#
N 1859 e
this: e w e

Master of Science in Cybersecurity Engineering

Master Degree Thesis

From Security Standard
Definition to Centralized Posture
Management: A Comprehensive

Security Framework for Azure
Kubernetes Service

Supervisors
prof. Fulvio Valenza

Candidate
Andrea CARCAGNI

ACADEMIC YEAR 2024-2025

This work is subject to the Creative Commons Licence

Summary

In the modern cloud landscape, Kubernetes has emerged as the de facto standard
for container orchestration, allowing organizations to deploy, scale, and manage ap-
plications in an efficient and automated manner. Among the managed Kubernetes
services, Azure Kubernetes Service (AKS) is one of the most widely adopted, thanks
to its deep integration with the Microsoft Azure platform and its simplified oper-
ational model. As enterprises increasingly rely on AKS for critical workloads, se-
curing these environments has become an increasingly important topic. Protecting
Kubernetes clusters on Azure requires more than applying security best practices;
it requires continuous compliance, observability, and governance to match enter-
prise security and regulatory requirements. The challenge becomes even greater for
organizations that manage multiple, fully isolated customer environments. In these
scenarios, strict isolation often conflicts with Azure’s native management tools,
such as Azure Lighthouse, which are designed for centralized multi-tenant adminis-
tration. While these tools streamline operations, they inherently introduce shared
control planes and permission boundaries that are unsuitable for environments re-
quiring strong isolation guarantees.

The thesis addresses this challenge directly by performing a thorough analysis
of the current state of security in AKS and by translating it into an enterprise
security standard applicable to Azure-managed Kubernetes clusters. The research
led to the definition of a structured set of technical and organizational requirements
aimed at standardizing cluster hardening and governance. Based on that founda-
tion, the work illustrates the design and implementation of a dedicated Azure-based
infrastructure for automating the assessment of the defined security posture. The
proposed solution allows centralized visibility and compliance monitoring while
maintaining the complete isolation of customer environments. Through this ar-
chitecture, the thesis provides a scalable and auditable model for securing and
managing AKS clusters in complex enterprise multi-client scenarios filling the gap
between isolated clusters and centralized governance.

Contents

1

2

Introduction

1.1 Problem
1.2 Thesis Goal
1.3 Thesis Structure

1.4 Environment Context

Background
2.1 Introduction to Azure Kubernetes Service (AKS)
2.1.1 What AKS is and Why It Is a Managed Service

2.1.2 Shared Responsibility Model: What Microsoft Protects and
What the Customer Must Protect

2.2 Internal Architecture of AKS
2.2.1 The Managed Control Plane

2.2.2 Cluster Nodes: Agent Pools, VMSS, Operating Systems, Con-
tainer Runtime 0L

2.2.3 Pods, ReplicaSets, Deployments, and Basic Kubernetes Re-
SOUTCES « v v v v v e e e e e e e e

2.2.4 Namespaces and Logical Isolation
2.2.5 Node Resource Group and Integration with Azure Resources
2.3 Networking in AKS
2.3.1 Core CNI Concepts: Overlay vs. Flat Networking

2.3.2 Intra-Cluster Communication: Pod-to-Pod, Service-to-Pod,
Node-to-Pod

2.3.3 Kubernetes Services: ClusterIP, NodePort, LoadBalancer,
ExternalName L.

2.3.4 Ingress Controllers and L7 Traffic
2.3.5 Cluster Egress: SNAT, Azure Firewall, Private Endpoints

2.3.6 Network Security Groups and Their Role Compared to Net-
work Policies L

24

2.5

2.6

2.7

2.8

2.3.7 Network Policies: Models, Enforcement, Limitations, and Risks 23
Kubernetes Security Model 23

2.4.1 Typical threats: container breakout, privilege escalation, lat-
eral movement 24

2.4.2 The cluster as a distributed system: attack surfaces and vectors 24

2.4.3 Kubernetes RBAC model: users, groups, service accounts,
and the role of kube-apiserver 25

2.4.4 Kubernetes Secrets: management, limitations, encryption,
risks when mismanaged oo 26

2.4.5 Pod Security Standards: baseline, restricted, and privileged . 26

AKS Security From the Azure Perspective 27
2.5.1 Integration With Microsoft Entra ID (Identity Federation
and OIDC) 27
2.5.2 Azure Policy for Kubernetes: OPA Gatekeeper, Manifest Val-
idation, Compliance Enforcement 28

2.5.3 Microsoft Defender for Containers: Image Scanning, Runtime

Protection, Anomaly Detection 28
2.5.4 Azure Key Vault, KMS, and Secure Key and Secret Manage-

ment L e 29
2.5.5 Disk Management and Encryption (Host-Based, CMK, Man-

aged Disks) 29
State of the Art in Control Plane Security 30

2.6.1 Securing the kube-apiserver: public endpoint, private clus-
ters, and authorized IP ranges 30

2.6.2 Trusted Access and internal communication through the Azure

backboneo 30
2.6.3 Encryption of eted and protection of sensitive data 31
2.6.4 Logging, auditing, and diagnostic visibility of the control plane 31
Node and Infrastructure Security 32
2.7.1 Updates, patching, and OS image management 32
2.7.2 Disabling SSH and Command Invoke 32
2.7.3 Host isolation: seccomp, AppArmor, and kernel lockdown . . 33
2.7.4 Temporary disks and host-based encryption 33
Application Workload Security 34

2.8.1 Container hardening: user, capabilities, mounts, filesystem,
sysctl. . . o 34

2.8.2 Supply chain security: image, registry, tags, signing, Im-
agePullSecrets L 35

2.8.3 Runtime behavior: probes, anti-affinity, resilience as a secu-
rity property . . . o. ..o

2.8.4 Tokens and credentials: automountServiceAccountToken and
Workload Identity

2.8.5 Security of exposed services: port binding, host networking,
INGTeSS o o e

2.9 Zero Trust Model Applied to AKS

2.9.1 Identity as the perimeter: Entra ID, Workload Identity, and
OIDC tokens

2.9.2 Least privilege and application segmentation
2.9.3 Minimizing the attack surface of the cluster

2.9.4 Zero Trust supply chain: controlled repositories and verified
images

3 Implementation High Level Design

3.1 Overall Architecture of the implementation

3.1.1 Tenant Client: operational point for policy synchronization
and enforcement

3.1.2 Tenant Server: central platform for publication, collection
and observability 0L

3.1.3 Structure of the Following Chapters

Defining a security baseline for AKS using Azure Policy
4.1 Objectives and scope of the baseline.

4.1.1 Using the baseline in Audit mode as a tool to measure secu-
rity posture Lo

4.1.2 Scope . ..o

4.2 Criteria for selecting built-in policies (principles, reference standards,
Audit mode)

4.3 Logical structure of the baseline and security domains

4.3.1 Domain structure: governance, identity, network, data, work-
load

4.3.2 Alignment with official guidelines, benchmarks and security
standards oo

4.3.3 Application model: initiatives vs individual policies and sys-
tematic use of Audit mode

4.4 Governance, monitoring and posture management

4.4.1 Azure Policy Add-on: prerequisite for controlling Kubernetes
workloads

4.5

4.6

4.7

4.8

4.9

4.4.2 Cluster logs and diagnostics 48

4.4.3 Integration with Microsoft Defender for Containers and its
role in threat detection Lo 49

Identity, authentication and access control 50

4.5.1 Integration with Microsoft Entra ID and disabling local au-

thentication methods 50
4.5.2 Cluster identity: managed identities and their impact on op-

erational securityo L oo 50
4.5.3 Workload identity: AKS Workload Identity and secure access

to Azure resources 51
4.5.4 RBAC hygiene: mandatory use of RBAC and limiting use of

the cluster-adminrole 51
Reducing the exposure surface and perimeter security 52

4.6.1 Control plane protection: private clusters and authorized IP

TANZES . .t e e e e e e e e e e 52
4.6.2 Node hardening: disabling SSH and Command Invoke 53
4.6.3 Secure exposure of services: HT'TPS, internal load balancers

and allowed external IPs 54
Data and storage protection L. 54

4.7.1 Node and disk encryption with customer-managed keys (CMK) 55

4.7.2 Host-level encryption for temporary disks and cache 95
4.7.3 Protecting Secrets and etcd through Key Management Ser-
vice (KMS) oo oo 55
4.7.4 Adopting CSI drivers as a prerequisite for advanced security
SCENATiOS e 56
Workload hardening: Pod Security and container configuration . . . 57

4.8.1 “Pod security baseline standards for Linux-based workloads”
initiative Lo 57

4.8.2 Privileges and capabilities: privileged mode, privilege escala-
tion, CAP_SYS_ADMIN and disallowed capabilities 57

4.8.3 Node isolation: host namespaces, seccomp, AppArmor and
isolation primitiveso oL 58

4.8.4 File systems and sysctl: read-only root filesystems and al-
lowed sysctl interfaces 0oL 59

Workload hardening: supply chain, application networking and reli-
abilityo 60

4.9.1 Container image controls: allowed registries, prohibition of
latest, use of ImagePullSecrets 60

4.9.2 Protection of internal credentials: managing automountServiceAccountToken ¢

7

4.9.3 Services and ingress: allowed ports and required configura-
tion parameterso 61

4.9.4 Reliability as a security requirement: liveness/readiness probes,
anti-affinity, topology spread and prohibition of naked pods. 62

4.10 “Out-of-baseline” policies 63
4.10.1 Policies deliberately excluded from the minimum baseline . . 63
4.10.2 Controls dependent on the application model: Network Pol-

icy, advanced RBAC and tenant-specific configurations . . . 64
4.11 Summary table of the security baseline 66
4.11.1 Domain 1 — Governance, monitoring and posture management 67
4.11.2 Domain 2 — Identity, authentication and access control . . . 67
4.11.3 Domain 3 — Reduction of the attack surface 67
4.11.4 Domain 4 — Data and storage protection 68
4.11.5 Domain 5 — Workload hardening (Pod Security, isolation,
pPermissions) 68

4.11.6 Domain 6 — Workload hardening (supply chain, application
networking, reliability) oL 69
5 Tenant Server Architecture 70

5.1 Introduction to the Tenant Server 70

5.2 Policy Distribution Hub 0. 71
5.2.1 Policy repository: Blob Storage Account 72
5.2.2 Centralized Storage Structure 72
5.2.3 The global baseline 73
5.2.4 Structure dedicated to each tenant 74
5.2.5 Artifacts: Policy Definition, Initiative and Assignment . . . 76
5.2.6 Artifacts: Manifests as the Declarative Layer 78
5.2.7 Global Baseline Manifest 80
5.2.8 Manifest Evolution to Increase Security 82
5.2.9 Security of Access to the Tenant Server Storage 85
5.2.10 Service Principal + Key Vault: the Selected Model 87
5.2.11 Minimization of Permissions and Domain Separation 88

5.3 Central Posture Visibility 89
5.3.1 Overview of the Main Components 89
5.3.2 Network Architecture of the Tenant Server 90
5.3.3 Collection Service: VM Collector and Ingestion APT 93

8

5.3.4 Centralized Data Lake on Azure Storage 95

5.3.5 Logical Data Model in Azure Data Explorer 98
5.4 Final Visualization of the Security Posture in the Tenant Server . . 102
5.4.1 Global Overview Dashboard 103
5.4.2 Customer Dashboard: Per-Tenant Analysis 104
Tenant Client Architecture 106
6.1 Role of the Tenant Client 106
6.1.1 Operational Role of the Client in Relation to the Tenant Server106
6.1.2 Dual Logical Flow: Pull of Policies and Push of Audit Data 107
6.1.3 Security and Isolation Requirements in the Client Domain . 108
6.2 Architectural Overview of the Tenant Client 109
6.2.1 Overview of the Resources 109
6.2.2 Relationship Between the Management Subscription and the
Operational Subscription 110
6.2.3 End-to-End Flow: From Policy Distribution to Audit Collection110
6.3 Network Domain of the Tenant Client 111
6.3.1 Management Virtual Network and Audit/Policy Subnet . . . 111
6.3.2 Network Security Group of the Management Subnet 112
6.3.3 Private Endpoint to the Tenant Server Storage 112
6.3.4 Private Endpoints and DNS for Remaining Services 113
6.4 Local Policy Storage in the Tenant Client 113
6.4.1 Structure of the Local Storage 114
6.4.2 General Manifest 0L 114
6.4.3 Replicated Global Baseline 114
6.4.4 Tenant Custom Baseline 115
6.4.5 Per-Cluster AKS Configurations 115
6.4.6 Relationship Between Local and Server Structures 116
6.4.7 Local Manifests and Desired State 116
6.5 Azure Key Vault of the Tenant Client and Secret Management . . . 116
6.5.1 Key Vault as the Central Point for Secret Management . . . 117
6.5.2 Secrets Related to Cross-Tenant Communication 117
6.5.3 Key Vault Private Endpoint and VNet Integration 118
6.5.4 Accessing the Key Vault via Managed Identity 118
6.5.5 Secret Rotation Model 119
6.6 Azure Functions in the Tenant Client 119
6.6.1 Policy Synchronization Function 120
6.6.2 Audit Collection and Export Function 122

9

7 Conclusions

8 Future Work

8.1 From Audit-Only to Progressive Enforcement and Remediation . . .

8.2 Extended Telemetry and Runtime Signal Integration

8.3 Policy Maker: User-Friendly, Granular Policy Authoring

8.4 Automated Onboarding of New Tenants and Clusters

Bibliography

10

125

128
128
129
129
130

132

Chapter 1

Introduction

1.1 Problem

Modern enterprises increasingly adopt Kubernetes as the foundational layer for
running cloud-native workloads, and Azure Kubernetes Service (AKS) has quickly
become one of the most widely deployed managed Kubernetes platforms. As the
operational use of AKS grows across business units, subsidiaries, and customers,
security becomes both more critical and more complex. Organizations must pro-
tect clusters that differ in maturity, configuration, and operational practices while
ensuring compliance with internal standards, external regulations, and industry
benchmarks.

The core difficulty lies in achieving this level of security and consistency at
scale. When clusters are distributed across multiple isolated Azure tenants, each
belonging to a different customer or organizational domain, the challenge
intensifies. Azure-native tooling such as Azure Policy, Defender for Cloud, and
centralized monitoring services provide strong capabilities, but they are designed
with shared-control models in mind. For organizations that enforce strict isola-
tion between tenants, these native mechanisms become difficult or impossible to
use directly. Techniques such as Azure Lighthouse introduce shared administrative
planes and cross-tenant privileges that may conflict with regulatory or contrac-
tual constraints. As a result, many enterprises continue to manage AKS security
in a fragmented, manual, and error-prone manner, with limited visibility into the
posture of the clusters they must secure.

In this context, the absence of a unified governance model leads to inconsistent
configurations, uneven adoption of security features, and an inability to monitor
compliance across customers. Without a structured baseline and a secure central-
ized mechanism to distribute and assess it, the security posture of AKS clusters
diverges over time, increasing operational risk and audit complexity. The problem
addressed by this thesis is therefore how to enforce a uniform, repeatable, and scal-
able security framework for AKS clusters across multiple isolated tenants, without
compromising the strict separation required between customers.

12

Introduction

1.2 Thesis Goal

The objective of this thesis is to define, implement, and validate a comprehensive
security framework for Azure Kubernetes Service that enables centralized posture
management across fully isolated Azure tenants. The work is structured around
two major contributions.

First, the thesis develops a formal AKS security baseline, built exclusively on
Microsoft-supported Azure Policy controls and aligned with recognized security
standards such as the CIS Kubernetes Benchmark, Kubernetes Pod Security Stan-
dards, NIST guidance, and CNCF security principles. This baseline represents a
unified set of mandatory requirements applicable to all AKS clusters, independently
of the environment, application domain, or operational maturity of the teams man-
aging them.

Second, the thesis introduces the design and implementation of an Azure-based
architecture for securely distributing this baseline and monitoring compliance in a
multi-tenant context. The proposed solution creates a dedicated “tenant server”
acting as a centralized policy distribution and ingestion hub and a “tenant client”
deployed inside each isolated customer tenant. This bidirectional model enables:

e secure and private distribution of the baseline through Azure Storage, Private
Endpoints, and declarative manifests,

e independent evaluation and application of policies through local automation,

e continuous collection of compliance signals using Azure Policy, Gatekeeper,
and the Azure Policy Add-on for AKS,

e centralized ingestion, analytics, and visualization via Azure Data Explorer
and Azure Managed Grafana.

The final goal is to bridge the gap between strict tenant isolation and the need for
centralized governance, providing an architecture that is scalable, fully auditable,
and aligned with Azure best practices. The solution demonstrates that it is possible
to maintain isolation at the identity, network, and operational levels while still
achieving enterprise-wide standardization and visibility of AKS security posture.

1.3 Thesis Structure

The thesis is organized to guide the reader from the foundations of AKS and Ku-
bernetes security to the design, implementation, and validation of the proposed
framework.

e Chapter 1 provides the technical background on AKS, including the man-
aged control plane, agent pools, networking, Azure-native security features,
workload hardening mechanisms, and the primitives that underpin secure Ku-
bernetes operation. This chapter establishes the terminology and concepts
that the rest of the thesis builds upon.

13

Introduction

e Chapter 2 introduces the high-level implementation design of the AKS Se-
curity Framework (AKSSF). It describes the overall architecture built around
two main components: the tenant client, deployed in each tenant to synchro-
nize and enforce security baselines and collect compliance snapshots, and the
tenant server, which centralizes baseline publication, snapshot ingestion, and
observability.

e Chapter 3 introduce and formalize the AKS security baseline. They de-
scribe the selection criteria for Azure Policy controls, the mapping to indus-
try benchmarks, and the structure of the baseline across governance, identity,
workload hardening, networking, and data protection domains. These chap-
ters represent the theoretical foundation supporting the architectural design
that follows.

e Chapter 4 presents the architecture of the tenant server, the centralized
component responsible for storing the baseline, exposing manifests, securing
access through Private Link, and ingesting compliance data from all tenant
clients. The chapter explains the network architecture, authentication model,
storage structure, and the rationale behind the chosen Azure services. An im-
portant part of the chapter is the presentation of the final dashboard deployed
in the server demonstrating the solutions correctness, scalability, and ability
to maintain strict tenant isolation while providing centralized posture visibil-

ity.

e Chapter 5 focuses on the tenant client, the component deployed in each
isolated Azure tenant. It details how policies are synchronized, validated,
and applied to local clusters, how secrets are managed in Key Vault, and how
audit results are exported through the ingestion pipeline.

1.4 Environment Context

The proposed framework has been designed for a multinational organization that
manages multiple Azure tenants, each containing one or more AKS clusters. These
tenants belong to different customers or independent business units and are subject
to strict isolation requirements. No shared control planes, cross-tenant privileges,
or administrative trust relationships are permitted, which excludes the use of com-
mon centralized management patterns such as Azure Lighthouse or cross-tenant
Managed Identities.

In this environment, every tenant owns its virtual networks, identity bound-
aries, security policies, and operational autonomy. Clusters vary in size, purpose,
and security maturity: some host internal applications for development teams,
others run production workloads for external customers subject to regulatory con-
straints. Despite this heterogeneity, the organization must guarantee a uniform
security posture, consistent application of mandatory controls, and centralized vis-
ibility of cluster compliance.

