all type= cmp coord=0.0

In figure 7.3, the main steps for STI are shown.

Figure 7.3: Shallow trench isolation steps: RIE, dry odidation, oxide deposition + CMP

122

Fabrication Process Simulation

Next, it is necessary to mask the device to avoid doping unwanted regions. Before that, a
thin nitride layer is deposited. This prevents retrograde doping, ensuring that the dopant
profile peak remains near the silicon surface rather than being excessively buried. A
thick oxide layer is then deposited to mask the channel, preventing it from incorporating
dopant impurities. While depositing the dopant agent, a thermal activation will make
it penetrate inside this sacrificial oxide layer instead of the silicon channel. The channel
is kept intrinsic to minimize noise arising from crystal imperfections. If doping were
introduced, free carriers would be present, which are likely to have poor confinement due to
their relatively high energy, even at low temperatures, making it difficult to localize them
in a quantum dot and potentially reducing coherence times. Additionally, the dopant-
induced electric fields could perturb the confinement potential, introducing local dipoles
due to differences in electronegativity and atomic number, thereby increasing the risk of
quantum decoherence and shortening qubit lifetimes.

STEP 4: THIN NITRIDE AND THICK OXIDE DEPOSITION FOR MASKING

deposit material= {Nitride} type= anisotropic thickness= 1.5<nm>

deposit material= {Oxide} type= anisotropic thickness= 30.0<nm>
mask name= hard_mask left= -1 right= 25.2<nm> back= -1 front=

@W_halfWafer@ñ→

etch material= {Oxide} type= anisotropic thickness= 30.01<nm> mask=
hard_maskñ→

In figure 7.3, the two main depositions are shown.

Figure 7.4: Thin nitride and thick oxide masking deposition

123

Fabrication Process Simulation

Next, the n-type doping is carried out. Before that, a mesh refinement is done in the
drain region in order to increase the resolution and better visualize the doping profile.
A phosphorus implant is performed to introduce the dopant. Although an ion implanter
is not available, the implant command was used to simulate the surface doping of the
wafer. A subsequent thermal annealing step is carried out to activate the dopant. The
hard mask (nitride and oxide), are then removed by two separate etching steps. These
steps are shown in figure 7.5.

STEP 5: DOPING VIA THERMAL DIFFUSION

refinebox Silicon min= {0.0 0.0 0.0} max= {0.016 0.0332 0.005}
xrefine= {0.001 0.001 0.001} yrefine= {0.01 0.001 0.001} zrefine=
{0.001 0.001 0.001} add

ñ→

ñ→

grid remesh

implant Phosphorus dose= 1.0e+10<cm-2> energy= 1.5<keV> tilt=
45.0<degree> rotation= 0.0<degree>ñ→

diffuse temperature= 500<C> time= 0.1<s>

STEP 6: HARD MASK REMOVAL

etch material= {Oxide} type= anisotropic thickness= 30.01<nm>
etch material= {Nitride} type= anisotropic thickness= 1.501<nm>

Figure 7.5: Doping via thermal diffusion and hard mask removal

124

Fabrication Process Simulation

Next, the gate oxide can be deposited. In this example, it was done via a deposit
command to have a precise thickness, but a dry oxidation can be performed in order to
grow a seed layer for other oxide to be deposited on top via CVD. If a high-k dielectric
is required, it is possible to do a dry oxidation for a small amount of time in order to
have a thin film oxide adhesion layer and then perform atomic layer deposition (ALD)
with a specific precursor. For instance, if hafnium dioxide (HfO2) is needed, the metal-
organic amide tetrakis(dimethylamino)hafnium(IV) (Hf(NMe2)4, TDMAHf) can be used
as precursor, often paired with water as the oxygen source. [27] Alternatively, the inorganic
precursor hafnium tetrachloride (HfCl4) can also be used, typically with water or ozone
as the co-reactant.
Then, a new mask is defined and the oxide is etched to expose the drain contact surface.
The figure 7.6 shows that the oxide was also removed everywhere except above the channel.
The same mask can be used in step 4 for the deposition of the thick oxide hard mask for
channel doping shielding. In this case it is necessary to review the implant and diffusion
parameters, as the hard mask will be significantly smaller than before.

STEP 7: GATE OXIDE DEPOSITION

deposit material= {Oxide} type= anisotropic thickness= @t_gateOx@

mask name= gate_oxides left= -1<nm> right= @L_halfCh@ back= -1<nm>
front= @W_halfCh@ñ→

etch material= {Oxide} type= anisotropic time= 1<min> rate= {0.00201}
mask= gate_oxidesñ→

Figure 7.6: Gate oxide deposition

125

Fabrication Process Simulation

Next, the metal contacts are patterned. For simplicity, a titanium deposition and the
definition of etching masks are implemented in SProcess. However, to more accurately
model metal gate formation, a replace metal gate (RMG) or damascene process should be
used, where a trench is first defined where the contact is to be placed, followed by metal
deposition through sputtering and finalized with a CMP step.

STEP 8: CONTACTS DEFINITION

deposit material= {Titanium} type= anisotropic time= 1<min> rate=
{0.002}ñ→

Middle half barrier gate
mask name= contacts left= -1 right= 2.4<nm> back= -1<nm> front=

@W_halfCh@ñ→

Plunger gate
mask name= contacts left= 4.4<nm> right= 12.4<nm> back= -1<nm> front=

@W_halfCh@ñ→

Second barrier gate
mask name= contacts left= 14.4<nm> right= 19.2<nm> back= -1<nm>

front= @W_halfCh@ñ→

Drain
mask name= contacts left= @L_halfCh@ right= 33.2<nm> back= -1<nm>

front= @W_halfCh@ñ→

etch material= {Titanium} type= anisotropic time= 1<min> rate=
{0.00201} mask= contactsñ→

Figure 7.7: Contacts definition

126

Fabrication Process Simulation

Finally, the geometry can be mirrored twice in order to get the full device. The definition of
electrical contacts can be done, but since this device will not be simulated inside SDevice,
it is completely optional.

STEP 9: DEVICE MIRRORING

transform reflect left
transform reflect back

struct tdr= n1_DQD_DEVICE;

The final device is shown in figure 7.8. By etching the surface oxide outside the STI, it
is possible to observe how the dopant diffuses into the surrounding silicon. This provides
an indication of the minimum spacing required for placing the next device on the same
wafer.

Figure 7.8: Device mirroring and final geometry

127

Fabrication Process Simulation

7.4 Integration of Doping Profiles into Simulations
It is of particular interest to simulate a device that most closely resembles the one that can
be manufactured, especially at PiQuET. One of the most noticeable difference between
the two devices is that so far the source and drain contacts were expressed through a
perfect rectangular volume. In practice, as outlined in the previous section, the doping
concentration is better described as a dopant gradient that penetrates into the silicon.
Simulating the device, characterizing this feature, allows for a better understanding of
its behaviour in a more realistic scenario. To achieve this, the mesh files and simulation
script are modified to incorporate the change. The geometry file must include the doping
profiles as separate regions, forming the source and drain contacts, each to be assigned
with a distinct value of doping concentration.

7.4.1 Definition Inside Autodesk Fusion
To include the doping profiles in the mesh, the gradient must be defined in Fusion. By
importing the NetActive profile from Sentaurus as an image and aligning it with the
contacts, the overall gradient is approximated using three distinct regions. Additional
subdivisions can be introduced to improve the accuracy of the simulation, but increasing
the number of volumes also raises file size and computation time. Furthermore, an ex-
cessive number of regions seems to cause errors or make the convergence of the Poisson
solver more difficult. For this reason, three regions were adopted as a compromise be-
tween simulation accuracy and geometry complexity, while ensuring stable convergence.
In figure 7.9 it is shown the Fusion sketch, replicating the gradient transitions. The sketch
was specifically drawn to distinguish regions that differ by an order of magnitude.

Figure 7.9: Doping profile mesh sketching

128

Fabrication Process Simulation

Then the sketch can be extruded, forming the new regions of one of the contacts. The
outer oxide shell can be reconstructed to resemble the final device. In figure 7.10 these
steps are shown. After that, a geometry mirroring with respect to the XoZ plane can be
done in order to get the full device.

Figure 7.10: Doping profile modelling

The sketching of the doping regions introduced a problem. The geometry now includes a
volume that narrows and approaches zero beneath the last gradient region. This causes
difficulties when attempting to create a conformal geometry in Gmsh, as it cannot deter-
mine where to merge the curves, leading to a failure in processing the geometry. To fix
this, the sketch was modified in order to add an indentation in the faulty gradient region,
that now takes the place of the narrow region of channel. It is important to note the
boolean tolerance set in Gmsh and make the dent bigger that that value. For instance, if
the tolerance is set to 1e− 3, the dent should be bigger than 0.001mm, where millimeters
represents the standard measurement unit of the Fusion workspace. The fix is shown in
figure 7.11.

Figure 7.11: Doping profile modelling correction

The geometry can now be exported and used in the Gmsh .geo file.

129

Fabrication Process Simulation

7.4.2 Handling in Gmsh
As for the source and drain definition in the condition of a solid single volume, now the
three areas can be labelled to be different regions to be assigned inside the simulation.

Physical Volume("source_npp") = {10};
Physical Volume("source_np") = {11};
Physical Volume("source_n") = {9};

Physical Volume("drain_npp") = {2};
Physical Volume("drain_np") = {3};
Physical Volume("drain_n") = {1};

The tags _npp (n++), _np (n+) and _n (n) represents the three regions of different doping
concentration, starting from the higher one, assigned to the gradient closest to the surface,
to the lowest one, forming the interface with the channel.

Figure 7.12: Doping profile handling

The final mesh, with the external oxide hidden in order to show the interior, is shown in
figure 7.13. The new physical volumes can now be labelled inside QTCAD to introduce
the doping profiles simulation.

Figure 7.13: Doping profiles meshed, oxide volume is not shown

130

Fabrication Process Simulation

7.4.3 QTCAD Code Adaptation
The simulation code needs just few modification in order to incorporate the doping profiles.
The three doping concentrations needs to be defined. The default value is assigned to the
top region, while the others are scaled accordingly to the NetActive scale retrieved from
Sentaurus. In this case, the regions differs for one order of magnitude, so the other two
values are scaled as one tenth and one hundredth of the top concentration.

DEFINE THE DIFFERENT DOPING CONCENTRATIONS TO BE USED. REFER TO
SIMULATION RESULTS FROM SENTAURUSñ→

doping_npp = n_doping # Define the n_doping as the peak
concentration, localized at the surfaceñ→

doping_np = n_doping * 1e-1 # Define the second doping
concentration as one order of magnitude less wrt peak
concentration

ñ→

ñ→

doping_n = n_doping * 1e-2 # Define the third doping
concentration as two order of magnitude less wrt peak
concentration

ñ→

ñ→

Then, the new regions needs to be labelled with a physical group. Following the tags used
in Gmsh, each volume is assigned to the designated doping concentration.

d.new_region("source_npp", semiconductor, pdoping=0,
ndoping=doping_npp)ñ→

d.new_region("source_np", semiconductor, pdoping=0,
ndoping=doping_np)ñ→

d.new_region("source_n", semiconductor, pdoping=0,
ndoping=doping_n)ñ→

d.new_region("drain_npp", semiconductor, pdoping=0,
ndoping=doping_npp)ñ→

d.new_region("drain_np", semiconductor, pdoping=0,
ndoping=doping_np)ñ→

d.new_region("drain_n", semiconductor, pdoping=0,
ndoping=doping_n)ñ→

These two modifications are sufficient to accommodate the new mesh and to simulate the
behaviour of the doping profiles through thermal diffusion.

131

Fabrication Process Simulation

7.5 Silicides
Silicides are compounds formed by the reaction of silicon with metals, commonly used to
reduce contact resistance between highly doped silicon and metal contacts. They provide
low-resistivity contacts for source, drain and gate regions in CMOS devices, improving
current flow and overall device performance. Silicides also enhance thermal stability and
reliability of metal-silicon interfaces during high-temperature processing. For this work,
the use of a silicide material as a replacement to doped silicon was investigated in order
to account for the unavailability of an ion implanter at PiQuET.
To replace the silicon drain, a series of silicidation steps are done in order to make all the
silicon underneath react with the metal. These steps include the deposition of titanium,
the definition of a mask for etching around the drain, an annealing to make the two
materials react to form TiSi2, and finally a CMP to remove excess material.

deposit material= {Titanium} type= anisotropic time= 1<min> rate=
{0.010}ñ→

mask name= silicide left= 16.20<nm> right= 41.2<nm>
etch material= {Titanium} type= anisotropic time= 1<min> rate=

{0.0101} mask= silicideñ→

diffuse temperature= 500<C> time= 120<s>
etch type= cmp coord= 0.0 material= all

Figure 7.14: Silicidation steps

As shown in figure 7.14, the silicidation steps introduces a structure deformation that
cannot be controlled. This negatively affects the reproducibility of the simulation results.
Furthermore, the modelling of the material, as it is or by using an equivalent doped silicon,
need to be addressed in a precise way in order to include the effects of this fabrication step
inside the quantum simulations. These two issues present a significant barrier, making the
idea of using silicides as a substitute for doped silicon contacts impractical. Consequently,
this approach was discarded.

132

Fabrication Process Simulation

7.6 Barrier Gate Manufacturing
The need for such a small device led to challenges in defining the gate metallizations.
In particular, the smallest gates, the barrier gates, may be below the resolution limit of
the EBL, making them difficult to fabricate. To address this issue, a different approach
was investigated. The idea is to define source, drain and plunger gate contacts as usual
and then exploit the oxidation of metal to create a dielectric barrier to accommodate and
isolate the barrier gates contacts, realized by depositing another metal layer and then per-
forming a CMP. In order to oxidate metals, an electrochemical surface treatment called
Plasma Enhanced Oxidation is employed. It is similar to anodizing, but it operates at
much higher voltages, leading to micro-discharges that generate a plasma capable of mod-
ifying the oxide layer’s structure. This technique enables the formation of thick (ranging
from tens to hundreds of micrometers) and predominantly crystalline oxide coatings, par-
ticularly on metals such as aluminium, magnesium and titanium. [10] This process could
not be simulated inside Sentaurus Process with ease, so it was modelled with an oxide
deposition. The main drawback is that with a metal oxidation, the oxide starts forming
from the metal contact, growing perpendicularly to the surface, while by depositing an
oxide layer it adds to the thickness seen by the barrier-silicon gate capacitance. This
could not be an issue if correctly modelled inside the quantum simulations. The main
fabrication steps, are shown in figure 7.15.

Figure 7.15: Barrier gates manufacturing steps

The main SProcess code is now analyzed, accounting for an oxide deposition as a replace-
ment for plasma enhanced oxidation.

133

Fabrication Process Simulation

The code follows the one explained in Section 7.3, just before the contacts definition. In
this case, the definition of the barrier gates is not performed. As explained in Section 7.3,
metal gate fabrication is modelled as a straightforward deposition and etching step for
simplicity. A more realistic approach would involve damascene processing.

STEP 1: PLUNGER AND DRAIN CONTACTS

deposit material= {Titanium} type= anisotropic thickness= 5.0<nm>

mask name= plungerANDdrain1 left= 4.4<nm> right= 12.4<nm> back=
-1<nm> front= 5.0<nm>ñ→

mask name= plungerANDdrain1 left= 21.2<nm> right= 33.2<nm> back=
-1<nm> front= 5.0<nm>ñ→

etch material= {Titanium} type= anisotropic thickness= 5.01<nm> mask=
plungerANDdrain1ñ→

Figure 7.16: Gate definition

134

Fabrication Process Simulation

Next, metal oxidation is carried out to form a dielectric layer that insulates the contacts
while simultaneously creating a small trench for barrier gate deposition. Since metal
oxidation is not easily achievable in SProcess, the process was emulated by depositing a
placeholder dielectric, in this case silicon dioxide, as a substitute for the metal oxide. To
support this approach, a mask slightly smaller than the gate contacts is used to ensure
lateral deposition. The isotropic deposition effectively replicates the behaviour of metal
oxide growth, protruding perpendicularly from the metal gate surface. If an anisotropic
deposition is used instead, it is necessary to keep in mind that the oxide layer will grow onto
the existing trench, adding to the total barrier gate oxide thickness. Another approach
could involve etching the oxide using the active area mask, with the oxide beneath the
drain and plunger gate protected by the metal, followed by oxide deposition. However,
the absence of a seed oxide layer could pose challenges for this method. Therefore, an
isotropic deposition was performed.

