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Chapter 1

Introduction

The quantum description of light has enabled the measurement of new states of light as
well as the development of novel technologies such as quantum sensing, quantum com-
puting and quantum communications. One notable method used in the field of quantum
communications is Quantum Key Distribution (QKD), which enables the secure exchange
of a secret key between distant partners relying on the laws of quantum mechanics.

One important branch of quantum key distribution (QKD) is continuous-variable
QKD (CV-QKD). In contrast to discrete-variable (DV) protocols such as BB84, which
encode information in single photons using discrete degrees of freedom like polarization
(leading to discrete values) [1], CV-QKD encodes information in the continuous observ-
ables of the electromagnetic field—typically the amplitude and phase quadratures [2, 3].
This approach enables the use of standard telecommunication technologies, such as co-
herent detection and Gaussian modulation, making it particularly appealing for practical
implementations of quantum-secure communication.

This framework can be moreover operated at room temperature and enables the use
of standard telecommunication equipment like coherent lasers, electro-optic modulators,
and high-efficiency balanced homodyne detectors [4,5], which allows for easier implemen-
tation and commercialization [6].

Unlike classical communications, the most dominant noise in CV quantum commu-
nications is the shot noise: going below the shot noise limit is a crucial task for the
development of efficient communication protocols. Squeezed states, which reduce the
noise in one quadrature at the expense of increasing it in the conjugate quadrature [7],
could enable the development of CV quantum communication protocols that go below
the shot noise limit. These states also play a crucial role in quantum sensing (such as in
gravitational wave detection [8]) and in quantum computing [9, 10].

Squeezed states are usually generated by nonlinear optical processes based on a χ(2)

response as parametric down-conversion in non-linear crystals like LiNbO3 [11] or χ(3)

processes exploiting four wave mixing [12, 13]. However, another interesting way that
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Introduction

could produce squeezing without nonlinear media is by using a quantum-well or a quan-
tum dot laser driven by a quiet pump source [14]. Indeed, as noted by Zhao et al. in [15],
in this regime it is possible to achieve noise below the shot-noise limit, together with
a second-order correlation function slightly below one, indicative of amplitude squeez-
ing [16].

In this work, we establish an experimental setup for performing the full tomography
of a quantum field produced by a low noise tuneable laser with the aims of further ex-
panding this work in order to analyse quantum properties of light of semiconductor lasers.

We report on the measurement of vacuum and coherent states using this experimental
setup (see: 5.2, 4.2). However it could be used to characterize any state of light emitted
by a generic source, as in the quiet pump regime [15,16].

The thesis is mainly divided into four main chapters. The theoretical background is
introduced in Chapter 2, then the characterization of the setup is illustrated in Chapter 3
while the Inverse Radon Transform method, that is the common technique to characterize
those states, is described in Chapter 4 together with the corresponding experimental
results. Finally the Maximum Likelihood Estimation and the corresponding experimental
results are discussed in Chapter 5. The last chapter, is dedicated to a description of the
agenda with a focus on what we think represented the main challenges of this work and
possible strategies to meet them.
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Chapter 2

Quantum state tomography:
Theoretical background

2.1 The wavefunction

Quantum mechanics is a revolutionary theory formally developed in the 20th century. One
of its main novelties, as the name is suggesting, is the quantization of the energy [17,18].
Therefore, new physical quantities able to discretize the world, as the photon for the
electromagnetic field, [19] are introduced.

On the other hand, quantum mechanics associates a wave-like description (that is
formally continuous) to body-like physical quantities. Refer for example to the Stern-
Gerlach experiment in 1922 [20]. This duality takes the name of wave-particle dualism
[21].

It follows that, in quantum mechanics, the concept of deterministic particle is aban-
doned, and the systems will be described by states that are the eigenfunctions of the
Hamiltonian operator (associated to the energy), also called wavefunctions.

The wavefunction ψ, is a complex function such that, for each time t ∈ R, the function
ψ(·, t) ∈ L2(R) represents the quantum state of a particle, if L2(Rn) is the space of square-
integrable functions:

ψ ∈ L2 if
∫︂
Rn

|ψ(x, t)|2 dx < ∞. (2.1.1)

However, the value of ψ is not directly a measurable quantity; instead, its modulus square
|ψ|2 is, and it represents the probability of finding the particle at position x and time
t [22].
This result leads to the second crucial consequence of the quantum mechanics: the prob-
abilistic way of interpreting the information.

Indeed, while in classical mechanics the complete knowledge of a system at time t = 0
uniquely determines its future evolution, in quantum mechanics one can only predict the
probability distributions of the outcomes of measurements of physical observables.
However, it is still possible to construct situations where, under particular conditions, the
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probability of a specific outcome becomes arbitrarily close to one, or even exactly one in
idealized limits.

2.1.1 The operators

Figure 2.1: In the figure, reproduced from [23], is shown a figurative representation of
how non-commuting quantities operate on a system. Supposing that the operator Â is
the rotation on the x plane and the operator B̂ is a negative rotation on the y plane,
then the action of Â followed by the application of B̂ does not have the final effect of the
inverse process.

Once the system is defined by its state ψ, then its evolution (also partial) in quantum
mechanics is described through operators.
An operator can be described as an action on a system, and it represents the only way to
interfere with it (for instance, also the measurement process comes from the measurement
operator M̂ acting on the system).

Any physical observable (i.e. quantity that can be measured) has to be associated
with an operator A that has to be self adjoint, i.e. equal to its transpose conjugate.

However, differently from classical mechanics, in the quantum theory, some operators
do not commute (for instance the position x̂ and the momentum p̂ operators), if the
commutator [·] between two objects Â, B̂ is defined as:

[Â, B̂] = ÂB̂ − B̂Â. (2.1.2)

8



2.1 – The wavefunction

The non-commutation relationship is formalized as [Â, B̂] /= 0, and, in such cases, it is
not possible to find a common eigenbasis that diagonalizes both Â and B̂. Consequently,
one cannot simultaneously assign definite eigenvalues to both observables without an in-
trinsic uncertainty. Since the eigenvalues are related to the measurement, it implies that
two non-commuting operators can not be measured in the same system with arbitrary
precision.
This limitation is formalized by the Heisenberg uncertainty principle [24, 25] and will
be important in the later on described quadratures of the field. Figure 2.1, reproduced
from [23], visualizes this concept.

If on one hand this represents a limit in different problems (as the solution of hy-
drogen atom), on the other hand it has an important role in applications as Quantum
Communication.
For instance, in the BB84 protocol, a malicious Eve can not retrieve the information of
Alice and Bob without being discovered (in a statistical way) since her action perturbs
the system.
More complex protocols exist, where continuous variables as the quadratures X̂ and P̂
of the field are used as encoding system. For such reason, those protocols are called CV
(Continuous-Variable) QKD (Quantum Key Distribution).

2.1.2 The Schrödinger and the Heisenberg formalisms

Two different formalisms exist in quantum mechanics: the Schrödinger picture, intro-
duced by Erwin Schrödinger in 1926, and the Heisenberg one proposed by Werner Heisen-
berg in 1925.
Both frameworks carry the same mathematical information, but where the time takes ac-
tion is changing. Indeed in the Schrödinger picture, the operators are time independent
while the states (wavefunctions) are time dependent; on the other hand, in the Heisenberg
picture, the operators depend on time, while the states are time independent.
Therefore the only difference between the two frameworks consists in a sign in the system
evolution equation.
For convenience, both pictures will be used in this work.

An operator, in the Heisenberg formalism could be represented by its matrix form
that can be both finite (Â ∈ Rn) or infinite (as position x̂ and momentum p̂), while a
state is represented by a column vector |ψ⟩, also called ket vector. On the other hand its
adjoint |ψ⟩† is called bra vector [18]. Therefore, the final state can be calculated as the
action of the operator Â on the initial state |ψ⟩in, thus the product of the operator by
the state vector: |ψ⟩fin = Â |ψ⟩in.

Conversely, in the Schrödinger picture the evolution of a quantum system is ruled by
the Schrödinger equation, that reads as:

iℏ
∂

∂t
ψ(x, t) = Ĥψ(x, t). (2.1.3)

9
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The operators are represented by applications (as derivatives) and wavefunctions in L2

as before anticipated.
This equation could moreover be simplified in its easier time independent version (only
when the operator Ĥ is constant in time):

Ĥ |ψE⟩ = E |ψE⟩ . (2.1.4)

Here Ĥ is the Hamiltonian operator, associated with the energy of the system.
In general, the Hamiltonian, is composed by a kinetic ( p̂2

2m) and a potential (Û(x, t))
term. Therefore, if only the kinetic term of the Hamiltonian is non-vanishing, the one-
dimensional (time dependent) Schrödinger equation could be further simplified as:

iℏ
∂

∂t
ψ(x, t) = − ℏ2

2m
∂2

∂x2ψ(x, t). (2.1.5)

Moreover, since the Schrödinger equation is a linear equation, with |·⟩ as solutions, then
a generic state will be represented by a linear superposition of all the solution states:

|ψ⟩ =
n∑︂

i=0
aiϕi

n∑︂
i

|ai|2 = 1, (2.1.6)

where the ai are normalization coefficients introduced since ∥ψ∥2 is associated to the
probability of find the state ψ.
For example, for a two level system, if one identifies two different solutions (namely |0⟩
and |1⟩), then a generic state describing the system will be:

|ψ⟩ = a0 |0⟩ + a1 |1⟩ , (2.1.7)

where a0, a1 ∈ C are such that |a0|2 = P(|ψ⟩ = |0⟩) and |a1|2 = P(|ψ⟩ = |1⟩).

Finally, the complex inner product ⟨u|v⟩ is introduced. This operation is used to
calculate the probability amplitudes and expectation values of observables, providing a
direct connection between the state of the system and measurable quantities.

2.1.3 The quantum harmonic oscillator

From a classical perspective, the light is defined as an oscillating electromagnetic (e.m.)
field, and shows peculiar properties as interference and diffraction typical of a wave-like
description.

The quantization of the e.m. field began with the interpretation of the photoelectric
effect by Albert Einstein in 1905, and it is called second quantization [18,26].
Indeed, inspired with the Planck’s earlier work on blackbody radiation, Einstein proposed
that light is composed by discrete energy packets called photons, each one carrying an
energy E = hν, being h the Plank’s constant and ν the frequency of the field. This is
in clear contradiction with the classical formalism, where the energy of the field is deter-
mined by its intensity.

10



2.1 – The wavefunction

It is a known result that a single-mode light field behaves as a harmonic oscillator, as
shown in Appendix 6.1.
For instance, one of the many similarities is that the two models share the same descrip-
tion of the energy:

hamornic oscillator energy em energy
1

2mp2 + 1
2mω2x2,

1
2ε0E2 + 1

2µ0
B2, (2.1.8)

where p and x are the momentum and position of the particle in the harmonic oscillator,
while E ,B are the electric and magnetic fields.

This analogy can be extended to quantum mechanics, where the quantum harmonic
oscillator must be used. In this model the field is described in terms of the creation (â†)
and annihilation (â) operators [7], able to create (â†), or destroy (â) a particle.
Those operators are needed since, in the quantum harmonic oscillator, discrete energy
levels are achieved.
Therefore, if one particle has to move from one level (for example |0⟩) to another (for
example |1⟩), one has to remove it from one level (â |0⟩), and add it to the new one
(â† |1⟩).
Then the creation and annihilation operators allow particles to move between the dis-
cretized levels of the quantum harmonic oscillator as along a stair, reason why they are
called ladder operators:

|0⟩ |1⟩ |2⟩ . . .

a† a† a†

a a a

However, in quantum mechanics, the creation and annihilation operators â and â† are
not associated to observable quantities and in general they do not commute:

[â, â†] = 1. (2.1.9)

Their relative eigenvalue equations, if n is the number of particles in the state, are:

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (2.1.10)

â |n⟩ =
√
n |n− 1⟩ (2.1.11)

|n⟩ = 1√
n!

(â†)n |0⟩ , (2.1.12)

(2.1.13)

with the boundary conditions:

â |0⟩ = 0, (2.1.14)
â†(a |0⟩) = 0. (2.1.15)

11
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Here the number operator n̂ and the Fock state |n⟩ (described in the following subsection)
were defined, and are related to the number of particles present in the state.
Indeed, since n̂ = â†â:

⟨n| â†â |n⟩ =
√
n ⟨n| â† |n− 1⟩ =

√
n

√
n ⟨n, n⟩ = n (2.1.16)

effectively retrieving the number of photons present in the state |n⟩.
The boundary conditions in Eq 2.1.15 imply that no photon can be removed from the
state in which no photons are present (â |0⟩ = 0), and that this state carries no photons.
This state is referred to as the vacuum.

Finally, one can then define the quantum electric field E(x, t) as:
E(x, t) = u∗(x, t)â+ u(x, t)a† (2.1.17)

where u is the spatio-temporal mode and a, a† are the creation and annihilation opera-
tors [7].

The phase shifting operator, on the other hand, is defined as Û(θ) = e−iθn̂ and
introduces a complex phase to the field, if θ is the phase rotation angle applied to the
optical mode.
Indeed:

d

dθ
â(θ) = in̂Û(θ)†âÛ(θ) − Û(θ)†â(in̂)Û(θ) = iÛ(θ)†[n̂, â]Û(θ) = −iâ(θ). (2.1.18)

Therefore, â(θ) = â(0)e−iθ, where â(0) sets the reference phase. So the generic form of
2.1.17 could be written as:

E(x, t) = u∗(x, t)e−iθâ+ u(x, t)eiθâ† (2.1.19)
On the other hand, it is well known that a classical e.m. field can be completely

described by the In-phase (I) and in-Quadrature (Q) components, representing the Real
and Imaginary components of the field. Since classical mechanics is a particular case of
quantum mechanics, those components have to have a quantum version. Therefore, the
quadrature operators are introduced, usually referred as X̂, P̂ or q̂, p̂ [27].
In particular, the two quadratures, play the same role as the position x̂ and momentum
p̂ operators in the quantum harmonic oscillator, and they have the same mathematical
description under proper normalizations and they are linked by a Fourier transform (see
Appendix 6.7) [7]. Consequently, the quadrature vector moves as a rigid rotation in the
phase space (the space spanned by X and P ), just as position and momentum do in the
harmonic oscillator (in the x, p space). Moreover, since the two quadratures encode all
the physical information of the field, it that can be expressed as:

E =
√

2E0
[︂
X̂ cos(ωt) + P̂ sin(ωt)

]︂
. (2.1.20)

Therefore, the two quadratures reads [7, 28]:

X̂ = â+ â†
√

2
, (2.1.21)

P̂ = â− â†
√

2i
, (2.1.22)
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2.2 – The quantum states of light

with indetermination relation [X̂, P̂ ] = i (∆X∆P ≥ 1
2), if ℏ = 1.

However, by construction, the two quadratures (Real and Imaginary components of
the field) are linked by a phase difference. Therefore, the previously defined operator
U(θ) can relate them and the generalized quadrature operator X̂θ or x̂θ can be defined.
Moreover [7]:

X̂θ = U(θ)ˆ †
X̂U(θ)ˆ = X̂ cos θ + P̂ sin θ, (2.1.23)

P̂ θ = U(θ)ˆ †
P̂U(θ)ˆ = P̂ cos θ − X̂ sin θ. (2.1.24)

Finally, using the relations:

â =
√︃

1
2
(︂
X̂ + iP̂

)︂
, (2.1.25)

â† =
√︃

1
2
(︂
X̂ − iP̂

)︂
. (2.1.26)

one can derive the energy of the quantum harmonic oscillator, written as [7]:

Ĥ = ω

(︃
n̂+ 1

2

)︃
= ω

⎛⎝X̂2

2 + P̂
2

2

⎞⎠ (2.1.27)

where, ℏ was set to one.

2.2 The quantum states of light

Following the reasoning in subsection 2.1.3, the light is composed by discrete particles
called photons; moreover the energy levels are quantized, and the ladder operators are
used to move among these.
Therefore, the quantum state of light is described by a generic distribution of such parti-
cles. These states are called Fock states and are defined as the eigenstates of the number
operator n̂:

n̂ |n⟩ = n |n⟩ , (2.2.1)

where n ≥ 0 is an integer that represents the number of particles.
Moreover, since these states are orthogonal, they form an orthonormal basis, which spans
the entire space, called the Fock space [7, 29].

Due to the correspondence between each mode of the quantized electromagnetic field
and a quantum harmonic oscillator, the energy eigenstates of the field are identical in
form to those of a harmonic oscillator. Hence, solving the harmonic oscillator problem
yields the photon-number (Fock) states, which in the quadrature representation read:

ψn(X) = ⟨X|n⟩ = 1
4
√
π

√
2nn!

Hn(X)e− X2
2 , (2.2.2)
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Figure 2.2: In the image are shown the Fock wavefunction of order 0,1,2 calculated with
the general formula shown in equation 2.2.2. The one that correspond to n=0 is the one
that correspond to the vacuum state.

if Hn(X) are the Hermite polynomials defined as:

Hn(X) = (−1)neX2 dn

dXn
(e−X2), (2.2.3)

the derivation is reported in Appendix 6.2 .
The simplest example of such states is the previously anticipated vacuum state, which
corresponds to the absence of photons. It exhibits the minimum variance allowed by the
Heisenberg uncertainty principle. This variance, known as the ground-state noise or shot
noise, sets a fundamental lower limit on the fluctuations of the field quadratures and can
not be reduced by standard measurement techniques.
Returning to the correspondence between the quadratures and the position and momen-
tum operators of the quantum harmonic oscillator, the shot noise plays the role of a mass
in the normalization of the field. Since the shot noise (i.e., quantum noise) depends on the
optical power of the employed light, a proper normalization procedure must be applied so
that quantum states are represented independently of the field strength. Consequently,
states in phase space are expressed in shot noise Units (SNU) [7, 11].

In the following sections, different states of light are analysed, and their properties
are discussed.

2.2.1 The vacuum states

As previously anticipated. the vacuum state, usually represented with |0⟩, is the state
where no photons are present. Therefore it represents the ground state from which one
is able to generate all the other states (by using the ladder operators).

14
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Figure 2.3: On the left the representation of the photon state with 0 photons (vacuum
state) in the phase space, while on the right its probability distribution. As can be seen,
the vacuum state shows the same variances for all the quadratures and the probability
distribution is a Gaussian function centred in the origin.

Its mathematical representation can be derived starting with the general Fock-state equa-
tion derived in Appendix 6.2.
However, it is instructive to use one of the boundary conditions for the annihilation op-
erator â, defined in 2.1.15, since they directly come from the physics of the vacuum state.
in particular, if the annihilation operator is applied to vacuum:

â |0⟩ = 1√
2

(X̂ + iP̂ ) |0⟩ = 0, (2.2.4)

if |0⟩ is the vacuum state, which wavefunction is called ψ0.
Moreover, since P̂ = −i ∂

∂X , then:

ψ0 = Ae− X2
2 , (2.2.5)

exactly what expected with n = 0 in equation 2.2.2 (see Appendix 6.3).
This wavefunction is a Gaussian centred at the origin of phase space and exhibits a con-
stant variance (i.e., independent of X). Consequently, the vacuum state is represented
by a Gaussian distribution in phase space centred at the origin.
As will be discussed later, this phase-space distribution is known as the Wigner function,
and the procedure used to reconstruct it experimentally is called quantum state tomog-
raphy.
In order to determine the constant A, that has to be understood as a normalization con-
stant, the Born principle (normalization of the wavefunction) could be uses:

∫︁+∞
−∞ ψψ∗ =

1, thus achieving A = 1
4√π

.
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Therefore, the final vacuum wavefunction then reads:

ψ0 = 1
4
√
π
e− X2

2 . (2.2.6)

The variance of the vacuum state is chosen to be 1
2 (i.e. standard deviation σ = 1√

2) in
normalized units. This variance (uncertainty) corresponds to the previously mentioned
shot noise or quantum noise, i.e., the minimum uncertainty expected when measuring
states of light.

