POLITECNICO DI TORINO

Master Degree Course in Electronic Engineering

Master Degree Thesis

Design and Evaluation of
Reconfigurable Systolic Arrays for
Neural Networks

s 2fiv v Politecnico
tﬁﬁ‘i " ® °
&l b di Torino

W\ 1859 4
-\ \ ‘:j’
-t :g‘
Advisors Candidate
Prof. Mario Roberto CASU Sergio Ivano FIERRO

Dr. Edward MANCA

ACADEMIC YEAR 2024-2025

Summary

In recent years, Deep Neural Networks (DNNs) have achieved unprecedented ac-
curacy across a wide range of tasks. These gains, however, come with substantial
increases in model complexity and per-inference computational cost. As a result,
deploying DNNs presents new challenges, and devising efficient methods to exe-
cute their computations has become a central concern in research. Modern DNN
workloads comprise many nested loops, with Multiply-and-Accumulate (MAC) op-
erations dominating. In this context, Systolic Arrays (SAs) have emerged as an
architecture that connects and coordinates large numbers of Processing Elements
(PEs) operating in parallel. Usually, SAs are composed of PEs that communicate
only with their direct neighbors. This neighbor-to-neighbor connectivity allows
them to have low fan-out connections. Moreover, SAs supports dataflow organi-
zations that enable operand reuse, and relax the back-pressure to the memory to
feed the PEs with new values. Finally, their regular structure aligns well with
lightweight control units, usually composed by counters. All these properties make
them a good choice to compute the kernels of DNNs such as matrix multiplication
and convolution. On the other hand, both the shape of the array — i.e., the num-
ber of elements along rows and columns — and the dataflow scheme the array is
designed for — namely Output Stationary (OS), Weight Stationary (WS), or In-
put Stationary (IS) — have a significant impact on computational efficiency. Each
combination of shape and dataflow determines a computation strategy that better
fits a given algorithm and a different design point in the latency, silicon area, and
power consumption analysis. The goal of this thesis is to explore and design recon-
figurable SAs that support multiple shapes and/or multiple dataflows. To this end,
I explored the design space given by SAs with different shapes and dataflows, over
a class of selected DNN kernels - i.e. convolutions, linear, and attention layers. For
each configuration I verified the correctness with RTL simulation tools. Moreover,
I collected the number of clock cycles needed by the SA to complete the compu-
tation, and I synthesized them on a 28 nm digital library to also collect latency,
silicon area, and power consumption results. Overall, these data allowed me to
rank the various shapes and dataflows on an efficiency metric of OPC/mW, and
to select the most efficient SA configurations. Once the best configurations have
been selected, I designed and verified a reconfigurable SA supporting more than one

11

configuration in the same design. Since the number of configurations to support
directly influence the overhead coming from the reconfigurability, I explored archi-
tectures that implements two/three configurations at most in the same SA. This
design has been simulated and synthesized on the same 28 nm technology library to
validate its efficiency with the same OPC/mW metric. The study demonstrates the
importance of architectural choices in the SA design process and proposes a path
to have more efficient reconfigurable SAs that can optimally execute more than one
DNN algorithm with the same SA structure. Looking forward, this approach may
serve as a foundation to study and efficiently compute the algorithms of novel DNN
layers, leveraging run-time reconfiguration.

II1

Acknowledgements

I would like to sincerely thank Professor Mario Roberto Casu and Dr. Edward
Manca, without whose expert and constant guidance this work would not have been
possible. Also, a special acknowledgment goes to the entire research group whose
availability, competence and constructive support provided a solid foundation for
the development of this thesis.

I want to thank my family, whose constant support and encouragement not only
made possible this academic journey but has always accompanied me at every stage
of my life. Particularly, I am grateful to my brother, whose presence and constant
support, even from afar, have been of inestimable value, especially during the most
challenging times.

I am also deeply beholden to my significant other for her profound understand-
ing, continuous encouragement, and for the meticulous contribution, especially for
revising this manuscript, which improved its clarity and overall cohesion.

Finally, I would like to thank all my friends, whose constant presence and support
accompanied me throughout my university journey, making it lighter, richer, and
unforgettable.

v

Contents

1 Introduction
1.1 Deep Learning Evolution and Efficiency Challenges
1.1.1 Evolution of deep learning
1.1.2 Increase in model complexity
1.1.3 Computational and energy inefficiency in training and inference
1.2 Contribution and Thesis Objectives
1.3 Thesis Outline
2 Conventional Systolic Arrays
2.1 Systolic Array Fundamentals
2.1.1 Operating principles and general architecture
2.1.2 Key concepts: data reuse, spatial and temporal loops
2.1.3 Analysis of different dataflows
2.2 State of the Art in SA Architectures
3 Efficiency of Conventional SAs in executing NNs
3.1 Mapping Neural Networks to Systolic Arrays
3.1.1 Fully-Connected Layers
3.1.2 Convolutions (CNN) - GEMM via im2col
3.1.3 Transformer and Self-Attention
3.2 Evaluation Methodology
3.2.1 Performance estimation method
3.3 Performance Results
3.4 Discussion
4 Proposed Reconfigurable Systolic Array Architecture
4.1 Design Goals and Specifications
4.2 Processing Element (PE) Design
4.3 Reconfiguration Mechanism
4.4 Performance Results

4.4.1 Methodology for data computation and reason behind the
selection of comparison shape.

v

T W N = ==

lNoREN BN

23
23
24
27
30
33
33
37
o1

4.4.2 Synthesis and Resource-Overhead Results 60

5 Conclusions and Future Work 65
51 Conclusion, 65
5.2 Future Work, 66

List of Figures 69

VI

Chapter 1

Introduction

1.1 Deep Learning Evolution and Efficiency Chal-
lenges

1.1.1 Evolution of deep learning

With the advent of the digital age, much of the data that was once accessible
only in an “analog” form has been transferred to and made available on digital
systems. In particular, today—considering the enormous amount of information
produced, processed, and stored in scientific, industrial, and research contexts—we
increasingly speak of a true “era of big data.”

Consequently, traditional tools for the analysis and manipulation of collected
information have had to evolve. It is within this context that Neural Network
Learning emerged — a system designed to emulate the behavior of the human brain.
When comparing a machine and a brain in terms of data storage and access, their
differences are immediately clear: the human brain (which can roughly be compared
to a computer’s CPU) does not have a central memory unit where information is
saved and later retrieved (as occurs in a computer’s hard drive). Instead, the brain
creates connections among accessible data, allowing it to retrieve past information
through associative processes. The goal, in this regard, has always been to replicate
such behavior in machines, avoiding the creation of massive, slow, and difficult-to-
access data repositories.

Introduction

A Deep
Leagning

connectionist

MLP peak

Perceptron
peak

level of interest

[A T M N M N AN R
| L I O N I

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030

decade
Figure 1.1: Three wave of neural network research[1].

This way of envisioning machines as networks of interconnected neurons has
actually existed in research much longer beyond anything one could imagine. As
reported in various studies, neural network learning has gone through three main
waves of research activity. This trend is clear in Figure 1.1: the first wave dates back
to the 1960s, with Frank Rosenblatt’s "Perceptron” [2], the first supervised learn-
ing algorithm capable of classifying linear patterns, Bernard Widrow and Marcian
Hoff’s "MADALINE" [3], which introduced for the first time a multilayer network
based on adaptive learning rules — laying the foundation for future neural archi-
tectures.

The second wave started in the 1980s, when John Hopfield showed that recur-
rent neural networks could address NP-hard combinatorial optimization problems .
Around the same time, the introduction of the backpropagation algorithm made it
possible to effectively train multilayer networks, sparking renewed interest in deep
learning research

Finally, the third and most significant wave is the one we are experiencing today.
It began around 2012, when deep convolutional neural networks were first used
for image classification [4]. The fundamental difference between the early neural
networks and those designed for deep learning lies in the number of hidden layers,
i.e., the computational layers between the input and output nodes. In recent years,
deep learning—thanks especially to its ability to process and learn from much larger
volumes of data than previous systems—has become the reference paradigm within
the field of machine learning.

1.1.2 Increase in model complexity

In recent years, the field of deep learning has experienced rapid growth not only in
terms of application adoption but also—and above all—in the size and complexity

2

1.1 — Deep Learning Evolution and Efficiency Challenges

of the models used. This evolution is justified by the empirical scaling laws, which
show that increases in the number of parameters, the amount of training data,
and the available computational resources lead to better performance. At the same
time, there is a human drive to tackle increasingly complex tasks (such as computer
vision and natural language processing) that require models capable of generating
ever richer and more abstract representations.

A clear example is represented by language models—for instance, GPT-2 and
related architectures— which have demonstrated that the generalization error (i.e.,
how well a learning model performs on unseen data) decreases according to a power
law as the model size, training data, and computational budget grow. These studies
[5] suggest that, to improve model quality, one of the most effective strategies is
simply to scale up: more parameters, more data, and more computation.

In practice, models such as ResNet (Residual Networks) used in computer vision
architectures, or attention-based models like Transformers used in natural language
processing, have become extremely deep or contain billions of parameters. This de-
sign is motivated by the need for models capable of robustly understanding entities,
relationships, and contexts in complex tasks such as image recognition, machine
translation, or text generation. In this sense, model complexity is regarded as a
necessary means to achieve the desired performance leap.

Two key factors have enabled the evolution of neural networks in this direction:
the exponential increase in available data and the rapid development of specialized
hardware (GPUs, TPUs, accelerators, systolic arrays, FPGAs), which can now train
increasingly dense networks on a daily basis. As a result, large-scale models are
today the rule rather than the exception in cutting-edge research. For instance, it
has been estimated that the computational requirements of certain language models
have increased by several orders of magnitude in just a few years—according to a
recent analysis, by approximately 300,000x between 2012 and 2018 [6].

In summary, the growing complexity and scale of deep learning models stem from
two main factors. On one side, the abundance of data, advances in hardware, and
improved design expertise drive the development of larger architectures. On the
other, empirical scaling laws and the quest for emergent capabilities make increasing
model size more beneficial than focusing just on architectural improvements.

1.1.3 Computational and energy inefficiency in training and
inference

Such progress has led to a significant increase in the resources required — both in
terms of computational power and energy consumption — during both the training
phase, in which the model processes large amounts of data to learn its parame-
ters, and the inference phase, in which the already trained model is employed to
generate predictions or decisions on new inputs. Both stages share a fundamen-
tal characteristic: the need to perform an extremely high number of mathematical

3

Introduction

operations, mainly multiplications and accumulations (MAC, Multiplication and
Accumulation), whose volume grows proportionally with the model’s complexity
and depth.

During these operations, activations, weights and gradients must be continuously
read from and written to memory with a constant exchange of information between
different cache levels, main memory and compute arrays. These data flows entail
considerable energy expenditure, not only for the arithmetic operations themselves
but also for memory transfers and synchronization among the various hardware
units. Overall efficiency therefore depends not only on the algorithmic design of
the model but also on the hardware’s ability to manage these operations efficiently,
minimizing waste due to latency or redundancy.

From this perspective, hardware efficiency emerges as a critical factor. Al-
though modern GPUs and specialized accelerators provide remarkable computa-
tional power for artificial intelligence tasks, they also entail significant energy de-
mands, particularly during prolonged use or when training large-scale models.

Energy consumption during the inference phase should not be underestimated
either, considering that these models are now used daily by millions of users. The
study by Patterson et al.(2021) [7] shows that, for certain large-scale models, the
total energy consumption resulting from distributed inference can even exceed that
required for the initial training, particularly in contexts where the model is executed
millions of times per day.

In summary, the issue of efficiency — both computational and energetic —
represents one of the major challenges in neural network engineering today. It
concerns not only the speed at which a model can be trained or deployed, but also
directly affects the overall sustainability of the field and the possibility of making
artificial intelligence a truly scalable, accessible, and responsible technology.

1.2 Contribution and Thesis Objectives

This thesis lies within the context of hardware accelerator design for Deep Neural
Networks (DNNs), with a particular focus on architectural efficiency and execution
flexibility. In recent years, the prevailing approach has been to design dedicated
hardware optimized for the execution of a single algorithm, aiming to achieve the
lowest possible latency and power consumption. However, it is often necessary to
handle layers that exhibit very different computational characteristics — not only
between the training and inference phases, but sometimes even within the same
network, depending on the specific operation being executed at a given time step.

This exposes the fundamental problem that this work aims to address: it is not
feasible to rely on a fixed hardware architecture that remains optimal under all
possible conditions.

In this context, Systolic Arrays (SAs) have emerged as a highly regular and scal-
able computational paradigm, particularly well-suited for the execution of massively

4

1.3 — Thesis Outline

parallel workloads [8]. SAs differ from one another in terms of the organization and
dataflow of their Processing Elements (PEs). At the same time, these very design
choices — which define their operational flexibility — also represent their main
limitation. Indeed, both the shape of the array and the dataflow scheme are fixed
at design time. Since different classes of layers within the same neural network
exhibit different computational patterns and reuse characteristics, one must select
a single architectural configuration that represents a reasonable compromise across
all layers, rather than the optimal solution for each individual case.

The scenario described above forms the starting point for this work, whose goal
is to explore, in terms of area and power, the existing design space of systolic ar-
chitectures and to propose a new approach based on architectural reconfigurability.
The core idea is to enable the array to dynamically adjust its shape and dataflow in
order to adapt to the computational requirements of the currently executed layer.
In this way, by incurring only a modest area overhead (due to the additional re-
configuration circuitry), it becomes possible to balance power consumption and
latency, achieving improved performance or energy efficiency depending on the de-
sired operating point.

The main contribution of this thesis unfolds along two complementary direc-
tions. First, a systematic performance study was conducted to establish a solid
reference design to be used for comparison with the proposed architecture. Sev-
eral SA configurations were analyzed, varying both the shape and the dataflow,
and their impact was evaluated across a representative set of neural network work-
loads. Second, a Systolic Array capable of supporting multiple shapes within a
single hardware design was implemented and verified. The architecture is equipped
with a control mechanism that could, in principle, modifies dynamically — even
during the execution of a single layer — to the configuration that offers the best
performance or energy trade-off.

Through this approach, the thesis aims to provide a general design and evalu-
ation methodology applicable to a wide range of systolic accelerators, laying the
groundwork for future research toward dynamic and adaptive architectures for ef-
ficient neural network computation.

1.3 Thesis Outline

The present thesis is organized as follows.

Chapter 2 provides the theoretical and architectural foundations required to
understand the design decisions made in this work. It outlines the fundamental
concepts of Deep Neural Networks (DNNs), detailing their core computational op-
erations and data reuse patterns. The discussion then shifts to Systolic Array
architectures, explaining their operating principles, the various dataflow strategies,
and the key design trade-offs involving performance, area, and power consumption

Introduction

Chapter 3 describes the design space exploration conducted on different config-
urations of Systolic Arrays. Several architectures with varying shapes and dataflows
are analyzed and evaluated in terms of performance, area, and energy consumption.
The results of this analysis are discussed to identify the configurations that achieve
the highest efficiency according to a performance metric defined as "Operations
Per Cycle" per Watt (OPC/W). In addition, a short discussion is included on how
neural networks can be mapped and executed on Systolic Arrays, and why these
architectures are particularly suitable for efficiently running such algorithms.

Chapter 4 presents the design and implementation of the proposed reconfig-
urable Systolic Array architecture, capable of supporting multiple shapes within
the same hardware design. The architectural modifications required to support
multiple configurations are described, along with the approach adopted to activate
each configuration and to assess its impact in terms of area and power consumption.
Furthermore, this chapter reports the experimental evaluation of the reconfigurable
architecture, followed by an analysis of the proposed design and a comparison with
the fixed-shape Systolic Arrays introduced in the previous chapters, highlighting
the results obtained in terms of efficiency and flexibility. The reported data refers
to different neural network workloads, using as basis for comparison the number of
clock cycles, silicon area, and power consumption.

Chapter 5 reviews what has been achieved in this thesis, drawing attention to
the main contributions. The discussion also looks ahead, suggesting how some of
the ideas developed here could evolve into future applications or be explored under
different design constraints.

Chapter 2

Conventional Systolic
Arrays

The following chapter aims to explain the fundamental concepts necessary to justify
and understand some of the design choices made during the experimental phase
concerning the systolic architecture.

The first part introduces the operating principles, structure, and characteristics
that make Systolic Arrays (SAs) particularly well suited for parallel computation,
and, in this sense, for efficiently executing the algorithms at the core of neural
networks.

The second part, on the other hand, provides an overview of the architectures
available in the current state of the art, with the goal of contextualizing the evolu-
tion of SAs in the field of hardware acceleration for deep learning and identifying
the existing solutions that inspired some of the design decisions presented in this
thesis.

2.1 Systolic Array Fundamentals

2.1.1 Operating principles and general architecture

The concept of Systolic Arrays was first introduced by Kung and Leiserson in
1979 [8]. Their proposal described an architecture designed to achieve the highest
possible degree of parallelism by exploiting a regular and highly organized structure
composed of a number N of Processing Elements, referred to as PEs.