STEP 2: OXIDATION

mask name= plungerANDdrain2 left= 1.27<nm> right= 15.4<nm> back=
-1<nm> front= 8.0<nm> negativeñ→

mask name= plungerANDdrain2 left= 18.2<nm> right= 36.2<nm> back=
-1<nm> front= 8.0<nm> negativeñ→

deposit material= {Oxide} type= isotropic time= 1<min> rate= {0.004}
mask= plungerANDdrain2ñ→

Figure 7.17: Plasma Enhanced Oxidation

135

Fabrication Process Simulation

Next, the titanium is deposited via sputtering. The direction vector along the multiple
etching steps are performed in order to emulate the directional deposition of those physical
vapour deposition (PVD) machines, which is typically around 20 ÷ 30° of tilt.

STEP 3: TITANIUM DEPOSITION

refinebox Titanium min= {-14.0 0.0 0.0} max= {0.0 0.0332 0.006}
xrefine= {0.001 0.001 0.001} yrefine= {0.001 0.001 0.001}
zrefine= {0.001 0.001 0.001} add

ñ→

ñ→

grid remesh

deposit material= {Titanium} type= directional thickness= 8.0<nm>
direction= {0.5 1 1}ñ→

mask name= barriers left= -1<nm> right= 21.2<nm> back= -1<nm> front=
5.0<nm>ñ→

etch material= {Titanium} type= directional thickness= 8.01<nm>
direction= {0.5 1 1} mask= barriersñ→

etch material= {Titanium} type= directional thickness= 8.01<nm>
direction= {0.5 -1 1} mask= barriersñ→

etch material= {Titanium} type= directional thickness= 8.01<nm>
direction= {0.5 -1 -1} mask= barriersñ→

etch material= {Titanium} type= directional thickness= 8.01<nm>
direction= {0.5 1 -1} mask= barriersñ→

Figure 7.18: Metal deposition and directional etching

136

Fabrication Process Simulation

Finally, a thick layer of oxide is deposited and a final CMP planarizes the whole device.
The geometry is mirrored twice to obtain the final device, as shown in figure 7.19.

STEP 4: PLANARIZATION + CMP

deposit material= {Oxide} type= anisotropic time= 1<min> rate=
{0.014}ñ→

etch type= cmp coord= -0.004 material= all

STEP 5: GEOMETRY MIRRORING

transform reflect left
transform reflect back

struct tdr= n1_DQD_COMPLETE;

Figure 7.19: CMP + Mirroring

137

Chapter 8

Experimental Results from
QTCAD

In this chapter, the main simulation results from QTCAD for each device are presented
and discussed. While the transport simulations were carried out manually by selecting
a promising configuration, setting the input parameters and starting the computation,
the confinement simulations were performed with a modified version of the batch runner,
enabling the simultaneous processing of all devices. This modified runner script reduces
human intervention, as each device simulation can take up to two hours and manually
changing input configurations between devices is time consuming. The runner was left to
operate autonomously overnight, completing the simulation of all devices in approximately
nine hours, while notifying via email about the progress, as explained in Chapter 6. It
automatically compute, for each device, the lever arm curves for the first four energetic
states, the ground state lever arm sweep for different values of applied voltage on the first
plunger gate and the computation of confinement defined on

• plunger_values = [0.5, 0.6, 0.8, 1.0, 1.2]

• doping_values = [1e15*1e6,1e16*1e6,1e17*1e6,1e18*1e6,1e19*1e6,1e20*1e6]

• barrier_values = [-0.1, -0.2, -0.3]
giving a total of 5 · 6 · 3 = 90 simulation configurations for each device. Given the high
number of results, this section shows only six of them for each device: some were selected
based on their score and others to highlight defective behaviour in certain configurations,
such as wavefunction asymmetry in double quantum dot devices.

For three-dimensional devices, the wavefunctions were cropped around the channel (such
as the top section of a fin or the center of a nanowire) rather than the entire device,
excluding regions that do not contribute to the results and would otherwise produce clut-
tered or less informative plots. For this reason, the z-axis cumulative confinement levels
for nanowire devices needs to be interpreted as the bottom half of the nanowire. For
instance, if 6σ is at −2nm, the dot is 99.9999% confined in a 4nm region centred at the
dot origin.

138

sqd_soi_planar
Structure 1

Confinement results

Single Quantum Dot
SOI Planar

Experimental Results from QTCAD

139

Transport results

Charge Stability Diagram

Experimental Results from QTCAD

140

dqd_soi_planar
Structure 2

Confinement results

Double Quantum Dot
SOI Planar

Experimental Results from QTCAD

141

Transport results

Charge Stability Diagram

Experimental Results from QTCAD

142

sqd_soi_planar_dp
Structure 3

Confinement results

Double Quantum Dot
SOI Planar

Doping profiles modelled

Experimental Results from QTCAD

143

Transport results

Charge Stability Diagram

Experimental Results from QTCAD

144

dqd_soi_planar_dp
Structure 4

Confinement results

Single Quantum Dot
SOI Planar

Doping profiles modelled

Experimental Results from QTCAD

145

Transport results

Charge Stability Diagram

Experimental Results from QTCAD

146

sqd_soi_finfet
Structure 5

Confinement results

Single Quantum Dot
SOI FinFET-like

Simulated fin tip only

Experimental Results from QTCAD

147

Transport results

Charge Stability Diagram

Experimental Results from QTCAD

148

sqd_gaafet_nanowire
Structure 6 Single Quantum Dot

Gate All Around Nanowire
Substrate and contacts defined

Confinement results

Experimental Results from QTCAD

149

Transport results

Charge Stability Diagram

Experimental Results from QTCAD

150

dqd_gaafet_nanowire
Structure 7

Confinement results

Double Quantum Dot
Gate All Around Nanowire
Only nanowire simulated

Experimental Results from QTCAD

151

Transport results

Charge Stability Diagram

Experimental Results from QTCAD

152

Experimental Results from QTCAD

Results Analysis and Comments

Overall, all the simulated devices exhibited satisfactory results that are consistent with
expectations. The confinement analysis showed that all the devices can create a quantum
dot in the intended location and it is possible to tune the wavefunction shape by modifying
the input parameters. Charge stability diagrams show that, as expected, smaller struc-
tures are more effective at achieving confinement, as evidenced by the presence of larger
Coulomb diamonds. However, such dimensions, in the order of only a few nanometers,
are often extremely challenging to realize in practice. For this reason, larger devices, such
as sqd_soi_planar_dp and dqd_soi_planar_dp, were also defined in order to study a
complementary but scaled-up version of the system. The particle addition spectrum of
the device dqd_soi_planar, which has a dimension of 43x14x7 nm, exhibits only diagonal
lines. The lever arm matrix for this simulation indicates a nearly symmetric coupling of
all gates to both dots. The values range from approximately 0.19 to 0.26 and the columns
are almost identical, meaning that each gate influences both dots at the same time. This
strong cross-capacitance explains why the stability diagrams displays diagonal lines rather
than the expected rectangular or hexagonal cells. This limits independent control of the
dots and the only apparent solution is to increase the device dimensions in order to further
space the two plunger gates.

In DQD devices, it is common to observe asymmetric dot confinement, which can occur
even when the geometry and gate voltages are nominally symmetric. Such asymmetries are
partly due to numerical artifacts, where the discretization of the simulation domain and
finite-element meshing introduce small energy offsets (on the order of a few µeV), which
result in an unintended detuning between the two dots. [46] Tracy et al. (2010) demon-
strate that this asymmetry arises in real devices from a combination of fabrication-related
imperfections, such as variations in oxide thickness, local disorder in the semiconductor
and trapped charges within the dielectric layers, all of which can locally modify the elec-
trostatic potential. These effects may lead to differences in dot size, confinement strength
or coupling to the gates, resulting in one dot being energetically higher or lower than the
other. In experimental devices, such intrinsic asymmetries are often compensated by ap-
plying slightly different voltages to the plunger or barrier gates. This allows the potential
landscape to be tuned, bringing the dots closer to energy degeneracy and enabling more
symmetric confinement and controlled inter-dot tunnel coupling. [50]

The lever arm coefficients were computed for the first four states (ground state up to
the third excited state) and exhibit some degree of nonlinearity. To better model the
confinement simulations, a lever arm matrix was constructed and for any specific plunger
voltage, an interpolation algorithm was used to retrieve the corresponding coefficient,
even if it had not been computed directly. The lever arm coefficient can be reduced by
modifying the capacitance of the associated gate, for instance by increasing the oxide
thickness or using a low-k dielectric. A lower lever arm allows a wider range of plunger
voltages, helping to mitigate instrumentation inaccuracy and noise. However, transport
analysis shows that this also leads to less well-defined cells in the particle addition spec-
trum. Therefore, it is necessary to increase the lever arm to ensure suitable transport
behaviour for DQD devices. To better model this phenomenon, a high-k dielectric, specif-
ically hafnium dioxide (HfO2), was employed for the computation of the particle addition
spectrum to achieve more satisfactory results. In addition, the slopes of the transition
lines in the charge stability diagram are determined by the lever arm matrix for a DQD
device. Nearly orthogonal lines indicate that the plunger gates of one dot couple only

153

Experimental Results from QTCAD

weakly to the other, meaning cross-capacitance effects are negligible. As mentioned ear-
lier, this behaviour can be attributed to the thinness of the gate oxide relative to the
distance between the dots. For devices with thicker gate oxides, the transition lines would
intersect at more obtuse angles. [31] Due to the fact that

CG ∼ ϵrϵ0A

tox
,

CHfO2

CSiO2

≈ 25
3.9 ≈ 6.4

the use of hafnium dioxide resulted in transition lines that are 6.4 times less sloped, al-
lowing the diagram to show the expected rectangular or hexagonal cell structure instead
of diagonal lines. If the charge stability diagram shows lines artifacts as the plunger
voltages increase, it may indicate that the dots are too strongly coupled. This issue can
be mitigated by increasing the interdot barrier, by lowering the voltage applied to the
central barrier gate. The plots that shows the ground state lever arm coefficient with
respect to the applied plunger voltage for different values of doping concentration shows
that for high enough voltages the dot energy slope tends to became constant and that it
became independent of the doping concentration. In the ideal case, the lever arm coef-
ficient should remain constant, meaning that the slope of the energy with respect to the
plunger voltage would follow a linear relation independently of any other input parameter.

By analysing the plots that compare the variation of the probability density function
peak position and its cumulative confinement levels with respect to the applied plunger
voltage and the source/drain doping concentration, it becomes evident that higher volt-
ages tend to pull the quantum dot closer to the gate oxide interface, thereby modifying its
electrochemical potential through the lever arm coefficient. Given the fact that plunger
voltages below 0.4 ÷ 0.5V often are not enough to guarantee a suitable local minima in
the conduction band, thereby not leading to the formation of the quantum dot, it can be
stated that all the planar devices exhibit a broadly similar behaviour, with a "pull ratio"
of approximately 2nm/V .

It is possible to observe that for gate all around nanowire devices, where the dot is lo-
calized at the center of the channel by the potential barrier given from the silicon-oxide
interface, the study of z-axis peak location and cumulative confinement levels is not mean-
ingful. In particular, the peak of the wavefunction is located at the exact same spot for
all the plunger voltages, ideally at zero, but in practice exhibiting a negligible offset (on
the order of 10−11) due to numerical inaccuracies. This is consistent with expectations, as
the use of a three-dimensional architecture provides improved electrostatic confinement
due to the gates surrounding the entire channel.

In an old computation of the particle addition spectrum for the device dqd_gaffet_nanowire
the expected pattern was partially interrupted by a central gap where charge transitions
are absent. This effect can be attributed to few-electron regime that, due to the capacitive
asymmetries, prevent both dots from being occupied simultaneously. These mechanisms
lead to missing or broken charge transition lines, which manifest as a gap instead of closed
stability cells. This issue was fixed by the use of a more refined mesh (from 163816 to
374905 nodes) for the charge stability diagram computation.

154

Chapter 9

Conclusions

In conclusion, the workflow proved to be effective and the customizable nature of the code
makes it possible to adapt the simulation environment to more complex structures, while
also enabling tailored post-processing of the obtained results. The simulation scripts were
designed to easily accommodate modifications to further reduce human intervention, en-
abling the simulation of multiple devices and configurations in background while allowing
attention to be focused on other tasks.

The simulated devices show behaviour that is in line with expectations. The confine-
ment is guaranteed by the applied potential landscape and transport simulations shows
that dot occupancies is possible with current and voltages magnitudes that are commonly
found in the scientific literature. The only aspect that requires further investigation is
the simulation of gate stack with different oxides, such as a thin film of silicon dioxide
adhesion layer combined with a high-k dielectric. This would allow a more accurate eval-
uation of realistic gate capacitance and their impact on the quantum dots. The modelling
of improved and more realistic charge stability diagrams is essential to determine the
appropriate voltages needed to ensure correct carrier occupancies, as the current results
shows that a thin film of silicon dioxide alone, for the implied device dimensions, is not
sufficient to guarantee the expected cells on particle addition spectrums. Larger devices,
or alternative architectures, may operate as intended when silicon dioxide is used, as re-
ported in the literature. Furthermore, the use of more dense meshes could in practice
provide high definition results and solve problems related to numerical inaccuracies that
could lead to asymmetries and instability. It is necessary to avoid increasing the mesh
node density excessively, as this could lead to convergence failures in the Poisson and
Schrödinger solvers.

The fabrication simulation inside SProcess shows that the manufacturing of a planar
device is feasible with standard state-of-the-art CMOS/VLSI processes. To more accu-
rately model the fabrication process, a suitable damascene process should be implemented
for the production of gate contacts. The one step that requires specific attention is the
definition of the isotopically enriched silicon layer via epitaxial growth.

155

Chapter 10

Future Implementations

The development of the workflow for simulating custom CAD defined geometries in QT-
CAD was time consuming due to the need to fix several issues and find workarounds for
unsupported features. As a result, some of the originally planned ideas for this work were
postponed, allowing more time and effort to be focused on the core objectives of the study.
Some of these ideas could not be fully explored and are therefore considered for future
implementations.

Primarily, once the core features for studying quantum confinement are refined, it be-
comes fundamentally important to extend the analysis to better simulate the device in a
realistic scenario. Firstly, the focus was placed on the simulation of process variations.
At the nanoscale, it becomes critical to study how these variations influence the quantum
confinement behaviour of the device. Once the device can be reliably operated as a quan-
tum dot, it can be simulated as a host for a spin qubit to study its dynamics and noise
behaviour, with particular emphasis on identifying the physical parameters that influence
the latter and how to improve the design.

Next, it may be valuable to simulate in QTCAD the results obtained from SProcess.
In particular, extracting and reusing the resulting geometry, which provides a more re-
alistic representation of how the device structure would appear after fabrication, could
potentially lead to more accurate simulations results. Moreover, incorporating the ex-
tracted doping profiles, rather than approximating them as a discrete set of regions with
uniform doping concentrations, could further enhance the reliability of the results.

156

Future Implementations

10.1 Simulating Process Variations
It is of fundamental interest not only to simulate the behaviour of the device, but also
how it will perform in the presence of process variations. At the nanoscale, the main
process that may cause deviations from the simulated behaviour are those related to gate
fabrication. To simulate variations in an automatic and systematically reproducible man-
ner, without manually defining multiple variations of the same device geometry, a python
script called remesh.py was employed, available in the attachments appendix as script
C.2. The approach consists of merging all gate oxide volumes with the overall oxide,
forming a single continuous volume. A new surface, with specific dimensions, is then
positioned at a defined coordinate on the top of the oxide, labelled in Gmsh and used as
the boundary for a gate contact. By repeating this procedure, all gate contacts can be
created. Varying the gate surface dimensions in a controlled or random manner allows
the simulation of process variations. Additional scripts can be developed to automatically
define gate configurations, generate the corresponding mesh, run simulations and repeat
this for a specified number of configurations, enabling analysis of how device behaviour
changes with respect to gate variations, in a manner similar to the one employed by the
batch runner, as described in Section 6.2.