2.2.2 Coherent states
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Figure 2.4: On the left the representation of the coherent wavefunction with coherent
parameter α = 1 + i, associated with |1 + i|2 mean photons is shown. Its Wigner
(right) distribution shows the same variance as vacuum with a shift in the phase space,
as expected.

Coherent states are defined as the eigenvectors of the annihilation operator [7]:

|α⟩ coherent if â |α⟩ = α |α⟩ (2.2.7)

Where α is the coherent parameter and its square modulus determines how many photons
(on average) the state has (⟨n⟩ = |α|2).
These states are emitted by an ideal laser. Indeed, by looking at the first order correlation
function g(1)(τ), used to define the coherence properties of a field from time t to time
t+ τ , if |ψ⟩ = |α⟩, â |α⟩ = α |α⟩ and a(t)ˆ = a(0)ˆ e−iωt:

g(1)(τ) = ⟨â(0)†eiωtâ(0)e−iω(t+τ)⟩ = eiωτ ⟨â(0)†â(0)⟩ = const. (2.2.8)

Therefore, the eigenstate of the annihilation operator has an infinite coherence time: the
main property of an ideal laser.
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2.2 – The quantum states of light

While for all the other Fock states:

â |n⟩ =
√
n |n− 1⟩ ⇒ ⟨n|â†(t)â(t+ τ)|n⟩ = 0 (2.2.9)

related to a finite coherence time.

Finally, using the quadrature operator definitions, it is possible to estimate the vari-
ance of the coherent state as:

Var(X̂) = E(X̂2) − E(X̂)2 (2.2.10)

= 1
2

[︃
⟨α| (â+ â†)2 |α⟩ −

(︂
⟨α| (â+ â†) |α⟩

)︂2
]︃

(2.2.11)

= 1
2
[︂
α2 + 2|α|2 + α∗2 + 1 − (α+ α∗)2

]︂
(2.2.12)

= 1
2
[︂
α2 + α∗2 + 2|α|2 + 1 −

(︂
α2 + α∗2 + 2|α|2

)︂]︂
(2.2.13)

= 1
2 = Var(P̂ ), (2.2.14)

Analogously to the vacuum state.
However a non-zero mean photon number characterizes the coherent state, determining
a shift in the Wigner representation with respect to the origin of the phase space [7]. For
this reason, coherent states are usually referred to as displaced vacuum states.
Therefore, the displacement operator is defined as:

D̂(α) = eαa†−α∗a D̂(α)†âD̂(α) = â+ α. (2.2.15)

Conversely,
D̂(−α) |α⟩ = |0⟩ ,

if, again, |0⟩ is the vacuum state.
However, coherent states should be considered as new states of light with their own prop-
erties, distinct from the vacuum state [7]. In particular, coherent states are characterized
by a random photon number, leading to a Poissonian distribution in the Fock space, as
shown in Appendix 6.4. Therefore, a coherent state reads:

|α⟩ =
∞∑︂

n=0
e− |α|2

2
αn

√
n!

|n⟩ . (2.2.16)

Furthermore, especially when the mean photon number is not zero, the centre of
the Wigner function depends on the normalization of the quadrature operators. In the
conventional framework, where a multiplicative factor of 1√

2 is included in the quadrature
definition, the centre of the distribution appears at

√
2α. Conversely, if this factor is

replaced by 1
2 , the centre remains exactly at α.
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Indeed:

X = ⟨α| â+ â†
√

2
|α⟩

= ⟨α| â |α⟩ + ⟨α| â† |α⟩√
2

= 2αR√
2

=
√

2αR. (2.2.17)

While if:

X̂ = â+ â†

2 , (2.2.18)

P̂ = â− â†

2i , (2.2.19)

one achieves:

X = ⟨α| â+ â†

2 |α⟩

= ⟨α| â |α⟩ + ⟨α| â† |α⟩
2

= 2αR
2 = αR. (2.2.20)

Similar relations can be derived for the P̂ quadrature.
From now on (unless stated otherwise) whenever a displaced Wigner function is men-
tioned, its maximum will be assumed to occur at α, since this is the conventional choice
that allows for a direct estimation of the coherent parameter.

2.2.3 Squeezed states

Both coherent and vacuum states, as previously derived, show the same variance proper-
ties. In particular they are able to minimize the Heisenberg uncertainty principle (allow
for the equality to hold). For such reason are also referred to as minimum uncertainty
states.
There is another state able to minimize the Heisenberg relation: the squeezed state (see
Appendix 6.6).

However, the squeezed light, differently from coherent and vacuum states shows an
unbalance between the variances of the two quadratures: the quadratures with the smaller
variance will be called squeezed quadrature, while the other one will be the anti-squeezed
one.
Of course, since the Heisenberg uncertainty principle still holds, the squeezed quadrature
is expected to have a variance lower than that of the vacuum, while the anti-squeezed
quadrature has a larger variance.
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Figure 2.5: On the left, the representation of a squeezed vacuum state with squeez-
ing parameter r = 1 is shown, while on the right its Wigner function is displayed. A
strong imbalance between the variances of the squeezed and anti-squeezed quadratures
is observed, as expected for such a high squeezing parameter, while the function remains
centred at the origin since the mean photon number is zero.

Following the definition of the Pauli argument [7]:

δ ≡ | q

2∆2q
φ+ ∂φ

∂q
|2, (2.2.21)

one can derive the squeezed wavefunction as:

φ(X) = (2π∆2X)− 1
4 e− X2

4∆2X , (2.2.22)

that has a Gaussian shape (as vacuum and coherent states), but that is not forced to
have a symmetric variance between the two quadratures.
However, no hypothesis was assumed on the mean number of photon number of that state.
Indeed, the squeezing is a property regarding the variances of the quadratures. Therefore,
if the Wigner representation in the phase space is centred in the origin (α = 0), it is called
squeezed vacuum. Conversely, if the state is displaced (α /= 0) it is called squeezed displaced
or displaced squeezing.
Therefore, it is convenient to introduce an operator able to squeeze a state. This operator
is named squeezing operator, and it is defined as [7, 30]:

S(r)ˆ = exp
[︃
r

2
(︂
â2 − â†2

)︂]︃
, (2.2.23)

where r is the squeezing parameter. In particular, r determines the noise properties of
the squeezed state (see Appendix 6.5); indeed, the higher is r and the higher will be the
unbalance between the squeezed and anti-squeezed quadrature.
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Consequently, the squeezed vacuum state will be defined as (|ψ0r⟩ = S(r) |0⟩, while a
displaced squeezed state can be defined as |ψα,r⟩ = D(α)S(r) |0⟩.

In order to derive the squeezing operator, one can start by the squeezed vacuum
wavefunction, defined as:

ψr(X) = er/2ψ0(erX). (2.2.24)

By taking its derivative:

∂

∂r
ψr(X) = ∂(e r

2 )
∂r

ψ0(erX) + ∂(ψ0(erX))
∂r

e
r
2

= 1
2ψr(X) +X ′ ∂

∂X ′ψr(X)

= 1
2[2X ′ ∂

∂X ′ + 1]ψr(X)

= 1
2[X ′ ∂

∂X ′ + ∂

∂X ′X
′]ψr(X)

= i

2[X ′(−i ∂

∂X ′ ) + (−i ∂

∂X ′X
′]ψr(X)

= 1
2[iX̂P̂ + iP̂ X̂]ψr(X), (2.2.25)

where again ℏ was set to 1 [7].
The quantity in the brackets is simply a linear combination of the creation and the
annihilation operators. Indeed, using equations 2.1.22:

iX̂P̂ + iP̂ X̂ = (â+ â†)(â− â†)√
2

(â− â†)(â+ â†)√
2

= (â)2 − (â†)2. (2.2.26)

Therefore 2.2.25 reads:
∂

∂r
ψr(X) = Ĝψr(X), (2.2.27)

where the operator Ĝ was defined as Ĝ = 1
2 [(â)2 − (â†)].

Since Ĝ is a linear operator defined in a complex vector space (the Hilbert space), similarly
to the derivation of the quantum mechanical propagator, the equation

∂

∂r
ψ = Ĝψ

could be proven has the solution:

ψr(X) = U(Ĝ)ψ(0). (2.2.28)

Here U(Ĝ) was defined as
U(Ĝ) = erĜ, (2.2.29)

and it is unitary [31,32].
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2.2 – The quantum states of light

Moreover the squeezing parameter is a generic complex number [7]:

ξ = reiθ ∈ C (2.2.30)

where now r is accounting for the effective squeezing in the quadratures while θ is relative
to which quadrature is squeezed. Figure 2.6 effectively shows this principle.
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Figure 2.6: On the left is the representation of the squeezed vacuum wavefunction with
squeezing parameter r = 1 and rotation θ = π

4 . As it is possible to observe both in
the representation and in the probability distribution (right), the squeezing parameter is
determining how much the variance of the two quadratures are different as in Figure 2.5,
while the rotation parameter θ rotating the Wigner representation of the state.

As a last remark, since the squeezed states are minimum uncertainty states, once the
squeezed (or anti-squeezed) variance is known, then the anti-squeezed (or squeezed) is
too:

∆q̂∆p̂ = 1
2

since ℏ = 1.

Furthermore, since the squeezed quadrature has a variance that has to be lower than
vacuum, it is possible to go below the shot noise, so the quantum limit.
As before anticipated, this feature can be exploited in applications such as quantum
metrology or quantum sensing [8], but finds application also in quantum communication
and quantum computing [9, 10,15].
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2.3 Quantum tomography

2.3.1 Quantum state tomography framework

Following the rules of quantum mechanics, a quantum state can not be directly observed.
Instead, the measurement outcomes are associated with a set of projective operators {Π̂i}
and the outcome probabilities are given by Born’s rule pi = ⟨ψ|Π̂i|ψ⟩ This assumption
comes from the fact that a generic state is defined as a linear superposition between the
vectors of the representation basis:

|ψ⟩ =
n∑︂

i=0
ai |ϕi⟩ . (2.3.1)

Knowing only the outcome probabilities pi = |ai|2 in a single basis is not sufficient to
fully determine the quantum state, since the relative phases arg(ai) between coefficients
ai are lost. However, by performing measurements in several complementary bases, one
can reconstruct the complete information encoded in the density matrix: [3]:

ρ̂ = |ψk⟩ ⟨ψk| =
∑︂
i,j

aia
∗
j |ϕi⟩ ⟨ϕj | . (2.3.2)

The density matrix fully characterizes the quantum state, containing both the probabil-
ities of measurement outcomes and the coherences between basis states. Therefore, the
ability to reconstruct the density matrix allows for the description of all the properties
of the system.

Indeed, if one wants to find the probability of observing the vector |ϕi⟩, and knows
the density matrix of the state ρ̂, it is necessary to look at the element in the density
matrix at position (i, i); indeed:

⟨ϕk| ρ̂ |ϕk⟩ =
∑︂
i,j

⟨ϕk|
(︂
aia

∗
j |ϕi⟩ ⟨ϕj |

)︂
|ϕk⟩

= aka
∗
k ⟨ϕk|ϕk⟩ ⟨ϕk|ϕk⟩

= |ak|2 = pk. (2.3.3)

As a consequence, it follows that the density matrix is a square matrix where the diag-
onal elements correspond to the probability of finding the state |ϕi⟩. The off-diagonal el-
ements, on the other hand, correspond to the quantum interferences of two states ⟨ϕi|ϕj⟩,
therefore, at the cross-correlation between the two vectors. Moreover, it is possible to
derive that a density matrix ρ̂ has the following properties [3]:

i Semi-positive defined: ⟨ψi|ρ̂|ψj⟩ ≥ 0;

ii Self adjoint: ρ̂ = ρ̂†;

iii Have unitary trace: Tr(ρ̂) = 1;
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2.3 – Quantum tomography

The previously mentioned requirements are necessary to ensure non-negative proba-
bilitie (i), Real diagonal elements (ii) and that those elements will sum up to one, ensuring
the correct probability normalization (iii). Thus, in order to characterize a quantum state,
the density or any other quantity that carries the same information must be evaluated.

This problem falls back into the field of tomography, which is tasked with recovering
a complete set of information starting from partial data. In our case, we want to per-
form a quantum tomography, which recovers the full information of a quantum state or
a quantum process [33, 34]. For the faithful recovery of the full information of a state,
multiple acquisitions have to be performed [3,35].

The recovery of quantum information can be schematized with the following diagram:

unknown ρ algorithm ρ̃

It is important to notice that, since the no-cloning theorem holds in quantum mechan-
ics [36], there is no possibility to extract more that one measurement from one acquisition.
As a consequence, experiments have to be made multiple times and each acquired point
can contribute to one and only one measurement.

Ideally, following the statistical requirements, experiments have to be replicated mul-
tiple times for acquiring an accurate reconstruction of the density matrix. Since each
measurement is subject to errors due to practical constraints (e.g. pollution from the
environment), the number of measurements needed for characterizing the state increases
depending on the error rate. Given then that one can accept an error of ϵ for any mea-
surement, the total number of measurements that must be carried out have to be

n ∼ d2

ϵ2
, (2.3.4)

where d is the dimension of the density matrix ρ̂ ∈ Cd×d that one wants to reconstruct [35],
as shown in Appendix 6.8. Since the error will not go to zero due to experimental
constraints, one aims to find a density matrix ρ̃ that approximates the effective density
matrix ρ̂ in the best possible way.

Once the minimum number of points is defined, suitable projection operators have to
be determined. This set of projectors is known as POVMs [3] (Positive Operator Valued
Measures, capable of measuring projections in one basis).

Let us consider a generic pure state vector |v⟩ that lives in the complex Hilbert space
Cd. Since a complex vector of dimension d has 2d real parameters (one imaginary and
one real coefficient) and the state vector must be normalized (| ⟨v|v⟩ |2 = 1), the vector
is geometrically represented as a point on the real sphere S2d−1. Physically, this means
that every possible pure quantum state in the Hilbert space is represented by a unique
point on a high-dimensional sphere.
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When treating with a continuous set of states (such as the eigenvalues of the position
or momentum operators), it is impossible to project against an infinite set of states. As a
consequence, there will always be errors that are dependent on the size of the built space.
This concept will be later explored in the Maximum Likelihood Estimation (MLE), since
the dimension of the density matrix has to be set by input. In later chapters, it will be
shown that, depending on the state to be characterized, different space dimensions will
be required.

2.3.2 Wigner inverse transform

It is well established that the density matrix ρ̂ contains all the information able to de-
scribe a quantum state.
Therefore, if one is able to reconstruct it, it will be also able to completely characterize
a generic quantum state.
However the density matrix is not the only mathematical object having this feature.
Other representations share the same property, for example the previously anticipated
Wigner function, here described.
Since the Wigner function is represented in the phase space, identified by the X̂ and P̂
quadratures, fully characterizing the field, it is particularly suitable for describing quan-
tum states of light.

One of the most commonly used tomographic algorithms for reconstructing the Wigner
function is the Inverse Radon Transform (IRT).
The principle of this method is based on the Radon Transform (or Radon Integral).
Specifically, by continuously changing the phase θ in the phase space, the complete set
of probability distributions P (Xθ) is measured, providing the necessary data for tomo-
graphic reconstruction.
However, since the commutation relation [X̂, P̂ ] = i, an intrinsic uncertainty is present in
the phase space, leading to the previously defined variances in the state representations.
Consequently, a Wigner distribution (W (X,P )) is the natural representation of the quan-
tum state in phase space and provides the joint quasi-probability of measuring the quadra-
ture Xθ = X cos θ + P sin θ. [7].
The reason why the word quasi-probability was used relies on the fact that the Wigner
function can assume negative values (as in cat states or single photons) or be ill-behaved.
It can be proven that the only states that are not showing negativities in the Wigner
function must be Gaussian [37,38], while negative values are always referred to quantum
features [39].
In Figure 2.9 are shown the expected Wigner functions of non-classical states (single
photon and a cat states) compared to the vacuum one.
In particular one expects that, integrating the Wigner function along one quadrature will
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Figure 2.7: Above is shown the effect of the Radon Transform on a Gaussian Wigner
function centred at the origin. As can be seen, the projection is simply the probability
distribution of the measured quadrature, P (Xθ), for a specific phase angle θ. The param-
eter s represents the distance along the measurement axis Xθ with respect to the centre
of the Wigner function.

result in the probability distribution in the orthogonal one (its marginal):

P (X) = ⟨X| ρ̂ |X⟩ =
∫︂ ∞

−∞
W (X,P )dP, (2.3.5)

P (P ) = ⟨P | ρ̂ |P ⟩ =
∫︂ ∞

−∞
W (X,P )dX. (2.3.6)

This property allows the Wigner reconstruction. Indeed, once all projections for any
phase θ have been measured, the Wigner function can be recovered by combining all the
marginals.

However, as before anticipated, the two quadratures are related by a phase difference.
Therefore the θ dependent probability distribution can be defined as [7]:

Pθ(X) = ⟨X| ρθ̂ |X⟩

= ⟨X|Uθ̂ρ̂U
†
θ

ˆ |X⟩

=
∫︂
R
W (X cos(θ) + P sin(θ), P cos(θ) −X sin(θ)) dP = P (Xθ), (2.3.7)

that is the previously mentioned Radon Integral.

Therefore, the Radon Transform is able to retrieve the marginal distributions given a
Wigner function and, conversely, the IRT is able to recover the Wigner function starting
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from the projections:

R[f(t, θ)] =
∫︂

Lt,θ

f(x) dS(x) =
∫︂
R2
f(x) δ(⟨x, nθ⟩ − t) dx nθ = (cos θ, sin θ).

(2.3.8)
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Figure 2.8: The relationship between the Radon Transform and the Inverse Radon Trans-
form is illustrated above in two dimensions (a) and three dimensions (b). As can be seen,
the Radon Transform is the mathematical operation that yields the multiple projections
of the original function across different phases θ. Conversely, the Inverse Radon Trans-
form performs the inverse process, reconstructing the original function from the ensemble
of these projections.

This transformation is shown in Figures 2.7 and 2.8, its mathematical derivation can
be found in Appendix 6.9 and reads as:

W (X,P ) = 1
2π

∫︂ ∞

−∞
⟨X − v

2 | ρ̂ |X + v

2 ⟩ eivP dv. (2.3.9)

This transformation belongs to the class of Weyl transforms, which establish a correspon-
dence between a quantum mechanical operator (ρ̂) and its representation as a distribution
in phase space (W (X,P )).

Therefore the procedure for evaluate W (X,P ) can be resumed as it follows:
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i) obtain the probabilities from the experimental setup;

directly related to the distributions of the quadrature operators.

ii) Make the Fourier transform F of those outcomes;

allowing us to have the characteristic function χ then written in polar coordinates.

iii) Apply the Inverse Radon Transform R−1;

see Appendix 6.10. Different process will be required in the Maximum Likelihood Esti-
mation experiment, where the density operator ρ̂ is reconstructed, then used for evaluate
the Wigner function.

