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Summary

Speech recognition is the process of transcribing spoken language into written text.

In recent years, there has been increasing interest in bringing speech recognition to

edge devices, where model size and energy efficiency become crucial. The aim of this

thesis is to investigate the integration of spiking networks within a speech recognition

context. Spiking neurons are inspired by the functioning of the human brain and

have proven capable of reducing the energy consumption of neural networks with

little or no loss in performance. Spiking neurons has a so called membrane potential

that is a variable implementing a memory mechanism. Based on the inputs, the

potential can increase or decrease. Many types of neurons also implement a decay

mechanism that at every iteration discharges the membrane by a factor called the

decay factor. When the potential reaches a predefined threshold, the neuron emits

a spike with unit value; otherwise, it outputs 0. The most common type of spike

neuron is the Leaky-Integrate-and-Fire (LIF), the behavior of which is inspired by

the RC circuit.

The spikes neurons behavior is intrinsically sequential, which is beneficial for

modeling phenomena with temporal correlations, such as speech, but also intro-

duces challenges during training, which cannot be fully parallelized. Furthermore,

the presence of spikes complicates training because backpropagation cannot be di-

rectly applied due to the non-differentiability of the spike function. Spiking neurons

require careful study of the encoding and decoding strategies used to convert infor-

mation between continuous and binary domains. Many studies compare Artificial

Neural Network (ANN) and Spiking Neural Network (SNN) approaches to assess

their impact, and more recent works propose fully spiking architectures, demon-

strating the growing interest in the field.

Our work integrates different types of spiking layers into a sequence-to-sequence

architecture (seq2seq) for speech recognition, in order to evaluate their impact.

Seq2seq architectures consist of two main components, plus a searching algorithm

used for decoding: an encoder that extracts contextual information and produces a

context vector, and a decoder that, based on previous outputs and the context gen-

erated by the encoder, produces a prediction that is then interpreted by the searcher.
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The chosen architecture includes an encoder with two convolutional blocks followed

by four LSTM layers (Long Short-Term Memory, a particular type of recurrent layer

capable of maintaining temporal dependencies over long sequences) and two fully

connected blocks. The decoder is an autoregressive decoder with an attention mech-

anism and a Recurrent Neural Network (RNN) layer. The network is trained using

a combination of two loss functions: cross entropy as the primary loss, and the

Connectioni Temporal Classification (CTC), used only during the first epochs to ac-

celerate training. Following previous works, we focused on the encoder, particularly

on its interface with the data and on the ANN–SNN transition.

Our first experiment replaced the LSTM layers with Spiking LSTM (SLSTM)

layers, which follow a similar mechanism but integrate a threshold-based spike-

generation process. To speed up training and reduce model size, we inserted a

linear layer between the SLSTM layers and the convolutional block, and reduced

the number of layers from four to two. For data encoding, we adopted firing-rate

coding. The idea behind this encoding is that a higher value of inputs corresponds to

higher firing activity. Following this idea, we can transform inputs in train of spike,

passing them to the neurons, and read the elaboration by counting the number

of spikes produced by the layer within a temporal window. We choose as temporal

window 10 steps, meaning we evaluate the firing rate every 10 spikes. The outputs of

the ANN convolutional layers were converted into spikes through duplication coding,

which repeats each value for the number of iterations in the decoding window.

Training was performed using surrogate gradients, which replace the non dif-

ferentiable spike activation function during backpropagation with a differentiable

approximation. After we experimented with spiking convolution in order to further

unify the data types processed by the network. Spiking convolution is a broad area;

our approach was to alternate standard 2D convolution layers with LIF layers. To

keep the network computationally efficient, parallelism was preserved within the

convolutional operation; afterwards, the samples were grouped across iterations and

processed sequentially by the LIF layers. As pooling strategy, we replaced the max

pooling of the reference ANN network with pooling based on the maximum firing

rate of the LIF neurons. The encoding technique used allows the first LIF layer to

integrate continuous outputs from the convolutional layer, eliminating the need for

additional encoding components and improving efficiency.

After we explored training strategies, focusing mainly on the interaction of hybrid

networks with the CTC loss and experimenting with different numbers of SLSTM

layers.

As performance metrics, we used WER and CER (Word Error Rate and Charac-

ter Error Rate), which measure network accuracy, and the percentage of insertions

(insertion of non-existent tokens), deletions (removal of existing tokens), and substi-
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tutions (replacement of true tokens with incorrect ones), which classify error types.

We also conducted an analysis of the firing rates of the different layers and the

model sizes measured in terms of number of parameters. To account for the lower

convergence velocity, we increase the number of training epochs from 15 used for

the baseline model to 30 for spiking architectures.

The results show that the best-performing model is SCNN with 2 SLSTM layers

(the SCNN2 model), achieving a WER of 18.3%. Although the WER is higher

of 8% than the one of the baseline model (WER 10,6%), the SCNN2 is for time

smaller than the original model. SCNN2 was also trained for 40 epochs to evaluate

its improvement margin. Another interesting observation is that adding two more

SLSTM layers, reaching four (SCNN4) as in the original architecture, yields nearly

identical results, slightly worse (WER 19.66%), which does not justify using a heavier

and slower architecture in our case.

Regarding CTC, we observe that increasing the number of CTC epochs leads to

degraded performance, although completely removing CTC resulted in ineffective

training.

The SCNN2 model exhibits a generally lower firing rate, particularly in the

convolutional part, which is the most energy-intensive, leading to improved energy

efficiency. This further demonstrates the superiority of the architecture also from

an energy-efficiency standpoint.
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Chapter 1

Speech recognition

Speech recognition is the task of transcribing spoken language from audio recordings.

Over the years, the methods used to perform this task have evolved significantly.

Early approaches relied on multiple interconnected components and complex struc-

tures, such as Hidden Markov Model (HMM) and Gaussian Mixture Model (GMM).

Later, these systems became progressively simpler and more efficient: GMM were

replaced by deep neural networks, and the focus shifted from recognizing senones

(subunits of phonemes) to recognizing characters or subwords, thus simplifying the

overall process.

In this chapter, we first present the classical Automatic Speech Recognition

(ASR) architecture to provide the reader with an overview of the evolution of the

field. Some traditional components, such as language models or Mel-Frequency

Cepstral Coefficients (MFCC) features, are still in use today, while others have been

replaced. We then introduce modern methods based on end-to-end neural networks,

outlining the current state of the art and describing the models adopted in our

project. Finally, we discuss audio pre-processing, sequence-to-sequence models, and

provide theoretical insights into training and decoding procedures.

1.1 ASR Classic — Basic ideas of traditional ASR

The basic goal of ASR is to find the most likely word sequence Ŵ given an observed

acoustic signal X:

Ŵ = argmax
W

P (W | X).

Here, Ŵ represents the transcribed sequence of words, while X is its corresponding

acoustic representation. Applying Bayes’ theorem, we can rewrite this expression

as:

Ŵ = argmax
W

P (X | W ) · P (W ),

9
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where the term P (X) is ignored since it is constant for all hypotheses.

The first term, P (X | W ), is called the Acoustic Model, while the second term,

P (W ), is the Language Model. The acoustic model represents how likely the observed

acoustic sequence corresponds to a given word sequence, whereas the language model

defines how probable the word sequence is in the target language. For instance, the

sentence “The cat is walking on the floor” is much more likely than “The floor is

walking on the cat.”

The standard way of obtaining the representation X is to divide the audio sig-

nal into small overlapping frames and compute for each frame the Mel-Frequency

Cepstral Coefficients (MFCCs). We then need a model capable of mapping this

temporal sequence of features to a sequence of words. The classical ASR system

introduces several key components:

• HMM (Hidden Markov Model): A Hidden Markov Model is a proba-

bilistic structure that models relationships among a sequence of hidden states.

These states are not directly observable but are linked to observable events

through an emission probability. Transitions between states are governed by

transition probabilities, which describe how likely a state evolves into another.

In ASR, the hidden states correspond to acoustic units from the pronunciation

dictionary, called senones, while the observable events correspond to MFCC

vectors. Senones are sub-units of phonemes, typically represented by two or

three states depending on the implementation.

• Lexicon: The lexicon is a mapping table that decomposes each word in the

vocabulary into its constituent phonemes and then into senones. It serves as

the link between the sequence of recognized acoustic states and the final words.

• GMM (Gaussian Mixture Model): Gaussian Mixture Models are statis-

tical models used to represent the emission probabilities of the HMM. Each

senone is modeled as a mixture of Gaussian distributions in the MFCC feature

space. These models are learned during training and provide the likelihood of

observing a particular acoustic vector given a specific state.

1.1.1 Decoding

To obtain the final transcription, the system must find the most probable sequence

of hidden states that maximizes the likelihood of the observed acoustic sequence X.

This decoding problem is efficiently solved using the Viterbi algorithm. At each time

step t, the algorithm evaluates the most likely state given the observation and the

transition probabilities from all possible previous states at time t−1. For each state,
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only the most probable path is retained through the use of backpointers, which avoid

recomputing all paths from the beginning. Once the end of the sequence is reached,

the most likely path is selected, and the complete state sequence is retrieved by

following the stored backpointers.

In the literature, several attempts have been made to replace GMM with Deep

Neural Network (DNN). However, most recent approaches have shifted toward fully

end-to-end architectures. [1]

1.2 End-to-End Methods

The new frontier of speech recognition is the end to end method. It consists of

using only a DNN for the recognition task, eliminating GMM, HMM and lexicon.

For this reason also the units to recognize are different: senons are replaced by

tokens. Tokens are subwords in which the dataset is divided. This process is called

tokenizzation and it is the only sub task not covered by the DNN (excluding the

pre elaboration of the audio signals). Furthermore, we don’t have in this structures

a match between audio frame and tokens, so we don’t need to align text and audio.

It is a great advantage to build datasets. The networks’ input are still frequency

representation of the audio. Models built with this approach has outperformed the

state of the art of hybrid and classical speech recognition at least on the most used

datasets[9], so in our project we used this approach

1.3 Tokenization

Before analyzing how networks are composed and how data are elaborated, we have

to talk about tokenizzation, that is the segmentation of the dataset in subwords

called tokens. The software used is called tokenizers. In our project, we used Sen-

tencePiece. In addition to subwords, tokens also include some special symbols:

blank, bos, eos, ukn called simply special tokens. We will discuss the blank char-

acter in the section dedicated to Connectionist Temporal Classification (CTC) loss

function, for now let’s focus on the other 3:

• Bos stays for Beginning Of Sentence, it is the token sent to the decoder when

it has to generate the first character. This aspect will be discussed better in

the Sequence-to-Sequence (seq2seq) section.

• Eos stays for End Of Sentence, when the token is generated, the decoder stops.

This aspect will be discussed better in the seq2seq section.
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• Ukn instead stays for Unknown. Some networks are trained also to handle

some unknown word and reserves a special character for this. It is possible

training its recognition using a coverage factor of the tokenizer less than one.

The coverage factor sets the percentage of the dataset’s words that will be

covered by the segmentation.

Algorithm

In our project you can choose between 3 kinds of segmentation algorithm:

• BPE (binary pair encoding) starts decomposing the data set in characters.

These are the first possible tokens. Then it chooses the most frequent adjacent

tokens’ pair, merges it, and repeats this process with the new corpus until the

number of tokens matches the required one.

• The Unigram algorithm selects the most likely segmentation. For a given

vocabulary, it evaluates all valid segmentations and maximizes the product of

the token probabilities under an independence assumption. The segmentation

with the highest product is chosen. The algorithm iteratively prunes tokens

by estimating the impact of removing each token on the corpus, removes those

with minimal impact, and re-estimates token probabilities until the vocabulary

reaches the target size. This is the most reliable system and for this reason is

what is used by default in our project.

• The Char option uses characters as tokens, so this option does not use any

algorithm.

1.3.1 Token encoding

Tokens are written units, so to allow the network to learn, we should encode them

in a numerical way.