The code begins by importing both the STEP and IGES files, with the filename spec-
ified as an argument to the script, e.g., python remesh.py filename. The Gmsh Open-
Cascade kernel then imports all shapes (volumes in the CAD file) from the IGES file,
which retains the names defined in the CAD software, into a new workspace. Each
time an element is imported or modified, the workspace must be synchronized using
gmsh.model.occ.synchronize().
Exporting in IGES is not supported by the Gmsh kernel, so the output file will be exported
as a STEP file.

iges_file = f"{ file_base} .iges"
step_file = f"{ file_base} _mod.step"
output_file = "output.step"

if not os.path.exists(iges_file):
print(f"Error: IGES file '{ iges_file} ' not found.")
sys.exit(1)

gmsh.initialize()
gmsh.option.setNumber("General.Terminal", 1)
gmsh.model.add("modified_model")

gmsh.model.occ.importShapes(iges_file)
gmsh.model.occ.synchronize()

157

Future Implementations

Next, the function get_shapes_dict retrieves all available shapes along with their tags
and names. A for loop is then used to print them all.

shapes_dict = get_shapes_dict()
print("[FOUND] Shapes found (name -> (dim, tag)):")
for name, ents in shapes_dict.items():

print(f" - { name} : { ents} ")

[FOUND] Shapes found (name -> (dim, tag)):
- drain_n: [(3, 1)]
- drain_npp: [(3, 2)]
- drain_np: [(3, 3)]
- barrier_2: [(3, 4)]
- plunger_2: [(3, 5)]
- barrier_3: [(3, 6)]
- oxide: [(3, 7)]
- channel: [(3, 8)]
- source_n: [(3, 9)]
- source_npp: [(3, 10)]
- source_np: [(3, 11)]
- plunger_1: [(3, 12)]
- barrier_1: [(3, 13)]

Once the software has assigned a tag to each shape, the function union_shapes_by_labels
can be used to merge all oxide regions into a single volume. The tag of the resulting oxide
shape is then retrieved by scanning all shapes.

labels_to_merge = ["plunger_1", "plunger_2", "barrier_1",
"barrier_2", "barrier_3", "oxide"]ñ→

merged = union_shapes_by_labels(labels_to_merge, shapes_dict)
resulting_volumes = gmsh.model.occ.getEntities(dim=3)
oxide_tag = 0
for dim, tag in resulting_volumes:

name = gmsh.model.getEntityName(dim, tag)
if name == "Shapes/oxide":

oxide_tag = tag

Next, the function get_z_max_of_label retrieves the maximum z-axis point value of the
shape with the tag oxide. The value is rounded to avoid numerical inaccuracies. Then,
the function add_surface inserts a new surface at the previously determined z coordinate.
In this example, the x and y coordinates of the surface center are both 0 and the gate
surface has dimensions 20×10 (arbitrary scale in Gmsh, nanometers in QTCAD) with the
name top_contact. The function automatically returns its tag value.

158

Future Implementations

z = round(get_z_max_of_label("oxide", shapes_dict), 1)
surf_tag = add_surface(0, 0, 20, 10, z, name="top_contact")
print(f"[DONE] Surface 'top_contact' added with tag { surf_tag} ")

Next, the new gate surface must be merged with the top oxide surface. To do this,
the program requires the surface tag, which is not known in advance. A custom function,
print_surface_tags_with_info, is used to print all surface tags along with their relevant
information.

print_surface_tags_with_info("Shapes/oxide")

[SEARCH] Surfaces of volume ’Shapes/oxide’ (tag=12):
- Surface tag: 94 | center = [0.0, 0.0, 2.0]
- Surface tag: 95 | center = [0.0, -7.0, -8.000000000000002]
- Surface tag: 96 | center = [35.2, 0.0, -8.000000000000002]
- Surface tag: 97 | center = [0.0, 7.0, -8.000000000000002]
- Surface tag: 98 | center = [-35.2, 0.0, -8.000000000000002]
- Surface tag: 99 | center = [-33.2, 0.0, -7.000000000000002]
- Surface tag: 100 | center = [0.0, 5.0, -7.000000000000002]
- Surface tag: 101 | center = [-21.5, 0.0, 0.9999999999999998]
- Surface tag: 102 | center = [0.0, -5.0, -7.000000000000002]
- Surface tag: 103 | center = [33.2, 0.0, -7.000000000000002]
- Surface tag: 104 | center = [21.5, 0.0, 0.9999999999999998]
- Surface tag: 105 | center = [0.0, 0.0, -18.0]
- Surface tag: 106 | center = [0.0, 0.0, -16.0]
- Surface tag: 107 | center = [0.0, 0.0, 0.0]

These tag values do not correspond directly to the surface numbers displayed in Gmsh, so
a trial-and-error approach is required to manually identify the surface tag corresponding
to the top oxide surface. This tag is then used in the following lines of code to merge the
newly added gate surface with the top oxide surface via the gmsh.model.occ.fragment
command. This function expects a list of tuples, where each tuple represents a single el-
ement. In the tuple (2, surface_tag), the first number indicates the element’s dimension,
2 in this case, corresponding to a surface, while the second is the surface tag.

top_tag = 94 # To be found manually

fused_surfaces, _ = gmsh.model.occ.fragment([(2, surf_tag)], [(2,
top_tag)])ñ→

gmsh.model.occ.synchronize()

159

Future Implementations

At this point, the oxide shape has three distinct top surfaces: the original surface, the
newly added gate surface and the fused surface. The first two must be removed so that
only the fused surface remains. Then the output file is exported.

gmsh.model.occ.remove([(2, surf_tag)])
gmsh.model.occ.synchronize()

gmsh.model.occ.remove([(2, top_tag)])
gmsh.model.occ.synchronize()

gmsh.write(output_file)
gmsh.finalize()

This step contains the main issue that prevents the script from working correctly and
needs to be addressed. The main problem is that the new surface fails to merge with
the rest of the shape, preventing proper assignment to physical groups in Gmsh and,
consequently, the quantum simulation in QTCAD. A thorough understanding of how the
OpenCascade kernel operates is required to address this issue and correctly define all
gate surfaces, enabling the proper introduction of process variations into the mesh and
simulation environment. The final mesh, as well as an example of meshing issue, are
shown in figure 10.1.

Figure 10.1: Gate definition in Gmsh for process variations

160

Future Implementations

10.2 Mesh Extraction From Sentaurus Process
In Sentaurus Process, the resulting geometry provides a close approximation of the device
as it would appear following actual fabrication steps. Some additional steps can be per-
formed to extract the final geometry, apply post-processing cleaning and adaptations and
then prepare it for handling in Gmsh and simulation in QTCAD. Analysing the quantum
behaviour of the actual device, as fabricated in Sentaurus, provides an additional level of
fidelity, allowing a better understanding of device performance in a realistic context rather
than assuming a perfect geometry. As of now, there is no conclusive evidence that this
concept can be realized. First, the mesh needs to be extracted from Sentaurus and then
preprocessed to be handled in Gmsh. A thorough understanding of how the software ap-
plies physical groups is required. In this work, physical group assignments were performed
on the geometries only. Assigning them directly on meshes is non-trivial and requires cus-
tom workflows and several workarounds, as this functionality is not natively supported by
Gmsh and compatibility with QTCAD is even less straightforward. Addressing this issue
could be a subject of future work to better visualize the effects of a realistic structure on
quantum behaviour. However, modelling a device using the Sentaurus mesh as a reference
currently remains the easiest and fastest way to achieve reliable results.

10.3 Simulating Qubit Package
This work focused on the study of quantum confinement. The next step is to simulate
the device as a qubit. In cases where simulations showed that the device correctly formed
a quantum dot at the desired location, it is of fundamental interest to consider that dot
as a potential site for a spin qubit. QTCAD provides a versatile framework for modelling
and simulating spin qubits, with particular emphasis on Electric Dipole Spin Resonance
(EDSR). In EDSR, a time-dependent voltage bias is applied to manipulate the spin of an
electron confined in a quantum dot. This manipulation is enabled by spin-orbit coupling,
which may either be intrinsic to the material or induced artificially via a micromagnet.
After defining the quantum dot, a magnetic field is applied to introduce the Zeeman
splitting, which separates the spin states. Then, a time-dependent voltage is applied
to one of the gates to actively manipulate the spin of the electron. Finally, the device
dynamics are simulated, allowing the study of phenomena such as Rabi oscillations and
the coherent evolution of the spin qubit.

161

Part III

Attachments

162

Appendix A

Python Tool Scripts

A.1 device_config.py

1 import re
2 import sys
3

4 if len(sys.argv) < 2:
5 sys.exit (1)
6

7 input_file = sys.argv [1]
8 dev_name = "d"
9 output_file = " device_config .txt"

10

11 volume_pattern = r'Physical Volume \("([^"]+) "\)\s*=\s *\{[^}]*\}; '
12 surface_pattern = r'Physical Surface \("([^"]+) "\)\s*=\s *\{[^}]*\};

'
13

14 with open(input_file , "r") as f:
15 content = f.read ()
16 volumes = re. findall (volume_pattern , content)
17 surfaces = re. findall (surface_pattern , content)
18

19 with open(output_file , "w") as f:
20 f.write('''# MATERIAL PARAMETERS \n
21 semiconductor = mt.Si
22 p_doping = 0*1 e6
23 n_doping = 0*1 e6
24 dielectric = mt.SiO2
25 metal_workfunction = semiconductor .chi+ semiconductor .Eg/2
26 \n
27 ''')
28

29 f.write("# REGION AND BOUNDARIES CONDITION DEFINITION \n\n")
30

163

Python Tool Scripts

31 # VOLUMES
32 volume_lines = []
33 for name in volumes :
34 if name. startswith ("semi_"):
35 args = " semiconductor "
36 elif name. startswith (" nsemi_ "):
37 args = " semiconductor , pdoping =0, ndoping = n_doping "
38 elif name. startswith (" psemi_ "):
39 args = " semiconductor , pdoping =p_doping , ndoping =0"
40 elif name. startswith ("diel_"):
41 args = " dielectric "
42 else:
43 continue
44 volume_lines . append ((name , args))
45

46 if volume_lines :
47 max_len = max(len(name) for name , _ in volume_lines)
48 for name , args in volume_lines :
49 spaces = " " * (max_len - len(name))
50 f.write(f'{ dev_name }. new_region ("{ name }",{ spaces } {args })\

n')
51

52 f.write("\n")
53

54 # SURFACES
55 surface_lines = []
56 for name in surfaces :
57 if name. startswith (" gatebnd_ "):
58 surface_lines . append ((name , f"{ dev_name }. new_gate_bnd (\"{

name }\", 0, metal_workfunction)"))
59 elif name. startswith (" ohmicbnd_ "):
60 surface_lines . append ((name , f"{ dev_name }. new_ohmic_bnd (\"{

name }\")"))
61

62 if surface_lines :
63 for line in surface_lines :
64 f.write(line [1] + "\n")

Listing A.1: device_config.py - Generates a QTCAD API python code for the definition
of volumes and surfaces physical groups, starting from the GMSH .geo file where the mesh
is defined, to do a copy&paste inside the simulation script. This is used to save time and
the use of this script is absolutely optional.

164

Python Tool Scripts

A.2 mesh_volume.py

1 import meshio
2 import numpy as np
3

4 def tet_volume (p0 , p1 , p2 , p3):
5 # Computes the volume of a single tetrahedron
6 return np.abs(np.dot ((p1 - p0), np.cross(p2 - p0 , p3 - p0))) /

6.0
7

8 def volume (mesh_path):
9 # Computes the total volume of a tetrahedral mesh

10 # Returns None in case of an error
11 try:
12 mesh = meshio .read(mesh_path , file_format ="gmsh")
13 points = mesh. points
14 tetra_cells = mesh. cells_dict .get("tetra", None)
15

16 if tetra_cells is None:
17 raise ValueError ("The mesh does not contain

tetrahedral elements .")
18

19 total_volume = 0.0
20 for tet in tetra_cells :
21 p0 , p1 , p2 , p3 = points [tet]
22 total_volume += tet_volume (p0 , p1 , p2 , p3)
23

24 return total_volume
25 except Exception as e:
26 print(f"[ERROR] Volume calculation failed : {e}")
27 return None

Listing A.2: mesh_volume.py - Starting from the mesh file path, this script calculates
the volume of the latter. This is used to define the desired number of nodes the mesh
should have based on the granularity factor (such as nodes over cubic nanometer). This
parameter can be used in the adaptive Poisson solver in the simulation file. Note: even if
this script can help automate the simulation, it takes some time and may represent a huge
time sink when dealing with batch simulations. Also, with the import of CAD-defined
geometries, the adaptive poisson solver does not work right now. A better way is to
look at the geometry volume in the CAD software or by using some online tools such as
https://3dviewer.net and then define by hand the desired granularity and tweak the
Mesh.MeshSizeMax parameter inside GMSH.

165

https://3dviewer.net

Python Tool Scripts

A.3 z_for_threshold.py

1 import numpy as np
2

3 def z_for_threshold (z_nm , pdf , threshold =0.99) :
4 # Sort z from positive to negative
5 sort_idx = np. argsort (-z_nm)
6 z_sorted = z_nm[sort_idx]
7 pdf_sorted = pdf[sort_idx]
8

9 # Calculate dz (with positive sign)
10 dz = np.abs(np. gradient (z_sorted))
11

12 # Calculate total integral for normalization
13 total_area = np.sum(pdf_sorted * dz)
14 if total_area <= 0:
15 raise ValueError ("Total integral is zero or negative

invalid pdf.")
16

17 # Calculate normalized cumulative sum
18 cumulative = np. cumsum (pdf_sorted * dz) / total_area
19

20 # Find first index where cumulative exceeds the threshold
21 if cumulative [-1] < threshold :
22 idx = len(z_sorted) - 1
23 else:
24 idx = np. searchsorted (cumulative , threshold)
25

26 return z_sorted [min(idx , len(z_sorted) -1)]

Listing A.3: z_for_threshold.py - This function takes as input the z coordinate in
nanometers, the normalized probability density function along that axis and a threshold
factor. It calculates where the integral of the normalized probability density function
starting from the beginning of the z axis reach the threshold parameter. This is used to
compute the probability density function z-axis cumulative confinement levels, in order
to see at which depth the carrier is confined with a certain fidelity.

166

Python Tool Scripts

A.4 mat_merge.py

1 import os
2 import numpy as np
3 from scipy.io import loadmat , savemat
4

5 def merge_dot_results (base_folder =" batch_results ", output_file ="
dot_z_locations .mat"):

6

7 folders = [os.path.join(base_folder , d) for d in os. listdir (
base_folder) if os.path.isdir(os.path.join(base_folder , d)
)]

8

9 V_plunger_list = []
10 n_doping_list = []
11 dot_z_list = []
12 th_2N_list = []
13 th_3N_list = []
14 th_4N_list = []
15 th_5N_list = []
16 th_6N_list = []
17

18 for folder in folders :
19 mat_path = os.path.join(folder , " dot_results .mat")
20 if os.path. exists (mat_path):
21 data = loadmat (mat_path)
22 V_plunger_list . append (float(data.get(" V_plunger ", [np.

nan]) [0]))
23 n_doping_list . append (float(data.get(" doping ", [np.nan

]) [0]))
24 dot_z_list . append (float(data.get("dot_z", [np.nan])

[0]))
25 th_2N_list . append (float(data.get(" dot_z_threshold_2N ",

[np.nan]) [0]))
26 th_3N_list . append (float(data.get(" dot_z_threshold_3N ",

[np.nan]) [0]))
27 th_4N_list . append (float(data.get(" dot_z_threshold_4N ",

[np.nan]) [0]))
28 th_5N_list . append (float(data.get(" dot_z_threshold_5N ",

[np.nan]) [0]))
29 th_6N_list . append (float(data.get(" dot_z_threshold_6N ",

[np.nan]) [0]))
30 else:
31 print(f" Warning : cannot find { mat_path }!")
32

33 # Convert in numpy array
34 V_plunger_arr = np.array(V_plunger_list)
35 n_doping_arr = np.array(n_doping_list)

167

Python Tool Scripts

36 dot_z_arr = np.array(dot_z_list)
37 th_2N_arr = np.array(th_2N_list)
38 th_3N_arr = np.array(th_3N_list)
39 th_4N_arr = np.array(th_4N_list)
40 th_5N_arr = np.array(th_5N_list)
41 th_6N_arr = np.array(th_6N_list)
42

43 # Save merged file
44 savemat (output_file , {
45 " V_plunger ": V_plunger_arr ,
46 " n_doping ": n_doping_arr ,
47 "dot_z": dot_z_arr ,
48 " threshold_2N ": th_2N_arr ,
49 " threshold_3N ": th_3N_arr ,
50 " threshold_4N ": th_4N_arr ,
51 " threshold_5N ": th_5N_arr ,
52 " threshold_6N ": th_6N_arr
53 })
54

55 print(f"File '{ output_file }' successfully created .")

