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Abstract

The computational demands of modern Artificial Intelligence (AI), particularly
for Convolutional Neural Networks (CNNs) in computer vision, are increasingly
challenging to meet with traditional cloud-centric approaches. Relying solely on
centralized cloud infrastructures introduces significant latency and bandwidth
bottlenecks, while also raising concerns about data privacy and the substantial
energy consumption of large-scale data centers. To overcome these limitations,
the paradigm of edge computing has gained prominence, processing data locally
on dedicated hardware. This work explores the deployment of CNNs on Field-
Programmable Gate Arrays (FPGAs), reconfigurable devices that offer a compelling
blend of parallel processing capability and energy efficiency for edge applications.
This thesis investigates a rapid prototyping methodology for FPGA-based CNN
acceleration, leveraging the High-Level Synthesis (HLS) design flow. The research
focuses on the implementation and optimization of critical network layers, including
quantization and pooling, to create a library of hardware-efficient functions. By
abstracting the low-level hardware complexity through HLS, this work enables
a streamlined path from a software-defined model to a customized hardware
implementation. The final synthesis and deployment phase aims to validate this
prototyping approach, fine-tuning the system for optimal performance on the target
FPGA.
The primary contribution of this work is a demonstrated methodology that signifi-
cantly accelerates the development cycle for edge AI accelerators. This approach
facilitates rapid exploration of the design space, allowing for quick iteration and
evaluation of different model architectures and hardware optimization strategies on
FPGAs. The findings contribute to making efficient, low-latency AI inference more
accessible by reducing the barrier to entry and development time for hardware
deployment.
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Chapter 1

Introduction

The rapid advancement of Artificial Intelligence (AI) is fundamentally transforming
industries and societal infrastructures. At the heart of this transformation lie
Deep Learning models, particularly Convolutional Neural Networks (CNNs), which
have become the de facto standard for a wide range of computer vision tasks,
from autonomous driving to medical image analysis. However, the remarkable
performance of these models comes at a significant computational cost, creating a
critical challenge for their deployment in real-world, latency-sensitive applications.
Traditional cloud-centric approaches, where data is sent to a remote server for pro-
cessing, are often inadequate for these scenarios. The inherent latency, bandwidth
constraints, and privacy concerns associated with constant data transmission to the
cloud pose significant bottlenecks. This has led to the emergence of edge computing,
a paradigm that shifts computation from the centralized cloud to devices at the
network’s edge, closer to where data is generated. By processing data locally, edge
computing offers reduced latency, improved bandwidth efficiency, and enhanced
data privacy.
Field-Programmable Gate Arrays (FPGAs) have emerged as a particularly com-
pelling hardware platform for edge AI acceleration. Their reconfigurable architecture
allows for the creation of custom, application-specific compute engines that can ex-
ploit the fine-grained parallelism inherent in CNN workloads. Furthermore, FPGAs
often provide a superior performance-per-watt ratio compared to general-purpose
processors, a critical consideration for power-constrained edge devices. The design
process for FPGAs has been significantly streamlined by High-Level Synthesis (HLS)
tools, such as Xilinx Vitis HLS, which enable developers to describe hardware
accelerators using high-level languages like C++ instead of traditional Hardware
Description Languages (HDLs). This raises the level of abstraction and is key to
enabling rapid prototyping.
Despite these advancements, a significant gap remains between a trained CNN
model and its efficient implementation on FPGA hardware. The process of model
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quantization, layer-specific optimization, and final system synthesis often requires
substantial hardware expertise and remains a time-consuming, iterative process.
This thesis addresses this challenge by proposing and validating a rapid prototyping
methodology for deploying CNNs onto FPGA platforms. Our work, conducted
in collaboration with CEA Saclay, demonstrates an end-to-end workflow. The core
contributions of this work are:

• The development and integration of optimized, hardware-aware layers for
quantization and pooling, crucial for reducing model complexity and leveraging
parallel hardware.

• A methodology for the system-level synthesis and deployment of a complete
quantized CNN model onto an FPGA target.

• An evaluation of this rapid prototyping approach, assessing its effectiveness
in generating efficient hardware accelerators for edge inference.

1.1 Goal
The primary goal of this Master’s thesis is to design, implement, and evaluate
a rapid prototyping methodology for the deployment of Convolutional Neural
Networks (CNNs) onto FPGA-based edge devices. This work aims to bridge the
gap between software-defined neural network models and their efficient hardware
realization, reducing the traditional development time and required expertise for
creating custom AI accelerators.
To achieve this overarching goal, the work is structured around the following specific
objectives:

1. Library Development: To design and implement a set of parameterized,
hardware-optimized template functions for critical CNN layers using High-
Level Synthesis (HLS). These templates form the core of a reusable library
of hardware components.

2. Model Integration and Optimization: To apply this library to a target
CNN model, focusing on hardware-centric optimizations to ensure the model
is suitable for resource-constrained FPGA environments.

3. System Implementation: To execute the complete hardware synthesis flow,
translating the optimized model into a deployable bitstream for the target
FPGA platform, and to fine-tune the hardware configuration for optimal
performance.

2



Introduction

4. Methodology Validation: To assess the viability and effectiveness of the
proposed rapid prototyping methodology, evaluating its ability to streamline
the path from a high-level model to a functional hardware accelerator for
low-latency, edge-based inference.

This work was conducted in collaboration with CEA Saclay, utilizing and extending
the capabilities of the AIdge deep learning framework.

1.2 Thesis’structure
The remainder of this thesis is organized as follows:

• Chapter 2 introduces the theoretical background needed for this work, cov-
ering the fundamental principles and concepts relevant to embedded neural
network deployment.

• Chapter 3 provides an overview of the NEUROKIT2E environment and
the Aidge Framework, outlining their roles, components, and integration
within the proposed workflow.

• Chapter 4 focuses on the hardware design and implementation, describing the
system architecture, custom hardware modules, and the overall development
methodology.

• Chapter 5 details the Vivado design process, including block design creation,
synthesis flow, and the validation procedures used to verify system correctness.

• Chapter 6 presents the experimental results and provides a detailed perfor-
mance evaluation of the implemented accelerator, including latency, through-
put, and energy measurements.

• Chapter 7 summarizes the conclusions drawn from this work and outlines
several directions for future development, highlighting potential improvements
and extensions of the proposed methodology.

3



Chapter 2

Theoretical Foundations

Convolutional Neural Networks (CNNs) are among the most influential architec-
tures in the field of deep learning, forming the basis of major breakthroughs in
visual recognition and a wide range of applications, including natural language
processing, biomedical imaging, and autonomous systems [1]. The concept of CNNs
is biologically inspired by the human visual cortex, where neurons respond to local
receptive fields in the visual space. This structure allows CNNs to automatically
learn hierarchical representations of data, reducing the need for handcrafted feature
extraction [2].

2.1 The Convolution Operation: Definition and
Mathematical Foundations

Convolution is a fundamental mathematical operation that describes how two
functions combine to produce a third one expressing their local overlap as a function
of displacement. It is extensively employed in fields such as signal processing,
physics, and applied mathematics to model systems where an input interacts with
a localized response or impulse function [3, 4]. Conceptually, convolution quantifies
the similarity between an input signal and a shifted version of a kernel or filter,
thereby emphasizing particular structures or patterns embedded in the signal.

2.1.1 Formal Definition in Continuous and Discrete Do-
mains

In the continuous one-dimensional case, the convolution between two real-valued
functions f(x) and g(x) is defined as:

(f ∗ g)(x) =
Ú +∞

−∞
f(u) g(x − u) du, (2.1)

4



Theoretical Foundations

Figure 2.1: Illustration of a one-dimensional convolution between a signal and a
kernel [3].

where ∗ denotes the convolution operator. The integral represents the degree
of overlap between f(u) and a reversed and shifted version of g(u) [3]. The
reversal arises from the dependence on (x − u), distinguishing convolution from
cross-correlation, where the kernel is not reversed.

5



Theoretical Foundations

In the discrete case, given a signal I(i) of length n and a discrete kernel K(u) of
length s, convolution is expressed as:

(I ∗ K)(i) =
s−1Ø
u=0

I(i − u) K(u), (2.2)

where appropriate boundary conditions (e.g., zero-padding or circular extension)
are applied to handle indices outside the signal’s domain [5].

Figure 2.2: Visualization of the convolution operation: the kernel under-
goes time reversal (red) before being translated across the input sequence (blue),
computing the output (green) at each position.

Convolution naturally generalizes to higher dimensions. For a two-dimensional
input signal (e.g., an image) X(m, n) and a two-dimensional kernel W (i, j), the
convolution is defined as:

Y (m, n) =
Ø

i

Ø
j

X(m − i, n − j) W (i, j), (2.3)

where Y (m, n) is the resulting filtered signal. Each element of Y corresponds to a
weighted sum of localized regions of X, with the weights specified by the kernel W .
This operation can be extended to three-dimensional signals, such as volumetric
data or spatiotemporal sequences, by adding an additional summation index [5, 6].

6
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Figure 2.3: Two-dimensional convolution: the kernel slides spatially over the
input domain, producing the output map [7].

Figure 2.4: Image showing a convolutional filter sweeping over an image, with
a padding of size 1 shown by the white squares. Note that the filter moves two
squares for each step, which represents a stride of 2 [8].

2.1.2 Physical and Signal-Processing Interpretation
From a signal-processing viewpoint, convolution represents the response of a linear
time-invariant (LTI) system to an arbitrary input [4]. If x(t) is the input signal
and h(t) the system’s impulse response, then the output y(t) is given by:

y(t) = (x ∗ h)(t) =
Ú +∞

−∞
x(τ) h(t − τ) dτ. (2.4)

In this context, the kernel acts as a detector or template: high output values occur
when the input locally resembles the kernel, a property closely related to matched
filtering [9].
In spatial domains, such as image or field processing, convolution is interpreted
as a localized aggregation operation that smooths, enhances, or extracts specific
structures, depending on the kernel configuration (e.g., Gaussian, Laplacian, Sobel),
as can be seen in fig.2.5. Different kernel shapes correspond to distinct physical or
mathematical transformations.
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Figure 2.5: Examples of two-dimensional convolution kernels and their effects:
(a) smoothing, (b) edge detection, (c) sharpening.

2.1.3 Properties of Convolution
Convolution exhibits several key mathematical properties that make it particularly
useful for analytical and computational purposes [3, 6]:

1. Commutativity: f ∗ g = g ∗ f

2. Associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h)

3. Distributivity over addition: f ∗ (g + h) = f ∗ g + f ∗ h

4. Linearity: a(f ∗ g) + b(f ∗ h) = f ∗ (ag + bh)

5. Shift Invariance: A translation in the input corresponds to a translation in
the output.

Furthermore, convolution in the time or spatial domain corresponds to pointwise
multiplication in the frequency domain, as established by the Convolution Theorem:

F{f ∗ g} = F{f} · F{g}, (2.5)

8
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where F{·} denotes the Fourier transform. This duality forms the basis of efficient
computational algorithms such as the Fast Fourier Transform (FFT) convolution
method [10].

Figure 2.6: Graphical illustration of the Convolution Theorem: convolution
in the spatial domain corresponds to multiplication in the frequency domain.

2.2 Symmetric Uniform Quantization and Fixed-
Point Arithmetic

Quantization is a core building block of efficient deployment of deep neural networks
on constrained hardware such as FPGAs, ASICs, and embedded processors [11,
12, 13]. Among various quantization schemes, symmetric uniform quantization has
become the most widely adopted formulation, owing to its simplicity, predictable
numerical behavior, and tight correspondence with signed fixed-point arithmetic
[14, 15].
This approach discretizes both weights and activations onto uniformly spaced integer
grids centered around zero, enabling the use of deterministic and hardware-friendly
fixed-point arithmetic [11, 12]. Unlike asymmetric schemes that require offset
handling, symmetric quantization preserves sign symmetry and simplifies arithmetic
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circuits, which is particularly advantageous in FPGA and ASIC implementations
where hardware efficiency, determinism, and latency are critical constraints.

2.2.1 Mathematical Formulation of Symmetric Uniform
Quantization

Let x ∈ R be an element of a tensor X. In symmetric uniform quantization, x is
mapped to an integer xq using a quantization step size s (often called scale) as
follows:

xq = Clip
3

Round
3

x

s

4
, −Qmax, Qmax

4
, x̂ = s xq,

where Qmax = 2b−1 − 1 for a b-bit signed representation as shown in 2.7.

Figure 2.7: Symmetric uniform quantization grid. The real axis is discretized
into uniformly spaced levels of width s, symmetric around zero. Inputs x are rounded
to the nearest integer multiple of s and clipped to ±Qmaxs, where Qmax = 2b−1 − 1.
The quantization error e = x̂ − x is bounded by ±s/2 within the dynamic range.

The quantizer thus partitions the real axis into uniform bins of width s, symmetri-
cally distributed about zero, and the rounding operation assigns each input to the
nearest discrete level. The reconstruction x̂ represents the closest representable
value to x within the quantization grid.
The quantization error is defined as

e = x̂ − x,

and as demonstrated in [11, 12], the quantization error for non-saturated values
(|x| ≤ Qmaxs) can be modeled as a uniform random variable e ∼ U(−s/2, s/2),
leading to:

E[e] = 0, Var(e) = s2

12 .

This model is widely adopted in analytical studies of quantization noise in deep
neural networks [11]. For saturated values, a clipping error occurs when |x| > Qmaxs,
which motivates careful selection of s to balance resolution against dynamic range.
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A common calibration heuristic, as stated in [12], sets

s = max(|x|)
Qmax

,

which ensures that the largest-magnitude value in X lies exactly at the quantization
limit. This simple scale rule yields near-optimal quantization when the distribution
of x is symmetric and approximately unimodal, such as Gaussian or Laplacian
distributions observed in CNN weights after training [12].

2.2.2 Implementation in Fixed-Point Arithmetic

Once tensors are quantized, all subsequent operations—multiplications, additions,
and accumulations—can be performed in fixed-point arithmetic. Let Wq and Xq

denote quantized integer weights and activations with scale factors sW and sX ,
respectively. A convolutional output channel can be expressed as:

Yq =
MØ

m=1
Wq,m · Xq,m,

and the corresponding real-valued output is reconstructed as:

Ŷ = sW sX Yq.