Now that the Wigner function W(X,P ) has been introduced, its main properties can
be exposed. First, as stated above, it is a quasi-probability distribution in the phase
space, able to encode all the meaningful information of the quantum state.
Secondly, it is a purely real function (W(X,P ) = W(X,P )∗):

W (X,P )∗ =
[︃ 1

2π

∫︂ ∞

−∞
⟨X − v

2 | ρ̂ |X + v

2 ⟩ e−iP v dv

]︃∗
(2.3.10)

= 1
2π

∫︂ ∞

−∞

(︃
⟨X − v

2 | ρ̂ |X + v

2 ⟩
)︃∗ (︂

e−iP v
)︂∗
dv (2.3.11)

= 1
2π

∫︂ ∞

−∞
⟨X + v

2 | ρ̂† |X − v

2 ⟩ eiP v dv (2.3.12)

= 1
2π

∫︂ ∞

−∞
⟨X + v

2 | ρ̂ |X − v

2 ⟩ eiP v dv (ρ̂† = ρ̂) (2.3.13)

= 1
2π

∫︂ ∞

−∞
⟨X − v′

2 | ρ̂ |X + v′

2 ⟩ e−iP v′
dv′ (v′ = −v) (2.3.14)

= W (X,P ), (2.3.15)

Where ℏ was set to unity, and the self adjointness of the density operator was used.
However, the invariance under complex conjugation is a characteristic of Weyl transforms
linked to an Hermitian quantum operator, as used in Eq. 2.3.13.
Moreover, we have [7]:

Tr
[︂
F̂ 1F̂ 2

]︂
=
∫︂ +∞

−∞
⟨X|F̂ 1F̂ 2|X⟩ dX.

Due to the probabilistic meaning of the Wigner function, since in quantum mechanics,
the expectation of an operator Â acting on a system identified by ρ̂ is given by Tr[Âρ̂],
the Wigner function can be used for the calculation of those expectations (Tr[ρ̂Â]), or for
the calculation of the joint probability (| ⟨ψ1|ψ2⟩ |2) [7].
The utilities of this property span between the quantum tomography to the quantum
communication applications where, for instance, a qudit can be written with the two
densities operators ρ̂1, ρ̂2 [40].
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Figure 2.9: In the figure are shown the two-dimensional (1) and three-dimensional (2)
simulated Wigner functions for a single photon (a), cat (b) and vacuum (c) states. The
cat state was simulated by using a coherent parameter α = 1.5 (if the cat state is defined
as |ψ⟩ = |α⟩ ± |−α⟩) and even parity. Together with the single photon state, and in
contrast with the vacuum state, both the cat and single photon Wigner functions shows
remarkable negativities, as expected since quantum states.

Furthermore, since the density operator ρ̂ have unity trace (Tr[ρ̂] = 1), then also the
Wigner function have to be normalized (

∫︁∞
−∞W (X̂, P̂ ) = 1), similarly to a probability

distribution.

28



Chapter 3

Quantum State Tomography:
Setup and Experimental
Characterization

Teraxion
Fiber laser

1550nm

[Signal]

[LO]

PD2

PD1

EOM

Figure 3.1: Experimental setup used for homodyne tomography. It consists of a standard
balanced homodyne detection scheme.

The aim of this work is to reconstruct the Wigner function of a quantum state by
measuring the quadrature probability distributions. A standard and well-established
technique to perform such measurements is balanced homodyne detection [7,11]. Indeed,
such setup enables the measurement of the previously defined marginal distributions in
2.3.7 :

Pθ(X) = ⟨X| ρ̂θ |X⟩ = ⟨Xθ| ρ̂ |Xθ⟩ , (3.0.1)
where Xθ is the field quadrature at phase θ. The setup used in this work is presented in
Fig 3.1.

The key optical component enabling such a measurement is a balanced beam splitter,
which projects the signal field onto the basis of the Local Oscillator (LO), expected to be
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a strong coherent field.
Indeed, the quantum mechanical beam splitter transformation in terms of the annihilation
operators is given by: (︄

ĉ

d̂

)︄
= 1√

2

(︄
1 1
1 −1

)︄(︄
â

b̂

)︄
, (3.0.2)

where â and b̂ denote the input signal and LO mode, while ĉ and d̂ denote the outputs.
Therefore, if the two beam splitter outputs are read in a differential way, the resulting

photocurrent can be evaluated as:

i− = Ic − Id ∝ n̂c − n̂d = ĉ†ĉ− d̂
†
d̂ = â†b̂+ b̂

†
â. (3.0.3)

Assuming that the LO field is a strong coherent state, b̂ = |β|eiθ + δβ, and |β| ≫ 1,
the normalized differential current becomes

X̂meas = i−
|β|

= β∗â+ â†β

|β|
+ δβ†â+ â†δβ

|β|
= Xθ +R, (3.0.4)

or
√

2Xθ if the 1√
2 factor is considered in the quadrature definition. Here R collects the

LO-induced noise, negligible in the limit of high LO power and phase stability (⟨δβ⟩ρ = 0).
In such conditions the measurement yields the quadrature operator Xθ.

The high power and the phase stability required are obtained by using an ultra-stable
laser (Teraxion TNL162630) operating at 1550 nm as LO. The phase difference between
LO and signal is obtained through an MPZ-N10 electro-optic modulator (EOM) driven
by an Agilent 33522A AWG. A nearly 50/50 beam splitter (with estimated splitting ratio
∼ 51/49) combines the two signal. The resulting beams are detected by an ultralow-noise
photodiode (Exalos EBR370005-02), and the differential signal is acquired using a Tek-
tronix MSO64 oscilloscope.

The system is implemented in polarization-maintaining (PM) fibres to ensure stable
interference. However, none of the available 1550 nm laser sources in the laboratory
exhibited sufficiently low phase noise in order to obtain a conclusive result when the
signal did not come from the ultra-stable LO. As a consequence, only calibration states
(vacuum and coherent states) have been characterized for now. For such reason, in the
shown setup in Fig 3.1 the signal originates from the same laser source.
In particular a highly unbalanced beam splitter, followed by a polarizer (to equalize the
polarization) was used to generate the signal. This approach was chosen due to the
absence of a functional PM attenuator, but does not allow precise estimation of the
absolute signal power.

Before presenting the acquisition techniques for the quadrature distributions, the
characterization of the detector is reported since its noise and bandwidth are essential
for a proper reconstruction.
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3.1 Detector characterization
The calibration of the photodiodes, reported in this section, is important for a proper
reconstruction. This procedure allowed us to understand whether the Exalos balanced
photodiode was working properly.
In particular, as before stated, the shot noise and bandwidth characterizations were car-
ried out. The shot noise, in particular, is expected to show a linear dependency with the
power and will be crucial for the proper normalization of the phase space. On the other
hand, the Power Spectral Density (PSD) gave us information about the electrical noise
and about the frequency response of the photodiode.

3.2 Shot noise characterization
As before introduced, the shot noise characterization allowed us to understand whether
the photodiode was measuring as expected. The measurement of the shot noise will be
essential in later steps, since it acts as a normalization coefficient for the phase space,
effectively normalizing the measured differential current. For instance, the squeezing
(and anti-squeezing), are described having as a reference the vacuum standard deviation,
therefore the shot noise. In particular, shot noise arises from the discrete nature of light
and is therefore an intrinsically quantum noise source.

Indeed the photo-generated current can be evaluated as:

⟨iph⟩ = eR⟨N(t)⟩, (3.2.1)

where e is the electron charge, R is the responsivity and N(t) is the number of photons
dependent on the time.
On the other hand the power of the field can be expressed as:

P = ⟨N(t)⟩hν
t

(3.2.2)

if t represents the time.

If a coherent field is considered, then the photons must arrive with a Poissonian
distribution.
Since for a Poissonian distributed random variable the following properties holds:

E(X) = ⟨X⟩ (3.2.3)
Var(X) = ⟨X⟩ X ∼ P, (3.2.4)

if ⟨X⟩ identify the expected value, recalling that Var(cX) = c2Var(X), if c is a real
number, one obtains:

Var(iph) = (eR)2Var(⟨N(t)⟩)

= (eR)2P∆t
hν

∝ P. (3.2.5)
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Therefore, for a coherent field, if the device is properly working, one should expect a
linear increase of the measured noise power as the intensity of the laser increases, if the
shot noise is dominant on other noise sources.
The achieved results for the Exalos photodiode varying the input power are reported in
Figure 3.2.

In order to properly measure the shot noise, it is essential to distinguish it from elec-
trical one. Indeed, by using photodiodes and other electronic equipment, there is always
some background noise due to dark currents or other non-idealities. If multiple noise
sources are present in the system, the total measured noise will be dominated by the
largest one. For instance, this is the reason why ultra-low noise photodiodes were used.
Increasing the input power, the shot noise dominance can be further improved. For such
reason, the used optical power in the experiment exceeded the maximum limit specified in
the photodiode datasheet (–4 dBm per input). Therefore, the electronic noise is further
negligible.
However, exceeding the maximum power can lead to saturation effects, as the detec-
tor can not maintain linearity while providing the differential current. This introduces
non-idealities and potential errors. Nevertheless, this operation did not compromise the
reliability of the results. Indeed, following an idea suggested by Dr. Guillaume Richard
from our laboratory, the datasheet limit appears to be mainly related to the differential
voltage output of the Exalos, crucial in unbalanced detections; the opposite situation of
this experiment. Indeed, such effects were not recorded.

3.3 Frequency response
The second characterization that was carried out was the PSD evaluation of the photo-
diode. This analysis provides the noise profile of the detector besides its bandwidth.

Since a phase modulation will be induced, the knowledge of the bandwidth of the
detectors is crucial for the correct implementation of the experiment: since the phase
modulation is converted into an amplitude modulation through interference, the modu-
lation frequency must remain below the 3 dB bandwidth of the photodiode.
Otherwise, aliasing and distortion effects may occur in the recorded traces, thereby per-
turbing the measurement.
A bandwidth of 350 MHz was estimated for the used photodiodes, as shown in Figure
3.3, accordingly to what stated in the datasheet.
Such low bandwidth will be problematic later on since, as before already anticipated, the
phase diffusion of the quantum well laser occurs at an high frequency.
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Figure 3.2: In the figure above, the shot-noise variance is plotted for different optical
powers. Since the electronic noise was found to be constant, the shot noise was normalized
to it, which is represented as the reference level at zero. Each point corresponds to an
acquisition of 500,000 samples, recorded at a sampling rate of 25 GSa/s over a total
acquisition time of 2 µs. Image (b) shows the variance as a function of optical power in
mW, clearly exhibiting the expected linear behaviour. Conversely, in Figure (a), where
powers are reported in dBm, the trace appears exponential. From panel (a), it can be
observed that up to approximately -7.5 dBm the measured variance remains close to
the electronic noise reference (0 level), indicating that the electronic contribution is still
comparable to the shot noise, although the shot noise is already dominant. The displayed
powers should be considered for a single input of the Exalos photodiode.
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Figure 3.3: In the panel, the frequency response of the Exalos photodiode at multiple
optical powers is reported. As expected, the Power Spectral Density (PSD) increases with
the input optical power. Each trace was acquired with a Sampling Rate of 25 GSa/s and
an acquisition time of 2 µs, corresponding to 500,000 samples per trace. The measured
bandwidth is approximately 350 MHz, in good agreement with the value reported in the
datasheet.
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Chapter 4

Quantum state tomography:
Inverse Radon Recovery

As previously mentioned, this work is divided into two main experiments: the Inverse
Radon reconstruction, analysed in this chapter, and the Maximum Likelihood Estimation
exposed in the next one.

As shown in Chapter 2.3, the IRT is able to reconstruct the Wigner function of a
quantum state, provided that the probability distributions of the quadratures are known
for all phases θ; defined as the phase difference between the Local Oscillator and the
signal.
Those probabilities can be obtained, up to a normalization constant, using the previously
described Balanced Homodyne Detection (BHD) setup, provided that a stable laser with
high output power interferes with the signal to be characterized.

In particular, for strong classical fields, given E1, E2 as the two input fields, the two
outputs can be calculated as:

E ′(t) = E1(t) + E2(t) = A1e
i(ω1t+ϕ1) +A2e

i(ω2t+ϕ2),

E ′′(t) = E1(t) − E2(t) = A1e
i(ω1t+ϕ1) −A2e

i(ω2t+ϕ2),

resulting in two photo-generated currents that read:

i1,2(t) ∝ |E1,2|2 = |A1|2 + |A2|2 ± 2|A1||A2| cos (∆ωt+ ∆ϕ). (4.0.1)

Here, ∆ω represents the frequency difference between the two fields, while ∆ϕ repre-
sents their phase one. In particular, the phase difference θ in the quadrature definition,
is determined by both these quantities.

The phase stability characterization of the Teraxion laser was kindly given by Dr.
Huang Heming, and it is reported in Figure 4.1.
Moreover, both the In phase (I) and in Quadrature (Q) components coming from the
coherent interference of the Local Oscillator beating with itself were recorded, by using
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(a) (b)

Figure 4.1: In the figure above, the Teraxion TNL162630 phase noise characteristics
are shown. The plots were kindly given by Heming Huang that obtained them through
the Teraxion calibration using an OE4000 laser noise analyser. Both Teraxion operative
regimes, native mode (a), and low noise mode (b) were analysed, showing respectively
a linewidth of 2.5KHz and 300Hz. Such ultra-low linewidth of this laser is crucial to
correctly track the phase and manipulate it in a known way.

a Kylia IQ decoupler.
By making use of:

E(t) = I(t) cos θ + Q(t) cos θ, (4.0.2)

and using the trigonometric identity:

cos (α+ β) = cosα cosβ − sinα sin β, (4.0.3)

it is possible to obtain:

i− ∝ idc + I(t) cos (2π∆ft) +Q(t) sin (2π∆ft). (4.0.4)

Therefore:

I(t) ∝ cos (∆ϕ(t)), (4.0.5)
Q(t) ∝ sin (∆ϕ(t)). (4.0.6)

Moreover, if I0 is the constant amplitude of the In phase signal and Q0 the in Quadra-
ture one, it is possible to see that:⎧⎨⎩

I(t)2

I2
0

= cos ∆Φ2

Q(t)2

Q2
0

= sin ∆Φ2 =⇒ I(t)2

I2
0

+ Q(t)2

Q2
0

= cos ∆Φ2 + sin ∆Φ2 = 1 (4.0.7)

So if I0 = Q0 the phase θ of the field can be derived as:

θ = arctan I(t)
Q(t) (4.0.8)
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and by plotting I(t) versus Q(t) (so moving to the phase space) a circle is expected, where
each radial component is associated to a certain phase θ:

I

Q

v⃗

θ v⃗I = v⃗ cos θ
v⃗Q = v⃗ sin θ

This procedure, with the extraction of the phase, is usually referred as software PLL
(Phase Locked Loop), since it is able to sense the phase of the field at each time.
The results for the self interference of the Teraxion TNL162630 with a triangular phase
modulation between 0 to π, is shown in Figure 4.2.
A very clear plots are visible in the Figure, because of the ultra-low linewidth of the Local
Oscillator (∼ 300 Hz), resulting in a coherence time of ∼ ms. A little unbalance between
the I(t) and Q(t) is reflected in the phase space plot as an ellipse instead of a circle.

Now that the setup was proven working fine, and that the stability of the Local
Oscillator was shown, the last preliminary measurement can be carried out before the
measurement of coherent and vacuum states: the shot noise estimation.
Such evaluation can be split in several passages, summarized in Figure 4.3:

i. Measure electronic noise;

Then both the Local Oscillator and the signal branches were switched off, from now on
referred to as off_trace. This procedure is needed in order to evaluate the residual noise
(coming from dark-current in the photodiodes, drifting of the lasers etc) that can pollute
the measurement. Thus, from this measurement, it will be possible to extract the ground
electronic variance σ2

el.

ii. Measure vacuum state;

So turn on only the Local Oscillator branch in order to measure the vacuum state (no
light in the signal), from now on referred as lo_trace. This measurement allow us to
measure the shot noise σ2

shot by comparing its variance with the previously evaluated σ2
el.

This noise is dependent on the power of the Local Oscillator, thus from now on the Local
Oscillator power has to be supposed constant.
In particular, for all this experiment the power of the LO at the input of the interfering
beam splitter was around 1 dBm.

37



Quantum state tomography: Inverse Radon Recovery

0.4 0.5 0.6 0.7 0.8 0.9 1.0
time [ s]

0.10

0.05

0.00

0.05

0.10

vo
lt

ag
e 

[V
]

In phase signal
 In quadrature signal

(a)

0.10 0.05 0.00 0.05
voltage [V]

0.10

0.05

0.00

0.05

0.10

vo
lt

ag
e 

[V
]

I/Q

(b)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
time [ s]

3

2

1

0

1

2

3

Ph
as

e 
[r

ad
]

phase (t)

(c)

Figure 4.2: In the figure above are shown the achieved traces of the Teraxion TNL162630
laser interfering with itself both for the In-phase (I) and the in-Quadrature (Q) compo-
nents, after a triangular modulation between 0 and π at ∼ 300 KHz was applied (a).
As can be seen, the traces are cosinusoidal (as expected from the interference) and no
phase pollution was measured. This is also clearly visible by the results of a Phase
Tracking algorithm (c), where the phase was unwrapped, and in the In-phase versus the
in-Quadrature component plot (b).
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(a) (b) (c)

Figure 4.3: In the figure is shown the process for the data acquisition before the tomo-
graphic algorithm starts. Firstly, the electronic noise is evaluated by setting to off both
the Local Oscillator and the signal (a). Then the shot noise is evaluated by comparing
this measurement with the vacuum state (b) while the effective signal can be obtained
by switching on also the signal branch (c).

iii. Measure coherent noise;

By turning on also the signal branch with a coherent field, from now on referred as
on_trace (that has to be normalized) the coherent state quadrature probabilities can be
evaluated.
The process is schematized in Figure 4.3.

Once the normalized data are achieved, the on_trace is split in many segments where
the phase difference was supposed constant (in order to retrieve a projection for a given
θ). Then, for each segment, a histogram is computed. It is also important to notice
that the normalization procedure eliminates the proportionality constants arising from
the photodiode responsivity and the model description. Indeed, this constant is common
to both the coherent and vacuum acquisitions.
As will be shown later, two parameters play a crucial role in this step: the number of bins
used for each histogram, which determines the resolution of the trace at a given phase,
and the number of phase segments, which defines how finely the overall trace is divided.
It is also essential to ensure that each histogram contains a sufficient number of data
points per bin to provide a reliable statistical estimate, and that adjacent phase segments
do not average out, as this could blur the phase-dependent features of the distribution.
As will become clear later, both the trace and the histogram analysis already provide
information about the measured state, since they are related to the probability distribu-
tions.
However, the Wigner transform offers a complete characterization, yielding all the neces-
sary information about the quantum state.
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The data organized in such a way are called sinograms: a two-dimensional array in
which each row corresponds to a histogram for a fixed phase. Then the iradon function
from the Python library skimage.transform was used for the reconstruction.

Due to its mathematical nature, the IRT is not requiring for the physicality of the
measured data, since it is a purely mathematical algorithm (see Appendix 6.10). Then
both the shot noise division and the histogram normalization could not be enough to
properly normalize the dataset. For this reason, a second normalization was executed
directly on the evaluated Wigner function in order to normalize its integral to one.
In the following section, several simulations were performed to test the functionality of
the code. These simulations also provided insight into its limitations and the ways in
which non-idealities can perturb the measurements.
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4.1 Numerical simulations
Before analysing the data coming from real measurements, ideal simulations were per-
formed. This procedure allowed us to test whether the implemented tomography algo-
rithm was properly working, letting us moreover explore its criticalities and limitations.
Therefore, ideal data were generated through a Python script for different phases and
then fed into the software. The resulting outputs were analysed for different quantum
states of light. The statistical properties of each state were simulated using the numpy
library, reproducing the expected quadrature distributions associated with each state.

Since the main goal of this work was to sense if squeezed light was emitted by a
quantum well laser driven with a quiet pump, only the vacuum, coherent and squeezed
Wigner functions were simulated.
However, the IRT is a general algorithm that can be applied for the reconstruction of
any state of light, provided that the probability distributions for each quadrature X̂θ are
known. In order to not be redundant, the limitations of the algorithm were analysed once
(in the vacuum state).
Moreover, the ideal simulations will assume an already normalized dataset. Indeed, the
trace can be already generated with a proper normalization.
As later explained, different variables were varied, such as the coherent parameter α for
coherent states, and the squeezing parameter r for squeezed states.