The architecture developed in this thesis responds precisely to this context. It
enables a secure flow of configuration and compliance data across tenants using

14

Introduction

private networking and isolated identities, while preserving the autonomy and pri-
vacy of each customer environment. The solution therefore represents not only a
technical contribution but also a practical model for managing AKS security in
large-scale, multi-tenant enterprise scenarios.

15

Chapter 2

Background

2.1 Introduction to Azure Kubernetes Service (AKS)

2.1.1 What AKS is and Why It Is a Managed Service

The landscape of cloud computing and modern architectures has evolved signifi-
cantly with the adoption of containers. Containers enable applications and their
dependencies to be packaged into portable and isolated units. Kubernetes has
become the leading open-source platform for large-scale container orchestration,
providing essential capabilities such as scheduling, auto-scaling, load balancing,
self-healing, and storage management.

However, managing a Kubernetes cluster from scratch introduces substantial
complexity. Administrators must maintain the control plane, update etcd, ensure
high availability and security, and preserve a consistent configuration across the
cluster.

Azure Kubernetes Service (AKS) [1] addresses these challenges by simplifying
cluster operations through a fully managed service model. AKS runs Kubernetes
on Microsoft Azure, with Microsoft responsible for managing the entire control
plane: the API server, etcd, scheduler, and controllers. This management covers
provisioning, patching, updating, uptime guarantees, and automatic scaling .

The managed service approach provides two major benefits. First, it reduces
operational overhead: organizations do not need to maintain or update Kubernetes
master components and can focus solely on the worker nodes where containers
run. Second, it enables rapid deployment: creating an AKS cluster provides an
immediately usable production-ready Kubernetes environment with networking,
storage, and Azure integrations already configured.

AKS is therefore well-suited for organizations aiming to adopt cloud-native ar-
chitectures, leverage containerization and microservices, and reduce infrastructure
management efforts while relying on a secure, supported, and continuously updated
platform.

16

Background

2.1.2 Shared Responsibility Model: What Microsoft Pro-
tects and What the Customer Must Protect

Using a managed service such as AKS modifies the traditional division of responsi-
bilities between the cloud provider and the customer, introducing a shared responsi-
bility model. Microsoft ensures the security and availability of the control plane [2],
managing patches, resilience, uptime, and the backend Kubernetes infrastructure.

However, the organization consuming AKS remains responsible for the worker
nodes, containers, workloads, virtual network configuration, applications, secrets,
and data. In other words, everything below the control plane, like virtual machines,
storage, networking, Pod configuration, and security policies,remains under the
customer’s control. Consequently, the overall security posture of the environment
depends largely on architectural decisions, operational practices, and governance
strategies.

This hybrid model provides a balance. Microsoft offers reliability and ease of
management for the control plane, while the customer maintains flexibility and
responsibility for the security measures required by their environment. For these
reasons, using AKS does not mean delegating security entirely. The platform alone
does not guarantee a secure setup. It is necessary to implement appropriate best
practices, configurations, and policies at both infrastructure and workload levels to
ensure confidentiality, integrity, and availability.

2.2 Internal Architecture of AKS

The internal architecture of Azure Kubernetes Service (AKS) combines the core
principles of Kubernetes with a high level of automation, abstraction, and native
integration with Azure services. Its design aims to provide scalability, security,
resilience, and operational simplicity, while remaining fully compatible with the
Kubernetes open-source ecosystem. To understand how an AKS cluster works,
it is necessary to consider both the components managed by Microsoft and the
operational elements that remain under the user’s control.

2.2.1 The Managed Control Plane

In AKS, the entire Kubernetes control plane is fully managed by Microsoft. Critical
components such as the kube-apiserver, the distributed store etcd, the scheduler,
and the controller-manager are hosted and maintained by Azure. Microsoft provides
updates, security patches, monitoring, and service continuity, ensuring a reliable
and highly available control plane [3].

The kube-apiserver is the entry point for all cluster operations. Through
HTTP requests sent to the API endpoint, applications, operators, and DevOps
tools define the desired state of the system. Azure ensures the availability of this
endpoint through high-availability mechanisms and load balancing, as well as sup-
port for private clusters and authorized IP ranges that reduce exposure to the public
internet.

17

Background

The etcd database stores the entire state of the cluster and is one of the
most sensitive components because it represents the core of Kubernetes declara-
tive model. In AKS, etcd is fully isolated and not accessible to the customer. It is
protected through encryption and managed using Azure operational mechanisms,
including automated backups and failover.

The kube-scheduler and controller-manager ensure alignment between the cur-
rent and the desired cluster state. The scheduler assigns new Pods to suitable nodes,
while the controllers manage replicas, failed nodes, deployments, and other clus-
ter objects. These functions are entirely handled by Azure, relieving the customer
from complex operational tasks such as control plane tuning, updates, patching, or
recovery procedures.

2.2.2 Cluster Nodes: Agent Pools, VMSS, Operating Sys-
tems, Container Runtime

While the control plane is fully managed by Microsoft, the cluster nodes, which
are the machines that actually run user workloads, remain part of a shared respon-
sibility model. Each AKS node is an Azure virtual machine that belongs to one
or more agent pools. Each pool contains a homogeneous group of nodes with the
same operating system, machine size, and networking configuration.

Agent pools are implemented through Azure Virtual Machine Scale Sets (VMSS).
VMSS provides native capabilities such as autoscaling, orchestrated updates, rolling
upgrades, and automatic VM health management. This model enables the cluster
to scale quickly in response to application load changes [1].

Regarding operating systems, AKS supports Azure Linux, Ubuntu, and Win-
dows Server for Windows-based containers. Linux nodes rely on CRI-compliant
container runtimes which became the recommended and default runtime.

Each node includes essential data plane components such as the kubelet, re-
sponsible for maintaining Pod execution, and kube-proxy, which implements net-
working rules and packet forwarding within the cluster.

2.2.3 Pods, ReplicaSets, Deployments, and Basic Kuber-
netes Resources

Pods are the smallest execution unit in Kubernetes. A Pod can contain one or more
containers sharing the same network namespace and, optionally, shared storage
volumes. The ephemeral nature of Pods requires applications to be designed for
resilience. They should be stateless or capable of handling the loss of an instance

[5]-
ReplicaSets provide a higher level of abstraction by automatically maintaining

a specific number of Pod replicas. This control mechanism is essential to ensure
availability and fault tolerance.

Deployments operate at an even higher level and define update strategies such as
rolling updates and rollbacks. They simplify the lifecycle management of container-
ized applications. The combination of Deployments and ReplicaSets is central to

18

Background

cloud-native architectures because it ensures operational continuity and predictable
updates [0].

2.2.4 Namespaces and Logical Isolation

Kubernetes provides an initial segmentation layer through Namespaces, which di-
vide resources into logical groups within the same cluster. Namespaces make it
possible to implement multi-team, multi-project, or multitenant models by defin-
ing visibility boundaries and applying granular controls such as network policies,
resource limits, RBAC roles, and labels [7].

In AKS, several namespaces are created automatically, including kube-system,
kube-public, and kube-node-lease. The kube-system namespace is especially
important because it hosts the internal cluster components and the system add-ons
installed by AKS. As a result, namespaces act as operational boundaries that must
be respected and protected, for example by applying security policies that prevent
arbitrary workloads from running in reserved namespaces.

2.2.5 Node Resource Group and Integration with Azure
Resources

A distinctive element of AKS compared to a self-hosted Kubernetes cluster is the
presence of the Node Resource Group (NRG). When a cluster is created, Azure
automatically generates a dedicated resource group that contains all the infrastruc-
ture objects required for the nodes to operate. These include virtual machines,
disks, network interfaces, internal load balancers, managed identities, and related
configurations.

This resource group should not be modified manually because it is managed by
the system. Any unplanned change may affect the cluster’s stability. At the same
time, the NRG makes it possible to use Azure integration features such as advanced
networking, disk encryption, monitoring, logging, and autoscaling. [3].

The Node Resource Group highlights the connection between Kubernetes and
Azure. Kubernetes provides the declarative model and orchestration, while Azure
supplies the cloud resources, security, networking, and monitoring that turn the
cluster into a fully integrated environment.

2.3 Networking in AKS

Networking is one of the most complex and important aspects of a Kubernetes clus-
ter. In Azure Kubernetes Service, networking is not only the mechanism through
which Pods communicate. It is also a central component for security, service ex-
posure, performance, and integration with the wider Azure ecosystem. AKS com-
bines standard Kubernetes features such as Services, Ingress, and Network Policies
with Azure-specific implementations including Azure CNI, Azure Load Balancer,

19

Background

network security groups (NSG), and native integration with Azure Firewall and
Private Link.

Understanding the networking models, ingress and egress behavior, and security
mechanisms is essential when designing or securing an AKS cluster.

2.3.1 Core CNI Concepts: Overlay vs. Flat Networking

Kubernetes uses a Container Network Interface (CNI) to assign IP addresses to
Pods, define routing rules, and enforce network policies. In AKS, users can select
from different CNI plugins, each with its own characteristics and trade-offs.

Overlay and flat are the two main networking approaches used by modern CNIs.

Overlay model In an overlay model, Pods receive IP addresses from a range
that is separate from the Azure subnet hosting the nodes. Traffic between Pods is
encapsulated and routed through a tunneling or virtualization layer, which avoids
consuming large numbers of IP addresses from Azure subnets. This reduces IP
usage and improves scalability for very large clusters [9].

Flat model In a flat model, Pods and nodes share the same L3 subnet. Each
Pod receives a native VNet IP address and becomes a fully addressable entity
within Azure. This model simplifies integration with on-premises systems, security
appliances, and monitoring solutions. The traditional Azure CNI implementation
follows this flat approach [10].

In addition to Azure CNI, AKS also supports two other models:

e Cilium (eBPF) — Supported natively since 2023. Cilium relies on eBPF to
deliver high-performance networking, advanced security, and deep observabil-

ity [11, 12].

e Kubenet —A simpler and now legacy solution that relies on routing and NAT.
It is no longer recommended for modern environments or large clusters [13].

The choice of CNI affects security, performance, scalability, and integration with
Azure infrastructure. For this reason, it is one of the most strategic decisions when
designing an AKS cluster.

2.3.2 Intra-Cluster Communication: Pod-to-Pod, Service-
to-Pod, Node-to-Pod

The Kubernetes networking model ensures that any Pod can communicate with
any other Pod in the cluster, regardless of the node they run on. This behavior,
known as the flat networking model, is a core design principle of Kubernetes [1].

The main communication flows include:

20

Background

Pod-to-Pod — This is the simplest communication pattern. With Azure CNI
flat, routing is direct through the VNet. With overlay models, traffic passes through
the encapsulation layer defined by the CNI.

Service-to-Pod — When a Pod accesses a Kubernetes Service, requests are
routed using internal load balancing. Azure implements kube-proxy using iptables
or eBPF (when Cilium is enabled) to send traffic to the correct Pods associated
with the Service.

Node-to-Pod and Pod-to-Node — Nodes and their kubelet components com-
municate with Pods for health checks and management operations. These flows are
essential to understand from a security perspective because they define the mini-
mum network paths required for Kubernetes to function.

Microsoft documentation provides a detailed explanation of these internal flows

[15].

2.3.3 Kubernetes Services: ClusterIP, NodePort, LoadBal-
ancer, ExternalName

Kubernetes Services provide an abstraction for exposing applications. In AKS,
Services integrate tightly with Azure networking components such as Load Balancer
and Private Link.

ClusterIP is the default Service type and creates a virtual IP address accessible
only within the cluster for Pod-to-Pod or Pod-to-Service communication.

NodePort exposes an application on a fixed port on every node. It is simple
but not secure, and AKS does not recommend it for production environments.

LoadBalancer automatically creates an Azure Standard Load Balancer and
associates a public or private IP with it. This is one of the most common Service
types for applications that need external access.

ExternalName maps the Service to an external DNS name and is typically
used for logical proxies or integrations with external services.

From a security perspective, NodePort and LoadBalancer represent attack sur-
faces that require careful control, especially when exposed to the public internet.

2.3.4 Ingress Controllers and L7 Traffic

Kubernetes Services do not directly manage HTTP or HT'TPS traffic and do not
provide capabilities such as TLS termination, hostname-based routing, URL rewrit-
ing, or rate limiting. For this reason, Kubernetes defines the Ingress resource and
requires an Ingress controller.

In AKS, the most common Ingress controllers are:

e NGINX Ingress Controller

e Azure Application Gateway Ingress Controller (AGIC)
21

Background

o Traefik

e Cilium Ingress (when using Cilium as the data plane)

The controller translates the routing rules defined in the Ingress object into
operational configurations and exposes HTTP/HTTPS services efficiently at L7.

Ingress controllers introduce several important security aspects, including TLS
handling, rate limiting, URL sanitization, Web Application Firewall integration
(such as AGIC with WAF), and the use of certificates stored in Azure Key Vault.

2.3.5 Cluster Egress: SNAT, Azure Firewall, Private End-
points

Egress traffic is often underestimated, but it represents one of the most critical
parts of AKS security. By default, Pods reach the internet through the node, which
performs Source Network Address Translation (SNAT). As a result, all outgoing
traffic is masked behind the node’s IP address.

The risks of SNAT include NAT table exhaustion, loss of fine-grained observ-
ability for individual workloads, and difficulty enforcing precise security controls.

Recommended best practices include:

routing outbound traffic through Azure Firewall,
e enforcing traffic flows using User-Defined Routes (UDR),
e using private endpoints for Azure PaaS services,

disabling direct outbound access in zero-trust environments [16].

2.3.6 Network Security Groups and Their Role Compared
to Network Policies

Network Security Groups (NSG) are the main filtering mechanism in Azure. They
can be applied to subnets or network interfaces and operate at layers 3 and 4,
allowing administrators to control inbound and outbound traffic to nodes. How-
ever, NSGs are not aware of Pods. They can filter traffic to and from nodes but
cannot distinguish individual containers. This is a major limitation in Kubernetes
environments [17].

For AKS, NSGs play a complementary role. They protect the Azure infrastruc-
ture layer but do not replace Kubernetes Network Policies.

22

Background

2.3.7 Network Policies: Models, Enforcement, Limitations,
and Risks

Kubernetes Network Policies provide granular control over Pod-to-Pod traffic and
make it possible to adopt zero-trust models inside the cluster. Unlike NSGs, Net-
work Policies operate on Pods, namespaces, and labels, offering an application-level
perspective on traffic [18].

Kubernetes provides a standard API, but the actual enforcement depends on
the CNI implementation. AKS supports [19]:

e Calico Network Policy,

e Azure CNI Network Policy (available when using Azure CNI powered by
Cilium),

e Cilium Network Policy (advanced eBPF enforcement).
The limitations of Network Policies include:

e lack of L7 visibility (unless combined with a service mesh or advanced CNI),
e increased operational complexity in large environments,
e dependency on the CNI provider,

e risk of misconfigurations that may block critical system traffic.

The most serious risk is the absence of Network Policies. Without them, any Pod
can communicate with any other Pod, creating a large potential lateral movement
path for attackers.

2.4 Kubernetes Security Model

The security model of Kubernetes differs significantly from that of traditional in-
frastructures. In a cluster, there is no single perimeter to protect. Instead, the
environment consists of dozens or hundreds of cooperative processes distributed
across multiple nodes, dynamically orchestrated, and often managed by several
teams with different access levels. This makes the attack surface inherently broad
and constantly evolving.

Kubernetes follows a declarative and highly flexible approach, but this flexibil-
ity introduces risks if not paired with strict controls. Security is not limited to
protecting the control plane. It also involves nodes, containers, workloads, identity
models, API objects, and intra-cluster communications. An effective strategy must
begin by understanding the typical threats and risk categories and then link them
to the native security mechanisms provided by Kubernetes.

23

Background

2.4.1 Typical threats: container breakout, privilege escala-
tion, lateral movement

Kubernetes was designed as a container orchestrator and therefore inherits many
threat patterns from container runtimes. However, unlike standalone containers, a
multi-tenant cluster amplifies risks because of workload density, shared nodes, and
the dynamic nature of cluster resources.

The first major threat category is container breakout, which refers to an attacker
escaping from a container and gaining access to the underlying node. This scenario
becomes realistic when dangerous configurations are used, such as privileged con-
tainers, shared node namespaces (hostPID, hostNetwork), dangerous Linux capa-
bilities such as CAP_SYS_ADMIN, or direct mounts of node filesystems. The National
Institute of Standards and Technology (NIST) identifies these risks as among the
most critical in modern containerized architectures [20].

A second major threat involves privilege escalation, either inside the container
or through the kube-apiserver. Running containers as root, writable filesystems,
and the absence of seccomp or AppArmor profiles increase the likelihood of privilege
escalation. Similarly, an overly permissive RBAC role assigned to a service account
can grant dangerous capabilities at the cluster level.

A third common threat is lateral movement. Without Network Policies, any Pod
can communicate with any other Pod, resulting in a completely flat network. The
MITRE ATT&CK framework for Containers highlights unrestricted intra-cluster
communication as one of the most frequent paths used by attackers after compro-
mising a single workload [21].

These three categories form the core of workload and node-level risks, and many
defensive measures focus specifically on mitigating them.

2.4.2 The cluster as a distributed system: attack surfaces
and vectors

Kubernetes is not a single component but an ecosystem of coordinated processes
such as the API server, controllers, scheduler, kubelet, container runtime, internal
DNS, CNI, and the etcd datastore. Cluster security emerges from the correct inter-
action of these elements rather than from the security of any individual component.

The attack surface can be divided into five main areas.

The control plane is the most critical part of the cluster. It hosts the kube-apiserver,
scheduler, controller manager, and etcd. The kube-apiserver is the central entry
point for all administrative operations and a natural target for attackers. Etcd
contains cluster configuration and Secrets, which requires particularly strong pro-
tection.

Nodes are another fundamental attack surface. They are virtual machines run-
ning containers, the runtime, the kubelet, and kube-proxy. A compromised node
effectively means a compromised cluster, which is why nodes must remain highly
protected and not directly exposed.

24

Background

Containers are isolated processes, but the isolation relies on kernel-level tech-
niques and does not offer the same guarantees as virtual machines. Their security
depends on mechanisms such as securityContext, filesystem configuration, Linux
capabilities, and seccomp or AppArmor profiles.

Intra-cluster communications, if not restricted by Network Policies, create a
privileged propagation path. East-west traffic between Pods was identified in the
Red Hat and CNCF Cloud Native Security Report 2024 as the most commonly
exploited vector after an initial compromise.

Finally, the Kubernetes API surface is extremely large. The declarative model
enables many operations that, if misconfigured, can create systemic vulnerabilities.
Examples include creating privileged Pods, modifying critical ConfigMaps, manip-
ulating ServiceAccounts, obtaining tokens, port-forwarding to sensitive Pods, or
changing RBAC permissions.

2.4.3 Kubernetes RBAC model: users, groups, service ac-
counts, and the role of kube-apiserver

Kubernetes applies a Role-Based Access Control (RBAC) model to manage which
operations an identity can perform against the cluster API. The official documen-
tation describes RBAC as the primary mechanism to enforce the principle of least
privilege across the cluster [22].

In the RBAC model, there are three main identity categories.

Users represent human identities that authenticate to the cluster. Kubernetes
does not manage users directly; authentication is handled through external systems
such as OpenID Connect, Microsoft Entra ID, or client certificates. After authen-
tication, the user interacts with the kube-apiserver, which checks authorization
using RBAC rules.

