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Abstract

La crescente complessità delle IP PHY SerDes necessaria per garantire elevati
data-rate in applicazioni come High Performance Computing (HPC), Data
Center e AI/ML, ha reso la simulazione di questi dispositivi sempre più onerosa
dal punto di vista computazionale. Questa tesi in azienda, svolta in Synopsys,
si concentra sul miglioramento delle velocità di simulazione degli IP Synopsys
(PHY), prendendo come riferimento un IP PCIe6. Il lavoro si articola in due
principali direzioni: l’ottimizzazione delle simulazioni digitali e lo sviluppo di
modelli analogici comportamentali.

La prima parte del lavoro riguarda l’ottimizzazione dei tempi di simulazio-
ne digitali, fondamentale per consentire ai customer un’accurata verifica dei
loro SoC, contenenti più istanze dei SerDes PCIe6 prodotti da Synopsys. A
livello customer, per motivi di protezione della proprietà intellettuale, le si-
mulazioni sono basate su netlist GTECH, sintetizzata tramite una libreria di
standard cell technology independent. Nel contesto di verifica delle IP a livello
SoC, le simulazioni vengono effettuate utilizzando canali di trasmissione ideali,
pertanto l’uso di tecniche di avanzate di DSP non è necessario. Da ciò nasce
la possibilità di intervenire, tramite strumenti di Simulation Profiling integrati
nei tool di simulazione, per individuare quali blocchi DSP risultano rilevanti
per i tempi di simulazione, e semplificarli. Dato che tali modifiche devono esse-
re applicate solo in fase di simulazione, sono state introdotte tramite direttive
di preprocessore.

La seconda parte del lavoro riguarda lo sviluppo di modelli analogici utili
per la verifica ad high-coverage della logica hardware e del firmware durante
la fasi di calibrazione dei circuiti analogici. L’architettura del SerDes presa
come riferimento implementa una serie di blocchi logici per l’esecuzione degli
algoritmi di calibrazione. L’utilizzo di modelli complessi e dettagliati dei cir-
cuiti analogici non renderebbe possibile effettuare queste simulazioni a causa
dell’eccessivo tempo di esecuzione. Per verificare il loop di calibrazione, sono
stati sviluppati modelli in Verilog che emulano il comportamento dei blocchi
analogici durante la fase di calibrazione generando tutti i segnali necessari per
l’interfacciamento con il dominio digitale. Questi modelli sono stati sviluppa-
ti a partire dalle specifiche funzionali fornite dall’azienda e dall’analisi degli
schematici analogici. L’obiettivo è quello co-simulare firmware, RTL e macro
analogica, per analizzarne l’interazione in tempi di simulazione ridotti. Anche
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in questo caso, l’utilizzo di strumenti di simulation profiling integrati nei tool
di simulazione, ha permesso di valutare l’impatto di questi modelli sul tem-
po complessivo di simulazione, focalizzandosi sull’individuazione di soluzioni
semplici ed efficaci. Infine, dall’esecuzione di simulazioni utilizzando i model-
li complessi preesistenti e i modelli sviluppati si è evinta una riduzione dei
tempi di simulazione. I risultati ottenuti evidenziano benefici sia quantitativi,
con tempi di simulazione ridotti, sia qualitativi, grazie alla semplificazione del
debug rispetto a modelli analogici complessi.
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Capitolo 1

Introduzione e motivazioni

Il trend relativo alla domanda di prestazioni e alla banda di comunicazione nel
mercato dei data center e dell’High-Performance Computing (HPC) mostra
una crescita costante. Applicazioni come Artificial Intelligence (AI) e Machine
Learning (ML) rappresentano un chiaro esempio dell’aumento dei volumi di
calcolo e di trasferimento dati: i modelli moderni richiedono non solo una fase
di training intensiva, ma anche elevate capacità di inferenza. Anche l’Internet
of Things (IoT), con il numero sempre crescente di dispositivi connessi e il loro
continuo scambio di informazioni, contribuisce ad accrescere ulteriormente il
fabbisogno di banda e di potenza computazionale. Tutte queste applicazioni si
prestano bene al Cloud Computing, ovvero all’elaborazione dei dati in remoto,
con un conseguente aumento del carico sui data center.

Parallelamente, anche in settori come l’industria e l’automotive si osser-
va un incremento delle prestazioni e della banda di comunicazione richieste.
Un esempio significativo è rappresentato dagli Advanced Driver Assistance Sy-
stems (ADAS), che per eseguire i propri algoritmi necessitano di un elevato
numero di sensori e quindi di una grande mole di dati da processare. Queste
applicazioni hanno guidato lo sviluppo tecnologico di dispositivi in grado di
soddisfare le nuove esigenze del mercato.

Se da un lato lo sviluppo di System On Chip (SoC) allo stato dell’arte ha
portato ad uno scaling tecnologico che ha permesso un incremento di presta-
zioni richiesto, ciò non può essere detto per ciò che si occupa di far comunicare
il chip con il mondo esterno, come le interconnessioni chip-to-chip [3]. A cau-
sa di limiti fisici, lo scaling delle interconnessioni e dei packaging non è stato
efficiente quanto quello sulla logica, diventando il collo di bottiglia principale
nello sviluppo di un chip, portando al cosiddetto pad-limited design. Questo
fenomeno è inoltre amplificato dal fatto che l’incremento di prestazioni si tra-
duce in una maggior mole di dati da processare, stressando maggiormente i
limiti delle interfacce di comunicazione.

Come mostrato in figura 1.1 l’incremento della banda di comunicazione
cresce in maniera esponenziale, in accordo con quanto accade per la densità di
capacità di calcolo dei in un SoC.
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2 CAPITOLO 1. INTRODUZIONE E MOTIVAZIONI

Figura 1.1: I/O Bandwidth vs Year

L’utilizzo di tecniche di trasmissione parallela dei dati non sarebbe in grado
di sostenere questo aumento di prestazioni. In questo genere di interfacce
di comunicazione, sarebbe necessario agire principalmente sull’incremento del
numero di pin e non sulla frequenza di lavoro. L’aumento del numero di pin
è una opzione non sostenibile per diverse motivazioni, sia legate all’area e al
non efficace scaling dei pin di IO di un die, sia su aspetti legati allo skew a al
sincronismo tra i vari bit di un bus. [1] Immaginando infatti applicazioni dove
sono presenti bus per connessioni chip-to-chip in un pcb, il routing potrebbe
causare problematiche di skew e un non corretto allineamento dei dati da
trasmettere, senza parlare di problematiche di crosstalk, potenza, interferenza
elettromagnetica . . .

Una tipologia di interfacce che permettono di assecondare la crescita di
prestazioni senza risultare un collo di bottiglia sono le interfacce seriali, chia-
mate Ser-Des, attraverso le quali è possibile gestire l’incremento di velocità
aumentando la frequenza di trasmissione. Lo stato dell’arte di questi disposi-
tivi possiede una complessità non indifferente, al fine di sopprimere i vincoli
che caratterizzano queste tipologie di interfacce di comunicazione. Ne è di
esempio l’interfaccia PCIe, sviluppata e mantenuta dall’associazione Periphe-
ral Component Interconnect - Special Interest Group (PCI-SIG), che al fine
di adeguarsi alla richiesta di banda sempre maggiore ha visto un aumento
della complessità del protocollo da una generazione alla successiva. Basta ci-
tare il passaggio dalla modulazione NRZ a quella PAM-4 [9]. Come possibile
intuire, un dispositivo del genere per funzionare correttamente richiede l’imple-
mentazione di tecniche complesse, sia dal punto di vista comuninicazionistico,
implementando algoritmi di Digital Signal Processing (DSP) ed equalizzazione
avanzata per soccombere alle non idealità introdotte dai canali di trasmissio-
ne, sia dal punto di vista tecnologico che architetturale, al fine di garantire dei
dispositivi che funzionino rispettando i vincoli Power Performance Area (PPA)
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richiesti.
La progettazione di queste interfacce richiede architetture allo stato del-

l’arte, capaci di integrare componenti digitali complessi e blocchi analogici di
precisione. Tale complessità si traduce in lunghi tempi di sviluppo e in una fase
di verifica particolarmente onerosa. Per semplificare questo processo, i Ser-Des
vengono spesso distribuiti sotto forma di Intellectual Property (IP), ovvero
moduli riutilizzabili facilmente integrabili all’interno dei SoC, garantendo di
accelerare il silicon bring-up.

In questo contesto si inserisce il presente lavoro di tesi, svolto in colla-
borazione con Synopsys, con l’obiettivo di incrementare le prestazioni delle
simulazioni di sistemi Ser-Des PCIe. Synopsys si occupa della progettazione
di IP Phisical Layer (PHY) PCIe 6.0 che consentono connettività real-time a
bassa latenza e ad elevato throughput per HPC, storage, e AI SoCs.

L’IP sviluppato da Synopsys sul quale si basa l’elaborato consiste nell’im-
plementazione del PHY, ovvero il layer a più basso livello che comprende la
parte digitale e la parte analogica, che chiameremo rispettivamente macro di-
gitale e macro analogica. É possibile effettuare una distinzione anche tra soft
macro e hard macro. La prima è quella parte di cui è implementata sotto
forma di Register Tranfer Level (RTL) sintetizzabile, la cui sintesi e P&R è
a discrezione del customer. La seconda è invece è fornita al cliente sotto for-
ma di layout già completamente testato e implementato nella tecnologia di
riferimento, utilizzata in quelle parti soggette ad una maggiore complessità
implementativa, come le parti di datapath digitali ad alta velocità e la macro
analogica.

Per l’azienda risulta fondamentale riuscire a verificare i suoi IP per fornire
il miglior servizio possibile ai customer che li acquistano. Da ciò nasce la
necessità della prima parte del lavoro di tesi, ovvero lo speed-up di una netlist
del circuito digitale, basata su una libreria technology indipendent, chiamata
Generic Technology (GTECH). Questa tipologia di netlist è spesso fornita ai
clienti che richiedono un IP come alternativa ai file sorgente RTL, in modo da
proteggerne la proprietà intellettuale. Esse sono utilizzate dai customer per
effettuare simulazioni a livello SoC, cioè alto livello, che non richiedono una
simulazione completa di tutta l’architettura, ma solamente le parti necessarie
a comprendere come il PHY è integrato nella loro architettura.

La crescente complessità nell’architettura di un Ser-Des si traduce in una
complessità maggiore della fase di validazione, test e debug dell’IP. Non basta
solamente una verifica funzionale della logica digitale, ma risulta fondamentale
anche l’integrazione di strumenti che permettano la co-simulazione di firmware
e logica digitale ed analizzarne la loro interazione con la macro analogica. Un
requisito fondamentale per queste simulazioni è la velocità, è facile intuire in-
fatti in ambito firmware i tempi di simulazione richiesti possano essere elevati
e utilizzare modelli analogici complessi non è sostenibile in questi contesti. In
questo contesto è possibile utilizzare dei modelli flat, che descrivono la parte
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analogica in maniera comportamentale, per velocizzare le simulazioni. Il lavoro
quindi che si svolgerà in nella seconda parte della tesi è quello di ampliare que-
sti modelli comportamentali, focalizzandosi sullo sviluppo tutti quegli aspetti
necessari a supportare la co-simulazione delle procedure di calibrazione. L’o-
biettivo quindi di questi modelli è quello di fornire un degli strumenti aggiuntivi
di supporto al team, accelerando i tempi di debug e rendendo possibile l’analisi
di corner-case critici.

Per guidare nella lettura della tesi in seguito è riportata una descrizione di
come è stato strutturato l’elaborato:

• il capitolo 2 presenta una panoramica dello stato dell’arte delle archi-
tetture SerDes, illustrando le principali strategie adottate sia nella parte
digitale sia in quella analogica. L’obiettivo è chiarire sfide e complessità
tipiche di queste architetture e fornire una base per gli sviluppi affrontati
nei capitoli successivi.

• Il capitolo 3 descrive gli interventi effettuati per ottenere uno speed-up
sulle simulazioni della netlist GTECH, spiegando il contesto, le modifiche
RTL apportate e i benefici ottenuti in termini di performance simulativa.

• Il capitolo 4 approfondisce il tema delle calibrazioni nella progettazione
analogica e descrive la realizzazione dei modelli flat comportamentali.
In questo modello si parte da una introduzione su come i meccanismi
di calibrazione agiscono in un dispositivo di questo tipo, descrivendo le
tecniche implementative e le soluzioni utilizzate. Al termine del capitolo
mostra i risultati ottenuti e quanto questi modelli possano portare a
miglioramenti effettuando dei confronti con altre soluzioni e modelli.

• Infine, il capitolo 5 di conclusione che riassume i risultati ottenuti e gli
sviluppi futuri.



Capitolo 2

Panoramica sui Ser-Des e PCIe

Lo scopo di questo capitolo è fornire una panoramica sul mondo degli Hi-
gh Speed Ser-Des (HS Ser-Des), al fine di chiarire le principali circostanze e
sfide che caratterizzano un sistema di trasmissione ad alta velocità. Il capi-
tolo è strutturato in una prima parte dedicata ai concetti generali, seguita
dalla descrizione di un’architettura base di trasmettitore e ricevitore. Vengo-
no illustrate le criticità principali e introdotte le motivazioni che giustificano
la presenza di specifici blocchi di calibrazione, i cui modelli analogici sono
implementati nella seconda parte del presente lavoro di tesi.

2.1 Ser-Des

Un Serializer-Deserializer (Ser-Des) è un blocco che si occupa di serializzare
e deserializzare i dati in comunicazioni chip-to-chip ad alta velocità [8]. Nel
caso in cui è necessario effettuare una connessione tra due Application Specific
Integrated Circuit (ASIC), il Ser-Des interviene effettuando la conversione di
dati da parallelo a seriale, la trasmissione sul canale e la riconversione in pa-
rallelo per consentire all’ASIC a valle di poter interpretare i dati (figura 2.1).
Il ruolo principale di un serdes è quello di minimizzare il numero di pin I/O di
un IC, parti che hanno un rilevante impatto al fine di contenere i costi e l’area
di Integrated Circuits (ICs), senza compromettere le prestazioni e introdurre
colli di bottiglia nella trasmissione dei dati.

In generale, in un Ser-Des è possibile identificare una struttura composta
da un numero variabile di lane (figura 2.2). Ogni lane rappresenta un cana-
le di trasmissione dati seriale indipendente ed è costituita da una coppia di
ricetrasmettitori, al fine di consentire una connessione Full Duplex. L’utiliz-
zo di più lane in parallelo consente di aumentare la velocità di trasmissione
suddividendo i dati tra più canali fisici.

Un esempio ne è lo standard di comunicazione seriale PCIe che permette di
ottenere una connessione di tipo point-to-point per connessioni ad alta velocità.

5
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SerDes
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Figura 2.1: Struttura base di un Ser-Des
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txp
txn

rxp
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rxp
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TX
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Lane

Wires lane0

lane1

lane2

Figura 2.2: ogni lane è composta da un segnale differenziale per i dati da
trasmettere e da ricevere, nel complesso sono presenti due flussi di dati, uno
per il ricevitore e uno per il trasmettitore.