Listing A.4: mat_merge.py - This function is used at the end of a batch simulation. It
takes all of the dot_results.mat files and merge the results about the vertical confinement
into one .mat file. This can then be fed to a Matlab script in order to plot the batch results
and look at how the probability density function z-axis peak location and cumulative
confinement levels behaves with respect to the plunger voltage and contacts doping
concentration.

A.5 dot_range.py

1 def is_within_percentage (value , reference , percent):
2 margin = reference * percent / 100
3 return (reference - margin) <= value <= (reference + margin)

Listing A.5: dot_range.py - This simple function return a boolean value, checking if two
values are close with a deviation threshold percentage.

168

Python Tool Scripts

A.6 x_for_threshold.py

1 import numpy as np
2

3 def crop_around_coordinate (pos , psi2 , center , width):
4 # Crop data around a coordinate
5 half_width = width / 2
6 mask = (pos >= center - half_width) & (pos <= center +

half_width)
7 return pos[mask], psi2[mask]
8

9 def x_for_threshold (psiposx , psix0 , plunger_x_coordinate ,
crop_width_x):

10 # Cropping the region around the plunger
11 x_crop , psi_x_crop = crop_around_coordinate (psiposx , psix0 ,

plunger_x_coordinate , crop_width_x)
12

13 # Integrals using the trapezoidal rule
14 total_integral = np.trapz(psix0 , psiposx)
15 cropped_integral = np.trapz(psi_x_crop , x_crop)
16

17 # Avoid division by zero
18 if total_integral == 0:
19 return 0.0
20

21 # Return the confinement percentage
22 return cropped_integral / total_integral

Listing A.6: x_for_threshold.py - This script includes two functions.
crop_around_coordinate takes a x and y array couple and coordinates where to crop
the array. This can be used on its own or in combination with the second function,
x_for_threshold, used to determine with integration the area of the wavefunction under
the plunger gate in relation with the total area. This is useful to get information about
the confinement goodness.

169

Python Tool Scripts

A.7 apex.py

1 def get_apex (number , digits =2):
2 if number == 0:
3 return "0"
4

5 # Extract mantissa and exponent
6 format_str = f"{{:.{ digits }e}}"
7 mantissa_str , exponent_str = format_str . format (number).split("

e")
8 mantissa = float(mantissa_str)
9 exponent = int(exponent_str)

10

11 # Convert to Unicode superscript
12 superscript_map = str. maketrans (" 0123456789 - ", "

")
13 superscript_exp = str(exponent). translate (superscript_map)
14

15 if mantissa == 1.0:
16 return f"10{ superscript_exp }"
17 else:
18 return f"{ mantissa } 10 { superscript_exp }"

Listing A.7: apex.py - This script returns a scientific notation for displaying a variable
as, for example, 1022 and not 1e + 22. Used for the doping concentration display in the
output images.

170

Python Tool Scripts

A.8 get_exported_parameters.py

1 import csv
2

3 def get_parameter_value (csv_path , target_name):
4 with open(csv_path , newline ='', encoding ='utf -8 ') as csvfile :
5 reader = csv. reader (csvfile)
6 next(reader)
7

8 for row in reader :
9 if row [0]. strip () == target_name :

10 try:
11 value = float(row [3])
12 return value
13 except ValueError :
14 raise ValueError (f"Value '{ target_name }'

cannot be casted into float: {row [3]}")
15

16 raise KeyError (f" Cannot find parameter '{ target_name }'.")

Listing A.8: get_exported_parameters.py - This function takes as input the path of a
CSV file, formatted as Fusion does, and a parameter label. It returns the corresponding
value, parsed into float.

171

Python Tool Scripts

A.9 remove_fails.py

1 import os
2 from pathlib import Path
3

4 def clean_batch_results ():
5 root = Path.cwd () / " batch_results "
6 if not root. exists () or not root. is_dir ():
7 print("[ERROR] Cannot find directory 'batch_results '.")
8 return
9

10 print(f"[INFO] Analyzing : {root. resolve ()}")
11

12 # Cerca ricorsivamente
13 for file in root.rglob("*. png"):
14 filename = file.name
15

16 if filename . startswith ("X_"):
17 try:
18 file. unlink ()
19 print(f"[DELETED] {file}")
20 except Exception as e:
21 print(f"[ERROR] Cannot delete {file }: {e}")
22

23 elif filename . startswith ("Y_"):
24 new_name = filename [2:] # Remove "Y_"
25 new_path = file. with_name (new_name)
26

27 try:
28 file. rename (new_path)
29 print(f"[RENAMED] {file.name} -> { new_name }")
30 except Exception as e:
31 print(f"[ERROR] Cannot rename {file }: {e}")
32

33 if __name__ == " __main__ ":
34 clean_batch_results ()

Listing A.9: remove_fails.py - This script is used to delete all the .png files
contained in a specific directory that starts with X.Itisusedtoautomaticallydeletethenon−
workingconfigurationsgeneratedbythebatchrunner.

172

Python Tool Scripts

A.10 compute_leverarm.py

1 import os
2 import scipy.io as sio
3 import numpy as np
4 import sys
5 sys.path. append ('/opt/qtcad -1.4.3/ qtcad/')
6

7 from qtcad. device import constants as ct
8 from qtcad. device import Device
9 from qtcad. device . leverarm import Solver as LeverArmSolver

10 from qtcad. device . leverarm import SolverParams as
LeverArmSolverParams

11 from scipy.io import savemat , loadmat
12 from qtcad. device . poisson import SolverParams as

PoissonSolverParams
13 from qtcad. device . schrodinger import SolverParams as

SchrodingerSolverParams
14

15 import matplotlib
16 matplotlib .use('Agg ')
17 from matplotlib import pyplot as plt
18

19 def compute_single_lever_arm (device , boundary , bias):
20 params_poisson = PoissonSolverParams ()
21 params_poisson .tol = 1e-5
22 params_schrod = SchrodingerSolverParams ()
23 params_schrod . num_states = 10
24

25 lever_arm_solver_params = LeverArmSolverParams ({
26 " pot_solver_params ": params_poisson ,
27 " schrod_solver_params ": params_schrod
28 })
29

30 # Create and run the lever arm solver
31 print(" Getting lever arm data for plunger gate")
32 plunger_voltages = [bias -0.05 , bias , bias +0.05]
33 lever_arm_slv = LeverArmSolver (device , [boundary],

plunger_voltages ,
34 dot_region = device .dot_region ,

solver_params =
lever_arm_solver_params)

35 poly_coeffs = lever_arm_slv .solve ()
36 return np.abs(poly_coeffs [0]) / ct.e
37

38 def compute_lever_arm (device , boundary):
39 # Create the parameters of the lever -arm solver
40 params_poisson = PoissonSolverParams ()

173

Python Tool Scripts

41 params_poisson .tol = 1e-5
42 params_schrod = SchrodingerSolverParams ()
43 params_schrod . num_states = 10
44

45 lever_arm_solver_params = LeverArmSolverParams ({
46 " pot_solver_params ": params_poisson ,
47 " schrod_solver_params ": params_schrod
48 })
49

50 # Create and run the lever arm solver
51 print(" Getting lever arm data for plunger gate")
52 plunger_voltages = np. linspace (0, 1, 21)
53 lever_arm_slv = LeverArmSolver (device , [boundary],

plunger_voltages ,
54 dot_region = device .dot_region ,

solver_params =
lever_arm_solver_params)

55 poly_coeffs = lever_arm_slv .solve ()
56

57 lever_arm_value = np.abs(poly_coeffs [0]) / ct.e
58 print(f"The lever arm is { lever_arm_value }")
59

60 # Plot results
61 fig , ax1 = plt. subplots ()
62

63 ax1. set_ylabel (" Energy (eV)")
64 ax1. set_xlabel (" Plunger gate voltage (V)")
65

66 # Dictionary to be saved in .mat
67 mat_data = {" lever_arm ": lever_arm_value }
68

69 for i, data in enumerate (lever_arm_slv . energies .T / ct.e):
70 ax1.plot(plunger_voltages , data , label=f"state {i}")
71 # Save bias and energy for each state
72 mat_data [f"bias_{i}"] = plunger_voltages
73 mat_data [f" energy_ {i}"] = data
74

75 # Set figure size and DPI
76 fig. set_size_inches (7, 5)
77 fig. set_dpi (300)
78

79 # Add legend in the lower left corner
80 plt. legend (loc='lower left ')
81

82 text_str = f"Lever arm: { lever_arm_value *1000:.4 f} meV"
83

84 # Add text in the top right corner inside the plot area
85 ax1.text (0.95 , 0.95 , text_str ,
86 horizontalalignment ='right ',

174

Python Tool Scripts

87 verticalalignment ='top ',
88 transform =ax1.transAxes ,
89 fontsize =12)
90

91 plt. savefig (" lever_arm .png", dpi =300 , bbox_inches ='tight ')
92

93 # Save the dictionary into a .mat file
94 savemat (" lever_arm .mat", mat_data)

Listing A.10: compute_leverarm.py - This script is used to calculate the leverarm
coefficients of a generic device, passed as argument. It can calculate a single value, used
for defining the electrochemical potential inside a dot starting from a gate voltage, or,
by doing a sweep, calculate rthe coefficients for different values of potential and different
number of states. This is done to generate an illustrative summary.

175

Python Tool Scripts

A.11 get_leverarm.py

1 import os
2 import scipy.io as sio
3 import numpy as np
4 import sys
5 import inspect
6 sys.path. append ('/opt/qtcad -1.4.3/ qtcad/')
7 from qtcad. device import Device
8 from compute_leverarm import compute_lever_arm
9

10 def get_parent_mat_path ():
11 """
12 Returns the path of lever_arm .mat located in the parent

directory
13 of the current script .
14 """
15 script_path = os.path. abspath (inspect . getfile (inspect .

currentframe ()))
16 parent_dir = os.path. abspath (os.path.join(os.path. dirname (

script_path), '..'))
17 return os.path.join(parent_dir , 'lever_arm .mat ')
18

19

20 def get_lever_arm (device , boundary):
21 """
22 Reads and returns the single lever arm value stored in

lever_arm .mat
23 located in the parent directory . If the file does not exist ,

it calls
24 compute_lever_arm () to create it.
25 """
26 mat_file_path = get_parent_mat_path ()
27

28 if not os.path. isfile (mat_file_path):
29 print(" lever_arm .mat not found. Creating it by running

compute_lever_arm () ...")
30 compute_lever_arm (device , boundary)
31

32 mat_contents = sio. loadmat (mat_file_path)
33 if 'lever_arm ' not in mat_contents :
34 raise KeyError (f"'lever_arm ' key not found in {

mat_file_path }")
35

36 lever_arm_value = float(mat_contents ['lever_arm ']. squeeze ())
37 print(f"Lever arm value read from file: { lever_arm_value }")
38 return lever_arm_value
39

176

Python Tool Scripts

40

41 def energy_to_bias (device , boundary , state , energy):
42 """
43 Given a state (int) and an energy (float), returns the bias

voltage
44 corresponding to the energy nearest to the given one in the

data.
45

46 If lever_arm .mat does not exist , calls compute_lever_arm (
device).

47 """
48 mat_file_path = get_parent_mat_path ()
49

50 if not os.path. isfile (mat_file_path):
51 print(f"{ mat_file_path } not found. Creating it by running

compute_lever_arm () ...")
52 compute_lever_arm (device , boundary)
53

54 mat_contents = sio. loadmat (mat_file_path)
55

56 bias_key = f"bias_{state}"
57 energy_key = f" energy_ {state}"
58

59 if bias_key not in mat_contents or energy_key not in
mat_contents :

60 raise KeyError (f"Keys '{ bias_key }' or '{ energy_key }' not
found in { mat_file_path }")

61

62 bias_array = mat_contents [bias_key]. squeeze ()
63 energy_array = mat_contents [energy_key]. squeeze ()
64

65 # Find index of nearest energy value
66 idx = np.abs(energy_array - energy). argmin ()
67 return bias_array [idx]
68

69

70 def bias_to_energy (device , boundary , state , bias):
71 """
72 Given a state (int) and a bias voltage (float), returns the

energy
73 corresponding to the bias nearest to the given one in the data

.
74

75 If lever_arm .mat does not exist , calls compute_lever_arm (
device).

76 """
77 mat_file_path = get_parent_mat_path ()
78

79 if not os.path. isfile (mat_file_path):

177

Python Tool Scripts

80 print(f"{ mat_file_path } not found. Creating it by running
compute_lever_arm () ...")

81 compute_lever_arm (device , boundary)
82

83 mat_contents = sio. loadmat (mat_file_path)
84

85 bias_key = f"bias_{state}"
86 energy_key = f" energy_ {state}"
87

88 if bias_key not in mat_contents or energy_key not in
mat_contents :

89 raise KeyError (f"Keys '{ bias_key }' or '{ energy_key }' not
found in { mat_file_path }")

90

91 bias_array = mat_contents [bias_key]. squeeze ()
92 energy_array = mat_contents [energy_key]. squeeze ()
93

94 # Find index of nearest bias value
95 idx = np.abs(bias_array - bias). argmin ()
96 return energy_array [idx]

Listing A.11: get_leverarm.py - This script handles the store and extraction of leverarm
coefficientrs inside the lever_arm.mat file. It the file does not exists, it use the functions
inside computeleverarm.pytocalculatethem.

178

Appendix B

Python Simulation Scripts

B.1 sim_dqd.py

1 import os
2 import sys
3 sys.path. append ('/opt/qtcad -1.4.3/ qtcad/')
4

5 from qtcad. device import constants as ct
6 from qtcad. device . mesh3d import Mesh , SubMesh
7 from qtcad. device . analysis import linecut
8 from qtcad. device import io
9 from qtcad. device import analysis

10 from qtcad. device import materials as mt
11 from qtcad. device import Device , SubDevice
12 from qtcad. device . poisson import Solver as PoissonSolver
13 from qtcad. device . poisson import SolverParams as

PoissonSolverParams
14 from qtcad. device . schrodinger import Solver as SchrodingerSolver
15 from qtcad. device . schrodinger import SolverParams as

SchrodingerSolverParams
16 from qtcad. device . leverarm import Solver as LeverArmSolver
17 from qtcad. device . leverarm import SolverParams as

LeverArmSolverParams
18 from scipy.io import savemat , loadmat
19 import matplotlib
20 matplotlib .use('Agg ')
21 from matplotlib import pyplot as plt
22 from matplotlib . offsetbox import OffsetImage , AnnotationBbox
23 import matplotlib .image as mpimg
24 import pathlib
25 from pathlib import Path
26 import numpy as np
27 import math
28

179

Python Simulation Scripts

29 # IMPORT CUSTOM FUNCTIONS
30 sys.path. append (os.path.join(os.path. dirname (__file__), "tools"))
31 from z_for_threshold import z_for_threshold
32 from dot_range import is_within_percentage
33 from get_leverarm import get_lever_arm
34 from get_leverarm import energy_to_bias
35 from get_leverarm import bias_to_energy
36 from dot_area import area_vista_plunger
37 from dot_area import area_vista_contacts
38 from get_exported_parameters import get_parameter_value
39 from compute_leverarm import compute_single_lever_arm
40 from charge_stability_diagram import

compute_charge_stability_diagram
41 from x_for_threshold import x_for_threshold ,

crop_around_coordinate
42 from apex import get_apex
43

44

45

46 # --- #
47 # DEFINE PATHS TO INPUT AND OUTPUT FILES #
48 # --- #
49

50 script_dir = pathlib .Path(__file__). parent . resolve ()
51

52 # DEFINE DEVICE NAME , USED TO FIND INPUT FILES
53 device_name = " dqd_compact "
54

55 mesh_name = device_name + ".msh2"
56 image_name = device_name + ".png"
57 parameters_name = device_name + ".csv"
58

59 config_dir = script_dir / " config "
60

61 path_mesh = config_dir / " meshes " / mesh_name
62 path_image = config_dir / " images " / image_name
63 path_parameters = config_dir / " exported_parameters " /

parameters_name
64

65 results_dir = script_dir / " results "
66

67 path_hdf5 = results_dir / " device_results .hdf5"
68 path_psi0 = results_dir / " device_psi0 .vtu"
69 path_psi1 = results_dir / " device_psi1 .vtu"
70

71 path_results_mat = results_dir / " device_results .mat"
72 path_results_img = results_dir / " device_results .png"
73