The term sW sX represents the effective scaling factor mapping integer accumulations
back to real-valued outputs [13].
In practical implementations, the intermediate accumulation Yq is performed at
a higher precision (e.g., 32-bit integer) to prevent overflow, while Wq and Xq are
stored in low precision (e.g., 8-bit). This mixed-width computation model ensures
that dynamic range is preserved in the accumulator without incurring floating-point
overhead.
Goyal et al. [13] emphasized that this formulation makes quantized inference
both numerically stable and hardware-efficient. Since scale factors are powers
of two in many FPGA implementations (i.e., s = 2−k), multiplications by s or
1/s can be realized as bit-shifts, eliminating costly multipliers altogether. This
is consistent with earlier work on Incremental Network Quantization (INQ) by
Zhou et al. [16], where weights are constrained to power-of-two values, effectively
converting convolutions into shift–accumulate operations. Such representations
drastically reduce hardware utilization, as shift operations map directly to simple
logic elements on FPGA fabrics.
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2.2.3 Fixed-Point Formats and Dynamic Range Considera-
tions

In hardware terms, a fixed-point number in Qi.f format dedicates i bits to the
integer part (including the sign) and f bits to the fractional part. For instance, an
8-bit signed quantized value with f = 7 corresponds to Q1.7, representing numbers
in [−1, 1 − 2−7] with resolution 2−7. The scale factor s defines the implicit binary
point placement between the integer and fractional regions.
The dynamic range of representable values in a symmetric b-bit quantizer is
[−(2b−1 − 1)s, (2b−1 − 1)s]. If s is too small, values may saturate (clipping error); if
s is too large, quantization noise dominates. The goal of calibration is therefore
to select s that balances these two sources of distortion: reducing s enhances
resolution at the cost of higher clipping risk, while increasing s limits clipping but
leads to poorer precision.
Nagel et al. [12] demonstrated that for CNN weights, the optimal range often
corresponds to a small multiple of the standard deviation of the weight distribution
(typically 2–3σ), while activations require empirical calibration from representative
input batches.

2.2.4 Arithmetic Operations and Scaling Management
During inference, quantized layers require careful scaling propagation. Given:

Y = Conv(X, W ) + b,

with quantized operands, the integer computation proceeds as:

Yint =
Ø
m

Wint,m · Xint,m,

and the real-valued equivalent is Ŷ = sW sX Yint + b. To feed the next layer, the
activation tensor must be re-quantized to the new integer scale sY , which requires:

Y ′
int = Round

3
sW sX

sY

Yint

4
,

where the ratio sW sX

sY
is usually precomputed as a fixed-point constant or, in

hardware-friendly designs, constrained to a power-of-two approximation [16, 13].
This step, known as requantization, is critical for maintaining consistent scaling
throughout the network [11, 12].
In symmetric quantization, no zero-point adjustments are necessary, so the requan-
tization path simplifies to a single multiply–accumulate followed by a bit-shift or
scaling constant. This simplification reduces latency, simplifies control logic, and
ensures deterministic numerical behavior across platforms.
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2.2.5 Hardware Implications on FPGAs
Symmetric uniform quantization aligns exceptionally well with the fixed-point arith-
metic resources available on FPGA devices. Modern FPGAs feature dedicated DSP
slices that natively perform signed integer multiply–accumulate (MAC) operations.
By quantizing weights and activations to INT8 or INT4, the number of effective
MAC units per DSP slice can be increased through packing—executing multiple
low-bit MACs within a single DSP block [14]. This allows parallel convolutional
computations and higher throughput under identical resource constraints [13].
Because symmetric quantization produces zero-centered integer tensors, the arith-
metic pipeline can omit bias offsets, which simplifies the datapath design [17].
Moreover, when quantization scales are powers of two, fixed-point multipliers de-
generate into shift operators, and accumulation proceeds through integer addition
only. This property drastically reduces dynamic power consumption and latency,
while ensuring precise bit-level control of numerical behavior—attributes critical in
real-time embedded inference.
FPGA toolchains further benefit from the deterministic range of fixed-point arith-
metic: overflow conditions are predictable and can be handled by compile-time
saturation logic or wrap-around arithmetic, depending on the design target. In
hardware–software co-design flows, quantization parameters (bit-widths, scales,
and Q-formats) are typically exposed as compile-time constants or C++ template
parameters, allowing each layer to be synthesized with its optimal numeric precision.

2.2.6 Error Propagation and Network Robustness
While symmetric uniform quantization introduces quantization noise, empirical
studies demonstrate that deep convolutional networks exhibit strong robustness
to small-scale perturbations in weights and activations [11, 12]. The variance
of accumulated quantization error across layers tends to remain bounded due to
normalization and ReLU sparsity effects [11]. However, special attention must
be given to residual connections (as in ResNet architectures), where mismatched
scales between branches can lead to destructive interference. Ensuring consistent
symmetric quantization across skip and main paths—by aligning s values or inserting
a shared requantization step—preserves the additive integrity of the residual sum
[12].

Summary Symmetric uniform quantization provides a theoretically clean and
hardware-efficient foundation for integer inference. It aligns naturally with signed
fixed-point arithmetic, minimizes arithmetic complexity, and supports deterministic
implementations on reconfigurable logic. The principles outlined here form the
numerical backbone of quantized neural inference pipelines studied in [11, 12, 13,
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16, 18].

2.3 Pooling in CNNs: theory, practice, and the
roles of Max Pooling and Global Average
Pooling

Pooling layers play a crucial role in convolutional neural networks (CNNs) by
reducing spatial resolution while preserving the most discriminative characteristics
of feature maps. Through the aggregation of local or global neighborhoods into
compact descriptors, pooling enhances the effective receptive field, promotes a
degree of translation tolerance, and reduces computational load. Despite the
many variants proposed in recent literature, max pooling and global average pooling
(GAP), shown in fig 2.8, remain the canonical choices in contemporary architectures,
largely due to their complementary inductive biases and empirically demonstrated
effectiveness across a wide range of datasets [19].
Recent comprehensive evaluations confirm that the choice between max and average
pooling has non-trivial consequences for accuracy, robustness, and spatial fidelity
[19]. Likewise, modern adaptive pooling strategies—such as Avg-TopK, detail-
preserving pooling, or the learnable T-Max-Avg operator—show that traditional,
fixed pooling rules can be extended to mitigate information loss while remaining
lightweight [20].

2.3.1 Max pooling as selective evidence routing
Given a feature map X ∈ RH×W and a local pooling window Ωu with stride s, max
pooling computes

y(u) = max
v∈Ωu

X(v).

This hard selection mechanism routes gradients exclusively toward the argmax
locations during backpropagation:

∂L
∂X(v) = 1

5
v = arg max

w∈Ωu

X(w)
6

· ∂L
∂y(u) .

As a result, learning focuses on the most salient activations. Zafar et al. [19] show
that max pooling performs strongly on datasets dominated by sparse, high-contrast
features (e.g. MNIST, CIFAR-10), where sharp edges and strong local cues are
especially informative.
However, the exclusivity of max pooling has notable drawbacks. Sub-maximal
responses are entirely discarded, which can erase subtle textures and distributed
evidence—an issue particularly relevant in fine-grained recognition and small-object
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Figure 2.8: Comparison of max pooling, average pooling, and global average
pooling.

localization. Max pooling also combines non-linear selection with subsampling,
which can introduce aliasing when high-frequency content is present.

2.3.2 Global average pooling as a structural regularizer
Global average pooling collapses each feature map into a single scalar:

zc = 1
HW

Ø
v

Xc(v),

producing a vector z ∈ RC summarizing the global activation per channel. GAP
eliminates the need for fully connected classification layers, substantially reducing
the number of parameters and the risk of overfitting. Because GAP measures the
overall presence of high-level features, it enforces a strong inductive bias: each
channel behaves like a class-specific detector whose spatial location is irrelevant.
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This spatial invariance is beneficial for classification tasks and improves model
interpretability through class activation mapping techniques. However, it also
discards fine spatial structure. On tasks involving precise localization, rare local
cues, or strong positional dependencies, GAP may underperform relative to max
pooling or hybrid approaches.
Importantly, GAP distributes gradients uniformly across the entire feature map:
every location receives a share proportional to 1

HW
. This leads to stable training

dynamics and smooth representations, as documented in several comparative studies
[19].

2.3.3 Architectural considerations and training dynamics

The placement and type of pooling influence both representational quality and
gradient flow. In early layers, where high-frequency features dominate, aggressive
striding paired with max pooling may remove essential detail; substituting smaller
windows, stride-1 pooling, or strided convolutions often improves performance. In
deeper layers, max pooling supports the propagation of decisive local evidence,
while GAP serves as an effective global summarizer at the classifier interface.
From an optimization standpoint, max pooling yields sparse gradient paths, which
can sharpen feature detectors but may slow the learning of near-miss features. In
contrast, average-based pooling provides dense gradient assignment, promoting
smoother feature maps but potentially suppressing rare discriminative peaks.
Evidence from Zafar et al. [19] and Zhao & Zhang [20] confirms that lightweight
learnable pooling can improve both accuracy and robustness without increasing
computational cost.

2.4 Convolutional Neural Network: Definition
and General Architecture

A Convolutional Neural Network (CNN) is a specialized type of deep neural network
primarily designed for processing grid-like data structures such as images, videos,
and time series. CNNs extend the classical concept of feedforward neural networks
by exploiting the spatial and temporal correlations that exist within structured
data [1]. The key design principle behind CNNs is inspired by the organization
of the visual cortex in biological systems, where neurons are sensitive to local
receptive fields that capture specific spatial hierarchies of visual stimuli [2]. This
biological analogy is reflected in the convolutional layer, where local connections
and weight sharing enable the model to detect hierarchical patterns ranging from
simple edges to complex objects.
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2.4.1 Structural Overview
A typical CNN architecture is composed of multiple types of layers, each with a
distinct computational role:

1. Convolutional Layers — perform local feature extraction;

2. Activation Layers — introduce non-linearity to the model;

3. Pooling (or Subsampling) Layers — perform spatial downsampling and
feature compression;

4. Fully Connected Layers — integrate the extracted features for classification
or regression tasks.

The arrangement of these layers enables CNNs to learn hierarchical feature repre-
sentations: low-level filters capture edges and textures, mid-level filters capture
shapes and motifs, and high-level filters represent semantic object parts.

2.4.2 Convolutional Layers
The convolutional layer is the fundamental building block of CNNs. In general
terms, convolution is a linear operation that measures the similarity between an
input signal and a localized filter or kernel, producing an output that emphasizes
the presence of specific patterns. This operation can be interpreted both as a
sliding dot product in the spatial domain and as a matched-filtering process in the
signal-processing sense [21].
Given an input image x ∈ RH×W ×Cin , the convolutional layer applies a set of K
learnable filters wk ∈ Rm×n×Cin (where m and n denote the kernel size) to produce
K output feature maps:

yk = f(wk ∗ x + bk),

where ∗ denotes the discrete convolution, bk is a bias term, and f(·) is a nonlinear
activation function. Each convolutional kernel operates on a local region (the
receptive field) of the input tensor, ensuring spatial locality and greatly reducing
the number of parameters compared to fully connected layers.
In two dimensions, convolution generalizes to:

Y (m, n) =
Ø

i

Ø
j

X(m + i, n + j) W (i, j), (2.6)

where X is the input image, W the kernel, and Y the resulting feature map. The
operation is repeated for multiple kernels, each extracting a distinct feature such
as an edge, corner, or texture pattern [22].
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Weight sharing across spatial locations enables CNNs to maintain translational
invariance, i.e., the ability to recognize an object regardless of its position within the
input frame. This property makes CNNs particularly effective for image recognition
tasks, where patterns may appear in various regions of an image [19].

Physical Interpretation and Matched Filtering Perspective

From a signal-processing standpoint, convolution acts as a matched filter—a
mechanism designed to detect specific features embedded in a signal by maximizing
their correlation. As shown in [21], the convolution of an input signal x(n) with a
kernel w(−n) is equivalent to a matched-filtering operation:

y(n) = x(n) ∗ w(−n) =
Ø
m

x(n + m) w(m). (2.7)

This process slides a feature-shaped kernel across the signal, producing a strong
response whenever the kernel aligns with a similar pattern in the data. Thus,
CNN filters can be interpreted as trainable matched filters that learn to recognize
data-driven features invariant to translation and small deformations. This physical
analogy provides an intuitive view of convolution as a feature-detection mechanism
rather than a purely mathematical transformation.

Convolution in CNN Architectures

In neural networks, convolutional layers replace the dense, fully connected layers
traditionally used in shallow architectures. Each convolutional layer consists of
multiple filters whose parameters (weights and biases) are optimized during training.
Unlike fully connected layers, convolutional layers exploit local spatial correlations
by applying the same set of weights across all spatial positions, offering two key
advantages: (i) a significant reduction in the number of parameters, and (ii)
translational invariance of the learned features [22].
The output of a convolutional layer is a set of feature maps encoding various aspects
of the input, such as edges in early layers or object parts in deeper layers. As shown
in [23], this process naturally extends to one-dimensional data, where convolution is
used for time series and spectral signals, effectively capturing temporal dependencies.
Their analysis highlights the distinction between causal and non-causal convolution,
as well as the influence of stride and padding in controlling output size and receptive
field.

2.4.3 Activation Layers
Non-linear activation functions are essential for enabling CNNs to model complex
mappings beyond linear transformations. Without them, the composition of
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multiple linear layers would still result in a linear function, severely limiting the
model’s expressive capacity. The most commonly used activation is the Rectified
Linear Unit (ReLU), defined as:

f(x) = max(0, x),

which introduces sparsity in activations and accelerates convergence by mitigating
the vanishing gradient problem [2]. Other variants, such as Leaky ReLU, sigmoid,
and hyperbolic tangent (tanh), are sometimes employed depending on the task and
architecture.