Conventional Systolic Arrays

1 | ACTIVATION MEMORY |

ACTIVATION
N -

Pt: ¢ I}E ¢ INPUT 16-bit
oL P o refoire] T
PE PE PE PE bit |]
i . PARTIAL

8-bit

WEIGHT .

. RESULT

WEIGHT MEMORY

»
>

WEIGHT
INPUT

Figure 2.1: Implemented TPU’s Systolic Array model[9].

The term systolic was chosen by Kung and Leiserson by analogy with the func-
tioning of the human circulatory system. In the heart, during the systole phase,
blood is pumped in a rhythmic and coordinated way through a network of vessels.
Similarly, in a Systolic Array (SA), data flows through a network of Processing
Elements following a regular and synchronized rhythm.

A systolic array is essentially a two-dimensional grid of PEs interconnected with
one another. Since this architecture is not limited to a specific application domain,
the internal behavior of the PEs may vary depending on the computational task
the array is meant to perform. In the case analyzed here, each PE mainly performs
Multiply-and-Accumulate (MAC) operations. In the baseline architecture studied
by Kung and Leiserson, the PEs communicate only with their direct neighbors.
This local communication reduces interconnection complexity and allows data to
propagate through the array in a deterministic and deeply pipelined manner.

The operation of a systolic array can be easily understood by analyzing how
matrix multiplication (MAT-MUL) can be mapped onto such an architecture. In
this scenario, one of the matrices (e.g., A) is transmitted into the array from left
to right, while the other matrix (e.g., B) is injected from the bottom and propa-
gated vertically. Each PE—assuming, as in this case, that it performs MAC opera-
tions—computes a partial product and forwards it to the next PE, which adds it to
its own result. As computation proceeds, partial sums move diagonally across the
array until they reach the upper-right corner, where the final results are produced.
This example highlights the key characteristics of Systolic Arrays:

o Regularity: structure is composed of identical PEs connected periodically.
e Locality: short and predictable interconnections between elements.
o Parallelism: many operations are performed simultaneously.

These properties make systolic architectures particularly suitable for compute-
intensive tasks such as matrix multiplications, convolutions, and other linear alge-
bra kernels that form the core of modern Deep Neural Networks (DNNs).

8

2.1 — Systolic Array Fundamentals

2.1.2 Key concepts: data reuse, spatial and temporal loops

One of the greatest advantages of systolic architectures is their ability to exploit, in
an extremely efficient way, the data reuse properties that characterize Machine
Learning (ML) algorithms. On the other hand the main bottlenecks in high-
performance computing systems is the latency introduced by the countless accesses
to the outer memory layers — generally slower than the processing system itself.
Systolic Arrays (SAs) are designed to minimize the number of read—write cycles to
external memories by ensuring that the same operands are reused multiple times
within the array.

This efficient data reuse is made possible by the regular and synchronized prop-
agation of information among the various PEs. Assuming that the PE at position
(x, y) within the computation matrix needs, at time t+1, the same data d it had at
time t, one can imagine that d does not move to its neighbor but instead circulates
back to itself, thereby avoiding a second memory access.

In the context of systolic arrays, it is in fact possible to identify two distinct
types of reuse: spatial and temporal.

« Temporal reuse occurs when data fetched by a PE is used by itself in the
next clock cycles .

» Spatial reuse occurs when data fetched by a PE are transferred to neighbor
PEs to be reused in the next clock cycles.

/l 0 A(;ik) f“: totl t= to+2

B(k, 0= (0, 0; 1) T Pl?/(lf’(}, 1) -

-
-

— C’(;L,'(})

-
-
- -
7 -
- - o
- -
- - 4
- ’
P ’
- -
- .
- -,
-

Bl)5 PR, 1,4 TN P]E(’i: 1,1))
<~ > co1n L — C(1,1)

Figure 2.2: Spatial-temporal mapping onto a systolic array with its data access and
data reuse.[10]

Properties shown in Figure 2.2 prove very useful when mapping ML algorithms,
since the fundamental operations that compose such algorithms — and in particu-
lar deep neural networks (DNNs, CNNs, Transformers, etc.) — can be represented
as a set of nested loops. These loops, which iterate over the dimensions of the input
tensors, the weights, and the output features, describe how the data required for
computation can be reused within the array. Furthermore, they algorithmically de-
fine the entire computational process: for each output element, sums and products

9

Conventional Systolic Arrays

are performed by iterating over the internal dimensions.
For example, a matrix multiplication — at the heart of many operations in ML
models — can be formalized as:
k—1

Oi,j = Z Ai,k X Bk,j (21)

k=0

that, in pseudo-code, is equal to three nested loop:

Algorithm 1 Matrix Multiplication (Nested Loops Representation)

1: fori=0to M —1do > Rows of A and C
2 for j=0to N —1do > Columns of B and C'
3 Clil[j] - 0

4: for k=0to K —1do > Inner dimension loop
5: Clil[5] < Cli][j] + A[i][k] x BK][j]

6 end for

7 end for

8: end for

In the same way, convolutions in Convolutional Neural Networks (CNNs) or at-
tention mechanisms in Transformers can be described as more complex loop struc-
tures, yet always based on the same principle. From the nested loops that describe
matrix multiplication, which are directly mapped into hardware, it is possible to
distinguish:

» Spatial loops: they represent operations that are executed simultaneously by
different PEs, exploiting the parallelism of the array by distributing operations
along the physical dimensions.

o Temporal loops: they represent operations that, over time, are executed by
the same PE. In fact, each clock cycle introduces new input data, while the
previous ones move to the subsequent PEs.

Returning to the example of matrix multiplication execution, each element of matrix
A is transmitted horizontally along a row, while the elements of matrix B move
vertically along a column. This means that a single element of A can be used by all
PEs in the same row, and an element of B by all those in the same column. This
scheme achieves extremely efficient spatial reuse and temporal reuse. An additional
advantage is that the entire computation process takes place under very simple local
control: each PE is governed by counters or regular synchronization signals, without
the need for a centralized control unit or complex scheduling logic. This structural
simplicity makes Systolic Arrays particularly scalable, both in terms of grid size
and operating frequency. In the context of Deep Neural Networks (DNNs), this
property becomes crucial.

10

2.1 — Systolic Array Fundamentals

2.1.3 Analysis of different dataflows

The execution time and efficiency of a Systolic Array (SA) in performing a given
algorithm do not depend only on the number of Processing Elements (PEs) and
their spatial organization, but also — and above all — on the logic underlying the
interconnections, that is, on how data are moved and utilized within the structure.

From this, it is possible to introduce the concept of “dataflow,” which refers
to the strategy through which operands and intermediate results move within the
array. In a Machine Learning algorithm, three different types of data can be distin-
guished: inputs, weights, offsets, and outputs, which, by drawing a correspondence
with the previously discussed MAT-MUL case, correspond - respectively - to A, B,
and C.

The dataflow simply specifies which of these data are kept stationary within the
PEs and which, instead, are circulated among them. It is worth noting that these
three data types necessarily have different bitwidths, and depending on how the
layer is mapped onto the SA, the various dataflows may require a different number
of memory accesses, that can negatively influence execution efficiency in terms of
latency and power. In real systems, the choice of dataflow is closely related to
the type of layer being accelerated, since each algorithm exhibits different data
reuse patterns. The three most common types — widely employed in architectures
designed for deep neural network acceleration — are:

« Output-Stationary (OS)
» Weight-Stationary (WS)

o Input-Stationary (IS)

Output-Stationary (OS)

In the Output-Stationary case, the partial results are kept locally within the PEs
until the computation is completed. Inputs and weights, on the other hand, flow
among the various nodes, contributing to the accumulation of the final result. Math-
ematically, the operation can be described as:
P = Py + Al - Wi (2.2)
In this case, (C(; ;) (the partial output) remains stationary within the PE until
the computation of the entire element of the output matrix is completed. Only
once the accumulation is finished the result is written to external memory. This
approach minimizes the traffic of partial sums (in terms of bitwidth are the most
significant), since only the final result leaves the corresponding PE. This type of
dataflow is particularly suitable for Fully Connected (FC) layers — in these layers
the number of weights is large and the final result depends on many intermediate
products.

11

Conventional Systolic Arrays

The OS case is also the simplest to implement, since it does not require diag-
onal paths for the propagation of partial sums: each PE locally manages its own
accumulation. Therefore, the OS scheme significantly reduces the internal traffic
of intermediate results and is particularly well-suited for highly dense layers, but it
loses efficiency in the case of small computations.

I:> Spatial unrolling -
Wool
I:> Temporal unrolling - Wors)

- Waa| - Wown
- Wes W :
ol [Wan| |[Way| |[Wan !
Waa| |We ! :
|
|

I
I
Tonl
I
Ly
1 1 1
4

l---[Lin|n|- 0} > —
l LiG|g|6--- 0;
] 7
|
B [ee]e]n}---- o} > g
. 2
: ; H ‘ i
| — - B
| Loop 2, M :>

Figure 2.3: Systolic Array - Output-Stationary (OS) configuration[11]

Weight-Stationary (WS)

In the Weight-Stationary dataflow, the layer weights are preloaded and kept fixed
within the PEs for the entire duration of the computation. Inputs (activations) and
partial sums, instead, flow horizontally and vertically across the grid, interacting
with the locally stored weights. Formally, each PE((i,j)) performs the operation:

Pis = P+ Ay - Wik (2:3)
where:
e (Wi,;)) is the weight kept fixed inside the PE
. (AE?,C)) represents the input flowing horizontally

. (P((Z)) is the partial sum accumulated over time.

12

2.1 — Systolic Array Fundamentals

The key benefit of this approach is the maximization of weight reuse: each weight
element (W4 ;)) can serve multiple input values without requiring repeated reads
from external memory. This substantially reduces the energy expenditure linked to
weight retrievals, which can constitute a considerable fraction of the overall power
consumption in these systems

In this architectures, each PE contains a small local memory (often just a simple
register) - for WS dataflow used to store weights -, which are loaded only once per
input batch. The WS approach proves particularly advantageous when each filter
(i.e., a subset of weights) is reused to compute multiple “regions” of the input
tensor. The drawback, on the other hand, is the intrinsic need to constantly move
partial sums, which considerably increases internal data traffic.

[Loop 2, M >

n 0|1 =W Wen > Way W] | |
| ! I i

[GGG 15— = W —Wan—Was > —Wany O

! | I I <

BB B|G|6F-—-- » Wi Wea [Wasy W ,_81
v Y Y Y

L B R

4____
=) Pa—

Figure 2.4: Systolic Array - Weight-Stationary (WS) configuration[11]

Input-Stationary (IS)

In the Input-Stationary dataflow, the input data remain fixed within the PEs,
while the weights and partial sums are propagated across the array. The operation
performed by each PE can be represented as:

t+1) _ p) (t)
Pijy = Fag T Ak - Wiy (2.4)

In this scheme, each input element (A y)) is reused for multiple combinations of
weights, thus maximizing its spatial and temporal reuse. The result is a reduced

13

Conventional Systolic Arrays

number of input memory reads, which can be beneficial in terms of energy con-
sumption.

The IS approach is beneficial whenever the same input is involved in generating
multiple outputs, as seen in convolutional layers or attention blocks in Transformer
models. However, this also results in increased bandwidth demands for weight
transfers, since weights must be repeatedly transmitted across the computation
array.

[Loop I, N >

Worn| = |Wan|Wan|Wan|—» 1 = B 1§ e 1| []
Wory - |Woz|Wen|Wanf——-" & — B — B > I o
_ | I I I
=4
ffffff M B B | (8
Wiz Wo,5 | Wen| Wa,n 3 5 3 > > |13
. i S :
{ ! ' i
(Wore| . ———————————— [SIF N RT M I
T T T T
—-mm. | | |
; | | | +N
| | \ 4 Om
| | 3
| v On
o;l 5 .

Figure 2.5: Systolic Array - Input-Stationary (IS) configuration|[11]

2.2 State of the Art in SA Architectures

In recent years, Systolic Arrays have become one of the most widely adopted archi-
tectural models — both in industry and academia — when discussing accelerators
for neural networks. Their widespread use is not only the result of the simplicity of
the architecture — originate from the regularity of computation and the straight-
forward dataflow, as discussed in previous sections — but, above all, due to their
versatility. As observed in recent years, SAs adapt very well to the increasingly
diverse range of modern DNNs, which feature layers with different numerical and
dimensional characteristics. Today, with the evolution of the systolic paradigm, de-
signers are progressively moving away from the traditional square shape and fixed
dataflow, techniques that are making SAs extremely efficient systems.

The most recent studies on these architectures have shown that their success
is closely tied to the ease with which these systems scale. SAs can be replicated,

14

2.2 — State of the Art in SA Architectures

aggregated, and/or organized into subgroups, forming very large computation ma-
trices while still maintaining predictable behavior and a highly localized communi-
cation pattern. These characteristics make them ideal for optimization in terms of
throughput per mm? (crucial aspect in advanced technology nodes).

The adoption of these systems in industrial accelerators has raised the emer-
gence of increasingly specialized variants. Asymmetric arrays have been introduced
to match the shapes and sizes of matrices typical of Transformers, and pod-based
structures have been designed to improve horizontal scalability. There is also a
growing integration of systolic pipelines within GPU-like architectures, and in-
creasingly often, support for multiple numerical formats is provided. This variety
of configurations demonstrates that the SA model is no longer bound to its histor-
ical form, but is instead becoming a building block that designers can customize
according to constraints on area, bandwidth, and data reuse.

Very often, such accelerators are designed with the premise that the computa-
tional part is less restrictive than the data-movement model, for this reason they
are adopted in data-heavy context like NN computation. In fact, the modularity
of systolic arrays facilitates pairing with dedicated buffers and in some of the most
modern architectural solutions, the shape of the array is designed based on available
bandwidth rather than the opposite, as was common in older systems.

Considering all these aspects, the role of systolic arrays in modern architectures
is no longer limited to the regular computation of matrix products. These sys-
tems are becoming a flexible paradigm that can be reinterpreted in various ways to
respond to the increasing complexity of deep learning models. The following sec-
tions will explore how these solutions have materialized in industrial and academic
applications, highlighting the differences among the various approaches currently
available on the market.

Differences between SA and GPU-based computation

In the domain of neural-network accelerators, systolic arrays are often compared
to GPUs, which today represent the reference platform for training and inference
of most existing models. Both architectures aim for massive parallelism, but they
differ substantially in the way data is managed, and these differences impact per-
formance, efficiency, and predictability.

15

Conventional Systolic Arrays

NVIDIA Blackwell Ultra GPU

en 6 High Bandwidth Interface 160 SMs per GPU: 540 Tensor Cores
56 GAE/s CPU Host Interface 10T6/s Die-to-Die 15 PetaFLOPS Dense NVFP4

GRAPH(CS GRAPHICS: GRAPHICS
PROCESSOR L2 PROCESSOR S PROCESSOR
CLUSTER ' |'CACHE CLUSTER CLUSTER

NVLink v5) {GRC) HVLink-C2C
1,800 GBJ: S00GE/s Coherent
CPU-GPU Interface

NVLink Switch

N

GRAPHICS GRAPHICS GRAPHICS GRAPHICS
PROCESSOR L2 PROCESSOR PROCESSOR L2 PROCESSOR
CLUSTER® | CACHE | CLUSTER CLUSTER CACHE || ' CLUSTER
(GPC) (GPC) (GPC) (GPC)

HEM CTRL HBM CTRL HBM CTRL

288GE HBM3E Memory
(8 Stacks, Up to 8 TE/s)

Confidential Computing
TEE-I/O Capable

Figure 2.6: CUDA Cores - NVIDIA GPUJ[12]

GPUs (Figure 2.6) are general-purpose systems designed to maximize through-
put by exploiting a very large number of independent cores. In these systems,
operations are split into thousands of threads, each dynamically scheduled accord-
ing to resource availability. Such a system is extremely flexible, allowing GPUs
to be used in a wide range of fields. However, this flexibility comes at a cost:
the control structure, the memory system, and the complex interconnection fabric
must sustain a high level of concurrency across computing units. The result is an
extremely powerful architecture, but one with a significant energy cost.

SAs, on the other hand, follow a fundamentally different approach. Computa-
tion is not divided into independent threads but is distributed across a network of
identical units. Data flows through the PEs, which compute a partial result and
propagate it to the next node. This organization eliminates the need for complex
control and drastically reduces dependence on external memory thanks to the high
reusability of operands at the local level. The consequence is clear: the ratio be-
tween energy consumed and operations performed is far more favorable, making
this architecture ideal where efficiency is a fundamental requirement.