Nasce come una evoluzione della sua antenata interfaccia parallela Peripheral
Component Interconnect (PCI) ed è stata sviluppata dal consorzio PCI-SIG.

Lo standard PCIe è composto da una serie di layer di astrazione [9], come
mostrato in figura 2.3:

• Application Layer: questo è il layer più esterno, esso è chiamato anche
host layer e non è definito dallo standard, ma dipende dal tipo di applica-
zione. Nello specifico è il blocco che genera le richieste di comunicazione
e interpreta le risposte;

• Transaction Layer: Questo è il primo vero e proprio la gestisce la
configurazione del dispositivo e la trasmissione dei dati da e verso la
memoria;

• Data Link Layer: questo layer si occupa della gestione e della crea-
zione dei pacchetti, nonché della verifica della loro integrità. In questa
fase è possibile applicare tecniche di codifica dei dati, come la Forward
Error Correction (FEC), che permettono di migliorare l’affidabilità del-
la trasmissione. Nelle generazioni più recenti, come la Gen6, l’adozione
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Application
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Physical (PHY)

Application

RX TX

Transaction

Data Link
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Figura 2.3: PCIe Layers

di meccanismi di correzione degli errori risulta fondamentale per ridurre
il tasso di errore. Inoltre, è a questo livello che viene stabilito se un
pacchetto contenente errori debba essere ritrasmesso;

• Phisical layer (PHY): è il livello più basso del protocollo e consiste in
tutte le componenti analogiche e digitali che permettono di trasformare
i bit in arrivo dai layer superiori in un segnale elettrico da trasmettere
e viceversa riuscire a trasformare il segnale elettrico in informazioni da
inviare ai layer superiori.

Per avere chiarezza delle prestazioni di un IP PCIe 6 è possibile analizzare
le seguenti specifiche:

• velocità di trasferimento fino a 64 Gbps per singola lane (da considerare
come raw bits);

• da x1 a x16 lane, per una velocità di 128GBps in configurazione x16;

• retrocompatibilità con tutte le altre generazioni;

• passaggio dalla modulazione NRZ a PAM-4, per incrementare le presta-
zioni senza aumento di banda;

• introduzione di codifica FEC per la mitigazione del BER;

Modulazione PAM-4

A differenza delle precedenti generazioni, per poter garantire la velocità di
trasmissione richiesta delle specifiche, viene implementata una modulazione
Pulse Amplitude Modulation - 4 (PAM-4). Grazie a essa è possibile raddop-
piare il bit-rate senza modificare il boud-rate, e quindi mantenendo invariati
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i requisiti di banda del canale di trasmissione. Questa codifica permette di
poter codificare con un singolo simbolo 2 bit, su quattro livelli di tensione
differenti(figura 2.4).

La presenza di 4 livelli differenti di tensione fa si che, a differenza di una
codifica NRZ, ci siano ben 3 soglie per la decisione del simbolo.

+1

+3

-1

-3

1UI

00 01 10 11

t

A

Threshold [H]

Threshold [M]

Threshold [L]

Figura 2.4: Esempio di modulazione PAM-4

Figura 2.5: a) modulazione NRZ, b) modulazione PAM-4

Il diagramma ad occhio in figura 2.5 mostra chiaramente le criticità e diffi-
coltà che risiedono nell’utilizzo della codifica PAM-4, quella principale riguarda
i margini di rumore ridotti e quindi alla prossimità tra le varie soglie. Confron-
tandolo con la codifica NRZ si nota come l’apertura del diagramma ad occhio
sia nettamente diminuita.

L’assegnazione tra l’ampiezza dei simboli da trasmettere ai bit può già
essere un primo punto che consente la riduzione degli errori. Una assegnazione
come in figura 2.4 presenta infatti una criticità: se ad esempio a causa di un
errore il simbolo ” + 1” non è in grado di oltrepassare la soglia "M" ed è
riconosciuto come il simbolo ” − 1” si causa un errore di 2 bit. L’utilizzo di
una codifica Gray che implica il cambiamento di un solo bit tra un livello e il
successivo, porta ad ottenere un solo bit di errore.
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L’architettura di un IP Ser-Des che sfrutta la codifica PAM-4 risulta molto
complessa e con numerose tecniche che permettono di ricostruire in maniera
accurata il segnale.
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2.2 Problematiche di un High Speed Ser-Des

Architetture sempre più complesse usate per ottenere velocità di trasmissione
maggiori mettono alla luce una serie di criticità e non idealità durante la pro-
gettazione di un High Speed Ser-Des (HS Ser-Des). Ad esempio l’introduzione
della codifica PAM-4 porta ad una sensibilità maggiore al rumore, dato che
anche una minima variazione sul simbolo porta ad una non corretta discrimi-
nazione di ciò che è stato trasmesso. Lo scopo di questa sezione è quello di
analizzare le principali sorgenti di errore in un HS Ser-Des per comprendere al
meglio come una architettura è sviluppata.

Figura 2.6: Diagramma ad occhio di un segnale affetto da distorsione [10]

Le motivazioni principali risiedono nella presenza di non idealità che de-
rivano da punti di vista differenti. In figura 2.6 è possibile distinguere due
principali tipologie di errori: il Signal to Noise Ratio (SNR) (gli errori che
influenzano l’ampiezza del simbolo) e il jitter (errori dovuti al punto in cui il
simbolo è campionato). Entrambi portano al medesimo risultato: il livello di
tensione che associato al simbolo nel punto in cui è campionato, è differente
da quello ideale, oltrepassando la soglia di discriminazione del simbolo e cau-
sando un aumento del Bit Error Rate (BER). Successivamente dono descritte
le sorgenti che causano queste non idealità.

2.2.1 Inter Symbol Interfearence

Una importante non idealità su cui bisogna focalizzare l’analisi è quella che
riguarda il canale di trasmissione. La non idealità che presenta un generico
canale di trasmissione riguarda la sua banda limitata. La presenza di elementi
resistivi e reattivi, rende fisicamente impossibile ottenere un canale con una
banda sufficientemente grande da essere considerata illimitata.

Come enunciato nei principi di teoria dei segnali se il simbolo presente in
ricezione possiede una banda limitata, avrà un supporto temporale illimitato.
A titolo di esempio è possibile notare in figura 2.7 come i quattro simbolo
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1UI

Figura 2.7: Simbolo distorto a causa di banda limitata

di una modulazione PAM-4 ideale risultano in uscita da un canale a banda
limitata.

Figura 2.8: Esempio di simbolo in uscita in un canale non ideale

Considerando un simbolo isolato x[n] e trasmettendolo attraverso il canale
di trasmissione è possibile notare come anche a distanza superiore ad 1UI,
dove per UI si intende la distanza tra un simbolo e il successivo , siano ancora
presenti dei contributi in tensione dovuti a esso (figura 2.8). Questi contributi
sono classificati in questo modo:

• Precursors: tutti quei contributi che si presentano nei campionamenti
precedenti( a−1, a−2, . . . );

• Cursor: il contributo effettivo dovuto al simbolo attualmente ricevuto,
cioe a0 che si trova a 0UI;

• Postcursors: sono i contributi che andranno ad interferire nei simboli
che sono trasmessi dopo il simbolo attuale (an+1, an+2, . . . ).

Da questo si evince poi che trasmettendo una moltitudine di simboli tutti a
distanza di 1UI i contributi di tutti i simboli continuano a sommarsi rendendo
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impossibile determinare il corretto livello del simbolo e generando un errore in
ricezione (figura 2.9). Da qui nasce il fenomeno di Inter Symbolic Interfiarence
(ISI).

TH_H

TH_M

TH_L

11 11 10 11 1100

Figura 2.9: Esempio di errore di trasmissione dovuto all’ISI

Tale problematica si considera responsabile di una riduzione del BER e
una chiusura del EYE Diagram. In questo caso il livello di ogni simbolo può
non rientrare all’interno dei margini di rumore prefissati e quindi può portare
all’interpretazione errata. Questo fenomeno emerge maggiormente nelle comu-
nicazioni i cui simboli sono discretizzati con un numero maggiore di livelli e
ravvicinati tra loro, come nella codifica PAM-4.

Tramite il diagramma ad occhio in figura 2.10 è possibile notare come l’ISI
influenza il valore in cui viene campionato il simbolo.

1+1+1
1+1+0

1+0+1
1+0+0

0+1+1
0+1+0

0+0+1
0+0+0

Figura 2.10: Eye Diagram per un canale di trasmissione con ISI
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2.2.2 Jitter e Skew

Come stato discusso la motivazione che porta all’analisi del jitter in un sistema
di comunicazione ad alta velocità è legato a contenere l’aumento del BER.

Figura 2.11: Esempio di come il jitter influenza il campionamento del segnale
in ricezione

La definizione enuncia che il jitter è definito come variazione di fase rispetto
alla sua posizione ideale. Da questo si deduce che il jitter può essere cruciale
nel campionamento di un un segnale.

Figura 2.12: Differenza tra jitter casuale e deterministico

Esistono differenti tipologie di jitter, a seconda delle sorgenti e del compor-
tamento, come si evince in figura 2.12:

• Random Jitter (RJ): È la tipologia di jitter dovuta a delle sorgenti
di rumore casuali, la Probability Density Function (PDF) di questa ti-
pologia di jitter infatti è tipicamente una gaussiana. Le sorgenti di que-
sto rumore sono innumerevoli, possono derivare da phase noise, thermal
noise, amplitude noise, . . .

In questa tipologia di jitter risulta impossibile definire una accurata
ampiezza picco-picco, ma si utilizzano concetti di media e deviazione
standard [10];
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• Deterministic Jitter (DJ): Questa tipologia di jitter è causata da una
sorgenti di anche ampia entità. É definito come deterministico a causa
del fatto che, in teoria, conoscendo il sistema sarebbe possibile stimare
la sua entità. Esempi di sorgenti di DJ sono interferenze elettromagne-
tiche, riflessioni sul canale, ISI; come tutte quei fenomeni deterministici
che possono portare ad una variazione in ampiezza del segnale, ma che
spostano il punto di campionamento del segnale rispetto ad una certa
soglia. A sua volta può essere distinto in:

– Periodic Jitter (PJ): quella tipologia di jitter che si ripete in
maniera periodica, dovuta ad effetti come spread spectrum clock o
feedthrough del reference clock del Phase Locked Loop (PLL).

– Data Dependant Jitter (DDJ): Soni i contributi di jitter legati
ai dati trasmessi, conoscendo:

∗ ISI: contributo legato alle non idealità del canale di trasmissio-
ne e alla sovrapposizione dei simboli

∗ Duty Cycle Distortion (DCD): in questo caso errori di Duty
Cycle portano ad una non corretta durata dei simboli, ( esempio
sottosezione 2.4.3) .

– Bounded Uncorrelated Jitter (BBJ): Non dipende direttamen-
te dai dati trasmessi, ma è legato a fenomeni come il crosstalk, ge-
nerano una variazione in ampiezza che si traduce in una variazione
di jitter del segnale dei dati.

2.3 Equalization e Adaptation
In precedenza è stato detto che le non idealità del canale possono portare
conseguenze sulla trasmissione delle informazioni. Esistono quindi una serie di
strategie utilizzate per mitigare questi effetti, al fine di ottenere una risposta
in frequenza costante sul canale.

Ĺe principali strategie introdotte riguardano una serie di filtri analogici e
digitali, studiati al fine di ottenere una migliore risposta possibile:

• TX FFE, ovvero un filtro digitale che permette effettuare un boost
delle alte frequenze prima di trasmettere il segnale, esso permette di
compensare il comportamento passa basso del canale;

• RX CTLE + RX VGA, filtro lineare analogico in ricezione composto
che ha un filtro passa alto permette di effettuare un’attenuazione delle
basse frequenze, e poi grazie all’amplificatore amplificare a valle tutto il
segnale ricevuto per ristabilire i livelli corretti.

• RX FFE, filtro digitale lineare volto alla rimozione di ISI agendo sui
termini lineari.



2.3. EQUALIZATION E ADAPTATION 15

• RX DFE, filtro che permette di compensare anche le non linearità del
canale di trasmissione, e che punto agisce in maniera non lineare.

Tutti questi elementi verranno introdotti in seguito. Questi strumenti sono
utilizzati al fine di correggere le non idealità lineari e non lineari del canale.

Ognuno di questi elementi presenta dei coefficienti, e il valore di ognuno
di questi deve essere scelto in modo da ottenere una risposta in frequenza
complessiva che sia costante al variare della frequenza. É possibile dedurre
quindi che tutti questi valori dipendano dalla effettiva risposta in frequenza
del canale di trasmissione.

In alcuni casi possono esistere dei preset per questi coefficienti, in altri, è
necessario implementare determinati algoritmi in hardware, che permettono
di valutare il set migliore di coefficienti che portano ad un occhio ben aperto.
Queste algoritmi fanno parte delle procedure di adaptation del Ser-Des.
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2.4 Phisical Layer: Lane Transmitter
Il trasmettitore è il blocco presente all’interno della lane che si occupa della
serializzazione dei dati e della loro conversione nel segnale che verrà effetti-
vamente trasmesso, rappresentando di fatto l’interfaccia diretta con il canale
di comunicazione. Esso è composto da una parte digitale, la cui responsabi-
lità principale riguarda l’elaborazione dei dati, e da una parte analogica, che
genera il segnale modulato secondo lo schema PAM-4.

Data la complessità e le criticità evidenziate nel capitolo precedente, si
rende necessario introdurre alcuni sistemi e tecniche che permettano di mitigare
tali problematiche, riducendole al minimo. In figura 2.13 è possibile vedere una
tipica implementazione di questo blocco.

SERIALIZER DAC

DCC

2UI clock

FFE
ENCOD

ING

CALiBRATION

TX_p/TX_m

ADAPTATION

Figura 2.13: Schema a blocco tipico di un trasmettitore

In seguito sono descritti i vari blocchi fondamentali.

2.4.1 Encoder

Lo stadio di encondig può avere un ruolo rilevante durante il progetto di un
sistema. Alcune delle motivazioni che richiedono l’introduzione di uno stadio
di codifica sono le seguenti:

• garantire il bilanciamento della componente continua (DC).

• assicurare transizioni sufficienti per il clock recovery.

• rilevare e correggere errori.

Esistono diverse tipologie di codifica che presentano differenti vantaggi e
svantaggi. Un semplice esempio, usato dalle prime generazioni di PCIe, è
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la codifica 8b/10b, una codifica ridondante, che introduce degli overhead in
termini di bit trasmessi. Bisogna precisare che a seconda della generazione gli
stadi di codifica possono essere anche presenti in nei layer superiori.

In questo stadio, nel caso di modulazione PAM-4, può essere anche intro-
dotta la Codifica Gray che consente di ridurre il numero di transizioni tra i bit
di due simboli adiacenti, al fine di ridurre l’errore nel caso in cui un simbolo
non venga riconosciuto correttamente.