Following the previously used order, firstly the vacuum, followed by the coherent and
squeezed states were analysed.
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4.1.1 Vacuum state

The vacuum state represents one of the fundamental states of light, since it defines the
shot noise level, as previously discussed.
As noted in Section 2.2, it corresponds to a mean photon number of |α|2 = 0, as no pho-
tons are present. The associated Wigner function in phase space is expected to exhibit
a Gaussian-like profile with mean value µ = 0 and variance σ2 = 0.5, accordingly to Eq.
2.2.6.

Defined a certain number of points, and a certain number of phases as input parame-
ters, the trace was then generated. Therefore, all the points were divided into subgroups
and a constant phase was associated to each of them (spanning between 0 and π).
Since vacuum state is phase independent, then the same distribution were assigned for
each quadrature projection.
In principle, the higher the used number of phases and the more accurate the resulting
plot will be, since more projections (therefore information) are present in the dataset.
However, if one supposes a fixed number of points, two issues may arise:

• The higher the number of phases, the fewer the points available for each phase.
This leads to a bad behaved distribution of the field for fixed phase, introducing
errors in the reconstruction.

• The higher the number of phases, the greater the required computational resources.
Moreover, since a finite number of points can be simulated (and measured), there will be
always an error during the reconstruction.
A similar problem occurs with the number of bins, i.e. in how many parts each segment
of fixed phase is divided. In Figures 4.7 and 4.8 these limitations are analysed.

In Figure 4.4 the simulated trace, together with the histograms calculation, are pre-
sented. The shown trace and histograms were reconstructed by dividing a simulated trace
of 107 points in 5000 pieces, and normalized histograms were built using 70 bins for each
constant phase segment.

The Wigner function, both from two-dimensional and three-dimensional perspectives,
is shown in Figure 4.5. The plots clearly resemble Gaussian functions centred at the ori-
gin of the phase space, with a standard deviation of σ2 = 1

2 .

The last parameter relevant to the IRT analysis is the filter, which acts on the filtered
back-projections. Its presence naturally arises from the underlying working principle of
the algorithm (see Appendix 6.10).

Therefore, the filter must be directly applied to the probability distributions pθ, and
its effect can be expressed as:

q̃θ(ω) = H(ω) p̃θ(ω), (4.1.1)

where q̃θ(ω) denotes the filtered Fourier transform of the probability distribution pθ(s).
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Figure 4.4: In the figure is shown the simulated trace (a) and the evaluated histograms
(b) for the vacuum state. A total of 107 points were generated, then separated in 5000
different segments where the phase was considered constant. As clearly visible, the trace
is showing the same variance for every phase and its mean value is zero, as predicted
from the theory. The histograms show similar characteristics, being centred at zero with
a Gaussian distribution as expected. For any of the 5000 segments 50 bins were used to
evaluate the statistic of the field.

43



Quantum state tomography: Inverse Radon Recovery

3 2 1 0 1 2 3X 3
2
1
0
1
2
3

P

0.0
0.1
0.2
0.3
0.4

0.0

0.1

0.2

0.3

0.4

Am
pl
itu

de

(a)

3 2 1 0 1 2 3
X

3

2

1

0

1

2

3

P
0.0

0.1

0.2

0.3

0.4

Am
pl
itu

de

(b)

Figure 4.5: In the image above, the reconstructed Wigner function is shown both from
a three-dimensional (a) and two-dimensional (b) perspective. As can be observed, the
result is a Gaussian-like function centred in the origin of the phase space. The tails of
the Gaussian vanish far from the central peak, which is located at 1

π , in agreement with
theoretical expectations. Again the simulation was performed using a total of 107 points,
divided into 5000 phases, with 70 bins per phase, and employing a Hann filter.

The standard filter necessary to compute the IRT is the Ram-Lak filter, defined as
H(ω) = |ω|, and directly arises from the change to polar coordinates. If this factor is
omitted, the reconstructed image exhibits systematic distortions, as |ω| provides the cor-
rect spectral weighting of the high-frequency components during polar integration.

In fact, when performing integration in polar coordinates, higher frequencies corre-
spond to larger circular paths in the Fourier domain, containing a greater number of
sampling points. Consequently, their contribution must be properly weighted. The mul-
tiplicative factor |ω| compensates for this geometric effect by ensuring that each frequency
contributes proportionally to its circumference in Fourier space. If this factor is neglected,
high-frequency components become under represented, leading to a blurred or distorted
reconstruction.

However, the Ram-Lak filter is not the only filter applicable in the IRT. While it
corrects for the intrinsic weighting of the transformation, it also tends to amplify high-
frequency noise. To compensate for this, smoother filters are often employed, such as the
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Figure 4.6: The figure above shows the simulated Wigner reconstruction for the vacuum
state using the Ram-Lak (a) and the Hann (b) filters with 107 points divided into 5000
phases and 150 bins per phase. As expected, the Ram-Lak filter introduces high noise
components, while the Hann allows for a smoother reconstruction. The risings, and the
cutoff frequency, are clearly visible when the Ram-Lak filter was applied. In contrast, the
Hann filter effectively suppresses these effects, allowing for a smoother reconstruction.

Hann filter, defined as:

HHann(ω) = |ω|α(ω), α(ω) =

⎧⎨⎩
1
2

[︂
1 + cos

(︂
πω
ωc

)︂]︂
, |ω| ≤ ωc,

0, |ω| > ωc,
(4.1.2)

where α(ω) is the Hann window and ωc denotes the cutoff frequency of the filter. Another
commonly used option is the Hamming filter, defined as:

HHamm(ω) = |ω|β(ω), β(ω) =

⎧⎨⎩0.54 + 0.46 cos
(︂

πω
ωc

)︂
, |ω| ≤ ωc,

0, |ω| > ωc,
(4.1.3)

where β(ω) is the Hamming window and ωc again represents the cutoff frequency.

The back-projection (BP) can then be viewed as a convolution between the filter and
the radial component 1

r2 and a typical non-ideality that often arises when applying a
filter—especially the Ram-Lak filter—can be described as:

G(Ω) ∝ H(ω)
[︃sin(Ωr)

r
+ · · ·

]︃
, (4.1.4)

45



Quantum state tomography: Inverse Radon Recovery

where the term [· · · ] indicates higher-order corrections (see Appendix 6.11). This expres-
sion shows that the behaviour of the filter near the cutoff frequency ωc strongly affects
the reconstruction, producing oscillations in the final Wigner function, usually referred
to as ringing.

Figure 4.6 shows the reconstruction of a vacuum Wigner function using 107 points
and 5000 phases, comparing the results obtained with the Ram-Lak and Hann filters.
As can be observed, the Ram-Lak filter preserves finer details but also introduces higher
noise, whereas the Hann filter, being more aggressive, effectively suppresses the ringing
artefacts. Therefore, the choice of filter is crucial and must be adapted to the dataset in
order to achieve the best possible reconstruction.
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Figure 4.7: In the figure, the results of the histogram reconstruction of the vacuum
state are shown, varying both the number of points and the number of histogram bins.
Specifically, figures 1, 2, and 3 were obtained using 104, 105, and 107 points, respectively,
while figures a, b, and c within each series correspond to 20, 35, and 50 bins, respectively.
For all plots, a total of 5,000 phases were used to define the segments.As can be seen,
using too few points (≲ 105) leads to a bad histogram reconstruction, since there are not
enough points per constant phase segment to reliably derive the required statistics. The
same issue arises when the number of bins is too high (e.g., Figures 1c and 2c), whereas
the best results are obtained using 107 points. This optimal balance must be determined
for each Wigner reconstruction and acquisition, as it depends on both the number of data
points and the data’s phase distribution.
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Figure 4.8: The figure shows the results of the Wigner function reconstruction for the
vacuum state using the Inverse Radon Transform. The reconstruction status varies by
changing both the number of points and the number of histogram bins, similarly to Figure
4.7. Moreover, it is clear that when the number of points is too low or the number of
bins is too high, the Wigner reconstruction is significantly compromised. The ringing
artefacts observed in the reconstructions are due to numerical effects introduced by the
Ram-Lak filter employed. This filter is the default choice in the iradon implementation;
however, smoother filters, such as Hamming or Hann, can be applied to mitigate these
oscillations, as demonstrated in Figure 4.6.48
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4.1.2 Coherent state
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Figure 4.9: In the figure above, the generated trace (a) and the corresponding histograms
(b) for the coherent state are shown. A total of 107 points divided in 5000 phases with
150 bins per phase were used, with coherent parameter α = 3. As expected from theory,
the standard deviation of the trace is constant and equal to the one of vacuum. The trace
resembles a sinusoidal shape, with shifts depending on the complex coherent parameter
α. In (b), the histograms follow the expected behaviour: they have the same width as
the vacuum distributions but are displaced depending on the phase θ.
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Figure 4.10: In the figure above, both the two-dimensional and three-dimensional Wigner
reconstructions of the state shown in Figure 4.9, obtained using a Hann filter, are pre-
sented. As theoretically expected, the Wigner function exhibits a displaced Gaussian
profile, centred at α ∼ 2 + 0i. The height of the Gaussian is however not the expected
value of 1

π . This is a common issue with the IRT, since no physical constraints are im-
posed in the transformation. Normalization effects are then expected during experimental
reconstructions.

The coherent states are defined as the eigenstates of the annihilation operator:

â |α⟩ = α |α⟩ . (4.1.5)

and are emitted by an ideal laser. The corresponding Wigner function is expected to ex-
hibit a non zero mean Gaussian function in the phase space (as derived in Section 2.2.2).
The obtained results for the coherent Wigner reconstruction by simulated data are re-
ported in Figure 4.10 and, as expected, shows a similar behaviour as above stated.

As before anticipated, the centre of the Wigner function has to be intended in α, in
order to have a more direct relation with the displacement operator: |α⟩ = D̂(α) |0⟩.
However, the recovered Wigner function has normalization issues (maxima close to 2
instead of the 1

π expected factor) and the coherent parameter is not in the expected
position of 2 + 0i but, rather, in α ∼ 1.9 + 0i.

As it is possibe to see from figure 4.11, the choice of the filter can be important also
for the coherent states.
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Figure 4.11: For completeness, the same Wigner function shown in Figure 4.10 (a),
together with an evaluation using a Ram-Lak filter (b), is reported above. As expected,
the Ram-Lak estimation is noisier and exhibits more prominent ringing than the Hann
filter result.
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4.1.3 squeezed states
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Figure 4.12: In the figure above, the generated trace (a) and the corresponding histograms
(b) for the squeezed state are shown. A total of 107 points divided into 5000 phases with
150 bins per phase were used, with coherent parameter α = 3, squeezing parameter r = 1
and rotation angle ϕ = 0.5. The trace is, as expected, showing different variance values
depending on the phase θ and it is also shifted by the rotation phase ϕ. This behaviour, as
expected, is also translated into the histograms of figure (b) that clearly shows a squeezed
characteristic.
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Figure 4.13: The figure above shows the three-dimensional (a) and two-dimensional (b)
reconstructions of the Wigner function for the squeezed state evaluated from the data
presented in Figure 4.12, with a Hann filter. The Wigner function is displaced according
to the coherent parameter α, that however diverges from the expected value of α = 2+0i,
and it exhibits both the squeezed and anti-squeezed quadratures, with the expected phase
shift of ϕ = 0.5. However, the maximum of the reconstructed function is not at the
expected value of 0.314. Moreover, the baseline level of the phase space is higher than
expected. Nevertheless, the obtained distribution unambiguously corresponds to that of
a squeezed state.

The squeezed states are states characterized by the same properties as coherent ones
but they are not forced to have the same variance for all the quadratures, as explained in
Section 2.2.3. Moreover, since they are minimum uncertainty states (see Appendix 6.6),
once the squeezing (or antisqueezing) is known, then also the antisqueezing (or squeezing)
is uniquely determined. Then the Wigner function of a squeezed state is expected to be
a Gaussian function squeezed along one quadrature and anti-squeezed along the other.
The simulated trace with histograms are presented in Figure 4.12, while the Wigner
reconstruction with an Hann filter is presented in Figure 4.13.
As for the coherent state both an error in the displacement (expected to be at α = 2 + 0i
but found at α ∼ 1.8 + 0i) and regarding the height of the Wigner (found above 2 but
expected at 1

π ) are present.
A clear squeezing is however recovered (with a simulated squeezing parameter r = 1) with
an evident phase shift of ϕ = 0.5. The difference between a squeezed stated with ϕ = 0
and ϕ = 0.5 are shown in Figure 4.14, and follows the expected behaviour.
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Figure 4.14: In the figure above are shown the images of traces (1), histograms (2)
and two-dimensional Wigner reconstruction (3) for displaced squeezed states with angle
ϕ = 0 rad (a) and ϕ = 0.5 rad (b). The extra angle, as before stated, is simply inducing
a rotation clearly shown in the histograms and in the Wigner function.
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4.2 Experiment results

4 2 0 2 4
time [ s]

0.002

0.000

0.002

0.004

0.006

Vo
lt

ag
e 

[V
]

ch1

4 2 0 2 4
time [ s]

0.0

0.5

1.0

1.5

Vo
lt

ag
e 

[V
]

trigger

(a)

40 20 0 20 40
time [ s]

0.05

0.04

0.03

0.02

0.01

Vo
lt

ag
e 

[V
]

ch1

40 20 0 20 40
time [ s]

0.0

0.5

1.0

1.5

Vo
lt

ag
e 

[V
]

trigger

(b)

Figure 4.15: In the figure above, the traces corresponding to the vacuum (a) and to the
coherent self-interference of the LO (b) are presented. Both the trigger (below) and the
recorded signal (above) are shown for completeness.

Now that the expected Wigner functions for the states of interest have been shown,
and the code has been verified to work properly, the experimental results can be pre-
sented.
In retrospect, we know that the expected squeezed state (quantum well driven by a quiet
pump) was not observed due to experimental issues. However, some calibration states,
namely vacuum and coherent, were measured.
In order to scan in all the different phase projections, the setup presented in Figure 3.1
was used, with a triangular modulation between 0 and π using 100% symmetry.
The Agilent AWG was then programmed in a way to repeat the input modulation peri-
odically, and data segmentation was performed to isolate the useful data within a single
period.
To help in this process, the trigger channel was connected to another port of the oscil-
loscope to register abrupt jumps each time the signal repeated. The achieved traces are
visible in Figure 4.15. Some cuts of the signal have to be done in order to mitigate for
non-idealities (delays, jumps etc.).
The vacuum trace was then used for the normalization, following the procedure explained
in 4. The standard achieved standard deviation for the on_trace (Total Variance),
off_trace (Electrical Variance) and lo_trace (Shot Variance) are summarized in the table
below:

Total Variance Electrical Variance Shot Variance
6 × 10−6 2 × 10−6 4 × 10−6

55



Quantum state tomography: Inverse Radon Recovery

4.2.1 Vacuum state

(a) (b)

Figure 4.16: In the figure above the reconstructed Wigner function for the vacuum state is
shown, derived from the data presented in Figure 4.15. The trace was divided with a total
of 105 phase segments, divided into 30 bins, was used, with a Hann filter applied to smooth
high-frequency non-idealities. The histograms (a) show peaks away from the centre value,
likely due to residual electronic noise, while the reconstructed Wigner function (b) exhibits
a peak at 0.296 (slightly lower than the expected 0.314) and a variance of two SNU (higher
than expected). Nevertheless, the reconstruction clearly indicates a vacuum state, with
a peaked Gaussian at 0 and fixed standard deviation.

The vacuum reconstruction of the Wigner distribution starting from the trace is shown
in Figure 4.15 is presented in Figure 4.16. As expected, the trace is phase independent
and shows the same variance for any phase. On the other hand, the Wigner reconstruction
clearly manifest a Gaussian peak at 0 and a fixed standard deviation of 2 SNU, slightly
above the expected 1 SNU. The dataset was then enlarged by summing up multiple trigger
periods in order to accumulate more information, allowing us to achieve a trace of 499993
points, due to the high sampling rate of the oscilloscope (25GSa/s). Still, some errors
can be found both in the histograms and in the Wigner function as noted, making the
reconstruction not as clear as the one shown in the ideal simulations.
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4.2.2 Coherent state

(a) (b)

Figure 4.17: In the figure above, the reconstructed Wigner function for the coherent state
is shown, derived from the data presented in Figure 4.15. The trace was divided with a
total of 105 phase segments, divided into 40 bins, was used, with a Hann filter to achieve a
better reconstruction. The histograms (a) show peaks that follow the expected sinusoidal
behaviour, proportional to the mean photon number |α|2. In (b), the Wigner function
exhibits a peak at 0.791 (slightly higher than the expected 0.314) and a variance of 1.3
SNU (higher than expected). Other issues are then related to the ripples at the basis of
the Gaussian and some unexpected negativities. Nevertheless, the reconstruction clearly
indicates a coherent state, with a peaked Gaussian at αR = 1, αI = 0.

The coherent reconstruction obtained by the self-interference of LO is shown in Figure
4.15.
Some unexpected negativities are present, together with ripples and a peak of the Wigner
function higher than 0.314, probably due to residual electronic noise. In order to further
lower the coherent parameter, the fibre was also slightly unplugged in order to have a
higher attenuation.
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4.2.3 Quiet pump state

This high phase noise of the signal (see Figure 4.18) invalidates the Inverse Radon Trans-
form approach for the quantum well laser driven by quiet pump source introduced in
Chapter 1. Indeed, the algorithm relies on the assumption that the phase can be tracked
in a known way.
Since the quadrature distributions are determined by the argument of the interference
cosine (and thus by the phase ϕ(t)), this induces the distributions to pick at random val-
ues within the interval [0, 2π]. Moreover, due to the high frequency at which this effect
occurs, our low bandwidth detectors (bandwidth ∼ 350 MHz) were not able to track the
phase diffusion. A trial with faster photodiodes (u2tBPDV2150R) was done, although
without success due to the high electronic noise.

The obtained Wigner reconstruction is shown in Figure 4.19.
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Figure 4.18: In the figure above, the noise characteristics of the quantum well laser are
presented. The results were obtained from a self-beating experiment performed on the
quantum well laser driven by a quiet pump and measured with u2tBPDV2150R photode-
tectors to capture all phase drifts. In (a), the in phase (I) and Quadrature (Q) signals
are shown, presenting a very high phase noise despite the nominally negligible frequency
difference. For completeness, panel (b) shows the I vs. Q plot together with the corre-
sponding phase distribution. As expected, the phase is almost completely random. This
random phase behaviour prevents a successful inverse Radon transform (IRT) reconstruc-
tion, since the phase distribution does not follow any known order. Some discontinuities
are visible in the plots because only a subset of points was displayed for computational
efficiency.
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(1a) (1b)

(2a) (2b)

Figure 4.19: In the figure above, the results of the inverse Radon analysis for the data
presented in Figure 4.18 are shown. The analysis refers to the quantum well laser driven
by a quiet pump, beating against itself (1), and to the complete interference with the
Teraxion laser used as the local oscillator (2). In both cases, the phase drifts of the
quantum well laser prevent the reconstruction of the Wigner function. The situation is
even worse for the complete interference, since the frequency difference between the two
lasers must be taken into account.
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Chapter 5

The Maximum Likelihood
Estimation

Since the Inverse Radon Transform approach proved ineffective for the quiet pump driven
quantum well laser, alternative reconstruction methods were explored. Among these, the
Maximum Likelihood Estimation (MLE) appeared promising, due to the small number of
needed quadrature projections (i.e. spanned phases). This will allow us to obtain better
statistics to recover the measured state, since more points for each phase can be acquired
assuming a fixed modulation speed.