Groups aggregate users into logical units and are essential in organizational
environments. Microsoft Entra ID, which integrates natively with AKS, supports
direct mapping between enterprise groups and Kubernetes roles.

Service accounts represent non-human identities used by Pods to interact with
the cluster API. Every Pod is associated with a service account. The kube-apiserver
treats service accounts as first-class identities and RBAC defines what they can do.

The kube-apiserver acts as the central authority by authenticating, authoriz-
ing, and applying admission control. All requests flow through it, making it the
primary enforcement point for RBAC.

RBAC configuration has a direct impact on cluster security. Broad roles such
as cluster-admin or edit represent significant risks in multi-team environments.
The CNCF reports that many Kubernetes security incidents stem from improper
use of privileges rather than technical vulnerabilities [23].

25

Background

2.4.4 Kubernetes Secrets: management, limitations, en-
cryption, risks when mismanaged

Kubernetes Secrets provide the native mechanism for storing sensitive information
such as tokens, passwords, API keys, and certificates. Their main benefit is that
sensitive values do not need to be embedded directly in Pod manifests. However,
Secrets come with important limitations.

By default, Kubernetes stores Secrets in etcd without encryption. This means
that if etcd is not properly protected, an attacker could retrieve Secrets in plaintext.
The documentation recommends encryption at rest as a minimum requirement for
production clusters [24].

In AKS, encryption of Secrets is handled through Azure Key Management Ser-
vice (KMS), which allows the use of keys stored in Azure Key Vault. This inte-
gration addresses one of Kubernetes’ historical limitations and provides a stronger
trust model [25].

A second limitation is the automatic mounting of service account tokens into
Pods. This token is stored in the Pod’s filesystem and may be accessible to attackers
in case of remote code execution. Since 2020, the community strongly recommends
disabling automountServiceAccountToken whenever it is not required.

A third risk involves duplication of Secrets. CI/CD pipelines and applications
may create unprotected local copies of credentials, break privilege separation, or
create drift between cluster-managed and externally managed credentials.

Finally, Secrets do not provide automatic rotation. Kubernetes does not rotate
passwords, certificates, or tokens by default, which introduces risk if a credential is
compromised.

Overall, Secrets are useful but must be complemented by strong mechanisms
such as KMS, accurate RBAC, Workload Identity, and secure node configurations.

2.4.5 Pod Security Standards: baseline, restricted, and priv-
ileged

The Pod Security Standards (PSS) are the main official guidelines from the Ku-
bernetes community for evaluating the security level of workloads. PSS define
three profiles, each with specific requirements and increasing strictness: Privileged,
Baseline, and Restricted [20].

The Privileged level allows almost all behaviors, including privileged contain-
ers, access to host namespaces, extended capabilities, hostPath volumes, and node
filesystem mounts. It is intended for system components such as CNI or CSI plugins
and should not be used for application workloads.

The Baseline level provides essential protection against the most dangerous con-
figurations. It blocks privileged containers, excessive capabilities, unsafe hostPath
usage, shared host namespaces, and other risky settings. It is compatible with most
applications and is recommended for multi-team environments.

26

Background

The Restricted level applies even stricter controls. It requires read-only filesys-
tems, minimal Linux capabilities, the seccomp RuntimeDefault profile, and pre-
vents almost all access to node primitives. This level represents a zero-trust ap-
proach for workloads.

PSS enforcement relies on Pod Security Admission (PSA), which is enabled as
a native admission controller in recent Kubernetes versions.

The Pod Security Standards are a foundational element for understanding work-
load security. They map theoretical security expectations to concrete rules that
should be allowed or denied at the manifest level.

2.5 AKS Security From the Azure Perspective

The security model of AKS extends beyond the Kubernetes surface. A signifi-
cant part of cluster protection comes from its deep integration with Azure security
services. Unlike a bare-metal Kubernetes cluster or an installation running on
self-managed virtual machines, AKS can delegate critical aspects of security, com-
pliance, monitoring, identity, key management, and data encryption to the Azure
platform. Azure operates under certified security standards such as ISO 27001,
SOC 1/2/3, and FedRAMP, which strengthens its overall security posture.

This section examines the main Azure-native mechanisms that complement Ku-
bernetes security and form an essential layer of protection for AKS clusters.

2.5.1 Integration With Microsoft Entra ID (Identity Fed-
eration and OIDC)

One of the strengths of AKS is the ability to fully delegate user authentication
to Microsoft Entra ID (formerly Azure Active Directory). Kubernetes does not
include a built-in identity management system and always requires an external
authentication provider. Integrating AKS with Entra ID allows organizations to
use their existing enterprise identity platform and apply controls such as multi-
factor authentication, Conditional Access, and Identity Protection.

The integration also enables the use of the cluster’s OIDC provider, which is cru-
cial for modern workloads. The Kubernetes API server exposes a compliant OIDC
discovery endpoint that supports identity federation between service accounts and
Microsoft Entra ID. Workloads can authenticate to Azure resources without relying
on static secrets. This mechanism, known as Workload Identity, is now considered
the standard for secure authentication between containerized applications and cloud
services [27].

Integration with Entra ID improves overall security in at least three ways: it
removes the need for the local —admin cluster account; it enables Kubernetes role
assignments based on enterprise groups; it reduces the use of static credentials by
replacing them with cryptographically signed tokens.

27

Background

2.5.2 Azure Policy for Kubernetes: OPA Gatekeeper, Man-
ifest Validation, Compliance Enforcement

Azure Policy is one of the key components for securing AKS because it allows
policies to govern Kubernetes manifests just as they do for Azure resources de-
fined through ARM or Bicep. To evaluate and enforce policies inside the cluster,
administrators must enable the Azure Policy Add-on for Kubernetes.

This add-on installs an optimized version of Open Policy Agent (OPA) Gate-
keeper, the CNCF-standard engine for policy enforcement and validation [28]. Mi-
crosoft provides native integration and management guidance for this component

[29].

OPA Gatekeeper integrates with the Kubernetes admission control pipeline.
When a resource is created or modified, Gatekeeper intercepts the request and
checks whether it violates any constraint. AKS provides hundreds of built-in poli-
cies covering container privileges, security configurations such as seccomp, AppAr-
mor, and Linux capabilities, image sources and registries, networking requirements,
workload configuration, Pod Security Standards, and diagnostic and auditing re-
quirements.

The combined integration of Azure Policy, OPA Gatekeeper, and Microsoft De-
fender for Cloud provides centralized compliance reporting across all clusters. This
capability addresses Kubernetes’ historical limitation of governance fragmentation
by enabling consistent policy enforcement across both Azure resources and Kuber-
netes resources.

2.5.3 Microsoft Defender for Containers: Image Scanning,
Runtime Protection, Anomaly Detection

Microsoft Defender for Containers is the cloud-native security service that enhances
AKS protection at the image, workload, and node levels. It is part of Microsoft
Defender for Cloud, which combines static analysis, image scanning, runtime mon-
itoring, and threat detection [30)].

Defender for Containers operates across multiple layers.

Image scanning The service scans container images stored in Azure Container
Registry and other registries. It identifies vulnerabilities (CVEs), insecure config-
urations, outdated libraries, and other weaknesses. The results are integrated into
Azure security dashboards and compliance reports.

Runtime protection Defender monitors processes running inside containers and
detects suspicious behavior such as execution of unexpected commands, attempts
to escalate privileges, creation of suspicious sockets, unauthorized filesystem mod-
ifications, fileless attack patterns, and actions correlated with MITRE ATT&CK
techniques such as escape to host.

28

Background

Cluster configuration analytics Which identify issues such as missing Net-
work Policies, overly permissive RBAC roles, over-privileged service accounts, and
insecure Pods.

Defender for Containers transforms Kubernetes security from a static configu-
ration model into one that includes continuous runtime protection, aligning AKS
with modern container runtime protection (CRP) practices.

2.5.4 Azure Key Vault, KMS, and Secure Key and Secret
Management

Secret management is one of the most sensitive challenges in Kubernetes. As dis-
cussed in Section 1.4.4, Kubernetes Secrets are stored in etcd and may be exposed
in plaintext without proper encryption. AKS addresses this challenge by integrating
directly with Azure Key Vault and the Key Management Service (KMS).

Official documentation for 2024 describes how AKS supports KMS v2 to encrypt
Secrets using keys stored in Key Vault [25]. KMS provides the ability to encrypt
Secrets before they are written to etcd, use customer-managed keys stored in an
isolated vault, and support hardware-backed models such as Managed HSM.

Beyond Kubernetes Secret encryption, Key Vault offers secure storage for TLS
certificates, centralized management of disk encryption keys, automatic key rota-
tion, and full auditing of key access.

For workloads, Key Vault can be integrated through Workload Identity, which
enables Pods to obtain OIDC tokens, and through the CSI Secret Store Driver,
which mounts secrets from Key Vault directly into Pods [31, 32].

2.5.5 Disk Management and Encryption (Host-Based, CMK,
Managed Disks)

Protecting data at rest is a fundamental requirement in cloud security. Every AKS
node uses Azure Managed Disks, which support several layers of encryption.

The first layer, always enabled, is server-side encryption with Microsoft-managed
keys. This ensures that all VM disks are encrypted regardless of cluster configura-
tion [33].

The second layer is customer-managed key (CMK) encryption, recommended
for regulated environments. AKS supports specifying a Key Vault-managed CMK
to encrypt both OS and data disks [34].

The third layer is host-based encryption, which encrypts temporary disks, disk
caches, ephemeral volumes, and the container overlay filesystem. This is particu-
larly important because temporary disks may contain sensitive non-persistent data,
including swap files, cached credentials, network buffers, or application metadata.

AKS also supports advanced Azure Managed Disk security features, including
Trusted Launch, Managed HSM integration, and double-layer encryption using
both platform and customer keys.

29

Background

2.6 State of the Art in Control Plane Security

The Kubernetes control plane is the core of the system and, in AKS; it is the only
component fully managed by the cloud provider. It includes the API server, the
etcd datastore, the scheduler, and the controller processes, all of which govern the
declarative state of the cluster and the behavior of workloads.

Even though Microsoft operates the control plane in AKS, customers remain
responsible for several important aspects, such as controlling access, defining isola-
tion boundaries, enabling adequate audit logging, and ensuring that network and
identity-based controls are aligned with zero trust principles. The following sec-
tions describe the key elements that define the current best practices for securing
the control plane in AKS clusters.

2.6.1 Securing the kube-apiserver: public endpoint, private
clusters, and authorized IP ranges

The kube-apiserver is the entry point for all administrative and application-level
operations in Kubernetes. Every change to the cluster’s state must pass through it,
which makes it one of the most sensitive components of the platform. The exposure
of the API server largely determines the level of risk associated with the control
plane.

In AKS, the default configuration exposes the API server through a public
HTTPS endpoint. This simplifies operational access but also increases the attack
surface because the endpoint becomes reachable over the public internet. Microsoft
explicitly classifies this as the option with the highest intrinsic risk and recommends
limiting its exposure or adopting private endpoints.

The most secure option is the private cluster configuration, where the control
plane endpoint does not receive a public IP address and can only be accessed
through a virtual network, VPN, or ExpressRoute. This significantly reduces ex-
posure to scanning, brute-force attempts, and token exfiltration attacks.

An intermediate option is the use of authorized IP ranges, which allow orga-
nizations to keep a public endpoint but restrict access to specific IP addresses or
subnets. All non-authorized IPs are blocked by the Azure Load Balancer that fronts
the API server [35].

From a modern security perspective, private clusters represent the gold stan-
dard. Authorized IP ranges are an acceptable compromise when a cluster cannot
yet be integrated into a private network.

2.6.2 Trusted Access and internal communication through
the Azure backbone

A major evolution in AKS control plane security is Trusted Access, a mechanism
that allows Azure services to communicate with the kube-apiserver through the

30

Background

internal Azure network without requiring public endpoints, authorized IP ranges,
or customer-managed certificates.

Trusted Access enables services such as Azure Monitor, Microsoft Defender for
Containers, Azure DevOps, and Azure Container Registry to interact with the
cluster over authenticated and authorized channels based on Managed Identities.

This model provides two essential benefits: it removes the need to expose the
control plane to external IP addresses, reducing the attack surface, and it eliminates
the reliance on privileged static credentials because authentication is performed
through managed identities with narrow scopes.

Communication occurs exclusively through the Microsoft Global Network, not
over the public internet. This design aligns with zero trust principles, where privi-
leged communication is based on identity, least privilege, and authenticated chan-
nels rather than network location.

2.6.3 Encryption of etcd and protection of sensitive data

Etcd is the key-value datastore that stores the entire cluster state, including config-
urations, ServiceAccount tokens, Kubernetes Secrets (unless protected by KMS),
workload definitions, node mappings, and network configuration. Its highly sensi-
tive nature is well documented in Kubernetes best practices and in NIST guidance
such as NIST SP 800-204A. Compromising etcd would allow an attacker to retrieve
Secrets or alter any cluster configuration.

In AKS, etcd security is enforced by Microsoft through encryption at rest, net-
work isolation, automated backups, high-availability replication, and by blocking
any form of direct customer access to etcd. The most important protection mecha-
nism is the encryption of Secrets before they are written to etcd, provided through
Azure Key Management Service (KMS), which allows the cluster to use keys stored
in Azure Key Vault [25].

2.6.4 Logging, auditing, and diagnostic visibility of the con-
trol plane

A distributed system like Kubernetes requires full observability of the control plane
for security, compliance, and operational governance. In AKS, observability is
enabled through Diagnostic Settings, which allow control plane logs and metrics to
be streamed to Azure Monitor Logs, Event Hub, or Azure Storage [30].

Control plane logs include kube-apiserver audit logs, controller-manager logs,
scheduler logs, and authentication and authorization events. The audit log is espe-
cially important because it records every operation performed on the cluster, such
as authentication attempts, manifest changes, RBAC modifications, and interac-
tions between workloads and the API server. Kubernetes defines audit logging as
a core requirement for cluster governance [37].

Azure also provides diagnostic insights that are not available in self-managed
clusters, including control plane latencies, API throttling, internal failures, and
Azure-specific data plane conditions.

31

Background

Integration with Microsoft Defender for Cloud allows alert generation based
on audit and diagnostic data, helping identify behaviors such as suspicious API
enumeration, unauthorized access attempts, or modifications of sensitive cluster
resources.

2.7 Node and Infrastructure Security

Node security is a fundamental part of the overall security posture of a Kubernetes
cluster. Although the AKS control plane is fully managed by Microsoft, the data
plane, which consists of the nodes running critical workloads, remains under the
shared responsibility of the customer. Protecting the nodes requires a consistent
set of measures that include OS patching, access control, kernel-level isolation, and
the protection of disks and temporary storage.

2.7.1 Updates, patching, and OS image management

In AKS, nodes are implemented as Azure Virtual Machine Scale Set (VMSS) in-
stances that run optimized images, typically based on Azure Linux or Ubuntu, or
Windows for specific workloads. The security of the node depends largely on the
timely application of OS, kernel, and container runtime updates.

Update immutability and upgrade models AKS does not apply in-place OS
patches. Instead, it uses an immutable infrastructure model in which upgrades
are performed by provisioning a new node with the updated OS image, draining
the old node, reassigning Pods, and removing the outdated node. This approach
eliminates configuration drift and ensures that every node adheres to the security
baseline defined by Microsoft [35].

Node OS auto-upgrade From a security perspective, one of the most critical
features is Node OS Auto-Upgrade, which automatically applies new OS image
versions as soon as they are available. This significantly reduces the exposure
window for zero-day vulnerabilities [39].

Container runtime hardening Node images include tested and hardened ver-
sions of the container runtime (containerd) and the kubelet. Continuous alignment
of the runtime helps protect the cluster from vulnerabilities such as container escape
exploits, cgroup driver vulnerabilities, and sandboxing issues. Microsoft publishes
security advisories specific to node images to ensure timely updates.

2.7.2 Disabling SSH and Command Invoke

Administrative access to nodes is one of the main risk surfaces in any Kubernetes
environment. In a mature cloud-native model, nodes should not be managed man-
ually and should not be directly accessible, which aligns with the principle of node
immutability.

32

Background

SSH access to nodes In AKS, SSH access to nodes is disabled by default. If a
user accidentally enables SSH, the policy “Azure Kubernetes Clusters should disable
SSH” helps restore the secure configuration and ensure that no node exposes an
SSH endpoint [10].

Removing SSH access mitigates risks such as brute-force attacks, accidental ex-
posure of SSH keys, bypassing Kubernetes RBAC, and unauthorized modifications
to the host OS.

Command Invoke Another potential attack vector is the Run Command / Com-
mand Invoke feature, which executes commands on nodes via the Azure manage-
ment plane. Microsoft notes that, unless strictly necessary, this access may bypass
cluster security controls and network restrictions [11]. The policy “AKS clusters
should disable Command Invoke” allows organizations to block this entry point and
enforce least-privilege practices.

2.7.3 Host isolation: seccomp, AppArmor, and kernel lock-
down

Nodes form the boundary between containerized workloads and the underlying op-
erating system. Securing them requires the use of Linux kernel isolation primitives,
widely documented by the CNCF Cloud Native Security Whitepaper [23].

Seccomp Seccomp restricts the system calls available to containers, reducing
the risk that an exploit inside a workload can execute unauthorized kernel-level
operations. Since 2022, Kubernetes recommends the RuntimeDefault profile, which
AKS fully supports [12]. AKS strengthens this approach through built-in audit and
deny policies that block unsafe or unsupported profiles.

AppArmor AppArmor provides an additional layer of isolation by defining which
files and system capabilities a container can access. It is natively supported on
Linux nodes in AKS and is an important mechanism for mitigating lateral move-
ment or data exfiltration by compromised processes [13].

Kernel lockdown and host hardening AKS node images include several addi-
tional host-level protections, such as kernel lockdown mode, restrictions on unsigned
kernel modules, secure cgroups v2 configuration, and restrictions on exposure of
node devices to containers. Together, these controls significantly reduce the risk of
container escape and node compromise.

2.7.4 Temporary disks and host-based encryption

AKS nodes use local disks (OS disk, data disk, and temporary disk) for node
operations, container images, logging, and caching. These disks can store sensitive
short-lived information, making hardening essential.

33

Background

Host-based encryption (HBE) AKS supports full-disk encryption of tempo-
rary disks and disk caches through Azure Host-Based Encryption. When enabled,
all writes to local storage are encrypted before reaching the hardware with no op-
erational impact.

Host-based encryption provides two main benefits: protection against unautho-
rized access in the event of improper disk snapshotting or recovery, and compliance
with encryption requirements for sensitive data, even when the data is temporary
in nature.

Managed disks and customer-managed keys In addition to host-based en-
cryption, AKS nodes can use customer-managed keys (CMK) for OS and data disks.
This allows organizations to control key management and rotation, an important
capability for regulated environments [31].

Temporary disk and known risks The temporary disk of a node may con-
tain container image layers, swap and journaling files, kubelet temporary data,
and short-lived workload files. Host-based encryption is considered a best practice
to mitigate risks associated with data recovery, improper snapshot creation, and
memory scraping, aligning with guidance such as NIST SP 800-88.