2.4.2 TX FFE

Come descritto in precedenza, nel trasmettitore è necessario effettuare una
predistorsione del segnale in modo da enfatizzare le alte frequenze e garantire
in uscita dal canale un segnale con un Eye Diagram che riporta determinate
caratteristiche, riuscendo a compensare l’ISI. Il Transmitter (TX) Feed For-
ward Equalizer (FFE) è il dispositivo utilizzato a questo scopo. La struttura
base di questo componente è quella di un filtro FIR digitale, come mostrato in
figura 2.14.

+ + + +

Z-1 Z-1 Z-1

x x x

Z-1

x

x[n+1] x[n] x[n-1] x[n-2]x[n+2]

y[n]

pre-cursors post-cursors

c+2 c+1 c-1 c-2

Figura 2.14: Struttura tipica di un fir

L’ equazione (2.1) rappresenta la classica equazione di un filtro FIR

y[n] =
i<M∑
i=−N

ci · x[n+ i] (2.1)

dove N indica il numero di Postcursors, ovvero i taps introdotti per la
correzione dell’ISI relativa ai simboli precedentemente inviati, e M indica il
numero di Precursors, ovvero i taps relativi ai che sono stati inviati dopo il
simbolo attuale.

I vari coefficienti ci saranno calcolati durante la fase di adattamento e
dipendono, in maniera intuitiva, da quanto siano elevati i valori residui derivati
dai simboli adiacenti a quello attuale.
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INPUT SIGNAL

OUTPUT SIGNAL

+1

+3

-1

10 01 11 11 1001

Figura 2.15: Esempio di funzionamento di un FFE

Un esempio di possibile segnale di ingresso e uscita è mostrato in figu-
ra 2.15. In questo caso per semplicità è stato considerato un FFE con 2 tap,un
postcursor e un precursor. Ad esempio, nel terzo simbolo inviato, "01" la
sua ampiezza è stata aumentata visto che i simboli adiacenti possiedono una
ampiezza di segno opposto.

2.4.3 Serializer

Il serializer è quella parte del dispositivo che si occupa di una trasformazione dei
dati da un formato parallelo a seriale (figura 2.16). In ingresso al serializzatore
arrivano i simboli in formato parallelo generati in uscita dal FIR.

Questa serializzazione dei dati è effettuata tramite una serie di multiplexer
2 to 1 che seleziona i dati in relazione al clock di ingresso. Si nota come ogni
stadio di multiplexer possiede come selettore una versione divisa del clock di
ingresso.

In questa configurazione è possibile notare come un Dyty Cycle non idea-
le possa portare a delle distorsioni sul segnale trasmesso, in particolare sul
multiplexer finale che possiede un clock 2UI.

Infatti quando il clock assume valore alto sono riportati in uscita i simboli
"pari" e nel caso opposto quelli di ordine "dispari". Se il duty cycle non
assume un valore del 50% esiste la possibilità che non tutti i simboli abbiano
una durata di 1UI, non garantendo, in ricezione, il campionamento dei dati
nel punto ottimale, generando gli errori di DCD jitter. Nei capitoli successivi
verrà discusso una particolare calibrazione con l’obiettivo di mitigare questo
problema.

2.4.4 Digital to Analog Converter

In questo caso tramite un Digital to Analog Converter (DAC) è possibile
riuscire a convertire il simbolo generato in un livello di tensione da trasmettere



2.4. PHISICAL LAYER: LANE TRANSMITTER 19

parallel 
input
data

serial output

clk_2UIclk_4UIclk_8UI

Figura 2.16: Schema di principio di un serializzatore a 8 ingressi

al canale.
Data la presenza dell’equalizzatore FFE i livelli effettivi di segnale generati

in uscita non sono solo i quattro possibili ottenibili dalla codifica PAM-4, ma
è necessario codificarli con un numero superiore di bit.

Inoltre è necessario ricordare che in uscita ogni lane trasmette il segnale in
maniera differenziale.

2.4.5 Duty Cycle Correction

Come anticipato precedentemente il blocco di Duty Cycle Correction (DCC)
si occupa di regolare il Duty Cycle del clock necessario al serializzatore, La sua
interfaccia possiede un codice di calibrazione che, opportunamente impostato
dalla logica digitale, permette una correzione del duty cycle.
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2.5 Phisical Layer: Lane Receiver
La struttura base di un ricevitore è solitamente più complicata di quella di
un trasmettitore, infatti si ha la necessità di dover ricostruire il segnale. In
aggiunta sarà presente anche un blocco di Clock Data Recovery (CDR), il quale
permette di allineare il clock di riferimento con i dati.

In figura 2.17 è presente la tipica architettura di un ricevitore, le cui parti
verranno dettagliate in seguito:

ATT CTLE VGA ADC

SIGDET

SKEW

ANALOG

DIGITAL

in_clk

RX input

CDR

ADC 
correct

FFE DFE
ADC 
data 

alligner

CDR

DATA

CALIBRATION

ADAPTATION

Figura 2.17: Schema di un ricevitore

2.5.1 CTLE

Il Continuos Time Linear Equalizer (CTLE) (nella trattazione chiamato an-
che HFEQ) è un filtro utilizzato per contrastare l’effetto dovuto al naturale
comportamento a banda limitata del canale di comunicazione. Il suo compito
principale è quello di amplificare le alte frequenze, che vengono attenuate dal
canale. Il comportamento reale di questo filtro è assimilabile a quello di un fil-
tro passa-alto, ovvero attenua le componenti a bassa frequenza per equalizzare
a quelle ad alta frequenza.

Dato che il canale non è conosciuto a priori, è necessario effettuare una
procedura di adaptation/equalization per eseguire il tuning della funzione di
trasferimento del filtro.

2.5.2 VGA

Il Variable Gain Amplifier (VGA) è utilizzato all’interno del ricevitore per am-
plificare il segnale proveniente dal CTLE, infatti il segnale in uscita dal CTLE
risulta attenuto, ed è necessario ristabilire un livello di ampiezza adeguato.
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2.5.3 ADC

L’Analog to Digital Converter (ADC) presente in questo ricevitore ha la ne-
cessità di essere ad elevate prestazioni, data la necessita di avere un elevato
throughput. Per questa motivazione l’architettura sfrutta la strategia del Ti-
ming Interleaving : al fine di massimizzare le prestazione è possibile utilizzare
differenti ADC (figura 2.18), che lavorano in modo sfasato e alternato del tem-
po, riuscendo ad incrementare la frequenza di campionamento complessiva,
simulando un ADC complessivo con prestazioni più elevate.

ADC

ADC

ADC

ADC

IN

ck_0

ck_1

ck_2

ck_3

Figura 2.18: Esempio di ADC interleaving

Anche se non sono richieste prestazioni e latenze ridotte per ogni singolo
ADC, è comunque presente una certa criticità nei segnali di clock generati,
dato che lo sfasamento tra ognuno di essi è legato fortemente alla distanza tra
un simbolo e il successivo. Da ciò è possibile dedurre come lo skew tra le varie
fasi diventa un elemento determinante, visto che è il responsabile del cam-
pionamento dei simboli in ingresso. Avere uno sfasamento non perfettamente
ideale causa un campionamento non ottimale dei dati in ingresso, portando ad
una non perfetta determinazione dei simboli.

2.5.4 RX FFE

Anche nel ricevitore la presenza di interferenza intersimbolica risulta necessita
di essere attenuata tramite un Feed Forward Equalizer (FFE).

Il funzionamento di base è uguale a quello proposto nel TX FFE (sottose-
zione 2.4.2), solo che in questo caso il calcolo dell’ISI è effettuato considerando
i campioni che arrivano dall’ADC.

I valori dei precursors e postcursors sono valutati durante la fase di adap-
tation.



22 CAPITOLO 2. PANORAMICA SUI SER-DES E PCIE

Il valore del simbolo attuale viene calcolato compensando il contributo di
ISI che ci si aspetta, considerando i simboli precedenti e successivi. Per fare
un esempio il contributo c−1 ·x[n− 1] sarà uguale in ampiezza al contributo di
ISI presente simbolo attuale, dovuto al simbolo precedentemente inviato, ma
avrà segno opposto, e così via con tutti i tap considerati nel’FFE.

È possibile affermare, contrariamente a quanto avviene nel trasmettitore,
i simboli non sono più codificati sui 4 livelli tipici del PAM-4, ma su un nu-
mero elevato di bit. Questo evidenzia la presenza di alcune problematiche,
ovvero che i contributi di correzione di ISI valutati da questo filtro sono cal-
colati considerando i simboli in ingresso ancora distorti, ovvero contenete del
rumore/crosstalk o a sua volta, altri contributi di interferenza intersimbolica[5].

Basti pensare ad esempio che se un simbolo precedente o successivo presenta
un contributo di rumore/crosstalk esso sarà anche riportato su tutti gli altri
simboli adiacenti.

2.5.5 DFE

Il DFE è un equalizzatore non lineare integrato all’interno del ricevitore, impie-
gato per consentire la riduzione dell’ISI. La necessità di introdurre un sistema
di questo tipo nasce dal fatto che l’utilizzo di un equalizzatore lineare, come
l’FFE utilizzato nello stadio precedente, non è sufficiente a compensare i con-
tributi del canale dovuti alla presenza di riflessioni, connettori, . . . o altre non
idealità presenti nella risposta in frequenza del canale [6].

+

x

slicer

coeff Δ 

in out

Figura 2.19: Schema di funzionamento di un DFE

Un rilevante vantaggio nell’utilizzare un equalizzatore di questo tipo risiede
nella capacità di non introdurre rumore, dato che i dati che arrivano dal feed-
back sono quelli discretizzati ottenuti a valle del decisore [5] . L’architettura
base è mostrata in figura 2.19.

In sostanza il dispositivo in questione agisce modificando i Decision Level
(D-Lev), ovvero le soglie di decisione del protocollo PAM-4 in funzione dei dati
precedentemente ricevuti quindi delle decisioni prese in precedenza.
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Figura 2.20: Esempio funzionamento DFE

Per chiarire il funzionamento è possibile analizzare il comportamento ri-
portato in figura 2.20: ipotizzando che il simbolo attuale sia ” + 3” (codifica i
bit 11) e il simbolo precedentemente ricevuto sia stato ”− 3”, ci si aspetta che
il simbolo attuale, abbia un forte contributo di ISI, che agisce riducendo il suo
valore effettivo, rendendo impossibile superare la soglia predisposta. Il DFE
agisce, tramite l’informazione del simbolo precedentemente ricevuto, introdu-
cendo un termine di correzione all’ingresso del decisore che può essere visto
come una riduzione delle soglie [7].

Come si nota in figura 2.19, nel percorso è presente un loop, e questo può
portare a problematiche nei vincoli di timing, si ricorda infatti che solitamente
il DFE è implementato in maniera digitale. Una possibile soluzione, chiamata
unrolled DFE, consiste nel prevalutare i coefficienti del feedback e poi selezio-
nare quella corretta. In questo modo il contributo di ritardo del sommatore
e moltiplicatore nel loop è sostituito dal solo ritardo di selezione del multiple-
xer, non risultando più un vincolo nell’incremento delle prestazioni. Questa
soluzione è possibile grazie alla presenza di solo quattro possibili uscite e alla
presenza di un solo TAP, altrimenti prevalutare tutte le altre combinazioni
porterebbe ad un impegnativo dispendio di risorse.

Inoltre è possibile notare come il DFE sia quell’elemento nel quale avviene
la quantizzazione del segnale. Infatti in ingresso i dati che rappresentano i
simboli sono espressi con un numero elevato di bit ( dipende dal numero di bit
in dell’adc e del FFE) e sono convertiti nei due bit che rappresenta il simbolo
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PAM-4.

2.5.6 RX Clock Data Recovery

Una fondamentale parte di una architettura di un ricevitore è quella che si
occupa della generazione del clock necessario per campionare i dati. La pre-
senza delle non idealità definite precedentemente rende necessario stabilire con
precisione l’istante di tempo in cui ogni simbolo è campionato. Analizzando
un classico diagramma ad occhio in ricezione, si nota come anche un minimo
disallineamento porta al campionamento dei dati in un punto dove risulta im-
possibile riuscire a discriminare il valore dei segnali in arrivo. Ancor di più lo
è in una modulazione PAM-4 dove ma presenza di soglie ravvicinate tra loro
causerebbe un drastico aumento del BER. [4] [2].

In un protocollo asincrono come il PCIe, è necessario creare riuscire a ge-
nerare il clock di campionamento dei dati a partire dai soli segnali in ingresso.
Tutto ciò è effettuato dal blocco di Clock Data Recovery (CDR). Esistono
differenti architetture, quella presa in considerazione usa un approccio misto
tra il digitale e l’analogico, e che sfrutta l’utilizzo di un Phase Interpolator
(PI) e ILO.

A differenza di un sistema come un PLL, che riesce a recuperare il clock da
un segnale periodico, la sfida di un CDR è quella di utilizzare un segnale con
un generale andamento casuale. Per evitare la problematica di operare con dei
dati che presentano lunghe sequenze di uni o zeri, e quindi senza transizioni
utili per il recupero del clock, nei layer superiori sono implementate particolari
codifiche che permettono di ottenere una distribuzione del segnale casuale.

Phase detector

Come si evince dall’architettura mostrata in figura 2.17 La prima parte del
loop del CDR sfrutta i dati in arrivo dall’ADC, per poi andare in ingresso al
phase detector. Esso si occupa di generare una informazione riguardante lo
sfasamento tra il clock attuale e i dati in ingresso, fornendo una informazione
se il clock è in anticipo o ritardo rispetto al punto ottimale in cui campionare
i dati.

Un sistema per ottenere questa informazione potrebbe essere quella di so-
vracampionare il dato, e valutando con precisione dove avviene la transizione.
In un HS Ser-Des questa opzione non è implementabile a cause delle elevate
frequenze di lavoro. Quello che rimane è sfruttare per queste applicazioni è
un Boude Rate Phase Detector, che permettono di recuperare l’informazione
di fase usando come riferimento un solo campione per ogni simbolo, uno tra
questi è il Mueller Muller Phase Detector (MM-PD).

Esso sfrutta le misure di ampiezza dei campioni in arrivo, per cercare di
determinare se il simbolo è stato campionato nel suo punto di massimo. Quello
che si immagina infatti è che avere dei simboli che presentano un contributo di
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interferenza intersimbolica, abbiano un valore di ampiezza non costante, quindi
campionando il segnale in un punto differente a quello ideale la sua ampiezza
diminuisce.

Come possibile immaginare un sistema di questo tipo non è in grado di
funzionare nel caso un cui il segnale di ingresso abbia un comportamento simile
a uno ideale, infatti basta pensare che se il simbolo ha un inviluppo quasi
costante non è se campionato con un differente sfasamento, il risultato non
produce rilevanti differenze e non è possibile capire se anticipare o ridurre lo
sfasamento.