This idea was based on the fact that the Maximum Likelihood Estimation is intrinsi-
cally more resilient to noise than the Inverse Radon Transform [41]. Indeed, since a lower
number of phases is required, a higher acquisition time per quadrature can be assigned.
This improves the statistical accuracy. However, the number of required phases, is ex-
pected to be dependent on the dimension of the rebuilt density operator ρ̂ [42].

Imagine defining a function, referred to as the likelihood function, constructed from
the outcomes of measurements performed on a system. The likelihood function, there-
fore, encodes all the relevant information about the system and represents an estimator
of the probability to obtain those measurements, allowing one to retrieve the state or the
parameters that most likely generate the observed data.
The estimation process is then carried out by maximizing such function.
The concept of likelihood, and in general of likelihood estimators, was first introduced by
Fisher under the assumption of independent and identically distributed (i.i.d.) random
variables (for a given quadrature probability outcome) [43]. It relies on the Wald theo-
rem [44] and on the laws of large numbers [45], as will be discussed later.
In particular, it will be shown that the MLE can be interpreted as an iterative conver-
gence algorithm for the estimator (the likelihood), whose convergence rate depends on
the amount of information that the dataset provides; i.e. on the number and on the
cleanliness of available data points [43].
However, other studies have proven that even in the presence of dependencies among the
data, the MLE can still converge [46]. Nevertheless the hypothesis of independency of the
data is required here, in order to simplify the model, since there is no reason to assume
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The Maximum Likelihood Estimation

correlation between the measurements. However, it is important to emphasize that the
identically distributed assumption applies to a single phase, so to a single quadrature
probability distribution, a condition that is indeed satisfied by the physics of quadrature
measurements.

To formalize this, consider a set of measurements,

y = (y1, · · · , yn), (5.0.1)

where each yi represents an observation.
The Likelihood function is related to the probability of obtaining the observed data given
a specific statistical model, thereby allowing the estimation of the parameters or the state
of the system that most likely produced the data.
Since every point is generated by a generic distribution, it can be related to the set of
parameters that define a distribution, called α. For instance, if the distribution yi is
Gaussian, then α = (µ, σ2), where µ identifies the mean value and σ the standard devi-
ation of such distribution.
Therefore, the Likelihood function Ln(α) measures how much the measured data yi is
compatible with the distribution αi. In other words, by maximizing the Likelihood func-
tion L, it is possible to estimate the distribution α for any given point.

Following the rules of the probability theory, the probability of observing all the
achieved n outcomes is the product of the single events:

P (yi, y2, · · · , yn|α) =
n∏︂

i=1
f(yi, α) (5.0.2)

that is indeed the searched Likelihood function L(α), from now on also called L(θ) for
make evident that the points are grouped by constant phase (thus same distribution).
Since in this contest the Likelihood function is managing to reconstruct the quantum
state (so the density matrix ρ̂), another notation that will be used is L(ρ̂).
Due to numerical reasons, instead of using the product as in 5.0.2, its logarithm is intro-
duced:

ln
(︄

n∏︂
i=1

f(yi, α)
)︄

= ln (L(θ)) =
n∑︂

i=1
ln(f(yi, α)) = L(θ) (5.0.3)

and it is usually referred to as log-likelihood or Log-Likelihood function.
This likelihood can be proven to have the same properties as the previous one defined.
Indeed, suppose Θ is a set of values and f is a function such that f : Θ → R (property
fulfilled by the Likelihood function). Then given a value α∗ ∈ Θ that maximizes the f
function (f(α∗) ≥ (α) ∀α ∈ Θ), then also ln f(α∗) ≥ ln f(α) ∀α ∈ Θ; conversely if α∗

maximizes ln {(α∗), then f(α∗) ≥ f(α). This statement is crucial since it implies that the
logarithm of the Likelihood function is maximized by the same value of the Likelihood
itself, thus the target value (or values) is (are) the same.
This property is not typical of the logarithm, but it can be extended to a monotonically
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increasing function g (i.e. ∀a, b ∈ Θ s.t. a > b g(a) > g(b)), with equality holding if the
function is strictly increasing.

In order to find the maximum of a generic function f (as the log-likelihood), the
gradient rule can be applied:

∇αf(α⃗) = 0 =⇒ ∂f(α⃗)
∂αi

= 0 (5.0.4)

However, if the function is not differentiable (usual situation in real experiments), a con-
vergence algorithm must be employed. Possible strategies could be smoothing of the
function, using sub-differential conditions or randomly exploring the space in order to
find the solution. All these methods are, however, highly expensive from the compu-
tational power perspective, a reason why the Maximum Likelihood Estimation requires
high computational capabilities.
Moreover, for some states the density functions f could be complex and difficult to model
also in simulated data, thus leading to highly non-linear equations. This problem can be
avoided by looking at simple distributions as Gaussians or exponential ones, as the states
studied in this work. However, no assumption on the state type was made in order to
keep the model to be general for any state as proven in Figure 5.5.

5.1 The algorithm and state simulations

As previously stated, the homodyne detection scheme, shown in Figure 3.1 (reported
in Figure 5.16 for convenience), is able to retrieve the probability distributions of the
quadrature operator X̂θ.
The outcomes of the homodyne measurement correspond to the eigenvalues of such op-
erator.
Given that each event has a probability prj and a frequency fj to occur, then the Likeli-
hood function can be written as:

L(ρ̂) =
∏︂
j

prfj

j . (5.1.1)

However, the probability of a given outcome is given by the measurement theorem:

prj = ⟨yj | ρ̂ |yj⟩ = Tr[Π̂j ρ̂], (5.1.2)

where ρ̂ is a density matrix operator, {|yj⟩} are the von Neumann basis vectors and
Π̂j = |yj⟩ ⟨yj | is the projection operator.
One can therefore introduce an operator ruling the convergence evolution of ρ̂ as [41]:

R̂(ρ̂) =
∑︂

j

fj

prj

Π̂j . (5.1.3)
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It is possible to see that this operator is able to find the density matrix ρ̂ generating
the input data, therefore maximizing the log-likelihood function. Indeed:

∂L
∂ρ̂

=
∑︂

j

fj
∂ ln(prj)

∂ρ̂

=
∑︂

j

fj

prj

∂prj

∂ρ̂
= 0, (5.1.4)

where the equality to zero was set in order to find the stationary points. Finally:

∂L
∂ρ̂

=
∑︂

j

fj

prj

∂prj

∂ρ̂

=
∑︂

j

fj

prj

Π̂j = R̂(ρ̂), (5.1.5)

where the relation Tr[AB] = ∑︁
ij AijBji was used in order to compute ∂Tr[AB]

∂B = ∑︁
ij Aij .

If now ρ̂∗ is the density that is maximizing the log-likelihood (ρ̂∗ = arg max(L(ρ̂))), then
the jth result prj will appear with a frequency fj .
In particular, these two values are linked by a constant:

fj = c× prj(ρ̂0), (5.1.6)

since the frequency of occurrences is given by the number of times each outcome is ob-
served.

Namely, the density ρ̂∗ is able to generate the exact data that were measured, and:

R̂(ρ̂∗) =
∑︂

j

fj

prj(ρ̂∗)Π̂j

=
∑︂

j

c× prj(ρ̂∗)
prj(ρ̂∗) Π̂j

= c
∑︂

j

Πj . (5.1.7)

However, the operator Π̂j is a set of projection operators (POVMs), thus the sum has
to be the identity: ∑︂

j

Π̂j = I, (5.1.8)

then the operator R̂(ρ̂∗) is a constant =⇒ R̂(ρ̂∗) ∝ I.
But since any operator commute with the Identity operator I, then

R̂(ρ̂∗)ρ̂∗ = ρ̂∗R̂(ρ̂∗) ∝ ρ̂∗, (5.1.9)

and the density matrix ρ̂ can be updated by the rule [41]:

ρ̂k+1 = N
(︂
R̂(ρ̂k)ρ̂kR̂(ρ̂k)

)︂
(5.1.10)
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where N is a normalization coefficient defined as:

N = 1
Tr
[︂(︂
R̂(ρ̂k)ρ̂kR̂(ρ̂k)

)︂]︂ (5.1.11)

Then by iterating multiple times one is able to obtain the final convergence density ma-
trix ρ̂∗.
Usually a small number of iterations is needed for convergence, as later shown. It is im-
portant to notice that the projection operator Π̂j has to be written in the quadrature base.

As a remark from the theory, the quadrature operator can be equivalently defined as:

X̂θ = X̂ cos θ + P̂ sin θ (5.1.12)

X̂θ = 1√
2

[︂
âeiθ + â†e−iθ

]︂
(5.1.13)

where the phase θ is the relative phase where the quadrature is measured. One can then
define the θ-dependent quadrature eigenstate as:

|θ, x⟩ = eiââ†θ |x⟩ (5.1.14)

where the rotation operator Û(θ) = eiââ†θ was defined [3].

Moreover, since the light is composed of discrete particles (photons), the state must
be described by a space that accounts for all those particles. This space, as previously
described, is the Fock space.
Therefore the projection operator Π̂θ = |θ, x⟩ ⟨θ, x|, can be written as:

⟨m| Π̂θ |n⟩ = ⟨m| (|θ, x⟩ ⟨θ, x|) |m⟩ , |m⟩ , |n⟩ ∈ Fock vectors, (5.1.15)

where ach Fock state |n⟩ is an eigenstate of the number operator n̂ = â†â. Moreover, it
is well known that any operator Û that can be expressed as a function f of an operator
n̂ (Û = f(n̂)) preserves the eigenvalues of such operator under the same transformation:

f(n̂) |n⟩ = f(n) |n⟩ . (5.1.16)

Consequently, the rotation operator Û(θ) = ein̂θ acts on Fock states by applying a phase
factor:

⟨n|θ, x⟩ = ⟨n| ein̂θ |x⟩ = einθ ⟨n|x⟩ , (5.1.17)

hence, the scalar product ⟨n|θ, x⟩ reads:

⟨n|θ, x⟩ = einθ
(︃ 2
π

)︃1/4 Hn(
√

2x)√
2nn!

e−x2
, (5.1.18)

where Hn are the Hermite polynomials and ℏ,mω were set to one [41].

So the Maximum Likelihood implementation will follow the sequent organization:

65



The Maximum Likelihood Estimation

• Split the data per constant phase; this will allow us to retrieve the statistic of
points for every phase;

• Update the density matrix for a certain number of iterations; this can be
implemented with the previously shown evolution formula 5.1.10;

• Recover the Wigner function: since the density has a one to one correspondence
with the Wigner function.

However, the MLE estimation can be proven to converge strictly to a single value
only under ideal conditions: when an infinite number of points (i.e., infinite information)
and an infinite Fock space dimension are used. Since those two requirements can not be
satisfied in experimental conditions, the next sections will analyse the limitations induced
by such restrictions.

Moreover, for finite datasets, it is reasonable to expect an oscillatory behaviour at
convergence [47], as shown in Figure 5.9 and formally derived in Appendix 6.12.
In particular, the amplitude of these oscillations depends on the number of points in the
dataset, i.e., on the available amount of information. The larger the number of points,
the better the statistics of the data, leading to a faster and more stable convergence of
the MLE.

The rest of this section is organized as follows. First, we analyse ideal simulations,
as previously done using the Inverse Radon Transform. Then, we discuss the limitations
of the algorithm that justify the choice of the simulation parameters using a simulated
coherent state with coherent parameter α = 5 + 0j.

5.1.1 Numerical simulations

Since this work is focused on the recovery of squeezing (Figures 5.3 and 5.4), and on the
calibration of coherent (Figure 5.2) and vacuum (Figure 5.1) states, only those Wigner
functions will be exposed in this subsection. Moreover, since the expected distributions
were already motivated 4.1, only the results simulated with the MLE algorithm are re-
ported here.
However, similarly to the IRT approach, the MLE algorithm is able to recover any classi-
cal and quantum Wigner function [41]. To prove this well known assumption, simulation
results for a single photon, as well as even and odd cat states, are presented in Figure
5.5.
The data generation made use of the numpy python library, whereas the MLE execution
exploited the scypi and QuTiP packages.

66



5.1 – The algorithm and state simulations

0 1 2 3 4 5 6
 (rad)

3

2

1

0

1

2

3

Q
ua

dr
at

ur
e 

va
lu

e 
[V

]

Simulated quadrature values
Average mean ( x )
±1

a

0.0 2.5 5.0 7.5 10.0 12.5
Iteration

160000

150000

140000

130000

120000

110000
Lo

g-
Li
ke

lih
oo

d

b

5 0 5
x quadrature

8

6

4

2

0

2

4

6

8

p 
qu

ad
ra

tu
re

0.000
0.036
0.072
0.108
0.144
0.180
0.216
0.252
0.288

W
ig

ne
r 

fu
nc

ti
on

c

4 2 0 2 4
x

4

2

0

2

4

p

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

W
ig

ne
r 

fu
nc

ti
on

d

5.0 2.50.0 2.5 5.0
x 5.0

2.5
0.0
2.5
5.0

p

0.00
0.05
0.10
0.15
0.20
0.25

0.0

0.1

0.2

W
ig

ne
r 

fu
nc

ti
on

e

0 1 2 3 4
n'

0

1

2

3

4

n

0.2

0.4

0.6

0.8

f

Figure 5.1: In the figure above, the vacuum state simulation is illustrated with a total
of 105 points and 20 uniformly distributed phases. The simulated trace (a) has a fixed
variance, and the expected Wigner function (c) resembles the theoretical expectation. The
achieved two-dimensional (d) and three-dimensional (e) reconstructions exhibit the same
behaviour, in agreement with Figure 4.5. The convergence of the log-likelihood function
(b) is monotonically increasing, as stated previously, and the reconstructed density matrix
(f) has only one non-zero element in the Fock basis, as expected.
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Figure 5.2: In the figure above, the coherent state simulation is shown for a total of 105

points with 20 uniformly distributed phases and coherent parameter α = 4.3 + 4.3j. The
simulated trace (a) has a fixed variance and a cosinusoidal phase dependence, while the
expected Wigner function (c) matches the theoretical expectation. The achieved two-
dimensional (d) and three-dimensional (e) reconstructions are in agreement with Figure
4.10. The Likelihood function convergence (b) shows a plateau and the reconstructed
density matrix (f) exhibits a Gaussian distribution centred at the mean photon number
|α|2 = 18, as expected.
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Figure 5.3: In the figure above, the squeezed vacuum state simulation is shown with a
total of 105 points, 20 uniformly distributed phases, squeezing parameter r = 1, and
Fock dimension Nfock = 20. The simulated trace (a) has a variable variance and a cos-
inusoidal phase dependence, while the expected Wigner function (c) is in line with the
theoretical expectation, showing a high squeezing on the X̂ quadrature. The achieved
two-dimensional (d) and three-dimensional (e) reconstructions again follow the same be-
haviour as the IRT analysis, as shown in Figure 4.13, and the convergence of the log-
Likelihood function (b) is monotonically increasing. The reconstructed density matrix (f)
has non-zero values only in the even components, which decrease in magnitude as they
move further from zero, as expected.
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Figure 5.4: The figure above shows the simulation of a displaced squeezed state with
coherent parameter α = 1 + 0j, displacement parameter r = 1, rotation angle θ =
0.4 rad, 20 phases, and a total of 105 points, simulated with Fock dimension Nfock =
20. The achieved results in both the two-dimensional (d) and three-dimensional (e)
reconstructions are in line with the theoretical ones (c), as in the simulated trace (a).
The log-Likelihood function convergence (b) shows a monotonically increasing behaviour,
and the density matrix (f) behaves as a mixture of a coherent and a squeezed state, as
expected from theory.
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Figure 5.5: The figure above presents the Wigner function reconstructions for a single-
photon (1), even-cat (2), and odd-cat (3) states using 20 phases and 105 points, with
15 iterations of the MLE algorithm. In the left (a) and central (b) panels the two-
dimensional and three-dimensional Wigner functions are shown, while the reconstructed
density matrices are present in the right (c) panel. All the images follow the expected
behaviour shown in Figure 2.9, proving that the here implemented MLE reconstruction
can reconstruct also highly non classical states.

5.1.2 Number of required iterations

As illustrated in Section 2.3, the convergence of a tomographic algorithm strongly de-
pends on the dataset. In the previous Chapter it was shown how the number of points
can affect a particular tomographic algorithm: the Inverse Radon Transform; here the
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same analysis is reported for the MLE.

The MLE implemented in this code is designed in such a way it is able to reconstruct
the density matrix of the state ρ̂. The evolution between successive density matrices is
governed by the operator defined in Eq. 5.1.10, and reads:

ρk+1 = R(ρ̂k)ρ̂kR(ρ̂k)
Tr[R(ρ̂k)ρ̂kR(ρ̂k)]

= F (ρ̂k), (5.1.19)

where F (ρ̂k) is a map able to generate the next iteration: F (ρ̂k) = ρ̂k+1. If ρ̂k indicates
the density matrix at iteration k. As before anticipated, only few iterations are needed
to achieve the convergence, as shown in Figure 5.6.

It is common practice to distinguish between the ideal density matrix maximizing the
Likelihood function ρ̂∗ in the ideal framework with respect to the real one, estimated by
the data: ρ̂.
In this work this division is not stressed; however, as previously mentioned, the Likelihood
function is able to estimate the ideal density only in ideal conditions.
Supposing now this density exists (and it does since the MLE is a converging algorithm
[41]), then it is possible to define an error δk at the kth iteration defined as the change
between the two iterations:

δk = ρ̂k − ρ̂∗. (5.1.20)

Using the Taylor expansion truncated at the first order:

ρ̂k+1 = F (ρ̂k) = F (ρ̂∗ + δk)
= F (ρ̂∗) + Jδk + O(||δk||2)
= ρ̂∗ + Jδk + O(||δk||2) ∼ ρ̂∗ + Jδk, (5.1.21)

where the identity F (ρ̂∗) = ρ̂∗ was used (with ρ̂∗ as the target density), and J is the
Jacobian matrix defined as J = ∂F

∂ρ

⃓⃓⃓
ρ∗

.
It follows that:

ρ̂k+1 = ρ̂∗ + δk+1 ∼ ρ̂∗ + Jδk =⇒ δk+1 ∼ Jδk, (5.1.22)

and, iterating k times:
δk ∼ Jkδ0, (5.1.23)

if δ0 is the initial error (starting distance with respect to the target density ρ̂∗).
Using the Frobenius Norm (||δk|| ≤ ||Jk||||δ0||), and applying the Gel’Fand formula (rλ =
limk→∞ ||Ak||

1
k ), one can achieve:

||δk|| ≤
[︃(︂

||Jk||
)︂ 1

k

]︃k

||δ0|| = rk
λ||δ0||, (5.1.24)
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where rλ is the spectral radius: the maximum modulus of the spectra of J [48].
Defined now an error ε ≥ 0, one can search for the minimum number of iterations that
allows for:

||δk|| ≤ ε. (5.1.25)

Then:

||δk|| ≤ ||δ0||rk
λ =⇒ ε

||δ0||
≤ rk

λ

=⇒ k ≥
ln ( ε

||δ0||)
ln (rλ) . (5.1.26)

One can notice that rλ is a way to characterize how much an error is shrunken (or
enlarged) at every iteration; the fact that rλ < 1 for each iteration (in ideal conditions)
is another way to prove that the error is always minimized by the MLE convergence
algorithm [49], consistently with what was stated before.
In particular, one expects that if the initial density is very far from the target one, rλ → 1,
a high number of iterations is required.
On the contrary, if the density is very close to the target one, therefore rλ → 0, a very
small number of iterations is required.