2.8 Application Workload Security

Workload security is one of the most critical aspects of the overall security pos-
ture of a Kubernetes cluster. Even with a well-protected control plane and prop-
erly hardened nodes, a misconfigured workload can introduce severe vulnerabilities.
Excessive privileges, untrusted images, missing probes, permissive network config-
urations, or improper use of credentials can turn a single compromised Pod into a
serious breach affecting the entire cluster.

Application security in Kubernetes spans multiple dimensions, including supply
chain integrity, container configuration, runtime behavior, networking, and identity
management.

2.8.1 Container hardening: user, capabilities, mounts, filesys-
tem, sysctl

The container is the closest security boundary to the application, making it one of
the most important components to harden. Kubernetes defines minimum security
requirements through the Pod Security Standards (PSS), which aim to reduce the
container attack surface by removing all unnecessary privileges.

User and least-privilege execution (non-root) Running containers as root is
one of the most common causes of compromise. Kubernetes and AKS recommend
explicitly defining a non-privileged user through securityContext.runAsUser [!1].

34

Background

Root containers expand the attack surface for local privilege escalation, filesystem
abuse, and exploitation of kernel primitives.

Linux capabilities Linux capabilities split root privileges into atomic compo-
nents. Some capabilities, such as CAP_SYS_ADMIN, are effectively equivalent to full
root privileges and should always be removed. CNCF guidelines recommend a
drop-all add-minimal strategy [23].

Mounts and hostPath volumes Mounting the host filesystem through hostPath
allows containers to access node-level files, which is one of the highest-risk config-
urations. The PSS baseline discourages hostPath, and the restricted profile almost
completely prohibits it.

Read-only filesystem Setting readOnlyRootFilesystem: true helps protect
against attacks that attempt to write malicious files inside the container’s writable
layer. Kubernetes recommends enforcing read-only filesystems and using temporary
volumes only when necessary.

Sysctl settings Sysctl interfaces allow modification of kernel parameters. Ku-
bernetes differentiates between safe and unsafe sysctls; unsafe sysctls are blocked
because they can affect host-level behavior [15].

2.8.2 Supply chain security: image, registry, tags, signing,
ImagePullSecrets

The container supply chain has become one of the most critical attack vectors in
cloud-native systems. Compromising an image introduces vulnerabilities directly
into the cluster.

Trusted images and authorized registries Workloads should pull images only
from trusted registries such as Azure Container Registry (ACR), private registries,
or verified official repositories.

Avoiding the latest tag The latest tag is mutable and breaks reproducibility.
Kubernetes and Microsoft strongly discourage its use in production clusters.

Image signing Kubernetes supports Notation (via Notary v2) for image signing,
and ACR integrates with content trust and Notation 1.0 to ensure image integrity.

ImagePullSecrets When a registry requires authentication, Kubernetes mounts
credentials through ImagePullSecrets, preventing unauthorized registry access.

35

Background

Vulnerability scanning Azure Container Registry and Microsoft Defender for
Containers provide vulnerability scanning to detect emerging CVEs [30].

2.8.3 Runtime behavior: probes, anti-affinity, resilience as
a security property

Resilience is not only a functional attribute but also a security property. Fragile
workloads that cannot self-recover are more vulnerable to denial-of-service attacks
and operational failures.

Liveness, readiness, and startup probes Probes allow the kubelet to detect
and recover stuck or unresponsive applications. Workloads without probes cannot
self-correct, weakening overall resilience [16].

Pod anti-affinity and topology spread constraints Distributing Pods across
nodes improves resilience. References such as topology spread constraints and anti-
affinity policies highlight their importance for workload survivability [17, 15].

Avoiding naked Pods Pods should be managed through controllers such as De-
ployments, StatefulSets, DaemonSets, and Jobs. Standalone Pods lack self-healing
capabilities and introduce fragility.

2.8.4 Tokens and credentials: automountServiceAccount-
Token and Workload Identity

Identity management is one of the most sensitive aspects of workload security.

Automatically mounted tokens Kubernetes automatically mounts a long-
lived token for the default service account into every Pod. This token allows API
authentication and may be accessible to attackers. Kubernetes recommends dis-
abling automountServiceAccountToken unless necessary [19].

Workload Identity for AKS Workload Identity integrates Kubernetes service
accounts with Microsoft Entra ID using OIDC. It provides short-lived, cryptograph-
ically signed tokens without static secrets, supporting Azure RBAC and secure
access to Azure services [27].

2.8.5 Security of exposed services: port binding, host net-
working, ingress

The exposure surface of workloads is one of the main potential attack vectors.

36

Background

Port binding and hostPort The hostPort directive exposes a port on the node
directly, bypassing the container network namespace. This is considered risky and
discouraged by the PSS restricted profile.

hostNetwork: true Enabling hostNetwork places the Pod inside the node’s
network stack and is only needed for specialized workloads. For application Pods,
it is considered a major isolation risk [20].

Ingress and L7 security Ingress controllers manage HTTP and HTTPS traffic
towards cluster services. Layer 7 security requires mandatory TLS, strict host rules,
and careful path validation [50].

External IPs and CVE-2020-8554 CVE-2020-8554 demonstrated that attack-
ers can abuse external IP assignments to intercept traffic. AKS implements policies
restricting this behavior.

Internal Load Balancers Services using LoadBalancer should rely on internal
load balancers unless public exposure is required [51].

2.9 Zero Trust Model Applied to AKS

The Zero Trust model is the dominant paradigm in modern cloud security. It is
built on the principle “never trust, always verify”. In Kubernetes, and especially
in AKS, Zero Trust plays a central role because the cluster is a highly distributed,
dynamic system composed of many layers of identities, networks, images, and arte-
facts. Every interface, workload, and service interaction becomes a potential attack
vector, and the absence of a traditional network perimeter requires continuous ver-
ification of identity, privilege, network flows, and configuration.

This section explains how these principles translate into concrete controls within
Azure Kubernetes Service.

2.9.1 Identity as the perimeter: Entra ID, Workload Iden-
tity, and OIDC tokens

In a Zero Trust model, identity replaces the network as the primary security bound-
ary. In Kubernetes, this translates into three distinct layers of identity: human
identities, cluster and infrastructure component identities, and application work-
load identities.

37

Background

Human identities: Entra ID as the control plane authentication provider
AKS supports native integration with Microsoft Entra ID, which provides feder-
ated authentication based on OAuth2 and OpenlID Connect. Through Entra ID,
organizations can enforce MFA, Conditional Access, and Identity Protection, del-
egate access through groups and roles, eliminate local cluster identities, and audit
all control plane operations.

Cluster identities: Managed Identity FEach AKS cluster uses a Managed
Identity to interact with Azure resources, eliminating static secrets and reducing
the risk of credential exposure [52].

Workload identities: Workload Identity and OIDC federation The most
significant step towards Zero Trust in AKS is Workload Identity, which uses OIDC
federation between Kubernetes and Microsoft Entra ID [27]. Each Pod can assume
a dynamic, scoped identity using short-lived OIDC tokens that are renewed auto-
matically and never stored on disk. This eliminates secrets inside Pods, long-lived
service principals, and static JWT tokens. Workload Identity is the recommended
Zero Trust mechanism for Pod-to-Azure authentication.

2.9.2 Least privilege and application segmentation

Zero Trust enforces a fundamental requirement: every entity must have only the
privileges needed to perform its function, and nothing more.

Least privilege in Kubernetes RBAC The native RBAC model allows fine-
grained segmentation of users, groups, and service accounts [22]. In AKS, this
translates into using namespace-scoped roles instead of cluster-scoped roles, elimi-
nating direct access to cluster-admin, creating dedicated service accounts for each
workload, and applying role bindings that follow least privilege principles.

Application segmentation: service boundaries and east-west segmenta-
tion Segmentation in Kubernetes is implemented through application-level bound-
aries, internal Network Policies, and workload-level restrictions. Network Policies
(Calico or Cilium) enable micro-segmentation by defining explicit communication
rules between Pods [18].

2.9.3 Minimizing the attack surface of the cluster

Reducing the exposed surface is one of the pillars of the Zero Trust model. In AKS,
this principle applies across several dimensions.

Reducing control plane exposure The control plane should not be accessible
from the public internet unless necessary. AKS supports private clusters, authorized
IP ranges, and Trusted Access for internal service communication [53].

38

Background

Reducing node exposure Zero Trust requires eliminating direct host access.
AKS provides mechanisms such as disabling SSH access, disabling Command In-
voke, automatic node patching, and immutable OS image upgrades.

Reducing exposure of application services Application workloads should
be exposed as little as possible. Best practices include using internal load bal-
ancers, avoiding NodePort, restricting externalIPs and configuring ingress con-
trollers with mandatory TLS and explicit host definitions.

2.9.4 Zero Trust supply chain: controlled repositories and
verified images

The supply chain is one of the primary threat vectors in Kubernetes environments.
In a Zero Trust model, the provenance, integrity, and security of images must be
continuously validated.

Controlled repositories Images should come only from trusted registries such
as Azure Container Registry or verified enterprise repositories.

Signed images Container image signing with Notation and Notary v2 is sup-
ported, and Azure Container Registry integrates with content trust.

Automated scanners Microsoft Defender for Containers performs continuous
scanning of images stored in registries and deployed workloads [30].

Image configuration validation A Zero Trust supply chain requires avoiding
the latest tag, validating images through CI/CD pipelines, generating SBOMs,
and enforcing dependency hygiene.

39

Chapter 3

Implementation High Level
Design

3.1 Overall Architecture of the implementation

The infrastructure developed during this project represents the technical imple-
mentation of the AKS Security Framework (AKSSF). It is a system designed to
centralize the publication of security policies for Kubernetes clusters and, at the
same time, securely and at scale collect compliance snapshots from distributed
tenants. The resulting architecture meets several converging goals: enabling cen-
tralized governance, maintaining precise control over the configurations applied to
clusters, ensuring tenant isolation, and providing an observability layer capable of
delivering an immediate, global view of the security posture across all managed
environments. The architecture is organized around two main functional blocks:
the Tenant Client, which is deployed inside each tenant hosting AKS clusters,
and the Tenant Server, the central coordination environment that publishes se-
curity baselines, receives compliance evaluations, and exposes an analytical and
multi-tenant view of the entire system.

3.1.1 Tenant Client: operational point for policy synchro-
nization and enforcement

The left side of the architecture represents what is deployed inside tenant environ-
ments. Each tenant hosts two main subsystems: the Audit and Sync component,
responsible for data exchange with the tenant server, and the AKS and Azure
Policy subsystem, where the policy engine applies and evaluates configurations in
real time on Kubernetes clusters.

The central component is an Azure Function that performs two complemen-
tary operations. On one side, it fetches the configurations published by the tenant
server, downloading global baselines, tenant-specific custom baselines, and cluster-
level configurations using a Private Endpoint connected to the policy storage ac-
count. On the other side, it collects the compliance snapshots generated by Azure
Policy and Gatekeeper inside the clusters, processes them locally, and sends them

40

Implementation High Level Design

> Tenant Server
> Tenant Client PANN
Virtual Network
o) . ;;’_
Virtual Network o \—;,— Send Compliance Snapshots
App Subnet NSG Store Raws
Subnet PE NSG =
DN /
—— =) @))—GeD>— 1
— 46> : | 7|
Azure Private . . Az D‘ Lak
Storage Account PE Storage Link Private Link Standard Load Virtual Machine ure Data Lake
Service Balancer Ingestion Host
Q <4
Key Vault PE Key Vault A 4
4 9_ JSON mapping #p ‘
[’ 'O |
Subnet Audit NSG Azure Data
PE Audit Explorer
Fetch resulf 'O
VAN Fetch Policy -
_ BNV Storage Subnet PE NSG
3
K Azgre:;:;ct‘llcn PE Policy Storage
5 us| ul KQL Queries
s L 1) 3
< Dashboard
£ PE Policy Storage Grafana
g Subscription Management Private DNS
e |
5 |
3 .-.'. Azure Kubernetes o
5 (13 Service] ak
g VAP]
S Storage Policy Admin
= Virtual Network l Private DNS
e %B Ibaseline
@ o — > @ @
/° [/tenantA
Azure Policy Azure Policy Gatekeeper Azure RBAC
add-on add-on
/tenant B

Subscription Client .
Subscription Management

Figure 3.1. AKSSF High Level Design

to the tenant server through a private connection based on Private Link Service.
The client environment is isolated through dedicated subnets (one for the audit
function and one for the Private Endpoints), both protected by Network Security
Groups, and uses a local Key Vault to store the credentials and identities required
for cross-tenant communication.

Compliance evaluation is natively handled by the Azure Policy add-on and
the Gatekeeper add-on in the AKS cluster, which produce the policy evaluation
results. The client-side infrastructure ensures that each cluster receives the correct
baseline, applies the prescribed configurations, and generates a uniform compliance
report for the tenant server.

3.1.2 Tenant Server: central platform for publication, col-
lection and observability

The right side of the architecture represents the central environment, which serves
as both the Policy Distribution Hub and the Collector and Analytics Engine. This
tenant operates as a governance domain: it does not interact directly with client
clusters but instead publishes configurations, receives compliance snapshots, and
exposes visualization and analysis capabilities.

41

Implementation High Level Design

The first core element is the Policy Storage, a storage account acting as a cen-
tralized repository for global baselines, tenant custom configurations, and cluster-
specific definitions. The storage account is accessible through Private Endpoint
and enforces granular access controls through Azure RBAC, ensuring that each
tenant can access only its dedicated directory. This model supports the multi-
tenant nature of the solution and enables efficient and secure distribution of desired
configuration states.

The second core element is the collection pipeline for compliance snap-
shots sent by tenant clients. Each tenant sends its JSON snapshots through a
Private Link Service exposed by the tenant server. Requests are routed to a dedi-
cated virtual machine that functions as the Ingestion Host. This VM is isolated
in an application subnet protected by an NSG and stores all incoming payloads in
a second storage account that serves as a Data Lake for raw snapshots.

From this point onward, the analytical layer takes over. Using an ingestion
connection between the Data Lake and Azure Data Explorer (ADX), the
snapshots are imported into the snapshots_raw table, expanded, and correlated
through Update Policies to populate derived tables such as snapshots, cluster,
policy results, and violations. These tables form a highly indexed data model
that supports real-time analysis and visualization. The system also builds Material-
ized Views to compute essential KPIs such as global compliance scores, time-based
trends, per-tenant distribution, and the most frequently violated policies.

The final layer is the visualization environment, provided by a Grafana in-
stance configured with a KQL data source pointing to ADX. Through thematic
dashboards, administrators can view the overall multi-tenant security posture, an-
alyze adherence to baselines, and track the evolution of compliance over time for
each tenant or individual cluster. In this way, the tenant server becomes a complete
platform for governance, data collection, and analytics, without ever interacting di-
rectly with tenant application resources.

3.1.3 Structure of the Following Chapters

Before addressing these components individually, the next chapter introduces the
baseline defined specifically for this work. This baseline represents the reference
model against which all AKS clusters are evaluated and constitutes the foundation
on which the entire compliance validation process is built.

The following two chapters then analyze each block of the architecture in detail.
The chapter dedicated to the Tenant Client explores the synchronization cycle, the
application of policies through Azure Policy and Gatekeeper, and the management
of Private Endpoints and identities. The subsequent chapter, dedicated to the
Tenant Server, describes the organization of the centralized repository, the collec-
tion flow through the Private Link Service, the ingestion pipeline into Azure Data
Explorer, and the construction of the multi-tenant dashboards. Together, these
chapters provide a complete view of the AKSSF platform and the architectural
decisions behind its design.

42

Chapter 4

Defining a security baseline for
AKS using Azure Policy

4.1 Objectives and scope of the baseline

Defining a security baseline for AKS is a key element in building a reliable and
manageable containerized infrastructure. In a distributed system like Kubernetes,
which is highly elastic, dynamic and autonomous, the risk of misconfigurations or
inconsistent setups is naturally high. The baseline acts as a minimal and shared set
of controls that every cluster must follow in order to be considered secure according
to criteria that are uniform, verifiable and easy to update.

The primary goal is not to enforce strict limitations, but to ensure that each
cluster is automatically assessed against a consistent set of security expectations.
This avoids situations where local team decisions or heterogeneous implementations
could weaken the overall security posture.

4.1.1 Using the baseline in Audit mode as a tool to measure
security posture

The entire baseline is initially applied in Audit mode, which is intended as an
observation mechanism rather than an enforcement mechanism. The main goal is
not to immediately block non-compliant configurations, but to obtain a complete
and reliable picture of the actual security level reached by each cluster.

Audit mode allows the platform to:
1. measure the current posture before enforcing changes, avoiding opera-
tional disruptions;

2. identify recurring patterns of risky configurations, such as images
without version tags, privileged containers or missing liveness probes;

3. highlight differences between clusters, helping to detect deviations from
the baseline and to assess the maturity of each team;

43

Defining a security baseline for AKS using Azure Policy

4. set intervention priorities by identifying the most frequently violated poli-
cies or those associated with higher risks.

This approach fits well with the centralized governance model of the platform.
Audit results are collected by the tenant server, stored in the data lake, analyzed
through Azure Data Explorer and then shown in compliance dashboards. In this
way, the baseline does not remain an abstract list of controls but becomes a con-
tinuous feedback mechanism that guides security decisions.

4.1.2 Scope

The baseline applies to all AKS clusters managed by the organization, regardless
of the environment or deployment model. Although some controls may have a
stronger impact on high-criticality environments, the baseline is designed to ensure
a minimal level of uniformity that does not depend on the maturity of the team
managing a cluster or on the specific characteristics of an application.

The document focuses exclusively on native AKS clusters and does not include
external solutions such as Azure Arc-enabled Kubernetes, since they introduce
their own policy set and a different architecture. The baseline also assumes the
presence of some technical prerequisites. The first is the availability and enable-
ment of the Azure Policy Add-on for AKS, which extends the Azure Policy
engine to Kubernetes resources inside the cluster. It uses Open Policy Agent (OPA)
and Gatekeeper to evaluate manifests and intercept requests to the kube-apiserver.
Without this component, policies could be applied only to external Azure resources
(such as the type Microsoft.ContainerService/ManagedClusters), but not to
details of Pods, containers or other runtime objects.

4.2 Criteria for selecting built-in policies (princi-
ples, reference standards, Audit mode)

The baseline has been built by selecting only built-in policies provided directly by
Microsoft, ensuring compatibility, updates and long-term support. The selection
process followed several technical criteria:

Alignment with recognized security standards. Most of the policies in-
cluded cover essential controls defined by the Kubernetes Pod Security Standards
(PSS) and by the CIS Kubernetes Benchmark maintained by the Center for In-
ternet Security. These standards provide a solid foundation for assessing workload
security, especially through the “Baseline” and “Restricted” profiles.

Coverage of major risk vectors. Policy selection was guided by the main
security domains relevant to a Kubernetes cluster: identity, networking, data pro-
tection, workload immutability, node isolation, container supply chain, service ex-
posure and operational configurations that may affect resiliency.

Application neutrality and low operational risk. Since the baseline is
initially applied only in Audit mode, each selected policy must be able to observe

44

Defining a security baseline for AKS using Azure Policy

and report potentially risky behaviors without modifying or blocking the operation
of clusters. This mode supports a gradual assessment of risks and minimizes the
possibility of application regressions.