One-hot Encoding

Each token is represented as a vector of all zeros except for one position containing

one. So for a vocabulary of m words and using vectors of length N,if we assign to

each one an integer number yi ∈ {1, . . . , N}, i = 1, . . . ,m we can represent our

dataset as a matrix Y ∈ {0, 1}m×N such that:

Yi,j = δj, yi

This method has the problem that requires to have a vector dimension at least of

the vocabulary size.
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Embedding

To reduce the size of encode and improve the performance, we can relay on embed-

ding. It works via look at table. At the beginning, every token is mapped into an

integer. This integer is used to link tokens to the table’s vectors containing weights

that will be learned via training. In this way, we not only reduce the size of the

encoding, but also we can catch correlations and similarities among tokens.

1.4 ASR pre-elaboration

1.4.1 Audio Elaboration

Audio samples cannot be sent directly to the network. First, there is a phase of

normalization in which all the data are resampled at the same sample rate. Then

they are segmented into smaller overlapping pieces and translated in the frequency

domain. The segmentation is called windowing.

Mel features

The translation in frequency is not straightforward. We chose to use Mel’s coeffi-

cient. Our hearing is not linear, we are better to perceive the differences among

lower frequencies: for example, is easier for us to catch the difference between 400

Hz and 500 Hz than the difference between 10 000 Hz and 10 100 Hz. The mel scale

rescales the frequency domain in a more linear way for our hearing. The formula is:

mel(f) = 2595 log10

(
1 +

f

700

)
This transformation is used and supported by literature because it gives the network

a representation similar to what our brain receives.

Mel coefficients are obtained using triangular filters centered on frequencies bands

equally long in the mel domain. These bands overlap each other. To get N filters,

N + 2 points are needed, including frequency range bounds. If we enumerate each

point from 0 to N +1 then every band goes from the point p−1 to p+1 for pϵ[1, N ]

To get the mel coefficients, first of all, the audio is divided in pieces via windowing.

Then the FTT of the chunk is evaluated, the result is sent to the Mel’s filters. The

number of features obtained per chunk is equal to the number of filters used.

Some other methods of elaboration are:

• MFCC: Mel-frequency cepstral coefficients (MFCCs) are based on mel co-

efficients but are uncorrelated since adjacent mel coefficients, derived from
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overlapping frequency bands, are strongly correlated. To obtain the MFCCs,

the logarithm is applied to the mel coefficients, followed by the Discrete Cosine

Transform (DCT), defined by:

Xk =
N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, k = 0, 1, . . . , N − 1

The DCT is used to decorrelate the coefficients.

• Cochleogram Overview: The cochleogram is a spectrogram inspired by the

human cochlea and is based on the gammatone filter:

h(t; fc) = a tn−1e−2πb t cos
(
2πfct+ ϕ

)
, t ≥ 0

This filter has shown promising results, sometimes outperforming other spec-

tral analysis methods.

1.4.2 Sound Augmentation

To improve the network flexibility and the amount of data we used some sound

augmentation technique. Sound augmentation consists in adding to the dataset

some modified version of his own data. Here there show the technique we used:

• Speed perturbation: Resample the data a little slower/faster. This modifies

the frequency spectrum.

• Time Dropout: Some audio parts are replaced with 0 to teach the network

to handle signals with missing parts.

• Frequency Dropout: Some spectral parts are replaced with 0 to teach the

network to handle signals with missing components.

• Additive noise: Noise is added to the signal to mimic environmental corrup-

tion.

1.5 Architectures

Once the frequency features are extracted, the data are soon elaborated by a DNN

architecture. An architecture is a way to organize the network by dividing it into

parts and assigning them subtasks. Every architecture can have a peculiar loss

function projected for the network or for one of his subpart . During the years many

architectures have been proposed, but in this thesis we deepen 2.
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1.5.1 Sequence-to-Sequence Models

This is the architecture that we used in our implementation, it is showed in figure 1.1.

It is one of the first, simpler but efficient architectures used in speech recognition.

His semplicity has been the main reason why we decided to use it. It is composed

by 2 parts.

The first part is the encoder : its role is to condense the information from the

frequency features in a significant representation, called context vector. Often the

encoder is the larger and more important part of the network.

The second part is the decoder : it generates the final output based on the context

vector and the previous output. This feedback behavior is defined as Autoregressive.

The decoder at every character has to focus on a different part of the context vector

as we do when we are listening a discussion. To do it, the decoder implements an

attention mechanism.

Attention Mechanisms

An attention mechanism can be described as a function that maps a query and a

set of key–value pairs to an output, where the query, keys, values, and output are

all vectors. In this section, we discuss the Scaled Dot-Product Attention method

introduced in *“Attention Is All You Need”* [16], which is also implemented in the

SpeechBrain toolkit.

The input consists of queries and keys of dimension dk, and values of dimension

dv. The mechanism computes the dot product between each query and all keys,

divides each result by
√
dk to maintain stable gradients, and then applies a softmax

function to obtain the attention weights over the values. Finally, the weighted sum

of the values produces the output context vector. Formally, the operation is defined

as:

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V

Here, Q represents the queries, K the keys, and V the values (also known as the

context vectors).

Teacher forcing

During the training, is evident that the token predicted is not always the correct one.

The wrong prediction does not allow to train the network to correctly identify its

successor. To overcome this difficulty in the training phase, we pass at the decoder,

as previous token, not the predicted one but the correct one. This is called teaching

forcing.



16

Figure 1.1: A seq2seq network. During training the previous token is taken by
theacher forcing, in inference from the searcher.

1.5.2 CTC Loss

One of the main problems in speech recognition, as already said, was the alignment

of audio to text. The CTC loss function solved it. At each frame is assigned a token,

but using 2 basic ideas:

• Exist a special character that has no a written meaning called blank

• More adjacent and identical tokens encode for that token only one time

The blank character encodes the idea that the previous/next frame contains the

same character as the analyzed one. This allow to have diverse length of output and

time stamp.

The CTC is often used to create another type of network called CTC network,

basically composed by an encoder trained using this function. In seq2seq models, it

is used to accelerate the convergence of network training.

The idea is to consider all possible token sequences that can give the correct

output. For each decoder step, for each valid sequence, evaluate the probability to

be predicted, then sum all the probabilities to get the loss function.
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Mathematical definition

L′ = L ∪ {∅},

is the extended vocabulary considering the blank. Now consider

pt(k) = P (πt = k | X), k ∈ L′, t = 1, . . . , T

where pt(k) is the probability distribution to get a valid k sequence at time stamp

t and πt = k are all the sequences valid at the step t. We can also define B as the

collapse map:

B : (L′)T → L≤T , B([∅, a, a∅, b]) = [a, b]

Then we can formalize the problem in this way:

P (z | X) =
∑

π∈B(z)

T∏
t=1

pt(πt),

We define the CTC loss as:

LCTC(X, z) = − logP (z | X)

1.5.3 Cross entropy loss

The cross entropy loss is the most used function to train seq2seq models. The idea

is to evaluate the difference between the probability distribution of the output and

the correct values. In order to understand, we have to introduce 2 concepts:

Entropy is the amount of information encoded in the distribution P :

H(P ) = −
∑
x

P (x) logP (x)

In paralel we can define another measurement called cross entropy that evaluates

the mean difference of information needed to correctly identify an event from P

when we take it from Q

H(P,Q) = −
∑
x

P (x) logQ(x)

In the cross entropy we want to minimize this difference (ideally to 0). In particular
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in discrete form we get:

LCE = − 1

N

N∑
i=1

C∑
j=1

pij log qij

withN number of token, C number of component of the vectors used in the decoding,

pij component of the correct token vector, qij component of the predicted token

vector.

1.5.4 Transducer Models

Transducer models are an evolution of the seq2seq models and they are composed

of three parts:

• Encoder : transforms the input features into a meaningful representation.

• Prediction network : takes the previous output and generates a representation

of it.

• Joint network : takes as input the outputs of the previous layers to generate

the final output. Its last function is a softmax, which produces an output

suitable for classification.

The Transducer architecture has long represented the state of the art in auto-

matic speech recognition. For example, ContextNet, which employs a fully convo-

lutional encoder within the RNN-T (Recurrent Neural Network Transducer) frame-

work, achieved a Word Error Rate (WER) of 1.9% on the LibriSpeech test-clean set

and 4.1% on the test-other set [3].

1.6 Commonly Used Layers

1.6.1 Convolutional Layers

The convolutional layers are widely used in most machine learning applications due

to their capability to condense information and to reduce the amount of data. In

relation to the structure exposed before, they are often used in decoders. A layer

takes more elements of input at the same time and evaluates a convolution using a

filter called kernel. The kernel can be a vector or a matrix . The kernel slides then

on the next sequence of input, the amount of element it slides on is called stride.

When the window arrived on the edge there are 2 possibilities:

The kernel stops and the output is smaller than the input.
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At the end of the data some zeros are added to get an output of the same size

of the input, this action is called padding.

Sometimes, for each layer, there are more kernels to extract more representation

from an input. In this way the number of dimensions of the output grows. The

dimensions are called channels. When we have more channels on the input, everyone

contributes to the output of every channel.

Pooling

Often we also want to use convolutional layers to reduce the number of inputs for

the next layers. To do it, after the elaboration we select the best representation, or

use a mean form of the output. This is called pooling.

The output of the convolutional layer is divided into boxes composed of a number

pooling size elements of the same channel. Based on the operation applied, we have:

mean pooling if we do the mean of all the elements in the box; max pooling if we

take only the higher values of the box. As the kernel, the pooling size can have one

or more dimensions.

1.6.2 Recurrent Layers

Recurrent layers are composed by cells having a variable depending on the previous

input, called hidden state. In this way they can implement a memory structure.

Elman RNN

All the next cells are recurrent, but from this point, when we write about Recurrent

Neural Network (RNN) layers or RNN cells, we talk about Elman’s cell, that is the

implemented type of cell in the RNN layer of pytorch. The function to evaluate the

hidden stat is:

ht = tanh
(
xtW

⊤
ih + bih + ht−1W

⊤
hh + bhh

)
where tanh can be replaced with RELU and bihbhh are biases. The output of the

cell is ht.

LSTM

Long-Short Term Memory (LSTM) represents a more complex type of recurrent

cell. They were introduced to mitigate the vanishing gradient problem that occurs

in Elman’s RNNs. An LSTM cell, as showed in the scheme 1.2 is composed of three

main gates:
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• Forget gate: decides whether the previous information should be discarded. It

takes as input the previous cell state ct−1, then applies the sigmoid function to

the concatenation of the previous hidden state and the current input. If the

result is close to zero, the corresponding information in the memory is practi-

cally not forwarded. This mechanism is implemented through the Hadamard

product between the sigmoid output and ct−1.

• Input gate: determines which parts of the new input should contribute to

the updated cell state ct. It takes as input the concatenation of the previous

hidden state and the current input, applies a sigmoid function to decide what to

remember, and a tanh function to process the candidate values. The resulting

values are combined with the output of the forget gate to update the cell state.

• Output gate: decides which parts of the cell state will be emitted as output. It

applies a tanh activation to the current cell state and multiplies it (element-

wise) by a sigmoid gate computed from the concatenation of the previous

hidden state and the current input. The result is the new hidden state ht.

The equations governing the LSTM cell are the following:

it = σ(Wii xt + bii +Whi ht−1 + bhi)

ft = σ(Wif xt + bif +Whf ht−1 + bhf )

gt = tanh(Wig xt + big +Whg ht−1 + bhg)

ot = σ(Wio xt + bio +Who ht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

where ⊙ denotes the Hadamard (element-wise) product, and σ is the sigmoid

function defined as:

σ(x) =
1

1 + e−x
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Figure 1.2: LSTM cell

1.7 Final decoding

The output of the decoder is not directly the final result. A searcher module is

introduced to integrate external components and correct possible imbalances in the

network. It evaluates a score based on the decoder predictions and other factors,

and the token with the highest score is selected as output.