2.4.4 Pooling Layers
Pooling layers are used to progressively reduce the spatial dimensions of the feature
maps while retaining their most informative content. Given an input feature map
Y ∈ RH×W , a pooling operation outputs a downsampled representation:

Y ′
i,j = pool (Yp·i:p·i+q, p·j:p·j+q) ,

where pool(·) is typically either a maximum (max pooling) or average (average
pooling) operator, p is the stride, and q is the pooling window size [19]. This
operation enhances the model’s robustness to small translations, rotations, and
distortions, while reducing computational complexity and overfitting.

2.4.5 Fully Connected Layers
At the end of the convolutional pipeline, feature maps are flattened and fed into one
or more fully connected (dense) layers. These layers perform high-level reasoning
by combining the extracted features to form the final prediction. Mathematically,
the fully connected layer performs a standard affine transformation:

z = f(Wx + b),

where W and b denote the weight matrix and bias vector, respectively, and f(·) is
a non-linear activation.
Although fully connected layers contribute the majority of parameters in a CNN,
they can often be replaced or reduced by global average pooling (GAP) layers, im-
proving computational efficiency and interpretability — a design choice popularized
in architectures such as ResNet and MobileNet [24, 1].

2.4.6 Forward and Backward Propagation
During the forward pass, each layer transforms its input feature maps into higher-
level representations. The backward pass, based on the backpropagation algorithm,
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computes gradients of the loss function with respect to each parameter using the
chain rule:

∂L
∂wk

= ∂L
∂yk

· ∂yk

∂wk

.

This process allows the network to iteratively update parameters using optimization
algorithms such as Stochastic Gradient Descent (SGD) or Adam.
Residual connections, introduced later in ResNet [24], mitigate the vanishing
gradient problem by providing shortcut paths for gradient flow, enabling deeper
and more stable CNN architectures.

2.4.7 Architectural Considerations for Hardware Imple-
mentation

From a hardware perspective, the modular and parallelizable nature of CNNs makes
them well-suited for deployment on Field-Programmable Gate Arrays (FPGAs). The
repetitive and highly parallel convolution operations can be efficiently mapped to
reconfigurable logic blocks, while techniques such as loop unrolling, quantization, and
template-based layer design allow for optimization of latency, throughput, and energy
consumption. In the context of this thesis, a templated CNN structure facilitates
compile-time customization of convolutional kernels, feature map dimensions, and
data precision, enabling a balance between accuracy and hardware efficiency.

2.4.8 Historical Evolution and Key Models
The evolution of CNNs began with LeNet-5 (LeCun et al., 1998), followed by
AlexNet (Krizhevsky et al., 2012), which won the 2012 ImageNet Challenge and
dramatically reduced classification error. Subsequent architectures, such as VG-
GNet and GoogLeNet, deepened the network and improved feature abstraction.
However, very deep architectures suffered from vanishing gradients and performance
degradation problems [24].

2.4.9 Residual Networks (ResNet)
He et al. (2016) introduced Residual Networks (ResNet), which revolutionized the
training of deep networks through the introduction of residual blocks. Instead of
directly learning an underlying mapping H(x), a residual block learns a residual
function:

F (x) = H(x) − x ⇒ H(x) = F (x) + x

The use of skip connections (or identity mappings) allows direct information flow
across layers, mitigating vanishing gradient issues and enabling efficient training of
networks exceeding hundreds of layers [24].
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Zaeemzadeh et al. (2018) further demonstrated that these identity shortcuts
preserve gradient norms during backpropagation, improving optimization stability
and convergence — a property known as norm preservation [25]. These theoretical
insights explain why architectures such as ResNet-18, used in this project, offer an
effective balance between depth, stability, and computational cost.

2.4.10 Modern Extensions of CNNs
Modern architectures extend CNN capabilities through additional mechanisms. Hu
et al. (2019) proposed Squeeze-and-Excitation Networks (SENet), which recalibrate
channel-wise feature responses via adaptive attention, enhancing representational
power at minimal computational overhead [26]. Other architectures, such as
MobileNet and EfficientNet, introduced depthwise separable convolutions and
compound scaling, improving efficiency and enabling deployment on embedded or
FPGA-based systems — a goal aligned with this thesis.

2.5 FPGA Platforms for Convolutional Neural
Network Acceleration

Field-Programmable Gate Arrays (FPGAs) have become increasingly relevant for
the acceleration of Convolutional Neural Networks (CNNs), offering a unique com-
bination of fine-grained parallelism, architectural flexibility, and energy efficiency.
Unlike GPUs, which rely on fixed SIMD architectures, FPGAs allow designers to
customize datapaths, parallelism strategies, and memory hierarchies to the specific
computational patterns of CNNs. Recent surveys confirm that FPGA-based accel-
erators have matured significantly, becoming competitive with conventional GPU
solutions for both edge and cloud inference workloads [27, 28].

2.5.1 Computation Structure of CNNs on FPGA Architec-
tures

The core operation of a CNN is the discrete convolution, which applies a set of
learnable kernels to an input feature map to extract spatial and semantic information.
This process consists of cascaded multiply–accumulate (MAC) operations arranged
in highly regular but deeply nested loops. Such regularity exposes several levels of
parallelism, which FPGAs can exploit by distributing independent MAC operations
across DSP blocks or by constructing deeply pipelined processing elements tailored
to the kernel dimensions.
Architectures such as ZynqNet exemplify how convolutional layers can be mapped
onto FPGA logic through aggressive loop unrolling and careful management of
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on-chip memory resources [29]. In this design, each convolutional layer is expressed
as a streaming computation in which input pixels flow through a sequence of
pipelined operators. The high degree of pipelining allows new output values to
be produced every cycle once the pipeline is full, significantly reducing latency
compared to non-streaming approaches.

Figure 2.9: An illustration of a pipelined 2D convolution engine [30].

2.5.2 Memory Hierarchies and Dataflow Optimization
One of the most significant design challenges in FPGA-based CNN accelerators con-
cerns memory bandwidth and data reuse. While FPGAs offer substantial on-chip
memory resources through BRAM and URAM blocks, their off-chip bandwidth is
usually far lower than that of high-end GPUs. As a consequence, efficient CNN
accelerators must minimize external memory accesses and maximize data locality.
To address this, designers often rely on deeply pipelined dataflow architectures in
which data is continuously streamed through computation units. For instance, the
Systolic-CNN architecture [31] employs a systolic array of processing elements that
maintains a uniform flow of activations and weights, ensuring that the compute
fabric remains fully utilized and that memory stalls are minimized. This approach
demonstrates how a synchronous dataflow design can significantly increase through-
put and energy efficiency, especially when compared to architectures that repeatedly
fetch data from external memory.
Binary and low-precision CNNs provide an additional mechanism to reduce memory
pressure. By encoding weights and activations using only one or a few bits, the
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memory footprint decreases dramatically, allowing more data to fit on-chip and
enabling wider parallelism. Li et al. show that binary neural networks on FPGA
can, in some cases, outperform GPUs because they reduce both the computational
and memory requirements of convolutional layers [32]. This demonstrates how
algorithmic simplification and hardware specialization can synergize particularly
well on reconfigurable platforms.

2.5.3 Precision Reduction and Arithmetic Customization

One of the defining capabilities of FPGAs is support for customized numerical
formats. Whereas GPUs are constrained to a small range of standardized types
such as FP32, FP16, or INT8, FPGAs allow designers to choose arbitrary bit widths
for both integer and fixed-point representations. This fine-grained control enables
the construction of accelerators that match the exact precision requirements of the
target CNN, reducing both resource usage and power consumption.
The work of Wang [33] highlights how fixed-point arithmetic (typically between 8
and 16 bits) can maintain accuracy comparable to floating-point implementations
while significantly improving efficiency. In contrast, fully binary CNNs further
reduce resource demands by eliminating multipliers altogether, replacing them
with inexpensive XNOR and popcount operations. The flexibility to integrate such
custom datapaths at the hardware level is one of the main reasons why FPGAs
remain competitive in domains requiring tight power and bandwidth budgets.

2.5.4 High-Level Synthesis and Modern FPGA Toolflows

Historically, FPGA-based accelerators were developed through RTL design in
languages such as VHDL or Verilog. While this approach provides full control
over timing and microarchitecture, it is time-consuming and requires considerable
hardware expertise. The emergence of High-Level Synthesis (HLS) has significantly
changed the development landscape. Tools such as Xilinx Vitis HLS, Intel OpenCL
SDK, and domain-specific frameworks like FINN and hls4ml allow developers to
describe CNN computations in C/C++ or specialized graph representations, leaving
the generation of optimized RTL to the compiler.
The Systolic-CNN work [31] is a representative example of how modern HLS flows
facilitate the construction of complex accelerators while maintaining high perfor-
mance. This shift toward HLS drastically reduces development time and enables
rapid design-space exploration, making FPGA acceleration more accessible to
machine learning practitioners who may not have extensive hardware backgrounds.
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Figure 2.10: Visual summary of an HLS-based FPGA design flow [34].

2.6 High-Level Synthesis for CNN Acceleration
on FPGA Platforms

2.6.1 Traditional RTL Approaches for CNN Acceleration
RTL-based design using VHDL or Verilog provides cycle-accurate control over
datapaths, pipelining, and resource allocation. In the context of convolutional neu-
ral networks, RTL methodologies typically involve designing dedicated processing
engines for convolutions, pooling, activation, and memory orchestration. Manually
crafted RTL allows the designer to optimize kernel-specific pipelines, implement
carefully tuned systolic arrays, and match timing constraints with precision. Im-
plementations such as early FPGA CNN accelerators described in the literature
demonstrate that handwritten RTL can meet stringent timing requirements through
finely optimized control logic and exact scheduling of memory movements, but at
the cost of significant design effort [35].
However, CNNs consist of deeply nested loops—over channels, filters, spatial
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windows, and output positions—that require designers to explicitly manage loop
unrolling, parallelism, and streaming. Implementing even a single convolutional
layer in RTL can involve significant architectural specialization, making the design
process brittle when adapting to model changes such as variations in:

• kernel size and number of filters,

• feature-map resolutions,

• quantization levels (FP32, FP16, INT8, fixed-point),

• pruning or structured sparsity patterns.

This inflexibility makes classic RTL development particularly costly for modern
CNN designs, which evolve rapidly. Furthermore, every architectural modifi-
cation—such as introducing approximate MAC units or adopting low-precision
arithmetic—requires non-trivial RTL restructuring and verification overhead.

2.6.2 High-Level Synthesis Methodology
High-Level Synthesis (HLS), and in particular AMD/Xilinx Vitis HLS, enables
designers to specify CNN computations in C/C++ while instructing the compiler
using pragma directives to generate pipelined and parallelized RTL. HLS exposes the
same hardware optimization mechanisms as RTL—loop pipelining, loop unrolling,
array partitioning, bit-accurate fixed-point arithmetic—but allows them to be
controlled declaratively.
HLS abstracts away many low-level timing considerations, allowing rapid exploration
of alternative pipeline depths, memory tiling strategies, and parallelization degrees.
Sudvarg et al. demonstrate how the insertion of HLS pragmas (e.g. #pragma HLS
PIPELINE, UNROLL, and DATAFLOW) can improve performance by three orders of
magnitude in complex data-processing pipelines, with over 3400× speedup observed
between naïve and optimized versions [36]. This illustrates how HLS performance
is highly sensitive to pragma-level tuning, but also how it dramatically reduces
development time compared to an equivalent RTL optimization effort.

2.6.3 Stream-Based CNN Implementations in HLS
The hls4ml framework provides a detailed example of applying HLS to convolutional
architectures. Aarrestad et al. extend hls4ml to include streaming convolutional
layers that avoid materializing the full im2col matrix, reducing memory overhead
and enabling fully on-chip processing [37]. Key design elements include:

• use of hls::stream<> FIFOs to buffer sliding windows,
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• K2 parallel streams to maintain kernel-aligned window state,

• single-cycle access to column vectors for GEMM-like processing,

• sequential feature-map ingestion with minimal BRAM pressure.

This design meets microsecond-scale latency constraints required in CERN Level-1
trigger pipelines by exploiting fine-grained pipelining across convolution windows
and decoupling memory flow from compute flow. The approach highlights the
strength of HLS for expressing dataflow architectures that would require substantial,
error-prone RTL code if implemented manually.

2.6.4 Precision Optimization and Approximate Arithmetic
CNN accelerators rely heavily on MAC operations, making numerical representation
a critical design dimension. HLS toolchains enable flexible exploration of reduced
or custom precision formats. Cho and Kim propose an approximate fixed-point
MAC unit implementable entirely via LUT-based logic rather than DSP blocks,
achieving:

• 78% reduction in DSP usage,

• 66% reduction in memory footprint,

• nearly 50% latency reduction compared to FP32,

while maintaining sufficient accuracy for LeNet-5 classification [38]. These opti-
mizations exploit HLS-level bit manipulation functions and C-based representations
of fixed-point data types, which greatly reduce the implementation complexity
compared to hand-written RTL equivalents.

2.6.5 Quantization and Compiler-Assisted Mapping with
Vitis-AI

In contrast to manual RTL design, the Vitis-AI toolchain automates several steps
of the optimization pipeline:

• post-training quantization to INT8,

• layer fusion (e.g. Conv+BN folding),

• instruction scheduling for the Deep Learning Processing Unit (DPU),

• deployment of the compiled .xmodel to MPSoC platforms.
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Li et al. show that this HLS-compatible workflow enables CNNs (52 Conv2D layers
in their evaluation) to achieve 3.33–5.82× higher throughput and 3.39–6.30× higher
energy efficiency on a Zynq UltraScale+ ZCU104 board compared to CPU/GPU
execution [35]. Because Vitis-AI internally generates optimized RTL for the DPU,
the developer focuses primarily on quantization and network construction rather
than hardware micro-details.