Preference for policies that cover broad scenarios. At this stage, very
specific policies (for example related to GitOps, backup or optional extensions) were
excluded, because they are not universal requirements for all clusters and may not
apply in heterogeneous environments.

Combining these criteria made it possible to create a baseline that is coherent,
sufficiently comprehensive and supported by official guidelines and recommenda-
tions. The result is an effective tool to systematically measure and improve the
security posture of the AKS infrastructure.

4.3 Logical structure of the baseline and security
domains

To keep the baseline manageable, coherent and easy to consult, it is useful to
represent it through a map of security domains, each associated with related
policies. This structured approach helps to understand not only which policies to
apply, but also why each one belongs to a specific domain, which risks it mitigates,
and how it contributes to the overall security posture of the cluster.

4.3.1 Domain structure: governance, identity, network, data,
workload

The baseline is organized into five main domains:

e Governance and monitoring: focuses on the ability to detect configu-
rations, changes and anomalies, track compliance, and maintain centralized
visibility over the entire cluster. It includes policies for enabling the policy
add-on, collecting logs and diagnostics, and integrating with runtime security
tools such as Microsoft Defender for Containers. This domain is essential be-
cause without visibility and auditing, it is not possible to ensure a consistent
security posture.

e Identity and access control: covers authentication, authorization and
identity management. This includes human and service identity access to
the cluster, as well as workload identity. Policies in this domain involve in-
tegration with Microsoft Entra ID (formerly Azure AD), the use of RBAC,
adoption of managed identities for the cluster, and the use of pod or workload
identities to access external resources. Ensuring proper identity and minimal
privileges is crucial to avoid escalation risks and unauthorized access.

e Network and exposure surface: focuses on network protection both in-
side the cluster and externally. This includes control plane access restrictions,

45

Defining a security baseline for AKS using Azure Policy

service exposure, the use of internal load balancers, limits on external IPs, dis-
abling direct node access (SSH, Command Invoke), using HTTPS for external
access, and reducing the overall network attack surface.

e Data protection and storage: concerns the protection of persistent and
transient data for both the cluster and workloads. It includes disk encryp-
tion (OS, data, cache, temporary), the use of modern drivers such as CSI,
protection of secrets and encryption of sensitive data, and secure manage-
ment of encryption keys. This domain is especially important in enterprise
or regulated environments.

e Workload hardening and container supply chain: relates to the se-
curity of containerized applications. It includes pod isolation, privilege re-
strictions, container image controls (trusted registries, avoiding the latest
tag, using ImagePullSecrets), configuration of securityContext, seccomp, Ap-
pArmor, read-only root filesystems, restriction of host namespaces, CPU and
memory limits, readiness and liveness probes, scheduling best practices (affin-
ity and anti-affinity), and other measures to reduce the attack surface and
improve resilience.

This structure makes it possible to map each policy to one or more domains,
helping to clarify its purpose and simplifying the maintenance and evolution of the
baseline.

4.3.2 Alignment with official guidelines, benchmarks and
security standards

The baseline is not an ad-hoc construction. It is based on consolidated recom-
mendations from authoritative sources and combines requirements from several
references. In particular:

e The workload hardening domain closely follows the Pod Security Standards
(PSS) maintained by the Kubernetes community. PSS define profiles (Base-
line, Restricted, Privileged) that describe the minimum restrictions to apply
to pods and containers so that the infrastructure can be considered secure.
The Baseline profile prohibits known privilege escalations, while Restricted
introduces stronger limitations [20].

e For the AKS ecosystem, the built-in policies provided by Azure Policy for Ku-
bernetes allow many PSS recommendations to be translated into automated
controls [54].

e The baseline is also inspired by the CIS Kubernetes Benchmark, a widely
adopted standard in the cloud-native world[55]. Several of the policies in-
cluded contribute to covering common requirements of this benchmark, such
as RBAC management, privilege restrictions, pod isolation, network policies,
auditing and logging.

46

Defining a security baseline for AKS using Azure Policy

e Finally, the official guidelines for Azure Kubernetes Service recommend prac-
tices aligned with the domains of this baseline [56]. These include control
plane access protection, the use of a network CNI, secure storage, container
hardening, monitoring and logging, and regular upgrades of nodes and clus-
ters.

4.3.3 Application model: initiatives vs individual policies
and systematic use of Audit mode

To make adoption of the baseline manageable and flexible, choosing how policies
are grouped and applied (initiatives vs individual definitions) and selecting the
appropriate enforcement mode are key decisions:

e The Azure Policy Add-on for AKS supports using built-in policies either as
single policy definitions or as initiatives (collections of related policies).
Initiatives allow activating consistent groups of policies through a single as-
signment. Documentation is available at: [57].

e In this baseline, and given the focus on an initial observation and assessment
phase, all assigned policies are configured in Audit mode. This ensures that
clusters continue to function without interruptions while non-compliant con-
figurations are reported. This approach makes it possible to measure current
posture, estimate remediation efforts, identify false positives or policies that
may not apply, and plan a gradual transition to stricter enforcement where
appropriate.

The idea is to make the baseline a transparent and safe-by-default tool. It does not
force immediate changes but provides a compliance reporting framework that can
later support policy enforcement through a gradual hardening process.

4.4 Governance, monitoring and posture man-
agement

A Kubernetes cluster cannot be considered secure if it is not observable. The
ability to monitor, assess and govern cluster behavior centrally is a prerequisite for
any credible security strategy. In AKS, the governance domain covers three main
areas: the policy engine, control plane diagnostics and logging, and integration with
threat detection tools such as Microsoft Defender for Containers. These elements
form the foundation that allows an organization to identify risky configurations,
track behavioral deviations and respond to incidents in a timely and documented
way.

47

Defining a security baseline for AKS using Azure Policy

4.4.1 Azure Policy Add-on: prerequisite for controlling Ku-
bernetes workloads

Azure Policy is the primary mechanism for defining requirements, verifying com-
pliance and applying automated controls to Azure resources. However, in the case
of AKS, many of the most critical configurations, such as container privileges, Pod
Security Standards, dangerous capabilities, unsupported sysctl settings or volume
configuration, exist inside the Kubernetes cluster and cannot be evaluated using
policies that apply only to Azure Resource Manager objects.

To address this need, Microsoft provides the Azure Policy Add-on for AKS,
an extension that brings policy evaluation directly into the Kubernetes control
plane. The add-on is based on Open Policy Agent (OPA) Gatekeeper, which inter-
cepts requests to the kube-apiserver, replicates policy definitions into Constraint-
Templates and generates a unified compliance event stream [58].

The baseline requires all clusters to have the add-on installed and properly con-
figured. This requirement exists because without the add-on, many Kubernetes-
focused policies cannot be evaluated. The baseline verifies this through the follow-
ing policy:

e Azure Policy Add-on for Kubernetes service (AKS) should be in-
stalled and enabled on your clusters (Audit mode)

If an organization decides to move to enforcement, the add-on can be deployed
automatically on clusters that do not have it by using this DeployIfNotExists
policy:

e Deploy Azure Policy Add-on to Azure Kubernetes Service clusters

4.4.2 Cluster logs and diagnostics

A second pillar of governance is the availability of complete diagnostic logs. By
default, AKS does not automatically send control plane logs to a centralized col-
lection service. This means that without an explicit configuration, an organization
has no access to kube-apiserver events or the information required to investigate
incidents or anomalous behavior.

The baseline therefore includes a key control to ensure cluster logs are enabled:
e Resource logs in Azure Kubernetes Service should be enabled

If enforcement is required, AKS clusters can automatically receive a consistent
diagnostic configuration using this DeployIfNotExists policy:

e Configure diagnostic settings for Azure Kubernetes Service to Log
Analytics workspace

48

Defining a security baseline for AKS using Azure Policy

Log collection makes it possible to monitor:

e requests to the kube-apiserver (authentication, errors, unauthorized attempts)
e node and agent pool activity, together with internal cluster components

e network events, provisioning operations and system activity

In an enterprise environment, a lack of proper diagnostic settings represents a
serious security gap: it prevents post-incident analysis, hides potentially malicious
activity and makes it impossible to apply evidence-based security controls.

4.4.3 Integration with Microsoft Defender for Containers
and its role in threat detection

The third element of the governance domain is integration with Microsoft De-
fender for Containers: [59].

This cloud-native security service continuously analyzes Kubernetes infrastruc-
ture to identify vulnerable images, risky configurations, suspicious runtime activity
and anomalies in cluster behavior.

In AKS, Defender for Containers works through a Defender profile configured
directly in the cluster. Enabling this profile allows deployment of the agent that
collects security signals and supports:

e gathering security data from nodes, workloads and the network
e correlating known vulnerabilities (CVESs) in container images

e detecting anomalous behavior such as unexpected processes, filesystem changes
or privilege escalation attempts

e providing security recommendations for non-compliant cluster configurations
The baseline includes a dedicated policy to ensure this profile is active:

e Azure Kubernetes Service clusters should have Defender profile
enabled

If needed, consistent configuration of the profile can be enforced through automated
assignments using the following policy:

e Configure Azure Kubernetes Service clusters to enable Defender
profile

Integrating Defender for Containers into the baseline has strategic value. Ku-
bernetes policies cover only static configuration analysis, while Defender adds a
dynamic view of what actually happens at runtime. Combining these perspec-
tives makes it possible to detect scenarios such as legitimate containers performing
unusual actions, fileless attacks, lateral movement between pods, abuse of Linux
capabilities or escalation attempts through processes or system calls.

49

Defining a security baseline for AKS using Azure Policy

4.5 Identity, authentication and access control

The security of a Kubernetes cluster is closely tied to the strength of the identity
model that governs it. AKS integrates deeply with the Azure identity system, and
an effective security baseline must ensure that every component, including human
administrators, control services, internal agents and workloads running in the clus-
ter, has the correct identity and only the minimum privileges needed to perform its
tasks. Without a strong identity model, a cluster risks becoming an opaque system
that is vulnerable to privilege abuse, accidental escalations or insufficient tracking
of critical operations.

For this reason, the baseline dedicates an entire domain to identity and privilege
management. It does so through a set of policies that govern user authentication,
cluster identity and workload identity within the cluster.

4.5.1 Integration with Microsoft Entra ID and disabling
local authentication methods

The most secure and scalable way to authenticate to an AKS cluster is through
integration with Microsoft Entra ID [00]. This integration allows AKS to fully
delegate user authentication to Entra ID and benefit from enterprise features such as
MFA, Conditional Access, Identity Protection and centralized group management.

The baseline includes two policies that work together:

e Azure Kubernetes Service Clusters should enable Microsoft Entra
ID integration

e Azure Kubernetes Service Clusters should have local authentication
methods disabled

The first verifies that the cluster is configured with native Entra ID integration. The
second ensures that unprotected local access methods, such as the automatically
generated administrator account (--admin), are disabled. These local accounts are
a significant risk because they bypass all enterprise identity controls.

Removing local identities ensures that all access occurs through verified and
centrally managed identities. This enables full audit logging and significantly re-
duces the risk of anomalies or access that remains active after it should have been
revoked.

4.5.2 Cluster identity: managed identities and their impact
on operational security

Each AKS cluster needs an identity to interact with other Azure resources. This
includes creating nodes, reading configurations, accessing Key Vault, managing load
balancers or working with network interfaces. Historically, AKS relied on manually

50

Defining a security baseline for AKS using Azure Policy

managed service principals, which created operational complexity such as credential
expiration, rotation requirements and accidental exposure of associated secrets.

To address these issues, the recommended identity model for AKS clusters is
Managed Identity, a fully Azure-managed identity that does not require creden-
tials, does not expire and does not need manual rotation. The baseline includes the
following policy:

e Azure Kubernetes Service Clusters should use managed identities

This policy ensures that no cluster still uses legacy service principals. Moving
to Managed Identity improves security by eliminating the accidental exposure of
secrets, reducing operational overhead related to credential rotation and enabling
the creation of granular identities for agent pools and specialized workloads.

Furthermore, adopting managed identities simplifies integration with Workload
Identity, as it allows for a consistent identity approach across the entire cluster,
from the control plane down to individual pods.

4.5.3 Workload identity: AKS Workload Identity and se-
cure access to Azure resources

Workload identity management is a particularly sensitive area in AKS. Historically,
pods accessed Azure resources through solutions such as Azure AD Pod Identity
or, in worse cases, through static secrets mounted into containers. Both approaches
are now deprecated or strongly discouraged.

The modern, secure and Microsoft-supported mechanism is AKS Workload
Identity, which integrates Kubernetes Service Accounts with Microsoft Entra ID.
It enables pods to obtain OIDC tokens validated by the cluster and use them to
authenticate to Azure resources.

The baseline includes the following policy:
e Azure Kubernetes Service Clusters should enable workload identity

This control verifies that the cluster is configured with the required OIDC provider
and that the feature is enabled.

The security benefits are significant. Pods no longer require secrets containing
sensitive credentials, the identity is tightly bound to the Kubernetes Service Ac-
count, and access to Azure resources is fully governed through Entra ID. This makes
it possible to apply the principle of least privilege consistently even to workloads.

4.5.4 RBAC hygiene: mandatory use of RBAC and limit-
ing use of the cluster-admin role

Defining roles and permissions is the core of access control in Kubernetes. Role-
Based Access Control (RBAC) allows fine-grained specification of which users or

51

Defining a security baseline for AKS using Azure Policy

service accounts can operate on which resources. Nevertheless, clusters that evolve
without strong governance often accumulate overly permissive roles or inherited
bindings, frequently including insecure patterns such as widespread use of the
cluster-admin role.

The baseline includes two relevant policies:

e Role-Based Access Control (RBAC) should be used on Kubernetes
Services

e Kubernetes clusters should ensure that the cluster-admin role is
only used where required

The first ensures that RBAC is enabled at the cluster level, which is a neces-
sary condition for any credible security model. The second highlights a common
weakness: direct bindings to cluster-admin, often created for convenience during
early development phases but becoming a major risk over time, especially in shared
environments.

Kubernetes documentation repeatedly stresses the importance of avoiding global
roles and recommends using namespace-scoped roles and strict least-privilege prac-
tices: [01].

An effective baseline must make these cases visible and give administrators the
information needed to correct them before they develop into operational vulnera-
bilities or attack vectors.

4.6 Reducing the exposure surface and perimeter
security

One of the core principles of cloud-native security is minimizing the attack surface.
In a Kubernetes cluster, this principle applies both to the control plane and to the
nodes and services exposed externally. Reducing the exposure surface does not di-
rectly affect workload functionality, but it plays a crucial role in preventing targeted
attacks, lateral movement or unauthorized access to critical cluster components.

The baseline includes a set of controls that share a common purpose: ensuring
that every AKS cluster is protected from unnecessary, unmanaged or excessive
access at both the infrastructure and application level.

4.6.1 Control plane protection: private clusters and autho-
rized IP ranges

The control plane is the heart of an AKS cluster. It hosts the kube-apiserver,
which handles authentication, authorization and all administrative operations. By
default, the control plane can be exposed through public endpoints protected by
logical firewalls. However, direct exposure to the internet increases the attack
surface and opens the door to scanning attempts or brute-force attacks.

52

Defining a security baseline for AKS using Azure Policy

To mitigate these risks, AKS provides the private cluster mode, which makes
the control plane endpoint accessible only through the customer’s VNet: [62].

The baseline includes the following policy:
e Azure Kubernetes Service Private Clusters should be enabled

Its purpose is to verify that all clusters are created in private mode, completely
removing public exposure.

In cases where the endpoint must remain public and an exception is required
(for example, sandbox clusters or certain automation scenarios), the baseline still
requires the following policy:

e Authorized IP ranges should be defined on Kubernetes Services

This policy ensures that access to the public control plane is restricted to a strictly
controlled list of authorized IP addresses. The use of authorized IP ranges is an
essential hardening measure in all non-private scenarios.

4.6.2 Node hardening: disabling SSH and Command In-
voke

A second critical area is direct access to agent nodes. Although AKS nodes are
virtual machines owned by the customer, there is no operational need to access
them through SSH or remote commands. AKS is designed to be managed at the
orchestrator level, not through manual interventions on nodes, which can introduce
undocumented changes, configuration drift or unexpected vulnerabilities.

For this reason, the baseline includes this policy:
e Azure Kubernetes Clusters should disable SSH

The second potential access path is Command Invoke, a feature that allows
commands to be executed on nodes through ARM APIs. While useful in emer-
gencies, Command Invoke represents a possible way to bypass network controls or
RBAC permissions and to introduce changes on nodes that are not tracked at the
Kubernetes level.

The baseline therefore includes:

e Azure Kubernetes Service Clusters should disable Command In-
voke

This control verifies that the feature is disabled, reducing the possibility of external
tools or automated processes interacting with nodes in unintended or untracked
ways. The goal is to reinforce node isolation: the fewer direct access routes exist,
the lower the chance they can be abused.

53

Defining a security baseline for AKS using Azure Policy

4.6.3 Secure exposure of services: HTTPS, internal load
balancers and allowed external IPs

The third layer of surface-reduction focuses on services exposed by workloads. Even
if the control plane is protected, a cluster can still be vulnerable if workloads expose
unnecessary ports, unencrypted services or publicly reachable endpoints.

The first concerns the exclusive use of HT'TPS for exposed services. The policy:
e Kubernetes clusters should be accessible only over HTTPS

ensures that services exposed through Ingress or LoadBalancer do not use insecure
protocols.

The second measure concerns the adoption of internal load balancers, rec-
ommended whenever a service is intended to remain within the corporate network.
The policy:

e Kubernetes clusters should use internal load balancers

verifies that services do not use public load balancers, reducing direct internet
exposure.

Finally, the baseline includes a control for external IPs:
e Kubernetes cluster services should only use allowed external IPs

This ensures that any external IPs (the externalIPs field of a Service) come from
an authorized list. This requirement was introduced following the disclosure of
CVE-2020-8554: [(3], which showed that an attacker could exploit arbitrary
external IPs to intercept traffic intended for other services. Enforcing this policy
is therefore a recommended preventive measure to mitigate potential application-
traffic hijacking.

4.7 Data and storage protection

Data protection is one of the fundamental pillars of security in any cloud infras-
tructure. In Kubernetes, data exists in several forms: persistent workload data,
application secrets, cluster state information stored in etcd and temporary data
produced during application execution. The AKS security baseline includes a set
of controls designed to ensure that all these components are properly protected, in
line with the security requirements of enterprise environments.

54

Defining a security baseline for AKS using Azure Policy

4.7.1 Node and disk encryption with customer-managed
keys (CMK)

AKS agent nodes are virtual machines and therefore include an operating system
disk and optional attached data disks. By default, Azure managed disks are already
encrypted with service-managed keys. However, in regulated or high-sensitivity
environments, it is often necessary to use customer-managed keys (CMK),
which provide greater control over encryption, key rotation and key revocation.

The baseline includes the following policy:

e Both operating systems and data disks in Azure Kubernetes Service
clusters should be encrypted by customer-managed keys

This control verifies that both OS and data disks are encrypted with CMK. This
safeguard is especially important in environments subject to regulations such as
GDPR, ISO 27001 or sector-specific standards that require the ability to revoke
data access by revoking encryption keys.

4.7.2 Host-level encryption for temporary disks and cache

In addition to OS and data disks, AKS nodes use temporary disks and local cache,
which are hosted directly on the physical hardware or on the VM. These volumes
may contain temporary filesystem data, container overlays, network spool files, non-
persistent credentials, swap files and other elements that might include sensitive
information.