Phase Interpolator

Il Phase Interpolator (PI) è il blocco usato per effettuare la correzione di fase.
Agisce utilizzando diverse fasi in ingresso sfasate tra di loro e genera un clock
in uscita come somma pesata delle varie fasi in ingresso. I pesi di queste fasi
sono quelli che permettono di ottenere uno sfasamento del segnale in uscita e
possono essere controllati tramite un codice digitale.

Un classico esempio è basato su due fasi di ingresso (componenti I/Q) le
quali sono utilizzate per la generazione di una uscita con fase arbitraria ϕ
(equazione (2.2)).

y(t) = sin (2πfot+ φ) =

= sin (2πfot) cos (ϕ) + cos (2πfot) sin (ϕ)
(2.2)

Come si nota,le ampiezze delle componenti in fase e in quadratura non
possono essere decise arbitrariamente. Immaginando di codificare ad esempio
ϕ in un codice digitale di controllo, sfruttando la funzione sin e cos si ha la
possibilità di ottenere le corrette ampiezze delle due componenti che portano
ad una relazione lineare tra il codice e lo sfasamento ottenuto in uscita.

Una ulteriore possibile funzione di mappatura tra sfasamento desiderato
e ampiezze delle fasi è quella che sfrutta una approssimazione lineare (figu-
ra 2.21) e permette di ridurre la complessità dell’implementazione, ma al con-
sto di ottenere un andamento non lineare tra il codice applicato e lo sfasamento
ottenuto.

I

Q sinusoidal

linearφ

sinusoidal

linear

Figura 2.21: Linear interpolator code mapping
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In una implementazione reale è utilizzato un numero superiore di fasi, in-
crementando la complessità ma ottenendo un minor errore utilizzando una
valutazione lineare dei pesi.

y(t) =
N−1∑
i=0

Ai cos (ωt+
2π

N
) (2.3)

ILO

Come detto, per poter sfruttare il PI è necessario ottenere un numero elevato di
fasi equispaziate. Queste fasi sono generate localmente tramite un particolare
tipo di oscillatore chiamato, l’Injection Locking Oscillator (ILO).

Un elemento di questo tipo è composto da un oscillatore di riferimento che
genera un certo numero di fasi e con una determinata frequenza detta free
running frequency (f.r.f.), questo oscillatore può essere un Voltage Controlled
Oscillator (VCO), la cui frequenza di lavoro è definita tramite un codice di-
gitale. Al suo ingresso è presente un clock di riferimento, come quello di un
PLL. Se le due frequenze sono simili, i due segnali tenderanno a oscillare alla
stessa frequenza, attraverso il fenomeno dell’Injection Locking.

Questo fenomeno si ritrova non solo in fenomeni elettrici ma anche mecca-
nici. Un esempio è quello di utilizzare prendere 2 pendoli a frequenze legger-
mente diverse e sfasamenti diversi. Se posti a distanza ravvicinata, a causa di
vibrazioni e fenomeni di accoppiamento, tenderanno a convergere alla stessa
frequenza di oscillazione e senza alcuno sfasamento. La presenza di questa
injection permette di ottenere una sincronizzazione tra due oscillatori.

I vantaggi di una configurazione di questo tipo è rendono più efficace e
rapido le fasi di recupero del clock.

L’accoppiamento tra le due frequenze risulta possibile solo nel caso in cui
le due frequenze di oscillazione sono ravvicinate. Da questo nasce l’esigenza
di effettuare delle calibrazioni che siano in grado di misurare la differenza tra
le due frequenze e minimizzarla. Un ulteriore fenomeno si manifesta durante
la fase di injection: si genera un errore di sfasamento tra le varie fasi prodotte
proporzionale alla differenza tra l’injection frequency e la free running frequen-
cy. Si deduce quindi anche la presenza di meccanismi per la correzione dello
skew.



Capitolo 3

GTECH Speed-up

Lo scopo di questo capitolo dell’elaborato è quella di chiarire e descrivere le
semplificazioni effettuate nella hard macro digitale del PHY, descritta in se-
zione 2.4 e sezione 2.5, partendo da una introduzione sulla libreria GTECH,
sulle metriche utilizzate, come sono state implementate le semplificazioni e i
risultati ottenuti.

3.1 Introduzione alla ibreria GTECH

La Generic Technology (GTECH) è una libreria di porte logiche generiche,
utilizzata per effettuare la sintesi dell’RTL e generare una netlist. Un possibile
esempio della descrizione di queste celle in Verilog è mostrato in listato 3.1.
Queste celle sono tutte definite a livello comportamentale, risultando comple-
tamente prive di informazioni come strength, capacità, tempi di propagazio-
ne. . . tipici di una libreria classica standard-cell per la sintesi logica. L’assenza
di ritardi di propagazione impedisce l’analisi e l’ottimizzazione del timing basa-
ta su dati reali da parte del sintetizzatore. In alcuni casi, è possibile modellarle
con ritardi unitari, uguali per tutte le celle. Ne consegue che, a differenza di
una sintesi basata su una libreria logica standard, non sono presenti file Stan-
dard Delay Format (SDF) o Standard Delay Constraint (SDC), contenenti le
annotazioni dei vincoli e dei ritardi necessari per la simulazione della netlist.

1 module MUX2 ( A, B, S, Z );
2 input A;
3 input B;
4 input S;
5 output Z;
6

7 assign Z = (S) ? B : A;
8 endmodule
9

10 module NAND2 ( A, B, Z );
11 input A;
12 input B;

27
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13 output Z;
14

15 assign Z = ~(A & B);
16 endmodule
17

18 module FD2 ( D, CP, CD, Q, QN );
19 input D;
20 input CP;
21 input CD;
22 output Q;
23 output QN;
24

25 wire Q;
26 wire QN;
27 wire s_CP;
28 wire s_D;
29 reg s_Q;
30

31 assign s_CP = CP;
32 assign #(‘Thld) s_D = D;
33

34 always @(posedge s_CP or negedge CD) begin
35 if (!CD)
36 s_Q <= #(‘Tco) 1’b0;
37 else
38 s_Q <= #(‘Tco) s_D;
39 end
40

41 assign Q = s_Q;
42 assign QN = ~s_Q;
43 endmodule

Listing 3.1: Esempio di porte della libreria GTECH

Come già anticipato, esistono molteplici motivazioni che giustificano l’uti-
lizzo di una netlist di questo tipo. La principale è legata alla necessità, da parte
del committente dell’IP, di disporre di un modello simulabile, garantendo al
contempo a Synopsys la possibilità di offrire questo servizio senza divulgare
informazioni o file coperti da proprietà intellettuale, come l’RTL originale.

3.2 Giustificazioni per la semplificazione della
parte DSP

La libreria GTECH è utilizzata come strumento di supporto fornito al customer
per facilitare l’integrazione dell’IP nel SoC, analizzandone il comportamento
ad alto livello. In tali condizioni non è necessario effettuare delle simulazioni in
maniera fedele di ciò che accade a basso livello, ed è possibile simulare scenari
di funzionamento ideali. Principalmente l’utilizzo di un canale di trasmissione
ideale, quindi non soggetto alle problematiche descritte precedentemente come
l’ISI. In questo contesto le tecniche di DSP implementate nel datapath digitale
non forniscono alcun vantaggio, ma al contrario, sono elementi che rendono
più complessa la simulazione. Un canale ideale infatti implica che i valori dei
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coefficienti dei vari filtri siano valutati in maniera tale da rendere trascurabile
il loro effetto.

Quanto descritto fin ora è da vedere come l’opportunità che permette la
semplificazione della parte DSP dell’architettura durante la sintesi della netlist.

3.3 Metodo di analisi delle performance
Per avere una idea di quali siano le istanze che portano ad un maggiore di-
spendio di tempo di simulazione e capire su quali elementi è necessario agire,
esiste la necessità di effettuare una serie di simulazioni al fine di analizzarne
come il tempo di simulazione è suddiviso tra le varie istanze. L’utilizzo di uno
strumento come un Simulation Profiler diventa indispensabile.

Questo strumento fa parte dell’ambiente utilizzato per effettuare le simu-
lazioni, basato sui seguenti tool di Synopsys:

• Synopsys VCS: esso si occupa di compilare i file necessari per la simu-
lazione, l’RTL o la netlist, ed effettua la simulazione producendo il file
Fast Signal Database (FSDB) che contiene le informazioni delle forme
d’onda ottenute.

• Synopsys Verdi: un tool utilizzato per visualizzare o i risultati ottenuti
da VCS.

3.3.1 Simulation Profiler

Il Simulation Profiler è uno strumento integrato in Synopsys VCS utilizzato
per l’analisi delle performance di una simulazione logica, sia di RTL che gat-
level, al fine di analizzare come il tempo di simulazione è distribuito nelle varie
parti.

Durante una simulazione vengono raccolte informazioni sul quanto ogni
blocco è utilizzato durante la simulazione, che siano essi assign, always,
forever, . . .

E’ possibile abilitare il Simulation Profiler agendo sul comando diVCS ,
come mostrato in listato 3.2.

1 vcs -kdb -simprofile ...

Listing 3.2: Comando per avilitare il simulation profiler

Al termine della simulazione è poi disponibile un report che presenta tutte
le informazioni necessarie al fine di valutare il tempo di simulazione. É possibile
visualizzarlo tramite un apposito comando di Verdi che permette di avere una
visualizzazione più dettagliata (listato 3.3).
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1 verdi -profilePath [simprofile dir] -ssf [fsdb dir]

Listing 3.3: Comando per visualizzare i risultati del simulation profiler

Ogni report da analizzare è composto da un sommario, che riporta come
il tempo totale é suddiviso tra le varie componenti della simulazione, ovvero
la simulazione del verilog, le chiamante a funzioni esterne, la generazione dei
file di output, il tempo necessario per lo scheduling, elaborazione dei segnali,
l’overhead introdotto dal profiler (figura 3.1). . .

Questo implica il fatto che se si effettuano delle migliorie per un determinato
blocco è presente anche un ulteriore miglioramento dovuto alle altre parti della
simulazione, per fare un esempio se alcuni elementi vengono rimossi diminuisce
anche il tempo necessario per effettuare il dump delle waveform di uscita.

Figura 3.1: Esempio di sommario del Simulation Profiler

La seconda schermata, figura 3.2, riporta come il tempo di simulazione è
impiegato all’interno dei vari moduli istanziati nella gerarchia. Una precisa-
zione da fare riguarda il fatto che i tempi indicati riguardano il solo tempo
necessario per la simulazione del Verilog. Nel report sono presenti 4 colonne:

• Inclusive Time/Percentage: indica il tempo in valore assoluto/percen-
tuale per simulare in maniera complessiva quell’istanza e anche tutti i
moduli istanziati al suo interno;

• Exclusive Time/Percentage: Indica il tempo necessario per simulare so-
lo il modulo in questione, escludendo tutti i moduli che sono istanziati
al suo interno. Utile se è necessario analizzare solamente i processi/-
segnali (always, assign) che sono definiti all’interno del modulo stesso,
trascurando i moduli istanziati al suo interno.

Nel caso in questione verranno presi come riferimento gli Inclusive Time/-
Percentage, dato che la GTECH essendo una netlist, presenta all’interno di
ogni modulo delle istanze di altre celle, il che renderebbe non apprezzabile il
tempo di simulazione esclusivo di gerarchia superiore.

3.3.2 Testbench utilizzato

Come è possibile intuire, il tempo necessario per completare una simulazione
può essere influenzato in modo significativo dal modo in cui il testbench stimola
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Figura 3.2: Esempio della vista Instance del Simulation Profiler

i segnali del design da simulare. Esistono due aspetti da considerare: il primo
riguarda quali segnali vengono effettivamente attivati all’interno del testbench
durante la simulazione e quindi quali parti del design vengono stimolate di
conseguenza. Il secondo riguarda il tempo simulato, ovvero la durata virtuale
della simulazione.

Entrambi i due aspetti possono portare infatti ad avere risultati differenti
in termini di tempo di esecuzione della simulazione (il tempo necessario per
elaborare la simulazione), visto che non chiariscono univocamente il carico
effettivo per il simulatore.

Ad esempio, un testbench può simulare un intervallo di tempo molto lungo,
ma se non genera transizioni sui segnali o non attiva blocchi significativi del
design, il carico computazionale sarà ridotto, e quindi anche la durata reale
della simulazione sarà breve. Al contrario, in altri casi, una simulazione con
un tempo interno breve può richiedere molto tempo per essere completata,
a causa dell’elevato numero di segnali coinvolti e delle numerose valutazioni
richieste.

Questo comportamento è strettamente legato al funzionamento del simu-
latore stesso. I simulatori utilizzati per la verifica RTL o netlist sono infatti
event-driven, e non time-driven. Ciò significa che l’elaborazione avviene solo
quando si verificano eventi, come un cambiamento di valore su un segnale,
piuttosto che scorrere ciclicamente tutti i segnali a ogni passo temporale. Di
conseguenza, la complessità della simulazione dipende in larga parte dal nu-
mero e dalla frequenza degli eventi generati, e non semplicemente dalla durata
del tempo simulato.

Per questo motivo, tutte le simulazioni verranno condotte facendo riferi-
mento a un tempo di simulazione nominale comune, cercando di lavorare in
delle condizioni reali, in cui tutti i blocchi fondamentali devono essere attivi
che consentano di ottenere dei risultatati simili a quelle delle applicazioni.

Il testbench utilizzato è strutturato in questo modo: una parte preliminare
del è esegue la gestione delle procedure di startup, in cui è emulato uno stato
di inizializzazione, considerando l’attivazione di tutti i blocchi principali, una
seconda parte dove avviene la comunicazione dei dati vera e propria, e infine
uno stato di power-off.

Bisogna anche chiarire quali sono i blocchi istanziati all’interno del test-
bench: oltre ai blocchi principali digitali del trasmettitore e del ricevitore sono
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presenti dei modelli analogici, sia del trasmettitore che del ricevitore, come
mostrato in figura 3.3.

TX DIGITAL
RTL/netlist

TX ANA 
MODEL

RX DIGITAL

RTL/netlist

RX ANA 

MODEL

IDEAL 
CHANNEL

PRBG

Figura 3.3: Struttura base del testbench

Questo implica che il contributo del tempo di simulazione non sarà da
attribuire del tutto alla netlist sintetizzata con la libreria GTECH, ma anche
alla presenza di questi modelli analogici.

Tutto questo per ottenere delle informazioni del profiler che siano il più
verosimili possibili e che permettano una corretta individuazione dei blocchi
responsabili di rallentamenti sul tempo di esecuzione della simulazione. Una
precisazione da fare riguarda quindi la durata complessiva della simulazione.

3.3.3 Simulazione di rifermento

Come già detto, prima di procedere con le ottimizzazioni è necessario stabilire
una condizione di partenza e ottenere dei risultati del profiler al fine di indivi-
duare i blocchi con una maggiore influenza il tempo di esecuzione. I risultati
ottenuti sono visibili in figura 3.4 e figura 3.5.