Supposing now to have n different (i.i.d.) measurements for a given phase, then the
average value between them is defined as:

X̄n = X1 + · · ·Xn

n
→ E[X1] (5.1.27)

where E[·] defines the expected value.
Therefore, it is always possible to define an error ε such that, in the sense of probabilities:

P[|X̄n − E[X1]| > ε] → 0 n → ∞, (5.1.28)

and usually ε → 0 in order to maximize the convergence.
Namely, the sample mean converges to the expected value X1 as the number of measure-
ments increases. In such condition, the Central Limit Theorem (CLT) can be applied:

√
n
(︂
X̄n − E[X1]

)︂
→ N (0, σ2), (5.1.29)

for some variance σ2. So, as long as the number of measurements is high enough, their
distribution will resemble a normal distribution with mean 0 and a small standard devi-
ation. This standard deviation in inversely proportional to the Fisher information of the
dataset [43], as before anticipated, thus reciprocal to the number of data [47].

Therefore it is logical to expect that, depending on the number of points, the conver-
gence of the MLE will determine the quality of the convergence.
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Figure 5.6: In the image above, the Wigner function of a simulated coherent state with
coherent parameter α = 5 + 0j is shown, both from a two-dimensional (1) and from a
three-dimensional (2) perspective, for the initial density (a), the first (b), and the second
(c) iteration. The code assumes a completely mixed state as the initial density matrix
(ρ̂0 = I

N ), whose corresponding Wigner function is shown in a. The algorithm then itera-
tively updates the density matrix using the simulated data as a probability distribution,
implementing the update formula in Equation 5.1.3. As can be seen, the convergence is
monotonic, and the state becomes already well-defined after only a few iterations. This
behaviour holds for simulated data; however, convergence can take require a higher num-
ber of iterations for a real experiment due to noise and limited data availability.
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Figure 5.7: In the above, the Wigner reconstructions obtained using the MLE algorithm
are shown for a total of 100 (1) and 105 (2) points, with 20 different phase values. Panels
(a), (b), and (c) respectively show the reconstructed Wigner functions at the first, second,
and fifth iteration of a coherent state with coherent parameter α = 5+0i, starting from a
completely mixed density matrix. At first glance, it is evident that the Wigner functions
reconstructed with 105 points are much clearer than those obtained with only 500 points
at each iteration. Moreover, simulations using a larger number of data points the converge
significantly faster. The slower convergence observed for smaller datasets is due to the
limited amount of information available.
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Figure 5.8: In the figure above, the Log-Likelihood evolution is shown for 100 (1a) and
105 (1b) points, together with the expected Wigner function in Figure (1c). Panels 2 and
3 display the Wigner reconstructions using 100 and 105 points and 20 phase values at
iteration 3, 40, and 41, respectively. It is evident that the algorithm exhibits saturation
in both cases after a number of iterations, as most of the information has already been
extracted. Moreover, one can observe that using 100 points at iteration 42 still produces
a Wigner function that is worse than the one obtained after only 15 iterations with 105

points. 76
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Figure 5.9: In the figure above are shown different Wigner reconstruction achieved by
using a total of 100 (1) and 105 (2) simulated points, a total of 20 phases and 15 iterations
for three different simulations (a,b,c). As can be seen, using 105 points the achieved
Wigner function is correct and well-behaved; moreover the convergence Wigner (thus the
achieved density matrix), is almost the same independently on the simulation. On the
contrary, by using 100 points, the achieved Wigner shows a high baseline level and lower
maxima, and it is changing dependently on the simulation. This behaviour is expected
since higher oscillations are achieved once the convergence Wigner is achieved by using a
lower amount of points, as derived in Appendix 6.12.
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5.1.3 The Fock dimension
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Figure 5.10: In the figure above the simulated Photon statistics for the vacuum (a),
coherent (b) and squeezed vacuum states (c) are shown. As expected the vacuum state is
centred at zero (since no photons are present), while the coherent state has a Poissonian
distribution around the mean |α|2 and the squeezed state is described only by even pairs,
since the generation started with |0⟩.

As a last limitation in the used model, there is the Fock dimension.
Following what shown in Section 2.2, the states of light have to be defined in the Fock
space. Consequently, the Fock dimension is the maximum size one wants to consider of
this space.
For instance, as shown in Figure 5.10, the vacuum state has components only at zero
(since zero photons are present), while the coherent state has a Poissonian distribution,
since it is a perfectly random state.
The Fock dimension, as before anticipated, is crucial in the MLE algorithm because of
the evolution equation 5.1.3; indeed the operator Π̂ inside R̂ has to be defined in the Fock
basis through equation 5.1.10.
If the Fock space is not sufficiently high, one risks to cut some meaningful information,
thus resulting in a bad convergence of the algorithm.

Suppose |n⟩∞
n=0 is the complete Fock basis, then by setting a Fock space lower than

infinity, one is effectively projecting the state through a projector:

P̂N =
N−1∑︂
n=0

|n⟩ ⟨n| , (5.1.30)

thus reducing the space.
Therefore, the infinite-dimensional (in the Fock basis) density operator ρ̂true is reduced
into:

ρ̂ = P̂N ρ̂trueP̂N

Tr[P̂N ρ̂true]
, (5.1.31)

where
[︂
P̂N ρ̂true

]︂
is a normalization factor.
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Figure 5.11: In the figure above, the photon number distribution of a coherent state
(Poissonian in the Fock space) with mean photon number |α|2 = 9 is shown. The state
is represented with a truncated Fock space of dimension |α|2 + k|α|, for k = 1 (a), 2 (b),
and 3 (c). The covered probability region is highlighted in green, while the missing tail
probability ptail is shown in red. The corresponding numerical results are summarized in
Table 5.1.

Hence, the probability to have components outside the truncated Fock space is:

ptail = 1 − Tr[P̂N ρ̂true] = Tr[(I − P̂N )ρ̂true], (5.1.32)

and, if one is measuring a generic operator Ô (for example the number operator n̂ or the
quadrature operator X̂θ), the truncation could be modelled as:

∆Ô =
⃓⃓⃓
Tr
[︂
Ôρ̂true

]︂
− Tr

[︂
Ôρ̂
]︂ ⃓⃓⃓

=
⃓⃓⃓
Tr
[︂
Ô
(︂
I − P̂N

)︂
ρ̂true

]︂ ⃓⃓⃓
≤ ||Ô||ρ̂true. (5.1.33)

Being |fm⟩ the Fock vector, if the Fock dimension is not high enough some information
is lost.
As a rule of thumb, the Fock space has to be estimated at least as the mean photon
number present in the state (this gives the displacement of the distribution), plus a
certain amount k of variances (usually k ≥ 3) able to catch the spread of the distribution:

Nfock = ⟨n⟩ + k⟨n⟩. (5.1.34)

For instance, if one is looking at a coherent state, then ⟨n⟩ = |α|2 and Var[⟨n⟩] =√︁
⟨n⟩ = |α|, so, by changing between k = 1, 2, 3 the results in table 5.1 can be achieved.

Where ptail is the non-covered probability, pcov is the covered probability and Fock dim
is the dimension of the Fock space.

The distributions for a coherent state by varying the Fock space are shown in Figure
5.11, while the rebuilt Wigner functions are shown in Figure 5.12.
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Figure 5.12: In the figure above are shown the Wigner reconstruction by simulated data
for a coherent state with coherent parameter α = 5+0j, a total of 105 points divided in 20
uniformly distributed phases. The Fock dimension was chosen to be Nfock = |α|2 + k|α|,
accordingly to formula 5.1.34 for k = 1 (a), 2 (b) and 3 (c); both the two-dimensional
(1) and three-dimensional (2) Wigner functions are plotted. As expected, the higher
is the used k parameter and the higher is the Fock dimension, allowing for a better
convergence. However, in simulations and data analysis, k = 5 was used since better
results were achieved as shown in Figure 5.13.

k Fock dim pcov ptail

1 12 87.58% 12.42%
2 15 97.80% 2.2%
3 18 99.76% 0.24%

Table 5.1
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Figure 5.13: In the image above, the Wigner function reconstruction from simulated data
of the coherent state shown in Figure 5.7 with k = 5 is presented. As can be seen in
both the two-dimensional (a) and three-dimensional (b) Wigner representations, the state
closely resembles a coherent state with coherent parameter |α| = 5 + 0j. This is further
confirmed by the photon-number histogram in the Fock space (c), where the uncovered
probability ptail is approximately zero.

As can be seen, with k >
∼

3 the statistic is well covered by the model, even if k = 5
was required for a better reconstruction.
Then one may wonder why not set a very high Fock dimension while retrieving the data
in order to not lose probability. This brute-force solution however requires high memory
computers in order to compensate for overflow and limited storage capabilities.
Indeed, the Fock wavefunctions are defined as:

ψn(x) = Nn ·Hn(ξ) · e−ξ2/2 (5.1.35)

with Nn normalization and ψn = ⟨n, ψ⟩.
The Hermite polynomials however go as:

Hn(x) = (−1)nex2 dn

dxn
e−x2 (5.1.36)

highly diverging on n. Using the notation complex 128 in python, the maximum rep-
resentable number should be close to, ∼ 10308 that corresponds to a truncated Fock
dimension around Nmax ∼ 170.
Exceeding this limitation, overflow errors occur, effectively limiting the type of states one
can measure/simulate.

It has to be noted that, since the Hermite polynomials are then multiplied by other
quantities, and that the Fock wavefunction ψn also depends on the data, the maximum
Fock dimension has to be lower than this value. Experimentally, a limitation was found
around Nfock ∼ 150.
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5.1.4 From density matrix to the Wigner function

The log-likelihood function, as previously implemented, can reconstruct the density ma-
trix of a state of light.
However, the goal of this work is to reconstruct the Wigner function of the state, that is
the common way to characterize a state in quantum optics. As before stated, there is a
one to one correspondence between the Wigner function and the density matrix, through
the formula [7]:

W (X,P ) = 1
2π

∫︂ +∞

−∞
⟨X − v

2 | ρ̂ |X + v
2 ⟩ eiP v dv. (5.1.37)

This formula belongs to the class of inverse Weyl transforms, where a quantum mechan-
ical operator (ρ̂) is connected to a phase function (W (X,P )).
The passage between the conversion to the achieved density matrix was then done by
using the already implemented python function Wigner, present in the QuTiP package.
The evolution of the density matrix in the Fock basis is shown in Figure 5.14.

As previously anticipated, a dependency between the number of used phases and the
dimension of the reconstructed density operator is theoretically expected. However, this
behaviour was not observed in our ideal simulations, when all other parameters were kept
fixed, as shown in Figure 5.15.
This lack of visible dependence is probably due to the simplicity of the considered states,
which are Gaussians.
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Figure 5.14: In the figure above, the evolution of the density matrix (1) and the cor-
responding two-dimensional Wigner function (2) is shown for the first (a), second (b),
and eleventh (c) iterations of the MLE algorithm applied to a simulated coherent state
with coherent parameter α = 5 + 0j. A total of 105 points with 20 uniformly distributed
phases were used. Consistent with Figure 5.7, after a few iterations the density matrix
already exhibits suppression of all components far from the mean photon number |α|2,
and its values begin to peak around that value with a Gaussian distribution, as expected.
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Figure 5.15: In the figure above, a coherent state with coherent parameter α ≈ 5+0j was
simulated using 103 sampled points and a Fock-space cutoff of NFock = 50. The number
of phase angles was varied among 3 (a), 6 (b), and 15 (c). As can be seen, no significant
phase dependence appears in either the Wigner reconstructions or the density-matrix
reconstructions. This behaviour is likely due to the relatively large amount of data used
(∼ 103 points). Since MLE is a redundant reconstruction algorithm, some information is
still encoded even with a small number of phase samples. However, drastically reducing
the number of sampled points is not a suitable approach, as it may introduce additional
errors due to insufficient statistics, making it difficult to determine which factor is limiting
the reconstruction.
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5.2 Experiment results

Teraxion
Fiber laser

1550nm

[Signal]

[LO]

PD2

PD1

EOM

Figure 5.16: In the Figure the setup used for the MLE experiment (the same as the IRT
one) is shown above. An ultra-stable laser (Teraxion TNL162630) operating around 1550
nm was used as the Local Oscillator. Due to phase instabilities, only calibration states
(vacuum and coherent) were studied. The signal was therefore simply an attenuated
beam coming from the Local Oscillator. A phase EOM (Electro-Optic Modulator) was
used to achieve a controlled phase difference between the Local Oscillator and the signal,
while interference was obtained through a Beam Splitter. The signal was then detected
using the previously described Exalos EBR differential detector.

Now that the behaviour of the code is well understood and has been proven to work
properly, the analysis of real data can proceed.

The setup used for the second experiment is essentially the same as the one described
in Section 4, reported in Figure 5.16 for convenience. The same ultra-stable laser (Terax-
ion TNL162630) with a previously measured linewidth of 300 Hz was used as the Local
Oscillator (LO) with a fixed output power of 10 dBm. The phase difference between the
signal and the Local Oscillator was introduced using an MPZ-N10 electro-optic modu-
lator (EOM). The signal and Local Oscillator were then combined at a beam splitter,
and the output was measured using a differential Exalos EBR370005-02 photodiode, as
in the Inverse Radon Transform experiment; the losses were again estimated to be (∼ 8.7
±0.02) dB.

Also in this experiment, due to phase instabilities, the light state emitted by the
quantum well laser driven with quiet pump was not measured. Therefore, only calibration
states were characterized.

In order to feed the modulating signal to the EOM, the Agilent 33522A Arbitrary
Waveform Generator has been used.
The modulating signal was spanning between V0 = 0 and Vπ = 4 in order to cover the
[0, π] phase range, as in the IRT experiment.
The modulation was generated in order to have jumps between the different voltage sig-
nals (then converted into phase values) in order to well define the various intervals, as
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Figure 5.17: In the figure above are shown the generated voltage signal (a) and the
achieved interference pattern (b). As can be seen the stability of the Teraxion allowed us
to achieve a very clean trace; the shifting between the signal and the voltage is due to an
intrinsic delay between the generated modulating signal and the trace, then fixed during
the post processing.

shown in Figure 5.17.

The signal had a frequency of approximately 1 MHz, corresponding to a period of
T ∼ 1 µs. However, the Arbitrary Waveform Generator introduces transients between
the different phase jumps. This induces some non-idealities, as different voltages (and
thus different phases) are explored in an unwanted way. To overcome this issue, some
points were removed from each segment where the phase was constant, slightly reducing
the precision of the algorithm.

Each acquisition was again composed of three parts: an off_acquisition, where both
the signal and the Local Oscillator (LO) were off; a lo_acquisition, where only the LO was
on; and an on_acquisition, where both the signal and LO were on, as in the IRT analysis.
Using the off and LO acquisitions, the shot noise was estimated for each measurement,
allowing proper normalization of the acquired trace in shot noise Units (SNU).

The results for both vacuum and coherent traces are shown in Figure 5.19.
As can be seen, the vacuum reconstruction clearly exhibits a Gaussian function centred in
the phase space, as expected. Since the vacuum trace is phase-independent, the modulator
jumps did not introduce any non-idealities in the data, allowing no points to be removed.
This results in better convergence (Figure 5.20) and analysis.

The achieved density matrix only has the |0⟩ state in the Fock basis: ρ̂ = |0⟩ ⟨0|, as
expected, since no photons are present in the vacuum state. Approximately 2000–2500
points per phase were measured for a total of 9 phases, yielding about 2.5 × 104 points
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Figure 5.18: In the figure above, the Log-Likelihood evolution for the vacuum state (a)
and the coherent state (b) are shown. As can be seen, the convergence in both cases is
achieved in a low amount of iterations (∼ 5). In particular, the vacuum trace has a more
abrupt and direct raise, mostly due to the higher number of points for phase, and achieve a
more stable convergence. On the other hand, the coherent state has a softer raise and still
some small improvements are present after the initial iterations. Nevertheless, improving
the number of iterations is not leading to an appreciable better Wigner function, symbol
that most of the information was already gained by the algorithm.

overall. This was possible thanks to the high speed oscilloscope used, with a sampling
frequency of ∼ 25 GSa/s.

The convergence was achieved in a quite direct way after almost 15 iterations of the
algorithm, starting with a completely mixed density matrix (ρ̂ = 1

N

∑︁
i |ψi⟩ ⟨ψi|) with a

Fock dimension Nfock = 5.

For what concerns the coherent state reconstruction, a high attenuation was used
in the signal branch; necessary in order to allow for reconstructions with a lower Fock
dimension, as discussed in section 5.1.3. The signal fiber was slightly disconnected in
order to achieve a higher attenuation. This allowed us to achieve an estimated coherent
parameter α ∼ 3.
The density matrix reconstruction shows an almost Poissonian distribution correctly cen-
tred at |α|2 ∼ 16 consistent with the shift of the Wigner function in |α| ∼ −3 − 4.
The reconstructed Wigner function exhibits some ripples and some small negativities,
moreover the shape is not a clear Gaussian distribution. These unexpected errors are
likely due to numerical artefacts and residual noise in the measured data and are coming
from the fact that in the density matrix some elements are non-zero, also far from the
Poissonian distribution in |α|2.
Nevertheless, the Wigner reconstruction shows a clearly displaced coherent state, proof
that the reconstruction went well.
Since the coherent trace is phase dependent (as expected and shown in Figure 5.17), some
points had to be discarded in order to compensate for the transients while modulating
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Figure 5.19: In the figure above, the measured data for vacuum (above) and coherent
(below) states are reported. The coherent Wigner function, both from a three-dimensional
(b) and two-dimensional (a) perspective shows non-idealities such as negativities, ripples,
and spreading in probability, likely due to residual noise and insufficient points. However,
in the rebuilt density matrix (c), the state resembles a coherent state with an associated
coherent parameter α ∼ 4−5, consistent (in this reconstruction the quadrature operators
were defined with the

√
2 normalization factor) with the plotted Wigner functions. On the

other hand, the Wigner functions for the vacuum state, both in the two-dimensional (d)
and three-dimensional (e) perspectives, show a Gaussian function centred at zero. The
plane baseline shows zero probability as expected, except where the Gaussian distribution
is present. Also, the achieved density matrix (f) shows a non-zero value only in |0⟩ ⟨0|, as
expected.

between two far voltages. A total of 1000 points were removed from each segment, effec-
tively lowering its number to ∼ 1000 per each phase.
This lack of points likely affected the Wigner reconstructions, introducing errors; never-
theless, different simulations of the same dataset let to almost the same Wigner distri-
bution (and density matrix), as shown in Figure 5.21. This proves both that with this
number of points the algorithm is stable and that the non idealities present in the density
matrix are not due to an error in the computation but are intrinsic to the dataset.

[p]
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Figure 5.20: In the image above, three different Wigner reconstructions of the same
dataset for the vacuum state are shown. As can be seen, both in the two-dimensional
(1) and three-dimensional (2) Wigner functions and in the density matrices (3) after
15 iterations, good convergence is observed. Since the trace was phase-independent, no
effects from the phase jumps were observed in the trace, thus allowing a high number of
points per phase segment (∼ 3000). This allows us to discard fewer points, thus enabling
better convergence.
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Figure 5.21: In the image, the experimental Wigner function reconstructions are shown
both from two-dimensional (1) and three-dimensional (2) perspectives, together with the
corresponding density matrices (3) of three independents runs of the algorithm. The
same dataset was used with 15 iterations. As can be seen, good convergence is observed,
although some oscillations are present in the final representations, probably due to the
limited number of points per phase (∼ 1000).