For this reason, Azure provides host-based encryption, a feature that au-
tomatically encrypts all temporary disks and cache on the node before they are
written to physical storage.

The baseline includes the following policy:

e Temp disks and cache for agent node pools in Azure Kubernetes
Service clusters should be encrypted at host

This control ensures that nodes are configured to avoid any unencrypted writes to
physical disks. It is essential in scenarios involving potential hardware compromise,
unauthorized access to storage devices or hypervisor-level attacks. It also mitigates
risks related to data remanence by preventing sensitive information from persisting
on temporary storage outside cluster control.

4.7.3 Protecting Secrets and etcd through Key Manage-
ment Service (KMS)

Kubernetes Secrets contain credentials, access tokens, private keys and other highly
sensitive information. Although Kubernetes supports optional Secret encryption at

5]

Defining a security baseline for AKS using Azure Policy

the etcd level, this feature is not active by default in many upstream versions and
requires explicit configuration by the cluster administrator.

In AKS, Secret protection is achieved through etcd encryption managed by
the Azure Key Management Service (KMS). This integration encrypts Secrets
before they are stored in etcd, using a key stored in Azure Key Vault and protected
through industry-standard security models.

The baseline includes the following policy:

e Azure Kubernetes Clusters should enable Key Management Service
(KMS)

Enabling KMS ensures that no Secret is ever stored in plaintext in the etcd
database, one of the most critical components of the cluster. Combined with CMK
and managed identities, this creates an end-to-end security chain for sensitive in-
formation processed by the control plane.

4.7.4 Adopting CSI drivers as a prerequisite for advanced
security scenarios

The Kubernetes storage provisioning model has evolved significantly in recent years.
Traditional in-tree storage drivers were built directly into the Kubernetes codebase,
which limited innovation and made it harder to introduce new security features. To
address these issues, Kubernetes and Microsoft adopted the Container Storage
Interface (CSI) model, which decouples storage drivers from the core Kubernetes
release cycle and allows independent feature updates.

Microsoft documentation explicitly recommends using CSI for AKS, explaining
that CSI drivers enable modern capabilities such as advanced encryption, integra-
tion with Key Vault and support for new protocols and storage backends: [64].

The baseline includes two controls:

e Azure Kubernetes Clusters should enable Container Storage Inter-

face (CSI)

e Kubernetes clusters should use Container Storage Interface (CSI)
driver StorageClass

These policies ensure that the cluster uses only CSI-based StorageClasses and does
not rely on legacy in-tree drivers. Without this guarantee, advanced security fea-
tures such as per-volume encryption, integration with external key management
systems or fine-grained storage operations would not be possible.

56

Defining a security baseline for AKS using Azure Policy

4.8 Workload hardening: Pod Security and con-
tainer configuration

The application layer is one of the most exposed areas in a Kubernetes cluster.
Even when the control plane is protected and the nodes are properly configured,
running insecure workloads can compromise the entire environment. Vulnerable
images, permissive Pod configurations, excessive privileges or insufficient isolation
from the node are all major attack surfaces in cloud-native systems.

For this reason, many of the most important policies in the baseline focus di-
rectly on Pod and container configuration. Microsoft consolidates these measures
within the Pod Security Standards (PSS) initiatives and through extensions imple-
mented using the Azure Policy Add-on. The goal is to ensure that every workload
complies, at minimum, with the requirements of the PSS baseline level and avoids
unsafe practices such as elevated privileges, node access or unsafe sysctl configura-
tions.

4.8.1 “Pod security baseline standards for Linux-based work-
loads” initiative

The primary reference for workload security in Kubernetes is the Pod Security
Standards, an official Kubernetes community specification that defines three se-
curity levels: Privileged, Baseline and Restricted. The Baseline level represents the
minimum acceptable configuration for multi-tenant environments because it pre-
vents the use of high-risk primitives while maintaining broad compatibility with
most applications.

Microsoft incorporates these requirements into an Azure Policy initiative:

e Kubernetes cluster pod security baseline standards for Linux-based
workloads

This initiative automatically verifies that Pods follow the fundamental constraints
of the Baseline level. For example, it prevents the use of privileged containers, host
namespaces or dangerous hostPath mounts.

Including this initiative in the baseline ensures broad and standardized cov-
erage, directly aligned with Kubernetes community guidelines. Other sections of
this chapter analyze the individual controls in detail, while here the initiative is
introduced as a coherent collection of the most relevant aspects of the PSS model.

4.8.2 Privileges and capabilities: privileged mode, privilege

escalation, CAP_SYS_ADMIN and disallowed capa-
bilities

Privilege management is one of the most critical elements of workload hardening.
Kubernetes allows containers to run with capabilities similar to root on the host

o7

Defining a security baseline for AKS using Azure Policy

through settings such as privileged: true,enablingallowPrivilegeEscalation
or assigning Linux capabilities. These configurations can jeopardize the security of
the entire cluster.

The baseline includes several policies that address these risks. The first and
most restrictive is:

e Kubernetes cluster should not allow privileged containers

which identifies all Pods configured as privileged. Privileged containers can access
host devices, manipulate namespaces and load kernel modules, all of which are
incompatible with a secure cluster environment.

A second relevant policy is:
e Kubernetes clusters should not allow container privilege escalation

which prevents containers from increasing their privileges, protecting against sce-
narios where a vulnerable process exploits setuid or setgid binaries to run actions
as root.

The baseline also includes two more specific controls:

e Kubernetes clusters should not grant CAP_SYS_ADMIN security
capabilities

e Kubernetes clusters should not use specific security capabilities

CAP_SYS_ADMIN is often described as the capability equivalent to root be-
cause it enables a wide range of kernel-level operations. Its use is discouraged
by both Microsoft and the Kubernetes community. The second policy helps iden-
tify and prevent the use of other high-risk capabilities such as CAP_NET RAW or
CAP_SYS_MODULE.

4.8.3 Node isolation: host namespaces, seccomp, AppAr-
mor and isolation primitives

Workload isolation is another cornerstone of Kubernetes security. Without proper
isolation, a container may interact with the node or with other containers, gaining
access to sensitive information or manipulating shared resources. The baseline
includes several policies that address this challenge from different angles.

One of the most important policies is:
e Kubernetes cluster containers should not share host namespaces

which checks for the absence of configurations such as hostPID, hostIPC and
hostNetwork. Sharing these namespaces allows containers to observe host pro-
cesses, intercept traffic or manipulate low-level resources.

Another key element is syscall-level security using seccomp. The policy:

58

Defining a security baseline for AKS using Azure Policy

e Kubernetes cluster containers should only use allowed seccomp pro-
files

ensures that containers use secure profiles, typically RuntimeDefault or restrictive
custom profiles. Seccomp provides strong barriers against unauthorized or unex-
pected syscalls, which are often used in kernel exploitation. Documentation: [65].

In addition to seccomp, the baseline includes:

e Kubernetes cluster containers should only use allowed AppArmor
profiles

AppArmor defines fine-grained rules governing the behavior of a container, such
as which files it can read or which binaries it can execute. Microsoft supports
AppArmor in AKS through a Linux node extension. Documentation: [66].

The initiative also covers other isolation aspects, such as the use of hostPath
volumes, direct access to host ports or operations involving FlexVolume drivers.

The overarching goal is to ensure that no container uses configurations that
place it too close to the host, preserving a strong separation between workloads
and infrastructure.

4.8.4 File systems and sysctl: read-only root filesystems
and allowed sysctl interfaces

Beyond privileges and isolation, another important hardening area concerns filesys-
tem behavior and kernel settings accessible from containers. A widely recognized
best practice is enforcing a read-only root filesystem, which prevents attackers
from modifying binaries or introducing persistent malware in the writable layers of
a container.

The baseline includes the following policy:

e Kubernetes cluster containers should run with a read only root file
system

which identifies containers configured with unnecessarily writable filesystems. This
measure significantly reduces the attack surface, especially if an application is com-
promised through injection attacks or remote vulnerabilities.

Another critical area concerns sysctl settings, which allow modification of ker-
nel parameters. Kubernetes allows certain safe sysctls but blocks unsafe ones by
default. The following baseline policies address this:

e Kubernetes cluster containers should not use forbidden sysctl in-
terfaces

e Kubernetes cluster containers should use only allowed sysctl inter-
faces

Controlling sysctl usage prevents containers from alterin

59

Defining a security baseline for AKS using Azure Policy

4.9 Workload hardening: supply chain, applica-
tion networking and reliability

Workload security in Kubernetes cannot be considered complete without address-
ing the processes that occur before a container runs (the supply chain), the way
application services are exposed and the application’s ability to tolerate failures
or anomalies. Even in a well-configured cluster, a compromised container, an un-
verified image or a fragile workload can become an attack vector or cause critical
outages.

For this reason, the baseline includes policies that act on the image lifecycle,
the management of internal credentials, the security of workload networking com-
ponents and the reliability of distributed applications.

4.9.1 Container image controls: allowed registries, prohi-
bition of latest, use of ImagePullSecrets

The container supply chain is one of the main weakness points in Kubernetes.
Using images from unverified registries, relying on non-versioned tags or omitting
authentication when pulling images can lead to accidental deployment of malicious,
vulnerable or untraceable images.

The baseline includes three fundamental policies to mitigate these risks.
The first is:

e Kubernetes cluster containers should only use allowed images

which verifies that container images come only from approved registries. Defining
an authorized set of registries prevents the accidental use of images that have not
undergone quality or security checks.

A second policy targets the widespread but risky practice of using the latest
tag. This tag does not guarantee stability, because its meaning can change at any
time, making version pinning impossible and reducing reproducibility. The policy:

e Kubernetes cluster container images should not include latest image
tag

identifies all containers that rely on latest and highlights one of the biggest supply-
chain risks in container environments.

The third policy is:

e Kubernetes cluster containers should only pull images when image
pull secrets are present

which ensures that ImagePullSecrets are configured when images reside in a private
registry. This reduces the risk of unauthorized registry access, avoids authentication-
related service disruptions and ensures that pull credentials are centrally managed.

60

Defining a security baseline for AKS using Azure Policy

4.9.2 Protection of internal credentials: managing automountServiceAc

Another frequently overlooked aspect of workload security is the handling of the
tokens associated with Kubernetes ServiceAccounts. By default, Kubernetes au-
tomatically mounts a JWT token inside each Pod, allowing the workload to au-
thenticate to the kube-apiserver. In most applications, this token is unnecessary.
Leaving it accessible creates a potential vulnerability, because an RCE exploit or a
compromised library could allow an attacker to use that token to interact with the
API server.

The baseline includes a policy specifically designed to address this issue:
e Kubernetes clusters should disable automounting API credentials

which verifies that Pod specifications do not explicitly enable mounting the Ser-
viceAccount token when it is not required. The recommended behavior is setting
automountServiceAccountToken: false for all Pods that do not need direct
APT access.

This measure is especially important in environments using Workload Identity,
as it ensures that the OIDC token becomes the only identity mechanism for work-
loads that require access to Azure resources, removing a significant attack surface.

4.9.3 Services and ingress: allowed ports and required con-
figuration parameters

Workload security also depends on how applications are exposed through Kuber-
netes Services or Ingress resources. Unnecessary open ports, Services with unau-
thorized external IPs or incomplete ingress rules can allow unintended interactions
with the cluster or its workloads.

The baseline includes three policies for this area.
The first is:

e Kubernetes cluster services should listen only on allowed ports

which restricts the TCP/UDP ports that Services can expose. This prevents the
creation of Services listening on unusual ports that may be used by malware, un-
supported protocols or insecure legacy components.

The second policy is:

e Kubernetes cluster pods should only use approved host network
and port list

which ensures that Pods do not access host ports or use hostNetwork: true, a
highly risky practice not suitable for multi-tenant environments.

Finally, the baseline includes:
e Kubernetes cluster services should use unique selectors

which identifies configurations where multiple Services share the same selector,
causing ambiguous traffic routing and unintended exposure.

61

Defining a security baseline for AKS using Azure Policy

4.9.4 Reliability as a security requirement: liveness/readi-
ness probes, anti-affinity, topology spread and prohi-
bition of naked pods

Operational resilience is not only a functional requirement; it is also a security re-
quirement. Fragile workloads that are easy to saturate or lack self-healing mecha-
nisms become vulnerable points that attackers can exploit to cause denial-of-service
or systemic instability.

The baseline includes several controls designed to improve workload availability.

The first is:

e Ensure cluster containers have readiness or liveness probes config-
ured

which verifies that containers expose explicit health signals. These probes allow the
kubelet to detect blocked, unresponsive or malfunctioning applications and ensure
automatic Pod restarts or removal from load balancing.

A second control focuses on how workloads are distributed across the cluster:
e Must Have Anti Affinity Rules or Topology Spread Constraints Set

which identifies Pods that do not define anti-affinity rules or spread constraints.
These rules prevent critical Pods from being scheduled on the same node, reducing
the risk of service loss in case of node failure.

Another essential policy is:
e Kubernetes cluster should not use naked pods

which identifies Pods not managed by a controller such as Deployment, StatefulSet
or DaemonSet. Naked Pods are not automatically recreated after failure and are
therefore unreliable and incompatible with AKS orchestration.

Finally, the baseline ensures that services do not conflict with each other and
do not expose unexpected behaviors by requiring that:

e ingress resources define an explicit host
e Services do not use unauthorized external IPs

e traffic routing remains deterministic

62

Defining a security baseline for AKS using Azure Policy

4.10 “Out-of-baseline” policies

An effective security baseline is not simply an exhaustive list of every available
policy. It is the result of a careful and reasoned selection process. Including every
possible control would make cluster configuration overly rigid, poorly aligned with
real operational scenarios and, in some cases, even counterproductive. For this
reason, some policies were intentionally excluded from the minimum baseline, even
though they can offer higher levels of protection.

This section explains the reasons for these exclusions and discusses the trade-offs
involved.

4.10.1 Policies deliberately excluded from the minimum
baseline

Several controls were excluded not due to lack of value but because they are not
appropriate for a baseline intended to be applicable across a wide range of organi-
zations and scenarios.

1. Pod Security Standards — Restricted level

The initiative Kubernetes cluster pod security restricted standards for Linuz-
based workloads represents the highest and most strict level of the PSS model. This
level requires extremely restrictive configurations (nearly complete prohibition of
capabilities, mounts, privileges and node access) and is often incompatible with
existing applications. Applying the Restricted level indiscriminately may break
workloads, especially legacy applications or those not designed for native zero-trust
models.

Reason for exclusion: the baseline must guarantee high compatibility and
offer a progressive adoption path. The Restricted level remains recommended for
sensitive workloads, but cannot be imposed as a universal requirement.

2. Image Integrity and Notation signature verification

Some policies — Use Image Integrity to ensure only trusted images are deployed
and [Image Integrity] Kubernetes clusters should only use images signed by nota-
tion — require the Image Integrity add-on and a fully operational image-signing
infrastructure.

Reason for exclusion: the Image Integrity add-on implies a mature supply
chain and a robust enterprise-level signing pipeline. Many organizations are not
yet prepared to manage such complexity.

These policies are ideal in regulated environments or in advanced DevSecOps
contexts, but they cannot be required as part of a general-purpose baseline.

3. Azure Backup Extension for AKS

Policies related to Azure Backup for AKS verify the presence of the backup
extension and the workload protection infrastructure.

Reason for exclusion: AKS backup strategy is an architectural and organi-
zational decision that depends on the deployment model, workload characteristics

63

Defining a security baseline for AKS using Azure Policy

and operational continuity requirements. A security baseline cannot impose a spe-
cific backup approach, especially when many workloads are CI/CD managed and
designed to be recreated.

4. Forced GitOps policies (Flux v2 and Source Control Configuration)

Azure Policy includes several controls designed to enforce GitOps (Flux v2),
such as automatic deployment of the Flux extension, Git source definitions and
authentication methods.

Reason for exclusion: GitOps is an architectural choice, not a minimum
security requirement. Enforcing GitOps through policy may reduce application
team flexibility and introduce unwanted operational dependencies. These controls
belong to automation or governance strategy, not to the technical security baseline.

4.10.2 Controls dependent on the application model: Net-
work Policy, advanced RBAC and tenant-specific
configurations

There is a set of controls that are essential for many Kubernetes clusters but cannot
be included in the minimum baseline because they require customization that varies
significantly between organizations. The infrastructure described in this thesis,
based on the tenant server and centralized governance through Azure Policy, enables
the use of these controls but does not enforce them.

The most notable categories are Network Policies and advanced RBAC
configurations.

Network Policy

Kubernetes Network Policies explicitly define which Pods can communicate with
each other or with external services. They are critical for workload isolation, intra-
cluster zero-trust models and prevention of lateral movement.

However, their effectiveness depends entirely on workload behavior. Each appli-
cation has different communication patterns, internal services with specific needs
and external dependencies restricted to certain Pods.

For this reason, the baseline cannot include Azure policies that require Net-
workPolicies or that validate their content. Doing so would lead to two issues:

e it would impose restrictions that are not compatible with legacy workloads
or complex microservice architectures

e it would require deep knowledge of application dependencies, which cannot
be generalized at baseline level

The governance infrastructure, however, allows customer security teams to add
custom controls using Gatekeeper or CustomPolicy, leveraging the same Azure
Policy Add-on mechanisms.

64

Defining a security baseline for AKS using Azure Policy

Advanced RBAC and custom permissions

Similarly, many organizations require RBAC models that are far more granular
than those covered by the baseline’s generic policies. These include custom roles
for teams, multi-namespace access hierarchies or tightly scoped permissions.

The baseline includes only two general controls:

e mandatory use of RBAC

e limiting the use of the cluster-admin role

However, it cannot include controls such as:

definitions of custom roles

restrictions on specific Kubernetes APIs

limits on permissions per namespace or per group

enforcement of particular multi-tenancy access models

The reason is straightforward: each customer has a different organizational
structure, release process and maturity level in privilege management. Adding gen-
eralized RBAC rules would make the baseline too rigid and potentially incompatible
with internal workflows.

The platform, however, enables teams within each tenant to apply tenant-
specific RBAC policies through the Azure Policy Add-on, CustomPolicy and
Gatekeeper ConstraintTemplates, while retaining centralized visibility through the
tenant server.

Tenant-specific advanced configurations

Beyond Network Policies and RBAC, other aspects are entirely dependent on work-
load context:

e use of dedicated ServiceAccounts for specific microservices

e enforcement of CPU and memory limits per namespace

e compliance-driven labeling and annotation requirements

e restrictions on volume types or StorageClasses for sensitive workloads

e application-specific Ingress rules

These configurations cannot be imposed by the baseline because they require
contextual knowledge the centralized platform does not possess. However, the
implemented model enables enforcement of such rules through custom policies,
preserving a balance between central governance and team autonomy.

65

Defining a security baseline for AKS using Azure Policy

Role of the infrastructure in supporting these customizations

The strength of the proposed solution lies in its ability to provide a uniform
security core, through the baseline, while allowing tenants to extend policies as
needed.

The tenant server, centralized data lake and configuration collector described
in the following chapters provide full visibility over custom policies. This allows
cluster owners to:

e apply advanced policies while remaining compatible with the baseline

e maintain control and observability even when clusters belong to different
teams

e build a security model that is both scalable and aligned with workload re-
quirements

This balance is the key reason these controls were excluded from the baseline:
not because they are less important, but because they are inherently specific,
and their effectiveness depends on the platform’s ability to support and monitor
them rather than on imposing them globally.