2.6.6 HLS Dataflow Architectures and Comparison with
RTL

Beyond CNN workloads, HLS excels in applications dominated by dataflow paral-
lelism. Kapetanakis et al. demonstrate that an HLS-based FEM solver—optimized
through task-level parallelism, memory-aware pipelining, and initiation interval
minimization— achieves:

• 7.9× higher performance than optimized Vitis-HLS baselines,

• 45% latency reduction versus CPU execution,

• 3.64× lower power consumption,

on an Alveo U200 accelerator [39]. Their results show that HLS-generated archi-
tectures can reach or exceed the efficiency of manually optimized RTL when the
computation is inherently pipeline-friendly. CNN inference maps naturally to this
class of workloads: convolution, activation, and pooling layers all follow streaming
dataflow patterns.

2.6.7 Comparison Summary: RTL vs. HLS for CNN Accel-
eration

A qualitative comparison between traditional RTL methodologies (VHDL/Verilog)
and High-Level Synthesis (HLS in C/C++) reveals several fundamental differences
in design philosophy, workflow efficiency, and scalability. In terms of microarchi-
tectural control, RTL offers complete, explicit management of pipelines, resource
allocation, and signal timing. Every structural detail of the hardware must be
manually defined by the designer. By contrast, HLS automatically generates the
underlying RTL from a higher-level algorithmic description, with optimization
guided through pragma directives. This greatly reduces low-level effort while
enabling rapid design iterations, albeit at the cost of less fine-grained control.
Flexibility in responding to model changes represents another major point of
divergence. CNN architectures evolve frequently, with adjustments to kernel sizes,
feature-map dimensions, quantization formats, or sparsity patterns. In an RTL
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workflow, such modifications usually require significant redesign effort. HLS, on
the other hand, allows the same C/C++ codebase to be adapted with minimal
intervention, often by adjusting pragma settings or restructuring a limited portion
of the algorithmic description.
The difference in development time is equally substantial. RTL design cycles are
typically long, often spanning weeks or months for complex accelerators, whereas
HLS enables functionally equivalent designs to be produced within days or even
hours. This acceleration in workflow is one of the primary motivations for adopting
HLS in the context of fast-evolving machine learning applications.
Regarding the exploration of numerical precision, RTL requires manual and error-
prone handling of bit widths and custom fixed-point formats. HLS natively supports
arbitrary-precision integer and fixed-point types, allowing designers to experiment
with low-bitwidth arithmetic and quantization-friendly representations with minimal
implementation overhead.
Dataflow optimization also highlights a clear methodological distinction. In RTL,
expressing a streaming architecture requires explicit finite state machines, hand-
crafted scheduling of memory accesses, and careful coordination of pipeline stages.
HLS provides built-in constructs such as DATAFLOW and hls::stream types, which
enable a more natural expression of pipelined and parallel execution models,
particularly well suited to CNN workloads.
Finally, scalability across different FPGA architectures tends to favor HLS. While
RTL designs are often tightly coupled to specific device characteristics, HLS
descriptions exhibit higher portability, with the toolchain handling most of the
device-specific adaptation. In summary, RTL offers maximum performance potential
but requires significant engineering effort, whereas HLS provides near-optimal
performance with much shorter development time and superior adaptability to
modern machine learning requirements.
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Chapter 3

NEUROKIT2E and the
Aidge Framework

3.1 The Role of CEA Paris–Saclay
The CEA Paris–Saclay centre is one of the key research hubs of the French Al-
ternative Energies and Atomic Energy Commission. It hosts several programmes
dedicated to microelectronics, embedded systems and artificial intelligence, and
it plays a central role in European collaborative projects. Among these, NEU-
ROKIT2E occupies a distinctive position. Coordinated by CEA, the project aims
to build a sovereign European ecosystem for embedded AI by developing tools and
methodologies that allow the design and deployment of neural networks on highly
constrained hardware platforms. The initiative emerges from the broader ambi-
tion of strengthening Europe’s competitiveness in a field that is rapidly becoming
strategic for industrial innovation.

3.2 NEUROKIT2E: Objectives and Context
NEUROKIT2E is funded by the European Union through the Horizon Europe
Chips Joint Undertaking. It gathers a consortium from five member states and
brings together research institutions, universities and industrial actors involved in
semiconductors and embedded intelligence. The project was conceived in response
to two complementary needs. On one hand, the adoption of AI is rapidly moving
from cloud computing toward edge devices, where computations must be executed
under strict constraints of energy, latency and memory. On the other hand, most
of the toolchains currently used for neural network development are dominated by
non–European ecosystems, which can limit technological autonomy and long–term
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industrial independence.
In this context, NEUROKIT2E proposes the creation of an open–source platform
dedicated to deep learning on embedded hardware. The platform is meant to offer
a complete workflow, from model design to hardware deployment, while ensuring
compatibility with the diversity of European hardware technologies. It builds
on previous developments at CEA, most notably the Neural Network Design &
Deployment (N2D2) framework, and extends them toward a more structured and
industrial-grade environment.

3.3 From N2D2 to Aidge
The transition from N2D2 to Aidge reflects a broader evolution in both industrial
expectations and technological requirements. N2D2 was initially designed as a
research tool, capable of modelling neural networks and deploying them onto
embedded architectures. Over the years, however, its user community expanded
beyond research laboratories, and the need emerged for a more comprehensive and
modular framework. Aidge was introduced as the answer to this need.
Developed within the NEUROKIT2E project and maintained at CEA–List, Aidge
reorganises the concepts introduced by N2D2 into a modern, extensible structure.
It remains open–source, but its architecture is more robust, allowing it to integrate
new operators, new optimisation methods and new hardware targets. Importantly,
it is designed from the outset to cooperate with standard AI ecosystems, so that
models trained in frameworks like PyTorch or Keras can be imported, analysed,
transformed and deployed through Aidge with minimal effort.

3.4 Aidge: Philosophy and Capabilities
The official CEA–List description of Aidge presents it as a collaborative framework
that provides a complete toolchain for the design, optimisation and deployment
of neural networks in constrained environments. The emphasis is not only on
performance, but also on transparency and controllability. In contrast to cloud-
oriented AI platforms, Aidge is meant to operate close to the hardware, giving
developers full visibility over the transformations applied to their models.
Aidge offers a range of features that support this philosophy. It includes mechanisms
for graph-level manipulation, such as tiling or structural rewriting, and integrates
several families of optimisation techniques. Quantisation plays a particularly
central role: both post-training quantisation and quantisation-aware training are
available, enabling models to be adapted to fixed-point arithmetic without excessive
loss in accuracy. Pruning, compression and other forms of model simplification

30



NEUROKIT2E and the Aidge Framework

complement these techniques. Aidge also provides a deployment flow that supports
microcontrollers, CPUs, GPUs, dedicated accelerators, ASICs and FPGAs.
Beyond technical tools, Aidge is designed as a cornerstone of a European ecosystem.
The framework is hosted by the Eclipse Foundation, ensuring an open and neutral
governance model. CEA–List emphasises that Aidge is part of a broader strategy,
supported by initiatives such as DeepGreen and NEUROKIT2E, to establish a
sovereign alternative to non–European AI platforms and to support the development
of advanced digital technologies in Europe.

Figure 3.1: Artificial Intelligence Development Flow on Embedded Hardware [40].

3.5 A Unified View: How NEUROKIT2E and
Aidge Interact

Although NEUROKIT2E and Aidge can be described separately, their relationship
is fundamental. NEUROKIT2E defines the overall vision: it identifies use cases,
hardware requirements, application constraints and performance objectives. Aidge
embodies this vision by translating it into a concrete software framework.
The project’s use cases — which range from industrial inspection to smart infras-
tructure, automotive safety or assistive technologies — provide an ideal testbed for
validating Aidge’s features. Networks are first designed and trained using common
AI tools, then imported into Aidge, where they undergo a sequence of optimisations
tuned for the target hardware. Once transformed, they can be exported as opti-
mised C code, FPGA-ready modules or accelerator-specific binaries. Evaluations
performed by industrial partners then inform the next iteration of the design,
creating a feedback loop between the conceptual platform (NEUROKIT2E) and
the operational framework (Aidge).
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3.6 Thesis Contribution Within the Aidge Con-
text

Within this ecosystem, the work carried out in this thesis focuses on the integration
of custom FPGA-oriented modules into the Aidge deployment flow. Using High-
Level Synthesis, a set of reusable templated functions was developed to implement
the core operations of convolutional neural networks. Attention was given to
memory organisation, which is often the limiting factor in FPGA deployments.
A strategy based on input reuse was first explored, taking advantage of on-chip
memory to minimise external data transfers. As the network grows deeper, however,
kernel storage becomes more prominent, and a hybrid approach was adopted to
balance input reuse in the early layers with kernel reuse in the later stages.
This methodology was validated by mapping several layers of a ResNet–18 model
onto the FPGA and analysing the resulting resource utilisation. The experiments
demonstrated that HLS-based modules can be effectively integrated within the
Aidge workflow, providing a viable path for accelerating neural networks on em-
bedded hardware with strict performance and energy constraints.
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Chapter 4

Design and Hardware
Implementation of CNNs in
HLS

In this section, the hardware implementation of convolutional neural networks
(CNNs) is described using High-Level Synthesis (HLS). HLS enables FPGA circuits
to be designed directly from high-level C++ descriptions, significantly reducing
development time and allowing rapid design-space exploration compared to tra-
ditional hand-written RTL. The implementation focuses primarily on ResNet-18,
one of the most widely used CNN architectures in computer vision. Particular
attention is dedicated to the key operations forming the implemented layer and to
the dataflow structure that orchestrates the exchange of data among them. The
developed functions are general enough to support additional networks, including
LeNet; however, due to its higher structural complexity, ResNet-18 was selected as
the primary case study for this thesis.

4.1 ResNet-18
ResNet-18 belongs to the broader family of Residual Networks (ResNets), which
introduce residual connections to alleviate the vanishing-gradient problem and
enable the training of deeper architectures. The vanishing-gradient phenomenon
occurs when gradients progressively diminish as they propagate backward through
many layers, preventing earlier layers from receiving meaningful updates. ResNets
address this issue by reformulating the learning task: rather than forcing each block
to approximate a direct mapping H(x), the network learns a residual function

F (x) = H(x) − x,
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and produces the block output
y = x + F (x),

via an identity skip connection. These shortcuts preserve gradient flow, ease
optimization, and allow deeper, more expressive networks to be trained effectively.
Figure 4.1 illustrates a standard residual block with an identity skip connection.

Figure 4.1: Residual block with identity skip connection [41].

Following an analysis of memory-partitioning strategies, the core operators of
ResNet-18 were implemented in HLS. Figure 4.2 shows a block-level diagram of
the network. The study focuses in particular on the final residual stage, which
comprises 512 filters and represents one of the most computationally intensive
segments of the architecture.

Figure 4.2: Overall architecture of ResNet-18 [42].

4.2 Convolution
The operating principles of convolution were introduced in 2.1. Within ResNet-18,
the convolution operator corresponds to a standard multi-channel, multi-filter
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2D convolution: the kernel slides along the spatial dimensions (H and W ) while
spanning the entire input-channel depth. Figure 4.3 illustrates such an operation
with C input channels and M output channels. Each filter aggregates weighted sums
across all input channels and generates one output-channel feature map. Since the
network contains M distinct filters, the output tensor has dimensions M × Q × P.

Figure 4.3: Multiple Channel Multiple Kernel (MCMK) Convolution [43].

The spatial dimensions of the output feature map are determined by:

P = W + 2 × PADDING − FW
STRIDE + 1, (4.1)

Q = H + 2 × PADDING − FH
STRIDE + 1, (4.2)

where W and H denote the spatial dimensions of the input feature map, FW and
FH are the kernel dimensions, and STRIDE and PADDING control the sampling
pattern of the convolution. These two parameters play a fundamental role in both
computational cost and spatial-resolution management and are therefore carefully
integrated into the HLS implementation.

4.2.1 Stride
The stride parameter defines the step size with which the convolution kernel moves
across the input. Convolution typically begins with the kernel positioned at the
top-left of the input tensor and proceeds by sliding horizontally and vertically. A
stride of one corresponds to the kernel shifting by a single element at each step,
resulting in densely sampled feature maps. Larger strides are often used either to
downsample the spatial resolution or to reduce computational cost by skipping
intermediate positions.
Figure 4.4 compares convolutions with stride 1 and stride 2, showing the resulting
changes in output size. As observed in the previous equations, stride and output
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resolution are inversely related. Increasing the stride reduces the number of
operations performed, improving efficiency, but may cause fine-grained features to
be lost due to the coarser sampling.

Figure 4.4: Effect of stride on convolution output resolution.

4.2.2 Padding
Without padding, output dimensions tend to shrink as the kernel cannot be applied
near the borders without reducing the spatial coverage. This leads to decreasing
feature-map sizes across successive layers and may cause the loss of important
spatial information, especially near the boundaries of the image. Padding mitigates
this issue by artificially extending the input with additional pixels—typically
zeros—along its borders. This ensures that the kernel can be applied uniformly
across the entire spatial domain.
Two common padding modes are used in CNNs:

• Valid padding (“no padding”): no pixels are added; the output becomes
smaller than the input.

• Same padding: zero-padding is applied so that the output maintains the
same spatial dimensions as the input.
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Figure 4.5 illustrates an example in which a padding of one is applied to a 5 × 5
input, ensuring complete kernel coverage.

Figure 4.5: Example of applying padding to preserve spatial dimensions.

4.2.3 Bias
Each output channel includes an additive bias term. The bias is added after the
convolution sum has been accumulated. This operation is lightweight and easily
pipelined within the convolution function.
The bias values are stored in BRAM or LUTRAM depending on availability and
are accessed sequentially during computation.