Figura 3.4: Sommario sul tempo di simulazione iniziale della netlist GTECH

Dalla figura 3.4 è possibile ottenere il tempo complessivo di simulazione:

Tref,tot = 122.52 s (3.1)

Questo tempo di simulazione potrebbe sembrare non eccessivo, e si potreb-
be pensare che non sia necessario apportare miglioramenti. Tuttavia, si tratta
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Figura 3.5: Report dettagliato tempi di simulazione GTECH iniziale

solo di una soluzione di riferimento. Nella realtà, infatti, gli algoritmi da te-
stare in queste simulazioni possono avere una durata molto maggiore, anche di
diverse ore. Per questo motivo, ottenere dei risultati più rapidamente potrebbe
essere particolarmente vantaggioso.

Dalla figura 3.5 si nota come l’elemento critico sia il ricevitore, gli elementi
che spiccano sono i due filtri FFE, uno quello utilizzato dal datapath e l’altro
quello utilizzato dal sistema di CDR. Entrambi i blocchi sono semplificabili
visto che sono legati all’equalizzazione del canale di trasmissione.

Anche se il trasmettitore non è fondamentale per la diminuzione del tempo
di simulazione può anch’esso essere semplificato, sempre per quanto riguarda
il modulo tx_ffe.

In queste analisi si è preferito tenere in considerazione dei valori assoluti
dato che, dal momento che una volta che si iniziano ad introdurre dei diverse
modifiche può capitare che i valori percentuali possano essere falsati dal fatto
che introducendo una modifica e ad esempio riducendo il tempo di simulazione
di un blocco, un altro blocco che fino a prima aveva un tempo di simulazione
trascurabile poi diventa dominante anche se rispetto alla condizione iniziale
non porta alcun miglioramento.

In tabella 3.1 sono riportate le principali instanze semplificabili:

modulo Tref [s]
Tref

Tref,tot
[%]

rx_ffe 20.66 16.86
rx_ffe_cdr 14.29 11.66

tx_ffe 1.63 1.33

Tabella 3.1: Tempo iniziale dei blocchi che influenzano la simulazione
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3.4 Implementazione delle semplificazioni

A livello di datapath è possibile rappresentare in generale le operazioni svolte,
utilizzando come esempio un filtro FIR, il quale ha il funzionamento simile
a quello dell’FFE. anche se le istanze su cui si è sviluppata l’ottimizzazione
presentano delle implementazioni differenti che rendono molto vantaggioso e
andare a rimuover quanto visto.

+ + + +

Z-1 Z-1 Z-1

x x x

Z-1

x

x[n+1] x[n] x[n-1] x[n-2]x[n+2]

y[n]

pre-cursors post-cursors

c+2 c+1 c-1 c-2

Figura 3.6: Esempio di semplificazione applicata ad un filtro FIR

In figura 3.6 è possibile identificare con linea tratteggiata gli elementi non
necessari per la valutazione dell’output del filtro.

Queste modifiche devono essere fatte in modo tale da non influenzare il
comportamento del timing e funzionamento del blocco, ma principalmente
agendo sulla logica combinatoria e inoltre devono essere inserite in modo tale
che non si vada ad intaccare l’RTL sintetizzabile. Per rispettare questi requisiti
è stato deciso di inserire una macro che, nel caso in cui venga definita permette,
di selezionare il modulo semplificato per la sintesi con la GTECH.

1 ‘ifndef GTECH_OPTIMIZE
2

3 // modulo per la sintesi con GTECH
4 module rx_... (
5 input wire in1 ,
6 ...
7 );
8 ...
9 // descrizione modulo originale

10 endmodule
11

12 ‘else
13

14 // modulo per la sintesi con GTECH
15 module rx_... (
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16 input wire in1 ,
17 ...
18 );
19 ...
20 // modulo semplificato
21 endmodule
22

23 ‘endif

Listing 3.4: Esempio di come sono istanziate le modifiche

3.4.1 RX FFE

Una volta effettuate le semplificazioni ed effettuato una nuova sintesi con la
libreria GTECH il report del profiler è mostrato in figura 3.7 e figura 3.8.

E’ possibile estrarre l’informazione sul tempo complessivo di simulazione

Tnew,tot =
52.34

0.6157
= 85.00 s

con un guadagno in percentuale di

=
85.0 s− 122.52 s

122.52 s
= −30.62%

per quanto riguarda la componente Verilog, il guadagno ottenuto è il se-
guente:

Tref = 20.66 s

Tnew = 1.61 s

che si traduce in un guadagno in termini percentuale di:

=
1.61 s− 20.66 s

122.52 s
= −15.54%

Si nota in maniera evidente come in questo caso, una parte considerevole
di vantaggio si ottiene anche da tutte le altre componenti di simulazione.

Figura 3.7: Report del tempo di simulazione per RX_FFE
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Figura 3.8: Report del tempo di simulazione per RX_FFE

3.4.2 RX CDR FFE

Uno dei possibili blocchi in cui è possibile effettuare un miglioramento è una
seconda versione del filtro FIR del ricevitore inserito all’interno del blocco di
CDR.

Il filtro in questione possiede un numero elevato di elementi combinatori
che possono essere esclusi. Purtroppo non è possibile mostrare nel dettaglio
quale sia il datapath e come si è andato ad agire, ma dopo aver sintetizzato
nuovamente la netlist con libreria GTECH e lanciato la simulazione con lo
stesso testbench fatto in precedenza il report ottenuto è mostrato in figura 3.9
e figura 3.10.

Figura 3.9: Report del tempo di simulazione per RX_FFE_CDR

Il tempo complessivo di simulazione risulta:

Tnew,tot =
60.14

0.6250
= 96.22 s
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Figura 3.10: Report del tempo di simulazione per RX_FFE_CDR

con un guadagno in percentuale di:

=
96.22 s− 122.5 s

122.5 s
= −21.47%

Per quanto riguarda la componente Verilog, il guadagno ottenuto è il se-
guente:

Tref = 14.29 s

Tnew = 0.71 s

che in percentuale è espresso come:

=
0.71 s− 14.29 s

122.52 s
= −11.08%

3.5 Analisi risultati ottenuti

Per valutare l’impatto finale delle semplificazioni effettuate è stata sintetizzata
una nuova GTECH contenente tutte le modifiche, e successivamente è stata
eseguita una simulazione, la quale ha prodotto i report in figura 3.11 e in
tabella 3.2.
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Figura 3.11: FInal Summary

COMPONENT Tref Tnew
Tnew−Tref

Tref,tot

VERILOG 78.18 s 40.10 s −31.10%
PLI/DPI/DirectC 28.51 s 19.12 s −7.66%

VCD 10.72 s 7.76 s −2.41%
KERNEL 4.36 s 2.74 s −1.3%

TOTAL 122.5 s 70.3 s −42.5%

Tabella 3.2: Riduzione tempo di simulazione complessivo

Nello specifico la tabella 3.2 evidenzia la differenza tra il valore di riferimen-
to valutato nella simulazione iniziale (Tref ) e quello ottenuto in quella finale
(Tnew).

É anche possibile effettuare una analisi più dettagliata vedendo i contributi
che forniscono i più evidenti miglioramenti per quanto riguarda i moduli Verilog
in figura 3.12.

Figura 3.12: Report dettagliato verilog nel caso complessivo
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In tabella 3.3 è possibile vedere i miglioramenti ottenuti in termini di tempo
di simulazione complessivo per ogni modulo che è stato ottimizzato.

modulo Tref [s] Tnew [s] %new

rx_ffe 20.66 2.14 3.05%
rx_ffe_cdr 14.29 0.75 1.06%

tx_ffe 1.63 < 0.14 < 0.2%

Tabella 3.3: Riduzione tempo di simulazione dovuto ai singoli moduli

I risultati ottenuti riguardano la percentuale di tempo di simulazione ot-
tenuto rispetto al tempo complessivo di simulazione. Per avere una idea più
generale sul tempo di simulazione complessivo risparmiato à possibile valuta-
re la percentuale di tempo risparmiato in rapporto al tempo di simulazione
iniziale.

∆%Trisp =
Tnew,el − Tref,el

Tref,tot

(3.2)

modulo %Trisp

rx_ffe −15.11%
rx_ffe_cdr −11.05%

tx_ffe −1.3%

Tabella 3.4: Riduzione tempo di simulazione dovuto ai singoli moduli
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Capitolo 4

Sviluppo di modelli analogici

In questa parte della trattazione si descrive lo sviluppo di modelli analogici
comportamentali, che saranno utilizzati con l’obiettivo di rendere possibili e
ottimizzare le co-simulazioni necessarie per analizzare il comportamento del
firmware, della logica RTL e della macro analogica durante la fase di cali-
brazioni degli elementi analogici PHY. Questo capitolo prevede una parte in-
troduttiva sugli algoritmi e meccanismi tipici di una calibrazione, al fine di
introdurre il lettore al contesto, una parte successiva riguardante i dettagli
implementativi delle calibrazioni nei modelli flat e una parte finale sull’analisi
delle prestazioni dei modelli sviluppati.

4.1 Introduzione alle calibrazioni

Prendendo in considerazione la classica architettura del ricevitore descritto nei
capitoli precedenti (figura 2.17), si nota come molti dei blocchi analogici pos-
seggano dei segnali di controllo provenienti dal dominio digitale. Il loro scopo
è quello della gestione delle calibrazioni, meccanismi utilizzati al fine di man-
tenere elevate le prestazioni dei circuiti analogici, garantendo il funzionamento
del dispositivo durante l’utilizzo in punti di lavoro differenti.

A differenza dei circuiti digitali, la parte analogica risulta molto sensibi-
le alle variazioni Process Voltage Temperature (PVT), che possono generare
un’alterazione di grandezze fisiche come tensioni di offset, skew e guadagni,
portandole al di fuori del valore nominale e della tolleranza richiesta per il
corretto funzionamento del sistema. La variazioni PVT hanno la problema-
tica di non essere costanti durante il ciclo di funzionamento del dispositivo,
ad esempio una possibile variazione di temperatura dovuta al cambiamento di
power state può portare ad una variazione di tutte le grandezze in gioco, per-
ciò durante il funzionamento del dispositivo gli algoritmi di calibrazione sono
eseguiti più volte, sia durante la fase di startup del dispositivo che durante la
trasmissione.

41
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Figura 4.1: Schema di un tipico loop di calibrazione

Oltre all’adozione di tecniche di progettazione volte a mitigare gli effetti di
tali variazioni, con le calibrazioni è possibile introdurre un sistema che consenta
di controllare il valore della grandezza fisica critica e modificarlo. Un esempio
di tale funzionamento è l’utilizzo di un convertitore DAC, impiegato per mo-
dificare e correggere la corrente di bias di un circuito analogico, portandola al
valore ottimale. L’obiettivo delle procedure di calibrazione diventa quello di
individuare il valore ideale del codice di calibrazione, in modo da ottenere una
perfetta compensazione delle non idealità.

Solitamente gli algoritmi utilizzati per valutare il corretto codice di calibra-
zione richiedono l’utilizzo di un segnale di feedback proveniente dal dominio
analogico, utilizzato per incrementare o decrementare il codice fino ad ottenere
una corrispondenza tra il valore da misurare e quello di riferimento. Questo
meccanismo funziona tramite un loop di calibrazione, (figura 4.1) che richiede
una interazione tra la parte analogica e la parte digitale.

Per chiarire meglio il funzionamento, una procedura di calibrazione che
sfrutta un algoritmo lineare per la ricerca del codice ottimale avviene nel
seguente modo:

• la calibrazione inizia con un codice di partenza, solitamente un midcode,
ovvero un valore situato a metà della dinamica del codice;

• un comparatore confronta il valore attuale con quello di riferimento e
genera un segnale inviato al dominio digitale usato per la decisione di
direzione, ovvero se incrementare o decrementare il codice di calibrazione;

• la Finite State Machine (FSM) che esegue l’algoritmo calcola il nuovo
codice di calibrazione in funzione del segnale ricevuto dal comparatore
ne aggiorna il valore.

• il codice è nuovamente inviato al blocco analogico per attuare la modifica
della grandezza da calibrare;
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• il loop è poi ripetuto fino a quando la grandezza da calibrare non rag-
giunge il valore di riferimento.

Per evitare di introdurre ulteriori errori lungo il loop viene utilizzato un par-
ticolare comparatore ad alte prestazioni, con la peculiarità di essere progettato
in modo tale da compensare internamente le proprie variazioni PVT,rendendole
trascurabili rispetto a quelle degli elementi da calibrare. Data la sua comples-
sità, esso è riutilizzato in molte calibrazioni, rendendo il suo segnale di uscita
condiviso tra i vari blocchi digitali.

Come si evince dall’algoritmo mostrato, non si ha la possibilità di effettuare
le simulazioni riguardanti le calibrazioni senza coinvolgere entrambi i domini
analogici e digitali, rendendo le calibrazioni una fase ostica da simulare dal
punto di vista di complessità computazionale nel caso in cui vengano utilizzati
modelli complessi e completi della parte analogica.

4.2 Modelli analogici flat con calibrazioni

Un metodo pe la simulazione della parte analogica riguarda lo sviluppo di
modelli comportamentali (flat models) per la Macro Analogica, chiamati rx-
_ana_flat e tx_ana_flat, rispettivamente per il ricevitore e trasmettitore.
Questi sono dei modelli sviluppati come moduli Verilog e che possono essere
simulati all’interno dei simulatori logici per l’RTL. Essi si emulano il compor-
tamento della parte analogica, in modo da garantire una interazione con la
parte digitale, quando necessario. Non è necessario riprodurre in modo fe-
dele il funzionamento interno della parte analogica, ma si presta attenzione
principalmente ai segnali utilizzati per l’interfacciamento con la parte digitale.

Inizialmente questi modelli non supportavano la possibilità di poter effet-
tuare le calibrazioni, ma emulavano solamente gli elementi principali del data-
path analogico. I modelli sviluppati in questo lavoro di tesi saranno istanziati
all’interno per favorire una verifica high coverage della del firmware e dell’RTL
durante la fase di calibrazione del dispositivo.

Come in generale per i modelli analogici flat, anche per la parte delle ca-
librazioni lo scopo di questi modelli è di verificare il corretto funzionamento
dell’interfaccia tra la parte analogica e digitale, alcuni esempi sono:

• verificare che le tensioni di alimentazione siano abilitate correttamente,
ad esempio se durante cambiamenti di power state le tensioni non sono
gestite correttamente si potrebbe verificare la perdita dei codici presenti
negli elementi sequenziali come registri o latch;

• i codici di calibrazione sia correttamente campionati nei latch, per con-
trollare che i clock siano correttamente forniti agli elementi sequenziali;

• i segnali di enable siano correttamente settati;
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• le polarità dei loop di calibrazione siano corretta;

• i segnali di controllo dei moduli analogici, come comparatori, multiplexer,
ADC, . . . siano corretti.

Questo comporta che per effettuare una calibrazione non sia necessario
attuare le correzioni sul modello e sul datapath analogico, ovvero non è neces-
sario che il codice di calibrazione agisca effettivamente sui blocchi analogici, a
differenza di alcune eccezioni che saranno dettagliate in seguito.