Another significant difference lies in temporal predictability. In GPU-based sys-
tems, data latency can vary substantially depending on core saturation and the
state of the memory system supporting the compute units. In systolic arrays, the
dataflow is evaluable regardless of external conditions, allowing the global compu-
tation latency to be determined in advance—an essential feature in real-time or
embedded systems where timing stability is a strict requirement.

Finally, while GPUs rely heavily on processing large batches in parallel — ex-
periencing notable efficiency loss when required workloads are small — systolic
arrays maintain stable performance even on significantly smaller batch sizes, since
their efficiency depends on the match between the shape of the array and the matri-
ces being processed. This peculiarity makes them particularly suitable for inference

16

2.2 — State of the Art in SA Architectures

workloads, where memory systems are a major limitation (especially for large batch
sizes).

In TPUs[13], for example, the systolic array becomes the structure that con-
centrates the computational capability, while the rest of the chip is organized to
continuously feed it with weights and activations. This model has significantly con-
tributed to the widespread adoption of SAs in subsequent designs, demonstrating
how a highly specialized implementation can outperform general-purpose solutions
in terms of energy efficiency and throughput predictability.

Memory subsystem architecture

CPU GPU TPU
[13] Wegt. FIFO
Activation
T e T o] |
(up]t Jup] i)
Implicitly managed Mived Explicitly managed
Compute primitive
[] e ®
Scalar Vector Tensor

Figure 2.7: CPU vs GPU vs TPU[14]

Overall, even though GPUs and SAs are often directly compared, they repre-
sent two complementary solution spaces. The former are designed to maximize
flexibility and raw computational power, while the latter focus on efficiency and
predictability. For this reason, the current state of the art shows an increasingly
tight integration between these models. It is not uncommon to find GPU-based
systems that incorporate systolic elements, as well as SAs that inherit configuration
features typical of general-purpose GPUs.

SA based architecture - Google TPU v1-v3

The first generation of TPU developed by Google represents one of the most sig-
nificant cases in which a systolic array has been employed on a large scale in an
industrial product. In the official technical blog[13], Google describes the TPU v1
as an accelerator built “around a systolic array” (Figure 2.8) and specifies that the
computational core of the chip is a 256 x 256 matrix of 8-bit MAC units, for a
total of 65,536 multiply—accumulate operations per cycle. The array operates at
a frequency of 700 MHz, achieving a theoretical throughput of approximately 92
Tera-MAC/s (value computed as 65,536 x 700 MHz).

17

Conventional Systolic Arrays

=
%

14 GiBls Eg 14 GiBls
g

=2

167 GiB/s

Figure 2.8: Internal MXU structure - Google TPU v1[13].

The chip, fabricated in 28 nm CMOS, consumes approximately 40 W, placing
it in a very favorable energy-efficiency regime compared to contemporary CPU
and GPU solutions. According to data published by Google, TPU v1 achieved
improvements from 15x to 30x in absolute performance and from 30x to 80x

in performance per watt compared to the general-purpose processors of the time
(Figure 2.9).

W Perf / watt

Figure 2.9: Performance comparison between TPU v1, CPU and GPU on different
workloads[13].

Dataflow within the chip is an important aspect of understanding the systolic
array’s role. As pointed out by Google, once the weights are loaded into the MXU
matrix, they are reused locally during the whole duration of the operation without
any further access to external memory. This fully aligns with the systolic paradigm:

18

2.2 — State of the Art in SA Architectures

computation progresses by “streaming” operands through adjacent nodes to reduce
heavy data movement and minimize dependence on off-chip bandwidth. The fact
that the TPU uses a PCIe Gen3 x 16 link providing only 12.5 GB/s bandwidth also
shows that the architecture is designed under the assumption of high internal data
reuse.

Unified Buffer Matrix Multiply Unit
for Local Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MiB) 24%
29% of chip
D Host Accumulators g
“ Interf. 2% | | (4Kx256x32b =4 MiB) 6% | &
M . LI} [Il M
port ‘ Activation Pipeline 6% \ | port
ddr3
| PCR TR = %
" [Interface 3% | . :

Figure 2.10: Google TPU vl internal floorplan[13].

Another feature that characterizes the TPU vl is the simplicity of its control
logic. According to their datas, the internal control circuitry occupies less than 2%
of the die area (Figure 2.10), with most of the silicon dedicated to pure computa-
tion, and is designed to support an extremely regular dataflow without sophisticated
scheduling structures or parallelism-management mechanisms. That is one of the
key differences with a GPU, in which much of the complexity arises from coor-
dinating thousands of independent threads. The performance results validate the
approach: for real latency, Google reports speedups up to 71x over reference CPUs
on convolutional workloads (CNN1), besides more predictable temporal behavior.
The systolic structure enables not only high throughput but also more predictable
execution times, a key feature for distributed inference systems and large-scale
cloud services.

Tesla FSD (Full Self-Driving) Chip

The Tesla FSD (Full Self-Driving) Chip introduced with the “HW 3.0” platform
represents one of the most important industrial implementations of an architecture
specifically devoted to real-time neural network execution. The device is designed
specifically to meet automotive constraints that require predictable latencies, a low
power consumption, and a highly regular computation flow. Inside the chip, there
are two neural processing units (NPUs), each integrating a 96 x 96 array of MAC
units optimized for 8-bit operations with 32-bit accumulation. According to the

19

Conventional Systolic Arrays

technical analysis reported by WikiChip Fuse[15], this structure allows each NPU
to reach a theoretical throughput of about 36 TOPS.

O FSD COMPUTER
FSD COMPUTER FSD CHIP
GPU -
Not I
H W ¥ 1
&l | 1 H
’NPL% lﬂ" 1
!
PSSR]
Dual redundant SoCs T4nm FinFET CMOS 96x96 MACs
Sub 100W 260 mmz2, 6B transistors 36.8 int8 TOPS | NPU

144 int8 TOPS

Figure 2.11: Tesla FSD chip[16].

A particularly relevant feature for comparison with systolic arrays is the way
the 96 x 96 array is fed. In the FSD chip’s NPUs, the 32 MiB local memory is
subdivided into numerous independent banks and can sustain up to 256 bytes of
activations and 128 bytes of weights per cycle. This corresponds to a maximum
bandwidth of about 786 GB/s-a value that is necessary both to keep the utilization
rate of the MAC array high and to reduce access to external DRAM[15]. This phys-
ical proximity between the array and the local buffer is a fundamental architectural
element and reflects one of the main features of systolic arrays: reduction of the
“distance of data movement,” which is essential for keeping energy consumption
under control.

Data Sequencer
Data
Buffer

L. Data
_ osmmissar| Address
Data Aligners Cache

ig

256B

(=

Base BLK
el Weight
e s
Address|

128B

sxuea- A

MACs
(9696 array)
(9,216 MACs)

8
&
S
E4
@
E}
3

Queue

& Status

Memory
Programmable Write combine
buffer (WCB)

SIMD Unit

(waster

Back-end

Front-end

Figure 2.12: Tesla FSD chip internal floorplan[13].

From an internal organization point of view, the dataflow of Tesla’s array is

20

2.2 — State of the Art in SA Architectures

not formally described as a classical systolic pipeline; it exhibits similar charac-
teristics since data is delivered to the elements of the array according to regular
patterns by using horizontal and vertical broadcast mechanisms and propagation
paths that maximize operand reuse[15]. Due to this regularity of data movement,
together with the grid topology, Tesla’s NPU gets closer to the behavior of systolic
arrays, although there are some operational differences driven by the necessity of
supporting highly heterogeneous network models and real-time tasks.

It can also be perceived that the FSD chip is part of a much larger system
including a general-purpose processor, video controllers, and high-speed interfaces.
These NPUs are utilized as dedicated engines for the heavy steps of inference using a
pipeline devised to ensure consistent latency. The architectural approach here shows
that, even in application domains quite different from training and datacenter-scale
workloads, the use of regular and predictable arrays remains an effective strategy for
high throughput and deterministic behavior. The Tesla FSD Chip is an interesting
example of such an industrial accelerator because it adopts a large MAC array, a
substantial local memory hierarchy, and regular dataflows-elements that clearly put
it into the same conceptual family as systolic arrays, even if it does not follow the
classical formulation exactly.

Where this thesis takes place?

As it clearly comes out from the survey of the analyzed architectures, regular struc-
tures for accelerating neural-network workloads represent an established choice both
in industrial and academic domains. Solutions such as Google’s TPU v1, Tesla FSD
Chip and other similar projects share a computation strongly organized around
MAC units arranged in regular grids, fed by local memory hierarchies optimized
to maximize data reuse. These examples clearly illustrate the effectiveness of the
systolic — or systolic-like — approach when the workload is dominated by dense
and repetitive operations.

At the same time, these architectures share a common trait: while being ex-
tremely effective in a specific domain of application, the systolic array shape and
dataflow remain essentially fixed. Solutions presented here tend to prefer regular
structures deeply optimized for specific use scenarios, leaving little room for dy-
namically changing the array structure, data propagation mode, or PEs internal
organization. This design choice — totally coherent with an industrial goal of pre-
dictability and maximum efficiency — on the other hand reduces their possibility
to adapt to models that have various geometric requirements or to kernels that
present less regular structures and dependencies.

It is in this framework that the present work finds its place, investigating the pos-
sibility of designing reconfigurable systolic arrays capable of changing their shape
or data flow in order to adapt to more types of operations and a wider range of
layers. It is not intended to supplant the existing architectures but to propose an

21

Conventional Systolic Arrays

alternative that brings more flexibility within the same paradigm. This research
takes a complementary approach with respect to what has been done so far: iden-
tifying reconfigurability as a potential answer to increasing model heterogeneity
in deep learning while preserving the advantages of regularity, predictability, and
locality that made systolic arrays one of the most robust and efficient solutions for
neural computation.

22

Chapter 3

Efficiency of Conventional
SAs in executing NNs

In this chapter, the main transformations used to execute DNN layers on systolic
architectures will be introduced. This is followed by an overview of the metrics
adopted for analyzing, in terms of efficiency, the non-reconfigurable architectures
currently present in the state of the art. The discussion examines how the ar-
ray shape, dataflow, and data reuse strategies influence throughput and energy
consumption across different types of layers. The goal is to quantitatively assess
the limitations of fixed-shape solutions and to motivate the need for more flexible
approaches.

3.1 Mapping Neural Networks to Systolic Arrays

The properties that make hardware acceleration of neural networks through Sys-
tolic Arrays (SAs) extremely efficient is the ability to reduce, through appropriate
transformations, different types of layers to a limited set of computational primi-
tives.

The most widely used of these is the transformation of layers into dense matrix
multiplications, or GEMM (General Matrix-Matrix Multiplication). A large por-
tion of the computation in a Deep Neural Network (DNN) can be expressed as a
matrix product of the form (C' = A x B), where each element of the product is a
matrix — properly derived and conditioned — from the input tensors.

These types of transformations are particularly advantageous in the context of
SAs because, by their very operating principle, they are naturally optimized for
GEMM-type operations, which consist of a series of regular, pipelined, and highly
parallelizable steps. For this reason, most software frameworks and the majority of
hardware accelerators (such as TPUs and GPUs) adopt a common strategy: they
“map” high-level layers (FC, CNN, Attention) onto one or more GEMM operations.

23

Efficiency of Conventional SAs in executing NNs

In the following sections, the main mapping techniques will be analyzed depend-
ing on the type of layer being considered. The layers can be classified as follows:

o Fully-Connected (FC) layers: have a 1:1 mapping with GEMM, meaning
they can be directly expressed as a matrix multiplication;

« Convolutional layers (CNINs): require transformations such as im2col or
its variants;

« Attention blocks in Transformers: are composed by Q/K/V projections
and attention scores. Those computations can also be reduced to matrix-
matrix multiplications.

3.1.1 Fully-Connected Layers

Fully-connected (or dense) layers represent the simplest and most direct linear
operator within deep neural networks. Despite their apparent simplicity, they play
a central role in numerous models, such as multilayer perceptrons, final classifiers
in CNNs, and — even more significantly — the MLP blocks in Transformers. From
a computational standpoint, FC layers are particularly well-suited for execution on
systolic architectures, since their structure perfectly matches the form of a dense
matrix multiplication (GEMM).

Output
Meurons

A
i
ol

.-""-.-" b

Ry T

™ l‘t-\{i“ .

N\&
ol

Ao

Y
LA

Figure 3.1: Example of a small fully-connected layer with four input and eight output
neurons[17].

They are called "fully connected" because every input neuron can influence every

24

3.1 — Mapping Neural Networks to Systolic Arrays

output neuron. In the context of FC networks, all three phases of network training
can be rewritten as GEMM operations.

N=

of outputs
N = batch size N = batch size
—_—
. Gradient T
K= Gradients K= (Output)
Input # of outputs (Output) batch size
Activations
K=
of inputs
= i = Input Gradient
M= Weight Gradients M gy radien
M= = St # of inputs TN (Input) #ofinputs | || | Activations (Weights)
of outputs Weights Activations

(a) (b) (c)

Figure 3.2: Dimensions of equivalent GEMMs for (a) forward propagation, (b) activa-
tion gradient, and (c) weight gradient computations of a fully-connected layer[17].

Mathematical Formulation of the Fully Connected Layer

A fully-connected layer performs a linear transformation:

y=Wz+b (3.1)
where:

r € R%») is the input vector,

(
o (y € R%ut) is the output vector,

(W € Rdoutxdin) ig the weight matrix,
o (b€ R%ut) is the bias vector.

When processing multiple samples in parallel (batch size (B)), the inputs are
organized as:

25

Efficiency of Conventional SAs in executing NNs

X € RénxB (3.2)

and the layer becomes:

Y =WX +blg (3.3)

where b1} is simply a matrix composed by the vector B repeated b,,; times. It’s the
mathematical way to say that the same bias is applied to the entire computation.
The dominant operation, in previous equation, is the matrix multiplication:

Y=WX (3.4)
which corresponds to a GEMM with dimensions:

M = douta K = dina N=B (35)

Computational Complexity

The total number of operations (MACs) is:
MACS = dyy - din - B (3.6)

This makes FC layers extremely costly in models such as Transformers, where
MLP blocks typically cover 40-60% of the total computational cost. Also in Vision-
based models, with very large fully-connected layers, using multiple batches makes
this value increases rapidly.

Data Reuse Patterns

The fully-connected layer represents the most favorable case for systolic arrays in
terms of data reuse. In fact:

« Weight reuse: each row of (W) is reused for all input vectors in the batch
and also with large batch sizes, each weight is reused dozens or even hundreds
of times (optimal for WS dataflows)

e Input reuse: each column of (X) is reused for all rows of (W). This makes
Input-Stationary (IS) dataflow appealing.

« Output Local Accumulation: each element (Y; ;) is obtained through
accumulation which can be performed entirely within each PE. This behaviour
is ideal for Output-Stationary (OS) dataflow.

In conclusion, all three dataflows are reasonably applicable to FC layers. However,
the optimal choice depends on the shape of the SA and the batch size.

26

3.1 — Mapping Neural Networks to Systolic Arrays

3.1.2 Convolutions (CNN) - GEMM via im2col

Two-dimensional convolutions represent one of the most fundamental operators
in Convolutional Neural Networks (CNNs). Although the convolution operation
is not, in its native form, a matrix multiplication, it can be transformed into a
GEMM through a reorganization of the input tensors known as im2col (“image-
to-column”). This transformation is widely adopted in major frameworks (such as
cuDNN, PyTorch, and TensorFlow) and in dedicated hardware accelerators, as it
enables the use of highly optimized GEMM implementations.

C
R ﬁ‘J '_Dutpui Tensor_/'

Filters

Figure 3.3: Convolution of an NCHW input tensor with a KCRS weight tensor, pro-
ducing a NKPQ output[17].

A 2D convolution is a mathematical operation where a smaller matrix called the
"filter" or "kernel" is slid over an input matrix (often an image) to extract meaningful
features. The process of convolution can be described step by step as follows:

1. The kernel is placed over a specific region of the input matrix.
2. The two matrices are multiplied element-wise.

3. The resulting products are summed to compute the output value for the cur-
rent position (pixel).

4. The filter is then shifted to the next position.

27

Efficiency of Conventional SAs in executing NNs

Values of rofted 12 maiix

jnment of cenler
~ “~ ﬂuﬂ of 12

So n hed 7 1 N image pixel vlues

Mlignment of 17 marix

Figure 3.4: 2D discrete convolution of two input matrices[18].

This process produces an output matrix that captures certain patterns depending
on the filter used, such as edges, textures, or shapes. In a 2D convolution, two
parameters are very important: stride and padding. Stride determines how far the
filter moves at every step, in terms of coordinates. Different DNNs use different
stride values depending on the desired behavior for example to control the spatial
resolution of the output.

Padding is necessary when the filter size is not an integer submultiple of the
input matrix. In those cases, the filter may exceed the matrix boundaries during
the edge iterations inducing computational errors. A common solution is to add
rows and/or columns of zeros around the input matrix such that the filter remains
within valid bounds ensuring that the original data are not distorted.