4.2.4 Template-based Convolution Interface
The conv operator is implemented as a highly parameterised C++ template, so
that a single source definition can be specialised at compile time for different layers
and even different networks. The template signature exposes both the logical tensor
dimensions and the architectural choices made for the HLS implementation:
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template <
int ICH , // input channels
int IW , // input width
int IH , // input height
int FW , // filter width
int FH , // filter height
int OCH , // output channels
int OW , // output width
int OH , // output height
int ICH_PAR , // input - channel parallelism
int STRIDE , // convolution stride
int WINDOW_IN , // input tiling factor
int ICH_PAR_OUT ,// output - channel parallelism
int FW_OUT , // output tile width
int FH_OUT , // output tile height
int OCH_OUT , // output tile channels
int WINDOW_OUT , // output tiling factor
int ReLU // fused ReLU enable flag

>
void conv(

hls :: stream < conv_packet_t <FW , FH , ICH_PAR >> & conv_data_stream ,
filter_stream_t & filter_stream ,
const ap_int <32> bias[OCH],
memory_out_conv_t <

FW_OUT , FH_OUT ,
ICH_PAR_OUT , OCH_OUT ,
WINDOW_OUT

> & out_mem
);

Listing 4.1: Template and function signature of the convolution operator

ICH, IW, IH denote the number of input channels, input width and height, re-
spectively, while FW, FH define the spatial extent of the convolution kernel. The
parameters OCH, OW, OH encode the number of output channels and the spatial
dimensions of the output feature map. In addition to these shape parameters, the
template includes several knobs related to parallelism and tiling. The parameter
ICH_PAR specifies the degree of input-channel parallelism exploited in the inner
loops: instead of processing one channel at a time, the kernel operates on blocks of
ICH_PAR channels, which is reflected both in the internal buffering and in the input
packet type conv_packet_t<FW, FH, ICH_PAR>. Similarly, ICH_PAR_OUT governs
the degree of parallelism along the output-channel dimension, allowing multiple
output channels to be accumulated concurrently. The parameters FW_OUT, FH_OUT,
OCH_OUT and WINDOW_OUT describe how the output space is tiled into windows and
how these tiles are arranged in the output buffer type memory_out_conv_t<FW_OUT,
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FH_OUT, ICH_PAR_OUT, OCH_OUT, WINDOW_OUT>, facilitating integration with sub-
sequent layers that expect a specific layout. Finally, STRIDE, WINDOW_IN and the
boolean ReLU act as compile-time configuration flags: STRIDE encodes the sam-
pling pattern chosen at the network level, WINDOW_IN can be used to describe how
input tiles are produced by the previous stage, and ReLU enables or disables the
fused activation at the end of the accumulation. On the interface side, the func-
tion consumes input feature windows from an hls::stream<conv_packet_t<FW,
FH, ICH_PAR» (conv_data_stream), receives quantised filter coefficients through
filter_stream_t& filter_stream (where each element is stored as ap_int<8>),
and initialises the output accumulation with a per-channel bias array const
ap_int<32> bias[OCH]. The final results are written into the templated memory
object out_mem, which acts as a structured on-chip buffer or as an abstraction
of the interface towards the next processing stage. By expressing all sizes, tiling
factors and parallelism degrees as template parameters, the same conv definition
can be instantiated for different convolutional layers in ResNet-18 and for other
architectures such as LeNet, while allowing the HLS tool to fully specialise loops,
unroll factors and memory partitioning at synthesis time.

Hardware Architecture

The hardware architecture generated for the convolution operator reflects the
design choices introduced at the C++ level and materializes them into a set of
cooperating hardware blocks synthesized by Vitis HLS. Rather than viewing the
convolution as a monolithic unit, the implementation decomposes the computation
into a sequence of micro–architectural elements that operate in a streaming fashion.
This organization facilitates high throughput and enables the synthesis tool to
schedule operations with fine-grained parallelism.
A central component of the architecture is the input interface, which ingests
activation tiles from the conv_data_stream. The incoming data are already packed
according to the template parameters (FW, FH, ICH_PAR), allowing the hardware to
receive an entire convolutional window per cycle when the pipeline operates with
II=1. As soon as a packet arrives, its values are distributed across a private set
of on-chip registers or, when beneficial, across partitioned memory banks whose
structure is determined automatically by the template configuration. This early
demultiplexing step is crucial: by placing each element of the window in a distinct
storage element, the architecture ensures parallel access to all operands during the
multiply-accumulate phase.
The weights follow a similar principle. The filter_stream conveys quantised
coefficients in a strictly defined order, and the hardware loads them into an internal
filter_mem array. Template parameters such as ICH_PAR, ICH_PAR_OUT, and the
kernel dimensions establish the precise layout of this array and dictate how many
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weights can be consumed in parallel. Vitis HLS performs a complete partition
of the weight buffer, effectively transforming the array into a set of independent
registers. This enables the architecture to execute multiple inner-product operations
simultaneously whenever the associated template parameters request increased
parallelism.
Once both activations and weights are staged, the architecture performs the
multiply-accumulate loop. The datapath typically comprises a tree of DSP blocks (or
synthetically generated multipliers) feeding an accumulation register. The structure
of this tree is inferred from the template parameters: a higher unrolling factor
produces a wider adder tree and thus reduces latency, whereas more conservative
parameters lead to a narrower but more resource-efficient configuration. At the end
of the accumulation cycle, the partial sum is combined with the corresponding bias
term, and, if enabled via the template parameter ReLU, passed through an integrated
activation unit. Embedding the activation function inside the convolution block
reduces the number of pipeline stages and simplifies downstream dataflow.
Finally, the computed outputs are written into the object out_mem, which represents
a structured collection of output tiles. The physical organization of out_mem
including the number of banks, their depth, and the addressing scheme is once
again determined by the template. This abstraction allows the convolution module
to be reused with different network topologies, as subsequent layers only need to
adhere to the same parameterized interface rather than a fixed memory format.
Overall, the hardware architecture is thus not a static design but a template-driven
blueprint capable of generating multiple specialized instances of the convolution
engine. Each instance is optimized for the dimensions, parallelism level, and
dataflow constraints of the target CNN layer, enabling seamless integration within
the broader pipeline of the ResNet–18 implementation.

4.3 ReLU
The Rectified Linear Unit (ReLU) is a simple activation function defined as:

ReLU(x) = max(0, x).

Its hardware implementation is extremely efficient, requiring only a comparator
and a multiplexer. The ReLU module is also templated and pipelined, ensuring an
initiation interval (II) of 1.
ReLU is inserted inside the convolution function.

4.3.1 ReLU in the HLS Implementation
In many neural network architectures, a ReLU activation is typically inserted
after each convolutional layer in order to introduce non-linearity; without such
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activations, a series of convolutions would behave as a single linear transformation,
limiting the expressive power of the network. In ResNet-18, however, as observed
in the ONNX representation, a ReLU does not necessarily follow every convolution.
For this reason, a template parameter was added to the convolution routine to
specify whether the activation should be applied.
From an implementation standpoint, ReLU is very simple to compute, and it has
been directly embedded inside the convolution function as shown below:
if (RELU) {

if (sum < 0) {
sum = 0;
}

}
out_mem [ s_mem_o ][ s_mem_o_depth ] = sum;

Before storing the result into the partitioned output buffer, the value of the
RELU template parameter is evaluated. When the parameter is enabled, negative
accumulator values are set to zero; otherwise, the computed sum is written as-is.
Placing the ReLU operation inside the convolution routine eliminates the need for a
separate activation stage and reduces memory traffic between layers. Additionally,
the implementation relies only on simple conditional logic, which the HLS compiler
translates into comparators and multiplexers. Consequently, the initiation interval
of the convolution kernel stays at one and is not influenced by the extra control
logic.

4.4 Global Average Pooling Implementation
The final stage of the accelerator pipeline is the global average pooling (GAP) layer,
which reduces each output channel to a single representative value by averaging
all spatial positions of the corresponding feature map. Unlike convolution and
quantization, whose behaviour depends on multiple template parameters and
dataflow paths, the GAP stage is structurally simple but must be implemented
carefully to maintain throughput and ensure compatibility with the internal memory
layout adopted in previous stages.

4.4.1 Input Structure and Data Duplication
Before pooling is applied, the input tensor feeding the residual block is duplicated
using the templated function duplicate_input_stream. Although this operation
is mostly used earlier in the pipeline for handling the skip connection, it introduces a
pattern that is conceptually similar to what GAP requires: the ability to broadcast
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elements from a single input stream to multiple consumers. The duplication function
reads one element per cycle from the source stream and writes it to two independent
streams. This behaviour is enforced by the directive #pragma HLS PIPELINE II=1,
which ensures that the streaming subsystem maintains an initiation interval of one
and can process values at the full bandwidth of the accelerator.

4.4.2 Global Average Pooling Kernel
The core of the pooling stage is implemented in the templated function global_avg_pool,
parameterized by the output tile dimensions (FW_OUT, FH_OUT), the channel-
parallelism factor (ICH_PAR_OUT), the number of output channels OCH, and the
spatial window size WINDOW_OUT. The design assumes a configuration where the
packed input memory has width one:

MEM_WIDTH = FW_OUT × FH_OUT × ICH_PAR_OUT = 1,

which matches the layout produced by the final quantization stage. Under this
assumption, each spatial element of the tensor is stored in a different memory
depth, making the design conceptually equivalent to a flat array of length

MEM_DEPTH = OCH × (WINDOW_OUT × WINDOW_OUT).

This structure allows GAP to iterate over spatial positions in a predictable, linear
order.
The function initializes one accumulator per channel. Since each accumulator is
reused independently, it is fully partitioned using #pragma HLS ARRAY_PARTITION,
allowing parallel access and enabling both loops over channels to be pipelined
or unrolled without creating access conflicts. The pooling loop consists of two
nested loops: the outer loop iterates over output channels, while the inner loop
traverses all spatial positions for that channel. The inner loop is pipelined with
II=1, ensuring that GAP reads one value per cycle from the input memory and
updates the accumulator accordingly.
Access to the memory uses the layout

value = mem_in[0][spatial_idx × OCH + ch],

which guarantees correct channel interleaving. During accumulation, values are
promoted to 32-bit integers to prevent overflow. The total sum for each channel
is then normalized by dividing by the spatial area. The implementation applies
a rounding scheme equivalent to that used by NumPy and ONNX, achieved by
adding SPATIAL_SIZE/2 before the division:
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mean = accumulator[ch] + SPATIAL_SIZE/2
SPATIAL_SIZE

.

The result is then cast back to ap_int<8> and stored in gap_out[ch], which holds
all channel-averaged values in a dense format.

4.4.3 Streaming of GAP Results
The final step converts the pooled values into an AXI4-Stream format, performed
by the function gap_to_stream. For each channel, the function constructs a
mem_out_t packet containing the 8-bit result as the data payload, sets all bytes as
valid via keep = -1, and asserts the last flag only for the final channel, allowing
downstream modules to detect the end of the stream. The loop is pipelined with
II=1, ensuring that one output value is emitted every cycle and matching the rate
of the previous stages in the accelerator.

4.4.4 Position of GAP in the Overall Pipeline
Within the top-level wrapper, the GAP stage is invoked after the second convolution,
quantization, and residual addition stages have produced the final feature map of
the ResNet residual block. Because the memory layout produced by quantization is
already partitioned and organized in channel-major form, GAP can operate directly
on it without any intermediate reformatting. This makes global average pooling an
efficient final stage of the accelerator, requiring only simple additions and a single
division per channel.
Figure 4.7 shows the GAP block as the terminal stage of the pipeline, consuming the
output of the add–ReLU block and producing the feature vector fed to subsequent
classification layers or exported to software.

4.5 Quantization Kernel Implementation
The quantization stage is implemented as a templated HLS module that ap-
plies a fixed-point conversion to every element of the feature map. The soft-
ware testbench invokes the top-level function top_wrap, which receives the pre-
quantized activation tensor (relu_quantized) and produces an output array of type
ap_uint<BIT_QUANT> with dimensions output[BATCH][CHANNELS][HEIGHT][WIDTH].
After execution, the testbench compares each output element with the correspond-
ing reference value stored in expected. Any deviation larger than a predefined
TOLERANCE is reported, ensuring that the hardware implementation matches the
expected behaviour of the quantization model.
The core computation is carried out by the templated function
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matrix_wrapper < HEIGHT, WIDTH, BIT_INPUT, BIT_QUANT, SHIFT_FACTOR_TOT > ();

which processes a two-dimensional slice of the tensor. The input is a matrix of
type ap_int<BIT_INPUT> with size HEIGHT × WIDTH, and the output is a matrix of
identical shape stored in ap_int<BIT_QUANT>. The template parameters determine
both the geometry of the computation and the format of the fixed-point conver-
sion: BIT_INPUT sets the bit-width of the incoming data, BIT_QUANT defines the
target precision, and SHIFT_FACTOR_TOT represents the scaling factor used during
dequantization and requantization. Since this factor is resolved at compile time,
the hardware applies the scaling using inexpensive bit-shift operations rather than
multipliers.
The function consists of two nested loops over height and width, each annotated
with #pragma HLS PIPELINE II=1 to ensure that the accelerator accepts one new
value per clock cycle once the pipeline is filled. For each element (h, w), the wrapper
calls:

deq_and_quant < BIT_INPUT, BIT_QUANT, SHIFT_FACTOR_TOT > (input[h][w]),

which applies the actual numerical conversion. This helper function first dequantizes
the incoming fixed-point value using the inverse scale, then requantizes it using the
target scale, enforcing saturation or truncation as needed. Keeping the numerical
logic inside deq_and_quant allows matrix_wrapper to remain a pure dataflow
operator.
During software simulation (i.e., when __SYNTHESIS__ is not defined), the wrapper
also generates a debug log in matrix_check.txt. For each processed element, it
records the input value, its coordinates, and the quantized result. This mechanism
helps during verification but is automatically removed during synthesis, ensuring
that no additional I/O hardware is generated in the FPGA implementation.

4.6 Skip-Add Layer in ResNet-18
One of the key ideas behind ResNet-18 is the use of the skip-add layer, which plays
a crucial role in how information flows through the network. Instead of forcing
each block to transform its input completely from scratch, ResNet-18 allows the
original input to “skip” the sequence of convolutions and rejoin the processed signal
at the end of the block through a simple element-wise addition. This design may
appear minimal, yet it has a profound impact: by preserving a direct path for the
gradients during backpropagation, the skip-add connection helps the model avoid
the vanishing-gradient problem that typically affects deeper networks. At the same
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time, it encourages the layers to learn only the residual part of the transformation,
making training more stable and efficient. In practice, this mechanism allows
ResNet-18 to reach greater depth and representational power without incurring
the optimization difficulties that usually arise in deep architectures.