Questo approccio permette di ottenere calibrazioni indipendenti le une dalle
altre, permettendo di poter simulare una sola simulazione e senza che i risultati
di ogni calibrazione influenzi le altre.

Il funzionamento vero e proprio del blocco da calibrare non è simulato,
ma solamente come la grandezza da calibrare del blocco agisce in funzione dei
segnali di stimoli delle calibrazioni, generando i segnali digitali in caso di cali-
brazione. All’interno dei modelli infatti vengono riconosciute le combinazioni
di segnali necessarie ad attuare le calibrazioni e dopo di che il corrispondente
blocco è riconosciuto e abilitato, generando l’uscita necessaria alla calibrazione.

4.2.1 Implementazione generale modelli

I seguenti modelli relativi alle calibrazioni sono implementati in Verilog. Le
grandezze analogiche sono implementate sotto forma di variabili di tipo real,
ovvero una variabile floating point a doppia precisione. La correzione è effet-
tuata modificando il valore di queste grandezze fittizie.

Le variazioni PVT delle grandezze da calibrare sono inizializzate in pseudo-
casuale, ciò può essere fatto sfruttando delle tipiche funzioni verilog necessarie
per la generazione di numeri casuali, le funzioni in questione sono urandom()
scalati opportunamente in uno specifico range definito per ogni calibrazione,
cercando di replicare delle variabili casuali indipendenti.

I modelli vengono generati prendendo come riferimento due fonti differenti:
la prima è un documento che contiene tutte le specifiche funzionali di come
devono essere progettati i circuiti di calibrazione, la seconda fonte è composta
dagli schematici analogici, usati per avere una visuale maggiormente detta-
gliata su alcuni elementi da andare a modellare, come i le tensioni di alimen-
tazioni specifiche utilizzate per gli elementi di memoria o i segnali di enable
effettivamente usati.

Per essere in grado di avere dei valori che siano indipendenti da una si-
mulazione alla successiva è necessario inizializzare un seed ogni qual volta è
necessario lanciare VCS. Ad esempio è possibile utilizzare come seed la data
attuale. Il range di variazione di queste variabili è cruciale per garantire un
corretto funzionamento del blocco si di calibrazione. Infatti se la variazione è
maggiore della correzione che può essere attuata possono essere riscontrati dei
particolari errori di convergenza.
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Dato che non è sempre necessario avviare le procedure di calibrazione, esse
possono essere attivate o disattivate attraverso direttive di precompilazione
(‘ifdef e ’define). Se la macro ‘ENABLE_FLAT_MODEL_CALIB è definita, i
blocchi relativi alle calibrazioni sono istanziati all’interno del modello flat.

4.3 Simulazioni per calibrazioni
Per le simulazioni di queste calibrazioni sono stati adattati alcuni testbench
preesistenti. In generale il compito di questo testbench è quello di asserire i
segnali necessari alla configurazione e alla gestione delle FSM che eseguono le
calibrazioni, emulando il seguente flusso:

• settare i relativi registri di configurazione per ogni calibrazione

• configurare le modalità di calibrazione (coarse, fine o mission mode)

• asserire il segnale di start

• aspettare in polling il segnale di done

• verificare se siano asseriti segnali di errore

• procedere allo stesso modo con le altre calibrazioni

Il testbech utilizzato è basato sullo stesso utilizzato nel capitolo precedente,
ma utilizzando l’RTL e introducendo dei test per ogni calibrazione al fine di
analizzarne il comportamento. Inoltre ogni simulazione contiene comunque
l’abilitazione del Simulation Profiler, usato per verificare le prestazioni dei
modelli sviluppati.

4.3.1 Verifica dei modelli

Una volta effettuate le simulazioni tramite il testbench descritto in precedenza
per analizzare il funzionamento base e valutarne le prestazioni simulative, i
vari modelli sviluppati sono stati inviati al team di verification per i test di
verifica funzionale.

Ogni modello è stato importato all’interno dell’ambiente di verifica e per
verificarne il corretto funzionamento. Per ogni calibrazione esiste un test, svi-
luppato in precedenza, utilizzato per la verifica del comportamento del modello
non comportamentale già presente. Questi test sono stati riutilizzati e oppor-
tunamente modificati al fine di verificare il comportamento dei modelli flat,
per vedere se si comportino in modo atteso. Ad esempio all’interno di questi
modelli sono presenti dei checker che si occupano di monitorare il funziona-
mento di determinate grandezze fisiche come tensioni, correnti, o anche codici
di calibrazione.
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4.4 Calibrazioni RX

In figura 4.2 è possibile analizzare una panoramica sul modello del ricevitore al
termine dello sviluppo dei modelli. Lo schematico proposto mostra l’integra-
zione degli elementi sviluppati nel modello già esistente. Risulta evidente come
molti dei moduli istanziati (quelli all’interno del modulo rx_ana_cal_top) sia-
no completamente indipendenti dal datapath necessario per la generazione dei
paralleli inviati poi al dominio digitale. In questo modo l’introduzione degli
errori PVT necessari per le calibrazioni non influenza in alcun modo i dati
ricevuti, e rende anche le calibrazioni del tutto indipendenti le une dalle altre.
Una nota importante riguarda la presenza di un unico segnale di feedback, il
quale è condiviso da tutti i moduli sviluppati. Da ciò nasce l’esigenza di gene-
rare per ogni calibrazione un segnale di controllo, da utilizzare per la selezione
del feedback corrispondente nel multiplexer di uscita.
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Figura 4.2: Rappresentazione semplificata del modello rx_ana_flat

Quanto descritto precedentemente non risulta valido per le calibrazioni
concerni l’Analog to Digital Converter (ADC). In questo caso, il dato digitale
ottenuto dal convertitore è utilizzato direttamente come feedback per deter-
minare i codici di calibrazione, rendendo indispensabile l’introduzione delle
variazioni PVT al suo interno. Tali calibrazioni richiedono la generazione di
alcuni segnali e pattern di ingresso, introducendo in questo modo un mul-
tiplexer per la selezione dell’apposito ingresso attraverso specifici segnali di
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controllo. I vantaggi e le limitazioni di questo approccio saranno dettagliate
successivamente.

Nello specifico in figura 4.3 e’ possibile vedere come ogni calibrazione pos-
siede tutti i segnali di controllo necessari e sono usati per il segnale di detection.
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Figura 4.3: Multiplexer per il risultato di calibrazione

4.4.1 RX CTLE, VGA, SIGDET calibration

I modelli di calibrazione di RX CTLE, VGA, SIGDET hanno una struttura
molto simile, e sono tutti volti alla calibrazione di una grandezza di offset.
Questo perché che come definito nel capitolo introduttivo, questi modelli non
emulano il comportamento del funzionamento del blocco, e quindi, dato che la
grandezza da calibrare è la medesima, possano essere realizzati sfruttando lo
stesso principio. Per descrivere il funzionamento di terrà in considerazione la
calibrazione del Continuos Time Linear Equalizer (CTLE).

La calibrazione in questione è implementata con lo scopo di ridurre l‘offset
in uscita. Nell’implementazione effettiva è possibile misurare questo valore di
offset in uscita ed effettuare la misura tramite il calibration comparator. Il
funzionamento è il medesimo analizzato nella sezione precedente.

L’algoritmo di ricerca del codice è di tipo lineare. Il codice è inizializzato
ad un valore intermedio, detto midcode e il suo valore è incrementato o decre-
mentato di un certo valore, a seconda del valore di in uscita dal comparatore.
Per spiegare il funzionamento è possibile procedere con il seguente esempio:
se il valore di offset è superiore al valore di riferimento il codice è ridotto in
modo tale da ridurre l’offset, si procede quindi con il numero necessario di
step utili per correggere l’errore. Una volta raggiunto il valore di riferimento
il codice inizia a oscillare attorno al valore di riferimento. Una possibile ana-
logia a questo algoritmo può essere trovata nel principio di funzionamento di
un convertitore ADC a inseguimento. Lo schema a blocchi del modulo Verilog
usato per emulare questa simulazione è disponibile in figura 4.4.
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Figura 4.4: Schema di funzionamento modulo HFEQ calibration

Figura 4.5: Risulatati simulazioni HFEQ calibration

Il sistema di correzione dell’offset è stato impostato come nell’equazione (4.1),
se il codice si trova al MIDCODE non è presente alcuna correzione, invece un
incremento del codice di calibrazione porta ad una riduzione dell’offset.

Voff = Voff,pvt − [CAL_CODE −MIDCODE] · δoff (4.1)

Per rendere un’idea del funzionamento in figura 4.5 è mostrata una simu-
lazione che mostra come il valore di offset si corregge e tende al valore di
riferimento.

Se il codice di calibrazione satura verso il massimo o il minimo valore la
macchina a stati asserisce un segnale di errore.

Come già accennato una calibrazione di questo tipo sfrutta il calibraiton
comparator e quindi il segnale di uscita è condiviso con altre calibrazione. Una
parte importante risulta tutta la parte si logica che acquisisce in ingresso i se-
gnali provenienti dal digitale e in arrivo all’analogica e verifica che i valori attesi
siano rispettati. Se tutte le condizioni sono rispettate allora la calibrazione è
correttamente riconosciuta e il risultato del comparatore è inviato in uscita.
Se le condizioni non sono rispettate la FSM non sarà in grado di effettuare la
calibrazione correttamente e il segnale di errore è asserito.

4.4.2 RX ATT calibration

Il segnale in uscita all’ATT è di tipo differenziale, questo rende necessario
effettuare la calibrazione dei segnali di offset ad entrambe le uscite. Anche in
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questo caso il funzionamento è molto simile a quello precedente. Lo schematico
è riportato in figura 4.6.
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Figura 4.6: Schema di funzionamento modulo ATT calibration

4.4.3 RX DCC calibration

La seguente calibrazione è sviluppata al fine di correggere il Duty Cycle delle
varie fasi del segnale di clock generato dall’ILO, nel CDR. Questa calibrazione
è effettuata in maniera comportamentale, si è deciso di generare in maniera
casuale i valori di δc di ogni fase. La presenza di un numero elevato di fasi,
e quindi la necessità di un numero elevato di codici porta alla presenza di
una bus. Nel modello si è quindi gestita la decodifica dei segnali, verificando
in questo modo il corretto funzionamento. Oltre a queste caratteristiche, lo
schema di calibrazione è del tutto simile a quelli descritti precedentemente.
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Figura 4.7: Schema di funzionamento modulo RX DCC calibration

4.4.4 RX ADC calibrations

L’architettura di calibrazione implementata in questo Ser-Des, utilizzata per
identificare e fornire un feedback per la correzione degli errori PVT provenienti
dall’ADC, è digitale. Senza entrare nel dettaglio, i dati digitali forniti in uscita
dal convertitore sono utilizzati per l’esecuzione di algoritmi che permettono di
individuare le discrepanze tra i valori ideali dei dati dai valori effettivi, potendo
così intervenire con delle correzioni, siano esse nel dominio digitale o analogico.

Per questo motivo, diversamente dalle altre calibrazioni, non è possibile
modellare la grandezza fisica da calibrare in modo indipendente dal datapath,
ma risulta necessario introdurre in esso gli errori di calibrazione. Per questa
motivazione si sfrutta il modello di convertitore analogico-digitale preesistente
nel modello flat del ricevitore, definendo al suo interno gli errori PVT. Un ADC
ad alta velocità realizzato tramite la tecnica di interleaving possiede più di un
Successive Approximation Register (SAR) ADC al suo interno e ognuno di essi
possiede una propria caratteristica di conversione, la quale può soffrire di non
idealità. Gli errori PVT prima citati sono di due tipi: quelli che introducono
una variazione di offset e pendenza all’interno della caratteristica di ogni con-
vertitore, e quelli che introducono un errore di timing e campionamento dei
vari ADC.

Data la maggiore complessità del modello in questione, queste calibra-
zione richiedono di monitorare in modo più pedante la presenza di elementi
che potrebbero portare ad una riduzione e rallentamento nell’esecuzione delle
simulazioni.

Nelle sottosezioni 4.4.5 to 4.4.7 è presente la descrizione di ogni calibrazione
implementata.
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4.4.5 RX ADC offset

In precedenza è stato accennato che le calibrazioni ADC offset e gain presen-
tano un meccanismo di correzione dell’offset effettuato in digitale. Per quanto
riguarda l’offset questo meccanismo è progettato in maniera tale da garantire
una correzione inferiore ad 1 LSB.

adc skew 
calibration N

random noise 
generator

dataADC flat

clk

logic

IN

CDR

new models

old models

offset 
correction

FSM offset 
calibration

ANALOG

DIGITAL

Figura 4.8: Schema ADC offset calibration

Dallo schema in figura 4.8 si nota come la calibrazione in questione non
abbia la necessità di introdurre complessi blocchi analogici per la calibrazione,
dato che la correzione è effettuata totalmente in digitale. Bisogna solo prestare
attenzione al segnale in ingresso all’ADC per la generazione dei dati necessari
per l’esecuzione dell’algoritmo.

Nell’algoritmo di calibrazione si applica la strategia del dithering attraverso
il calcolo del valore medio dei dati per valutare anche gli offset sub-LSB. In un
sistema ideale tutto ciò non risulta possibile a causa dell’assenza del rumore, e
ciò non porterebbe ad una efficace valutazione dell’offset. Per ovviare a questo
problema come segnale di ingresso dell’ADC è utilizzato un rumore con una
distribuzione pseudocasuale con valore medio nullo e ampiezza 1 LSB.

1 always @(posedge clk ) begin
2 noise <= (( ‘RANDOM % 11) /10.0 - 0.5) * LSB; // random noise (+-0.5LSB)
3 end

Per fare un esempio, se nella seguente caratteristica ideale si inserisce un
rumore con valor medio 1.25 ci saranno 75% di probabilità che il valore sia 1 e
25% che sia 2. Effettuando quindi il valor medio del codice di uscita si ottiene
proprio il valore richiesto 1.25.

code = 0.75 · 1 + 0.25 · 2 = 1.25 (4.2)
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Figura 4.9: Ditherinig sulla caratteristica dell’ADC

4.4.6 RX ADC Gain

Anche in questo caso si nota come l’implementazione proposta in figura 4.10
sia esente da blocchi analogici per la correzione del guadagno, risultando tutto
effettuato in modo digitale. La particolarità è che risulta necessario introdurre
un DAC per la generazione della tensione DC da fornire in ingresso all’ADC.
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Figura 4.10: Schema ADC offset calibration

4.4.7 RX ADC skew

Come anticipato nella sottosezione 2.5.3 è fondamentale controllare lo skew dei
segnali di clock in un timing interleaving ADC al fine di ottenere un ottimale
campionamento dei dati ed evitare l’introduzione di jitter deterministici.

Durante il funzionamento reale la variazione PVT di skew associato di
ogni fase può essere legata alla somma dei contributi di skew legata alle varie
non idealità presenti. Nel modello sviluppato si è deciso di tenere questo
contributo completamente casuale e scorrelato dal valore e di generarlo tramite
una variabile pseudocasuale.