Filter
110 Padding= Same
o los Stride X
olofofofo|oO Output
O] 1|0 (05050 (|n 0.5| 0 |0.25/0.25
o|lolos|1|o0|oO g o |125{05|05
Input (oo |1]o5|1]0 2 0 |05 o75] 1.5
O|1(05|05]/1]0 0.5]0.25/1.25| 1
(O Y ofo]o outDim =(inpDim)/StrideDim

Figure 3.5: Stride and Padding in 2D-Convolution[19].

In the following mathematical discussion, stride will be fixed at 1 for simplicity.

28

3.1 — Mapping Neural Networks to Systolic Arrays

Filter size is an integer submultiple of input so padding will be not required.

2D Convolution Mathemathical Fomulation

Start considering a basic 2D convolution between a three-dimensional input tensor:
X € ROmxHxW (3.7)

and a set of filters:
K c RCcuthmexS (38)

The output of the convolution is given by:
Cin—1 R—15-1
}/(Cmi:j) = Z Z Z K(CO,Ci,T,S) ' X(C¢,,i+7‘,,j+s) <39)

c;=0 r=0 s=0

The coordinates ((i, j)) span all spatial positions where the kernel can be applied,
for a total of:

Hoyw=H-—R+1, Wou=W-—85+1 (3.10)

Thus, the final output has dimensions:
Y e RcoutXHoutXWout (311)

This operation involves a triple nested loop over channels and spatial coordinates
— which is inefficient to compute directly in hardware.
The Idea Behind im2col

The goal of im2col is to convert the convolution into a single large matrix—matrix
multiplication. Each application of the (R x S) kernel over a region of the input
can be viewed as a dot product between a vector containing the kernel values, and
a vector obtained by “flattening” the corresponding image patch. FEach filter is
flattened into a vector of length:

Kgat = Cin - R+ S (3.12)
By stacking all filters as rows, the weight matrix of the GEMM is obtained:
Kinay € REOwX(CnfS) (3.13)

For each valid position of the input tensor ((i, j)) the corresponding patch is ex-
tracted and then is flattened into a vector of length (Ci, RS). Each of these vectors
is then appended as a column, forming:

Xeor € RO (HouWour), (3.14)
29

Efficiency of Conventional SAs in executing NNs

Once these two matrices are constructed, the convolution operator becomes the
simply GEMM that is previously analyzed in Fully Connected Layers (subsec-
tion 3.1.1):

Yinat = Kiat - Xeol (315)

where:
Ymat € RooutX(HoutWout) (316)

which can then be reshaped back into its three-dimensional form:
Y e RcoutXHoutXWout (317)

In summary: the input image is a tensor, but to make it suitable for processing
within a Systolic Array, it must be converted into a matrix. To do so, a “patch”
(or small region) of the tensor is extracted and flattened along its third dimension,
producing a vector. By placing all such vectors side by side, the GEMM input
matrix is obtained. Similarly, each filter is also flattened into a vector, forming the
weight matrix. The resulting matrix multiplication is thus equivalent to evaluating
— in parallel — the dot product of every filter with every subregion of the image.

3.1.3 Transformer and Self-Attention

The self-attention mechanism is the core element of Transformer architectures and
represents one of the most computationally significant kernels in modern deep learn-
ing. Transformers currently define the state of the art in the domain of Large
Language Models (LLMs). A full Transformer model consists of an encoder and a
decoder, both implemented as deep neural networks with multiple layers of atten-
tion and feed-forward components.

input output
‘ "l am a good dog." H Transformer-based translator H “Je suis un bon chien.” ‘

Figure 3.6: A Transformer-based application that translates from English to French|[20].
As described by Google[20]:
“For example, in a translator:

o The encoder processes the input text (for example, an English sentence) into
some intermediate representation.

o The decoder converts that intermediate representation into output text (for
example, the equivalent French sentence).

30

3.1 — Mapping Neural Networks to Systolic Arrays

Transformer-based translator

input output
" " intermediate " 1 t "
| am a good dog. encoder [+ regrsseniztion [[Bl decoder ﬁ—‘> Je suis un bon chien. ‘

Figure 3.7: A full Transformer contains both an encoder and a decoder[20].

The ‘self” in ‘self-attention’ refers to the input sequence. Some attention mech-
anisms weigh relations of input tokens to tokens in an output sequence, like in
translation, or to tokens in some other sequence. But self-attention only weighs the
importance of relations between tokens in the input sequence.”

Although the behavior of the attention mechanism is more complex than that of
a fully connected or convolutional layer, from a mathematical and computational
standpoint it can be largely expressed as a sequence of dense matrix multiplications.
This makes it particularly well-suited for execution on systolic array architectures,
which are optimized for regular, parallel GEMM operations. In this section, the
main operations involved in the Attention block are analyzed, with a particular
focus on data reuse patterns and computational implications.

Mathematical Formulation of Attention Block in Transformer Layer

Given an input tensor:

X € RT*dmodel (3.18)

where (T) represents the sequence length and (dyoqe) the model dimensionality,
the multi-head attention mechanism constructs three linear projections — query,
key, and value — as follows:

Q=XWo, K=XWg, V=XWy (3.19)
with: p
WQ; WK; WV c RdmodeIthead’ dhead = m;;del (320)

where (h) is the number of heads, meaning the number of different subspaces (or
“perspectives”) the model attends to simultaneously when making a decision.
Each transformation is a GEMM of the form:

(T X dmodet) (dmodel X dhead) (3.21)

In this formulation are evident that high data reuse can be exploited. The same
inputs (X) are used three times and each weight matrix (W) is reused (T) times,
once for each token in the sequence. Thus, the construction of (Q), (K), and (V)
is computationally very similar to a fully-connected layer.

31

Efficiency of Conventional SAs in executing NNs

Another step that requires GEMM calculation is the computation of Attention
Scores: (S = QKT). The core of the attention mechanism is the compatibility
matrix:

S=QK'", SeR™ (3.22)

Each element is defined as:
Stig) = (Qi, Kj) (3.23)

which measures how relevant token (j) is to token (i). From a computational point
of view the product (QK ") is a square GEMM of dimension:

(T X dieaa)(dneaa X T') (3.24)

Also in this case the algorithm has an high data reuse, in fact, each row of (Q)
and (K) are reused (T) times. Hence, (QK) represents an almost ideal case
for a Systolic Array since dense tensors with highly regular computation pattern
are organized in square matrix structure (high parallelism potential) that exploit
extensive data reuse along both rows and columns. Last step is the computation
of the Weighted Output (O = SV). The final output of the attention mechanism,
for a single head, is:

O=28V, O RMhea (3.25)

where (S) is the normalized attention score matrix (after applying softmax). Also
in this case is a rectangular GEMM:

(T x T) (T X dneaa) (3.26)

The high and regular reuse pattern makes this computation very suitable for sys-
tolic array architectures. In this case each row of (S) is reused (dpeaq) times and
represents a probability distribution. Instead, each row of (V) is reused (T) times.
In conclusion, the entire Attention block (for a single head) is dominated by five

GEMM operations:
1. Three GEMMs to produce (Q), (K), and (V).
2. One square GEMM for (QK).
3. One rectangular GEMM for (SV).

Each of these operations maps efficiently onto systolic array architectures, high-
lighting why Transformers — despite their apparent algorithmic complexity — can
be effectively accelerated through GEMM-optimized hardware.

32

3.2 — Evaluation Methodology

3.2 Evaluation Methodology

To evaluate the efficiency of the different systolic array configurations, a two-phase
methodology was adopted.

First, an RTL-level analysis was performed to estimate the number of clock
cycles required to fully execute specific DNN kernels.

Next, the corresponding architecture was synthesized using a 28 nm technol-
ogy node, which was employed to estimate area and power consumption at a fixed
operating frequency of 500 MHz. This frequency value is widely adopted in the
literature related to DNN accelerators implemented in this or comparable technol-
ogy nodes. Works such as MAGNet by NVIDIA[21], NullHop[22], and SHARP|23]
use target frequencies in the range of 400-600 MHz for post-synthesis evaluations.
Operating within this frequency range allows for reliable estimations of area and
power while ensuring a fair comparison among the different configurations under
analysis. It remains true, however, that the architecture — as well as the synthesis
scripts — is fully modular. As a result, obtaining the same results at a different
operating frequency becomes extremely straightforward.

3.2.1 Performance estimation method

For each array configuration, the total number of clock cycles, the size of the lo-
cal buffers, and the bandwidth required by the array to execute a given kernel
were estimated. The goal was to obtain a latency model that did not depend on
memory-access constraints but focused exclusively on the intrinsic properties of the
architecture. The analysis is based on a Python function implementing an analyt-
ical model of the array’s behavior, which, unlike full RTL simulation, allows for
rapid exploration of the configuration space and helps narrow down the number of
candidates in a first approximation. The results obtained for the proposed archi-
tectures were compared against RTL simulation runs to verify the correctness of
the analytical estimates.

Bandwidth estimantion

The first step consists of estimating the local resources and the required bandwidth.
For each dimension of the array — identified as D1, DO, and S — all parameters
necessary for sizing the local memory are determined, such as the amount of data
to store, the number of access ports, and the theoretical bandwidth required to
feed the PEs. This phase quantifies the communication overhead, which is useful
for assessing the integrability of the array in memory-constrained systems, but it
does not affect the latency computation, which remains idealized.

33

Efficiency of Conventional SAs in executing NNs

Wavefront-Steps Definition

A characteristic aspect of systolic architectures is the initial latency needed for the
data stream to propagate through the entire array. This latency depends on the
dimensions of the array and is modeled as:

wavefront_steps = arr_shape D1 + arr_shape DO - 1

This value corresponds to the number of cycles required for the wavefront to reach
the last PE in the array. During this interval, the PEs do not yet operate at full
throughput, but this phase is essential to obtain a fully filled pipeline.

Per-Tile latency and total number of tiles

DNN kernels are divided into submatrices, or "tiles", defined by:
« number of submatrices along D1 (N_tiles_D1)
« number of submatrices along DO (N_tiles_DO)
e number of submatrices along dimension S (N_tiles_S)
From that is possible to derive the total number of tiles such:
N _tiles = N_tiles D1 * N_tiles DO * N_tiles_S
Each tile requires a number of cycles equal to:
steps_per_tile = arr_shape_S
since the accumulation along this dimension determines the number of steps needed
to complete the partial computation associated with the tile.
Computation Latency Model

The total number of clock cycles is therefore given by:
tot_CC = (steps_per_tile * N_tiles) + wavefront_steps - 1

The first term represents the effective computation time of the tiles, while the
second accounts for the delay introduced by filling the wavefront and draining the
pipeline at the end of the computation. This formula — derived directly from the
synchronization model of the array — matches, within the granularity of the ideal
analytical model, the behavior observed in RTL simulations.

34

3.2 — Evaluation Methodology

Mapping Function - Fully Connected

To compare the performance of different SA configurations, each layer of every
neural network must be expressed in a form compatible with the computational
model of the array. As discussed earlier, modern DNNs are far from being simple
GEMMs, but with the appropriate transformations the problem can be reduced to
a form that systolic arrays can efficiently handle. To uniformly evaluate latency and
throughput across configurations, it is therefore necessary to have a function that
maps each layer to a standard three-dimensional domain ((D1, DO, S)), representing
the cube of MAC iterations required to complete its computation. Given the shapes
of tensors a layer needs to compute, a python function was built to return the
boundaries of the for-loops of the c-code that would perform the computation of
the layer, reordering the boundaries based on the dataflow under analysis (i.e.,
Output-Stationary, Weight-Stationary, or Input-Stationary).

In the case of a fully-connected layer, the computation is simply the multipli-
cation between an activation matrix and a weight matrix. The function used to
complete this task only assigns the three dimensions (D1), (D0), and (S) to the
relevant quantities of the layer depending on the dataflow:

« Output Stationary (OS): Output elements remain resident in the PEs.
D1 = out_rows, DO = out_cols, S = input_cols

» Weight Stationary (WS): Weights remain fixed in the PEs, inputs flow through
the array.

D1 = weight_rows, DO = weight cols, S = input_rows

« Input Stationary (IS): Activations remain fixed, weights propagate across the
array.

D1 = input_cols, DO = input_rows, S = weight_rows

This conversion enables each fully-connected layer to be modeled as a uni-
form three-dimensional domain, directly compatible with the systolic array latency
model.

Mapping Function - CNN

Convolutional layers must also be mapped into the same domain. The convolution
is interpreted as a matrix—matrix product by flattening both patch tensors and
filter tensors. For the CNN case, another function is needed to transform the layer.
In brief, the difference between the FC and the CNN case is one step in which the
im2col algorithm previously presented is applied. This function builds the triplet

35

Efficiency of Conventional SAs in executing NNs

(D1, DO, S)) by relating the number of spatial output positions, the number of
output channels and the internal kernel dimension (input channels x filter area)
following the organization of the data vector imposed by the chosen dataflow. In
particular:

o Output Stationary (OS):

D1 = N *x H out* W _out, DO = C_out, S = C_in * K h * K w
« Weight Stationary (WS):
D1 = C_out, DO = C_in * K h * K w, S =N *x H out * W_out

« Input Stationary (IS):

D1 = C_in * K.h * K w, DO = N * H out * W_out, S = C_out
This recoding makes it possible to process convolutional layers using exactly the
same tiling mechanism as other operators. Moreover, since everything has been
reduced to a matrix multiplication, the same analytical latency model can be used
for performance estimation.

Definition of Efficiency Metric

Identify the boundaries of the for-loops both for FC and CNN layers is an essential
step to also figure out the number of MAC operations. Moreover, in order to
compare the different configurations of the systolic array in a homogeneous way, an
efficiency metric was adopted that combines computational capability and power
consumption into a single value.

The metric Operations Per Cycle (OPC) is defined as the ratio between the total
number of MAC operations actually executed and the overall number of clock cycles
required to complete them. To incorporate power consumption into this value, the
result is then normalized with respect to the dissipated power. In other words, the
throughput is first measured in terms of MAC per cycle, obtained by accumulating
the total number of operations performed and the corresponding cycles used across
the entire sub-layer under consideration. This value is then divided by the average
power, expressed in milliwatts, obtained from the design synthesis. The result
is a metric expressed as OPC/mW, which describes how much effective work the
architecture can perform per unit of energy.

This metric, in addition to being easy to interpret, makes it possible to compare
configurations with different array shapes, different dataflows, or different levels of
parallelism, highlighting which solutions offer the best compromise between perfor-
mance and power consumption.

36

3.3 — Performance Results

3.3 Performance Results

In this paragraph, the performance of the various SA configurations considered
during the design space exploration will be evaluated systematically. Since perfor-
mance, in terms of efficiency, varies depending on the specific dataflow scheme and
array shape, five models — each composed of two layers — were selected to cover
operation types that are representative of modern deep neural networks.

For each layer, a plot will be presented summarizing the efficiency of the different
configurations according to the OPC/mW metric, together with observations on
latency, area, and dynamic power consumption. The aim is not to examine every
collected value in detail, but to highlight the combinations of shapes and dataflows
that prove to be the most efficient for the structure of the layer under analysis.

This approach made it possible to identify relationships between the type of layer
being executed and the optimal architecture, which are crucial for selecting the most
versatile configurations. These selected configurations will later be integrated into
the reconfigurable architecture developed in the second part of the work.

Model Layer O Layer 1 Category
GPT-2 Self-attention Feed-forward Transformer
ViT-L/16 Self-attention Feed-forward Transformer
ResNet-152 Bottleneck B2 Bottleneck B4 Deep CNN
TinyBERT Self-attention Feed-forward Transformer

MobileNetV2 Inverted residual Inverted residual CNN

Table 3.1: Overview of the neural network models and corresponding layers considered
in the performance evaluation.

TinyBERT

TinyBERT[24] is a compact version of BERT obtained through knowledge distil-
lation, proposed by Huawei to significantly reduce the computational complexity
of the original model while maintaining competitive performance on natural lan-
guage tasks[24]. The architecture follows the Transformer paradigm[25], dividing
each block into two main components. A self-attention module, consisting of the
QKYV projection operations, the QK product, the V projection, and the final out-
put projection and a feed-forward network (FFN) module, composed of two linear
transformations.

37

Efficiency of Conventional SAs in executing NNs

Efficiency - TinyBERT [Layer_0] (y = OPC / Power[mW]) = 0s
WS

. S
PE = 1024 ZZ3 Best perf/W

OPC / Power[mW]
N £ o

o

32x32
PE = 2048

o

OPC / Power[mW]
E

N

o

8x256 16x128 32x64 64x32 128x16

256x8

Figure 3.8: TinyBERT|[24] - Self-attention Layer - results.