Figure 4.6: Conceptual illustration of the skip-add operation within a residual
block of ResNet-18.

4.6.1 Hardware Implementation of the Skip-Add Layer
The skip-add layer in the ResNet-18 basic block is implemented directly in hard-
ware using a streaming and memory-based design. At the top level, the function
top_wrapper receives the input feature maps over an AXI4-Stream interface (mem-
ory_in_stream) and immediately duplicates this stream through the helper function
duplicate_input_stream. One copy of the data (input_stream_conv) is fed into
the main convolutional pipeline, while the second copy (input_stream_add) is
preserved for the residual path and consumed later by the skip-add stage. This
duplication makes it possible to retain the original input activations on chip without
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reloading them from external memory, while still allowing the convolutional pipeline
to operate independently within the #pragma HLS DATAFLOW region.
On the main path, the input is first reorganised into a suitable layout for convolu-
tion by the input2conv and mem_conv2stream functions, and then processed by
two consecutive convolutional layers (conv) with bias addition and nonlinearity.
The results of these layers are quantised and stored in partitioned on-chip memories
(out_mem_quant_1 and out_mem_quant_2) through the matrix_wrapper compo-
nent. After the second convolution, the tensor out_mem_quant_2 contains the
transformed features corresponding to the residual mapping. In order to realise the
skip-add operation, the design applies the function add_layer_to_mem, which takes
as inputs the cloned original stream (input_stream_add) and the quantised convo-
lution output (out_mem_quant_2), and produces a new memory out_mem_quant_3.
Inside add_layer_to_mem, the feature maps are traversed in a deterministic order
that matches the layout used for memory_out_quant. For each spatial position and
channel, one element from the original input (read from input_stream_add) is
added to the corresponding element produced by the convolutional pipeline (read
from memory_in). The sum is computed with an intermediate 9-bit accumulator
(ap_int<9>) to avoid overflow during addition, and then cast back to 8 bits.
Immediately after the addition, a ReLU activation is applied in hardware by
clamping negative values to zero. The result (sum_relu) is written into the output
memory memory_out using exactly the same layout as the convolutional output. In
this way, the residual connection is implemented as a pure element-wise addition
followed by ReLU, mirroring the functional behaviour of the skip-add layer in the
software model, but expressed in a fully pipelined, resource-aware hardware style.
The combination of stream duplication, on-chip buffering, and carefully scheduled
loops allows the skip-add layer to be executed with an initiation interval of one
clock cycle (II=1), so that a new element of the residual sum is produced on
every cycle. From a system-level viewpoint, the residual path therefore introduces
almost no additional latency compared to the convolutional pipeline, while pre-
serving the representational benefits of the ResNet architecture. The final tensor
out_mem_quant_3, containing the result of the skip-add operation, is then passed
to the global_avg_pool module and subsequently converted back to an output
stream, completing the hardware implementation of the ResNet-18 block with its
skip-add layer.

4.7 Loop Unrolling and Pipelining as Hardware
Design Strategies

In FPGA-based acceleration, performance is determined not only by the algorithmic
structure of the design but also by the degree of parallelism exposed to the synthesis
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tool. Beyond memory partitioning and data-reuse techniques, two architectural
transformations are particularly influential in shaping the micro-architecture gener-
ated by Vitis HLS: loop unrolling and pipelining. These strategies operate directly
on the control flow of the program, restructuring loops so that multiple hardware re-
sources can be utilized simultaneously, thereby improving throughput and reducing
overall execution time. Because loops are ubiquitous in CNN operators—from con-
volution to quantization, reduction, and activation—the manner in which they are
transformed has a direct impact on the attainable performance of the accelerator.

4.7.1 Loop Unrolling

Loop unrolling is a spatial parallelization technique that replicates loop iterations
at compile time. Conceptually, unrolling transforms a loop into several independent
computations that can execute concurrently. For example, a loop that normally
performs eight iterations sequentially can be fully unrolled into eight parallel
operations, removing the loop control logic entirely. This is achieved in Vitis HLS
using the directive

#pragma HLS UNROLL

optionally extended with a user-defined factor, which specifies how many iterations
are to be executed in parallel. Full unrolling (complete unroll) occurs when the
entire loop is replicated. Partial unrolling (factor=k) replicates only k iterations,
thus striking a balance between achievable parallelism and available resources.
From a hardware perspective, unrolling directly multiplies the datapath: if the loop
body performs an addition, unrolling by a factor of four generates four independent
adders, each operating on different data. This leads to substantial speedups in loops
with large iteration counts, provided that the FPGA can supply enough LUTs, FFs,
or DSP blocks to accommodate the replicated logic. At the same time, unrolling
imposes strict requirements on memory bandwidth. Parallel operations require
parallel data access, and without adequate memory partitioning the compiler may
serialize accesses, negating the benefits of unrolling. This tight coupling between
unrolling and the memory architecture is particularly evident in convolution kernels,
where reading kernel windows in parallel requires distributing activation data across
multiple BRAM banks.
Thus, loop unrolling is most effective when applied selectively to portions of the
design where the loop body is simple and where the memory layout supports
multiple concurrent reads. In the context of CNN accelerators, this includes inner
loops over filter taps, feature-map windows, and small channel groups, but typically
excludes outer loops where resource reuse is preferred.
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4.7.2 Pipelining
Pipelining is a temporal parallelization technique that restructures a loop so that
multiple iterations can overlap in execution. Instead of replicating hardware,
pipelining divides the computation into stages; while one iteration progresses to the
next stage, another iteration can enter the pipeline. This dramatically increases
throughput without requiring additional functional units. In Vitis HLS, pipelining
is invoked through

#pragma HLS PIPELINE II=1,

where II (Initiation Interval) defines how frequently new iterations are launched.
Achieving II = 1 means that the pipeline accepts one iteration per clock cycle,
which is typically the ideal operating point for streaming architectures.
Unlike unrolling, pipelining preserves the loop structure and performs no hardware
replication beyond what is needed to separate pipeline stages. However, it imposes
constraints on the presence of data dependencies between consecutive iterations.
If an iteration requires data produced by the previous one, the compiler may be
forced to increase the II to maintain functional correctness. Similarly, insufficient
memory bandwidth may prevent the initiation of new iterations every cycle, causing
II violations. For these reasons, successful pipelining often relies on minimizing
dependencies and ensuring that memory is partitioned so that all required data
can be read within a single cycle.
In the context of convolutional neural networks, pipelining is especially beneficial for
loops over spatial coordinates, channel blocks, and data-packing operations. These
loops typically involve repeated, independent operations, making them suitable for
overlapping execution. For example, the construction of convolution packets or the
application of quantization over large activation matrices can often be pipelined
with II = 1, allowing the accelerator to accept a new pixel or feature value every
cycle.

4.7.3 Combined Use in CNN Hardware Acceleration
Loop unrolling and pipelining complement each other and are frequently used
together to exploit both spatial and temporal parallelism. A common pattern in
HLS designs consists of unrolling inner loops where the loop body is small and
computationally dense while pipelining outer loops to maintain high throughput.
This hybrid strategy is particularly effective in convolution kernels, where the inner
loops over filter parameters (FW × FH × ICH_PAR) can be unrolled to compute
partial sums in parallel, while the outer loops over output spatial positions are
pipelined to ensure a steady processing rate. The combination yields a design in
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which each pipeline stage carries out several computations concurrently, maximizing
utilization of both DSP resources and on-chip memory.
Achieving these optimizations in practice requires aligning all aspects of the design:
memory must be partitioned to support the access patterns generated by unrolled
loops; dataflow regions must be structured so that pipelined computations are
continuously fed with valid data; and accumulation or reduction operations must
be organized to avoid hazardous dependencies. When properly balanced, unrolling
and pipelining transform the high-level algorithm into a deeply parallel hardware
architecture that can sustain the desired initiation interval and effectively exploit
the capabilities of the FPGA fabric.

4.8 Top-level Wrapper Architecture
The top_wrapper function constitutes the top-level entry point of the HLS design
and defines the external interface of the accelerator. It exposes four AXI4-Stream
ports: one for the input activations, two for the convolutional weights of the two
layers, and one for the output results.
Each port is declared with #pragma HLS INTERFACE axis, while the directive
#pragma HLS INTERFACE ap_ctrl_none port=return configures the accelerator
as a free-running streaming module without explicit control handshakes. Internally,
all communication is also performed through HLS streams, and the entire function
is annotated with #pragma HLS DATAFLOW so that the main processing stages can
operate concurrently as soon as their input data become available.
From a structural perspective, top_wrapper is organized as a sequence of functional
blocks, each responsible for a specific transformation. Together, these blocks form
a streaming pipeline that implements the core computation of a ResNet-18 residual
module. The overall structure can be interpreted as follows:

• Kernel streaming. Two instances of a lightweight kernel-loading function
extract the convolution weights from the external AXI streams and transfer
them into internal streams with a linear memory order. These streams serve
as weight sources for the convolution stages and are consumed sequentially by
the associated convolution cores.

• Input duplication. The input activation stream is replicated into two
identical internal streams. One copy feeds the main convolutional path, while
the other is preserved for the skip connection used in the residual addition
stage. Duplication occurs entirely within the streaming domain and does not
require intermediate buffering.

• Input tiling and buffering. The activations destined for convolution
are written into a partitioned on-chip memory. This stage reorganizes the
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streamed HWC-ordered data into windowed tiles that match the spatial extent
of the convolution filters and the degree of channel parallelism. The memory
layout is determined by template parameters describing the kernel size, input
dimensions, tiling strategy and channel grouping.

• Memory-to-stream repacking. A dedicated block reads the tiled activations
from on-chip memory and constructs convolution packets. Each packet contains
all samples required for one convolution window, including the full set of filter
taps and the appropriate subset of channels. Stride and padding are applied
when computing the effective coordinates of each window, and out-of-range
accesses are safely mapped to zeros. The resulting stream of fixed-size packets
feeds the convolution operator.

• First convolution and quantization. The first convolution block consumes
the activation packets, the associated weight stream and the bias values,
producing 32-bit accumulated outputs stored in a partitioned memory. A
quantization stage then converts these accumulators into 8-bit fixed-point
values using the procedure described in Section 4.5. The quantized feature
maps form the input to the second convolution layer.

• Second convolution and quantization. The same sequence is applied
to the second convolution: the quantized output of the first convolution is
repacked into convolution packets, processed by the second convolution block
and then quantized again. The resulting memory contains the 8-bit feature
maps produced by the second convolution in the residual block.

• Residual addition with ReLU. In parallel with the main path, the cloned
input stream is buffered in a layout matching the quantized output of the
second convolution. A simple add-and-ReLU stage traverses both memories in
lockstep: for each element, it computes the sum between the skip-path input
and the second convolution output, applies the ReLU activation and stores
the result in a new memory. This memory contains the final feature maps of
the residual block.

• Global average pooling and output streaming. The last stage performs
global average pooling over all spatial positions. For each output channel,
all spatial samples are accumulated and divided by their total count. The
resulting vector of pooled values is then converted into AXI4-Stream packets,
with the last element marked using the TLAST signal, and written to the
external output stream.

Due to the DATAFLOW directive, these blocks do not wait for one another to complete;
instead, they overlap in time whenever possible. For example, while the input
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tiling block fills the activation memory, the kernel-loading functions may already
be streaming weights, and the first convolution block can begin processing as soon
as the initial packets are available. This form of pipelined parallelism maximizes
throughput and minimizes buffering requirements.
Figure 4.7 illustrates this organization through a block diagram, showing the
datapath from the input activations and filter streams, through the two convolution–
quantization stages and the residual addition, to the global average pooling and
final output.

4.9 TCL Automation for HLS Project Execution
The entire build process of the accelerator is automated through a TCL script,
which drives the Vitis HLS toolchain from project creation to design export. This
scripting approach ensures reproducibility, simplifies experimentation with different
configurations, and eliminates manual steps during synthesis and simulation.
The script begins by defining the solution name (here solution_0) and opening a
corresponding HLS project. The set_top command assigns top_wrapper as the
top-level function to be synthesized, so that all interfaces, pragmas and dataflow
structures are interpreted with respect to the design described in Section 4.8.
The relevant design files (top_wrapper.cpp, conv.h, parameter.h, and related
headers) are added to the project with add_files, while the testbench is provided
separately using the -tb flag. This instructs the tool to include the testbench only
during simulation, excluding it from synthesis and implementation.
The target FPGA device is selected with set_part, and a 5 ns clock period is spec-
ified via create_clock. These constraints guide both the HLS scheduler and the
resource allocator during synthesis. Once the project is fully configured, the script
launches the two main phases of the HLS flow: high-level simulation (csim_design)
and C-to-RTL synthesis (csynth_design). The optional co-simulation step is com-
mented out but can be re-enabled to verify that the generated RTL behaves
identically to the high-level C++ description.
Finally, export_design packages the synthesized RTL into an implementation-
ready directory structure suitable for integration into a full FPGA design flow. The
script then terminates with exit. By encapsulating the entire sequence in TCL,
the process can be repeated consistently across different runs, making it easier to
track the impact of code changes, pragma adjustments or architectural refinements.
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# Select the solution
set impl_sel " solution_0 "

# Open (or create ) the HLS project
open_project conv_2
open_solution ${ impl_sel }

# Set the top-level function
set_top top_wrapper

# Add design files
add_files top_wrapper.cpp
add_files top_wrapper.h
add_files conv.h
add_files parameter.h

# Add the testbench
add_files -tb tb_gap.cpp

# Target FPGA device
set_part { xczu9eg-ffvb1156-2-e }

# Create the design clock
create_clock -period 5

# Run C simulation
csim_design

# Run C synthesis
csynth_design

# Optional RTL co-simulation
# cosim_design -trace_level all

# Export synthesized RTL
export_design -flow impl

# Exit the script
exit
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Figure 4.7: Architecture of the top_wrapper HLS module.
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Chapter 5

Vivado Synthesis Flow and
FPGA Implementation

This chapter describes the complete hardware synthesis flow adopted for the
implementation of the CNN accelerator on FPGA, focusing on the transition from
high-level C/C++ design to a fully deployed hardware engine. The development
process relies on a combination of Vitis HLS and Vivado: the former is used to
translate the algorithmic description of the accelerator into RTL, while the latter
is responsible for transforming that RTL into a device-specific implementation.
Starting from the high-level model, the design is first verified through functional
simulation and then synthesised into hardware, producing an RTL architecture
in which the computational kernels—such as convolution, skip-add, pooling, and
quantisation—are expressed as pipelined, cycle-accurate modules. Vivado then
imports this RTL and performs logic synthesis, placement, and routing, mapping the
accelerator onto the configurable logic blocks, DSP slices, and memory primitives
of the selected FPGA.
Once the implementation meets timing constraints and satisfies resource require-
ments, Vivado generates the bitstream that configures the programmable logic.
The accelerator is then integrated within a complete system using the Vivado Block
Design environment, which provides a graphical representation of the hardware
platform and enables the connection of the custom accelerator to standard IP
cores. Through this mechanism, the processing system and the programmable
logic are linked via AXI interfaces, forming a unified SoC architecture capable
of executing control software on the embedded processors while the accelerator
operates in hardware. The resulting bitstream is deployed on the target FPGA
platform, in this case an AMD ZCU102 board, which combines ARM CPUs and
a large UltraScale+ programmable logic fabric. Finally, the chapter introduces
the runtime interface used to program the device and exchange data with the
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accelerator, based on a Python workflow built on the PYNQ framework. This
interface enables efficient validation of the hardware design, supporting real-time
execution of the CNN layers and direct comparison with software reference outputs.