74

180

Python Simulation Scripts

75

76

77 # --- #
78 # DEVICE PARAMETERS #
79 # --- #
80

81 # IMMEDIATELY FIND OUT IF BATCH RUNNING IS ENABLED
82 batch = os. getenv ("BATCH", "False")
83

84 # CHECK IF WE ARE IN BATCHING AND UPDATE SOME PATHS
85 if batch == "True":
86 path_parameters = Path(" ../../ config / exported_parameters ") /

parameters_name
87 path_hdf5 = " device_results .hdf5"
88 path_results_mat = " device_results .mat"
89

90 # EXTRACT THE GEOMETRICAL DIMENSIONS FROM THE .CSV FILE EXPORTED
FROM FUSION360

91 gate_oxide = get_parameter_value (path_parameters , "
gate_oxide_thickness ")*1e-9

92 lateral_oxide = get_parameter_value (path_parameters , "
oxide_lateral ")*1e-9

93 plunger_length = get_parameter_value (path_parameters , "
plunger_gate ")*1e-9

94 barrier_length = get_parameter_value (path_parameters , "
barrier_gate ")*1e-9

95 plunger_width = get_parameter_value (path_parameters , "
channel_width ")*1e-9

96 spacers = get_parameter_value (path_parameters , " spacers "
)*1e-9

97 contact_spacers = get_parameter_value (path_parameters , "
contact_spacers ")*1e-9

98

99 # COMPUTE SOME DIMENSIONS FROM EXTRACTED PARAMETERS
100 contact_dot_spacing = spacers + contact_spacers + barrier_length +

plunger_length /2
101 opposite_contact_dot_spacing = 3* spacers + contact_spacers + 2*

barrier_length + plunger_length *3/2
102 dot_spacing = barrier_length + 2* spacers + plunger_length
103 plunger_x_coordinate = (barrier_length + plunger_length)/2 +

spacers
104

105 # DEFINE THE DEVICE WORKING TEMPERATURE IN KELVIN
106 device_temperature = 0.01
107

108 # DEFINE PHYSICAL MATERIALS
109 semiconductor = mt.Si # Silicon as semiconductor
110 dielectric = mt.SiO2 # Silicon dioxide as the dielectric

181

Python Simulation Scripts

111 metal_workfunction = 4.33 * ct.e # Titanium workfunction (
Joules)

112

113 # DEFINE DOPING AND VOLTAGES
114 default_n_doping = 1e18 *1e6
115 default_plunger_voltage = 0.5
116 n_doping = float(os. getenv (" N_DOPING ", default_n_doping))
117 V_plunger_1 = float(os. getenv (" V_PLUNGER ", default_plunger_voltage

))
118 V_plunger_2 = V_plunger_1
119 V_barrier_1 = -0.1
120 V_barrier_2 = -0.1 # -0.8
121 V_barrier_3 = V_barrier_1
122

123 # DEFINE THE DIFFERENT DOPING CONCENTRATIONS TO BE USED. REFER TO
SIMULATION RESULTS FROM SENTAURUS

124 doping_npp = n_doping # Define the n_doping as the peak
concentration , localized at the surface

125 doping_np = n_doping * 1e-1 # Define the second doping
concentration as one order of magnitude less wrt peak
concentration

126 doping_n = n_doping * 1e-2 # Define the third doping
concentration as two order of magnitude less wrt peak
concentration

127

128 # DEFINE BACKGATE PROPERTIES
129 use_backgate = False # Backgate only defined if this is set

True
130 V_backgate = -0.5
131 backgate_doping = "n"
132 backgate_dose = 1e15 *1e6
133 backgate_binding_energy = 46e -3* ct.e # Dopant ionization energy

for phosphorus donors
134

135 # CHOOSE IF SAVING THE HDF5 FILE , USED FOR THE TRANSPORT LAYER
SIMULATION

136 save_hdf5 = True
137

138 # CHOOSE IF SAVING THE EIGENSTATES IN .VTU FORMAT
139 save_psi0_vtu = True
140 save_psi1_vtu = False
141

142 # CHOOSE IF COMPUTE CHARGE STABILITY DIAGRAM
143 compute_csd = False
144

145 # START BY RESET THE DEVICE CONFIGURATION SCORE
146 score = 0
147

148

182

Python Simulation Scripts

149

150

151 # --- #
152 # LOADING THE MESH #
153 # --- #
154

155 # SET MESH SCALING FACTOR TO NANOMETERS
156 # If importing into GMSH a .step /. iges file from Fusion360 the

workspace unit of the latter should be set to millimiters !
157 scaling = 1e-9
158

159 # DEFINE MESH VIA SCALING FACTOR AND MESH PATH
160 mesh = Mesh(scaling , path_mesh)
161

162 # GLOBAL NODES OF FULL DEVICE
163 x = mesh. glob_nodes [:, 0]
164 y = mesh. glob_nodes [:, 1]
165 z = mesh. glob_nodes [:, 2]
166

167 # FULL DIMENSIONS OF THE DEVICE IN NANOMETERS
168 dim_x = np.abs(np.min(x)*1e9)+np.abs(np.max(x)*1e9)
169 dim_y = np.abs(np.min(y)*1e9)+np.abs(np.max(y)*1e9)
170 dim_z = np.abs(np.min(z)*1e9)+np.abs(np.max(z)*1e9)
171

172 # DEFINE THE DEVICE LENGTH AS THE TOTAL LENGTH MINUS THE LATERAL
OXIDE

173 device_length = dim_x *1e-9 - 2* lateral_oxide
174

175 # CREATE DEVICE FROM MESH AND SET CONFINED CARRIERS TO ELECTRONS
176 d = Device (mesh , conf_carriers = "e")
177 d. set_temperature (device_temperature)
178 d. statistics = " FD_approx " # Aproximated Fermi -Dirac distribution
179

180

181

182

183 # --- #
184 # DEFINE DEVICE PHYSICAL PROPERTIES #
185 # --- #
186

187 # DEFINE VOLUME PHYSICAL CONDITIONS
188 d. new_region (" semi_channel ", semiconductor)
189

190 d. new_region (" source_npp ", semiconductor , pdoping =0, ndoping =
doping_npp)

191 d. new_region (" source_np ", semiconductor , pdoping =0, ndoping =
doping_np)

192 d. new_region (" source_n ", semiconductor , pdoping =0, ndoping =
doping_n)

183

Python Simulation Scripts

193

194 d. new_region (" drain_npp ", semiconductor , pdoping =0, ndoping =
doping_npp)

195 d. new_region (" drain_np ", semiconductor , pdoping =0, ndoping =
doping_np)

196 d. new_region (" drain_n ", semiconductor , pdoping =0, ndoping =
doping_n)

197

198 d. new_region (" diel_oxide ", dielectric)
199 d. new_region (" diel_barrier_1 ", dielectric)
200 d. new_region (" diel_barrier_2 ", dielectric)
201 d. new_region (" diel_barrier_3 ", dielectric)
202 d. new_region (" diel_plunger_1 ", dielectric)
203 d. new_region (" diel_plunger_2 ", dielectric)
204

205 # DEFINE SURFACES BOUNDARY CONDITIONS
206 d. new_ohmic_bnd (" ohmicbnd_drain ")
207 d. new_ohmic_bnd (" ohmicbnd_source ")
208

209 d. new_gate_bnd (" gatebnd_barrier_1 ", V_barrier_1 ,
metal_workfunction)

210 d. new_gate_bnd (" gatebnd_barrier_2 ", V_barrier_2 ,
metal_workfunction)

211 d. new_gate_bnd (" gatebnd_barrier_3 ", V_barrier_3 ,
metal_workfunction)

212 d. new_gate_bnd (" gatebnd_plunger_1 ", V_plunger_1 ,
metal_workfunction)

213 d. new_gate_bnd (" gatebnd_plunger_2 ", V_plunger_2 ,
metal_workfunction)

214

215 if use_backgate :
216 d. new_frozen_bnd (" gatebnd_backgate ", V_backgate , semiconductor

, backgate_dose , backgate_doping , backgate_binding_energy)
217

218 # DEFINE THE DOT REGION AS A LIST OF REGION LABELS THAT COMPOSE
THE DOT MEDIUM AND BARRIERS

219 dot_region = [" semi_channel ", " diel_oxide ", " diel_barrier_1 ", "
diel_barrier_2 ", " diel_barrier_3 ", " diel_plunger_1 ", "
diel_plunger_2 "]

220

221 # SET UP THE DOT REGION IN WHICH NO CLASSICAL CHARGE IS ALLOWED
222 d. set_dot_region (dot_region)
223

224

225

226

227 # --- #
228 # NON - LINEAR POISSON SOLVER #
229 # --- #

184

Python Simulation Scripts

230

231 # CREATE A POISSON SOLVER PARAMETERS OBJECT
232 params_poisson = PoissonSolverParams ()
233

234 # The tolerance attribute tol specifies the maximum acceptable
potential difference (in volts)

235 # between two successive self -consistent -loop iterations
236 params_poisson .tol = 1e-5
237

238 # CREATE AND SOLVE A NON - LINEAR POISSON SOLVER
239 s = PoissonSolver (d, solver_params = params_poisson)
240 s.solve ()
241

242 # SAVE POISSON RESULTS IN THE HDF5 FILE
243 if save_hdf5 :
244 io.save(str(path_hdf5), {"n": d.n/1e6 , "p": d.p/1e6 , "phi": d.

phi , "EC": d. cond_band_edge ()/ct.e, "EV": d.
vlnce_band_edge ()/ct.e})

245

246 # GET (OR COMPUTE ON THE DESIRED GATE IF NO DATA IS AVAILABLE IN
THE lever_arm .mat FILE) THE DEVICE LEVERARM

247 leverarm = get_lever_arm (d, " gatebnd_plunger_1 ")
248 print(f"Lever arm = { leverarm *1000:.2 f}meV")
249

250

251

252

253 # --- #
254 # SCHRODINGER SOLVER #
255 # --- #
256

257 # GET THE POTENTIAL ENERGY FROM THE BAND EDGE FOR USAGE IN THE
SCHRODINGER SOLVER

258 d. set_V_from_phi ()
259

260 # CREATE A SUBMESH INCLUDING ONLY THE DOT REGION AND A SUBDEVICE
FOR THE LATTER

261 submesh = SubMesh (d.mesh , dot_region)
262 subdevice = SubDevice (d, submesh)
263

264 # CREATE A SCHRODINGER SOLVER PARAMETERS OBJECT
265 params_schrod = SchrodingerSolverParams ()
266 params_schrod . num_states = 4 # Specify the number of

eigenstates and energies to consider in the diagonalization of
the dot Hamiltonian

267 params_schrod .tol = 1e -12 # Set the tolerance for
convergence on energies in electron -volts

268

269 # CREATE AND SOLVE A SCHRODINGER SOLVER

185

Python Simulation Scripts

270 schrod_solver = SchrodingerSolver (subdevice)
271 schrod_solver .solve ()
272

273 # PRINT EIGENENERGIES
274 subdevice . print_energies ()
275

276

277

278 # --- #
279 # SAVE AND PLOT SCHRODINGER RESULTS #
280 # --- #
281

282 # GLOBAL NODES FOR THE SUBDEVICE
283 xdot = submesh . glob_nodes [:, 0]
284 ydot = submesh . glob_nodes [:, 1]
285 zdot = submesh . glob_nodes [:, 2]
286

287 # START BY FINDING MAX PROBABILITY FOR Z AXIS UNDER THE PLUNGER
GATE NEAR THE SOURCE

288 # THEN PLACE X AND Y LINECUTS AT THAT Z COORDINATE
289 psi0 = np.abs(subdevice . eigenfunctions [:, 0]) **2
290

291 # WAVEFUNCTION AND POTENTIAL ENERGY IN THE ZoY PLANE
292 beginz = (plunger_x_coordinate , 0, np.max(zdot))
293 endz = (plunger_x_coordinate , 0, np.min(zdot))
294 psiposz , psiz0 = linecut (submesh , psi0 , beginz , endz)
295 psiposz = -psiposz
296 psiposz += np.max(zdot)
297 V_plungerosz , Vz = linecut (mesh , d.V, beginz , endz)
298 V_plungerosz = -V_plungerosz
299 V_plungerosz += np.max(z)
300

301 # FIND MAXIMA OF PSI0_Z AND PSI0_X
302 dot_z_position = psiposz [np. argmax (psiz0)]
303

304 # WAVEFUNCTION AND POTENTIAL ENERGY IN THE XoZ PLANE
305 beginx = (- device_length /2, 0, dot_z_position)
306 endx = (device_length /2, 0, dot_z_position)
307 psiposx , psix0 = linecut (submesh , psi0 , beginx , endx)
308 psiposx += (np.min(xdot) + lateral_oxide)
309 V_plungerosx , Vx = linecut (mesh , d.V, beginx , endx)
310 V_plungerosx += (np.min(x) + lateral_oxide)
311

312 # WAVEFUNCTION AND POTENTIAL ENERGY IN THE YoX PLANE
313 beginy = (plunger_x_coordinate , np.min(y), dot_z_position)
314 endy = (plunger_x_coordinate , np.max(y), dot_z_position)
315 psiposy , psiy0 = linecut (submesh , psi0 , beginy , endy)
316 psiposy += np.min(ydot)
317 V_plungerosy , Vy = linecut (mesh , d.V, beginy , endy)

186

Python Simulation Scripts

318 V_plungerosy += np.min(y)
319

320 # FIND MAXIMA OF PSI0_X
321 normalized_psix0 = psix0/np.max(psix0)
322

323 dot1_x , dot1_psix0 = crop_around_coordinate (psiposx ,
normalized_psix0 , -np.abs(plunger_x_coordinate),
plunger_length)

324 dot2_x , dot2_psix0 = crop_around_coordinate (psiposx ,
normalized_psix0 , np.abs(plunger_x_coordinate), plunger_length
)

325

326 dot1_x_position = dot1_x [np. argmax (dot1_psix0)]
327 dot2_x_position = dot2_x [np. argmax (dot2_psix0)]
328

329 localized_dot =False
330 if is_within_percentage (np.abs(dot1_x_position *1e9), np.abs(

plunger_x_coordinate *1e9), 20):
331 localized_dot =True
332

333 print(f" Quantum dots found at z = { dot_z_position *1e9 :.2f} nm")
334

335 print(f"1st quantum dot found at x = { dot1_x_position *1e9 :.2f} nm
vs plunger at {-np.abs(plunger_x_coordinate *1e9):.2f} nm")

336 print(f"2nd quantum dot found at x = { dot2_x_position *1e9 :.2f} nm
vs plunger at {np.abs(plunger_x_coordinate *1e9):.2f} nm")

337

338

339 dot1_x_confinement = x_for_threshold (psiposx , normalized_psix0 , -
np.abs(plunger_x_coordinate), plunger_length)

340 dot2_x_confinement = x_for_threshold (psiposx , normalized_psix0 , np
.abs(plunger_x_coordinate), plunger_length)

341

342 print(f"1st quantum dot confinement = { dot1_x_confinement *100:.2 f
}% (DQD) - { dot1_x_confinement *200:.2 f}% (SQD)")

343 print(f"2nd quantum dot confinement = { dot2_x_confinement *100:.2 f
}% (DQD) - { dot2_x_confinement *200:.2 f}% (SQD)")

344 print(f"Delta confinement = {np.abs ((dot1_x_confinement /0.5) -(
dot2_x_confinement /0.5)) *500:.2 f}%")

345

346 if localized_dot :
347 print("[OK] Dot is localized under the plunger gate!")
348 else:
349 print("[KO] Dot IS NOT localized under the plunger gate!")
350

351 # COMPUTE Z-AXIS CUMULATIVE CONFINEMENT LEVEL
352 z_thresh_2N = z_for_threshold (psiposz *1e9 , psiz0/np.max(psiz0),

threshold =0.99) *1e-9

187

Python Simulation Scripts

353 z_thresh_3N = z_for_threshold (psiposz *1e9 , psiz0/np.max(psiz0),
threshold =0.999) *1e-9

354 z_thresh_4N = z_for_threshold (psiposz *1e9 , psiz0/np.max(psiz0),
threshold =0.9999) *1e-9

355 z_thresh_5N = z_for_threshold (psiposz *1e9 , psiz0/np.max(psiz0),
threshold =0.99999) *1e-9

356 z_thresh_6N = z_for_threshold (psiposz *1e9 , psiz0/np.max(psiz0),
threshold =0.999999) *1e-9

357 print(f"2N threshold for quantum dot at z = { z_thresh_2N *1e9 :.2f}
nm")