90



Chapter 6

Conclusions and future works

In this work, the Wigner functions of a coherent and the vacuum state were recon-
structed using two alternative methods: the Maximum Likelihood Estimation (MLE)
technique [11] and the Inverse Radon Transform (IRT) approach [41], both from exper-
imental and simulated data. While squeezed states and other non classical states were
only achieved through ideal simulations. These results were obtained through a Balanced
Homodyne Detection partially implemented in Polarization Maintaining fibres. In par-
ticular, the high stability of the used Local Oscillator (Teraxion TNL162630), which has
a linewidth of 300 Hz, helped us during the experimental reconstructions.
Moreover, the same set-up has been used to retrieve the Wigner function of the state
emitted by another source: a quantum well laser driven by a quiet pump current sup-
ply, that has shown sub-shot noise emission [15]. In this case, the reconstruction of the
Wigner function was prevented by phase instabilities.
Indeed, this work shows that the phase diffusion is one of the main limiting factor for
Wigner function reconstruction in phase space, requiring phase stability [7,11]. Further-
more, by analysing realistic numerical simulations, the thesis provides both a quantitative
and conceptual understanding of the experimental limitations that can corrupt the mea-
surements in the IRT and MLE methods, only valid in specific circumstances [50]. This
analysis is a necessary preliminary step toward the implementation of robust quantum
tomography algorithms in future experiments and in CV-QKD protocols.

The phase drifting comes from the fact that in a real laser, spontaneous emissions
occur alongside with stimulated ones, even if it remains the dominant mechanism. In
particular, when a spontaneous emission occurs, the phase is not forced to be the same,
therefore a small phase drifting is possible.
The new generated photon, with its drifted phase, can trigger further stimulated emis-
sions, causing the overall phase of the laser output to diverge. Therefore, the first solu-
tion one can think is to lock the phase; this strategy is known as a Phase-Locked Loop
(PLL) [51], and it is usually implemented by modulating the input current of the laser.
However, changing the current statistics from which the laser is fed, prevents us to inves-
tigate whether the sub-shot noise statistic is related to squeezing. For not incur on this
problem a Mach Zehnder Interferometer (MZI), able to record the instantaneous phase,
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Figure 6.1: In the image above the achieved graphs from [55], both for the Photon statistic
(a) and for the Photon distribution (b) are shown. As can be seen in that paper, the
state of light was retrieved by simply looking at the photon distribution with a random
phase. The simulated results are shown in the right figure, following a similar behaviour.

can be built. Then, the phase drifting, can be compensated by the usage of an EOM
(Electro-Optic Modulator) or a fibre stretcher [52]. However, it has to be noted, that
implementing a PLL is resource-demanding and challenging.
For such reason, alternative reconstruction strategies, that are not directly reconstructing
the Wigner function, and do not rely on the phase stability, will be explored in the future.

These strategies were not implemented, mainly due to time constraints and the lack
of specific equipment in the laboratory. However, they are well established techniques,
already proven from experimental data.
One of those approaches rely on the photon number statistic [53, 54] that, as shown in
Figure 5.10 depends on the measured quantum state. Similarly, the presence of squeezing
can be proven looking at the quadrature measurement distribution when the phase is ran-
domized [55]. Such reconstruction was performed in Figure 6.1, working with simulated
data.

It is important to notice that, for the correct implementation of those techniques,
a suitable detection bandwidth is necessary. Relying on this assumption, an additional
procedure that could be explored is phase reorganization through the In-phase and in-
Quadrature components. Indeed, in phase space, each slice corresponds to a specific
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phase, allowing one to identify whether squeezing is present. In this case, the Husimi Q-
function can be reconstructed; In particular, this function can be obtained by convolving
the Wigner function with a Gaussian distribution [7].
As a result, negativities (quantum features) are lost, and fine details of the state, such as
the amount of squeezing, are attenuated.

If, in addition, also a faster electronic is available, faster modulation schemes can
represent a promising direction toward overcoming phase diffusion and enabling dynamic
control of the quantum state. Indeed, one can beat the phase noise by repeating the
experiment faster than the phase drifting. However, fast electronic, as faster FPGAs
(∼ 4GHz), are costly, difficult to be used and to be built.

Furthermore, they have limitations in the output voltage and in the rising time.

In conclusion, while the present work focuses on the reconstruction of coherent and
vacuum states, it establishes the methodological and experimental foundations required
for future measurements of non-classical states of light. Moreover, the presented analysis
of phase diffusion and the limitations of the various tomographic algorithms constitute an
important step toward the realization of advanced continuous-variable quantum optics
experiments achieved using standard telecom equipment in our laboratory, useful for
future applications.
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Appendices

6.1
The Maxwell equations in vacuum (without any charge or current) can be written as
follows:

∇ · E = 0, (6.1.1)
∇ · B = 0, (6.1.2)

∇ × E = −∂B
∂t
, (6.1.3)

∇ × B = µ0ε0
∂E
∂t
. (6.1.4)

Using those equations one can easily retrieve the wave equation [56]:

∇2E − 1
c2
∂2E
∂t2

= 0 (6.1.5)

where c = 1/√µ0ε0 is the speed of light in vacuum.
It is known that the vector potential is defined up to the gradient of a scalar function χ,
so the choice of a gauge is required. The most commonly used gauge is the Coulomb
one, where (∇ · A = 0), so:

E = −∂A
∂t

, B = ∇ × A. (6.1.6)

Therefore the wave equation for A reads:

∇2A − 1
c2
∂2A
∂t2

= 0. (6.1.7)

Expanding A(r, t) with the Fourier expansion one has:

A(r, t) =
∑︂
k,λ

[︂
ak,λ(t) ϵk,λe

ik·r + c.c.
]︂
, (6.1.8)

where ϵk,λ are the transverse polarization vectors.
Substituting this into the wave equation leads to:

äk,λ(t) + ω2
kak,λ(t) = 0, (6.1.9)
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which is the classical equation of motion of a harmonic oscillator of frequency ωk = c|k|.
Therefore, each mode of the field behaves like a classical harmonic oscillator.
After the second quantization, the value ak,λ(t) becomes operators satisfying canonical
commutation relations: [︂

âk,λ, â
†
k′,λ′

]︂
= δk,k′δλ,λ′ , (6.1.10)

and the Hamiltonian of the electromagnetic field becomes:

Ĥ =
∑︂
k,λ

ℏωk

(︃
â†

k,λâk,λ + 1
2

)︃
. (6.1.11)

6.2
In this Appendix the general equation that describes a wavefunction in the Fock space
is derived.
By solving the eigenvalue equation:

Ĥ |ψn⟩ = En |ψn⟩ (6.2.1)

where Ĥ is the Hamiltonian operator one can obtain the following differential
equation [7]:

1
2(− ∂2

∂X2 +X2) |ψn⟩ = En |ψn⟩ (6.2.2)

Moreover, from the results of the harmonic oscillator it is well established that the
energies have to be quantized (discrete values instead of a continuum as in the classical
formalism) and that the wavefunction are vanishing for large value of X. Thus the
wavefunction |ψn⟩ reads:

|ψn⟩ = NnPne
−x2/2 (6.2.3)

where Nn is a normalization constant.
The Pn are polynomials, coming from the requisite to ensure that the Sturm Liouville
principle is valid, needed for the discreteness of the En eigenvalues [57,58].
By taking the second derivative of the previously defined wavefunction one can achieve:

ψn̈ = [Pn(x)¨ − 2xPn + (x2 − 1)Pn]e− x2
2 , (6.2.4)

−1
2[Pn(x)¨ − 2xPn + (x2 − 1)Pn]e− x2

2 ,= Ene
− x2

2 . (6.2.5)
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By simplifying the exponential one can finally achieve the final equation

Pn̈ − 2XPn + 2(En − 1
2)Pn = 0, (6.2.6)

with

Hn(X) = (−1)neX2 dn

dxn

(︂
e−X2)︂

. (6.2.7)

being the Hermite polynomials.
Following the Born principle the wavefunction has to be normalized to one, since it is
related to the probability to find the particle in the space (

∫︁
R |ψ|2 = 1).

Finally one has to identify the normalizing constant Nn ensuring:∫︂
R
ψnψ

∗
n =

∫︂
R

|ψ|2 = 1 (6.2.8)

Since the Hermite polynomials are guaranteed orthonormal [59], this normalization
constant is evaluated as:

Nn = 1
4
√
π

√
2nn!

(6.2.9)

One can see that for n = 0 this wavefunction exactly converges to the vacuum one,
derived in Appendix 6.3, proving the effectiveness of the obtained formula.

6.3

In this Appendix, the vacuum state wavefunction is derived. This result is a particular
case of the more general outcome presented in Appendix 6.2.
However, it is instructive, as it allows us to obtain a specific result by starting from the
physical properties of the state.
One equation underlining the properties of vacuum is the annihilation boundary
condition presented in 2.1.22. Indeed:

âψ0 = 1√
2

(X̂ + iP̂ )ψ0 = 1√
2

(X̂ + ∂

∂X
)ψ0 = 0 (6.3.1)

where ψ0 is the vacuum wavefunction and the mathematical definition of P̂ = −i ∂
∂X was

used.
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This is a separable differential equation solved by:

ln(ψ0) = −X2

2 + C =⇒ ψ0 = Ae− X2
2 (6.3.2)

being C and A = eC constants. Again, the canonical procedure in order to evaluate the
normalization constant A is to use the Born rule. Thus to impose that the probability
has to converge to 1 in the whole space:∫︂ +∞

−∞
ψψ∗ =

∫︂ +∞

−∞
|A|2e−q2 = |A|2

√
π = 1 (6.3.3)

where the calculation was done in one dimension for simplicity (but could be expanded
in the three-dimensional one by considering π3 instead of π).
Then

|A| = 1
4
√
π
, (6.3.4)

thus
|0⟩ = 1

4
√
π
e− X2

2 , (6.3.5)

as shown in 2.2.6. In particular one can now estimate the variance and the mean value
of the vacuum state as:

V ar(ψ0) = ⟨X2⟩ − ⟨X⟩2 = ⟨0| X̂2 |0⟩ − ⟨0| X̂ |0⟩ , (6.3.6)
E(ψ0) = ⟨X⟩ = ⟨0| X̂ |0⟩ . (6.3.7)

By Recalling that ⟨X⟩ =
∫︁
RX|ψ0|2dX = 0 (since X it is an odd function) when

integrated in the whole space, and that < X2 >=
∫︁
RX

2|ψ0|2dX = 1
2 , one is able to

achieve that:

V ar(ψ0) = 1
2 (6.3.8)

E(ψ0) = 0 (6.3.9)

While the quadrature formalism can feel somewhat abstract, the vacuum wavefunction
gains a more intuitive meaning when expressed in terms of the canonical position x̂ and
momentum p̂ operators. In this representation, the vacuum state is simply the ground
state of the quantum harmonic oscillator. Its Gaussian form reflects minimal
uncertainty: the state has the lowest possible energy and saturates the Heisenberg
uncertainty relation, just like the first quantized energy level of a one-dimensional
harmonic oscillator.
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6.4

In this Appendix the coherent state wavefunction is derived. The coherent state is
defined as the eigenvalue of the annihilation operator, therefore:

|α⟩ = D̂(α) |0⟩ (6.4.1)

= eαâ†−α∗â |0⟩ , (6.4.2)

where the definition of the Displacement operator D̂(α) was used.
Since â and â† do not commute, the Baker-Campbell-Hausdorff formula must be
applied. Namely let A and B two operators, then:

eA+B = e− 1
2 [A,B]eAeB, (6.4.3)

where [· · · ] identifies the commutator.
Moreover, since:

[αâ†,−α∗â] = −|α|2[â, â†] = |α|2, (6.4.4)

using the Taylor expanction:

e−αa |0⟩ =
∞∑︂

n=−∞

(−α)n

n! ân |0⟩ = 0. (6.4.5)

Therefore the wavefunction reads:

|α⟩ = e− |α|2
2 eαâ†

|0⟩ (6.4.6)

= e− |α|2
2

∞∑︂
n=0

αn

n! â
†n |0⟩ (6.4.7)

= e− |α|2
2

∞∑︂
n=0

αn

n!
√
n! |n⟩ (6.4.8)

=
∞∑︂

n=0
e− |α|2

2
αn

√
n!

|n⟩ . (6.4.9)

This is indeed the coherent state representation in the Fock basis. It is clear that this
state is expressed as an infinite superposition of Fock states |n⟩. This implies that a
truncation (thus an approximation) is needed while observing those states.
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6.5

In this Appendix the noise properties (standard deviations) of the squeezed states are
derived. This information will be crucial for the correct understanding of these states.
Recalling that the quadrature operators are defined as:

X̂ = â+ â†
√

2
(6.5.1)

P̂ = â− â†
√

2i
(6.5.2)

where ℏ was set to one, and by using the vacuum wavefunction derived in Appendix 6.3,
it is possible to define the squeezed wavefunction as [7]:

|ψr(x)⟩ = ⟨x|ψr⟩ = e
r
2ψ0(erx), (6.5.3)

where r is a real coefficient, known as squeezing parameter.
The variance of the state is then defined as:

⟨∆X⟩ = ⟨X2⟩ − ⟨X⟩2. (6.5.4)

Considering the previous defined ψr, one can define the mean value of the quadrature X̂
as:

⟨X⟩r =
∫︂
R
x|ψr(x)|2dx = e−r

∫︂
R
u|ψ0(u)|2du = e−r⟨X⟩0 = 0, (6.5.5)

where x was substituted to X inside the integration and the change of variable xer = u
was used.
Since the squeezing was associated to the vacuum state in the previous reasoning, one
expects a vanishing mean value of the squeezed state is 0: in agreement with what
obtained.
On the other hand:

⟨X2⟩r =
∫︂
R
x2|ψr(x)|2dx = e−2r

∫︂
R
u2|ψ0(u)|2du = e−2r⟨X2⟩0 = e−2r

2 (6.5.6)

This leads to the well established results:

⟨∆X2⟩ = e2r

2 (6.5.7)

⟨∆P 2⟩ = e−2r

2 , (6.5.8)

where the result for the P̂ quadrature could be obtained by following the same
reasoning with this operator. It is clear in the previous equations that the variance
properties are anti-correlated: if one quadrature assumes an higher than vacuum
variance, then the variance on the other must diminish. This property, typical of
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squeezed states, can be summarized by noticing that squeezed states are minimum
uncertainty states, as proven in Appendix 6.6.

6.6
In this Appendix, it is formally derived the condition for a minimum uncertainty state;
i.e. a state that saturate the Heisenberg uncertainty relation:

∆X ∆P = 1
4 . (6.6.1)

Such states are particularly important because they allow one to minimize noise in one
quadrature while controlling the other. Examples include the vacuum and coherent.
Let us introduce the operator

Â = ∆X̂ + iλ∆P̂ , λ ∈ R, (6.6.2)

where
∆X̂ = X̂ − ⟨X̂⟩, ∆P̂ = P̂ − ⟨P̂ ⟩. (6.6.3)

By construction, for any quantum state |ψ⟩:

⟨Â†
Â⟩ ≥ 0. (6.6.4)

Indeed:

Â
†
Â = (∆X̂ − iλ∆P̂ )(∆X̂ + iλ∆P̂ ) (6.6.5)

= (∆X̂)2 + λ2(∆P̂ )2 + iλ[∆X̂,∆P̂ ] (6.6.6)
= (∆X̂)2 + λ2(∆P̂ )2 − λ, (6.6.7)

where we used [X̂, P̂ ] = i.
It can be proven that a state |ψ⟩ minimizes the uncertainty if [58]:

⟨Â†
Â⟩ = 0. (6.6.8)

This implies
(∆X)2 + λ2(∆P )2 − λ = 0. (6.6.9)

Therefore:
λ = 1

2(∆P )2 . (6.6.10)
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Substituting back, one finds the Heisenberg equality:

∆X ∆P = 1
4 . (6.6.11)

In the X-representation (P̂ = −i ∂
∂X ), the condition

Âψ(X) = (∆X + iλ∆P )ψ(X) = 0 (6.6.12)

becomes the differential equation:

(X −X0 + λ
∂

∂X
)ψ(X) = 0, (6.6.13)

where X0 = ⟨X̂⟩ and ℏ = 1.
Solving this first-order differential equation gives a Gaussian wavefunction:

ψ(X) = A exp
[︄

− (X −X0)2

2λ + iP0(X −X0)
]︄
, (6.6.14)

where P0 = ⟨P̂ ⟩ and A is the normalization constant.
For instance the vacuum state: X0 = P0 = 0, λ = 1 (ℏ = 1), we recover

ψ0(X) = Ae−X2/2, (6.6.15)

in agreement with Appendix 6.3.
Thus the states that minimize the Heisenberg uncertainty principle has to be Gaussian
states, hence vacuum, coherent and squeezed states.
In particular for a coherent state, X0 and P0 shift the Gaussian centre while for a
squeezed state, λ /= 1 compresses one quadrature and stretches the other, maintaining
∆X ∆P = 1/2.
Hence, all these states are minimum uncertainty states, with Gaussian wavefunctions
determined by λ and the expectation values (X0, P0).

6.7
In this Appendix it is proven that the conjugate quadratures X̂ and P̂ are linked by a
Fourier transform.
Let us start by identifying their eigenvalue equations:

X̂ |X⟩ = x |X⟩ (6.7.1)
P̂ |P ⟩ = p |P ⟩ , (6.7.2)
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where here x and p identifies the associated eigenvalues.
Therefore the product ⟨X| P̂ |P ⟩ can be written as:

⟨X| P̂ |P ⟩ = p ⟨X|P ⟩ = pfP (X) (6.7.3)

where the quantity fP (q) = ⟨X|P ⟩ was defined.
However P̂ is P̂ = −i ∂

∂X if ℏ = 1 that, for consistency, has to be the previously defined
value p.
By solving the differential equation one finds:

−i ∂
∂X

fP (X) = pfP (X) =⇒ (6.7.4)

fP (X) = AeiP X . (6.7.5)

However P̂ and X̂ have to be orthonormal and, since the two operators live in the
infinite dimension space, the common practice is to impose:

⟨P |P ′⟩ = δ(P − P ′) (6.7.6)

On the other hand:

⟨P |P ′⟩ =
∫︂
R

⟨X|P ⟩ ⟨X|P ′⟩ dX (6.7.7)

=
∫︂
R
fP (X)f∗

P ′ (X) dX (6.7.8)

= AA∗
∫︂
R
eiX(P −P ′) dX (6.7.9)

= |A|22π δ(P − P ′), (6.7.10)

where the identity was written as I =
∫︁
R |X⟩ ⟨X| and the definition with the properties

of the delta and its Fourier transform was used [60]. By then using both eq 6.7.10 and
eq 6.7.6, the final form of fP (X) can be achieved:

fP (X) = ⟨X|P ⟩ = 1√
2π
eiXP (6.7.11)

that is indeed the change of basis due to the Fourier transform, proving that the P̂
operator is indeed the Fourier transform of the Q̂ momenta. This result can also be
understood intuitively by noting that |X⟩ and |P ⟩ form a pair of dual bases, with |P ⟩
representing plane-wave states in the X̂ representation [7].

105



Appendices

6.8

This Appendix is divided into two parts: first, the minimum number of iterations
required for a tomographic algorithm is derived; second, a suitable set of projectors for
tomographic measurements is introduced.

Minimum number of iterations : First of all, a generic density matrix ρ̂ ∈ Cd⊗d

must satisfy the following conditions:

i Hermiticity: ρ̂ = ρ̂†;

ii Semi-positive definite: ⟨ψ| ρ̂ |ψ⟩ ≥ 0;

iii Trace unitarity:
∑︁

i ρii = 1.