The first set of plots (Figure 3.8) analyzes the self-attention block across the
selected systolic array configurations, combining multiple shapes with the three
dataflows (OS, WS, IS). The batch size used in the tests is 4. TinyBERT operates on
short computation sequences and with a reduced number of parameters compared
to the standard versions of BERT, and for this reason the use of very large batch
sizes is unnecessary. In these compact models, using a batch size of 4 represents a
reasonable compromise between saturating the compute engine and maintaining a
steady dataflow. Moreover, for architectural analysis, using a batch size that is not
excessively large makes it possible to isolate more precisely the effects introduced by
the structure of the array, without adding artificial improvements due to batching.

From a practical standpoint, using a batch size of 4 means that, during the in-
ference phase, the model processes four sequences in parallel. In practice, instead
of processing one sentence at a time, it groups four inputs and executes them simul-
taneously — an execution scenario that is not far from real-world usage, especially
when considering large-scale deployments of such models. From the experimental
results:

e OS and WS are competitive in certain configurations, but never dominant in
this block.

« IS dataflow achieves, in most shapes and array sizes, the highest OPC/mW
efficiency

o Generally the symmetric or near-symmetric shapes archive better efficiency
score.

38

3.3 — Performance Results

Efficiency - TinyBERT [Layer_1] (y = OPC / Power[mW]) = 0s
WS

. S
PE = 1024 ZZ3 Best perf/W

OPC / Power[mW]
Now s w

-

o

32x32
PE = 2048

N w IS v

OPC / Power[mW]

-

o

8x256 16x128 32x64 64x32 128x16

256x8

Figure 3.9: TinyBERT[24] - Feed-forward Layer - results.

In the second block (Figure 3.9), corresponding to the FFN, the behavior changes:

e OS and WS show performance comparable to - or even higher - than IS across
nearly all shapes. WS is highly competitive in rectangular shapes, where the
large internal FFN projection amplifies weight reuse.

o IS remains effective in some configurations, but does not reach the performance
levels observed in the attention block.

o In this case, the square array, is not the overall best configuration.

This contrast between the two sub-blocks highlights how the same model exhibits
heterogeneous computational behaviors, and how the interaction between dataflow
and layer structure strongly influences the efficiency of the systolic array.

GPT-2

GPT-2[26] is an autoregressive Transformer model proposed by OpenAlI[26], de-
signed for text generation and based on decoder blocks. Each block is composed of
two components:

« a masked self-attention module, use three linear projections Q, K, and V and
their correlation (QKT). Also, a fourth linear projection is applied to the
attention output. This stage is dominated by matrix-matrix multiplications.

o a feed-forward (MLP) module, an high-dimensional linear transformation fol-
lowed by a second projection. This module expands the internal dimensionality
so there is a high weight reuse and very high computational intensity.

39

Efficiency of Conventional SAs in executing NNs

Efficiency - GPT-2 [Layer_0] (y = OPC / Power[mW]) = 0s
WS

. S
PE = 1024 ZZ3 Best perf/W

OPC / Power[mW]
IS o

N

o

32x32
PE = 2048

OPC / Power[mW]
IS o

N

o

8x256 16x128 32x64 64x32 128x16

256x8

Figure 3.10: GPT-2[26] - Self-attention Layer - results.

In this case, as well, the first plot (Figure 3.10) analyzes the efficiency of the various
combinations of shapes and dataflows for the self-attention block. The layer has to
be considered as the sum of the QKV projections, the QK product, the V projection,
and the final output projection. The batch size is set to 4, as in the TinyBERT
analysis. GPT-2 is a model very similar to TinyBERT so the previous motivation
about batching still remain valid. From the experimental evaluation, the following
key observations emerge:

IS is, in most configurations, the most efficient dataflow, particularly in the
more symmetric shapes.

OS shows competitive values across nearly all shapes but still remains notice-
ably below IS.

WS is the least effective dataflow for the attention block.

Symmetric and quasi-symmetric configurations are the ones with best effi-
ciency.

As in the case of TinyBERT, the observed behavior aligns with the nature of
attention operations: high reuse of inputs and very large output tensors, making
the input-stationary approach particularly effective for computing this layer.

40

3.3 — Performance Results

Efficiency - GPT-2 [Layer_1] (y = OPC / Power[mW]) = 0s
WS

. S
PE = 1024 ZZ3 Best perf/W

OPC / Power[mW]
N w B w

—

o

32x32
PE = 2048

OPC / Power[mW]
N w - w

-

o

8x256 16x128 32x64 64x32 128x16

256x8

Figure 3.11: GPT-2[26] - Feed-forward Layer - results.

In the second block (FFN - Figure 3.11), consisting of the layers GPT_2_FFN_L1
and GPT_2_FFN_L2, the behavior of the model changes noticeably. From the plots,
the following trends emerge:

o OS becomes significantly more competitive than in the attention block, achiev-
ing high efficiency in various shapes — especially in the less symmetric ones.

o WS remains stable and shows good performance in symmetric or moderately
unbalanced shapes, making it a valid alternative to OS.

o IS, while still functional, is generally less efficient than the other dataflows,
with lower values in most shapes.

This behavior is driven by the different computational nature of the FFN compared
to the attention block. The FFN features a very large internal dimension and
produces a high number of outputs. In this context, keeping partial sums inside
the PEs is advantageous, as it reduces the cost of writing intermediate results back
to external memory.

MbobileNet

MobileNet[27] family of networks was proposed with the aim of dramatically re-
ducing the computational complexity compared to traditional convolutional mod-
els, while preserving competitive accuracy. The straightforward notion of this ar-
chitecture relies on its systematic adoption of depthwise separable convolutions,

41

Efficiency of Conventional SAs in executing NNs

which factor the convolution operation into two different steps, reducing the num-
ber of MACs needed by a wide margin. Thanks to this design choice, MobileNet
established itself as one of the most efficient solutions for inference in resource-
constrained platforms such as smartphones and embedded systems. With time,
such a family evolved into a number of variants, such as MobileNetV2 and Mo-
bileNetV3, each targeting a better trade-off between accuracy, latency, and energy
consumption, hence becoming a well-established reference for developing "edge-
friendly" models. Unlike the previous cases, the batch size used for this model is
equal to 1. MobileNet is a model designed for image processing in embedded sys-
tems; therefore, although parallel processing is a possible scenario, such cases have
been excluded. By observing the graphs, one will immediately notice a rather dras-
tic drop in performance compared to the previous cases. This behavior is justified
by the fact that the array is excessively large relative to those on which MobileNet
is intended to be executed, resulting in a significant underutilization of the PEs.
However, for a fair comparison with the other cases, it was nonetheless decided to
keep the same array.

Efficiency - MobileNet [Layer 0] (y = OPC / Power[mW]) == 0s
. WS

. S
PE = 1024 ZZ3 Best perf/W

OPC / Power[mW]

32x32
PE = 2048

OPC / Power[mW]

8x256 16x128 32x64 64x32 128x16

256x8

Figure 3.12: MobileNetV2[27] - Inverted residual LO - results.

The trends in the two graphs (Figure 3.12) show a behavior that is quite con-
sistent with a layer dominated by standard convolution with a 3x3 kernel and
a relatively high number of input channels compared to the deeper layers. The
literature for this kind of operation suggests that there is no single "universal" com-
bination of shape and dataflow that is optimal, as the result strongly depends on
the balance between horizontal /vertical parallelism and the amount of weight reuse
that is achievable in the specific layer. From Figure 3.12 this trends emerge:

42

3.3 — Performance Results

e OS shows an overall stable and competitive behavior. In particular, symmetric
or quasi-symmetric configurations achieve the best values in terms of efficiency.
This configuration performs well because it is able to exploit the spatial locality
of the output which, in layer 0, is still quite significant. Highly unbalanced
configurations, not fitting the input matrices optimally, are the worst.

o WS exhibits a more irregular, yet sometimes competitive, trend. Generally
less efficient on the first layer since the relatively deep filters do not allow for
a weight reuse sufficient to justify a greater transfer on the inputs. Interesting
peaks appear in fairly unbalanced shapes when the alignment between kernel
and weights improves.

e IS is the most variable dataflow among those analyzed but also the one that
reaches the highest efficiency peak. In this case, it is even the quasi-symmetric
configurations that achieve the best results. This dataflow is still able to ex-
ploit activation locality effectively. As the activations in layer 0 still have sig-
nificant dimensions, and, once again, it suffers from highly unbalanced shapes
with drastic efficiency drops in extreme configurations.

Efficiency - MobileNet [Layer 1] (y = OPC / Power[mW]) = OS
s WS
. S
PE = 1024 ZZ2 Best perf/W

OPC / Power[mW]

32x32
PE = 2048

OPC / Power[mW]
N w

-

o

8x256 16x128 32x64 64x32 128x16 256x8

Figure 3.13: MobileNetV2[27] - Inverted residual L1 - results.

From the experimental data, in the Layer 1 of MobileNet (Figure 3.13):

e OS also shows good results, with the best values on square shapes. In this case
as well, with the increase in the number of channels, output reuse proves to be
the most advantageous. Very narrow shapes (8x128, 128 x8) show a decrease
in efficiency, indicating that the output flow struggles to saturate the array.

43

Efficiency of Conventional SAs in executing NNs

o« WS improves compared to the previous case due to the increased number
of channels, which leads to significantly more substantial weight reuse. WS
becomes comparable to the OS case, even surpassing it in some configurations
(e.g., 64x16 for 1024 PEs). It is never the absolute best case, but it remains
stable in rectangular configurations.

IS is once again the most performant dataflow overall, consistent with the high
number of activations. It is the most sensitive to the shape of the array and
also in the most unbalanced configurations, efficiency drops rapidly.

ResNet

The ResNet[28] family was introduced with the aim of overcoming some limitations
of traditional deep networks, in particular the degradation phenomenon, whereby
adding more layers does not improve performance and can even reduce it. The idea
behind ResNet consists in the introduction of residual blocks in which information
can bypass one or more convolutional transformations (Figure 3.14(, thanks to skip
connections. This simple yet effective strategy facilitates gradient flow and makes it
possible to train much deeper models without encountering instability. With time,
ResNet has established itself as one of the reference architectures in computer vision
thanks to its regular and easily scalable structure, and its ability to maintain a good
balance between accuracy and computational cost.

AR RS

@ : Element-wise addition

Figure 3.14: ResNet residual connection[29].

To do the experiments on ResNet, a batch size of 256 was chosen, which is
especially suitable when working with a model much heavier than MobileNet. In
practice, this means that 256 images are processed by the network in parallel on ev-
ery computation step. Such a large batch size allows the hardware parallelism to be
fully exploited and yields much more stable throughput measurements amortizing
kernel activation time, since the variability in individual steps decreases. Moreover,
ResNet is often used in high-volume training and inference scenarios where large
batches are usually the norm and thus a realistic load for evaluating the behavior
of such architecture.

44

3.3 — Performance Results

Efficiency - ResNet-152 [Layer_0] (y = OPC / Power[mW]) = 0s
WS

. S
PE = 1024 ZZ3 Best perf/W

OPC / Power[mW]
N w B

-

8x128 16x64 32x32 64x16 128x8
PE = 2048

OPC / Power[mW]
N w - w

-

o

8x256 16x128 32x64 64x32 128x16

256x8

Figure 3.15: ResNet-152[28] - Bottleneck B2 - results.

The behavior of ResNet-152 (Figure 3.15) is extremely different from the trends
observed so far, as the structure of the network’s initial layer is completely dif-
ferent. ResNet implements a 7x7 convolution with stride 2, which is extremely
dense and generates a very high reuse of both outputs and weights. As result, the
analyzed arrays tend to remain constantly saturated, reducing the differences that
were previously observed among the various shapes. The three types of dataflow
also become more competitive, since the reuse of the 7x7 kernel masks part of the
geometric inefficiency of the less symmetric shapes.

e OS is almost always the most efficient dataflow in this layer. The high number
of accumulations, required by the 7x7 kernel, naturally favors output station-
arity. The local accumulation of outputs makes it possible to minimize internal
traffic and maximize PE utilization. In the not-symmetric configurations (like
64X16 and 128x16), OS reaches the highest values in the entire analysis and
maintains solid performance even as the number of PEs increases.

« WS, in this layer, benefits from the very high weight reuse enabled by the
kernel, which represents an ideal condition for WS. It still cannot match the
performance of OS, but it remains competitive in regular shapes and maintains
an efficiency level surprisingly close to the best case.

o [Sis naturally penalized in this type of network. Activation reuse is less critical
than the stationarity of accumulations and the reuse of weights, which is why
it maintains low values across all configurations. It becomes comparable only
on symmetric shapes.

45

Efficiency of Conventional SAs in executing NNs

Efficiency - ResNet-152 [Layer_1] (y = OPC / Power[mW]) = 0s
WS

. S
PE = 1024 ZZ3 Best perf/W

OPC / Power[mW]
N w B w

-

o

8x128 16x64 32x32 64x16 128x8
PE = 2048

OPC / Power[mW]
N w - w

-

o

8x256 16x128 32x64 64x32 128x16 256x8

Figure 3.16: ResNet-152[28] - Bottleneck B4 - results.

Results in Layer 1 (Figure 3.16) of ResNet-152 appear very “flat” again, with re-
duced differences both for the various array shapes and across the dataflows. This
behavior is fully consistent with the initial structure of ResNet: it follows the same
pattern of Layer 0 with a high compute-dense operation (typically a 3x3 with many
channels), which maintains high data reuse and allows the array to stay uniformly
saturated. Thus, regular shapes like 32x32, 32x64, 64x32, or 128x16 yield very
similar efficiencies, while even the more unbalanced shapes degrade less than what
is observed in lighter architectures. Therefore, the trend is fully compatible with a
highly computation-intensive layer.

e OS, exactly as in Layer 0, shows a clear advantage of the OS configuration
over the others due to the extremely high number of accumulations caused
by the initial convolution. For this reason, regular shapes such as 32x32,
32x64, 64x32, or 128 x16 exhibit very similar efficiencies, and the performance
degradation in more unbalanced structures is less severe.

« WS remains consistently stable, with values comparable to the other configu-
rations yet never reaching the optimal performance of the OS case. It does not
show significant drops as the array shape varies, again due to the substantial
number of channels.

o IS loses a few points of efficiency compared to the other two cases while still
maintaining high and steady performance. The array remains well saturated
with good input reuse. The IS case tends to perform better on more symmetric
shapes, losing some efficiency when shifting toward more extreme configura-
tions.

46

3.3 — Performance Results

ViT

ViT[30] represents an important change in computer vision because it applies the
Transformer model - originally developed for language processing - to images. The
idea is very simple: instead of using convolutions as in traditional CNNs, the image
is divided into small regular patches that are treated as a sequence of "tokens'
analogous to words in a text. Each patch is then transformed into a vector and
enriched with positional information so that the model can preserve the spatial
structure of the image.

Transformer Encoder

A
L% °

Vision Transformer (ViT)

Transformer Encoder

] §
':;.‘@;f‘g”’j::"u@ﬁ@@ﬁ@éﬁﬁ-ﬁ@é ;

ml‘ [Linear Prujectmn of Flattened Patches
-] I []
W@HH-.M%WWE
L] 1

Embedded
Patches

Figure 3.17: ViT transformer[31]

At this point, the self-attention mechanism comes into play, allowing the ViT
to relate any patch to all the others, hence capturing global dependencies from the
very first layers. This approach, reduces the typical constraints of CNNs - locality
and fixed-size kernels - and enables the model to learn more complex structures,
especially when it is trained on very large datasets. It is exactly this ability to
reason over the whole image that has made the ViTs competitive or even superior
to convolutional architectures in several tasks.

47

Efficiency of Conventional SAs in executing NNs

Efficiency - ViT [Layer_0] (y = OPC /Power[mW]) = 0s
WS
. S

PE = 1024 ZZ3 Best perf/W

OPC / Power[mW]

32x32
PE = 2048

OPC / Power[mW]
E=

8x256 16x128 32x64 64x32 128x16

256x8

Figure 3.18: ViT[30] - Self-attention - results.

The behavior of Layer 0 (Figure 3.18) of the Vision Transformer is very different
from what was observed in MobileNet and ResNet, but it resembles the trends seen
in the case of GPT and TinyBERT. In the graph, in fact, a general dominance of
the IS configuration emerges, with values almost twice as high as OS and far above
WS. This result is consistent with the nature of the first layer in ViTs: the model
performs a linear projection on the patches (patch embedding), an operation that
works directly on the input without any significant reuse of weights or outputs, with
a structure very similar to that of a sentence in LLM models. In this condition,
what matters most is the reuse of activations, precisely what the Input Stationary
dataflow favors. Consequently, both OS and WS struggle to reach comparable
values because a model like the patch embedding is heavily biased toward being
“input-driven.”

¢ OS remains at mediocre values since the linear projection of the patches does
not require numerous accumulation cycles as in convolutions. Therefore, out-
put reuse is quite limited, although it stays fairly consistent as the array shape
varies.

o WS is the most penalized dataflow in this layer. Even though the operation is
technically a linear operation, the structure of the weights still cannot produce
reuse that is advantageous enough to compensate for the losses caused by
moving the inputs.

o IS is the best dataflow for this layer, achieving the highest performance in
all configurations regardless of the number of PEs or the shape of the array.