358 print(f"3N threshold for quantum dot at z = { z_thresh_3N *1e9 :.2f}
nm")

359 print(f"4N threshold for quantum dot at z = { z_thresh_4N *1e9 :.2f}
nm")

360 print(f"5N threshold for quantum dot at z = { z_thresh_5N *1e9 :.2f}
nm")

361 print(f"6N threshold for quantum dot at z = { z_thresh_6N *1e9 :.2f}
nm")

362

363

364 # SAVE DEVICE RESULTS IN THE .MAT FILE
365 savemat (path_results_mat , {
366 "x": psiposx /1e-9,
367 "y": psiposy /1e-9,
368 "z": psiposz /1e-9,
369 " psi0_x ":psix0 ,
370 " psi0_y ":psiy0 ,
371 " psi0_z ":psiz0 ,
372 "V_x":Vx/ct.e,
373 "V_y":Vy/ct.e,
374 "V_z":Vz/ct.e,
375 " doping ":n_doping ,
376 " V_plunger ": V_plunger_1 ,
377 " V_barrier ": V_barrier_1 ,
378 " leverarm ":leverarm ,
379 "dot_z": dot_z_position /1e9 ,
380 " dot_z_threshold_2N ": z_thresh_2N /1e9 ,
381 " dot_z_threshold_3N ": z_thresh_3N /1e9 ,
382 " dot_z_threshold_4N ": z_thresh_4N /1e9 ,
383 " dot_z_threshold_5N ": z_thresh_5N /1e9 ,
384 " dot_z_threshold_6N ": z_thresh_6N /1e9 ,
385 " energies ": subdevice . energies /ct.e
386 })
387

388 # SAVE SCHRODINGER RESULTS IN .VTU FORMAT
389 if save_psi0_vtu :
390 io.save(path_psi0 , np.abs(subdevice . eigenfunctions [:, 0]) **2,

submesh)
391 if save_psi1_vtu :

188

Python Simulation Scripts

392 io.save(path_psi1 , np.abs(subdevice . eigenfunctions [:, 1]) **2,
submesh)

393

394 # UPDATE DEVICE CONFIGURATION SCORE
395 score += (dot1_x_confinement /0.5) *100
396 score += (dot2_x_confinement /0.5) *100
397 score += 50* np.exp (-5*np.abs(np.abs(dot1_x_position *1e9)-np.abs(

plunger_x_coordinate *1e9)))
398 score += 50* np.exp (-5*np.abs(np.abs(dot2_x_position *1e9)-np.abs(

plunger_x_coordinate *1e9)))
399 score += 100* np.exp(-np.abs(dot_z_position *1e9))
400 score -= 100* np.exp (-5*np.abs ((dot1_x_confinement /0.5) -(

dot2_x_confinement /0.5)))
401

402 # --- #
403 # PLOT RESULTS #
404 # --- #
405

406 # DPI AND ORIGINAL DIMENSIONS FOR A SINGLE PLOT
407 dpi = 300
408 single_w_px = 1500
409 single_h_px = 1000
410

411 # 2 COLUMNS x 2 ROWS
412 fig_w_px = single_w_px * 2
413 fig_h_px = single_h_px * 2
414

415 fig = plt. figure (figsize =(fig_w_px /dpi , fig_h_px /dpi), dpi=dpi)
416

417 # SPACING
418 w_frac = 0.36
419 h_frac = 0.375
420

421 title = (
422 fr'{ mesh_name }' + '\n' +
423 fr'{mesh. node_number } nodes , {dim_x :.1f}x{dim_y :.1f}x{dim_z :.1f}

nm'
424)
425 textstr = (
426 fr'T = { device_temperature :.2f} K' + '\n' +
427 fr'$dose_ {{\ mathrm {{n}}}}$ = ' + get_apex (n_doping) + ' $m ^{{\

mathrm {{ -3}}}}$' + '\n' +
428 fr'$V_ {{\ mathrm {{ plungers }}}}$ = { V_plunger_1 :.2f} V' + '\n' +
429 fr'$V_ {{\ mathrm {{b\ _lateral }}}}$ = { V_barrier_1 :.2f} V' + '\n' +
430 fr'$V_ {{\ mathrm {{b\ _central }}}}$ = { V_barrier_2 :.2f} V'
431)
432

433 text_desc =(
434 fr'$z_ {{\ mathrm {{ dot }}}}$ = { dot_z_position *1e9 :.2f} nm' + '\n' +

189

Python Simulation Scripts

435 fr'2$\ sigma$ = { z_thresh_2N *1e9 :.2f} nm' + '\n' +
436 fr'$\ alpha$ = { leverarm *1000:.1 f} meV/V' + '\n' +
437 fr'score = {int(score)} pt'
438)
439

440 text_conf =(
441 fr'$z_ {{\ mathrm {{ dot }}}}$ = { dot_z_position *1e9 :.2f} nm' + '\n' +
442 fr'2$\ sigma$ = { z_thresh_2N *1e9 :.2f} nm' + '\n' +
443 fr'3$\ sigma$ = { z_thresh_3N *1e9 :.2f} nm' + '\n' +
444 fr'4$\ sigma$ = { z_thresh_4N *1e9 :.2f} nm' + '\n' +
445 fr'5$\ sigma$ = { z_thresh_5N *1e9 :.2f} nm' + '\n' +
446 fr'6$\ sigma$ = { z_thresh_6N *1e9 :.2f} nm'
447)
448

449 # QUADRANT 1: DEVICE INFORMATIONS AND SIMULATION VARTIABLES
450 text_loc ="X"
451 if localized_dot :
452 text_loc =f"{int(score)}"
453

454 ax_text = fig. add_axes ([0.02 , 0.52 , w_frac , h_frac])
455 ax_text .axis('off ')
456 ax_text .text (0.5 , 0.95 , title , fontsize =15, ha='center ', va='

center ', wrap=True)
457 ax_text .text (-0.025 , 0.15 , textstr , fontsize =14, ha='left ', va='

center ', wrap=True)
458 ax_text .text (0.625 , 0.15 , text_desc , fontsize =14, ha='left ', va='

center ', wrap=True)
459 img = mpimg. imread (path_image)
460 imagebox = OffsetImage (img , zoom =0.1)
461 ab = AnnotationBbox (imagebox , (0.5 , 0.65) , frameon =False , xycoords

='axes fraction ')
462 ax_text . add_artist (ab)
463

464 # QUADRANT 2: LINECUT ALONG CHANNEL
465 y_percentage_label_coordinate = 0.5
466 ax1 = fig. add_axes ([0.52 , 0.52 , w_frac , h_frac])
467 ax2 = ax1.twinx ()
468 ax1. set_title (fr'Linecut along channel (x) @ $z_ {{\ mathrm {{ dot

}}}} = { dot_z_position *1e9 :.2f}\,\ mathrm {{nm}}$')
469 ax1.plot(psiposx / 1e-9, psix0/np.max(psix0), linewidth =2)
470 ax2.plot(V_plungerosx / 1e-9, Vx / ct.e, '--r')
471 ax1.grid ()
472 ax1. set_xlabel ("x [nm]")
473 ax1. set_ylabel (r" Normalized $|\ Psi(x, 0, z_{dot }) |^2 [m^{ -3}]$",

color='blue ')
474 ax2. set_ylabel (r"$V [eV]$", color='red ')
475 for label in ax1. get_yticklabels ():
476 label. set_color ('blue ')
477 for label in ax2. get_yticklabels ():

190

Python Simulation Scripts

478 label. set_color ('red ')
479 # Add confinement percentage and peak x location on each dot
480 ax2.text (((-np.abs(dot1_x_position)+ device_length /2)/ device_length

), y_percentage_label_coordinate , f"{ dot1_x_confinement *100:.1
f}%",

481 transform =ax1.transAxes ,
482 fontsize =10,
483 zorder =10,
484 verticalalignment ='center ',
485 horizontalalignment ='center ',
486 bbox=dict(boxstyle ='round ,pad =0.2 ', facecolor ='white ',

alpha =0.8 , edgecolor ='blue '))
487 ax2.text (((np.abs(dot2_x_position)+ device_length /2)/ device_length)

, y_percentage_label_coordinate , f"{ dot2_x_confinement *100:.1 f
}%",

488 transform =ax1.transAxes ,
489 fontsize =10,
490 zorder =10,
491 verticalalignment ='center ',
492 horizontalalignment ='center ',
493 bbox=dict(boxstyle ='round ,pad =0.2 ', facecolor ='white ',

alpha =0.8 , edgecolor ='blue '))
494 ax2.text (((dot1_x_position + device_length /2)/ device_length), np.max

(dot1_psix0) -0.05, f"{ dot1_x_position *1e9 :.1f}nm",
495 transform =ax1.transAxes ,
496 fontsize =10,
497 zorder =10,
498 verticalalignment ='center ',
499 horizontalalignment ='center ',
500 bbox=dict(boxstyle ='round ,pad =0.2 ', facecolor ='white ',

alpha =0.8 , edgecolor ='green '))
501 ax2.text (((dot2_x_position + device_length /2)/ device_length), np.max

(dot2_psix0) -0.05, f"{ dot2_x_position *1e9 :.1f}nm",
502 transform =ax1.transAxes ,
503 fontsize =10,
504 zorder =10,
505 verticalalignment ='center ',
506 horizontalalignment ='center ',
507 bbox=dict(boxstyle ='round ,pad =0.2 ', facecolor ='white ',

alpha =0.8 , edgecolor ='green '))
508

509 # QUADRANT 3: LINECUT ALONG Y
510 ax3 = fig. add_axes ([0.02 , 0.02 , w_frac , h_frac])
511 ax4 = ax3.twinx ()
512 ax3. set_title (fr'Linecut along y @ $z_ {{\ mathrm {{ dot }}}}$, $x_

{{\ mathrm {{ plunger }}}}$')
513 ax3.plot(psiposy / 1e-9, psiy0/np.max(psiy0), linewidth =2)
514 ax4.plot(V_plungerosy / 1e-9, Vy / ct.e, '--r')
515 ax3.grid ()

191

Python Simulation Scripts

516 ax3. set_xlabel ("y [nm]")
517 ax3. set_ylabel (r" Normalized $|\ Psi(x_{ plunger } , y, z_{dot }) |^2 [m

^{ -3}]$", color='blue ')
518 ax4. set_ylabel (r"$V [eV]$", color='red ')
519 for label in ax3. get_yticklabels ():
520 label. set_color ('blue ')
521 for label in ax4. get_yticklabels ():
522 label. set_color ('red ')
523

524 # QUADRANT 4: LINECUT ALONG Z
525 ax5 = fig. add_axes ([0.52 , 0.02 , w_frac , h_frac])
526 ax6 = ax5.twinx ()
527 ax5. set_title (fr'Linecut along z @ $x_ {{\ mathrm {{ plunger }}}} = {

plunger_x_coordinate *1e9 :.2f}\,\ mathrm {{nm}}$')
528 ax5.plot(psiposz / 1e-9, psiz0/np.max(psiz0), linewidth =2)
529 ax6.plot(V_plungerosz / 1e-9, Vz / ct.e, '--r')
530 ax5.grid ()
531 ax5. set_xlabel ("z [nm]")
532 ax5. set_ylabel (r" Normalized $|\ Psi(x_{ plunger } , 0, z)|^2 [m^{ -3}]

$", color='blue ')
533 ax6. set_ylabel (r"$V [eV]$", color='red ')
534 for label in ax5. get_yticklabels ():
535 label. set_color ('blue ')
536 for label in ax6. get_yticklabels ():
537 label. set_color ('red ')
538 ax6.text (0.02 , 0.98 , text_conf ,
539 transform =ax6.transAxes ,
540 fontsize =11,
541 zorder =10,
542 verticalalignment ='top ',
543 horizontalalignment ='left ',
544 bbox=dict(boxstyle ='round ,pad =0.2 ', facecolor ='white ',

alpha =0.7 , edgecolor ='none '))
545

546 # SAVE IMAGE
547 if batch == "True":
548 path_results_img = "../" + text_loc + "_" + f"V{ V_plunger_1 }_N

{int(n_doping):.0e}" + ".png"
549 plt. savefig (path_results_img , dpi=dpi , bbox_inches ='tight ')
550

551 # IF SELECTED , COMPUTE CHARGE STABILITY DIAGRAM WITH THE CURRENT
DEVICE CONFIGURATION (SLOW)

552 if compute_csd :
553 compute_charge_stability_diagram (subdevice , results_dir)

Listing B.1: sim_dqd.py - Main simulation script for the device layer in a DQD device.
Its operation is explained in detail in Chapter 6.

192

Python Simulation Scripts

B.2 charge_stability_diagram.py

1 import os
2 import sys
3 sys.path. append ('/opt/qtcad -1.4.3/ qtcad/')
4

5 from qtcad. device import constants as ct
6 from qtcad. device . mesh3d import Mesh , SubMesh
7 from qtcad. device . analysis import linecut
8 from qtcad. device import io
9 from qtcad. device import analysis

10 from qtcad. device import materials as mt
11 from qtcad. device import Device , SubDevice
12 from qtcad. device . poisson import Solver as PoissonSolver
13 from qtcad. device . poisson import SolverParams as

PoissonSolverParams
14 from qtcad. device . schrodinger import Solver as SchrodingerSolver
15 from qtcad. device . schrodinger import SolverParams as

SchrodingerSolverParams
16 import matplotlib
17 matplotlib .use('Agg ')
18 from matplotlib import pyplot as plt
19 import pathlib
20 import numpy as np
21 import math
22 import pickle
23 from qtcad. device . many_body import SolverParams
24 from qtcad. transport . mastereq import seq_tunnel_curr
25 from qtcad. transport . junction import Junction
26 from progress .bar import ChargingBar as Bar
27

28 sys.path. append (os.path.join(os.path. dirname (__file__), "tools"))
29 from get_leverarm import get_lever_arm
30

31 def compute_charge_stability_diagram (device , results_dir):
32 print(" COMPUTING CHARGE STABILITY DIAGRAM - COULOMB DIAMONDS ")
33 many_body_solver_params = SolverParams ()
34 many_body_solver_params . num_states = 2 # Number of levels to

keep
35 many_body_solver_params . n_degen = 2 # Spin degenerate

system
36 many_body_solver_params .alpha = get_lever_arm (device , "

gatebnd_plunger_1 ") # Lever arm
37 jc = Junction (device , many_body_solver_params =

many_body_solver_params)
38

39 print('chemical potentials (eV):', jc. chem_potentials /ct.e)

193

Python Simulation Scripts

40 print('positions of Coulomb peaks relative to reference value
(V):',

41 jc. coulomb_peak_pos)
42

43 # Set a near -zero source -drain bias
44 jc.setVs (0.0001)
45 jc.setVd (-0.0001)
46

47 jc. set_source_broad_func (10 e6)
48 jc. set_drain_broad_func (10 e6)
49

50 v_gate_rng = np. linspace (0, 1, num =500)
51

52 # Calculate the current for each plunger gate potential
53 vec_Il = []
54 for i in range(v_gate_rng .size): # loop over gate

voltage
55 v_gate = v_gate_rng [i]
56 jc.setVg(v_gate)
57 Il ,Ir ,prob = seq_tunnel_curr (jc) # transport

calculation
58 vec_Il += [Il]
59

60 fig = plt. figure (figsize =(8 ,5))
61 ax = fig. add_subplot (1 ,1 ,1)
62 ax. set_xlabel ("Gate potential (V)")
63 ax. set_ylabel (" Current (pA)")
64 ax.plot(v_gate_rng , np.array(vec_Il)/1e -12)
65 path_fig = str(results_dir / " coulomb_peaks .png")
66 plt. savefig (path_fig)
67 #plt.show ()
68

69 ### Charge - stability diagram ###
70 v_gate_rng = np. linspace (-1, 1, num =100)
71 v_drain_rng = np. linspace (-0.05 , 0.05 , num =100)
72

73 diam = np.zeros ((v_gate_rng .size , v_drain_rng .size), dtype=
float)

74

75 number_grid_points = v_gate_rng .size * v_drain_rng .size #
number of sampled grid points

76 progress_bar = Bar(" Computing charge - stability diagram ", max =
number_grid_points) # initialize progress bar

77

78 for i in range(v_gate_rng .size): # loop over gate
voltage

79 v_gate = v_gate_rng [i]
80 jc.setVg(v_gate)
81

194

Python Simulation Scripts

82 for j in range(v_drain_rng .size): # loop over drain
voltage

83 v_drain = v_drain_rng [j]
84 jc.setVd(v_drain)
85 Il ,Ir ,prob = seq_tunnel_curr (jc) # transport

calculation
86 diam[i,j] = Il
87 progress_bar .next ()
88

89 progress_bar . finish ()
90

91 # Postprocess the current to turn it into an image to be
plotted

92 current_image = np.flip(np. transpose (np.abs(diam)), axis =0)
93

94 Vtop_2 = 1
95

96 # plot results
97 fig , axs = plt. subplots ()
98 axs. set_ylabel ('$V_d(V)$',fontsize =16)
99 axs. set_xlabel ('$V_g(V)$',fontsize =16)

100 diff_cond_map = axs. imshow (current_image /1e-12, interpolation =
'bilinear ',

101 extent =[Vtop_2 + v_gate_rng [0], Vtop_2 + v_gate_rng [-1],
102 v_drain_rng [0], v_drain_rng [-1]], aspect ="auto

", cmap=" Purples ")
103 fig. colorbar (diff_cond_map , ax=axs , label=" Current (pA)")
104 fig. tight_layout ()
105 path_fig = str(results_dir / " charge_stability_diagram .png")
106 plt. savefig (path_fig)

Listing B.2: charge_stability_diagram.py - This script can be called from the function
compute_charge_stability_diagram at the end of the main simulation script for the
device package. It takes the device and computes the charge stability diagram.