In figura 4.11 è presente una panoramica di quali sono i blocchi di rx-
_ana_flat coinvolti in questa calibrazione. Il primo è un blocco interposto
nel percorso del clock che parte dal CDR e arriva all’ADC che si occupa del-
l’attuazione della correzione dello skew e il secondo è un blocco che si occu-
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pa della generazione di un determinato pattern di dati in ingresso utilizzato
dall’algoritmo per la misurazione dello skew di ogni fase.
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Figura 4.11: Panoramica della calibrazione

In figura 4.12 è mostrata nel dettaglio l’implementazione del primo blocco.
Oltre alla classica logica sequenziale e combinatoria per la valutazione del
valore di skew si attua anche lo skew nel percorso, come mostrato nel listato 4.1.
Anche se da specifiche il range di skew sarebbe dovuto essere positivo e negativo
rispetto al valore di riferimento nullo, si è optato per l’inserimento di un valore
di skew di riferimento positivo chiamato t_0 al fine di evitare errori dovuti
all’assegnazione di un ritardo negativo in un segnale verilog.

1 always @(*) begin
2 for (int i=0 ; i<N ; i++) begin
3 out_clk[i] <= #( corrected_delay[i]) in_clk[i];
4 end
5 end

Listing 4.1: assegnazione delay in verilog alle fasi

In una calibrazione di questo tipo si evince tutto lo svantaggio di intro-
durre le variazioni PVT direttamente nel datapath. Ad esempio se si volesse
effettuare la simulazione di questa calibrazione non sarebbe possibile farlo e
ottenere una convergenza certa senza prima effettuare la calibrazione di off-
set e gain. Questo perché gli errori PVT di guadagno e offset presenti sui dati
non renderebbero possibile all’algoritmo la corretta discriminazione dello skew,
portando a degli errori nella simulazione.

Generazione del segnale di ingresso

Una delle parti che ha richiesto una maggiore attenzione nella modellazione di
questo blocco di calibrazione, riguarda la generazione del segnale di ingresso. Il
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Figura 4.12: Schema di principio ADC Skew Calibration

verilog non nasce come uno strumento per la modellazione di segnali analogici,
e per questo motivo la generazione in modo efficace di un segnale analogico
può risultare non proprio immediata.

In un algoritmo utilizzato per la calibrazione delle fasi di un interleaved
ADC è fondamentale riuscire a captare la minima variazione di fase del se-
gnale. Ad esempio la generazione di un segnale sinusoidale potrebbe essere
sviluppata nella modalità presente in listato 4.2, ovvero con la generazione di
un segnale di clock che definisce la frequenza di campionamento per la discre-
tizzazione di questo segnale. Se il segnale non è discretizzato in maniera oppor-
tunamente fitta esso avrebbe un evidente andamento a gradini, una variazione
di ampiezza ∆T dovuto alla modifica dello skew non verrebbe interpretato
in maniera corretta e non porterebbe nessun cambiamento nell’ampiezza e il
segnale campionato sarebbe sempre lo stesso.

1 module sinwave_generator (
2 input wire sine_en ,
3 output real sinewave
4 );
5

6 const real pi = 3.141592653589;
7 const real sine_ampl=AMPLITUDE;
8

9 real sine_period= PERIOD;
10 realtime time_s;
11

12 real resolution= RESOLUTION;
13

14 initial begin
15 clk = 1’b0;
16 forever begin
17 #(1.0* resolution /2.0) clk = ~clk;
18 end
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19 end
20

21 always @(posedge clk) begin
22 time_s = $realtime *1e-9; // second
23 end
24

25 assign sinewave = sine_en ? (sine_ampl * $sin (2*pi*time_s/sine_period))
: 0;

26

27 endmodule

Listing 4.2: Generazione di un segnale sinusoidale

Una possibile soluzione sarebbe quella di aumentare la frequenza di cam-
pionamento, fino ad ottenere uno step di campionamento paragonabile a quello
della calibrazione. Questo porta ad una particolare inefficienza, sia dal punto
di vista di tempo di esecuzione della simulazione che dal punto di vista di
occupazione di memoria. Eseguire una calibrazione completa infatti richiede-
rebbe ad uno spazio di archiviazione necessario non indifferente. L’inefficienza
è presente nel fatto che comunque, l’ADC campionerà il segnale con una fre-
quenza di campionamento fissa e quindi molti dei campioni valutati saranno
inutilizzati.

La soluzione adottata in questo modello è presente in listato 4.3.

1 module sinwave_generator_v2 (
2 input wire sine_en ,
3 input wire clk_skw_0 ,
4 input wire clk_skw_1 ,
5 input wire clk_skw_2 ,
6 ...
7 output real sinewave
8 );
9

10 const real pi = 3.141592653589;
11 const real sine_ampl=AMPLITUDE;
12

13 real sine_period= PERIOD;
14 realtime time_s;
15

16 always @(posedge clk_skw_0 or posedge clk_skw_1 or posedge clk_skw_2 or
... ) begin

17 time_s = $realtime *1e-9; // second
18 end
19

20 assign sinewave = sine_en ? (sine_ampl * $sin (2*pi*time_s/sine_period))
: 0;

21

22 endmodule

Listing 4.3: Versione implementata per la generazione di un segnale sinusoidale

La principale differenza è che la sinusoide è direttamente generata con una
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frequenza di campionamento definita dalle fasi dell’ADC. Le fasi in questio-
ne sono quelle generate dal blocco di calibrazione, dunque sono soggette alle
minime variazioni di skew generate dalla calibrazione. Un cambiamento del
codice di calibrazione fa sì che il nuovo campione di sinusoide sia direttamente
valutato nell’istante di tempo richiesto.

In questo caso il numero di campioni generato in questo caso è il minimo
indispensabile, ovvero quello che dipende dalla frequenza di campionamen-
to dell’ADC, ma mantenendo al contempo la massima risoluzione possibile,
ovvero quella della variabile $realtime intrinseca del Verilog.

4.4.8 RX ILO calibration

Come spiegato nel capitolo introduttivo l’ILO possiede al suo interno un oscilla-
tore locale programmabile e lo scopo di questa calibrazione è quella di ottenere
il codice che minimizza la discrepanza tra la sua frequenza e quella del clock
in ingresso al fine di favorire il fenomeno di injection locking. Come accennato
infatti tanto maggiore è la differenza tra le due frequenze tanto difficile risulta
ottenere il locking.

Come si evince dallo schema in figura 4.13 in questa calibrazione esistono
diversi codici e configurazioni da dover settare durante la calibrazione:

• ilo_code: ovvero il codice del dac che modifica la corrente di ingresso
di bias del ring oscillator

• ilo_config: ovvero il valore utilizzato per la selezione del della strenght
degli inverter usati per la modifica della caratteristica tensione-frequenza
dell’oscillatore locale.

Inoltre l’alogoritmo implementato richiede tre differenti feedback:

• beat_ck/beat_ck_div: si tratta di un clock la cui frequenza è pari alla
differenza della frequenza tra il PLL e la f.r.f.;

• beat_freq_sign: indica se la f.r.f. e’ maggiore o minore della frequenza
del PLL;

• max_vosc; un segnale che indica se la tensione vosc supera una certa
soglia ed è necessario diminuirla.

Per poter eseguire questa calibrazione è necessario conoscere la caratteri-
stica dell’oscillatore dell’ILO, per essere in grado di generare correttamente
il valore di beat frequency che andrà in ingresso alla macchina a stati che si
occupa della gestione della calibrazione.

Data la caratteristica non ideale e quindi non lineare dell’oscillatore, è stato
scelto di effettuare una linearizzazione attorno al punto di lavoro, al fine di
mantenere il modello semplice. Le caratteristica dalla quale è stato interpolato
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Figura 4.13: Schema calibrazione ILO
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è stata fornita dal team analogico, effettuando una serie di simulazioni spice
degli schematici.

Il modello è mostrato in equazione (4.3)

vosc = rvco · iosc + r0,vco

f.r.f = kvco · vosc + k0,vco
(4.3)

La caratteristica dell’oscillatore è dipendente dal valore del parametro ilo-
_config: esso determina la strength dei transistor utilizzati all’interno del-
l’oscillatore, permettendo quindi con lo stesso valore di corrente di ottenere
differenti frequenze e tensioni diverse. Ad esempio se l’oscillatore si trova in
una condizione tale da non riuscire a raggiungere il valore di frequenza con dei
parametri ragionevoli, viene selezionato un valore di config differente. Que-
sto comportamento è stato emulato tramite una look-up table, che pilotata
dal segnale di ilo_config fornisce i valori dei coefficienti per valutare la f.r.f.
(equazione (4.4)).

vosc = rvco[cfg] · iosc + r0,vco[cfg]

f.r.f = kvco[cfg] · vosc + k0,vco[cfg]
(4.4)

Una volta determinato il valore di frequenza è generato il segnale di beat
clock(listato 4.4), tenendo presenti gli accorgimenti necessari per ottenere un
valore di ritardo che sia sempre positivo.

1 initial begin
2 beat_ck = 1’b0;
3 forever begin
4 #(1.0/ freq /2.0) beat_ck = ~beat_ck;
5 end
6 end

Listing 4.4: Generazione del beat clock

La variazione PVT è modellata tramite una variabile casuale che agisce
direttamente sulla beat frequency.

4.4.9 RX QLL calibration

Questa calibrazione, come quella dell’ILO, mantiene lo scopo di controllare il
codice che gestisce la frequenza dell’oscillatore locale dell’ILO, ma effettuando
la misurazione in una condizione differente, ovvero durante l’Injection Locking.
Qui la frequenza dell’oscillatore locale è forzata a quella del segnale di ingresso
ma, a causa del principio di funzionamento dell’oscillatore, la discrepanza tra
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le due free running frequency si traduce un una variazione di skew tra le fasi
generate. In figura 4.15 è mostrato un esempio di come cambia lo skew in un
oscillatore con quattro fasi prima e dopo la condizione di injection.

ck_0

ck_1

ck_2

ck_3

xor_out

inj_en = 0 inj_en = 1

skew error

Figura 4.15: Skew tra le fasi in uscita dell’ILO

Differentemente all’ILO calibration vista in precedenza cambia la modalità
con cui si ottiene il feedback necessario per la determinazione del codice di
calibrazione. La calibrazione quindi agisce nella seguente modalità:

• inj_en=0: durante questa fase avviene la misurazione dello skew tra
fasi in uscita dall’oscillatore necessario per la generazione del segnale di
riferimento utilizzato nel comparatore;

• inj_en=1: in questa condizione avviene la vera e propria calibrazione.
Il confronto tra lo skew misurato in questa condizione e quello misurato
durante la fase di startup fornisce alla FSM l’informazione sull’errore di
frequenza dandole la capacità di agire determinando il codice di calibra-
zione corretto. Minimizzando l’errore di skew tra le fasi si minimizza
infatti la differenza tra le due frequenze.

La misurazione dello skew tra le fasi avviene attraverso uno XOR - Phase
Detector (XOR-PD). In ingresso sono poste le fasi e in uscita si ottiene un’on-
da quadra con Duty Cycle proporzionale allo sfasamento (equazione (4.5)).
Questo segnale è convertito, attraverso un filtro passa basso, in un segnale DC
utilizzato dal comparatore.

δc =
θ

180◦
(4.5)

Per mantenere una semplicità del modello si è deciso di non realizzare
tutto il meccanismo implementando ogni blocco descritti, ma è stato scelto di
modellare il tutto attraverso formule analitiche.

Lo skew misurato durante la prima fase della calibrazione non assume un
valore di tipo deterministico, ma è influenzato anch’esso da variazioni PVT,
siano esse dovute a variazioni di tensioni di alimentazione, di implementazione
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della XOR, . . . . É stato scelto di utilizzare una prima variabile casuale PVT
per modellare tutto ciò.

Per quanto riguarda il contributo di errore di skew introdotto durante la
condizione di injection è necessario effettuare delle precisazioni. Come facil-
mente intuibile, esso dovrebbe dipendere dal risultato della ILO calibration,
dato che è quello che determina il valore di differenza di frequenza. Al fine di
mantenere indipendenti le calibrazione è stato comunque deciso di descrivere
l’errore attraverso una variabile pseudocasuale indipendente opportunamente
scalata in un range specifico.

Nel modello si è deciso quindi di modellare il duty cycle complessivo tramite
un primo contributo dovuto alle non idealità del sistema di misurazione e un
secondo che si abilita durante la fase di injection e che emula il contributo di
skew dovuto all’errore di frequenza (equazione (4.6)).

∆δc,tot = ∆δc,PV T,startup + inj_en · (∆δc,PV T,inj −∆correction) (4.6)

Dopo aver definito come è stata implementata la misura del duty cycle
è necessario introdurre anche la parte relativa alla correzione dello skew. A
differenza dell’ILO calibration questa volta il codice di calibrazione non in-
fluenza la frequenza ma lo skew. La relazione che lega il codice dallo skew
è di tipo lineare (equazione (4.7)). La natura non deterministica del codice
di calibrazione iniziale rende necessario introdurre un registro che memorizzi
questo valore ad inizio calibrazione per valutare di quanto il codice attuale si
discosta da quello iniziale e valutare la correzione da applicare.

∆correction = k · (CODE− CODE_STORED) (4.7)

Quanto appena descritto potrebbe causare delle complicazioni a causa di
una possibile saturazioni del codice di calibrazione. Per chiarire la problema-
tica è possibile immaginare che se durante la ILO calibration il codice con-
verge ad un valore prossimo alla saturazione, la massima differenza tra CODE
e CODE_STORED potrebbe essere non sufficientemente elevata da consentire una
corretta calibrazione. Questo rende evidente la necessità di valutare i massimi
range di variazione PVT sia per l’ILO che per la Quadrature Locked Loop
(QLL) in maniera non indipendente.

In alcuni casi è necessario effettuare una conversione da skew a gradi,
e per questo motivo è necessario introdurre un mux che selezioni il valore
corrispondente di frequenza.