Here are some components that can be added to the scoring function: Language

model, which provides the probability of a word sequence (similar to an autocorrect

system); length normalization, a rescaling term to prevent longer hypotheses from

being over-favored; maximum attention shift, which limits how much the attention

peak can move between decoding steps to avoid unstable hypotheses; and coverage

penalty, which penalizes attention distributions that leave gaps (“holes”) in the

context vector. Its formula is given by:

Penaltyt =

|X|∑
i=1

(
max(covi(t), τ)− τ

)
covi(t) =

t∑
u=1

au,i

scov(t) = −Penaltyt
t

When we chose at every step always the most likely hypothesis we apply a Greedy

approach.
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1.7.1 Beam searcher

To increase the performance, at each generation of a token diverse hypothesis are

keep. When all arrive to generate the eos toeken (or arrive to the maximum length

allowed by the programmer), the most likely phrase is chosen. The number of

hypothesis keep every iteration is called beam size. The total score is:

S(Y | X) = lp(Y ) logPdec(Y | X) + wLM logPLM(Y )− wcovscov

1.8 Benchmarks

1.8.1 Evaluation Metrics

We have talked about how networks built for speech recognition work and how they

are trained, the last step consists in evaluating their performance. The main metrics

used in speech recognition are:

• WER, Word Error Rate: the number of words not recognized. Is evaluated:

WER =
S +D + I

N

where S is the number of Substitutions (words not correct), D number of

Deletions (missing words), I number of Insertions (added words) and N is the

amount of words in the correct sentence. It is considered the most important

one.

• WRR, Word Recognition Rate: number of correct words. It is evaluated using

WRR = 1−WER

• CER, Character Error Rate: number of wrong tokens recognized. Is evaluated:

WER =
S +D + I

S +D + C

where S is the number of Substitutions (wrong tokens), D the number of

Deletions (missing tokens), I the number of Insertions (added tokens) and C

the amount of tokens in the correct sentence.



Chapter 2

Spiking Neural Network

Background

In this chapter, we will provide the basic idea behind spike neuron and spike neural

network. We will talk about the idea, the basic mathematic models and the training

methods. Then we will show some example of spiking in speech recognition and

similar tasks,we will deepen the aspects that we used in our project. Then we will

close talking about hybrid architectures.

2.1 Overview

A spike neuron is a spike inspired by biological neurons. Biological neurons have a

membrane controlling the entering of ions and in this way the electric potential of

the cell. When a certain potential is achievied, the membrane discharges emitting

a spike. The spike arrives to other neurons via paths called synapsis. The arrive of

a spike can excite or inhibit the destination. The emitter is defined as pre synaptic

neuron, the receiver is called post synaptic neuron.

An easy and similar mathematic model that we have to describe a neuron is the

RC circuit: the membrane is the capacitor, the tendency of the neuron to lower is

potential in absence of stimuli can be described considering in parallel a resistance,

the synapsis can be modeled as resistor that transform the pre synaptic spikes in

current. This model is the base of the Leaky Integrate-and-Fire (LIF) neuron that

will deepen after. There are other models similar to biological behavior, but are

more complex and less used because the benefits usually do not justify the required

power increment during the training.

23
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2.2 Leaky Integrate-and-Fire (LIF) Neurons

The simplest and most widely used model is the LIF neuron. This neuron model

originates from the RC circuit analogy 2.1. Let us derive its characteristic equation.

We know that:

Iin(t) = IR + IC

where IR is the current through the resistor and IC is the current through the

capacitor. According to Ohm’s law:

IR(t) =
Umem(t)

R

and from the definitions of capacitance and current we obtain:

Q = CUmem(t)

dQ

dt
= IC(t) = C

dUmem(t)

dt

Substituting these quantities into the equation for Iin we obtain:

Iin(t) =
Umem(t)

R
+ C

dUmem(t)

dt

Rewriting it to highlight the most important components:

=⇒ RC
dUmem(t)

dt
= −Umem(t) +RIin(t)

τ
dU(t)

dt
= −U(t) +RIin(t)

where U(t) is the membrane potential, R is the resistance, and τ is the time constant,

defined as τ = RC.

In this way, we have obtained the dynamic equation of the spiking neuron using

the RC model. However, working with derivatives in the discrete domain is difficult.

To solve this, we use the Euler method to approximate the differential equation:

τ
U(t+∆t)− U(t)

∆t
= −U(t) +RIin(t)

which can also be written as:

U(t+∆t) = U(t) +
∆t

τ

(
− U(t) +RIin(t)

)
(1)

assuming ∆t ≪ τ .
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Figure 2.1: RC model of a LIF neuron, figure taken by [15]

This form can already be used in practice, and the model is known as the Lapicque

neuron. However, it has many parameters, making it computationally difficult to

handle and even harder to train. It would therefore be useful to simplify it further.

Assuming Iin(t) = 0 A:

U(t+∆t) = (1− ∆t

τ
)U(t)

We also know that if the input is zero, the decay of the membrane potential can be

expressed as:

U(t+∆t) = βU(t)

where β is the membrane decay rate, given by:

β = (1− ∆t

τ
)

Given this simplification, we can proceed further by assuming ∆t = 1 (since we

are working in the discrete domain) and R = 1 to further reduce the number of

hyperparameters in the network:

β = (1− 1

C
) =⇒ (1− β)Iin =

1

τ
Iin
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Figure 2.2: Potential of the membrane and spikes function of the current IIN

Substituting everything into Equation (1), we obtain:

U [t+ 1] = βU [t] + (1− β)Iin[t+ 1]

This formula is very simple and practical. To make it useful in a neural network

context, we only need to identify which term represents the input and which is

trainable. Referring back to the RC model, the input value is the current Iin[t+ 1],

which we can denote as X[t+ 1].

In a typical neural network, the learnable parameter is the input weight. In this

case, the term (1 − β) corresponds to that weight. Abstracting from the physical

model, we thus have:

U [t+ 1] = βU [t] +WX[t+ 1]

where W is the learnable weight, decoupled from the behavior of β. The resulting

model is very simple: it has only two hyperparameters (β and the threshold) and a

single learnable parameter (W ). The final functioning is showed in 2.2.
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2.2.1 Reset Mechanism

We know that when the membrane potential reaches a certain threshold, the neuron

spikes. But what happens after that? The way in which the membrane potential is

managed after a spike is referred to as the reset mechanism:

S[t] =

1, if U [t] > Uthr

0, otherwise

The subtractive reset mechanism is based on the idea of subtracting the threshold

potential from the membrane potential, preserving any residual potential induced by

the spike. This approach maintains a higher information content since the surplus

is not completely discarded:

U [t+ 1] = βU [t]︸ ︷︷ ︸
decay

+WX[t+ 1]︸ ︷︷ ︸
input

−S[t]Uthr︸ ︷︷ ︸
reset

A variant of this method only subtracts part of the potential, scaled by β. The

equation becomes:

U [t+ 1] = βU [t]︸ ︷︷ ︸
decay

+WX[t+ 1]︸ ︷︷ ︸
input

− βS[t]Uthr︸ ︷︷ ︸
soft reset

This soft reset approach has been shown to perform better in many cases [12].

Another reset mechanism, the zero reset, sets the membrane potential to zero

after a spike, regardless of any surplus potential. This method tends to reduce the

total number of spikes, thus improving energy efficiency, but at the risk of losing

information.

2.3 Encoding

Information in the brain can be represented through spikes, making it essential to

understand how this encoding process occurs. For optimization reasons, information

is typically encoded in a sparse manner, improving energy efficiency. Moreover,

neural processing is inherently event-driven, meaning that signals are generated and

recorded only when significant changes occur.

It is well established that the brain employs at least three main forms of spike-

based encoding: rate coding, which represents information through spike frequency;

latency coding, which encodes information through spike timing; and differential

coding, which transmits spikes only in response to variations in the input signal.
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Rate coding appears to conflict with the principle of energetic optimization,

as it requires a relatively high number of spikes. Furthermore, it cannot fully ex-

plain the brain’s ability to process certain stimuli extremely rapidly. In order to

obtain a reliable estimate of spike frequency, a sufficiently large temporal window

is required—the larger the window, the better the estimation, but the slower the

reaction time. Empirical evidence suggests that rate coding accounts for the activity

of 15% subset of neurons in the primary visual cortex. Nevertheless, it remains a

fundamental and biologically verified mechanism for neural communication.

Latency coding, on the other hand, represents information through the timing

of spike emissions. Although this approach is more sensitive to noise, it enhances

sparsity and can lead to faster response times. In such schemes, an earlier spike

conveys a stronger or more significant signal than a later one.

A further class of methods includes differential codings, in which spikes are

generated only when there is a change relative to a previous signal. In these cases,

spikes can be bipolar (−1, 1), enabling the system to encode not only the change

but also its direction. This mechanism is considered biologically plausible and is

reminiscent of the processing that occurs in certain sensory organs, such as the

retina.

To represent continuous values over time, one approach is to extend each value

along the temporal dimension, effectively replicating its information across multiple

time steps. This method, known as duplication, is straightforward to implement.

Alternatively, stochastic encoding techniques can be employed, such as those

introducing Gaussian-distributed variability in the spike generation process. The

Gaussian encoding adds an additional Artificial Neural Network (ANN) layer op-

erating in parallel with the existing one. One branch outputs the mean value of

the spikes, while the other provides the natural logarithm of the standard devia-

tion. Using these parameters, a noise variable is introduced to generate a spike

train following a Gaussian distribution. Although this method is more complex, it

often yields better performance in more challenging tasks, as it introduces controlled

variability in the spike representation.

Another method is Poisson encoding. When encoding an analog number,

the residual reconstruction error due to the discrete number of spikes generated

within a given time interval decreases proportionally to 1/Nspikes. However, because

Poisson-distributed spike trains introduce intrinsic variability, the error decreases

only as 1/
√
Nspikes. This method does not always perform well; for example, in

[6], a comparison among these three encoding strategies concluded that Poisson

encoding was not particularly advantageous.

Beyond rate-based representations, several temporal encoding approaches have

been proposed, which convey information through the precise timing of spikes rather
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than their overall rate. One example is the filter-based encoding, which applies spe-

cific temporal filters to transform analog inputs into spike sequences. Although

effective in certain contexts, this approach can be computationally demanding and

sensitive to the statistical properties of the input data. Filters often require adapta-

tion to match the characteristics of the processed signals—for instance, those suited

for audio data may not be optimal for visual features.

A well-known example is theBSA (Ben’s Spike Algorithm) encoding method,

which uses a filter whose frequency response closely resembles that of the human

auditory system [11].

Temporal encoding methods are particularly promising from an energy-efficiency

perspective, as they can substantially reduce the average firing rate. Among them,

one of the most widely adopted is the Time To First Spike (TTFS) coding, which

represents the input value as the delay between the start of a cycle and the emission

of the first spike. A simple implementation maps the input amplitude to a spike

time inversely proportional to the input magnitude. Another common approach is

the Sinspike encoding, where the spike delay is determined according to:

ti = (1− sin(Xi · π
2
)) · Tmax

This method is particularly suited to temporal signals, such as speech or auditory

data, as the sinusoidal transformation naturally reflects their dynamic behavior. In

both TTFS and Sinspike encoding, each timestamp corresponds to a spike train,

preserving the temporal structure of the original data.

In [18], the TTFS approach is compared with alternative methods such as Send

on Delta (SOD) and LIF. The LIF approach employs a Leaky Integrate-and-

Fire neuron to integrate inputs and generate a spike train. The SOD algorithm

detects continuous values over a defined sampling period and generates discrete

spikes whenever the magnitude of an increase or decrease exceeds a given threshold.

Both SOD and LIF process the entire input sequence to generate spike trains,

rather than operating frame by frame. The study also highlights the distinction

between Spectrogram and Cochleagram representations, showing that the latter

provides a more effective and biologically inspired encoding for spiking systems.

Furthermore, the authors propose a signal reconstruction step using a Finite Impulse

Response (FIR) filter before passing the data to a standard neural network.
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2.4 Training

We know that the spike output function is defined as:

S[t] = Θ(U [t]− Uthr) (1)

where Θ is the Heaviside step function. This poses a problem because the Heaviside

function is non-differentiable.