4.11 Summary table of the security baseline

The definition of the baseline concludes with a unified view of all selected poli-
cies. After discussing the security domains, the rationale behind the choices and
the intentional exclusions, this section provides a compact representation of the
complete set of controls considered essential to ensure a minimum security level for
every AKS cluster.

The following table allows the baseline to be used as an operational reference
for:

e assigning the baseline through Azure Policy initiatives

verifying domain coverage and alignment with Kubernetes security standards

simplifying maintenance and updates over time

supporting auditing, onboarding of new clusters and posture validation

All listed policies are intended to be applied in Audit mode to maximize visi-
bility and minimize operational impact during initial adoption.

Note: the table is organized by domain, with a short technical description and
essential information for operational adoption.

66

Defining a security baseline for AKS using Azure Policy

4.11.1 Domain 1 — Governance, monitoring and posture
management

Policy name Version Effect | Short description
Azure Policy Add-on for | 1.0.2 Audit | Verifies that the add-on is enabled
Kubernetes should be in- to evaluate cluster workloads.
stalled
Resource logs in Azure Ku- | 1.0.0 Audit | Ensures cluster logs are collected.
bernetes Service should be
enabled
AKS clusters should have | 2.0.1 Audit | Checks that Microsoft Defender
Defender profile enabled for Containers is active.

4.11.2 Domain 2 — Identity, authentication and access con-

trol
Policy name Version Effect | Short description
AKS should enable Mi- | 1.0.2 Audit | Verifies Entra ID integration for
crosoft Entra ID integration authentication.
AKS should disable local | 1.0.1 Audit | Ensures local admin accounts are
authentication methods disabled.
AKS should use managed | 1.0.1 Audit | Requires use of managed identi-
identities ties for the cluster.
AKS should enable work- | 1.0.0 Audit | Enables secure Azure resource ac-
load identity cess for Pods.
RBAC should be used on | 1.1.0 Audit | Requires RBAC to be enabled.
Kubernetes
Cluster-admin role should | 1.1.0 Audit | Detects misuse of the administra-
be used only when required tor role.

4.11.3 Domain 3 —

Reduction of the attack surface

Policy name Version Effect | Short description

AKS Private Clusters | 1.0.1 Audit | Ensures the control plane is pri-

should be enabled vate.

Authorized IP ranges | 2.0.1 Audit | Restricts API server access to al-

should be defined lowed IPs.

AKS should disable SSH 1.0.0 Audit | Prevents direct node access via
SSH.

AKS should disable Com- | 1.0.1 Audit | Disables remote command execu-

mand Invoke tion on nodes.

Kubernetes should be acces- | 8.2.0 Audit | Enforces secure connections.

sible only over HT'TPS

67

Defining a security baseline for AKS using Azure Policy

AKS clusters should use in- | 8.2.0 Audit | Requires internal load balancers
ternal load balancers for private services.
Kubernetes services should | 5.2.0 Audit | Restricts external IP usage.

use only allowed external
IPs

4.11.4 Domain 4 —

Data and storage protection

Policy name Version Effect | Description

OS and data disks should be | 1.0.1 Audit | Ensures disks are encrypted with
encrypted by CMK customer-managed keys.

Temp disks should be en- | 1.0.1 Audit | Verifies host-based encryption for
crypted at host temporary disks.

AKS should enable KMS | 1.1.0 Audit | Enables Secret encryption
encryption through KMS.

AKS should enable CSI 1.0.0 Audit | Requires use of CSI drivers.
Kubernetes should use CSI | 2.3.0 Audit | Ensures StorageClass does not
StorageClass use deprecated drivers.

4.11.5 Domain 5 — Workload hardening (Pod Security, iso-
lation, permissions)

Policy Version Effect | Description

Pod security baseline stan- | 1.4.0 Audit | Applies PSS Baseline level.

dards

Not allow privileged con- | 9.2.0 Audit | Detects privileged containers.

tainers

Not allow privilege escala- | 8.0.0 Audit | Blocks use of allowPrivilegeEsca-

tion lation.

Not grant | 5.1.0 Audit | Blocks the critical

CAP_SYS_ADMIN CAP_SYS_ADMIN capability.

Not use specific capabilities | 5.2.0 Audit | Restricts unnecessary Linux ca-
pabilities.

Not share host namespaces | 6.0.0 Audit | Prevents hostPID /hostIPC /host-
Network.

Allowed seccomp profiles 7.2.0 Audit | Requires RuntimeDefault or ap-
proved profiles.

Allowed AppArmor profiles | 6.2.1 Audit | Enforces allowed AppArmor pro-
files.

Run with read-only filesys- | 6.3.0 Audit | Requires read-only root filesys-

tem tems.

Forbidden sysctls 7.2.0 Audit | Blocks unsafe sysctl settings.

68

Defining a security baseline for AKS using Azure Policy

4.11.6 Domain 6 — Workload hardening (supply chain, ap-
plication networking, reliability)

Policy Version Effect | Description

Allowed container images 9.3.0 Audit | Ensures use of approved reg-
istries.

No latest tag 2.0.1 Audit | Requires versioned images.

Pull images only with Im- | 1.3.1 Audit | Enforces authentication for pri-

agePullSecrets vate registries.

Disable automountSer- | 4.2.0 Audit | Prevents automatic token mount-

viceAccountToken ing.

Services listen only on al- | 8.2.0 Audit | Restricts allowed service ports.

lowed ports

Pods use approved host net- | 7.0.0 Audit | Blocks unsafe hostPort or host-

work and ports Network usage.

Readiness/liveness probes | 3.3.0 Audit | Ensures availability and self-

required healing.

Must have anti-affinity or | 1.2.2 Audit | Prevents workload concentration

topology spread on one node.

Should not use naked pods | 2.3.1 Audit | Flags Pods not backed by con-

trollers.

69

Chapter 5

Tenant Server Architecture

5.1 Introduction to the Tenant Server

The tenant server is the architectural core of the proposed security platform. Within
the multi-tenant model described in this thesis, it provides two essential and com-
plementary functions. On one side, it ensures the consistent and controlled dis-
tribution of governance policies to all tenant clients. On the other, it collects,
analyzes, and visualizes compliance evidence coming from the various AKS clus-
ters deployed inside client tenants. These two dimensions, policy distribution and
security posture visibility, form the operational pillars of the platform.

Policy Distribution Hub

The first function concerns the definition and centralized management of policies.
In a distributed environment, where each tenant may have multiple AKS clusters
with independent lifecycles, it is crucial to rely on a secure and overarching domain
where the security baseline is maintained. The tenant server takes on this role by
acting as the single source of truth for all the policies that define the governance
framework applied to Kubernetes workloads. Within this controlled environment,
policies are validated and stored before they are made available to tenant clients.

The goal is not to impose direct operational control over tenant resources, but
to provide a model that ensures consistency, verifiability, and protection from mis-
configurations. This approach reduces risks related to manual configuration, limits
operational drift, and provides a clear boundary of responsibility while preserving
the technical autonomy of each tenant. The separation between the governance
domain (tenant server) and the execution domain (tenant client) is one of the key
contributions of this architecture, as it creates a balance between centralized policy
definition and the operational independence of application teams.

Central Posture Visibility

The second function of the tenant server focuses on the collection of compliance
information. While tenant clients handle policy enforcement and the generation

70

Tenant Server Architecture

of audit data, the tenant server is responsible for aggregating and analyzing that
information. To support a complete governance model, the platform must include
an infrastructure capable of receiving Azure Policy assessment results from mul-
tiple tenants, normalizing and contextualizing them, and turning them into clear
and meaningful indicators. To meet this requirement, the platform integrates an
ingestion system based on distributed agents, centralized storage for snapshot re-
tention, a scalable analytical engine (Azure Data Explorer), and a consolidated
visualization layer built on Grafana.

Together, these components allow the tenant server to offer centralized dash-
boards from which it is possible to observe the overall posture of the multi-tenant
environment, identify relevant deviations, evaluate compliance levels across security
domains, and analyze violations detected within individual clusters. The ability to
correlate data coming from heterogeneous environments, with different volumes and
frequencies, is essential for periodic audits, maturity assessments, early detection
of risky configurations, and continuous security monitoring.

This chapter therefore provides an in-depth analysis of both tenant server func-
tions: the centralized definition and distribution of governance policies, and the
collection and visualization of security KPIs from tenant clients. Although distinct,
these two components work together to create a coherent and scalable ecosystem
capable of ensuring strong governance across complex multi-tenant AKS environ-
ments.

5.2 Policy Distribution Hub

Each client manages its own AKS clusters and their configurations, but the goal is
to ensure that these configurations follow a set of common security standards de-
fined at a central level. The tenant server fulfils this requirement by acting as the
authoritative source for configuration management. It first defines and publishes a
shared baseline that includes all the policies and initiatives representing the mini-
mum security requirements that must be applied to every environment, regardless
of the tenant or cluster. It also handles tenant-specific customisations by allow-
ing additional baselines and tailored policies when needed, while still preserving
alignment with the global baseline.

Rather than applying policies directly on the clients’ clusters, the tenant server
provides a controlled and structured repository from which each client can retrieve
the relevant configurations. These configurations are then applied locally through
a function running in the client tenant.

This approach was designed to clearly separate governance from operational
activities, improving scalability and decoupling between tenants. The tenant server
therefore acts as an internal service that does not directly enforce configurations,
but simply publishes them so they can be consumed by the clients. Using this
model the tenant server remains free of any logic or dependencies related to specific
clusters. Instead, it provides the configurations that a client-side agent uses to stay
aligned, for example after an update to the global baseline.

71

Tenant Server Architecture

5.2.1 Policy repository: Blob Storage Account

The tenant server must expose all policies in a clear and structured way so that
client tenants can identify the global baseline, retrieve their specific customisations,
and update their cluster configurations independently. To achieve this, the solu-
tion uses a logical hierarchy that separates the baseline shared by all tenants from
tenant-specific settings and cluster-level configurations. This organisation ensures
strong isolation and consistency across the entire system. Since all client-side in-
frastructure relies on the tenant server to determine which security policies must be
applied, the central platform needs a highly available and cost-effective repository
capable of storing JSON configuration files, keeping their versions up to date, and
efficiently supporting both occasional and frequent access.

For these reasons, Azure Blob Storage is the natural choice for the repository.
It is designed to handle large volumes of static objects, offers high scalability, and
provides an object-store model that is ideal for immutable or versioned content.
Unlike Cosmos DB or SQL Database, which introduce the complexity typical of
transactional or NoSQL systems and would exceed the needs of a simple configu-
ration store, Blob Storage offers a far more straightforward model that aligns well
with the declarative nature of the solution.

Another key factor is that Azure Blob Storage is specifically built for scenarios
requiring efficient distribution of static content and configuration artifacts. This
model fits perfectly with the need to publish a set of configurations that client
tenants can consume without transactional operations or queries. Blob Storage
also provides native integration with Private Endpoints, ensuring that access occurs
exclusively from the client tenant’s private network. This allows public access to be
completely disabled, which is essential for the multilayered security requirements
of the solution.

Finally, choosing Blob Storage makes it easy to introduce manifest files, which
act as version indexes and describe the structure of the entire repository. These
manifests simplify the detection of drift between server and client configurations,
since they can be read as static objects directly from the container without relying
on complex query mechanisms or transformations. The lightweight object-based
model and the service’s ability to return content efficiently make Blob Storage the
most suitable option for delivering a reliable, secure, and scalable distribution point
for all policies used by client tenants.

5.2.2 Centralized Storage Structure

The centralized storage layer is the core of the entire AKS policy governance system.
It acts as the authoritative source from which client tenants retrieve the configu-
rations they must apply within their own environments. Because it plays such a
critical role, its structure must ensure clarity, isolation, traceability, and reliable
verification of all stored content.

72

Tenant Server Architecture

Design principles of the structure

The organization of the centralized storage is based on four key principles.

The first is the clear separation of information domains: the global baseline
must be stored independently from tenant-specific configurations. This separation
ensures that global policies remain consistent, tenant workloads do not interfere
with each other, and each layer of configuration maintains its own autonomy.

The second principle is internal multi-tenant isolation. Each tenant is assigned
a dedicated container or directory that is not shared with others.

The third principle is the use of a recursive and declarative structure. The
distinction between the global baseline, custom baselines, and cluster-level config-
urations follows the logic of declarative architectures, where each level defines its
desired state through initiatives, assignments, and policy definitions. This design
makes configurations easier to validate, manage, and version over time.

The final principle is referential clarity through manifest files. Every section
of the repository includes a manifest that serves as a structured, versioned index.
These manifests make it possible to identify the current version of the configuration,
confirm the consistency of the stored material, and perform automated comparisons
on the client side.

5.2.3 The global baseline

The global baseline is the regulatory core of the entire AKS Security Framework.
It defines the essential, non-negotiable set of security requirements that every tenant
must follow in order to maintain a consistent level of protection, reduce the attack
surface, and ensure coherent governance across different domains.

The baseline consists of a collection of Azure Policies, either individual policies
or policies grouped into a single initiative, that describe the minimum acceptable
behaviour of AKS clusters and enforce fundamental security configurations regard-
less of the tenant. These policies cannot be removed or weakened, although tenants
are free to introduce additional constraints through their own custom baselines. In
this way, the global baseline ensures uniform behaviour across clusters, prevents
weak or misaligned configurations, and simplifies auditing thanks to a single, doc-
umented model.

The global baseline is stored in a dedicated container within the tenant server:

akssf-baseline/
manifest-baseline. json
baseline-initiative. json
policy-definition/
<policy-id-1>.json
<policy-id-2>. json

73

Tenant Server Architecture

manifest-baseline. json

This file is a declarative document that describes the baseline version, the list of
files that make it up, any integrity metadata such as hashes, and references to the
global initiative. Thanks to this structure, client tenants can quickly determine
whether their local baseline matches the version published by the server.

baseline-initiative. json

This file gathers all mandatory policies into a single Azure Policy Initiative. By
grouping them in this way, updates become atomic, versioning becomes easier to
manage, and client tenants can create assignments more easily and reliably.

The policy-definition/ folder

This folder contains the definitions of any custom policies that form part of the
global baseline. Built-in Azure Policies are not duplicated in the tenant server, as
Microsoft already guarantees their presence and immutability within every tenant
environment.

5.2.4 Structure dedicated to each tenant

The structure dedicated to each tenant is designed to create a clear logical bound-
ary between the different domains that participate in the framework. Its purpose
is to guarantee isolation, architectural clarity, and long-term scalability. Each ten-
ant therefore has its own root directory, which contains all the artifacts required
to describe its security posture, its customisations, and the configurations of the
clusters it manages. This design follows the principle that every tenant must be
governed and analysed as an independent unit, even though all of them share the
same global baseline. Unlike a monolithic repository where the content of different
tenants is stored in the same space, it is better to use separate directories that
eliminate the risk of collisions, make it immediately clear which artifacts belong to
which customer, and reduce the possibility of unauthorised access to data. From
an operational point of view, this structure also simplifies onboarding new ten-
ants and evolving their configurations over time, since each domain can be handled
independently.

To better understand the architectural model, it is useful to observe how each
tenant is represented within the tenant server:

<tenant-id-x>/
manifest-<tenant-id-x>.json
baseline-assignment-<tenant-id-x>.json

custom-baseline/
manifest-custom-baseline-<tenant-id-x>. json
custom-baseline-initiative-<tenant-id-x>.json
custom-baseline-assignment-<tenant-id-x>.json

74

Tenant Server Architecture

policy-definition/
custom-baseline-<tenant-id-x>-<policy-id-1>.json
custom-baseline-<tenant-id-x>-<policy-id-2>.json

clusters/
<tenant-id-x>-<cluster-id-1>/

manifest-<tenant-id-x>-<cluster-id-1>. json

initiative-<tenant-id-x>-<cluster-id-1>. json

assignment-<tenant-id-x>-<cluster-id-1>.json

policy-definition/
<tenant-id-x>-<cluster-id-1>-<policy-id-1>.json
<tenant-id-x>-<cluster-id-1>-<policy-id-2>.json

<tenant-id-x>-<cluster-id-2>/
manifest-<tenant-id-x>-<cluster-id-2>. json
initiative-<tenant-id-x>-<cluster-id-2>. json
assignment-<tenant-id-x>-<cluster-id-2>. json
policy-definition/
<tenant-id-x>-<cluster-id-2>-<policy-id-1>.json
<tenant-id-x>-<cluster-id-2>-<policy-id-2>.json

This structure shows that each tenant is treated as an independent information
domain with its own organised space containing the relevant manifests, assignments,
and policy definitions.

Tenant level

The tenant level acts as the entry point to the entire customer domain. Here,
the main manifest is stored: a document that describes the overall structure and
version of the tenant’s configuration and serves as an index for the client-side func-
tion. Placing this file at the root ensures that the tenant client immediately has
the information it needs to understand which baselines must be applied, which
versions are active, and which clusters are managed. Alongside the manifest, this
level also contains the assignment of the global baseline, which declares the link
between the client tenant and the global baseline published by the server. Keeping
this assignment at the tenant level highlights the separation between the shared
global baseline and the tenant’s own configuration: the baseline is common and
centralised, while the assignment is the tenant-specific element that enables its
application.

Tenant custom baseline

The tenant-level custom baseline exists to provide each customer with a controlled
space in which to define additional policies beyond those included in the global
baseline. In enterprise environments, different tenants often adopt distinct security
requirements due to internal regulations, application needs, or operational differ-
ences. The custom baseline accommodates these variations by allowing tenants
to extend the global security model in a structured and traceable way, without

75

Tenant Server Architecture

introducing changes that could affect other tenants or the shared platform. By
organising this area into a manifest, an initiative, an assignment, and the related
policy definitions, the model supports a modular and declarative workflow in which
every change is explicit and immediately detectable by the tenant client. This
structure also offers a clear governance benefit: tenants can manage their own ex-
tensions independently while maintaining strict alignment with the global baseline,
which remains centralised and immutable.

Per-cluster configurations

The cluster level is the most granular part of the structure, reflecting the idea that
each Kubernetes cluster should be treated as an independent domain with its own
operational needs. In practice, clusters within the same tenant often differ signifi-
cantly: they may use distinct network topologies, expose applications in different
ways, run workloads with varying risk profiles, or include additional components
such as ingress controllers, service meshes, or customised CSI drivers. Some clus-
ters also require stricter isolation than others. These differences make it impossible
to define certain policies at the global or tenant level. Instead, those policies must
be associated directly with the specific cluster for which they are relevant.

This becomes evident in scenarios where, for example, a production cluster host-
ing public-facing applications requires network policies that differ from those used
in a cluster that is completely isolated. Similarly, some Gatekeeper constraints
may apply only to selected environments, certain clusters dedicated to regulated
workloads may need mandatory labels, and high-security clusters might require
container runtime policies that would be unnecessary elsewhere. By keeping con-
figurations separate at the cluster level, the model allows tenants to describe the
precise behaviour of each environment without affecting the rest of the system.

The recursive organisation of this layer based on manifests, initiatives, assign-
ments, and cluster-specific policy definitions ensures consistency while allowing the
repository to scale naturally. Adding a new cluster does not require any architec-
tural changes; it simply involves creating a new dedicated directory that is isolated,
easy to manage, and fully aligned with the existing structure.