5.1 Vivado Design Suite
Vivado Design Suite is AMD’s integrated environment for digital hardware devel-
opment on FPGA and SoC platforms, providing a unified flow that spans from
RTL elaboration to full device configuration. As described in the official user doc-
umentation, the toolchain replaces traditional netlist-based flows with a modern,
constraint-driven and data-centric architecture that supports large-scale designs
and enables advanced optimisation techniques. Vivado accepts HDL sources such
as VHDL or Verilog, as well as pre-built or user-defined IP blocks, and transforms
them into a device-ready implementation through a sequence of synthesis and phys-
ical design steps. The environment also keeps track of design runs and constraints,
allowing multiple synthesis or implementation attempts to be compared and tuned
efficiently.
At the RTL level, Vivado performs logic synthesis by converting behavioural or
structural descriptions into FPGA primitives such as lookup tables, registers, block
memories, and DSP slices. During this stage, the tool applies timing- and area-
driven optimisations, interprets user-defined XDC constraint files, and prepares
a technology-mapped netlist. XDC files allow designers to express both physical
requirements—such as I/O pin assignments, placement directives, or floorplanning
constraints—and timing objectives, including clock definitions, target frequencies,
and path exceptions. In this way, the synthesis process is strongly guided by the
intended operating conditions of the final hardware system.
The next stage of the flow is implementation, where the netlist is placed and
routed onto the physical resources of the FPGA. Vivado’s implementation engine
evaluates multiple design metrics simultaneously, seeking a configuration that
satisfies timing closure while optimising routing congestion, total wire length,
resource utilisation, and power consumption. To achieve this, the tool may apply
structural transformations such as register balancing, duplication of timing-critical
elements, or insertion of buffer networks. These physical optimisations often modify
the structure generated by high-level synthesis, which is why resource estimates
from Vitis HLS should be viewed as preliminary. In practice, utilisation figures can
either decrease as redundant logic is merged, or increase if replication is necessary
to maintain timing at the target clock frequency.
In this project, the HLS-generated accelerator is packaged as an IP block and
imported into Vivado for system integration. Through the Block Design interface,
the custom IP is combined with standard components such as the Zynq processing
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system, AXI interconnects, DMA engines, memory controllers, and peripheral
blocks. This graphical composition environment enables the construction of a
complete SoC architecture in which software running on the embedded processors
orchestrates data transfers to the programmable logic, where the CNN accelerator
executes. Once the block design is validated, Vivado synthesises and implements
the entire system, ensuring consistency between the accelerator, the interconnect
fabric, and the other IP cores.
After timing closure is reached and the physical layout is finalised, Vivado generates
the bitstream that programs the FPGA. The bitstream encodes the configuration
of LUTs, routing resources, DSP and BRAM elements, clocking networks, and I/O
pads. The resulting .bit file is then loaded onto the target hardware platform,
enabling execution of the accelerator and allowing the system to be tested and
debugged through tools such as the Vivado Hardware Manager and the Integrated
Logic Analyzer. This completes the end-to-end flow, from high-level algorithmic
description to a validated hardware implementation of the CNN accelerator.
Figure 5.1 illustrates the full development pipeline adopted in this project, high-
lighting the stages handled within Vivado—namely the integration of the generated
RTL, the synthesis and implementation phases, and the subsequent programming
and debugging performed on the target FPGA.

Figure 5.1: Vivado Design Suite High-Level Design Flow [44]

5.2 Block Design
The design flow in Vivado begins with the construction of the Block Design, where
the hardware accelerator produced with Vitis HLS is integrated with the remaining
system components. Vivado automatically detects AXI-compatible interfaces and
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can generate default connections for clocks, resets, and the communication channels
among the various modules. Figure 5.2 illustrates the complete Block Design used
to implement a single layer of ResNet-18 (including convolution, ReLU activation,
and quantization). The main elements of the architecture are summarized below.

Figure 5.2: Overview of the Block Design for the implemented ResNet-18 layer.

• Top-level accelerator: At the core of the design lies the IP exported from
Vitis HLS, which encapsulates the C++ description of the layer and its
RTL implementation. The module exposes the streaming and control ports
discussed in Section 4.8, along with clock and reset inputs.

• Zynq UltraScale+ MPSoC: The Processing System (PS) subsystem pro-
vides timing and reset to the programmable logic and establishes the commu-
nication channels between software and hardware. Configuration commands
are issued from the PS to the programmable logic through the M AXI HPM0
FPD interface, while the accelerator and the DMAs gain access to the DDR
memory through the S AXI HP* FPD high-performance ports.

• Input DMAs (axi dma 0 and axi dma 1): Two AXI DMA units are re-
sponsible for supplying the accelerator with activations and weights. Operating
exclusively in the MM2S (memory-to-stream) direction, they retrieve buffers
from DDR and forward them to the accelerator through 8-bit AXI4-Stream
channels. Their control registers—buffer base address, size, and status—are
programmed from the PS using AXI-Lite. The configuration adopted for the
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activation DMA is reported in Figure 5.3; the same structure applies to the
kernel DMA.

Figure 5.3: Configuration of the DMA responsible for loading activations.

The Buffer Length Register Width is set to 26 bits, allowing transfers of up
to 226 − 1 ≈ 64 MiB, which is sufficient for entire input tensors even for
multi-sample batches. A memory-mapped data width of 32 bits and an 8-bit
stream width reflect the quantized nature of the input data. To keep the AXI
traffic controlled, bursts are limited to 16 beats. As Scatter-Gather is disabled,
each DMA operates in Simple Mode, while continuity of the input stream is
maintained at software level using a double-buffering technique.

• Output DMA (axi dma 2): A third DMA handles data flowing from the
accelerator back to memory. This unit is configured in the opposite direction,
S2MM (stream-to-memory), and collects the output stream produced by the
accelerator. The memory write parameters are controlled through its AXI-Lite
port. Figure 5.4 shows the setup adopted for this DMA.
In this configuration only the write channel is required, while the Scatter–
Gather engine is fully enabled. Instead of relying on a single length register
programmed by software, the DMA autonomously processes the chain of
buffer descriptors stored in memory, ensuring continuous reception of the
output stream without CPU intervention. Given that the output of the GAP
of the implemented ResNet-18 layer consists of 512 bytes, each descriptor
easily accommodates the entire tensor, and the Scatter–Gather controller
automatically triggers the memory writes, manages descriptor completion,
and advances to the next entry in the chain.
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Figure 5.4: Configuration of the DMA used to store the output feature map.

• AXI SmartConnect: All memory-mapped connections from the DMAs are
routed through an AXI SmartConnect switch, which takes care of arbitration
and of inserting any required protocol or data-width conversions.

• AXI Interconnect (control path): AXI-Lite transactions issued by the PS
to configure the DMAs are dispatched through a dedicated AXI Interconnect,
which handles address decoding and routing.

• Processor System Reset: Reset synchronization is managed by the Proces-
sor System Reset block. It combines the global reset and PL clock to generate
stable, clock-aligned reset signals for all components within the programmable
logic.

5.3 Managing FPGA Computation with PYNQ
The following section presents the Python script used to execute and evaluate the
convolutional accelerator implemented on the Xilinx ZCU102 board. To ensure
readability and clarity inside the thesis, the source code is divided into logical
units and each fragment is accompanied by a descriptive explanation. This format
highlights the operational flow of the script while maintaining a smooth, narrative
style.
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5.3.1 Initial Imports and Basic Configuration

1 import sys , re , time , signal
2 import os
3 import pynq
4 import numpy as np
5 from pynq import Overlay , allocate , PL

Listing 5.1: Imports and initial setup

The script begins by importing all modules needed for execution on the ZCU102.
Standard Python modules manage file access, timing and regular expression parsing,
while NumPy is used for manipulating multidimensional arrays representing inputs
and weights of the neural network. The PYNQ framework provides access to the
FPGA fabric, DMA channels and contiguous memory allocation, and the call to
PL prepares the ground for loading the hardware overlay.

5.3.2 Power Sensor Class

1 class ZCU102PowerSensor :
2 def __init__ (self , name=" fpga_power ", unit="W", include_ps =

True , include_mgt =False):
3 ...
4 def _populate_ina_arrays (self):
5 ...
6 def get_value (self , parents_values =None):
7 ...

Listing 5.2: Custom ZCU102 power sensor

A significant part of the script consists of the custom class responsible for measuring
the instantaneous power consumption of the FPGA. The class scans the Linux
virtual filesystem, identifying all INA226 energy monitors mounted on the board.
Each sensor is associated with a specific supply rail, such as the core voltage of the
programmable logic or the auxiliary voltages supporting peripheral blocks. The
class continuously reads the voltage and current values exposed by the operating
system, converts them from millivolts and milliamps into standard SI units, and
computes the instantaneous electrical power through the product of voltage and
current. By integrating this class with the PYNQ DataRecorder, the script is able
to collect power samples at regular intervals and associate them precisely with each
batch of inference executed on the accelerator.
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5.3.3 Logging Mechanism

1 class Tee:
2 def __init__ (self , * streams ): self. streams = streams
3 def write(self , data):
4 for s in self. streams : s.write(data); s.flush ()
5 def flush(self):
6 for s in self. streams : s.flush ()
7 log_fp = open("~/ risultati_block_design .txt", "w", buffering =1)
8 sys. stdout = Tee(sys.__stdout__ , log_fp )
9 sys. stderr = Tee(sys.__stderr__ , log_fp )

Listing 5.3: Tee logging system

To guarantee complete reproducibility of the experimental results, the script replaces
the standard output with a wrapper that duplicates every printed line. As a result,
all terminal output is simultaneously available on screen and stored to a log file.
This mechanism makes it possible to trace back any unexpected behaviour of the
hardware or the software execution.

5.3.4 Utility for Loading Network Parameters

1 def load_array_from_h (path , dtype):
2 with open(path , "r") as f: txt = f.read ()
3 m = re. search (r" \{(.*) \}", txt , re. DOTALL )
4 if not m: raise ValueError ("File .h non contiene array tra {}"

)
5 nums = re. findall (r" -?\d+", m.group (1))
6 return np.array(nums , dtype=dtype)

Listing 5.4: Loading arrays from C header files

The network inputs and filter weights used by the accelerator are stored in C-style
header files. This function extracts the numerical arrays defined in those files and
returns them as NumPy arrays ready to be transferred to the FPGA. By doing so,
the script seamlessly bridges the gap between pre-processing performed offline and
real-time computation on the board.

5.3.5 Reset of the Programmable Logic and Loading of the
Overlay

1 PL. reset ()
2 BITFILE = "/root/ jacopoc / overlay / design_1_wrapper .bit"
3 ol = Overlay ( BITFILE )

Listing 5.5: Reset and overlay loading

61



Vivado Synthesis Flow and FPGA Implementation

Before any computation can be launched, the programmable logic is reset, ensuring
that no residual configuration or DMA transfer remains active from previous runs.
The hardware accelerator, developed and synthesized separately, is then loaded onto
the FPGA fabric through the PYNQ Overlay interface. This bitstream includes
the convolutional engines, global average pooling unit, and all the DMA interfaces
required to transfer data.

5.3.6 DMA Interface Setup

1 dma_in = ol. axi_dma_0
2 dma_w1 = ol. axi_dma_1
3 dma_w2 = ol. axi_dma_3
4 dma_out = ol. axi_dma_2
5
6 sc_in = dma_in . sendchannel
7 sc_w1 = dma_w1 . sendchannel
8 sc_w2 = dma_w2 . sendchannel
9 rc_out = dma_out . recvchannel

Listing 5.6: DMA interfaces

Four DMA engines are instantiated: three of them feed input data or weights to
the FPGA, while the remaining one retrieves the processed output vector. This
separation allows different data streams to flow toward the accelerator in parallel,
without forcing them through a single bottleneck.

5.3.7 Allocation of Buffers and Loading of Network Param-
eters

1 W, H, C = 7, 7, 512
2 in_one = load_array_from_h (" input_first_conv .h", dtype=np.int8)
3 in_batch = allocate (shape =( PIXELS_PER_IMAGE *batch_size ,), dtype=np

.int8)
4 in_batch [:] = np.tile(in_one , batch_size )
5 w1_vals = load_array_from_h (" filter_val_1 .h", dtype=np.int8)
6 w1_batch = allocate (shape =( f1_size *batch_size ,), dtype=np.int8)
7 w1_batch [:] = np.tile(w1_vals , batch_size )
8 w2_vals = load_array_from_h (" filter_val_2 .h", dtype=np.int8)
9 w2_batch = allocate (shape =( f2_size *batch_size ,), dtype=np.int8)

10 w2_batch [:] = np.tile(w2_vals , batch_size )

Listing 5.7: Buffer allocation and parameter loading

At this stage the script loads the actual numerical values representing the feature
map and the convolutional filters. Since the accelerator expects batches of input
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images and weights, the script replicates each single input or filter set as many
times as required to fill a batch. All buffers are allocated using allocate(), which
ensures physical contiguity in memory, a necessary condition for the DMA engines
to operate correctly.