In a classical neural network, training is performed via backpropagation, where

gradients are computed from the loss function to update the parameters in the

direction that minimizes the loss. However, if a function is non-differentiable or has

a derivative equal to zero everywhere else backpropagation cannot work properly.

The derivative equal to zero leads to the so-called dead neuron problem, where

neurons stop learning because their gradient is zero.

To overcome these issues, various techniques have been developed that allow

training without traditional backpropagation. Here, we focus on the Surrogate Gra-

dient approach, which enables the use of backpropagation even with spiking neurons.

2.4.1 Surrogate Gradient

The surrogate gradient method is based on using two different functions for the

forward pass (loss computation) and the backward pass (gradient computation).

This allows us to avoid the problems described above.

One commonly used surrogate function is the sigmoid function. Referring to our

earlier notation, and considering UOD = U − Uthr, we can define:

S̃ =
UOD

1 + k|UOD|

whose derivative is:
∂S̃

∂U
=

1

(k|UOD|+ 1)2

Other functions that can serve as surrogate gradients include, for example, the

arctangent function.
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(a) Surrogate sigmoid vs Heaviside
(b) Surrogate derivative vs Heaviside
derivative

Figure 2.3: Comparison between surrogate activation and its derivative with respect
to the Heaviside function

2.5 Spiking in ASR

The study of spiking neural networks for speech recognition is relatively recent;

however, several promising results have already been achieved, particularly in the

context of edge devices. In the following section, we review some of the most

relevant studies in this field.

In [17], an acoustic model based on a Spiking Neural Network (SNN) is proposed.

The model builds upon the framework described in Section 1.1 of this thesis and is

not an end-to-end network. The results show that the performance is comparable or

slightly worse than traditional approaches, with the performance drop attributed to

the discretization introduced by the spikes. The training is performed in a tandem

manner, meaning that the weights are shared with an equivalent Artificial Neural

Network (ANN): the SNN is used during the forward pass, while the ANN is used

during the backward pass. The encoding scheme operates frame-by-frame and uses a

ReLU activation to generate a spike train of N elements from each frame. Decoding

is performed through the membrane potential.

In [8], several network architectures composed of different types of spiking and

non-spiking neurons are compared. The study highlights that, although networks

built with traditional LIF neurons are generally less performant than classical arti-

ficial neurons such as Long-Short Term Memory (LSTM), introducing a structure

that enhances their recurrent dynamics allows the performance to approach that

of ANN-based models, while retaining the energy efficiency benefits of spike-based

computation. Training is carried out via backpropagation using the surrogate gradi-

ent technique. The input signal is encoded simply by integrating continuous-valued

data as input current.
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In [2], a Sequence-to-Sequence (seq2seq) network with four LSTM layers is pro-

gressively modified by replacing the LSTM layers with LIF layers. The resulting

hybrid networks are then compared with equivalent models where the spiking layers

are replaced by standard Recurrent Neural Network (RNN) layers. In this case as

well, the data are integrated directly at the input of the spiking layers. This study

demonstrates that surrogate gradient-trained SNN are compatible with large,

end-to-end, sequence-to-sequence modern architectures. This addresses the primary

research question of whether SNN can scale to more advanced tasks and deeper

networks. Moreover, across all tasks, the spiking layers which contain four times

fewer trainable parameters were able to replace LSTM with only minor performance

degradation. Although retaining a single LSTM layer still significantly helped re-

duce the error rate, this result shows that the information processed within neural

networks can be efficiently reduced to sparse and binary events without substan-

tially compromising their encoding capabilities.

Considering smaller-scale studies on simpler tasks such as command recognition, it

can be seen that spiking convolutional networks are also being explored. In [7],

the inputs are first integrated by an LIF neuron to generate a spike train, followed

by a 2D convolution applied over time and frequency dimensions. The convolution

output is then passed through another LIF neuron to maintain the spiking format.

This network is also trained using backpropagation.

In [19], the potential benefits of integrating spikes into Transformer architec-

tures for speech recognition and other speech tasks are investigated, achieving both

higher accuracy and improved energy efficiency compared to their ANN counter-

parts. The training is done using backpropagation. Although this line of research

has not been explored in depth in our work, it undoubtedly represents a highly

active and promising research direction.

Overall, research on speech recognition within the Automatic Speech Recog-

nition (ASR) domain is very broad, but there is a clear shift towards end-to-end

networks trained with backpropagation. Our work fits precisely within this

line of investigation.

2.6 Spiking LSTM (SLSTM)

The operation of the Spiking Long-Short Term Memory (SLSTM) cell is

analogous to that of a conventional LSTM cell, with the difference that the output is

spike-based, generated through a thresholding mechanism. The short-term memory
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is reset according to the chosen strategy, while the long-term memory (the cell state)

is replaced by synaptic memory.

In the snnTorch implementation, it is also possible to define the threshold as a

trainable parameter, allowing the model to optimize it during the training process.

2.7 Spiking CNN (SCNN)

Convolutions play a particularly important role in speech recognition, and they re-

main fundamental in the spiking domain as well. We have already seen an example of

this; however, several different methods have been proposed to implement Spiking

CNNs. Below, we review some relevant studies addressing these approaches:

In [14], a spiking network is used in which the convolutional layers receive in-

puts encoded through Poisson spikes. The convolutional filters are connected via

inhibitory weights that maintain activation sparsity. At the end of the convolutional

layers, leaky lif neurons with a zero-reset mechanism are used. The convolution re-

sult is decoded through the firing rate. From a mathematical point of view, convolu-

tion based on spikes and firing rates has been shown to be equivalent to a traditional

convolution. Pooling is performed by selecting the neuron with the highest number

of spikes (maximum activity).

The [4] study describes a multi-layer spiking network that uses integrate-and-

fire neurons without leakage (non-leaky IF). The encoding is temporal, allowing only

one spike per neuron within a given time window, while inhibitory weights are used

to suppress activity of the others neuron across different features to increase their

differences. Pooling is performed by taking the first spike occurring within a time

interval, following a temporal winner-take-all mechanism.

The model proposed in [10] employs LIF neurons without inhibitory connections

between filters. Both temporal and firing rate output encodings are tested. A

key aspect of the work is that training is not performed using STDP, but rather

through a backpropagation-based method specifically adapted for spiking neural

networks. The study also investigates parameter optimization strategies aimed at

improving overall network performance.



Chapter 3

Implementation

In this section, we describe the tools used and the workflow followed, providing

the rationale behind our choices. The adopted approach is an ablation process: we

started from an already functioning network and progressively modified it based on

the results obtained. We then carried out several experimental attempts to evaluate

the impact of the introduced changes.

3.1 Software Tools

3.1.1 PyTorch and snnTorch

PyTorch is an open-source machine learning framework widely used for building and

training neural networks. Its core data structure is the tensor, a multidimensional

array that efficiently represents and manipulates numerical data.

SnnTorch, built on top of PyTorch, extends its functionality to support Spik-

ing Neural Networks. It provides a set of modules and tools to simulate neuron

models that communicate through discrete spikes. The framework supports GPU

acceleration via CUDA, enabling efficient large-scale simulations. Furthermore, it

includes utilities such as torch.utils.data, which facilitate dataset management,

preprocessing, and loading during the training process.

3.1.2 BrainSpeech Framework

BrainSpeech is a framework designed to support a wide range of tasks in the field

of speech-related artificial intelligence, making it a highly flexible and adaptable

tool. The framework provides built-in support for several datasets in particular,

LibriSpeech, which is the primary dataset used in this work and includes numerous

usage examples with extensive documentation.

34
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For these reasons, BrainSpeech represents an excellent foundation for developing

new models, as it already includes implementations of training scripts and neural

network architectures that can be easily adapted and extended. The entire config-

uration and management process is handled through .yaml files, which makes the

framework particularly modular and customizable.

Within these configuration files, a standard audio processing pipeline based on

Mel Coefficients is already implemented. This pipeline can be easily modified or

reconfigured by adjusting the YAML parameters. In addition, the framework in-

cludes a built-in, fully configurable script for tokenization based on SentencePiece.

Through the YAML configuration, users can specify the algorithm to be used, as

well as the parameters for special tokens such as <eos>, <bos>, and <blank>, the

number of subword units.

3.1.3 Setup

To ensure reproducible results and maintain a clean environment free from unnec-

essary elements that could cause compatibility issues, we decided to use Singularity

to create isolated container. Inside the container, a dedicated virtual environment

was further created using Conda, due to specific compatibility requirements with

SpeechBrain packages.

The Singularity image files (.sif) are compact and read-only by design. This

provides the advantage of preventing accidental modifications to the environment,

ensuring consistency across experiments. However, this characteristic can also be

inconvenient during development: even the absence of a single required dependency

may require rebuilding the entire container from the definition file (.def), which

is used to generate the image. This limitation does not apply to Python packages,

which can be installed dynamically within the running container without the need

to rebuild it.

To accelerate network training, we used the High Performance Computing (HPC)

cluster of the Politecnico, which uses SLURM as its workload manager. SLURM is

a software framework for job scheduling and resource management on HPC systems.

To submit a job, an sbatch script must be provided, specifying the target partition,

the number and type of GPUs and CPU to be reserved, the amount of GPU memory,

and the container together with the commands to be executed inside it. It is also

possible to specify one or more log files in the script to monitor the progress of the

training process and to detect potential runtime errors. Once a job is submitted,

an interactive shell can be attached to the main process using the srun command,

allowing real-time monitoring of GPU utilization and system status.



36

3.2 Software

3.2.1 Training Settings

In this section, we describe the main training parameters and the configuration of

the processing pipeline. All these parameters are defined and can be easily modified

within the YAML configuration file. A resume is present at 3.1

The number of epochs represents how many times the entire dataset is presented

to the network during training. The parameter ctc epoch defines the number of

epochs in which the CTC loss contributes to the overall loss function, and its in-

fluence is determined by the parameter ctc weight. The batch size specifies the

number of samples processed in parallel by the GPU. As discussed later, this value

differs between the training/validation and testing phases. In particular, during

testing, the batch size is typically set to one to better emulate real-world conditions,

where the system usually processes a single audio input at a time.

The parameter sorting defines the order in which audio samples are processed

based on their length. For instance, setting it to ascending processes shorter sam-

ples first, which reduces the amount of padding required within each batch. Since

all samples in a batch must share the same length, shorter sequences are padded

to match the longest one before being processed by the network. Alternatively,

descending or random sorting can be used, depending on the desired training dy-

namics. The dynamic batching option allows the batch size not to be fixed in ad-

vance; instead, it can increase or decrease automatically depending on the compu-

tational load and memory availability, starting from an initial value.

Regarding the audio features, key parameters include the sample rate, n fft, and

n mels. The sample rate directly affects the number of time steps in the feature

representation: a higher sampling rate produces a greater number of timestamps.

The parameter n fft specifies the number of frequency coefficients used in the fast

Fourier transform, while n mels defines the number of Mel-scale coefficients ex-

tracted for each frame.

The optimizer is responsible for updating the model’s weights according to the

chosen learning rate, and the default settings were used in this work. The parame-

ter num workers refers to the number of processes employed by the dataloader, the

component that transfers data to the GPU. The SpeechBrain framework itself rec-

ommends not exceeding the number of available CPU cores for this value, as doing

so may lead to process contention and reduced performance.

It is worth recalling that the validation phase is used to evaluate the model’s

performance during training, ensuring that the learning process remains effective

and that the model continues to generalize well. The testing phase, on the other
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Table 3.1: Summary of the parameters described in this section.

Parameter Description

Training parameters

epochs Number of times the entire dataset is presented to
the network.

ctc epoch Number of epochs during which the Connectionist
Temporal Classification (CTC) loss contributes to the
total loss.

ctc weight Weight assigned to the CTC loss.
batch size Number of samples processed in parallel; typically 1

during testing.
sorting Order in which audio samples are processed.
dynamic batching Allows the batch size to adapt based on memory and

load.

Audio processing parameters

sample rate Audio sampling frequency.
n fft Number of frequency coefficients used in the Fast

Fourier Transform (FFT).
n mels Number of Mel-scale coefficients extracted per frame.