The total number of parameters of such density matrix is d⊗ d = d2, and only d of
them correspond to the diagonal elements.
Hence, the number of off-diagonal elements is

d2 − d = d(d− 1), (6.8.1)

and these must be independent.
According to property iii, once all the diagonal elements are known, the remaining one
is determined.
Thus, the total number of free parameters in a d-dimensional density matrix is

d(d− 1) + (d− 1) ∼ d2 (6.8.2)

for large d.
Using the Frobenius norm [61],

∥ρ∥F =

⌜⃓⃓⎷ m∑︂
i=1

n∑︂
j=1

|ρij |2 =
√︂

Tr(ρρ†), (6.8.3)

the corresponding error norm is

||∆ρ||F =
√︂

Tr(∆ρ∆ρ†). (6.8.4)

If p is the total number of free parameters and ϵ the acceptable error per parameter,
then

||∆ρ||F = δ = ϵ
√
p =⇒ ϵ = δ

√
p
, (6.8.5)

where δ represents the total matrix error.
According to the law of large numbers, given n measurements, the statistical error
decreases as ∼ 1/

√
n.
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In a generic density matrix, there are ∼ d2 free elements. If an error ϵ is acceptable for
each element (assuming all errors are equal), the total number of measurements
required scales as

n ∼ d2

ϵ2
. (6.8.6)

On the other hand, if ρ̂ represents a pure state (ρ̂ = |ψ⟩ ⟨ψ|), or if only the diagonal
elements are relevant, it can be shown that the number of independent parameters
reduces to ∼ d. In this particular case, the required number of measurements decreases
quadratically:

n ∼ d

ϵ2
, (6.8.7)

and the setup can be simplified to a single basis measurement, since all cross-diagonal
elements vanish.
Moreover, as the number of measurements increases, the total error distribution
approaches a Gaussian shape, in accordance with the Central Limit Theorem. The
standard deviation scales as σ ∝ 1/

√
N , where N is the number of measurements. Thus,

the higher the number of measurements, the smaller the total reconstruction error.

Choice of the projectors : A suitable set of projectors must be defined in order to
span the entire Hilbert space. For simplicity, consider the case of a qubit, whose state is
completely determined by the Pauli operators X̂, Ŷ , Ẑ. A generic qubit state can be
expressed as [62]:

ρ = 1
2
(︂

tr(ρ)I + tr(Xρ)X + tr(Y ρ)Y + tr(Zρ)Z
)︂
, (6.8.8)

where Tr(Aρ) = Tr(ρA) represents the expectation value of the observable A in the
state ρ. By repeating each measurement a sufficiently large number of times, one
obtains a set of experimental values pA,i(ρ) defining a probability distribution.
As the number of repetitions increases, these values converge to the true probability
pA(ρ), allowing the estimation of expectation values by averaging the measurement
outcomes.
The qubit case can be generalized beyond the concept of a finite-dimensional Hamel
basis. In continuous-variable quantum systems, the relevant observable is the
quadrature operator X̂θ, belonging to an infinite-dimensional Hilbert space. In this
case, one must define an appropriate set of POVMs (Positive Operator-Valued
Measures) corresponding to projections along different quadratures. These POVMs
allow measurement of the quantity

E(ρ) =
∑︂
nm

EnρE
†
m, (6.8.9)

where E denotes the quantum channel probing the state ρ, and {En} are the POVM
elements, which can be expressed as [3]

En =
∑︂

i

hinEi
˜ , (6.8.10)
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with {Ei
˜ } forming a suitable set of projection operators. Thus, the overall

transformation can be rewritten as:

E(ρ) =
∑︂
nm

EñρEm̃χnm, (6.8.11)

where χnm is a Hermitian matrix defined as χnm = hinh
∗
im. The coefficients of χ can be

numerically reconstructed since E(ρ) is experimentally accessible [3].
In general, the POVM elements {Ei

˜ } are not individual vectors, but rather rank-one
projectors onto pure states.
The goal is to identify a basis in which the state can be expressed as a linear
combination of these projectors, thereby enabling the reconstruction of the density
matrix ρ. This reconstruction process is closely related to the Choi–Jamiołkowski
isomorphism [63].
Consider a generic pure state |v⟩ in the Hilbert space Cd. Each complex vector has 2d
real parameters, and the normalization condition ⟨v|v⟩ = 1 removes one degree of
freedom. Hence, |v⟩ corresponds to a point on the hypersphere
S2d−1 = {v ∈ Cd : ∥v∥ = 1}. We can express |v⟩ as a column of a unitary matrix U , for
instance |v⟩ = Ue1, where e1 = [1,0,0, . . . ,0]T is the first basis vector of the identity
matrix. Within the unitary group U(d), there exists a unique invariant measure µ,
known as the Haar measure, which assigns a uniform volume to the group [64].
Hence, every pure state |v⟩ ∈ Cd (representing a quadrature projector) can be viewed as
a point on the hypersphere S2d−1. Physically, this means that every possible pure
quantum state corresponds to a unique point on this high-dimensional sphere, and the
Haar measure formalizes uniform sampling over all such states. In practice, this
corresponds to performing quadrature measurements X̂θ for many different phases θ,
uniformly sampled over θ ∈ [0, π]. This is the continuous-variable analogue of sampling
uniformly over the unitary group U(d).

6.9

In this Appendix the connection between the Wigner function W and the density
operator is shown.
The Inverse Radon Transform R−1 allows us to reconstruct the Wigner function from
the measured quadrature distributions, which are the experimentally accessible
quantities. To see this explicitly, we start with the definition of the Fourier transform of
the Wigner function.
In this Appendix, the quadratures X̂ and P̂ will be denoted as q̂ and p̂, following the
standard convention in quantum mechanics. This change of notation ensures
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consistency with the literature and references, without altering the physical meaning of
the discussion.

F(W ) = χ(u, v) =
∫︂
W (q, p)e−i(uq+vp)dqdp. (6.9.1)

That is a known function called characteristic function.
Going back to the probabilities that one observes in the experiment, one has that their
Fourier transform is

Pθ̃(k) =
∫︂
Pθ(q)e−ikqdq (6.9.2)

However, by definition, since the Pθ are the probabilities and W the Wigner function:

Pθ̃(k) =
∫︂
R
Pθ(q)e−ikqdq =

∫︂
R

∫︂
R
W (q′, p′)e−ikqdqdp, (6.9.3)

where, following the previous definition of the Wigner function depending on θ given in
equation 2.3.7, the quantities q′ and p′ are defined as

q′ = qθ = q cos(θ) + p sin(θ)
p′ = pθ = q sin(θ) + p cos(θ).

Then by calling

u = k cos(θ) v = k sin(θ).

The quantity kqθ becomes
kqθ = uq + vp (6.9.4)

So

Pθ̃(k) =
∫︂ ∫︂

W (q, p)e−i(uq+vp)dpdq

= χ(u, v) = χ(k cos(θ), k sin(θ)). (6.9.5)

However, since the goal is to find out the Inverse Radon Transform R−1, then the
Inverse Fourier transform has to be applied, so:

W (q, p) = 1
2π

∫︂ ∫︂
χ(u, v)e−i(uq+vp)dudv, (6.9.6)

However the characteristic function can always be seen as the expected value of the
complex exponential of the random variable that, in our case, is the operator:

χX (t) = E(eitX) X r.v. , t ∈ R (6.9.7)

since in quantum mechanics the expected value is replaced by the trace one has that

χ(u, v) = Tr[ρ̂e−i(uq+vp)] =
∫︂
R
dx ⟨x| ρ̂e−i(uq+vp) |x⟩ , (6.9.8)
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where the identity relation
∫︁
R |x⟩ ⟨x| = I was used. The exponential can be further

simplified using the Baker–Campbell–Hausdorff formula (BCH) [65]. And in the
particular case of Glauber the formula simplifies to:

eX+Y = eXeY e− 1
2 [X,Y ], (6.9.9)

if [X, [X,Y ]] = [Y, [Y,X]] = 0 that is our case since [X,Y ] = const.
So the action of the complete exponential operator can be proven be simply a shifting in
|x⟩ and a phase shifting; To see this one can use the Baker’s formula that states that

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + · · · (6.9.10)

since the commutator between q̂ and p̂ is constant, one can write that:

⟨x| e−ivp̂ |x⟩ = ⟨x|x+ v⟩ = δ(v) (6.9.11)

For the q̂ exponential the same reasoning can be done resulting in a simple phase shift;
then

W (q, p) = 1
2π

∫︂ ∫︂
χ(u, v)e−i(uq+vp) du dv

= 1
2π

∫︂ ∫︂
Tr[ρ̂ e−i(uq̂+vp̂)] du dv

= 1
2π

∫︂ ∫︂
⟨x| ρ̂ e−i(uq̂+vp̂) |x⟩ du dv

= 1
2π

∫︂ ∫︂
e−iux ⟨x| ρ̂ e−ivp̂ |x⟩ du dv

= 1
2π

∫︂ ∫︂
e−iux ⟨x| ρ̂ |x+ v⟩ du dv

= 1
2π

∫︂
dv eivp ⟨q − v

2 | ρ̂ |q + v

2 ⟩ . (6.9.12)

that is the celebrated Wigner formula found in [7, 66].

6.10
In this Appendix, we illustrate the mathematical working principle of the Inverse Radon
Transform.
Let us start with the probability distribution pθ(s) that is defined as the probability
distribution of the field for a given angle θ.

110



6.10 –

Define then the two-dimensional Fourier transform (2D-FFT) and its inverse as the
generalized two-variable version of the one dimensional one (F1D):

F(kx, ky) = F2D{f(x, y)} =
∫︂ ∫︂

f(x, y)e−i(kxx+kyy)dxdy (6.10.1)

f(x, y) = F−1
2D{F(x, y)} =

∫︂ ∫︂
F(kx, ky)ei(kxx+kyy)dkxdky (6.10.2)

The projection for a given angle θ is then given by:

pθ(s) =
∫︂
R2
f(x, y)δ(s− x cos (θ) − y sin (θ))dxdy (6.10.3)

where f(x, y) is simply the image function that one wants to represent.
Whereas δ is simply accounting for the radial slices of this function for a given θ.
Taking the Fourier transform of this function one has that:

p̃θ(ω) =
∫︂
R
pθ(s)e−iωsds

=
∫︂
R
f(x, y)

[︃∫︂
R
e−iωsδ(s− x cos θ − y sin θ)

]︃
dxdy

=
∫︂
R

∫︂
R
f(x, y)e−iω(x cos θ+y sin θ)dxdy, (6.10.4)

where the basic property ∫︂
R
δ(x− a)f(x)dx = f(a) (6.10.5)

was used, setting f(x) = e−iωs.
However formula 6.10.4 is the definition of the two dimensional Fourier transform given
in 6.10.1.
So:

p̃θ(ω) = F2D{p}(ω cos θ, ω sin θ). (6.10.6)
Then:

f(x, y) = 1
(2π)2

∫︂
R2

F(kx, ky)ei(kxx+kyy)dkxdky (6.10.7)

and by using ρ = ω one can write the above integral in polar coordinates, by imposing:{︄
kx = ρ cos θ
ky = ρ sin θ,

=
{︄
kx = ω cos θ
ky = ω sin θ,

(6.10.8)

with ρ ≥ 0 and θ ∈ [0, 2π).
Thus:

f(x, y) = 1
(2π)2

∫︂ π

0

∫︂ ∞

−∞
F (ω cos θ, ω sin θ)eiω(x cos θ+y sin θ)|ω|dωdθ, (6.10.9)

where the celebrated two dimensional polar Jacobian

J = det
[︄
∂ρx ∂θx
∂ρy ∂θy

]︄
= ρ(cos2 θ + sin2 θ) = ρ (6.10.10)
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was used.
Here the Fourier Slicing Theorem [67] was used, with P1 projection operator identified
with pθ(s) and S1 slicing operator identified by the F function.
Finally the celebrated formula will be [11]:

f(x, y) = 1
(2π)2

∫︂ π

0

∫︂
R
p̃θ(s)|ω|eiωsdωds

= 1
(2π)2

∫︂ π

0
qθ(x cos θ, y sin θ)dθ, (6.10.11)

with s = x cos θ + y sin θ and qθ(x cos θ, y sin θ) =
∫︁
R p̃θ(s)|ω|eiωsdω, coherently with the

theory.
This is exactly the mathematical definition of the filtered backprojection since the
inverse Fourier transform is applied to the projection pθ that is filtered by |ω|.

6.11
It was shown in Appendix 6.10 that the IRT has to be understood with the concept of
filtered backprojection. One might then wonder whether other filters are present and
what their effect is.
In this Appendix the action of the filter inside the IRT is explored with its non
idealities. The application of a filter with transfer function H(ω) is particularly easy in
the frequency domain where the final transformation q̃θ(ω) is simply given by:

q̃θ(ω) = H(ω)p̃θ(ω) (6.11.1)

where the pθ function is the one used in Appendix 6.10; thus

qθ(s) = 1
2π

∫︂ ∞

−∞
H(ω)p̃θ(ω)eiωsdω (6.11.2)

The final transformed function will then be defined by:

fH(x, y) = 1
2π

∫︂ π

0
qθ(x cos θ + y sin θ)dθ

= 1
2π

∫︂ π

0

[︃ 1
2π

∫︂ ∞

−∞
H(ω)p̃θ(ω)eiωsdω

]︃
dθ (6.11.3)

So the filtered function will be

fH(x, y) = 1
(2π)2

∫︂ π

0

∫︂
R
H(ω)p̃θ(ω)eiω(x cos θ+y sin θ)dωdθ (6.11.4)

= 1
(2π)2

∫︂ π

0

∫︂
R
H(ω)F (ω cos θ, ω sin θ)eiωsdωdθ (6.11.5)
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By moving to polar coordinates with variables:{︄
kx = ω cos θ
ky = ω sin θ

(6.11.6)

and using the fact that the modulus of the Jacobian |J | = |ω|, one has:

dkxdky = |ω|dωdθ =⇒ dωdθ = dkxdky

|ω|
(6.11.7)

with |ω| =
√
ω2 =

√︂
ω2(cos2 θ + sin2 θ) =

√︂
k2

x + k2
y. So

fH(x, y) = 1
(2π)2

∫︂
R2
H(ω(kx, ky))F (kx, ky)ei(kxx+kyy) 1

|ω(kxx, kyy)dkxdky

= 1
(2π)2

∫︂
R2

H(
√︂
k2

x + k2
y)√︂

k2
x + k2

y

F (kx, ky)eik·xdk

= 1
(2π)2

∫︂
R2
G(kx, ky)F (kx, ky)eikxdk (6.11.8)

where the quantity G(kx, ky) = H(
√

k2
x+k2

y)√
k2

x+k2
y

was defined. So without normalizations

F rec(k) = G(k)F (k) G(k) = H(|k|)
|k|

(6.11.9)

Following this reasoning the back-projection (BP) process can be viewed as a
convolution between a filter and a radial kernel g(r):

BP = 1
(2π)2

∫︂ π

0

∫︂
R
p̃θ(ω)G(ω)eiω(x cos θ+y sin θ) dω dθ

=⇒ BP (x, y) = (f ∗ g)(x, y). (6.11.10)

Here G(kx, ky) denotes the frequency-domain representation of the filter, which depends
radially as G(kx, ky) = G(k) with k =

√︂
k2

x + k2
y.

Introducing polar coordinates: ⎧⎪⎪⎨⎪⎪⎩
kx = k cos θ,
ky = k sin θ,
r =

√︁
x2 + y2,

the radial component of the kernel is obtained as the Hankel transform of order zero:

g(r) = 1
2π

∫︂ ∞

0
G(k)J0(kr) k dk, (6.11.11)

where J0 is the zeroth-order Bessel function of the first kind [68].
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For large r, using the asymptotic expansion

J0(kr) ∼
√︃

2
πkr

cos(kr − π/4),

one finds that
g(r) ∝ 1

r
,

showing that the spatial kernel decays inversely with distance.
Since the noise spectrum is defined as S(ω) = ⟨nn∗⟩, and the filter modifies the
frequency response by a factor G(ω), the resulting noise spectrum becomes

Sfinal(ω) ∝ |G(ω)|2.

Thus, the filter not only affects the reconstructed image but also shapes the spectral
characteristics of the noise.

6.12

In this Appendix, we illustrate the convergence behaviour of the Maximum Likelihood
Estimation (MLE) algorithm. When the number of data points is finite, multiple
density matrices may indeed maximize the Likelihood, resulting in a possible
convergence drifting.
The log-likelihood function is defined as:

L(ρ̂) =
M∑︂

m=1
ln pm(ρ̂), (6.12.1)

where pm(ρ̂) = ⟨fm| ρ̂ |fm⟩ is the probability associated with the Fock state |fm⟩.
In the MLE framework, the Likelihood function L(ρ̂) is maximized by a density matrix
ρ̂∗. In the asymptotic limit of infinite data and Fock dimension, the ideal (theoretical)
log-likelihood coincides with its expectation value over the true distribution able to
generate ρ̂∗. Hence, in theory, no iterations would be necessary: the maximum could be
found in a single calculation.
However, the ideal conditions hold only if the number of points and the Fock space
dimension are infinite. For finite datasets and practical Fock dimension, the numerical
Likelihood converges to the ideal Likelihood through the Law of Large Numbers [47]:

Ln(ρ̂∗) p→ L(ρ̂∗), n → ∞. (6.12.2)
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We can therefore distinguish between the ideal Likelihood and the real Likelihood. The
real Likelihood is treated as an optimization problem, with the density matrix ρ̂ as the
optimization parameter. It satisfies

Ln(ρ) ≤ L(ρ∗), (6.12.3)

where equality holds only at ρ = ρ∗ in the limit of infinite iterations. The iterative
procedure of MLE is monotonic: the log-Likelihood increases at each step. Hence, the
algorithm is reliable when a sufficiently large dataset is available (see Figure 5.7).
Since ρ̂∗ maximizes the Likelihood, it follows that

Pρ∗ [L(X|ρ) = L(X|ρ∗)] = 1. (6.12.4)

Then the convergence of the MLE can be analysed using the derivatives of the
Likelihood. Defining:

L′(X|ρ) = ∂

∂ρ
L(X|ρ), (6.12.5)

we expect
Eρ∗ [L′(X|ρ∗)] = 0, (6.12.6)

since ρ∗ is the target density. The Fisher information is then:

I(ρ∗) = Eρ∗

[︂(︁
L′(X|ρ∗)

)︁2]︂ = Var[L′(X|ρ∗)]. (6.12.7)

Using the Mean Value Theorem for some ρ1 ∈ [ρ, ρ∗]:

0 = L′
n(ρ) = L′

n(ρ∗) + L′′
n(ρ1)(ρ− ρ∗), (6.12.8)

so that
ρ− ρ∗ = −L′

n(ρ∗)
L′′

n(ρ1) ,
√
n(ρ− ρ∗) = −

√
n

L′
n(ρ∗)

L′′
n(ρ1) . (6.12.9)

Since ρ1 ∈ [ρ, ρ∗], one can show L′′
n(ρ1) → −I(ρ∗), leading to the asymptotic

distribution [47]:

−
√
nL′

n(ρ∗)
L′′

n(ρ1)
d−→ N

(︃
0, 1
I(ρ∗)

)︃
. (6.12.10)

Physically, this means that the MLE estimate ρ̂ is centred around the true state ρ∗, and
its statistical fluctuations due to finite data are normally distributed. The numerator
measures residual deviations of the observed log-likelihood from its expected value,
while the denominator quantifies the sensitivity of the estimate to these fluctuations.
The variance of ρ̂ is inversely proportional to the Fisher information:

Var(ρ̂) ∼ 1
I(ρ∗) .

Then:

• More informative data (higher Fisher information) lead to more precise estimates.
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• Less informative data (lower Fisher information) lead to larger statistical
fluctuations.

The variance here arises from the finite estimation of the probability distribution. In
the limit of noiseless, infinite data, the MLE converges directly to the true state. In
practical experiments, noise and finite sampling slow convergence (see Figure 5.9). This
can be mitigated by increasing the number of samples in simulations, but in real
experiments hardware limitations may prevent arbitrarily fast acquisition.
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