5.3.8 Initialization of the Power Recorder

1 sensor = ZCU102PowerSensor (name=" fpga_power ", unit="W")
2 recorder = pynq. DataRecorder ( sensor )

Listing 5.8: Power recorder setup

A single instance of the power sensor is bound to the PYNQ data recorder, which
will periodically sample the FPGA power during each batch of inference. This
allows energy consumption and average power to be computed precisely for every
iteration.

5.3.9 Batch Processing and Accelerator Execution

1 for bi in range( batches ):
2 recorder .reset ()
3 recorder . record (0.01)
4
5 rc_out . transfer ( out_batch )
6
7 t_in_start = time. perf_counter_ns ()
8 sc_in. transfer ( in_batch )
9 sc_w1. transfer ( w1_batch )

10 sc_w2. transfer ( w2_batch )
11 t_in_done = time. perf_counter_ns ()
12
13 rc_out .wait ()
14 t_out_done = time. perf_counter_ns ()
15
16 recorder .stop ()
17
18 batch_time_s = ( t_out_done - t_in_start ) / 1e9
19 batch_power_W = float( recorder .frame[" fpga_power "]. mean ())
20 batch_energy_J = batch_power_W * batch_time_s

Listing 5.9: Main processing loop

The core of the script is the loop that processes all batches. For every batch, the
recorder begins sampling power, and the output buffer is armed to receive the
accelerator’s result. The script then triggers three parallel DMA transfers that
send the input images and both sets of convolutional weights to the programmable
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logic. Once the output DMA signals completion, the recorder stops and the
script computes the latency, average power, and total energy for that batch.
This mechanism ensures a precise temporal correspondence between the power
measurements and the actual accelerator workload.

5.3.10 Output Verification

1 if np. array_equal (out_all , output_ref [: out_all .size ]):
2 print(" Output FPGA uguale al reference !")
3 else:
4 idx = np.where( out_all != output_ref [: out_all .size ]) [0]
5 print(f"Prime differenze idx: {idx [:20]} ")

Listing 5.10: Numerical comparison with reference

If a reference output has been provided, the script verifies the numerical correctness
of the FPGA computation. This step confirms that the hardware accelerator
reproduces the expected behaviour of the corresponding software model.

5.3.11 Final Summary and Metrics

1 print ("===== POWER & ENERGY =====")
2 print (f"Mean power: { mean_power_W :.3f} W")
3 print (f"Total energy : { total_energy :.3f} J")
4
5 print ("===== SUMMARY =====")
6 print (f"FPS: {fps :.2f}")
7 print (f"End -to -End latency avg: {e2e_m :.3f} ms")

Listing 5.11: Final performance and energy metrics

At the end of execution the script computes and prints a global summary including
average power, total energy consumption, mean latencies and overall throughput.
These results offer a complete perspective on the performance and the energy
characteristics of the implemented accelerator and constitute the basis for the
analysis presented in this thesis.

5.4 The AMD Xilinx ZCU102 Evaluation Board
The hardware platform used for the implementation and testing of the accelerator
is the AMD Xilinx ZCU102 evaluation board, a high–end development platform
based on the Zynq UltraScale+ MPSoC architecture. This device integrates a
heterogeneous processing system that combines a quad-core ARM Cortex-A53
application processor, a dual-core Cortex-R5 real-time processor, and a Mali-400
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GPU, together with a large programmable logic (PL) fabric based on UltraScale+
FPGA technology. The coexistence of general-purpose processors and reconfigurable
logic makes the ZCU102 particularly suitable for embedded acceleration of deep
learning workloads, as control and pre-processing tasks can run on the ARM
cores while computationally intensive kernels are offloaded to custom hardware
implemented in the PL.
The board provides a comprehensive set of peripherals and memory resources,
including 4 GB of DDR4 memory for the processing system, an additional DDR4
bank dedicated to the programmable logic, high-speed transceivers, DisplayPort
and HDMI interfaces, several USB and Ethernet ports, and a rich set of FMC
connectors that allow the integration of external modules. Its power subsystem
is instrumented with multiple INA226 current and voltage sensors connected to
the board’s supply rails, enabling accurate, real-time monitoring of the energy
consumption of both the PS and the PL. This feature is essential for experimental
work involving hardware acceleration, as it enables fine-grained evaluation of the
energy cost of custom architectures.
Thanks to its combination of computational heterogeneity, high memory bandwidth,
and rich instrumentation, the ZCU102 is widely adopted in research and industry for
prototyping complex hardware accelerators for machine learning, signal processing,
and high-performance embedded computing. In the context of this thesis, it serves
as the execution platform for the custom convolutional accelerator, providing the
necessary infrastructure to load the bitstream, manage DMA-based data transfers,
and collect accurate performance and power measurements during inference.
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Figure 5.5: The ZCU102 evaluation board, depicted according to its official
documentation [45].
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Chapter 6

Experimental Results and
Analysis

This thesis presented a complete High-Level Synthesis (HLS)–based methodology
for rapidly prototyping FPGA accelerators for quantized Convolutional Neural
Networks (CNNs). The work demonstrated the feasibility of generating efficient
hardware for a ResNet-18 inference pipeline on the AMD Xilinx ZCU102 platform.
The design leveraged templated C++ operators, symmetric uniform quantization,
and fully streaming dataflow architectures. A key feature of the proposed method-
ology is the configurability of the input-channel parallelism factor (ICH_PAR),
which enables systematic design–space exploration with minimal hardware redesign
effort.
Two implementations were produced and evaluated: a minimally parallel design
(ICH_PAR = 1) and a moderately parallel configuration (ICH_PAR = 4). Their
synthesis results, runtime behaviour, and overall energy efficiency were analysed in
depth.

6.1 Summary of Experimental Results

Each configuration was synthesized using Vitis HLS and Vivado, deployed onto the
ZCU102 board, and evaluated through an automated inference pipeline implemented
with PYNQ. Power consumption was measured via the INA226 sensors at 10 kHz
sampling frequency, while latency metrics correspond to the average end-to-end
runtime across a batch of 100 images.
Table 6.1 summarizes the synthesis resource utilization and performance results.
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Table 6.1: Comparison of resource utilization and performance for different
ICH_PAR configurations.

Metric ICH_PAR = 1 ICH_PAR = 4

LUT Utilization 135,580 (49.4%) 144,576 (52.7%)
FF Utilization 258,342 (47.1%) 352,807 (64.3%)
BRAM Usage 262 (28.7%) 342 (37.5%)
DSP Usage 19 (0.8%) 76 (3.0%)

Latency per Image [ms] 1201.898 308.179
Throughput [FPS] 0.83 3.24
Average Power [W] 2.904 3.145
Energy per Image [J] 377.949 96.910

6.2 Interpretation of Results
The comparison provides clear evidence of the architectural and energy benefits
associated with increasing channel parallelism.

1. Throughput Scaling Increasing input-channel parallelism from 1 to 4 yields
a latency reduction of:

1201.898
308.179 ≈ 3.9×,

which closely matches the theoretical speedup expected from replicating four con-
volution datapaths. Because the entire architecture is implemented as a streaming
pipeline, the higher parallelism directly improves the initiation interval of the
convolution kernels, thus increasing throughput without introducing unnecessary
buffering or control overhead.

2. Resource Utilization and Bottlenecks The parallel design requires addi-
tional LUTs, FFs, and BRAM blocks to sustain the increased activation bandwidth.
DSP usage grows proportionally with the number of replicated MAC units, yet
remains extremely low relative to available hardware resources (3% of DSPs). This
confirms that the design is primarily limited by data movement and on-chip memory
requirements, rather than by arithmetic capacity.

3. Energy Efficiency The corrected energy measurements reveal a substantial
efficiency benefit associated with higher parallelism. Even though average power
increases slightly (+8.3%), the much shorter execution time leads to a dramatic

68



Experimental Results and Analysis

reduction in energy per inference:

E = P · t.

The energy consumption drops from

377.949 J to 96.910 J,

equivalent to a
≈ 3.9 × improvement.

This scaling matches the reduction in latency and confirms that, for deeply pipelined
FPGA accelerators, increasing parallelism improves both performance and energy
efficiency. The reason is structural: the static power component and the baseline
system overhead dominate the energy cost when execution time is long. Reducing
total runtime therefore has a compounded positive effect.

4. Suitability of FPGAs for Quantized CNN Inference Both configurations
operate entirely in fixed-point arithmetic and meet timing constraints at 200 MHz.
The extremely low DSP utilization demonstrates the advantage of quantization-
aware design: multipliers are small, accumulators are efficient, and the dominant
resource is memory bandwidth. This aligns well with the strengths of modern
FPGAs and validates their role as energy-efficient platforms for edge inference.

69



Chapter 7

Conclusions and Future
Work

7.1 Conclusions
This thesis presented a complete and experimentally validated methodology for the
rapid prototyping of FPGA-based accelerators targeting quantized Convolutional
Neural Networks (CNNs). Through the combination of High-Level Synthesis (HLS),
template-based hardware operators, and a fully streaming dataflow architecture,
the work demonstrated that a software-defined CNN can be translated into a
performant and energy-efficient hardware implementation with limited engineering
effort and high predictability.
A key objective of the study was to analyze how the degree of architectural
parallelism influences the performance and efficiency of the accelerator. Two
configurations were evaluated, corresponding to ICH_PAR = 1 and ICH_PAR = 4,
which respectively represent a minimally parallel design and a moderately parallel
variant. The experimental campaign conducted on the AMD Xilinx ZCU102
platform yielded several noteworthy outcomes.

• Near-linear performance scaling. Increasing the input-channel parallelism
from 1 to 4 resulted in a latency reduction from 1201.898 ms to 308.179 ms,
corresponding to a speedup of approximately 3.9×. This behavior confirms that
the accelerator effectively exploits pipeline-level concurrency and that HLS-
generated hardware can preserve the deterministic throughput characteristics
associated with traditional hand-written RTL implementations.

• Significant energy-efficiency improvement. Although the higher-parallelism
configuration exhibits a slightly higher average power consumption (3.145 W
vs. 2.904 W), the drastically reduced execution time leads to a substantial
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decrease in energy per inference:

EICH_PAR=1 = 377.949 J, EICH_PAR=4 = 96.910 J.

This corresponds to a 3.9× energy reduction, underscoring the effectiveness
of parallelism not only in improving latency but also in lowering the overall
energy footprint—an essential requirement for edge AI deployments.

• Moderate and predictable resource scaling. Resource utilization in-
creases with parallelism, but all resource categories (LUTs, FFs, BRAMs,
DSPs) remain comfortably within the capacity of the ZCU102 device. DSP
usage stays particularly low due to quantization and fixed-point arithmetic, con-
firming that modern FPGAs can accommodate far more extensive parallelism
or larger network architectures without compromising numerical precision.

• Validation of the HLS-centered design flow. The proposed methodology
dramatically reduces design time while still enabling the generation of opti-
mized hardware. Architectural parameters such as ICH_PAR can be modified
directly at the C++ level, eliminating the need for rewriting low-level RTL.
This level of flexibility enables rapid and systematic exploration of the design
space, which would be cumbersome and time-consuming using traditional
hardware design methodologies.

Overall, the results confirm the suitability of FPGAs—when paired with quanti-
zation and HLS-driven design—for edge-oriented CNN inference, where latency,
power, and flexibility must be simultaneously optimized. The methodology devel-
oped in this thesis constitutes a practical and effective approach for building fast,
energy-efficient, and scalable neural network accelerators.

7.2 Future Work
Although the work achieved significant results, several research directions remain
open and provide opportunities to further expand the capabilities and scalability
of the proposed accelerator architecture.

• Ultra-low-precision arithmetic. Extending the operator library to support
INT4, INT2, or even binary-weight arithmetic could drastically reduce power
consumption and further increase throughput. Coupling these formats with
quantization-aware training would ensure accuracy remains acceptable while
enabling extremely compact hardware designs.

• Support for depthwise-separable and modern convolutions. Many
efficient architectures—such as MobileNet and EfficientNet—rely heavily on
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depthwise-separable convolutions. Implementing optimized HLS kernels for
these operators would broaden the applicability of the accelerator to lightweight
models commonly used in embedded inference.

• Automatic tiling and cross-layer fusion. For large CNNs, feature maps
and parameters may exceed on-chip memory capacity. Introducing automated
tiling strategies, along with cross-layer fusion (e.g., Conv+ReLU+Quantization),
would reduce data movement, minimize memory footprint, and significantly
improve efficiency.

• Analytical modeling for predictive design-space exploration. Devel-
oping analytical models for latency, resource utilization, and energy would
allow designers to estimate the best architectural parameters prior to synthe-
sis. This would greatly accelerate the design cycle and help identify optimal
configurations early in the process.

• Full automation within the AIDGE toolchain. A fully automated
flow—from a trained PyTorch model to FPGA bitstream generation—would
further materialize the NEUROKIT2E vision of an industry-grade, European,
sovereign embedded-AI ecosystem. Automating graph transformations, quan-
tization, HLS code emission, and FPGA synthesis represents a significant but
achievable goal.

• Scaling to deeper or full-network pipelines. Extending the streaming
approach to multi-layer blocks or even entire networks would demonstrate the
generality and robustness of the methodology. Such a system-level implemen-
tation would also reveal new optimization opportunities related to activation
scheduling, inter-layer buffering, and pipeline balancing.

In summary, this thesis established a solid foundation for HLS-based FPGA accel-
eration of quantized CNNs. The demonstrated performance, energy efficiency, and
design flexibility position this approach as a strong candidate for next-generation
edge-AI systems. The future extensions outlined above represent natural and
promising directions toward increasingly powerful, compact, and automated FPGA
accelerators.
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