Optimization and data loading parameters

optimizer Algorithm used to update model weights.
learning rate Learning rate applied by the optimizer.
num workers Number of dataloader worker processes.

Experiment management and logging

log file names Names of log files generated during training.
seed Identifier of the training.
dataset configuration Assignment of dataset subsets (train/valid/test).
ckpt interval minutesTime interval between checkpoint saves.

Numeric precision

precision Numerical precision used during training.
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hand, represents the final evaluation stage. In our case, testing can differ not only in

the batch size but also in the decoder configuration, which may use different beam

sizes or additional parameters to optimize performance.

At the beginning of the YAML file, it is possible to set the output paths, the

names of the log files, and most importantly the seed. The seed acts as an identi-

fier for each training session and should be changed every time a new experiment

is run, in order to avoid overwriting previous results. The dataset configuration

section allows the user to specify which subsets of the dataset should be assigned

to each of the three main phases: training, validation, and testing. The variable

ckpt interval minutes defines how frequently (in minutes) a training checkpoint

is saved. If training is interrupted, it can resume from the last saved checkpoint.

The dataset transcription files, typically in .csv format, contain the text annota-

tions used during training. In addition, paths for noise augmentation files can also

be specified in the configuration.

The parameter precision controls the numerical precision used during training.

Using 16-bit precision reduces memory consumption, allowing larger batch sizes,

but may negatively impact convergence—especially when using surrogate gradient

methods—due to the gradient mismatch problem. For this reason, 32-bit precision

is used by default.

Model Parameters

This section describes the main model parameters, which may vary slightly de-

pending on the specific experiment, but most of them are shared across all con-

figurations. A resume is present at 3.2. The parameter activation defines the

activation function used by the artificial neurons and is set to Leaky ReLU by de-

fault. The variable cnn cblocks specifies the number of convolutional blocks in

the network, while cnn channels defines the number of channels in each block.

The parameter dropout controls the dropout rate applied within layers to prevent

overfitting. SLSTM neurons determines how many hidden states per SLSTM layer

are presented,SLSTM layers decides the number of SLSTM layers. The parame-

ters dnn blocks and dnn neurons determine the number of fully connected Deep

Neural Network (DNN) blocks and the number of neurons per block, respectively.

Learn threshold sets if the threshold of spikes neurons’ are learned during train-

ing, threshold set teh initial value of this. The parameter emb size specifies the

size of the embedding vector, dec neurons sets the number of RNN neurons in the

decoder, and output neurons defines the number of output neurons, which must

match the vocabulary size.

The indices blank index, bos index, and eos index are all set to 0, as they are
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Table 3.2: Main model parameters description.

Parameter Description

Neural network architecture parameters

activation Activation function used by artificial neurons; default
is Leaky ReLU.

cnn cblocks Number of convolutional (spiking or not) blocks in
the network.

cnn channels Number of channels per convolutional (spiking or
not) block.

dropout Dropout rate applied within layers to reduce overfit-
ting.

SLSTM neurons Number of hidden states per Spiking Long-Short
Term Memory (SLSTM) layer.

SLSTM layers Number of SLSTM layers in the model.
dnn blocks Number of DNN blocks.
dnn neurons Number of neurons per fully connected layer of Char-

acter Error Rate (CER) block.
Learn threshold Flag indicating if spike neuron thresholds are learned.
threshold Initial threshold value for spike neurons.
emb size Size of the embedding vector.
dec neurons Number of Recurrent Neural Network (RNN) neurons

in the decoder.
output neurons Number of output neurons; matches vocabulary size.

Decoder indices and ratios

blank index,
bos index,
eos index

Indices set to 0, managed internally by the network.

eos threshold Minimum score for the eos.
min decode ratio Minimum ratio between tokens generated and input

timestamps.
max decode ratio Maximum ratio between tokens generated and input

timestamps.

Decoding parameters

valid beam size Beam width used during validation decoding.
test beam size Beam width used during testing decoding.
using max attn shift Enables maximum attention shift mechanism.
max attn shift Limit of maximum attention shift.

Softmax and coverage settings

temperature Temperature scaling factor applied before softmax;
T > 1 flattens, T < 1 sharpens distribution.

coverage penalty Coefficient used for coverage penalty in decoding.
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internally managed by the network. The eos threshold is the minimum total score

necessary to accept the eos as character. The parameters min decode ratio and

max decode ratio determine the minimum and maximum ratio between the num-

ber of tokens generated by the decoder and the number of input timestamps. The

parameters valid beam size and test beam size set the beam width for the de-

coder during validation and testing, respectively, as they may differ between phases.

The parameter using max attn shift enables the maximum attention shift mech-

anism, whose limit is specified by max attn shift. The parameter temperature

controls the temperature scaling applied before the final softmax layer: the logits

are divided by T , where T > 1 makes the distribution flatter (encouraging explo-

ration), while T < 1 sharpens it (encouraging exploitation). Finally, the parameter

coverage penalty sets the coefficient t used for the coverage penalty term in the

decoding process.

3.2.2 Starting point

3.2.3 Baseline Network: BrainSpeech Seq2Seq Model

We started from an existing speech recognition network and modified it for our

purposes. Specifically, we used the BrainSpeech Sequence-to-Sequence (seq2seq)

model with the same structure shown in Figure 1.1.

Figure 3.1: Original Encoder structure.

The network consists of a convolutional encoder and an attentional RNN decoder

with a single layer. During inference, it employs a beam search mechanism. The

main idea behind the encoder is to condense spectral and temporal information

through convolutional processing and to model sequential dependencies through

DNN and Long-Short Term Memory (LSTM) layers, which together produce the

context vector. This context vector is then passed to the autoregressive decoder,

which employs an attention-based mechanism and a beam search strategy with a

beam size of 80.
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Figure 3.2: Decoder structure.

Figure 3.3: DNN block structure.

The Encoder 3.1 operates on Mel-spectrogram inputs arranged as [Batch, T ime,Mel].

It begins with two convolutional blocks 3.4 that extract representations from the in-

put features.

Each convolutional block consists of two 2D convolutional layers acting on MEL’s

and time, each followed by layer normalization and a ReLU activation function

to ensure stable and non-linear transformations. Max-pooling layers are used to

gradually reduce spectral resolution, emphasizing the most salient acoustic patterns.

Dropout regularization is applied after each block to prevent overfitting.

The high-level features extracted by the convolutional layers are then passed

through a stack of fourLSTM layers, each with a hidden size of 1024. This recurrent

component captures long-term temporal dependencies and contextual relationships

Figure 3.4: Original convolutional block.
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across time steps. Afterward, two fully connected blocks 3.3 (DNN blocks) refine

the encoded representations. Each of these blocks consists of a linear transformation

with 512 neurons, followed by batch normalization, ReLU activation, and dropout.

The Decoder 3.2 receives two inputs: the encoded representation [Batch, T ime,DNNneurons]

and the previously generated token. The decoding process starts with an embedding

layer (embedding dimension 128, vocabulary size 1000) that maps discrete tokens

into a continuous vector space. An attention mechanism is then applied to dynam-

ically weight the encoded features, allowing the model to focus on the most rele-

vant temporal regions during decoding. The attended representations are processed

through an RNN layer (in particular are used GRU neurons, that are an optimized

version of LSTM, from the option is also possible to set other kind of RNN) followed

by dropout. Finally, a linear output layer with 1000 neurons maps the decoder’s

hidden states to the vocabulary space, producing a probability distribution over

possible output tokens.

3.2.4 Hybrid architectures and decoding

The process of progressively modifying a neural architecture to evaluate the con-

tribution of each component is known as ablation. This approach is particularly

useful for understanding how artificial neural networks (ANNs) and spiking neural

networks Spiking Neural Network (SNN) can interact within a hybrid model, and

how each modification affects the final performance.

In hybrid architectures, two main training strategies are typically employed.

The first is separate training, in which the spiking and non-spiking layers are

trained independently in different stages. The second is simultaneous training,

where both types of layers are optimized together within the same learning process.

Experimental evidence suggests that, for complex tasks, separate training generally

leads to inferior performance, whereas simultaneous training allows a more coherent

adaptation between the two components. [6]

Once the training strategy has been defined, it is also necessary to determine

how to decode the spikes in order to extract meaningful information from them. In

the case of rate-based encoding, one of the simplest rate-based decoding approaches

is the count-rate method, where information is represented by the firing frequency

within a defined temporal window.

We adopted the count-rate method for decoding and decided to train all the

parts of the network at the same time. Our initial idea was to modify the decoder,

as it constitutes the smaller portion of the network. However, we abandoned this

approach to avoid altering the attention mechanism, the searcher module, or the

loss function interface. In particular, the searcher is responsible for managing the
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memory reset in the RNN-based decoder, and it would require significant adaptation

to handle spiking behavior correctly.

3.2.5 SLSTM

Following the approach proposed in [2], we instead decided to modify the encoder.

The simplest way to achieve this was to replace the LSTM layers with SLSTM

units. This choice allowed us to maintain compatibility with both the existing data

processing pipeline and the CTC interface, minimizing structural changes to the rest

of the system. For simplicity, we employed a firing-rate encoding scheme. To further

facilitate the integration of the SLSTMmodule, a linear projection layer was inserted

between the last convolutional block and the SLSTM layers 3.5 and the number of

layers SLSTM was decreased from for to two to speed up the training. In order not

to change the structure of the network, we encode every timestamp in a spiking way,

to do it we used duplication as referred to [6] leaving more complicated methods

at the further implementations. We chose 10 steps because it is one of the smaller

values we found in the literature. For the thresholds, we initialized them based

on some simulations using random values, and set them learnable. This approach

was justified by [13] , that demonstrates how learnable thresholds can improve the

performance of the network.

For this operation, we started from the brainspeech code of the CRDNN encoder.

To add the linear layer, the following command was used:

Listing 3.1: Adding the linear layer to the CRDNN encoder

self.append(sb.nnet.linear.Linear , layer_name="linear_pre_spike",

n_neurons=rnn_neurons , combine_dims=True)

Here, sb.nnet.linear.Linear is a custom linear layer from SpeechBrain that

performs channel flattening simply by using combine dims=True. The keyword

self refers to the object CRDNN spike encoder, which is our modified encoder.

This object is, in fact, a subclass of sb.nnet.containers.Sequential, a custom

SpeechBrain class designed to instantiate layers sequentially within the encoder.

This is particularly important because inserting a custom module inside such a

Figure 3.5: Encoder strcutre with SLSTM
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structure requires the use of a wrapper belonging to the same class as the encodery.

In our case, the wrapper is:

Listing 3.2: Wrapper class for SLSTM instantiation

class SLSTMCell(sb.nnet.containers.Sequential):

def __init__(self , input_shape , hidden_size , num_layers =1):

super().__init__(input_shape=input_shape)

self.append(SLSTM , hidden_size=hidden_size ,

input_size=input_shape [-1], num_layers=

num_layers)

This class does not define any additional behavior; it only serves to instantiate

the SLSTM object, which is our actual module.

To make the network as modular as possible, the SLSTM layers were allocated

using nn.ModuleList, a PyTorch module that allows the sequential and, most im-

portantly, parametric allocation of multiple modules. This means it is possible to

decide dynamically how many layers to include within the same block.

First, there is a memory management component. The SLSTMs handle one spike

at a time, and the membrane potentials are initialized only at the beginning of the

time stamp sequence; after that, the software must keep track of their updates. As

we know, each neuron has two variables, hx and cx, which represent the short-term

and long-term memory of the cell, respectively. From the outside, these values are

passed as None so that the function knows it must initialize them.

After the memory phase, an empty list called spikes sum list is instantiated.

The input has shape [B, stamp, feature]. Since duplication was chosen at the begin-

ning of each stamp, a variable spikes sum is initialized to 0, serving to accumulate

the spikes generated at each step so their mean can later be computed.

The stamp is kept fixed for number of steps iterations, and at each iteration,

the spikes from the last layer are added to the previous sum. After all steps are

completed, the mean is computed by dividing spikes sum by number of steps,

and the result is appended to spikes sum list.