195

Python Simulation Scripts

B.3 particle_addition_spectrum.py

1 import os
2 import sys
3 sys.path. append ('/opt/qtcad -1.4.3/ qtcad/')
4

5 from qtcad. device import constants as ct
6 from qtcad. device . mesh3d import Mesh , SubMesh
7 from qtcad. device . analysis import linecut
8 from qtcad. device import io
9 from qtcad. device import analysis

10 from qtcad. device import materials as mt
11 from qtcad. device import Device , SubDevice
12 from qtcad. device . poisson import SolverParams as

PoissonSolverParams
13 from qtcad. device . schrodinger import SolverParams as

SchrodingerSolverParams
14 from qtcad. device . leverarm import Solver as LeverArmSolver
15 from qtcad. device . leverarm import SolverParams as

LeverArmSolverParams
16 from qtcad. device . many_body import Solver as ManyBodySolver
17 from qtcad. device . many_body import SolverParams as

ManyBodySolverParams
18 from qtcad. device . leverarm_matrix import Solver as LeverArmSolver
19 from qtcad. device . leverarm_matrix import SolverParams as

LeverArmSolverParams
20 from qtcad. transport . junction import Junction
21 from qtcad. transport . mastereq import add_spectrum
22 from progress .bar import ChargingBar as Bar
23 from scipy.io import savemat , loadmat
24 import matplotlib
25 matplotlib .use('Agg ')
26 from matplotlib import pyplot as plt
27 from matplotlib . offsetbox import OffsetImage , AnnotationBbox
28 import matplotlib .image as mpimg
29 import pathlib
30 from pathlib import Path
31 import numpy as np
32 import math
33

34

35 def get_add_spectrum (junc , gate_labels , gate_biases , temperature ,
36 verbose =True):
37

38 # Set list of biases with drain potential + increment
39 junc. set_biases (gate_labels , gate_biases , verbose = verbose)
40

41 # Calculate response function

196

Python Simulation Scripts

42 out = add_spectrum (junc , temperature = temperature)
43 return out
44

45

46 def compute_particle_addition_spectrum (device , dot_region ,
V_plunger_1 , V_plunger_2 , results_dir):

47 print(" COMPUTING CHARGE STABILITY DIAGRAM - PARTICLE ADDITION
SPECTRUM ")

48 # Instantiate the voltage bias vector
49 bias_vector = np.array ([V_plunger_1 , V_plunger_2])
50

51 # Bias labels
52 gate_labels = [" gatebnd_plunger_1 ", " gatebnd_plunger_2 "]
53

54 params_poisson = PoissonSolverParams ()
55 params_poisson .tol = 1e-5
56 params_schrod = SchrodingerSolverParams ()
57 params_schrod . num_states = 4 # Specify the number of

eigenstates and energies to consider in the
diagonalization of the dot Hamiltonian

58 params_schrod .tol = 1e -12 # Set the tolerance for
convergence on energies in electron -volts

59

60 # Solver params for the LeverArmSolver
61 lam_params = LeverArmSolverParams ()
62 lam_params . pot_solver_params = params_poisson
63 lam_params . schrod_solver_params = params_schrod
64

65 # Instantiate lever arm matrix solver
66 slv = LeverArmSolver (device , gate_labels , bias_vector ,

dot_region =dot_region ,
67 solver_params = lam_params)
68

69 # Calculate the lever arm matrix
70 bias_increment = 1e-3
71 lever_arm_matrix = slv.solve(bias_increment = bias_increment)
72

73 # Print and save the lever arm matrix
74 print("Lever arm matrix ")
75 print(lever_arm_matrix)
76 np.save(results_dir /" lever_arm_matrix .npy", lever_arm_matrix)
77

78 submesh = SubMesh (device .mesh , dot_region)
79 subdevice = SubDevice (device , submesh)
80

81 # Calculate the Coulomb interaction matrix
82 # Instantiate many -body solver
83 num_states = 4
84 many_body_solver_params = ManyBodySolverParams ()

197

Python Simulation Scripts

85 many_body_solver_params . n_degen = 2
86 many_body_solver_params . num_states = num_states
87 slv = ManyBodySolver (subdevice , solver_params =

many_body_solver_params)
88

89 # Compute , save , and print Coulomb interaction matrix without
overlap terms

90 coulomb_no_overlap = slv. get_coulomb_matrix (overlap =False ,
verbose =True)

91 np.save(results_dir /" coulomb_mat_no_overlap .npy",
coulomb_no_overlap)

92 print(" Coulomb interaction matrix (eV)")
93 print(coulomb_no_overlap /ct.e)
94

95 # Set the junction temperature to 10 K (instead of 100 mK) to
make lines

96 # in the charge stability diagram thicker and decrease the
resolution

97 # required to observe them
98 temperature_spec = 10
99

100 # Contact labels
101 gate_labels = [" ohmicbnd_source ", " gatebnd_plunger_1 ", "

gatebnd_plunger_2 ",
102 " ohmicbnd_drain "]
103

104 # Instantiate a junction
105 many_body_solver_params . energies = subdevice . energies
106 many_body_solver_params . overlap = False
107 many_body_solver_params . coulomb_mat = coulomb_no_overlap
108 many_body_solver_params .alpha = lever_arm_matrix
109 jc = Junction (many_body_solver_params =

many_body_solver_params ,
110 temperature = temperature_spec , contact_labels = gate_labels)
111

112 # Base source and drain potentials
113 source_potential = 0
114 drain_potential = 0
115

116 # Extremal values of the gate biases
117 min_gate_1_bias = -0.5 ; max_gate_1_bias = 0.5
118 min_gate_2_bias = -0.5 ; max_gate_2_bias = 0.5
119

120 gate_1_biases = np. linspace (min_gate_1_bias , max_gate_1_bias ,
90)

121 gate_2_biases = np. linspace (min_gate_2_bias , max_gate_2_bias ,
90)

122 add_spectrum_mat = np.zeros ((len(gate_1_biases),len(
gate_2_biases)))

198

Python Simulation Scripts

123

124 bartitle = " Calculating charge stability diagram ."
125 progress_bar = Bar(bartitle , max = len(gate_1_biases)*len(

gate_2_biases))
126 for idx_1 , gate_1_bias in enumerate (gate_1_biases):
127 for idx_2 , gate_2_bias in enumerate (gate_2_biases):
128 add_spectrum_mat [idx_1 ,idx_2] =\
129 get_add_spectrum (jc , gate_labels , np.array ([

source_potential ,
130 gate_1_bias , gate_2_bias , drain_potential]),

temperature_spec ,
131 verbose =False)
132 np. savetxt (results_dir / " addition_spectrum .txt",

add_spectrum_mat)
133 progress_bar .next ()
134

135 progress_bar . finish ()
136

137 # Plot the particle addition spectrum
138 # Transpose and flip the matrix to turn into an image with

bias_1 along x
139 # and bias_2 along y
140 add_spec_to_plot = np.flip(np. transpose (add_spectrum_mat),axis

=0)
141 fig , axs = plt. subplots ()
142 axs. set_xlabel ('V_{g1} (V)',fontsize =16)
143 axs. set_ylabel ('V_{g2} (V)',fontsize =16)
144 vg1_ref = V_plunger_1 ; vg2_ref = V_plunger_2 ;
145 diff_conds_map = axs. imshow (add_spec_to_plot /np.max(

add_spec_to_plot),
146 cmap="jet", interpolation ='bilinear ',
147 extent =[min_gate_1_bias +vg1_ref , max_gate_1_bias +vg1_ref ,
148 min_gate_2_bias +vg2_ref , max_gate_2_bias + vg2_ref],

aspect ="auto")
149 fig. colorbar (diff_conds_map , ax=axs , label=" Response (arb.

units)")
150 fig. tight_layout ()
151 plt. savefig (" particle_addition_spectrum .png", dpi =300 ,

bbox_inches ='tight ')

Listing B.3: particle_addition_spectrum.py - This script can be called from the
function compute_particle_addition_spectrum at the end of the main simulation script
for the device package. It takes the device of a double quantum dot and computes the
particle addition spectrum.

199

Appendix C

Python Additional Scripts

C.1 Batch Runner

1 import json
2 import os
3 import itertools
4 import subprocess
5 from concurrent . futures import ProcessPoolExecutor
6 from pathlib import Path
7 import sys
8

9 sys.path. append (os.path.join(os.path. dirname (__file__), "tools"))
10 from mat_merge import merge_dot_results
11 from get_leverarm import get_lever_arm
12

13

14 WORKERS = int(os. cpu_count () /2)
15

16 # DEFINE ENVIRONMENTAL VARIABLES
17 env = os. environ .copy ()
18

19 # DEFINE PARAMETERS TO WEEP
20 plunger_values = [0.5 , 0.6, 0.8, 1.0]
21 doping_values = [1 e15 *1e6 ,1 e16 *1e6 ,1 e17 *1e6 ,1 e18 *1e6 ,1 e19 *1e6 ,1 e20

*1e6]
22

23 # COMBINATIONS
24 combinations = list(itertools . product (plunger_values ,

doping_values))
25

26 # BASE OUTPUT FOLDER
27 base_output = Path(" batch_results ")
28 base_output .mkdir(exist_ok =True)
29

200

Python Additional Scripts

30 # BE SURE TO HAVE LEVER ARM COMPUTED BEFORE PARALLELIZATION ,
OTHERWISE COMMENT IN SIMULATION SCRIPT

31

32 def run_simulation (plunger , doping):
33 # Define directory name for the single simulation
34 label = f"V{ plunger }_N{int(doping):.0e}"
35 output_dir = base_output / label
36 output_dir .mkdir(exist_ok =True)
37

38 env[" V_PLUNGER "] = str(plunger)
39 env[" N_DOPING "] = str(doping)
40

41 env["BATCH"] = str("True")
42

43 print(f"[INFO] Running sim: {label}")
44

45 subprocess .run(
46 [" python ", str(Path(__file__). parent /" sim_v4 .py")],
47 cwd=output_dir , # save files inside simulation directory
48 env=env ,
49 stdout = subprocess . DEVNULL
50)
51

52 # PARALLELIZZAZION
53 if __name__ == " __main__ ":
54 with ProcessPoolExecutor (max_workers = WORKERS) as executor :
55 futures = [executor . submit (run_simulation , v, n) for v, n

in combinations]
56 for f in futures :
57 f. result ()
58

59 merge_dot_results ()

Listing C.1: batch_runner.py - Pilot script for the simulation one. It enables
process-level parallelization to carry out multiple simulations, each corresponding to a
configuration defined by a set of different values for various variables. Its operation is
explained in detail in Section 6.2.

201

Python Additional Scripts

C.2 Process Variation Tool

1 import gmsh
2 import os
3 import sys
4

5

6 def get_surfaces_of_volume_by_label (label):
7 # Find the volume with the given label (e.g. "oxide ")
8 entities = gmsh.model. getEntities (dim =3)
9 for dim , tag in entities :

10 name = gmsh.model. getEntityName (dim , tag)
11 if name == label:
12 oxide_tag = (dim , tag)
13 break
14 else:
15 raise ValueError (f"[ERROR] Volume with label '{label}' not

found.")
16

17 # Get the surfaces that form the boundary of the volume
18 surfaces = gmsh.model. getBoundary ([oxide_tag], oriented =False ,

recursive =False)
19

20 # Print the surface tags
21 print(f"\n[SEARCH] Surfaces forming the volume '{label }':")
22 for dim , tag in surfaces :
23 if dim == 2:
24 name = gmsh.model. getEntityName (dim , tag)
25 print(f"- Surface tag = {tag }{f' -> {name}' if name

else ''}")
26

27 return [tag for dim , tag in surfaces if dim == 2]
28

29

30 # === Get all Shapes names from IGES ===
31 def get_shapes_dict ():
32 entities = gmsh.model. getEntities ()
33 shapes_dict = {}
34 for dim , tag in entities :
35 try:
36 name = gmsh.model. getEntityName (dim , tag)
37 except Exception :
38 continue
39 if name. startswith (" Shapes /"):
40 shape_name = name.split("/")[-1]
41 if shape_name not in shapes_dict :
42 shapes_dict [shape_name] = []
43 shapes_dict [shape_name]. append ((dim , tag))

202

Python Additional Scripts

44 return shapes_dict
45

46 # === Get the tag (3D) from a name ===
47 def get_tag_by_label (label , shapes_dict):
48 entries = shapes_dict .get(label , [])
49 for dim , tag in entries :
50 if dim == 3:
51 return (3, tag)
52 raise ValueError (f"No volume (dim =3) found with label '{label

}'")
53

54 # === Boolean union of multiple shapes given the labels ===
55 def union_shapes_by_labels (labels , shapes_dict):
56 if not labels :
57 return []
58 shapes = [get_tag_by_label (label , shapes_dict) for label in

labels]
59 current_union = [shapes [0]]
60 for shape in shapes [1:]:
61 current_union , _ = gmsh.model.occ.fuse(current_union , [

shape])
62 gmsh.model.occ. synchronize ()
63 return current_union
64

65

66 def get_z_max_of_label (label , shapes_dict):
67 entry = shapes_dict .get(label , [])
68 for dim , tag in entry:
69 if dim == 3:
70 bbox = gmsh.model. getBoundingBox (dim , tag)
71 return bbox [5] # z_max
72 raise ValueError (f"No volume (dim =3) found with label '{label

}'")
73

74 def add_surface (x, y, x_size , y_size , z, name=None):
75 # Create a rectangular surface at position (x, y, z) with

given size
76 x0 = x - x_size / 2
77 y0 = y - y_size / 2
78 x1 = x + x_size / 2
79 y1 = y + y_size / 2
80

81 p1 = gmsh.model.occ. addPoint (x0 , y0 , z)
82 p2 = gmsh.model.occ. addPoint (x1 , y0 , z)
83 p3 = gmsh.model.occ. addPoint (x1 , y1 , z)
84 p4 = gmsh.model.occ. addPoint (x0 , y1 , z)
85

86 l1 = gmsh.model.occ. addLine (p1 , p2)
87 l2 = gmsh.model.occ. addLine (p2 , p3)

203

Python Additional Scripts

88 l3 = gmsh.model.occ. addLine (p3 , p4)
89 l4 = gmsh.model.occ. addLine (p4 , p1)
90

91 loop = gmsh.model.occ. addCurveLoop ([l1 , l2 , l3 , l4])
92 surface_tag = gmsh.model.occ. addPlaneSurface ([loop])
93

94 gmsh.model.occ. synchronize ()
95

96 if name:
97 gmsh.model. setEntityName (2, surface_tag , name)
98

99 return surface_tag
100

101 def find_entity_by_label (label , dim =3):
102 # Find an entity of a given dimension with the given label
103 entities = gmsh.model. getEntities (dim)
104 for d, tag in entities :
105 name = gmsh.model. getEntityName (d, tag)
106 if name == label:
107 return (d, tag)
108 raise ValueError (f"No entity found with label '{label}' and

dimension {dim}")
109

110

111 def print_surface_tags_with_info (label):
112 oxide_entity = find_entity_by_label (label , dim =3)
113