48

3.3 — Performance Results

This behavior is due to how ViT is designed: patch embedding consists of a
linear transformation that makes intensive use of the inputs and reuses them
many times before producing the final token. This mechanism maps optimally
onto IS, which keeps the activations “stationary” within the PEs. Differently
from all the other layers, the most interesting configurations are the highly
asymmetric ones.

Efficiency - ViT [Layer_1] (y = OPC / Power[mW]) mmA OS5
WS
- S
PE = 1024 ZZ3 Best perf/W

v

OPC / Power[mW]
— IN] w IS

o

32x32 128x8
PE = 2048

v

IS

w

OPC / Power[mW]
N

-

o

8x256 16x128 32x64 64x32 128x16 256x8

Figure 3.19: ViT[30] - Feed-forward - results.

Concerning Layer 1 of the ViT (Figure 3.19), the data deviate considerably from
the patch embedding (Layer 0 - Figure 3.18). The ViT, in fact, shows the same
behavior, also in this case, as the FFN model of GPT and TinyBERT, displaying
a generalized dominance of the OS dataflow. The FFN performs a linear trans-
formation that is computationally much heavier than the linear projection on the
patches, making the reuse of the outputs much more significant. This behavior is
clearly reflected in the graphs, in which IS becomes the least efficient dataflow, while
WS, although comparable to OS, never manages to reach the same performance.
In conclusion, after the first stage, the workflow of the ViT becomes very similar
to a dense layer, where accumulations play a critical role. Also in this case, the
pseudo-symmetric shapes are the best. The result is therefore perfectly consistent
with the structure of the model: the ViT moves from a layer strongly driven by the
inputs to one dominated by accumulations. From the experimental data:

e OS is the best dataflow in this layer. Keeping the partial outputs locally
reduces the internal traffic and also allows obtaining optimal values in all
shapes and for any number of PEs in the array.

49

Efficiency of Conventional SAs in executing NNs

« WS shows stable values in all the examined cases. It obtains performance
comparable to the OS case and generally higher than IS. The high number of
channels generates a consistent reuse of the weights, making this configuration
more competitive compared to Layer 0.

IS shows a significant and widespread reduction in performance, resulting in
the least efficient option. As expected, the reuse of the inputs is much more
limited compared to the reuse of the outputs.

50

3.4 — Discussion

3.4 Discussion

TinyBERT, GPT, MobileNet, ResNet and ViT models follow two clear and al-
most opposite behaviors, which reflect their intrinsic nature: on one hand, the
Transformer-based models (MobileNet, ResNet) show very similar patterns, while
on the other, the convolutional networks display computation dynamics and data-
reuse characteristics that require significantly different hardware-mapping strate-
gies.

Starting from the Transformer-based group (TinyBERT, GPT and ViT), a
strong coherence can be noticed. The dominant operations are dense, regular,
and with a high number of accumulations. The structure of the layers - projection
in TinyBERT and GPT and the patch embedding in ViT - is almost entirely com-
posed of dense matrices in which the dataflow is very uniform. This leads to an
almost predictable behavior on Systolic Arrays: dataflows that favor input reuse
(IS) tend to dominate in the first layer, while in the deeper projections the dataflows
centered on the outputs (OS), thanks to the high number of accumulations, win. In
other words, TinyBERT, GPT, and ViT "pull" the hardware in the same direction:
dense matrices, regular flows, high parallelism, and a clear preference for rather
regular arrays, often close to square shapes.

Instead, the observations that arise with MobileNet and ResNet are completely
different. In those models the computation is dominated by various types of convo-
lutions. MobileNet, optimized for efficiency and MAC reduction, introduces oper-
ators like depthwise separable convolutions that fractionalize the computation into
smaller steps with highly variable data reuse. This makes the behavior significantly
less uniform and more sensitive to the shape of the SA: small variations in array
geometry or in the choice of dataflow can significantly affect overall efficiency. On
the other end, ResNet presents extremely heavy initial layers - like the 7x7 convo-
lution - that saturate the hardware almost regardless of the array shape. However,
in deeper layers, the situation gets reversed, with different reuse patterns and the
need to balance inputs, outputs, and weights in a more variable way. In a nut-
shell, while Transformers present a "stable and regular" behavior, CNNs bring a
much more heterogeneous nature, producing peaks, transitions, and non-uniform
hardware requirements.

This contrast between the two "worlds" leads to the important observation that
there does not exist one fixed combination of shape and dataflow that can be op-
timal across all modern models. An architecture optimized to reach maximum
efficiency on Transformers would underutilize the available resources when running
depthwise or pointwise layers. Similarly, an array optimized with only CNNs in
mind would clearly not manage to exploit the regular characteristics of the dense
matrices of LLMs. Even within a single architecture, such as ViT, with Layer 0
following completely different dynamics from the subsequent layers, the optimal
mapping is not constant. In summary, from the obtained results, an immediate

51

Efficiency of Conventional SAs in executing NNs

desire to adopt a reconfigurable Systolic Array will emerge, one that can adapt in
shape and dataflow according to the type of operation to be executed. This flexibil-
ity lets the hardware follow more closely the characteristics of different workloads:
more regular configurations and IS/OS data flows are more suitable for Transformer
models, while less symmetric shapes and specific strategies perform better within
convolutional layers.

Instead of having a single, rigid design, which would be suboptimal in most
cases, a reconfigurable SA allows approaching each time the best efficiency point,
improving the overall throughput per Watt. The variety present in the behaviors of
the models thus does not constitute a problem but simply underlines how a single
configuration cannot be valid for everything. Here lies the interest in a multi-
configuration architecture, capable of choosing the most opportune layout for the
context and of covering a wider range of computational patterns, both those of
classic CNNs and those introduced by Transformer models, widespread today.

52

Chapter 4

Proposed Reconfigurable
Systolic Array Architecture

This chapter presents the reconfigurable architecture developed during this thesis
work. The objective is to illustrate the design choices adopted and to show how
the results obtained in the previous chapters were leveraged for the integration
into a single hardware structure capable of adapting to multiple operational con-
figurations. After defining the design objectives, the internal organization of the
Processing Element will be examined, followed by the reconfiguration mechanism,
highlighting the logic behind its design and its impact on system complexity. In
the final part, the experimental results obtained through Python simulation (with
cross-verification via RTL simulation) and physical synthesis are reported, with
particular attention to the costs associated with multi-configuration support. The
overall analysis will make it possible to assess the effectiveness of the proposed
architecture and to discuss its limitations and potential extensions.

4.1 Design Goals and Specifications

The decision to present a reconfigurable array is based on a set of objectives arising
from the increasingly demanding workloads of neural networks, as well as insights
drawn from the most recent literature. Among the works that most significantly
influenced this research is EPFL’s “Scale-out Systolic Arrays”[32] which demon-
strates that the efficiency of SAs does not depend exclusively on the number of
PEs operating but, depending on the model being executed, varies with the shape
of the array itself and with the way it can be modified to accommodate different
computational patterns. The research group shows that an array that is too large
or too symmetrical compared to the real use case leads to underutilization of the
PEs, consequently reducing the overall efficiency of the system. This study was cru-
cial in guiding the idea, in this thesis, of introducing explicit support for multiple

53

Proposed Reconfigurable Systolic Array Architecture

shapes and multiple operating modes.

In the modern context, it is necessary to ensure a good balance between through-
put and energy consumption. Indeed, in architectures dedicated to inference, energy
efficiency per Watt now plays a central role in hardware selection. This has pushed
research to shift its focus toward energy optimization rather than absolute compu-
tational power: if, by reducing the number of PEs (sometimes at the cost of longer
computation time), it is possible to achieve significant power savings—potentially
by reorganizing the shape—without excessively increasing latency, the resulting
hardware is better. The choice of the various test configurations and the proposed
number of PEs was also driven by the need to maintain good utilization even when
the problem size does not match the ideal shape of the array, drawing inspiration
from EPFL’s considerations regarding the relationship between SA granularity and
the variability of DNN kernels.

A second objective concerns flexibility. As discussed in chapter 3, modern neural
networks do not exhibit a single dominant computational pattern: 2D convolutions,
linear layers, and attention mechanisms require different structures, both in terms
of matrix dimension ratios and data reuse. For this reason, an array was proposed
that could adapt to multiple dataflows and modify its shape without compromising
internal regularity or excessively increasing the complexity of the control unit.

Another parameter that must be carefully monitored is the overhead introduced
by the reconfiguration mechanism. Supporting multiple configurations inevitably
means adding selection logic, alternative data paths, and components that are
unused in certain modes. For this reason, the number of configurations supported
within the same SA was carefully chosen to integrate this flexibility with as small an
increase in area and power as possible, so as not to negate the advantages achieved
in the most efficient configurations.

Finally, the choice of the reference technology — 28 nm standard-cell — reflects
a library frequently used in the SA domain for latency and energy consumption
estimation. The specifications of the array, in conclusion, were defined based on the
performance required to cover the main kernels while also maintaining scalability
toward larger sizes, partially adopting the “scale-out” logic proposed by EPFL[32]
but integrating it into a single, reconfigurable design rather than a collection of
separate pods.

4.2 Processing Element (PE) Design

The Processing Element (PE) constitutes the basic block of the systolic architec-
ture under analysis. In particular, since the main objective of this proposal is the
complete modularity of the system, the PEs have also been equipped with specific
mechanisms to support multiple operating modes and multiple array configurations
without requiring any modification of the PE itself. All of this must, however, con-
tinue to guarantee the regular structure and predictable data flow that characterize

54

4.2 — Processing Element (PE) Design

systolic architectures.

For this reason, data enters through a network of multiplexers. At this stage,
only the innermost layer of multiplexers is considered, as it is synthesized as an
integral part of the PE. These muxes are of the 2-to-1 type and, depending on the
control signal, select which input is the stationary data. This level of flexibility is
thus what enables the variation of the dataflow used. Although the inclusion of
these components introduces a slight area increase, it offers a substantial advan-
tage: using only 3 control bits, it is possible—while keeping the PE unchanged—to
support all three classical DNN dataflows.

From other PEs From other PEs From other PEs
—> —>

XN
XN

Y Y { l Y Y

MAC
unit

]

REG REG REG

¥ To other PEs ¥ To other PEs ¥ To other PEs

Figure 4.1: PE RTL view.

After the selection stage, the signal reaches the register layer, which in this case
serves two roles. On one hand, the registers create an internal pipeline, ensuring
that each value follows a regular and timed propagation along rows and columns.
On the other hand, they ensure correct synchronization between the value recircu-
lating inside the PE and the new wavefront step propagating through the array.
Indeed, the register is isolated when the mux selects the value coming from the
outside.

The core of the PE is the MAC unit, which performs the fundamental operation
of DNN kernels (multiplication of two operands followed by accumulation). To bet-
ter support different types of workloads and optimize energy efficiency, the PE—as
well as the entire testing flow—has been designed for the use of a variable-precision
MAC unit, capable of performing multiple MAC operations in parallel by reducing
the number of bits per operand. In the VHDL unit, as well as during synthesis, a
3-bit bus is included for controlling the MAC unit itself.

In the configuration used in this thesis, the inputs A;/A, and B;/B, (see 77?)
are 16-bit vectors, while the accumulator C;/C, is 48 bits wide. However, the code

99

Proposed Reconfigurable Systolic Array Architecture

structure is designed to generalize these widths and allow future exploration of other
precision combinations. This design choice enables the use of reduced precision
when the model allows it—thus lowering area and power—while still supporting
higher precision for applications requiring a greater numerical margin, without
altering the array organization.

From an interface perspective, the PE has three input data ports and three
corresponding output ports. The A and B pairs carry the operands of the multipli-
cation, introducing a one-register delay between input and output. In accordance
with the chosen dataflow, the output is then directed either to other PEs or to
the output buses. In weight-stationary configurations, for example, weights may
remain locally in the PE while activations propagate, whereas in other modes the
roles can be defined differently. The C signal is the partial-accumulation bus and
supports the same reconfigurability described for the other two inputs. The fact
that all three data channels have well-defined input and output ports simplifies
the regular interconnection between PEs and enables the construction of arrays of
different sizes without modifying the interface of individual nodes.

As mentioned earlier, in addition to the data signals, the PE entity also includes
two control buses. The first groups the signals governing the internal behavior of
the MAC unit. The second controls the configuration of the multiplexers that se-
lect the data source feeding the MAC unit, determining which of the three inputs
recirculates through the PE and, consequently, the mode in which the PE is config-
ured (OS, WS, IS). In this way, by modifying only the control signals, it is possible
to locally reconfigure the dataflow within the PE, switching from a convolution-
oriented configuration to one suited for linear layers or attention, without altering
the physical connections.

Once the MAC operation is completed, the result is sent to the subsequent
PEs according to the connections defined by the array topology. The symmetry
between the PE’s inputs and outputs was intentionally preserved. This symmetry
allows the definition of a modular structure that can be easily replicated on multiple
levels, without introducing dedicated paths that would increase routing complexity.
Such an approach helps maintain a high degree of layout regularity—an important
aspect of systolic architectures to ensure orderly routing and reduce interconnect
congestion.

4.3 Reconfiguration Mechanism

The reconfiguration mechanism adopted in this work is based on a static approach,
easily integrable into the design flow, and with reduced overhead. The configuration
of the Systolic Array does not occur at runtime but is entirely defined at compile
time through a constant declared in the VHDL code. This constant controls di-
rectly and straightforwardly the generation of the interconnection between the PEs
during the simulation and synthesis: depending on the constant set, the compiler

56

4.3 — Reconfiguration Mechanism

automatically introduces the multiplexers on the inputs of each PE, determining
in this way the data path inside the array. It means that the set of supported con-
figurations is defined before the synthesis and that, for each desired configuration,
VHDL generates only the logic really needed without introducing unused structures
or performing complex dynamic control.

From an architectural point of view, this approach allows for an important de-
coupling between physical layout and logical topology. The PEs are physically
disposed on silicon in a regular grid, but the way they are connected does not de-
pend on their geometric position. Actually, the i-th PE is not bound to its spatial
coordinate (x, y): depending on the chosen connections, it can behave like it occu-
pied another position in the logical matrix, receiving or forwarding data along rows
or columns different from the physically adjacent ones. It is hence the interconnec-
tion network which is generated that defines the effective “shape” of the array. This
mechanism allows for the obtaining of wide and short arrays, tall and narrow ones,
or more regular and square ones, all based on the very same underlying physical
structure.

MEM; PEq; —| PEq3 —

MEM,

Ao
— PE, |

Ao Ao Ao

PE12| B0 PE; | PE13| B0 PE; PE14| Bo PE, | PE15| B0

Co MEM, Co MEM, Co MEM, Co

PE;

PE; —|

MEM,

ux
A
JUX]|
B
ux
c
ux
A
Ao
— PE; |
UX| °
B
c
mEm, — | B MEM,__ |
UX
MEM, ¢ PE;
ux
A

Ao

Ao

PEO8| Be PE, __| PEQ9| Be PE, | PE10| Be PE; PE11| Be

Co Co MEM, Co

E—L

UX|

B

UX]

c
PEg, | PEy___|
* ux

A
MEM, —| MEM, __|

Ao Ao

UX]

B

X

c

E—L

UX
A
UX|
B
UX]
c
UX]
A
UX
B
UX]
c
PEg —|
o UX|
A
MEM, —
Ao Ao

Ao

MEM, B PEQ4 | Be MEM; PEQS | Be MEM, B PEO6 | B B PEQ7 | Be
— — — — 65— — MEM; — —

MEms | | G MEM; | | Ceo vem, | | G mEm, | | G
UX| UX| UX|

PE; c PE, PE; c PEg C

MEMy — PE, | PEy | PE2 |
UX| UX| UX|

MEM, A MEM, MEM, A MEM, A

MEM, | e MEM! | e MEM, | e wEM, | Ao
UX| UX| IX|

MEM, B PEQO | Be MEM: PEO1| Be MEM, B PEQ2| Be MEM; B PEO3 | Be

MEM, Co MEM, Co MEM, Co MEM, Co
UX| UX| UX|
Cc

MEM,

[z] @ (2] @ [z] @ o -3
\c;ﬁpg\c;ﬁpg \c;r/:.E \c;r/,,E

Figure 4.2: Example of a Reconfigurable 4x4 Systolic Array Supporting 4x4 OS and
2x8 IS Shapes

The core of this process is represented by the use of multiplexers on the PE

57

Proposed Reconfigurable Systolic Array Architecture

inputs (Figure 4.2). In fact, depending on the configuration, each PE can receive
data from the left neighbour, from the upper one, or from an external source, thus
modifying the natural data-propagation path typical of traditional Systolic Arrays.
By imagining interconnections that potentially are not limited to adjacent PEs in
a two-dimensional structure, it is possible to even consider the optimization of al-
gorithms such as convolutions, which exploit multiple spatial dimensions. The set
of mux choices builds up a different connection graph for every configuration: some
paths are enabled, others completely removed. This permits control of not only the
size of the logical matrix but also the type of dataflow that can actually be imple-
mented, allowing the SA to adapt to operations very different from one another.
The advantage of this strategy is twofold. On one hand, it keeps the hardware over-
head extremely small because adding multiplexers involves in a limited increase in
area and does not introduce complex control logic. On the other hand, it makes
the array extremely flexible at the functional level. The same physical layout can
be used for configurations optimized both for Transformer models-which benefit
from more squared shapes and dataflows with strong input/output reuse-but also
for convolutional architectures like MobileNet and ResNet, where instead rectan-
gular shapes or specific data paths can be useful in order to favor weight reuse or
a particular direction of dataflow. It is nevertheless necessary to keep the number
of configurations under control. In this work, the exploration was carried out up
to a maximum of 3 configurations supported simultaneously; however, even if the-
oretically feasible, increasing the number of configurations too much - due to the
area overhead caused by the additional mux logic and the increased power linked
to a more complex routing and consequently larger drivers - might not justify the
performance gains. This solution provides an effective compromise between flexi-
bility and efficiency, with a limited overhead it should be possible to archive better
performance.