To reduce the number of elements in the network, decoding is performed directly

at the end of the forward pass. This state initializes the list that stores the output

of the last layer at each stamp.

Finally, the list is converted into a tensor using torch.stack. The results are

discussed in the proper section. In this way we get a reduced performance. Our

interpretation was related to the idea that the encoding technique was not the best

one, and also that the number of steps was really small. Given the long time of

training we decide to work especially on the first part.

Having obtained some preliminary results, it was necessary to decide how to

proceed. At first, an attempt was made to implement a new encoding technique
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based on Gaussian encoding.

3.2.6 Gaussian Encoding

The class GaussianSpikes(sb.nnet.containers.Sequential) provides an imple-

mentation of the Gaussian encoding mechanism using two parallel linear layers at

the output of the convolutional block, effectively replacing the previously inserted

linear layer after flattening the output channels. As previously explained, one branch

outputs the mean spike values, while the other, combined with a random variable,

generates spike values following a Gaussian distribution.

Additionally, the SLSTM cell was adapted to handle different spike types. In-

stead of using a double for-loop (one for time steps and another for spikes), the

implementation was simplified by merging the spike dimension with the temporal one

through a view reshape operation before processing. The spikes from the last layer

are stored in a spikes list, and a final tensor is created using torch.stack. The

temporal dimension of this tensor is then divided into groups of number of steps

via reshaping, and the mean is computed over these groups to obtain the firing

rate.

However, due to long training times and the limited expected improvement, the

focus was shifted toward adding additional spiking layers. The most natural next

step would have been to replace the DNN blocks, but this would have required

modifying the interface with the CTC loss. Since a detailed description of how

spiking layers interact with this loss function was not available, the effort was instead

directed toward introducing spikes into the convolutional layers.

3.2.7 SCNN

One of the main challenges in implementing convolutional layers for spiking networks

is determining how to properly adapt the convolutional operation itself.

The implemented structure includes a Leaky Integrate-and-Fire (LIF) layer

after each convolutional layer, followed by a max-pooling operation applied to the

Figure 3.6: Encoder structure with Spiking Convolutional Neural Network (SCNN)
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spike frequency, as showed in figure 3.7. As mentioned, each convolutional block is

thus paired with a LIF neuron layer.

To define the SCNN group and the encoder final class were rewritten to bypass

the speechbrain sequential library, providing greater implementation flexibility. For

consistency with the base architecture the sb.nnet.CNN layers were used instead of

standard nn.Module layers, even though the only difference lies in the ordering

of the channels. Using these modules also facilitates the identification of potential

implementation errors, distinguishing them from issues arising from slightly different

layer definitions.

Initially, the plan was to maintain the same network structure and apply the

encoding techniques explored in previous experiments. The first attempt involved

data duplication, such that the input entered the convolutional layers already du-

plicated. However, this approach dramatically increased training time, as discussed

in the Results section.

Consequently, the duplication method was discarded. Following the approach

suggested in the literature [7], spike encoding was instead delegated to the first

spiking layer after the convolution. The encoding technique adopted is the Con-

volution + LIF method. In this approach, non-spiking data are fed directly into

the convolutional layers, and it is the subsequent LIF layers that convert these ac-

tivations into spikes. This strategy has the advantage of avoiding an increase in the

amount of data to be processed, thereby reducing training time. Another benefit is

that both spiking and non-spiking data are handled in the same manner, eliminating

the need to implement an explicit conversion interface.

A padding strategy was also introduced to ensure that the number of times-

tamps was always a multiple of the number of processing steps. Padding is han-

dled directly within the decoder, where the number of timestamps is checked: if

it does not align, zeros are appended at the end of the tensor. This results in an

additional padding stage beyond the standard batch padding. Nevertheless, this

solution simplifies the implementation and preserves modularity, since modifying

number of steps automatically updates the padding without further adjustments.

After the padding step, the input tensors undergo an unsqueeze operation to

Figure 3.7: SCNN block structure
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match the dimensional requirements of convolutional layers, which explicitly expect

an additional input dimension. At the output of the convolutional blocks, the proce-

dure follows the same structure used in previous network versions: the feature maps

are flattened, passed through a linear projection, followed by the SLSTM layer,

and finally through the DNN blocks. The latter components were not modified

and still rely on the speechbrain sequential framework.

Regarding the forward pass of the SCNN block, the input is first passed through

the initial convolutional layer. After each convolution, and before entering the LIF

layers, the temporal dimension is divided into groups of number of steps using

a reshape operation. Each group is then processed by the LIF neurons, whose

internal states are reinitialized for every batch of spikes, ensuring that each neuron

only processes number of steps spikes at a time. The resulting outputs are stored

step by step in a list, converted into tensors, and concatenated for subsequent layer

processing.

An additional aspect concerns the management of the membrane potential in

the LIF neurons. In this implementation, the membrane potential is initialized at

the beginning of each group and managed internally by the SNNLeaky class through

the use of the None mechanism.

Pooling

Another issue concerned pooling. The simplest way to perform pooling was through

temporal encoding; however, this would have required modifying the entire network

structure and entering a considerably more complex design space especially since the

introduction of SCNN already represented a significant step forward. Other pooling

strategies found in the literature were based either on the membrane potential or

directly on the firing rate. The latter method was selected, as it appeared the most

logical choice: information was already encoded in the firing rate, and, additionally,

the use cases reported in related works were more consistent with the present setup.

The pooling1d function performs a one-dimensional pooling operation on the

spike tensor based on the neurons’ firing rate. The input tensor contains spike activ-

ity with dimensions [B, Stamp, F, T, C], where B is the batch size, Stamp represents

timestamps, F corresponds to Mel-frequency coefficients or the already pooled ver-

sion, T is the temporal dimension within each step, and C denotes the number of

channels.

First, the function computes the mean firing rate along the spikes axis, producing

a rate map of shape [B, Stamp, F, C]. F is then divided into contiguous, non-

overlapping groups according to the specified pooling size. Within each group,

the element with the highest average firing rate is selected using a max operation,
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and its corresponding index within the original tensor is recorded.

Using these indices, the function retrieves the spike trains associated with the

most active neurons from the original spike tensor. The gathered spikes are then

rearranged using a permutation operation to maintain a consistent output format. In

this way, only the most active spike patterns across Mel coefficients are propagated

to the subsequent layers.

We obtained a total improvement, reducing the Word Error Rate (WER) to

18%. It is clear that the discretization introduced by the spikes causes a slight

performance loss. Nevertheless, the comparison between activation types shows

that the LIF model improves performance compared to ReLU, demonstrating its

ability to capture temporal correlations effectively.

The final architeture has this strctures:

• ENCODER (Input: [Batch, Time, Mel])

– Convolutional block 1:

∗ Layer Conv2D (128 canali)

∗ LIF

∗ Layer Conv2D (128 canali)

∗ LIF

∗ Max rate Pooling

– Convolutional block 2:

∗ Layer Conv2D (256 canali)

∗ LIF

∗ Layer Conv2D (256 canali)

∗ LIF

∗ Max rate Pooling

– SLSTM:

∗ Linear projection

∗ 2 Layers SLSTM (hidden size 1024)

– DNN Block 1:

∗ Linear Layer (512 neurons)

∗ Batch Normalization

∗ ReLU Activation

∗ Dropout

– DNN Block 2:
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∗ Linear Layer (512 neurons)

∗ Batch Normalization

∗ ReLU Activation

∗ Dropout



Chapter 4

Experimental Results and Analysis

For all networks containing spike-based layers, the number of training epochs was

doubled to compensate for the slower training speed. Conversely, the number of

Connectionist Temporal Classification (CTC) epochs was kept unchanged for all

architectures except the last one, where several configurations were explored and

more extensive tuning was performed.

The aspects considered in this analysis are the following: accuracy measured

through Character Error Rate (CER) and Word Error Rate (WER); network size

expressed as the number of parameters; types of errors (Insertion, Deletion, Sub-

stitution) expressed as a percentage of the total errors, with the goal of evaluating

alignment issues specifically, a higher percentage of substitutions generally indicates

better alignment between samples; and the firing rate of the various spiking layers,

which provides insight into the internal behavior of the architectures. The parame-

ters common to all the models are represented in table 4.1.

Table 4.1: Common model parameters used across all configurations.

Parameter Value

Neural Network Architecture

activation LeakyReLU

cnn cblocks 2

cnn channels 128, 256

dropout 0.15

SLSTM neurons 512

dnn blocks 2

dnn neurons 512

Learn threshold True

threshold 0.1

50
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Parameter Value

emb size 128

dec neurons 1024

output neurons 1000

Decoding Parameters

min decode ratio 0

max decode ratio 1

eos threshold 1.5

valid beam size 80

test beam size 80

using max attn shift True

max attn shift 240

temperature 1.25

coverage penalty 1.5

Audio Processing Parameters

sample rate 16000

n fft 400

n mels 40

Training and Optimization Parameters

sorting Ascendent

dynamic batching False

optimizer Adadelta

learning rate 1

precision fp32

4.1 Dataset and vocabulary

Several datasets are available in the literature, but we selected LibriSpeech as our

benchmark. The main reasons are its relevance and flexibility. LibriSpeech is in

fact one of the most widely used English speech datasets. It contains approximately

1000 hours of English speech, properly segmented and aligned, originating from read

audiobooks from the LibriVox project. This makes it suitable even for traditional

architectures in which alignment is not automatically handled by the network.

The LibriSpeech training set is divided into three subsets: 100 h clean, 360 h

clean wuth good quality recording less accents and more ideal condition, and 500h
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with worst quality reigistration, different accenta nd more realistic situaotion of

use, providing flexibility in both dataset type and scale. This allows experiments

to be conducted progressively, with increasing levels of difficulty. The dataset also

includes two validation sets (dev-clean and dev-other) and two test sets (test-clean

and test-other), containing respectively clean and noisy audio, making it an excellent

foundation for future work as well. To reduce training time and enable a faster

workflow, we trained on the 100 h clean subset, validated on dev-clean, and tested

on test-clean.

The vocabulary was built using SentencePiece with the Unigram algorithm, pro-

ducing 1000 subword units. By default, BrainSpeech supports both 1000 and 5000

subword vocabularies; we selected the smaller one to minimize memory usage and

model size. The system also supports the integration of an external language model

into the beam search scoring function; however, since our goal was to design a more

embedded-oriented system, we deliberately excluded the language model to main-

tain compactness. For an overview of all the results in tables 4.11 4.12 we resume

them all.

4.2 Baseline

CTC Epoch WER CER Parameters I D S

5 15 10.6% 4.24% 119.9M 12.5% 7.89% 79.61%

Table 4.2: Reference performance metrics for the baseline model.

The baseline model was trained for 15 epochs. During the first 5 epochs the CTC

loss was included with a weight of 0.5. This hybrid objective stabilizes alignment

learning in the early training stages and improves convergence. As shown by the

insertion and deletion statistics, the baseline exhibits the best alignment among all

the architectures evaluated. Our baseline achieves a CER of 4.24% and a WER of

10.61% on the test-clean dataset. To account for the slower convergence observed in

spiking architectures, the number of training epochs for subsequent Spiking Neural

Network (SNN)-based models was doubled from 15 to 30. We additionally intro-

duced a linear layer after the convolutional block in order to interface more effectively

with the SLSTM units, reduce the parameter count, and compensate for the reduced

number of recurrent layers. Across experiments, the training settings were kept un-

changed, except for minor adjustments to batch size or runtime parameters required

by specific architectures.

An interesting observation is that the first five epochs are consistently the fastest
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Figure 4.1: Training distribution for the baseline model.

and most effective in terms of performance gain; afterwards, improvements tend to

flatten out. Although this behavior is typical in conventional ANNs, as we will show

later, it does not necessarily hold for spiking models, where the interaction with the

CTC loss may lead to different learning dynamics.

4.3 SLSTM-Only Architecture

Table 4.3: Performance metrics for the Spiking Long-Short Term Memory (SLSTM)-
only model.