θ = 2πf ·∆T (4.8)

Lo schema di principio del modello realizzato è mostrato in figura 4.16.
Come è possibile intuire la corretta esecuzione della calibrazione può essere

verificata controllando se la condizione ∆δc,PV T,inj = ∆correction è verificata.
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Figura 4.16: Diagramma calibrazione QLL

4.5 Calibrazioni TX

Per quanto riguarda il trasmettitore i blocchi relativi alle calibrazioni sono
introdotti sempre all’interno del modello flat della macro analogica (tx_ana-
_flat). In questo caso tutti i blocchi sono indipendenti dal modello preesi-
stente, dato che non non è stata presente la necessità di attuare le correzioni
all’interno del datapath analogico (figura 4.17).
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dcc_code
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cal_result

Figura 4.17: Panoramica delle calibrazioni nel modello analogico flat del tra-
smettitore

4.5.1 TX DCC calibration

L’obiettivo di questa calibrazione risiede nel controllo del duty cycle (δc) del
clock con periodo 2UI utilizzato per la serializzazione dei simboli. Come anti-
cipato nel capitolo introduttivo (capitolo 2), la serializzazione dei dati avviene
tramite un multiplexer (figura 4.18): la trasmissione dei simboli pari avviene
per tutta la durata del periodo alto del segnale di clock e i simboli dispari sono
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trasmessi per tutta la durata del livello basso. Una discrepanza tra la durata
del livello alto e del livello basso può causare errori non trascurabili, dato che
ogni simbolo trasmesso non presenta la stessa durata e ogni simbolo potrebbe
non essere campionato in maniera ottimale.
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Figura 4.18: Esempio di multiplexer utilizzato per la serializzazione

Un multiplexer come quello illustrato presenta due segnali di selezione, e
per questo motivo sono presenti 2 segnali di clock sfasati tra loro di 180◦, che
da ora in avanti saranno chiamati clk_0 e clk_180.

Nell’architettura del Ser-Des, la misurazione del δc avviene utilizzando il
segnale in uscita del multiplexer quando in ingresso sono presenti degli specifici
pattern. In figura 4.19 si nota come in funzione dei pattern di ingresso del
multiplexer (1010 o 0101) il segnale in uscita sia uguale rispettivamente a
clk_0 o a clk_180,perciò filtrandolo opportunamente è possibile ottenere un
livello di tensione costante proporzionale al δc.

Il valore corrispondente a un duty cycle ottimale non è indipendente dai
valori della tensione di alimentazione e da altri fattori, per questo è necessaria
una fase preliminare volta a determinare il livello di tensione di riferimento a cui
corrisponde un δc del 50%. Dato che l’uscita è di tipo differenziale, l’algoritmo
utilizzato prevede la misurazione di ognuno dei duty cycle rispettivamente da
entrambi i canali, TX_P e TX_N.
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Figura 4.19: Clock in uscita dal multiplexer in funzione dei pattern di ingresso:
i rami evidenziati sono quelli attivi che contribuiscono alla generazione del
segnale di uscita.

Tutti i comportamenti descritti fino a questo punto devono essere imple-
mentati anche nel modello analogico comportamentale, come mostrato in figu-
ra 4.20. Il modello implementato è stato suddiviso in due differenti parti: la
prima parte interviene per la misurazione del livello di tensione di riferimento
e la seconda per l’effettiva calibrazione del δc, selezionate tramite l’ausilio di
un multiplexer.

Come anticipato, il δc è valutato in uscita ad entrambi i pad, questo por-
ta a dover modellare in maniera casuale i livelli di tensione, come mostrato
nell’equazione (4.9). Questi valori sono utilizzati così come sviluppati al fine
di ottenere la misurazione e successivamente sono utilizzati per la conversione
del valore di δc in un tensione di uscita, la quale è differente a seconda dei pad
utilizzati.

txp,1 =V H ± PV T_ERROR1

txm,1 =V H ± PV T_ERROR2

txp,0 =V L± PV T_ERROR3

txm,0 =V L± PV T_ERROR4

(4.9)

Questi livelli di tensione sono utilizzati dal convertitore analogico digitale
per il calcolo del valore di riferimento. Una possibile strategia prevede la
misura dei 4 livelli di tensione tramite un DAC, modellato nel seguente modo:

Vref =
Vdd

Nbit

·REF_CODE

La seconda parte dell’algoritmo si occupa della misura del duty cycle. Nel
modello implementato saranno quindi presenti due variabili casuali, ognuna
utilizzata per modellare le variazioni PVT di ogni segnale di clock. Questi
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Figura 4.20: Schema di funzionamento TX DCC calibration

valori hanno la necessità di essere convertiti in un livello di tensione contenente
anche le informazioni relative a quale canale di trasmissione

Il duty cycle

vout,p = txp,1 · δc
∣∣
x
+ txp,0 ·

(
1− δc

∣∣
x

)
dove x = 0, 180◦

vout,m = txm,1 · δc
∣∣
x
+ txm,0 ·

(
1− δc

∣∣
x

)
dove x = 0, 180◦

(4.10)

Il δc è espresso come:

δc = 0.5 + δc,error (4.11)

e quindi

vout,p = cmp +
(
txp,1 − txp,0

)
· δc,error

∣∣
x

where x = 0, 180

vout,m = cmm +
(
txm,1 − txm,0

)
· δc,error

∣∣
x

where x = 0, 180
(4.12)

Il modello sviluppato presenta una parte di logica utilizzata al fine di rico-
noscere se i segnali di controllo assumono i valori necessari della calibrazione,
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e successivamente, essi vengono decodificati per la generazione dei segnali di
selezione dei multiplexer utilizzati per la calibrazione. Ad esempio, come il
segnale txp_rec per la selezione dei coefficienti relativi ai pad di uscita.

Per assicurarsi che la calibrazione sia andata a buon fine è necessario analiz-
zare che il valore di dcc_180_pvt sia uguale in modulo al valore di correzione.
Ottenere una convergenza tra i valori in ingresso al comparatore è solo una
condizione necessaria ma non sufficiente per ottenere una calibrazione corret-
ta. Ad esempio, un’errata configurazione dei valori di refsel da parte del
firmware potrebbe fornire un’uscita apparentemente corretta dal comparatore,
ma corrispondente a un livello di tensione che non riflette il duty cycle effettivo
desiderato.

4.5.2 TX LVL calibration

Questo modello implementa la calibrazione dei livelli di ampiezza dei pad di
uscita del trasmettitore. Attraverso un codice di calibrazione è possibile in-
trodurre delle variazioni di correnti di bias al fine di produrre una variazione
della tensione. L’algoritmo utilizzato sfrutta una molteplici misurazioni per la
ricerca di un codice ottimale.

Data la forte non linearità presente tra il codice e i livelli di tensione in
uscita la scelta implementativa è ricaduta nell’utilizzo di una Look-Up Table
(LUT): essa è generata estraendo la caratteristica dalle simulazioni SPICE
degli schematici analogici forniti dal team analogico.

Dopo di ché i dati in uscita della LUT sono utilizzati per la generazione dei
livelli di tensione dei pad e che a loro volta sono utilizzati per la generazione
dei segnali si misurazione richiesti, come il Commmon Mode e lo swing.

Come per gli altri modelli anche in questo caso risulta necessario l’introdu-
zione di variabili casuali, al fine di emulare le variazioni pvt e avere la possibilità
di verificare il comportamento in punti di lavoro differenti.

LUT
code

+psuedo_pvt

ref_sel

TX_HI_eval

TX_LO_eval

(tx_hi+tx_lo)/2

tx_hi-tx_lotx_hi

tx_lo

offset

pseudo

amp_step

cal_result

offset_pvt +
code

psuedo

swing

cm

logiccontrols
cal_req

Figura 4.21: Schema di principio LVL calibration
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4.6 Analisi prestazioni simulative dei modelli

La fase successiva allo sviluppo di ogni modello consiste nella valutazione del-
l’impatto quantitativo sul tempo di esecuzione delle simulazioni, al fine di ve-
rificare che non introducessero colli di bottiglia e che portassero rallentatemi
eccessivi delle simulazioni.

L’efficacia dei modelli è stata analizzata attraverso due metriche differenti
per avere una visione più completa:

• la prima consiste nel valutare quanto il tempo di simulazione della parte
analogica impatti nel tempo di simulazione complessivo, per capire effet-
tivamente quale sia il contributo maggiore tra la parte digitale e quella
analogica;

• Il secondo consiste nel valutare il miglioramento rispetto al modello
analogico già esistente.

4.6.1 Impatto sul tempo di simulazione complessivo

I risultati ottenuti da questa analisi sono stati effettuati considerando, non i
tempi di simulazione dei singoli modelli sviluppati, ma i tempi di simulazione di
tutto il modello analogico, questo perché altrimenti non sarebbe stato possibile
effettuare una stima realistica, dato che comunque alcune calibrazioni sfruttano
anche le altre parti del modello. Inoltre la durata della simulazione è dettata
dalla tempo di simulazione dell’intero modello. Per fare un esempio, durante
la calibrazione dello skew dell’ADC (sottosezione 4.4.7) è coinvolto il modello
flat completo, e questo porta ad avere una misura di quanto sia effettivamente
l’overhead complessivo.

In tabella 4.1 sono riportati a titolo di esempio i risultati ottenuti per
alcune delle calibrazioni, i dati sono riportati come percentuale del tempo di
simulazione della parte analogica rispetto al tempo di simulazione del ricevitore
e anche come rapporto tra il tempo di simulazione della parte analogica rispetto
a quella digitale, utile nel caso in cui sono presenti elevate discrepanze tra i
due.

CALIB HFEQ DCC SKEW OFST ILO QLL media
Trx_ana_flat

Trx, tot
[%] 35.6 36.8 39.1 41.7 37.2 38.8 38.2

Trx_ana_flat

Trx, rtl
0.55 0.58 0.64 0.77 0.59 0.64 0.63

Tabella 4.1: Analisi tempo di simulazione di rx_ana_flat rispetto al ricevitore
completo.

Da i dati ottenuti da questo metodo di confronto può essere tratta la conclu-
sione che il modello analogico non introduce nessun colli di bottiglia o anomalie
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sui tempi di simulazione in nessuna delle calibrazioni, infatti l’overhead della
parte analogica risulta inferiore al tempo di simulazione della parte digitale.

Considerando una delle calibrazioni più complesse, dove è presente anche la
generazione di clock e altro come la ILO porta una percentuale di simulazione
molto ridotta, qui infatti il blocco rx_cal_top ha un tempo di simulazione del
0.4% durante una processo di calibrazione completo. Da qui si evince che non
bisognerebbe agire nei blocchi ma in tutto il resto cercando di disattivarlo se
non necessario.

Considerando invece i modelli per il trasmettitore i risultati ottenuti sono
i seguenti:

CALIB TX DCC TX LVL media
Ttx_ana_flat

Ttx
[%] 25.6 % 45.9% 35.7

Ttx_ana_flat

Ttx, rtl
[%] 0.34 0.85 0.595

Tabella 4.2: Analisi tempo di simulazione di tx_ana_flat rispetto al trasmet-
titore completo (digital + analog).

In questo caso i risultati mostrano degli overhead minori, questa differenza è
da rilevare nella minore complessità generale del modello analogico del trasmet-
titore, che non possiede un elevato numero di componenti (indipendentemente
dalle calibrazioni).

Nella maggior parte dei casi analizzati fino ad adesso (escludendo quelli
relativi alle calibrazioni dell’ADC) il tempo di simulazione complessivo della
parte analogica non è dettato da un elemento in particolare, come la parte
della calibrazioni, ma alla presenza di tutti quelle parti necessarie al funzio-
namento del modello e che non possono essere disattivate, anche se non sono
effettivamente coinvolte nella parte di calibrazione.

4.6.2 Confronto con i modelli già esistenti

Al fine di determinare i vantaggi introdotti rispetto gli altri modelli, è pos-
sibile effettuare le stesse simulazioni, ma utilizzando modelli differenti. Dalle
simulazioni effettuate è risultato uno speed-up complessivo (considerando sia
la parte analogica che digitale) di:

TIP, non flat

TIP, flat
≈ 10

dove TIP, non flat = Tana + Trtl e TIP, flat = Tana, flat + Trtl, cioè indicano la
simulazione complessiva della parte analogica e digitale.

Nell’equazione (4.13) si mostra come sia cambiato il peso della simulazione
della parte analogica rispetto la parte digitale confrontandolo con quello valu-
tato nella sezione precedente, considerando che il tempo di simulazione della
parte RTL risulta pressoché invariato.
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Tana

Trtl
= 15 → Tana flat

Trtl
= 0.6 (4.13)
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Conclusioni

Al termine di questo percorso di tesi è possibile evidenziare come entrambi
gli approcci, quello relativo alla semplificazione della parte DSP della netlist
GTECH, sia lo sviluppo dei modelli analogici comportamentali per le cali-
brazioni abbiano portato dei vantaggi effettivi per lo speed-up delle rispettive
simulazioni.

Nel concreto è possibile affermare che la parte della semplificazione della
netlist GTECH (capitolo 3), ha portato a ottenere una complessiva riduzione
dei tempi di simulazione di circa il 40%, permettendo quindi di ottenere delle
simulazioni a livello di sistema per i customer più efficaci.

Lo sviluppo dei modelli flat ha permesso di analizzare e aumentare la con-
sapevolezza di come lo sviluppo di una parte non sintetizzabile, come un test-
bench o in questo caso un modello analogico, abbia un impatto rilevante du-
rante la progettazione di un sistema complesso come un PHY HS Ser-Des.
L’utilizzo di approcci non ottimali per lo scopo che si deve ottenere può por-
tare a svantaggi durante la fase di test, incrementando anche di molto i tempi
di simulazione e debug.

In determinati test dove non si ha la necessità di utilizzare un modello
dettagliato l’approccio dell’utilizzo dei modelli flat può essere considerata una
soluzione ottimale. In media, come evidenziato dai vari test effettuati su di-
verse calibrazioni, si è passati da un tempo necessario per simulare la parte
analogica che fosse circa 15 volte la parte digitale a circa lo 0.6 del tempo ne-
cessario alla simulazione dell’RTL (quella alla quale si è realmente interessati e
che non può essere modificato), ottenendo vantaggi significativi e riducendo la
durata complessiva delle simulazioni di un fattore 10, ricordando che la durata
complessiva delle simulazione è di svariate ore o giorni.

Ulteriori vantaggi sono da riscontrare anche sull’occupazione di memoria
del modello flat. In generale, effettuare il dump delle waveform del modello
preesistente richiede una occupazione in memoria non indifferente. Con il
modello flat, dato l’approccio comportamentale utilizzato, il numero di segnali
è molto inferiore e questo permette di risparmiare considerevoli porzioni di
spazio di archiviazione.

69
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Questi modelli subito dopo essere stati implementati, sono stati utilizzati
da parte del team. Questo è stato utile per comprendere i risultati qualitativi
ottenuti, i modelli permettono infatti di avere una semplicità e supporto mag-
giore durante la fase di debug, fornendo un ulteriore supporto rispetto a quelli
già esistenti.

Ovviamente come tutti gli approcci bisogna tenere in considerazione anche
la presenza di svantaggi nello sviluppo di modelli di questo tipo: i vantaggi
ottenuti in termini di prestazioni simulative hanno avuto il costo di una minore
precisione dei modelli. Sebbene questo non sia influente nelle simulazioni e
nelle applicazioni prese in considerazione, ci sono altre applicazioni in cui questi
modelli non possono essere usati. Infatti non possono sostituire gli altri modelli
esistenti, ma possono essere usati come supporto e strumenti aggiuntivi.

Un possibile sviluppo futuro potrebbe riguardare l’implementazione di que-
sti modelli di calibrazione anche per le altre parti della macro analogica, non
solo al trasmettitore o al ricevitore, come quella che comprende i PLL per la
generazione dei clock di riferimento.
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