4.4 Performance Results

This section discusses the outcome obtained for each explored configurations and
interprets it. The idea is to relate performance trends with architectural choices -
with particular emphasis on shape and dataflow - and the peculiar characteristics of
the executed models. Such a comparison could bring out common trends, significant
divergences, and structural limitations and give a critical reading of the observed
behaviors and of the factors that most influence the overall efficiency of the array.

4.4.1 Methodology for data computation and reason be-
hind the selection of comparison shape.

The procedure used to compute the data and compare the different configurations
of the array is based on an energy normalization, which is necessary to evaluate in a

58

4.4 — Performance Results

Shape Area [mm?] Incremento [%]
32x32 1,065 112.84
32x32(0S) + 16x64(0S) + 64x16(0S) 1,202 ’
32x32 1,066

16x64(08) + 64x16(0S) 1,147 +7,64
64x32 (32x64) 2,125 7o
64x32(0S) + 32x64(0S) 2,291 !

Table 4.1: Confronto fra area della shape fissa e shape riconfigurabile

coherent way layers with different sizes and characteristics. The issue arises when,
in the case of reconfigurable arrays, there is a difference in power consumption
between one shape and another. For each layer, starting from the power estimated
during synthesis and from the number of cycles required to complete the operation,
the total energy was calculated according to the relation:

(4.1)

ero = Wro - neespg
ern = Wi -neesiq

Once the energy contribution of the two layers is obtained, the total energy is
simply:

Ctot = €10 + €11 (42)

In parallel, for each configuration, the total number of operations performed was

also calculated:
Nops,tot = OPSLO + OPSLl (43)

These two quantities make it possible to derive the same efficiency metric used
in the fixed—dimension array cases, expressed as OPC per Watt:

OPC . nops,tot
mW Ctot

(4.4)

This approach makes it possible to uniformly compare models that are very dif-
ferent from one another, preventing particularly long or heavy layers from distorting
the result.

For the choice of the shapes to compare, configurations commonly adopted in
the literature on Systolic Arrays were preferred. Square matrices, such as 32x32,
are a classical choice due to their symmetry and good balance between vertical and
horizontal dataflow. In fact, even reference architectures, such as the one used as
a basis in the EPFL[32] study, employ this shape as their design starting point.
The semi-square configurations 64x32 and 32x64, instead, reflect scenarios often
discussed in research to represent arrays unbalanced toward rows or columns, while
still maintaining a regular and easily mappable structure. The adoption of these

59

Proposed Reconfigurable Systolic Array Architecture

shapes therefore enables a meaningful comparison aligned with the solutions most
widely studied in the state of the art. The proposed configurations are three in
total:

e The first two are based on an array composed of 1024 PEs. The first supports
two reconfiguration options, while the second supports three. The introduc-
tion of a configuration with three selectable modes was intended to provide a
broadly adaptable architecture capable of performing effectively across all the
models analyzed.

e The third configuration is based on a 2048-PE array and supports two combi-
nations of shape and dataflow. This design is closer to a datacenter-oriented
array while still maintaining a more limited PE count, thus offering a balanced
trade-off between scalability and hardware cost.

4.4.2 Synthesis and Resource-Overhead Results
2 Shapes - 1024 PEs

2 Shape Array vs Fixed (32x32) - 1024 PE - Throughput Benchmark

4
Efficicency [OPC/mW]

Figure 4.3: 2-Way Reconfigurable vs Fixed Shape Array - 1024 PEs

Figure 4.3 clearly shows the impact of introducing a reconfigurable architecture
compared to a traditional fixed 32x32 Systolic Array. Even when limited to two al-
ternative shapes, the reconfigurable array achieves significant improvements across
almost all the models analyzed. The most evident gains appear in Transformer-
based models — TinyBERT, GPT, and ViT — where the efficiency increase exceeds
+90% in all cases, with particularly high peaks for ViT (+135%) and TinyBERT
(+103%). This behavior was expected: the Transformers considered exhibit a large
efficiency variation for a given dataflow between their first and second layer. There
is, in fact, a complete shift between the projection layer and the FFN, where IS and
OS respectively emerge as the most efficient dataflows, almost independently of the
shape. The flexibility introduced by reconfiguration therefore allows the dataflow of
the array to be better aligned with the nature of the matrices used in self-attention

60

4.4 — Performance Results

and linear projections. GPT also shows a substantial improvement (+97%), further
confirming that many attention-based networks exhibit a data-reuse profile much
closer to the ideal case for which the second shape included in the reconfigurable
design was conceived.

The case of MobileNet, on the other hand, shows the opposite behavior: the re-
configurable version experiences a loss of about 48%, which is consistent with what
was observed in the depthwise/pointwise layers of efficient networks. MobileNet
presents less regular computation patterns and is more difficult to map onto rigid
and symmetric shapes; indeed, in many cases, the fixed 32x32 array already repre-
sents a better compromise than the shape selected for the two-configuration design.
MobileNet, like the early layers of a CNN, does not exhibit large enough variations
in dataflow or shape to justify the need for a reconfigurable array. In such cases,
introducing a multi-shape configuration and paying the associated power overhead
actually leads to a deterioration in efficiency. This result highlights that certain
workloads cannot be effectively supported by adding only a single alternative shape,
and that reconfigurability must be carefully calibrated to the characteristics of the
model.

ResNet lies in an intermediate position: the gain is minimal and essentially
neutral (3.2%). Again, when limiting the study to the first two layers alone, the
variation in efficiency between them is not large enough to justify the presence of a
second shape. However, this negligible variation in efficiency offers insight into the
equally negligible energy overhead of the variable configuration. In this case, for
instance, there is a power-dissipation increase of 7.73% in the IS configuration and
4.46% in the OS configuration, which corresponds to an area increase as reported
in Table 4.1.

3 Shapes - 1024 PEs

3 Shape Array vs Fixed (32x32) - 1024 PE - Throughput Benchmark

LX0 +94.3%

m Fixed
s Reshape

0 1 2 3 a4 5 6
Efficicency [OPC/mW]

Figure 4.4: 3-Way Reconfigurable vs Fixed Shape Array - 1024 PEs

The third shape (results in Figure 4.4) was introduced with the specific goal of
improving performance on convolutional networks, and in particular on MobileNet,

61

Proposed Reconfigurable Systolic Array Architecture

which suffered the most under the two-shape configuration. It is inspired by the fact
that, for a large portion of convolutional layers, the 32x32 shape is reported in the
literature as the optimal solution. The addition of an extra shape was then meant
to offer a more suitable compromise for the depthwise and pointwise convolutions
typical of MobileNet, with the hope to reduce the gap with respect to the fixed
configuration.

Despite this rationale, results demonstrate that the addition of the third shape
is not a solution and introduces a very undesirable effect: supporting an extra
configuration increases general power consumption and this increment is not com-
pensated by the benefits obtained. The final result is that MobileNet continues to
perform worse than the fixed 32x32 array —30.2%, although it improves compared
to the two-shape array, which still remains considerably below the baseline. In
other words, the third shape reduces the problem but far from removing it, and
taking into consideration the higher energy cost, it is not justified.

For ResNet, too, the improvement is marginal or even slightly negative (—4.8%):
its heavy convolutional layers do not take advantage of the new configuration, and
the increased power related to the third shape cancels out any potential benefit.
Transformer architectures enjoy large improvements again, but these were already
there with the two-shape array; the third shape does not introduce any additional
significant increase beyond what was already achieved by two configurations.

The most relevant outcome that can be highlighted from this comparison is that
increasing the number of shapes does not automatically imply better performance
and can even worsen the most critical cases when the power overhead is not com-
pensated by a real gain in efficiency. Even though the introduction of a third shape
was well-motivated, it does not overcome the challenges of lightweight CNNs, and
in the light of these results, it does not represent a beneficial choice with respect
to the two-configuration solution.

2 Shapes - 2048 PEs

2 Shape Array vs Fixed (32x64) - 2048 PE - Throughput Benchmark

2
Efficicency [OPC/mW]

Figure 4.5: 2-Way Reconfigurable vs Fixed Shape Array - 2048 PEs (32x64 baseline)

62

4.4 — Performance Results

Increasing the number of PEs from 1024 to 2048 significantly alters the context
of the analysis: this configuration is closer to the high-end architectures typical of
datacenter environments where the workload is dominated by Transformer models
and dense operators. In this scenario, the introduction of reconfigurability thanks
to two alternative shapes comes along with effects that are even more pronounced
when compared to the results obtained with the smaller array.

In Transformer-based models—TinyBERT, ViT, and GPT—the effect of reshap-
ing stays extremely high; there, improvements oscillate around +100%, depending
on the chosen shape (as in Figure 4.5). The larger array size allows the regular-
ity of the matrix patterns typical of attention and linear projections to be fully
exploited, and the more balanced shapes (32x64 and 64x32) increase array sat-
uration and reduce parallelism waste. This behavior is precisely what one would
expect in a datacenter-like scenario: more PEs translate into greater “sensitivity”
for data layout, and Transformer models are the ones that profit the most from this
combination.

2 Shape Array vs Fixed (64x32) - 2048 PE - Throughput Benchmark

LRE +98.4%

58

eshape
7

0 1 2 3 4 5 6
Efficicency [OPC/mW]

Figure 4.6: 2-Way Reconfigurable vs Fixed Shape Array - 2048 PEs (64x32 baseline)

As far as CNNs are concerned, the picture is more nuanced. MobileNet still
appears to be suffering from a degradation with respect to the fixed 32x32 con-
figuration, around values of 9% to —8% — smaller than in the 1024-PE case, but
negative nonetheless. The efficiency is, however, extremely low even in fixed con-
figuration, due to the small size of the model compared to the considered compute
matrices, which results in a limited array filling and correspondingly low PE uti-
lization. Introducing reshape causes a negligible efficiency drop, primarily due to
the increased dissipated power.

Instead, ResNet exhibits a mild degradation (—2% / —3%), similar to the 1024-PE
case (see Figure 4.6): even a datacenter-scale array is not enough to substantially ac-
celerate the initial convolutional layers of ResNet, due to the two additional shapes
that fail to model the weight-reuse pattern required by either the 7x7 convolution
or by the subsequent bottleneck convolutions. On the whole, these results show that
even with a significantly larger number of PEs — and therefore in a scenario closer

63

Proposed Reconfigurable Systolic Array Architecture

to datacenter architectures — reconfigurability amplifies the advantages for regu-
lar models such as Transformers, while remaining limited in the presence of highly
heterogeneous workloads, such as lightweight CNNs or CNNs with very complex
kernels. This confirms that reconfigurability is an effective approach mainly when
the array can be uniformly saturated, whereas in less regular models more targeted
and more numerous shapes would be needed in order to have tangible performance
gains.

64

Chapter 5

Conclusions and Future
Work

The following chapter summarizes the main results obtained during this work,
putting forward some reflections on the implications that emerged from the analysis
of the different configurations of the Systolic Array. After evaluating how the shape
and dataflow of standard arrays behave when executing the models of interest —
from classical CNNs to Transformers — and, subsequently, how the variable systolic
architecture influences their efficiency, it is possible to draw some general consider-
ations on the effectiveness of the adopted approach and on its limitations. Starting
from these observations, several possible directions for extending the project are
then outlined, both from an architectural and a methodological point of view. The
goal is to provide an overall view that does not limit itself to the results obtained,
but that also highlights the opportunities and open challenges for the design of
reconfigurable accelerators in future generations.

5.1 Conclusion

The data presented in chapter 4 highlighted how shape and dataflow critically
influence the efficiency of the Systolic Array across the various models considered.
The experiments confirm that there is no single universal configuration capable of
adapting effectively to the heterogeneity of modern workloads: Transformer-based
models, characterized by dense and regular operations, benefit significantly from
more symmetric shapes, while convolutional networks — such as MobileNet —
require different topologies, often more unbalanced and difficult to capture with a
small set of generic configurations.

The comparison between fixed and reconfigurable arrays clearly shows that re-
configuration, even when limited to two shapes, can substantially improve efficiency

65

Conclusions and Future Work

in the presence of regular models, while it remains more challenging to apply ef-
fectively to traditional CNNs. Extending the system to three shapes, although
motivated by a slight improvement in convolutional networks, does not provide
benefits sufficient to justify the higher power cost and the increased architectural
overhead, indicating that the choice of configurations must be carefully reasoned
and not merely incremental.

Overall, the results demonstrate that reconfigurability is a viable approach to
broaden the spectrum of workloads that a Systolic Array can handle, but they also
reveal the need for a deeper exploration of the design space and more advanced
tools to guide the selection of shapes. These observations serve as the foundation
for future developments aimed at a more informed, automated, and comprehensive
design of the array’s computational and energy behavior.

5.2 Future Work

The field of reconfigurable Systolic Arrays remains broad and rich in possibilities
for improvement. A first area of work concerns the definition of more structured
strategies for mapping neural network models onto the array. The exploration
carried out in this work was conducted by combining theoretical analyses and em-
pirical evaluations, but a promising direction is the use of more formal techniques
such as the polyhedral model, or multi-dimensional scheduling models. These tools
would make it possible to systematically analyze tensor dependencies, automati-
cally generate computation patterns, and suggest optimal shapes and dataflows for
each layer. In perspective, this would enable shifting from a manual management
of the exploration to a semi-automatic or fully automatic system for generating
configurations.

Another important point raised during the study is the lack of a detailed sim-
ulation model of the communication towards memory. Even though the Systolic
Array is very effective at reducing the external traffic due to data reuse, memory
bandwidth and latency remain important factors, especially considering highly un-
balanced layers or models with big activations. A more realistic simulator, which
also considers local caches, intermediate buffers, bus conflicts, and possible on-chip
network congestions, can discover configurations not yet explored in the design
space and lead to the discovery of optimal shapes that would be discarded normally.
A better understanding of the memory behavior can also allow the integration of
techniques such as dataflow-aware prefetching or dynamic buffer allocation

Another important point is the study of bus management and internal inter-
connection of the array. Shapes that today are extremely unbalanced toward rows
or columns and represent edge cases might become more practical by introducing
systems such as bus sharing, multi-hop routing, or more flexible internal communi-
cation networks, possibly hybridized with small Network on Chip (NoC) structures.

66

5.2 — Future Work

This will reduce the time required to reorganize the dataflow when switching, for ex-
ample, from a row-oriented configuration-suited for wide convolutions-to a column-
oriented one-better suited for the densely connected layers of Transformers-and also
reduce the number of minimal interconnections that today must be placed.

A further consideration can be made regarding the area and power estimates
used in this work. RTL synthesis provides useful indications, but it cannot fully
capture the real costs of an architecture. In particular, the physical convergence
of wires—necessary to support an increasing number of shapes—may have a much
more significant impact once the actual layout is generated: denser mux networks,
irregular routing paths, and local congestion could substantially increase area and
parasitic capacitances, also penalizing the maximum achievable frequency. For this
reason, an important direction for future work is the implementation of a complete
physical layout to more accurately extimate the cost of reconfigurability in terms
of routing and chip-level physical effects.

The same reasoning applies to the power estimation, which in this study is
based on the standard pre-layout power analysis provided by synthesis tools. Al-
though this estimation is useful for relative comparisons, it does not fully reflect
the dynamic behavior of the neural network during real execution. A more accu-
rate evaluation would require a back-annotated simulation, including post-layout
RC values and switching patterns derived from the actual input data of the mod-
els. This would allow a more reliable measurement of dynamic power and a better
understanding of how reconfigurability affects the real energy consumption of the
array. Integrating such a flow therefore represents a natural next step to strengthen
the results obtained and to guide future architectural optimizations.