CTC Epoch WER CER Parameters I D S

5 30 22.16% 12.35% 50.6M 25.78% 10.41% 63.81%

Table 4.4: Mean firing rate per layer for the SLSTM-only model.

SLSTM0 SLSTM1

Mean firing rate 34.97% 32.65%
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Figure 4.2: Training results for the SLSTM-only model.

The SLSTM-only model was trained using four 44GB GPUs with a batch size of

6. The thresholds were initialized at 0.1 and set as trainable parameters to avoid

information propagation issues and to improve performance. The number of steps

is 10. A performance degradation was observed, attributable to the reduction in

the number of layers, discretization effects, and the simple duplication-based encod-

ing. Compared to the original Artificial Neural Network (ANN) baseline, alignment

becomes noticeably worse: substitutions decrease from approximately 80% to 63%,

indicating poorer temporal alignment.This is likely related to the discretization in-

troduced by the firing rates. Since only 11 discrete values are available, the Deep

Neural Network (DNN) blocks are probably unable to provide the decoder with a

sufficiently expressive representation to effectively distinguish between speech seg-

ments and silence.

Even with the additional linear layer, the model size is reduced by more than

half. The firing rate lies within the typical range for informative spiking activity

(30-60%). As we will discuss later, and as previously reported in the literature,

this range should not be interpreted as a universal rule, as it depends strongly on

architectural and encoding choices. Nonetheless, it remains a useful indicator that

information is being propagated through the network.
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In this model, the SLSTM layers adopt the None reset policy [1]. Under this

policy, once a neuron emits a spike, no reset is applied, allowing unrestricted spiking.

This increases the risk of uncontrolled firing, information degradation, and excessive

energy consumption.

Training dynamics are mostly linear, with occasional negative performance spikes.

These fluctuations arise from the discrete nature of spiking activity: even small per-

turbations can produce large relative increases in firing rate. Another consequence

of this discreteness is that validation loss continues to decrease while performance

often does not follow proportionally. As we will show later, using spiking signals

earlier in the computation pipeline helps reduce this mismatch between loss and

behavioral performance.

This architecture is also the only one employing explicit encoding through dupli-

cation. As a result, it processes the largest number of samples, increasing the input

representation volume without providing clear benefits in terms of representational

quality. Duplication not only makes this model the slowest to train but also the

slowest at inference time, with the highest memory and energy consumption.

4.4 SCNN Architectures

The Spiking Convolutional Neural Network (SCNN) model analyzed corresponds to

the architecture previously described and achieved the best performance among all

spiking configurations. To understand the uneven firing-rate distribution observed

across layers, it is important to recall the implications of the None reset policy.

In this context, the behavior becomes advantageous: given the network depth

and the presence of many zero-valued convolutional outputs, information does not

degrade and can instead be reinforced by layers that exhibit higher firing rates.

When four SLSTM layers are used, this effect becomes more pronounced. Al-

though a higher firing rate could in principle enrich information flow, it does not

result in improved performance; on the contrary, performance slightly worsens.

Increasing the number of SLSTM layers leads to more homogeneous firing rates

across layers, reducing the risk of imbalances, similarly to what was observed in the

SLSTM-only architecture. Moreover, we can also observe that SLSTM layers gen-

erally exhibit higher firing rates than Leaky Integrate-and-Fire (LIF) layers, which

instead implement a soft reset mechanism. This reset lowers the average firing rate

of each neuron and provides greater energy savings, particularly in the layers that

are more energy-demanding.

We also increased the number of CTC epochs, but performance deteriorated,

while error distributions remained essentially unchanged. Substitutions consistently
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stabilized around 70%, suggesting that neither the number of SLSTM layers nor the

CTC duration substantially affects alignment quality.

Setting the number of CTC epochs to zero caused the training process to stagnate

entirely. This indicates that, despite appearing non-essential or even destabilizing

when inspecting training curves the CTC loss is in practice necessary for the model

to learn meaningful alignments. Another noteworthy observation is that, except for

the epochs where CTC is active, training is considerably more linear, particularly

toward the final epochs, moreover, the relationship between validation loss and

performance becomes more stable, with fewer oscillations. This supports the idea

that uniformity in data representation (i.e., using spikes throughout the network)

helps the training process. In contrast, the CTC loss remains poorly correlated with

performance.

All 2-layer SLSTM architectures were trained on a single 82GB GPU with batch

size 36; the 4-layer variants were also trained on a single 82GB GPU but with batch

size 30. The thresholds were initialized at 0.1 and set as trainable parameters to

avoid information propagation issues and to improve performance for both kind of

layers. The number of steps for all architectures is 10. Compared to the SLSTM-

only configuration, the SCNN architectures exhibit improved alignment, suggesting

that spiking convolutional encode temporal structure more effectively. Alignment

quality still does not match the baseline ANN, but model size especially for the

2-layer version is reduced to roughly one quarter of the original.

4.4.1 SCNN (5 CTC, 4 SLSTM Layers)

The results obtained with the 4-layer SLSTM version are very similar to those of

the 2-layer variant trained with the same number of CTC epochs: both WER and

CER differ by less than 1%. Training tends to be more stable, and firing rates are

higher yet still within the informative range. In particular, firing rates are very

stable, showing similar values across same layer types. This architecture therefore

represents a reasonable candidate for follow-up studies; however, at present, the

performance improvement does not justify the increased number of SLSTM layers,

which results in longer training time and a larger model. As seen earlier, adding

more spiking recurrent layers worsens the proportionality between performance and

CTC behavior, with the worst mismatch occurring when the number of CTC epochs

is increased.
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CTC Epoch WER CER Parameters I D S

5 30 19.66% 10.11% 50.6M 18.45% 11.17% 70.37%

Table 4.5: Performance metrics of the SCNN model with 4 SLSTM layers.

LIF0 LIF1 LIF2 LIF3

Mean firing rate 20.85% 15.93% 18.07% 14.45%

SLSTM0 SLSTM1 SLSTM2 SLSTM3

Mean firing rate 31.32% 27.60% 20.31% 48.05%

Table 4.6: Mean firing rates for the SCNN model with 4 SLSTM layers.

Figure 4.3: Training curve for the SCNN model with 4 SLSTM layers.
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4.4.2 SCNN (5 CTC, 2 SLSTM Layers)

This architecture turned out to be the best-performing one, as it is both the smallest

and the most accurate. In the following sections, we attempt to train it for 10 addi-

tional epochs to assess its potential for further improvement. Its main limitation lies

in the imbalance of firing rates within the architecture: in particular, the LIF3 layer

shows a notably low firing rate, which may compromise information transmission

to the SLSTM layers. Even in this case although less severely than in the other

architectures a misalignment between performance and loss can be observed during

the CTC epochs.

Figure 4.4: Training curve for the 2-layer SCNN architecture.

LIF0 LIF1 LIF2 LIF3 SLSTM0 SLSTM1

Mean firing rate 12.66% 11.78% 11.83% 8.72% 21.01% 46.19%

Table 4.7: Mean firing rates for the 2-layer SCNN architecture.
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CTC Epoch WER CER Parameters I D S

5 30 18.95% 9.61% 33.8M 16.58% 13.94% 69.48%

Figure 4.5: Performance metrics for the 2-layer SCNN architecture.

4.4.3 SCNN (10 CTC, 2 SLSTM Layers)

Increasing the number of CTC epochs worsens performance without improving align-

ment. Although the loss continues to decrease, performance remains uncorrelated

with it and tends to improve only once CTC supervision has ended. Even then,

results do not match those of the model trained with 5 CTC epochs. Firing-rate dis-

tributions remain fundamentally similar to the 5-epoch version, with slightly higher

activity in the convolutional layers. This again supports the observation that firing

rate is primarily determined by the architecture rather than by training dynamics

at least when using learnable thresholds.

Figure 4.6: Training curve for the SCNN with 2 SLSTM layers and 10 CTC steps.
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CTC Epoch WER CER Parameters I D S

10 30 26.15% 13.88% 33.8M 17.04% 12.12% 70.84%

Table 4.8: Performance metrics for the SCNN with 2 SLSTM layers and 10 CTC
steps.

LIF0 LIF1 LIF2 LIF3 SLSTM0 SLSTM1

Mean firing rate 25.73% 18.13% 15.43% 9.35% 9.27% 42.85%

Figure 4.7: Mean firing rates for the SCNN with 2 SLSTM layers and 10 CTC steps.

4.4.4 SCNN (5 CTC, 2 SLSTM Layers, 40 Epochs)

To further improve performance, we increased the total number of training epochs

from 30 to 40 for the 2-layer architecture. This confirms that 30 epochs do not

represent the maximum useful training duration, although they provide a solid basis

for comparison. Improvements are present but remain modest: WER decreases by

less than 1%, while CER and alignment (as seen from the substitution rate) improve

by just over 1%. Firing rates increase slightly, suggesting that the network still

suffers from low activity levels in some layers. The rise is most noticeable in the

early and late layers, indicating where certain imbalances emerge. In particular, the

LIF3 layer increases its firing rate by only 0.2%.

Figure 4.8: Training curve for the SCNN model trained for 40 epochs.
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CTC Epoch WER CER Parameters I D S

5 40 18.03% 8.88% 33.8M 15.73% 13.03% 71.25%

Table 4.9: Performance metrics for the SCNN model trained for 40 epochs.

LIF0 LIF1 LIF2 LIF3 SLSTM0 SLSTM1

Mean firing rate 13.29% 12.27% 12.17% 8.92% 21.46% 46.12%

Table 4.10: Mean firing rates for the SCNN model trained for 40 epochs.

Overall, the 2-layer SCNN architecture provides the best: it is the smallest

model, achieves the highest accuracy, and maintains lower firing rates implying

reduced energy consumption particularly in the convolutional stages, which are typ-

ically the most energy consuming components.

Model CTC Epochs WER CER Params I D S

Baseline 5 15 10.6% 4.24% 119.9M 12.5% 7.89% 79.61%
SLSTM 5 30 22.16% 12.35% 50.6M 25.78% 10.41% 63.81%
SCNN4 5 30 19.66% 10.11% 50.6M 18.45% 11.17% 70.37%
SCNN2 5 30 18.95% 9.61% 33.8M 16.58% 13.94% 69.48%
SCNN2 10 30 26.15% 13.88% 33.8M 17.04% 12.12% 70.84%
SCNN2 5 40 18.03% 8.88% 33.8M 15.73% 13.03% 71.25%

Table 4.11: Comparison of training, performance, and error rates across analyzed
models.

Model LIF0 LIF1 LIF2 LIF3 SL0 SL1 SL2 SL3

Baseline - - - - - - - -
SLSTM - - - - 34.97% 32.65% - -
SCNN4 20.85% 15.93% 18.07% 14.45% 31.32% 27.60% 20.31% 48.05%
SCNN2 12.66% 11.78% 11.83% 8.72% 21.01% 46.19% - -
SCNN2 25.73% 18.13% 15.43% 9.35% 9.27% 42.85% - -
SCNN2 13.29% 12.27% 12.17% 8.92% 21.46% 46.12% - -

Table 4.12: Comparison of the mean firing rates per layer across different models.
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4.5 CNN–LIF Implementations and Timing Anal-

ysis

To understand which parameters influence the training speed, we conducted a study

on how different implementations of the SCNN architecture affect performance.

Since the decoder remains identical across all variants, our analysis focuses exclu-

sively on the encoder. For the implementations in which only the convolutional

block is showed, we report the results assuming that the subsequent layers follow in

sequential way.

4.5.1 Implementations with Duplication

All implementations use two convolutional layers per timestep followed by a LIF

activation, differing in how operations are organized. Notation: B=batch size,

S=sequence length, T=number of timesteps, F=features, C=channels.

Implementation 1

The first implementation adopts an encoding with duplication. Each spike of every

spike train is passed through the entire convolutional block, except for the pooling

stage. All outputs are collected until the whole spike train has been processed. At

that point, pooling over the firing rate can be performed. This implementation

is also the closest to the original one: each spiking convolution processes spikes

belonging to different timestamps.