114 # Find all the surfaces of the volume
115 surfaces = gmsh.model. getBoundary ([oxide_entity], oriented =

False)
116

117 print(f"\n[SEARCH] Surfaces of volume '{label}' (tag ={
oxide_entity [1]}):")

118 for dim , tag in surfaces :
119 if dim != 2:
120 continue
121 name = gmsh.model. getEntityName (dim , tag)
122 bbox = gmsh.model. getBoundingBox (dim , tag)
123 center = [(bbox [0] + bbox [3]) /2, (bbox [1] + bbox [4]) /2, (

bbox [2] + bbox [5]) /2]
124 print(f"- Surface tag: {tag :3} {f '-> {name}' if name else

''} | center = { center }")
125

126

127 # === MAIN SCRIPT ===
128 def main(file_base):
129 iges_file = f"{ file_base }. iges"
130 step_file = f"{ file_base }_mod.step"
131 output_file = " output .step"

204

Python Additional Scripts

132

133 if not os.path. exists (iges_file):
134 print(f"Error: IGES file '{ iges_file }' not found.")
135 sys.exit (1)
136

137 gmsh. initialize ()
138 gmsh. option . setNumber (" General . Terminal ", 1)
139 gmsh.model.add(" modello_modificato ")
140

141 gmsh.model.occ. importShapes (iges_file)
142 gmsh.model.occ. synchronize ()
143

144 shapes_dict = get_shapes_dict ()
145 print("[FOUND] Shapes found (name -> (dim , tag)):")
146 for name , ents in shapes_dict .items ():
147 print(f" - {name }: {ents}")
148

149 z = round(get_z_max_of_label ("oxide", shapes_dict), 1)
150

151 # === Merge some shapes ===
152 labels_to_merge = [" plunger_1 ", " plunger_2 ", " barrier_1 ", "

barrier_2 ", " barrier_3 ", "oxide"]
153 merged = union_shapes_by_labels (labels_to_merge , shapes_dict)
154 resulting_volumes = gmsh. model.occ. getEntities (dim =3)
155 oxide_tag = 0
156 for dim , tag in resulting_volumes :
157 name = gmsh.model. getEntityName (dim , tag)
158 if name == " Shapes /oxide":
159 oxide_tag = tag
160

161 # === Add a surface on top ===
162 surf_tag = add_surface (0, 0, 20, 10, z, name=" top_contact ")
163 print(f"[DONE] Surface 'top_contact ' added with tag { surf_tag }

")
164

165 oxide_surface_tags = get_surfaces_of_volume_by_label (" Shapes /
oxide")

166 print_surface_tags_with_info (" Shapes /oxide")
167

168 top_tag = 94
169

170 fused_surfaces , _ = gmsh.model.occ. fragment ([(2 , surf_tag)],
[(2, top_tag)])

171 gmsh.model.occ. synchronize ()
172

173 gmsh.model.occ. remove ([(2 , surf_tag)])
174 gmsh.model.occ. synchronize ()
175

176 gmsh.model.occ. remove ([(2 , top_tag)])

205

Python Additional Scripts

177 gmsh.model.occ. synchronize ()
178

179 # === Export STEP file ===
180 gmsh.write(output_file)
181 print(f"[EXPORT] Geometry exported to '{ output_file }'")
182

183 gmsh. finalize ()
184

185 # === Run script from terminal ===
186 if __name__ == " __main__ ":
187 if len(sys.argv) != 2:
188 print("Usage: python script .py base_file_name (without

extension)")
189 sys.exit (1)
190 base_name = sys.argv [1]
191 main(base_name)

Listing C.2: remesh.py - This script can serve as a basis for process variation simulations.
However, it requires corrections since the addition of the gate surface does not properly
merge with the oxide volume and the top surface. A detailed description of its working
principle is provided in Section 10.1.

206

Bibliography

[1] David Aasen, Morteza Aghaee, Zulfi Alam, Mariusz Andrzejczuk, and Andrey An-
tipov et al. Roadmap to fault tolerant quantum computation using topological qubit
arrays, 2025.

[2] Asp Isotopes. Technology | asp isotopes, 2024. Accessed: 2025-05-20.

[3] Max Born, Emil Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M.
Taylor, P. A. Wayman, and W. L. Wilcock. Principles of Optics: Electromagnetic
Theory of Propagation, Interference and Diffraction of Light. Cambridge University
Press, 7 edition, 1999.

[4] Encyclopaedia Britannica. Lepton, February 2024. Accessed: May 14, 2025.

[5] Guido Burkard, Thaddeus D. Ladd, Andrew Pan, John M. Nichol, and Jason R.
Petta. Semiconductor spin qubits. Reviews of Modern Physics, 95(2), 2023.

[6] Anasua Chatterjee, Paul Stevenson, Silvano De Franceschi, Andrea Morello,
Nathalie P. de Leon, and Ferdinand Kuemmeth. Semiconductor qubits in practice.
Nature Reviews Physics, 3(3), 2021.

[7] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë. Quantum Mechanics. John
Wiley & Sons, 2005.

[8] Wikipedia contributors. Born rule, 2025. Accessed: 2025-08-28.

[9] Wikipedia contributors. Debye length, 2025. Accessed: 2025-08-28.

[10] Wikipedia contributors. Plasma electrolytic oxidation, 2025. Accessed: 2025-08-28.

[11] Wikipedia contributors. Qubit, 2025. Accessed: 2025-08-28.

[12] Wikipedia contributors. Schrödinger equation, 2025. Accessed: 2025-08-28.

[13] Davide Costa. Definition of compact models for the simulation of spin qubits in
semiconductor quantum dots, 2022.

[14] David P. DiVincenzo. Quantum computation. Science, 270(5234):255–261, 1995.

[15] David P. DiVincenzo. The physical implementation of quantum computation.
Fortschritte der Physik, 2000.

207

BIBLIOGRAPHY

[16] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of
physical reality be considered complete? Phys. Rev., 47:777–780, May 1935.

[17] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K.
Vandersypen, and L. P. Kouwenhoven. Single-shot read-out of an individual electron
spin in a quantum dot. Nature, 430(6998):431–435, 2004.

[18] Yaakov Y. Fein, Philipp Geyer, Patrick Zwick, Filip Kiałka, Sebastian Pedalino, Mar-
cel Mayor, Stefan Gerlich, and Markus Arndt. Quantum superposition of molecules
beyond 25 kda. Nature Physics, 15(12):1242–1245, 2019.

[19] David J. Griffiths. Introduction to Quantum Mechanics. Pearson Prentice Hall, Upper
Saddle River, NJ, 2nd edition, 2004.

[20] Wonill Ha, Sieu D. Ha, Maxwell D. Choi, Yan Tang, Adele E. Schmitz, Mark P.
Levendorf, Kangmu Lee, James M. Chappell, Tower S. Adams, Daniel R. Hulbert,
Edwin Acuna, Ramsey S. Noah, Justine W. Matten, Michael P. Jura, Jeffrey A.
Wright, Matthew T. Rakher, and Matthew G. Borselli. A flexible design platform
for si/sige exchange-only qubits with low disorder. Nano Letters, 22(3):1443–1448,
November 2021.

[21] Jianhua He. Electron Spin Resonance on Si/SiGe Quantum Dots. Ph.d. dissertation,
Princeton University, Princeton, NJ, 2012.

[22] Y. Homma, A. Yajima, and S. Harada. A new soi (silicon-on-insulator) mos structure
for vlsi’s. IEEE Journal of Solid-State Circuits, 17(1):142–146, 1982.

[23] Nanoacademic Technologies Inc. Qtcad®: a computer-aided design tool for quantum-
technology hardware. Web page, 2025. Accessed: 2025-09-08.

[24] Gregg Jaeger. What in the (quantum) world is macroscopic? American Journal of
Physics, 82(9):896–905, 09 2014.

[25] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature, 393(6681):133–
137, 1998.

[26] M. A. Kastner. The single-electron transistor. Rev. Mod. Phys., 64:849–858, Jul 1992.

[27] Jing Li, Jiayi Guo, Zhongchao Zhou, Rui Xu, Lina Xu, Yihong Ding, Hongping Xiao,
Xinhua Li, Aidong Li, and Guoyong Fang. Atomic layer deposition mechanism of
hafnium dioxide using hafnium precursor with amino ligands and water. Surfaces
and Interfaces, 2023. Published online December 13, 2023.

[28] Olimpia Lombardi, Federico Holik, and Leonardo Vanni. What is shannon informa-
tion? Synthese, 193(7):1983–2012, 2016.

[29] Nadya Mason. Electron transport in quantum dots, 2015. Accessed: 2025-08-28.

[30] Andrea Morello. Single spins in silicon carbide. Nature Materials, 14(2), 2015.

208

BIBLIOGRAPHY

[31] Nanoacademic Technologies Inc. Double quantum dot stability diagram. https://
docs.nanoacademic.com/qtcad/tutorials/transport/double_dot_stability/.
Accessed: 2025-05-23.

[32] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation. Cambridge University Press, Cambridge, 10 edition, 2010.

[33] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation. Cambridge University Press, Cambridge, 10th anniversary edition edition,
2010.

[34] Thierry Ouisse. Electron Transport in Nanostructures and Mesoscopic Devices: An
Introduction. John Wiley & Sons, 2013.

[35] Franco De Palma. Single-electron transistor on fd-soi for spin qubit sensing, 2021.

[36] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin,
C. M. Marcus, M. P. Hanson, and A. C. Gossard. Coherent manipulation of coupled
electron spins in semiconductor quantum dots. Science, 309(5744):2180–2184, 2005.

[37] Maximilian Russ and Guido Burkard. Three-electron spin qubits. 2016. arXiv
preprint arXiv:1611.09106, 28 Nov 2016. Accessed: 2025-08-28.

[38] E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules.
Phys. Rev., 28:1049–1070, Dec 1926.

[39] Benjamin Schumacher. Quantum coding. Phys. Rev. A, 51:2738–2747, Apr 1995.

[40] R. Shankar. Principles of Quantum Mechanics. Plenum Press, New York, 2nd edition,
1994.

[41] Claude E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27(3):379–423, 1948.

[42] F. Simmel, David Abusch-Magder, D. A. Wharam, M. A. Kastner, and J. P. Kot-
thaus. Statistics of the coulomb-blockade peak spacings of a silicon quantum dot.
Physical Review B, 59(16):R10441–R10444, 1999.

[43] Nanoacademic Technologies. Lever arm theory, 2025. Accessed: 2025-08-28.

[44] Nanoacademic Technologies. The nonequilibrium green’s function (negf) formalism,
2025. Accessed: 2025-08-28.

[45] Nanoacademic Technologies. Transport in the coulomb blockade regime, 2025. Ac-
cessed: 2025-08-28.

[46] Nanoacademic Technologies. Tunnel coupling in a double quantum dot in fd-soi. part
1: Plunger gate tuning. Web tutorial, 2025. Accessed: 2025-09-13.

[47] Nanoacademic Technologies. Tutorials - qtcad transport package, 2025. Accessed:
2025-08-28.

209

https://docs.nanoacademic.com/qtcad/tutorials/transport/double_dot_stability/
https://docs.nanoacademic.com/qtcad/tutorials/transport/double_dot_stability/

BIBLIOGRAPHY

[48] The Guardian. Physicist erwin schrödinger’s google doodle marks quantum mechanics
work. The Guardian, August 2013. Accessed: 2025-05-09.

[49] John S. Townsend. A Modern Approach to Quantum Mechanics. McGraw-Hill, New
York, 1992.

[50] L. A. Tracy, E. P. Nordberg, R. W. Young, C. Borrás Pinilla, H. L. Stalford, G. A. Ten
Eyck, K. Eng, K. D. Childs, J. Stevens, M. P. Lilly, M. A. Eriksson, and M. S.
Carroll. Double quantum dot with tunable coupling in an enhancement-mode silicon
metal-oxide semiconductor device with lateral geometry. Applied Physics Letters,
97(19):192110, 2010.

[51] W. G. Van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and
L. P. Kouwenhoven. Electron transport through double quantum dots. Reviews of
Modern Physics, 75(1):1–22, 2002.

[52] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P.
Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzu-
rak. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nature
Nanotechnology, 9:981–985, 2014.

[53] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P.
Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak.
A two-qubit logic gate in silicon. Nature, 526:410–414, 2015.

[54] Ke Wang, Hai-Ou Li, Ming Xiao, Gang Cao, and Tang Ping. Spin manipulation in
semiconductor quantum dots qubit. Chinese Physics B, 27:090308, 09 2018.

[55] Hermann Weyl. Gruppentheorie und Quantenmechanik. Hirzel, Leipzig, 1928.

[56] Colin P. Williams. Explorations in Quantum Computing. Springer, Berlin, 2011.

[57] Noson S. Yanofsky and Mirco Mannucci. Quantum Computing for Computer Scien-
tists. Cambridge University Press, 2013.

[58] Noson S. Yanofsky and Mirco Mannucci. Quantum Computing for Computer Scien-
tists. Cambridge University Press, Cambridge, 2013.

[59] D. M. Zajac, T. M. Hazard, X. Mi, E. Nielsen, and J. R. Petta. Scalable gate archi-
tecture for a one-dimensional array of semiconductor spin qubits. Physical Review
Applied, 6(5):054013, 2016.

[60] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg,
D. N. Jamieson, J. C. Inkson, S. Rogge, S. N. Coppersmith, and M. A. Eriksson.
Silicon quantum electronics. Reviews of Modern Physics, 85(3):961–1019, 2013.

210

	List of Figures
	List of Acronyms
	I Theoretical Background
	Introduction to Quantum Mechanics for Nanoscale Devices
	Principles of Quantum Mechanics
	Quantum Interference and the Double Slit Experiment
	Quantum Tunnelling
	Quantum Entanglement

	Schrödinger's Wave Equation
	Trap a Quantum Particle
	Confinement Implementation

	Spin Qubits in Solid-State Systems
	Qubits Fundamentals
	Spin Qubits
	DiVincenzo Criteria

	Encodings
	Loss-DiVincenzo
	Singlet-Triplet
	Exchange-Only

	Quantum Dots
	Gate Defined Quantum Dots
	Dopants
	Nitrogen-Vacancy Centers

	Noise, Decoherence and Error
	Transport Analysis
	Qubit Control
	Initialization
	Manipulation
	Readout

	Engineering a Gate-Defined Quantum Dot
	Material Systems
	Technological Evolution of Gate-Defined QDs
	State Of The Art Quantum Devices

	II Implementation and Evaluation
	Thesis Outline
	Development of a Robust Workflow for Custom Simulations
	Study of Planar Devices Quantum Behaviour
	Moving to Three-Dimensional Architectures

	Device Fabrication Process Simulation

	Preliminary Setup
	Workflow Outline
	Geometry Definition with Autodesk Fusion
	Parameters Definition
	Parametric Sketching
	Parametric Extrusion
	Design Export

	Geometry Meshing with Gmsh
	Conformal Geometry Loading
	Physical Groups Assignment
	Meshing and Export

	Quantum Simulations With QTCAD
	Device Layer Simulation
	Directory Organization
	Environment Definition
	Assigning Physical properties
	Poisson and Schrödinger Solvers
	Results Display
	Results Analysis in ParaView

	Batch Runner
	Scoring System

	Transport Layer Simulation
	Lever Arm
	Coulomb Diamonds
	Particle Addition Spectrum

	Fabrication Process Simulation
	Engineer A Wafer For Quantum Computing
	Prefabricated Wafer Selection
	Epitaxial Growth of Isotopically Enriched Silicon

	Capabilities and Limitations at PiQuET
	Device Fabrication Process in Sentaurus
	Integration of Doping Profiles into Simulations
	Definition Inside Autodesk Fusion
	Handling in Gmsh
	QTCAD Code Adaptation

	Silicides
	Barrier Gate Manufacturing

	Experimental Results from QTCAD
	Conclusions
	Future Implementations
	Simulating Process Variations
	Mesh Extraction From Sentaurus Process
	Simulating Qubit Package

	III Attachments
	Python Tool Scripts
	device_config.py
	mesh_volume.py
	z_for_threshold.py
	mat_merge.py
	dot_range.py
	x_for_threshold.py
	apex.py
	get_exported_parameters.py
	remove_fails.py
	compute_leverarm.py
	get_leverarm.py

	Python Simulation Scripts
	sim_dqd.py
	charge_stability_diagram.py
	particle_addition_spectrum.py

	Python Additional Scripts
	Batch Runner
	Process Variation Tool