Another line of research relates to the possibility of enriching the PEs with forms
of local micro-control. The current design of the PEs, although simple and efficient,
is completely static: each PE always performs the same behavior, regardless of the
layer or of the characteristics of the computation. The introduction of extremely
lightweight micro-controllers or small dedicated FSMs could allow the PE to dy-
namically change the direction of the dataflow, manage alternative paths, or even
collaborate with other PEs to build functional groups useful, for example, for layers
with very different dimensions. In the long term, this might lead to SAs able to
reconfigure not only at compile-time but also at runtime, adapting to the next layer
without the need for any re-synthesis.

From this concept naturally follows the possibility of sectorizing the array, that
is, dividing the SA in independent regions that can be turned on, turned off, or
resized according to workload: such a configuration would allow a reduction in con-
sumption when computing small or narrow layers, or an increase in parallelism when
dealing with large matrices. The introduction of selective power-gating, already
widely studied in other hardware domains, may represent a further improvement
in energy efficiency.

Another interesting perspective concerns integrating heterogeneous compute units

67

Conclusions and Future Work

within the same SA: part of the array could keep the traditional PEs; other sections
could be equipped with PEs optimized for specific operations, such as activation
functions, normalization operations, or multihead-attention in Transformer models.
This would reduce the need to move data outside the array for simple but frequent
operations, further increasing efficiency.

As a final step, the design flow can be further evolved by including automatic
design-space exploration tools, capable of proposing candidate configurations based
on composite metrics - OPC/W, area, latency, and memory pressure - and of guid-
ing the designer in the selection of the most promising configurations to synthesize.
Such a tool, combined with formal mapping techniques and with an advanced
memory model, can eventually allow for more rapid, robust, and scalable design of
Reconfigurable SAs.

Overall, the future developments are toward ever more intelligent Systolic Ar-
rays, aware of the workload and able to adapt dynamically both to the structure of
computation and to energy constraints. Quite an ambitious goal, but well aligned
with the needs of current deep learning models, which ask for accelerators that are
not only powerful but also versatile and adaptive.

68

List of Figures

1.1 Three wave of neural network research[1].

2.1 TImplemented TPU’s Systolic Array model[9].
2.2 Spatial-temporal mapping onto a systolic array with its data access

and data reuse.[10]o
2.3 Systolic Array - Output-Stationary (OS) configuration[11]
2.4 Systolic Array - Weight-Stationary (WS) configuration[11]
2.5 Systolic Array - Input-Stationary (IS) configuration[11]
2.6 CUDA Cores - NVIDIA GPU[12]
9.7 CPUvs GPU vs TPU[I4] . . . oo oo oo
2.8 Internal MXU structure - Google TPU v1[13].
2.9 Performance comparison between TPU v1, CPU and GPU on differ-

ent workloads[13].o
2.10 Google TPU vl internal floorplan[13].
2.11 Tesla FSD chip[16]. o
2.12 Tesla FSD chip internal floorplan[13].

3.1 Example of a small fully-connected layer with four input and eight
output neurons[17].o oL
3.2 Dimensions of equivalent GEMMs for (a) forward propagation, (b)
activation gradient, and (c) weight gradient computations of a fully-
connected layer[17].o
3.3 Convolution of an NCHW input tensor with a KCRS weight tensor,
producing a NKPQ output[17].
3.4 2D discrete convolution of two input matrices[18].
3.5 Stride and Padding in 2D-Convolution[19].
3.6 A Transformer-based application that translates from English to
French[20]. o
3.7 A full Transformer contains both an encoder and a decoder[20].
3.8 TinyBERT[24] - Self-attention Layer - results.
3.9 TinyBERT[24] - Feed-forward Layer - results.
3.10 GPT-2[26] - Self-attention Layer - results.

69

List of Figures

3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

4.1
4.2

4.3
4.4
4.5

4.6

GPT-2[26] - Feed-forward Layer - results.
MobileNetV2[27] - Inverted residual LO - results.
MobileNetV2[27] - Inverted residual L1 - results.
ResNet residual connection[29]. L.
ResNet-152[28] - Bottleneck B2 - results.
ResNet-152[28] - Bottleneck B4 - results.
ViT transformer[31] oo
ViT[30] - Self-attention - results.
ViT[30] - Feed-forward - results.

PE RTL view.
Example of a Reconfigurable 4 x4 Systolic Array Supporting 4x4 OS
and 2x8 IS Shapeso
2-Way Reconfigurable vs Fixed Shape Array - 1024 PEs
3-Way Reconfigurable vs Fixed Shape Array - 1024 PEs
2-Way Reconfigurable vs Fixed Shape Array - 2048 PEs (32x64 base-
line)
2-Way Reconfigurable vs Fixed Shape Array - 2048 PEs (64x32 base-
line)

70

Bibliography

1]

M. Lemmon, Deep Learning Book 2025. University of Notre Dame, 2025, Lec-
ture Notes. [Online]. Available: https://academicweb.nd . edu/~lemmon/
courses/deep-learning/lecture-book/deep-learning-book-2025.pdf.

F. Rosenblatt, « The perceptron: A probabilistic model for information storage
and organization in the brain», Psychological Review, vol. 65, no. 6, pp. 386—
408, 1958. DOI: 10.1037/h0042519.

B. Widrow and M. E. Hoff, « Adaptive switching circuits», Stanford University,
Stanford Electronics Laboratories, Stanford, CA, Technical Report, 1960.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, «Imagenet classification with
deep convolutional neural networks», Communications of the ACM, vol. 60,
no. 6, pp. 84-90, 2017. por: 10.1145/3065386.

J. Kaplan et al., «Scaling laws for neural language models», arXiv preprint
arXiw:2001.08361, 2020. [Online|. Available: https://arxiv.org/abs/2001.
08361.

J. Sevilla et al., «Compute trends across three eras of machine learning», in
Proceedings of the 2022 International Joint Conference on Neural Networks
([JCNN), IEEE, 2022. po1: 10.1109/IJCNN55064 .2022.9891914. [Online].
Available: https://doi.org/10.1109/IJCNN55064.2022.9891914.

D. Patterson et al., «The carbon footprint of machine learning training will
plateau, then shrink», IEEFE Computer, vol. 54, no. 10, pp. 18-28, 2021. DOT:
10.1109/MC. 2021 . 3099094. [Online|. Available: https://doi. org/10.
1109/MC.2021.3099094.

H. T. Kung and C. E. Leiserson, «Systolic arrays (for VLSI)», in Sparse Ma-
trix Proceedings 1978, Reprinted in "Introduction to VLSI Systems", Addison-
Wesley, 1980, Philadelphia, PA: Society for Industrial and Applied Mathemat-
ics, 1979, pp. 256-282.

U. S. Solangi, M. Ibtesam, M. A. Ansari, J. Kim, and S. Park, «Test archi-
tecture for systolic array of edge-based ai acceleratory», IEEE Access, vol. 9,
pp. 96 700-96 710, 2021. DOI: 10.1109/ACCESS.2021.3094741.

71

https://academicweb.nd.edu/~lemmon/courses/deep-learning/lecture-book/deep-learning-book-2025.pdf
https://academicweb.nd.edu/~lemmon/courses/deep-learning/lecture-book/deep-learning-book-2025.pdf
https://doi.org/10.1037/h0042519
https://doi.org/10.1145/3065386
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.1109/IJCNN55064.2022.9891914
https://doi.org/10.1109/IJCNN55064.2022.9891914
https://doi.org/10.1109/MC.2021.3099094
https://doi.org/10.1109/MC.2021.3099094
https://doi.org/10.1109/MC.2021.3099094
https://doi.org/10.1109/ACCESS.2021.3094741

BIBLIOGRAPHY

[10]

[11]

[14]

[15]

[16]

J. Zheng, Y. Liu, X. Liu, L. Liang, D. Chen, and K.-T. T. Cheng, «Reaap: A
reconfigurable and algorithm-oriented array processor with compiler-architecture
co-design», IEEE Transactions on Computers, vol. PP, pp. 1-14, Dec. 2022.
DOI: 10.1109/TC.2022.3213177.

R. Xu, S. Ma, Y. Guo, and D. Li, «A survey of design and optimization for sys-
tolic array-based dnn acceleratorsy, ACM Comput. Surv., vol. 56, no. 1, Aug.
2023, 18SN: 0360-0300. DOI: 10.1145/3604802. [Online|. Available: https :
//doi.org/10.1145/3604802.

NVIDIA Corporation, Nvidia corporation: Technology and products overview,
General corporate reference; NVIDIA Corporation, 2025. [Online]. Available:
https://www.nvidia.com.

Google Cloud. «An in-depth look at google’s first tensor processing unit
(tpu)». Google Cloud Blog; Accessed: 2025-11-14. [Online]. Available: https:
//cloud . google . com/blog/products/ai-machine-learning/an-in-
depth-look-at-googles-first-tensor-processing-unit-tpu.

E. Gomede. «Under the hood: Why compute primitives and memory layouts
matter for cpu, gpu, and tpu». Blog post; [Online]. Available: https://blog.
stackademic . com/under - the - hood - why - compute - primitives - and -
memory-layouts-matter-for-cpu-gpu-and-tpu-4338c190efbc.

WikiChip Fuse. «Inside tesla’s neural processor in the fsd chip». Accessed:
2025-11-14. [Online]. Available: https://fuse.wikichip.org/news/2707/
inside-teslas-neural-processor-in-the-fsd-chip/.

A. Karpathy, «Pytorch at tesla», in Proceedings of the PyTorch Developer
Conference 2019, October 10, 2019; talk given at PyTorch Developer Confer-
ence, 2019. [Online]. Available: https://www.youtube.com/playlist?list=
PL_1sbAsL_o02BY-RrqVDKDcywKnuUTp-£3.

NVIDIA Corporation, Nvidia deep learning performance, Last updated July
27, 2023., NVIDIA Corporation, 2023. [Online]. Available: https://docs.
nvidia.com/deeplearning/performance/index.html.

MathWorks Inc., 2-d convolution, MathWorks Inc., 2025. [Online]. Available:
https://it.mathworks.com/help/vision/ref/2dconvolution.html.

GeeksforGeeks. «Cnn | introduction to padding». Last updated: 13 Dec, 2023;
[Online|. Available: https://www.geeksforgeeks.org/machine-learning/
cnn-introduction-to-padding/.

Google LLC. «Llms: What’s a large language model?» [Online]. Available:

https://developers.google.com/machine-learning/crash’20course/
1lm/transformers.

72

https://doi.org/10.1109/TC.2022.3213177
https://doi.org/10.1145/3604802
https://doi.org/10.1145/3604802
https://doi.org/10.1145/3604802
https://www.nvidia.com
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://blog.stackademic.com/under-the-hood-why-compute-primitives-and-memory-layouts-matter-for-cpu-gpu-and-tpu-4338c190efbc
https://blog.stackademic.com/under-the-hood-why-compute-primitives-and-memory-layouts-matter-for-cpu-gpu-and-tpu-4338c190efbc
https://blog.stackademic.com/under-the-hood-why-compute-primitives-and-memory-layouts-matter-for-cpu-gpu-and-tpu-4338c190efbc
https://fuse.wikichip.org/news/2707/inside-teslas-neural-processor-in-the-fsd-chip/
https://fuse.wikichip.org/news/2707/inside-teslas-neural-processor-in-the-fsd-chip/
https://www.youtube.com/playlist?list=PL_lsbAsL_o2BY-RrqVDKDcywKnuUTp-f3
https://www.youtube.com/playlist?list=PL_lsbAsL_o2BY-RrqVDKDcywKnuUTp-f3
https://docs.nvidia.com/deeplearning/performance/index.html
https://docs.nvidia.com/deeplearning/performance/index.html
https://it.mathworks.com/help/vision/ref/2dconvolution.html
https://www.geeksforgeeks.org/machine-learning/cnn-introduction-to-padding/
https://www.geeksforgeeks.org/machine-learning/cnn-introduction-to-padding/
https://developers.google.com/machine-learning/crash%20course/llm/transformers
https://developers.google.com/machine-learning/crash%20course/llm/transformers

BIBLIOGRAPHY

[21]

[22]

[23]

[24]

[27]

28]

[29]

R. Venkatesan et al., «Magnet: A modular accelerator generator for neu-
ral networks», in Proceedings of the 2019 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2019, pp. 1-8. DOI: 10.1109/
ICCAD45719.2019.00008.

A. Aimar et al., «Nullhop: A flexible convolutional neural network accelerator

based on sparse representations of feature maps», arXiv preprint arXiv:1706.01406,

2017, Submitted June 2017.

R.Y. Aminabadi, O. Ruwase, M. Zhang, Y. He, J.-M. Arnau, and A. Gonzélez,
«Sharp: An adaptable, energy-efficient accelerator for recurrent neural net-
worksy, ACM Transactions on Embedded Computing Systems, vol. 22, no. 2,
p. 30, 2023. DOT: 10.1145/3552513.

X. Jiao et al., « Tinybert: Distilling bert for natural language understandingy,
in Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2020, pp. 4163-4174. DO1: 10.18653/v1/2020.
emnlp-main.346.

A. Vaswani et al., «Attention is all you need», in Advances in Neural Infor-
mation Processing Systems, vol. 30, 2017.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, «Lan-
guage models are unsupervised multitask learners», OpenAl, Tech. Rep.,
2019, OpenAl Technical Report. [Online]. Available: https://cdn.openai.
com/better - language -models/language models are_unsupervised _
multitask_learners.pdf.

A. G. Howard et al., «Mobilenets: Efficient convolutional neural networks for
mobile vision applications», in arXiv preprint arXiv:1704.04861, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, «Deep residual learning for image
recognition», in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770-778.

Ultralytics. «Che cos’e resnet-50 e qual e la sua importanza nella computer
vision?» Blog post, 27 maggio 2025. [Online]. Available: https : / / www .
ultralytics.com/it/blog/what-is-resnet-50-and-what-is-its-
relevance-in-computer-vision.

A. Dosovitskiy et al., «An image is worth 16x16 words: Transformers for
image recognition at scale», in International Conference on Learning Repre-
sentations (ICLR), 2021.

G. Scarpi. «Vision transformer, cosa sono e perché rivoluzioneranno l'industria».
[Accessed: 19 Nov 2025]. [Online]. Available: https://www.aidbusiness.it/
intelligenza-artificiale/vision-transformer-cosa-sono-e-perche-
rivoluzioneranno-lindustria/.

73

https://doi.org/10.1109/ICCAD45719.2019.00008
https://doi.org/10.1109/ICCAD45719.2019.00008
https://doi.org/10.1145/3552513
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.ultralytics.com/it/blog/what-is-resnet-50-and-what-is-its-relevance-in-computer-vision
https://www.ultralytics.com/it/blog/what-is-resnet-50-and-what-is-its-relevance-in-computer-vision
https://www.ultralytics.com/it/blog/what-is-resnet-50-and-what-is-its-relevance-in-computer-vision
https://www.ai4business.it/intelligenza-artificiale/vision-transformer-cosa-sono-e-perche-rivoluzioneranno-lindustria/
https://www.ai4business.it/intelligenza-artificiale/vision-transformer-cosa-sono-e-perche-rivoluzioneranno-lindustria/
https://www.ai4business.it/intelligenza-artificiale/vision-transformer-cosa-sono-e-perche-rivoluzioneranno-lindustria/

BIBLIOGRAPHY

[32] A. C. Yiizigiler, C. Sonmez, M. Drumond, Y. Oh, B. Falsafi, and P. Frossard,
«Scale-out systolic arraysy, ACM Transactions on Architecture and Code Op-
timization, vol. 19, no. 4, pp. 1-26, 2022. po1: 10.1145/3569014.

74

https://doi.org/10.1145/3569014

	Introduction
	Deep Learning Evolution and Efficiency Challenges
	Evolution of deep learning
	Increase in model complexity
	Computational and energy inefficiency in training and inference

	Contribution and Thesis Objectives
	Thesis Outline

	Conventional Systolic Arrays
	Systolic Array Fundamentals
	Operating principles and general architecture
	Key concepts: data reuse, spatial and temporal loops
	Analysis of different dataflows

	State of the Art in SA Architectures

	Efficiency of Conventional SAs in executing NNs
	Mapping Neural Networks to Systolic Arrays
	Fully-Connected Layers
	Convolutions (CNN) - GEMM via im2col
	Transformer and Self-Attention

	Evaluation Methodology
	Performance estimation method

	Performance Results
	Discussion

	Proposed Reconfigurable Systolic Array Architecture
	Design Goals and Specifications
	Processing Element (PE) Design
	Reconfiguration Mechanism
	Performance Results
	Methodology for data computation and reason behind the selection of comparison shape.
	Synthesis and Resource-Overhead Results

	Conclusions and Future Work
	Conclusion
	Future Work

	List of Figures