The spiking convolutional block therefore has the following timing behaviour:

TBSCNN = T · 2(tconv + tLIF ) + tpool.

In addition, the SLSTM block must be considered. Since we have T spikes per

timestamp, the number of data processed by each SLSTM layer is S ·T , which leads

to:

TBSLSTM = 2ST tSLSTM .

The total encoder time is therefore:

TENC = 4T (tconv + tLIF ) + 2tpool + 2ST tSLSTM + Tlin + 2TDNN .

It is straightforward to see that the dominant term is the one proportional to S,

as S ≫ the other components.

SCNN block (pseudocode)
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sp = []

for t in range(T):

conv1 = conv(x[:, :, t, :, :])

sp1 = LIF(conv1)

conv2 = conv(sp1)

sp2 = LIF(conv2)

sp.append(sp2)

sp = pool(sp)

return sp

Implementation 2

Implementation 2 aggregates all spikes along the temporal dimension before per-

forming the convolution. After the convolution, a reshape is applied to recover the

temporal structure into groups of number of steps. An empty list is allocated,

and each group of steps is processed in parallel by a LIF neuron. Each spike is

stored in the list, which is then converted back into a tensor via stack. If another

convolutional layer follows, spikes are re-aggregated along the temporal dimension;

otherwise, they are directly passed to the pooling function. The rest of the encoder

is identical to the previous case. Reshape operations can be considered negligible in

time, especially when applied to contiguous data.

The timing of the SCNN block is thus:

TBSCNN = 2T tLIF + 2tconv + tpool.

The encoder runtime becomes:

TENC = 4T tLIF + 4tconv + 2tpool + 2ST tSLSTM + Tlin + TDNN .

In this way, the convolution has been parallelised, and its runtime no longer

depends on T , which is a significant advantage; however, it does not solve the

SLSTM bottleneck.

As we will show, this implementation is the fastest among those involving con-

volution, even though it does not preserve the original network structure.

SCNN block (pseudocode)

x = x.reshape(B, S*T, F, C)

conv1 = conv(x)

conv1 = conv1.reshape(B, S, T, F, C)

sp1_list = []

for t in range(T):
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sp1_list.append(LIF(conv1[:, :, t, :, :]))

sp1_list = sp1_list.reshape(B, S*T, F, C)

#seciond layer ...

sp = pool(sp2_list)

return sp

Implementation 3 (No Pooling, No Linear Layer)

The third implementation evaluates whether processing spikes one at a time, with

minimal aggregation, can offer any advantage. The only aggregation required is that

inherent to the SLSTM layers.

We start from duplicated data along a dimension independent of time. Each

spike is processed by convolution following the style of Implementation 1, meaning

each spike corresponds to a different timestamp.

Skipping the pooling layer allows both convolutional blocks to be combined into

a single timing expression:

TBmod = 4T (tconv + tLIF ).

To maintain temporal consistency, the output for the entire spike train still needs

to be collected. Thus, the total encoder time is:

TENC = 4T (tconv + tLIF ) + 2TS tSLSTM + 2TDNN .

This implementation is likely the least efficient, as the convolution time still

depends on T , and the only speedup compared to Implementation 1 results from

the removal of some layers. Again, the SLSTM layer remains the bottleneck.

CNN + SLSTM (pseudocode)

for t in range(T):

conv1 = conv(x[:, :, t, :, :])

sp1 = LIF(conv1)

# repeated to obtain sp4

sp4 = sp4.flatten ()

for s in range(S):

sps1 = SLSTM(sp4[:, s, :])

sps2 = SLSTM(sps1)

# followed by DNN
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4.5.2 Implementation without Duplication

The implementation without duplication is the fastest. Here, no additional spike

dimension is introduced, and no temporal merging is required. Padding is applied

to ensure that the number of timestamps is a multiple of number of steps. A

standard convolution is performed, then a reshape divides the temporal axis into

groups of number of steps. Each group is processed in parallel by a LIF neuron.

The outputs are collected and reshaped back into a tensor.

The convolutional block runtime is:

TBSCNN = 2T tLIF + 2tconv + tpool,

which matches the expression from Implementation 2.

At the end of the convolutional block, no further aggregation is needed, and the

number of inputs to the SLSTM layers is simply S. Hence:

TBSLSTM = 2S tSLSTM .

The resulting encoder time is therefore:

TENC = 2S tSLSTM + 4T tLIF + 4tconv + 2tpool + Tlin + TDNN .

This provides two advantages: (1) the SLSTM bottleneck remains, but reduced

by a factor of number of steps; (2) the bottleneck no longer depends on the number

of spikes unless T > S, enabling the exploration of more computationally expensive

models. This is the final implementation adopted in our code.

x = B, S, F, C

x = padding(x) # requires S % T == 0

conv1 = conv(x)

conv1 = conv1.reshape(B, S//T, T, F, C)

# LIF per timestep

...

conv2 = conv(sp1_list)

conv2 = conv2.reshape(B, S//T, T, F, C)

...

sp = pool(sp2_list)

return sp
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4.5.3 Standard Network (No Linear Layer)

We now analyse the encoder time of the classical architecture, neglecting the acti-

vation function time. This is naturally the fastest case, since the absence of spiking

layers allows maximum parallelisation. Moreover, without duplication, the Long-

Short Term Memory (LSTM) bottleneck depends on S rather than S · T .
The Convolutional Neural Network (CNN) block runtime is:

TBCNN = 2tconv + tpool.

Thus, the total encoder time is:

TENC = 4tconv + 2tpool + TDNN .

4.5.4 Performance Observations

• Among the duplicated versions, Implementation 2 is the most efficient since

convolutions are moved outside the temporal loop and the convolution cost is

paid only twice.

• The main bottleneck is the SLSTM: the term 2ST tSLSTM dominates all other

contributions. This also explains why the non-duplicated implementation,

with coefficient 2S, is significantly faster.

• Pooling has a marginal impact on training time compared to SLSTM and

convolution layers.

4.6 Testing Code

To evaluate the neural networks, we implemented 2 scripts (one for architecture)

based on forward hooks. Hooks are small functions attached to spike layers that

accumulate spikes at runtime. The first 100 samples of the test set are evaluated in

random order, and the average firing rate is computed for each layer.

At the beginning of the script, several compatibility adjustments are included to

ensure that models load correctly despite architectural changes and updated layer

naming conventions. The script also prints the full model structure, serving as a

useful debugging tool for identifying potential inconsistencies.



Chapter 5

Future Work and Insights

During the thesis work, several training-related challenges and many possible ex-

perimentation paths emerged. This led to exploring multiple directions, although

most of them could only be evaluated at a preliminary level. Despite this, some of

these ideas remain highly relevant and offer excellent opportunities for future work,

especially in light of the results obtained. In this chapter, we briefly present the

most significant ones, discussing where present the code already implemented and

the work carried out, and providing ideas for their further development.

5.1 Binary convolution

During the research on spike-based convolution, a particularly interesting direction

emerged involving convolutions on binary networks. Binary networks rely on binary

activations and/or weights to reduce memory footprint or improve energy efficiency.

Compared to spike convolutions, they offer the advantage of being much faster,

as they are fully parallelizable like standard convolutions. The idea arose from the

need to represent the data in binary form without relying on an encoding that would

reduce training efficiency. Indeed, the use of encoding schemes often requires either

an increase in data volume, such as through duplication, or the addition of further

sequential components. Moreover, the use of binary layers is frequently associated

with energy and memory savings, making their adoption fully consistent with the

philosophy of the project.

In our preliminary exploration, we considered networks using binary activations

only. Convolutions are performed normally and then binarized through a step ac-

tivation function as in figure 5.1a 5.1b. From an implementation standpoint, this

simply requires replacing ReLU with a Heaviside/sign function with a learnable

threshold. During backpropagation, as with spike activations, the step function is

replaced with a surrogate gradient.

67
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(a) Convolutional binary block

(b) Convolutional binary encoder

Figure 5.1: Binary convolutional components: (a) block structure and (b) encoder
structure.

Binary activations can be either in the range (0, 1) or (-1, 1), with the latter

being generally preferred because symmetric ranges have shown better training sta-

bility [5]. The advantage for spike-based architectures is that this allows data to be

translated into an efficient spike compatible encoding without losing performance or

training speed. Before interfacing with spiking layers, activations in (-1, 1) can be

easily mapped into (0, 1) by rescaling. This approach also aligns well with goals of

energy and memory savings in embedded systems.

In our project, we implemented an architecture composed of a binary-activation

block, followed by two Spiking Long-Short Term Memory (SLSTM) layers and two

Deep Neural Network (DNN) blocks. The activation function is custom, since Py-

Torch does not provide a Sign activation with learnable threshold and surrogate gra-

dient. The implementation is divided into two classes: BinaryActivationWithThreshold,

which implements the forward and backward passes, and LearnableBinaryActivation,

which defines the actual activation module used in the network. During the forward

pass, both the input and the threshold are stored in the context object (ctx) used by

PyTorch for autograd, and the output is computed. The backward pass implements

a Straight-Through Estimator (STE): the derivative is set to 1 when the input minus

the threshold lies within {-1, 1}, and 0 otherwise. The gradient for the threshold is

computed as the negative sum of the gradients over the relevant dimensions. The

second class implments the channel-wise thresholds.

The decoder used in this version of the model was kept identical to the original
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one. Training proved to be very fast, and promising results appeared already within

the first iterations on the training dataset. The project was eventually discontinued

as it fell outside the objectives of this thesis. The focus of the thesis is to investigate

the use of spiking neurons in speech recognition; therefore, a spike-based convolution

was implemented in the network, as it is more closely aligned with this objective.

Nevertheless, this direction remains highly interesting for future work, given the

preliminary results obtained and the strong technical and conceptual affinity between

binary networks and spiking networks.

5.2 Spike-Based Encoder

A very natural research direction is the development of a fully spike-based encoder,

replacing the DNN blocks with fully connected Leaky Integrate-and-Fire (LIF) lay-

ers. Having a fully spiking encoder would be advantageous in terms of modularity, as

it would provide a ready to use, entirely spiking component that could be integrated

into different Sequence-to-Sequence (seq2seq) architectures or used to develop fully

spiking models. Moreover, it would further increase the network’s energy efficiency

and compactness. However, this introduces several challenges, such as the interac-

tion between spikes and the Connectionist Temporal Classification (CTC) loss, and

the presence of a discretized context vector.

Depending on the design choices, the context vector can either contain spikes

forcing the decoder to perform the decoding or it can contain already-decoded val-

ues (in our case, the firing rate). This introduces a clear discretization problem,

since each entry of the context vector can take at most number of steps+1 distinct

values. In our prototype, we experimented with the second approach. We attempted

removing the CTC loss from training, as well as increasing the CTC unrolling cy-

cles, but in all cases the training progress was extremely poor and the network failed

to learn. This suggests that some Artificial Neural Network (ANN) layers are still

fundamental in these hybrid architectures.

This means that the success of a fully spiking encoder requires further inves-

tigation into appropriate training methods and the optimal number of simulation

steps.Our project includes prototype code where these modifications were imple-

mented, serving as a basis for future developments.

5.3 Transducer and ContextNet Approaches

Parallel investigations were also conducted, including preliminary experiments with

Transducer-based architectures starting from ContextNet. As previously mentioned,
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ContextNet is a high-performance Transducer network, especially considering its

simplicity, as it does not rely on attention mechanisms an uncommon characteristic

in the field of speech recognition. This makes it an excellent starting point for

exploring the integration of spiking networks into a more complex architecture and

for extending our work in this direction. Moreover, it does not require training

with multiple loss functions, thereby avoiding the limited compatibility between

spikes and CTC. In our study, we chose an architecture with fewer components (two

in the seq2seq model versus three in the transducer model), so that modifying a

single component would have a more significant impact on the behavior of the entire

network, making the evaluation of spiking neurons’ performance within the system

simpler and more meaningful. Furthermore, the presence of an additional training

objective allowed us to experiment with one more parameter during training, thereby

broadening our research scope.
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