5.2.5 Artifacts: Policy Definition, Initiative and Assign-
ment

The governance platform implemented in the tenant server is built around three key
Azure Policy artifacts: policy definitions, initiatives, and policy assignments.
These elements are often mentioned together, but they serve very different and
complementary roles. Understanding how they work is essential for appreciating
the architectural value of the solution, since the entire control, verification, and
synchronisation process between the tenant server and the tenant client revolves
around them. They form the formal language that Azure uses to describe and
enforce security policies in the cloud.

76

Tenant Server Architecture

Policy Definition: the atomic rule of governance

A policy definition is the smallest unit of governance in Azure Policy. It describes
a condition that must be evaluated on cloud resources and the action to take when
that condition is met or violated. Formally, a policy definition is a JSON document
that specifies the type of control being enforced, the scope of applicable resources,
the configurable parameters, the conditional logic expressed in the if and then
structure, and the effect that the policy should trigger.

Within the tenant server, policy definitions are used in two main contexts: the
global baseline policies stored in the akssf-baseline container, which represent the
mandatory rules that every AKS cluster must follow, and the custom policies stored
within each tenant or cluster directory, which address requirements that fall outside
the global baseline. These definitions are therefore the fundamental building blocks
of the entire governance system. They are fully declarative, versionable, referenced
in the manifest files, and interpreted consistently by both the tenant server and the
tenant clients.

Initiative: the structured aggregation of rules

Managing large numbers of individual policies becomes complex and error-prone
in enterprise environments. For this reason, Azure introduces the concept of an
initiative, a logical container that groups multiple policy definitions into a single,
coherent, and versionable unit. Using an initiative makes it possible to maintain
consistent versions of entire rule sets, apply a single assignment to many policies at
once, ensure atomic and predictable policy enforcement, and maintain transparency
in audit and compliance processes.

In the proposed architecture, initiatives are used at three levels. The global base-
line initiative, stored in baseline-initiative. json, aggregates all the mandatory
AKS security policies that every cluster must comply with. Tenant-specific initia-
tives, stored in the custom-baseline directory, allow tenants to introduce addi-
tional rules that extend the global baseline. Cluster-specific initiatives, found in
the clusters/<tenant>-<cluster-id> directories, capture rules associated with
the characteristics or sensitivity of a particular cluster. Keeping these initiatives
separate ensures a scalable governance model in which updating the global baseline
does not affect tenant or cluster configurations, and cluster-level changes do not
impact other environments.

Policy Assignment: the effective application of rules

If a policy definition expresses the rule and an initiative organises groups of rules, a
policy assignment represents the actual act of applying those rules to an Azure
resource. The assignment specifies the scope to which the policy applies, which
may be a management group, a subscription, a resource group, or an individual
resource such as an AKS cluster.

In this model, the tenant server publishes all required assignments in a declar-
ative form. It never applies them directly; instead, the tenant clients read the

7

Tenant Server Architecture

assignments from the server’s storage, replicate them in their own local repository,
and apply them to their AKS clusters through the Function App. Assignments are
therefore crucial because they are the only artifact that binds a policy to a cluster
and activates it. They also enable differentiated policy application across tenants
and clusters, since the same initiative can be assigned to different scopes with dif-
ferent parameters. Finally, assignments include the context-specific settings that
control policy behaviour, such as enforcement mode, exemptions, or configurable
values.

Through this separation of roles, the architecture ensures that the tenant server
remains a pure governance and publication layer, while the tenant clients are re-
sponsible for applying the rules within their own operational domains.

5.2.6 Artifacts: Manifests as the Declarative Layer

Manifests form the declarative orchestration layer that allows the tenant server to
expose a structured, verifiable, and versioned configuration of security policies to
tenant clients. Conceptually, they play a role similar to the desired state files used
in GitOps systems: they provide an abstract representation of the intended system
state and make it possible to compare the declared state with the actual one.

This solution adopts the same principles. Every area of the tenant server (the
global baseline, the custom baseline, and the cluster level) contains a manifest that
describes which policies, initiatives, and assignments define the “correct state” for
that scope. In this way, the tenant client can independently detect drift, meaning a
divergence between its local configuration and the version published by the server,
without requiring complex imperative logic.

General Purpose of the Manifests

Manifests exist for three main reasons:

1. Provide a declarative logical schema
They describe what must be included in the configuration (policy, initiative,
assignment), not how it should be applied. This supports a clean, modular,
and easily extensible architecture.

2. Enable semantic versioning through configVersion
Every change to the configuration updates the configVersion value. The
tenant client can compare its local version with the remote one and immedi-
ately understand whether an update is required.

3. Offer a consistent and stable index of paths
The client knows exactly which file to download and where it is located, avoid-
ing storage exploration and reducing the chance of logical inconsistencies.

This architecture aligns with the state reconciliation paradigm typically used in
declarative operations.

78

Tenant Server Architecture

Main Tenant Manifest

This is the entry point for the tenant client:

manifest-<tenant-id>. json

This file connects all other manifests into a single coherent view and acts as the
truth map for the tenant domain.

Example of a main manifest

—~

"schemaVersion": "1.0",
"configVersion": "2025.11.18-tenant-001",
"tenantId": "asl06",

"baseline": {
"configVersion": "2025.11.18-baseline-001",
"globalBaselineManifestPath":
"../akssf-baseline/manifest-baseline. json",
9 "baselineAssignmentPath":
"baseline/baseline-assignment-asl06.json"
0},

11

o N O U ks W N

12 "customBaseline": {
13 "configVersion": "2025.11.18-custom-baseline-003",
14 "path": "custom-baseline/manifest-custom-baseline-asl06.json"

15},

16

17 "clusters": [

18 {

19 "clusterId": "aks—-asl06-clil",

20 "configVersion": "2025.11.18-cluster1-002",

21 "path":
"clusters/asl06-aks-asl06-cll/manifest-asl06-cll.json"

22 }

23 1,

24

25 "metadata": {

26 "lastUpdated": "2025-11-18T12:00:00Z",

27 "source": "server"

28}
29 }

The tenant client uses this manifest to determine:

e which sections of the configuration need validation,

79

Tenant Server Architecture

e which secondary manifests must be downloaded,

e which versions must be compared.

5.2.7 Global Baseline Manifest

The main global baseline manifest is stored in the container:

akssf-baseline/manifest-baseline. json

It defines the baseline shared by all tenants and represents the root of the
governance model.

Example of manifest-baseline.json

{
"schemaVersion": "1.0",
"configVersion": "2025.11.18-baseline-001",
"description": "Global baseline for AKS Security Framework",
"initiativePath": "baseline-initiative.json",

"policyDefinitions": [
"policy-definition/policy-network-restriction.json",
"policy-definition/policy-approved-images. json"

I,

"metadata": {

"lastUpdated": "2025-11-18T09:00:00Z",
"scope": "global"

}

© 00 N O Ut s W N

e e e
w N = O

—
S
()

From this manifest, the tenant client understands:

e which baseline version it must have,
e which policies define the global baseline,

e which initiative should be applied locally.

Tenant Custom Baseline Manifest

Each tenant can extend the baseline with additional policies. This level is recorded
in:

custom-baseline/manifest-custom-baseline-<tenant-id>. json

80

Tenant Server Architecture

Example

"policyDefinitions": [
"policy-definition/custom-baseline-aslO6-allowed-ingress.json",
"policy-definition/custom-baseline-aslO6-image-scanning. json"

1
{
2 "schemaVersion": "1.0",
3 "configVersion": "2025.11.18-custom-baseline-003",
4 "tenantId": "asl06",
5 "customInitiativePath": "custom-baseline-initiative-asl06.json",
6 "customAssignmentPath": "custom-baseline-assignment-aslO6.json",
7
8
9

—_
o

1,

"metadata": {
"lastUpdated": "2025-11-18T10:00:00Z",
"scope": "tenant"

e e
= W N =

}

—_
at
=

This manifest allows the tenant server to declare:

e which additional policies apply to that tenant,
e where these policies are stored,

e which version represents the current state.

Cluster Manifests

Each cluster is an isolated domain where different policies may be applied.

clusters/<tenant-id>-<cluster-id>/manifest-<tenant>-<cluster>. json

Example of a cluster manifest

1

{

2 "schemaVersion": "1.0",

3 "configVersion": "2025.11.18-cluster1-002",

4 "clusterId": "aks-asl06-cli",

5 "initiativePath": "initiative-aslO6-aks-asl06-cll.json",

6 "assignmentPath": "assignment-aslO6-aks-asl06-cll.json",

7 "policyDefinitions": [

8 "policy-definition/asl06-aks-asl06-cll-network-boundary.json",
9 "policy-definition/asl06-aks-asl06-cll-kubelet-hardening.json"
0],

11 "metadata": {

12 "environment": "production",

13 "lastUpdated": "2025-11-18T11:30:00Z",

14 "scope": "cluster"

81

Tenant Server Architecture

16 }

By reading this manifest, the client can identify:

e which cluster artifacts need updating,
e whether new policies are required for the cluster,

e whether a mismatch exists between client and server.

The Role of configVersion as the Pivot of the Algorithm

The configVersion value is a central element of the entire orchestration model.
The tenant client’s Function App uses these versions to determine:

e whether the baseline has changed,
e whether the tenant has new policies,

e whether a cluster needs updates.

Compared to a file-by-file comparison, which is expensive, inefficient, and fragile,
version comparison enables a model that is idempotent, scalable, and adaptable.

5.2.8 Manifest Evolution to Increase Security

In the basic version of the architecture, manifests describe the desired configura-
tion state in a declarative way (global baseline, tenant baseline, and per-cluster
configurations). This allows the tenant client to detect a shift by comparing the
configVersion and the file paths. This model already ensures consistency and de-
tects configuration drift, but it implicitly assumes that the tenant server is always
trustworthy and that the distribution channel (Blob Storage) cannot be tampered
with. In a more advanced scenario, where partial compromise of the server domain
or attempts to impersonate the client must also be considered, the manifest can
evolve into a signed object from an integrity and authenticity point of view.

The main idea is to enrich the logical description (list of files, versions, paths)
with a set of cryptographic metadata. These metadata allow the client to
answer two key questions: “Are the manifest and policies I am reading exactly
those published by the legitimate source?” and “Can the server uniquely recognize
me as a client so that a third party cannot impersonate my identity?”

82

Tenant Server Architecture

Symmetric Secrets in the Server and Client Key Vaults

To address the first problem (malicious server behavior or manipulated storage),
a shared symmetric secret can be introduced between the platform and each
tenant. This secret is stored:

e in the tenant server’'s Key Vault, under a name such as AKSSF-MANIFEST
-INTEGRITY-KEY, accessible only to the process responsible for publishing
manifests;

e in the tenant client’s Key Vault, containing the same value, accessible only
to the Function that performs synchronization.

This secret is used to compute an HMAC (Hash-based Message Authentication
Code) over the manifest contents and, optionally, over the associated policy files.
HMAC is a standard construction that combines a cryptographic hash function
with a shared secret to provide integrity and message authentication.[07]

In practice, each manifest is extended with an additional field such as:

1 "integrity": {

2 "algorithm": "HMAC-SHA256",

3 "hmac": "b5f86a9c...abcd",

4 "scope": "manifest+policy-files"
5

}

The publishing process on the tenant server computes the HMAC on the man-
ifest JSON (and, in a stronger variant, on an ordered concatenation of the hash
values of the individual policy files) using the key stored in the server Key Vault.
After downloading the manifest from Blob Storage, the tenant client reconstructs
the same input locally, computes the HMAC using the key stored in its Key Vault,
and compares it with the received value. If they differ, the Function treats the
manifest as untrusted and stops the update.

This evolution has an important implication: if an attacker compromises only
the storage, they cannot transparently modify manifests or policies because they
do not have the secret required to produce a valid HMAC. Even a partially malicious
operator who modifies blobs directly cannot generate a manifest accepted by the
client.

File Hashes and Rollback Protection

In addition to the manifest-level HMAC, the evolution includes adding file-level
hashes for each policy file inside the manifest. For example:

1 "policyFiles": [

2 |

w

"path":
"policy-definition/policy-aks-disable-local-accounts.json",
4 "sha256": "9a7cledb..."

83

Tenant Server Architecture

5,

6 |

7 "path":
"policy-definition/policy-aks-restrict-public-ip.json",

8 "sha256": "3bd09f2a..."

o}

This allows the client to compute the hash of each downloaded policy file and
compare it with the declared value. Any alteration is detected immediately.

To mitigate the risk of malicious rollback (redistributing an old but correctly
signed manifest), the configVersion value is treated as a monotonic logical
version. The tenant client stores the last accepted version and rejects lower ones
unless explicitly authorized. This approach follows the versioning semantics com-
monly used in GitOps and Kubernetes.

Manifests at All Levels: Baseline, Tenant, Cluster

The proposed evolution applies uniformly across all four manifest levels:

1. manifest-baseline. json in the global akssf-baseline container.
2. manifest-<tenant-id>. json orchestrating tenant configuration.
3. manifest-custom-baseline-<tenant-id>. json.

4. manifest-<tenant>-<cluster>. json for each cluster.

For each artifact, the integrity field is computed using the same symmetric
secret, while the file-hash list covers only the resources belonging to that manifest.
This layered design allows precise localization of any suspicious alteration.

Detecting an Impersonated Client

The second axis of the evolution addresses the possibility that an external actor
might attempt to impersonate the tenant client.

Initially, protection relies on:

e a Service Principal with Storage Blob Data Reader,
e its credentials stored in the tenant’s Key Vault,

o OAuth2 authentication flows.
&4

Tenant Server Architecture

To strengthen identity guarantees, a second symmetric secret can be introduced:
client attestation key, such as AKSSF-CLIENT-ATTESTATION-KEY, stored in the
client and server Key Vaults. In a possible evolution of the architecture, instead
of accessing blobs directly, the client could call a minimal endpoint exposed by the
tenant server (for example a Function or internal API behind Private Link), and
include in each request an HMAC signature over a nonce or request payload using
this attestation key. The server verifies the HMAC using the same key, ensuring
that the request comes from a client that possesses the secret. If an attacker reuses
the Service Principal but does not have access to the client Key Vault (and therefore
to the attestation key), they cannot produce a valid signature.

This approach follows classic models of "message-based authentication”, rec-
ommended when it is necessary to prove both application identity and the origin
of specific requests. It is conceptually similar to “message integrity” and “sender
authentication” techniques described in NIST cryptographic security documents
and IETF MAC guidelines: a symmetric secret shared between two trusted parties
makes spoofing impossible for anyone who does not possess the key.

Within the proposed solution, this evolution can be considered a next step, es-
pecially if the architecture is expanded to scenarios where the tenant server offers
additional functionality (for example active validation or orchestration of change
requests) rather than only static file distribution. Even without immediately in-
troducing a server-side endpoint, combining HMAC on manifests, per-file hashes,
and rigorous secret management in Key Vault already provides a major improve-
ment to the trust model between tenant server and tenant client, and forms a solid
foundation for future extensions toward a full attestation model.

5.2.9 Security of Access to the Tenant Server Storage

The storage used by the tenant server is one of the most sensitive components
of the entire architecture. It contains the global security baseline, the tenant-
specific configurations, and the policy definitions that tenant clients rely on to
govern their AKS clusters. If this central repository were to be compromised or
exposed incorrectly, the entire governance framework would lose reliability. For this
reason, the access model has been designed according to several strict principles:
no public endpoints, strong network isolation, secure cross-tenant authentication,
and minimal permissions.

The core idea is to treat the tenant server as an internal policy as a service
component. It is not an operational system acting directly on clusters, but an au-
thoritative and tightly controlled source of configuration, reachable only by trusted
agents (the Function Apps in each tenant client) through Azure’s private backbone.

Network Architecture: Private Link, Dedicated VNets, and Private DNS

The first architectural choice is the complete removal of public endpoints from the
tenant server storage account. This aligns with Microsoft Cloud Security Bench-
mark recommendations for Azure Storage, which advise disabling anonymous and

85

Tenant Server Architecture

public access and using Private Endpoints for sensitive data flows. This signif-
icantly reduces the attack surface by eliminating scenarios such as internet-wide
scanning, random IP access attempts, or firewall misconfiguration.

Communication between tenant clients and the server’s storage occurs exclu-
sively through Azure Private Link. The storage account is exposed as a private
endpoint inside a subnet of the client’s VNet. From the client’s perspective, the
storage behaves like an internal service reachable through a private IP address.
From the server’s perspective, every request flows through an approved Private
Endpoint.

The network architecture includes a dedicated Virtual Network in the tenant
server containing subnets for:

e Private Endpoints to storage, optionally protected with Network Security
Groups,
e administrative components (e.g., jumpboxes or automation services),
e other internal services with no public exposure.
For Private Endpoints to function correctly, DNS resolution must follow a
private-first approach. Azure requires that the public FQDN of the storage account
(e.g., mystorage.blob.core.windows.net) resolve to the Private Endpoint’s pri-

vate IP. This is achieved through a Private DNS Zone, typically privatelink.
blob.core.windows.net, containing A records such as:

<storage-account-name>.privatelink.blob.core.windows.net -+ <private-PE-IP>

and linked to the client VNet.

This combination guarantees that the traffic never leaves the private network,
no public endpoint can be used accidentally and that the access is jointly controlled
by the client (owner of the VNet) and the server (approver of Private Endpoints).

Security of the Management Plane

Even though the tenant server exposes only static content, its management plane
is highly sensitive because it controls updates to the baseline and tenant configu-
rations. Administrative operations on storage are protected by:

e strict Azure RBAC separation of duties,
e Conditional Access and MFA for privileged users,
e Privileged Identity Management (PIM),

e device compliance and session protections.

These controls align with Microsoft recommendations for protecting Entra ID
privileged accounts.

86

Tenant Server Architecture

Isolation and Multi-Tenancy in Storage
The storage is organized to ensure strong multi-tenancy. Its structure includes:

e one container for the global baseline,

e one container per tenant, containing only that tenant’s content.

This layout enables a highly granular RBAC model: the Service Principal assigned
to a tenant receives the Storage Blob Data Reader role only on the container corre-
sponding to that tenant, not on the global baseline container or the entire storage
account. Microsoft explicitly recommends using Azure AD and RBAC instead of
account, keys or long-lived SAS tokens, as this enables fine-grained authorization
and full auditability. Another security benefit is that the tenant server does not
execute any client-provided code. No functions or containers run on behalf of ten-
ants. This eliminates entire classes of attacks related to code injection, runtime
exploitation, or privilege escalation from customer workloads. The communication
flow is deliberately one-way: the tenant client reads configuration from the server’s
storage but cannot write or modify anything.

The Challenge of Cross-Tenant Authentication

The tenant server and tenant clients live in separate Entra ID tenants. A Function’s
Managed Identity cannot authenticate across tenants, as formally documented by
Microsoft. For this reason, MI cannot be used for this architecture.

Workload Identity Federation was also evaluated but rejected due to:

e complexity of cross-tenant trust configuration,
e added operational overhead,

e its design focus on DevOps rather than multi-tenant serverless clients.

5.2.10 Service Principal + Key Vault: the Selected Model

The chosen strategy for cross-tenant authentication uses a Service Principal (App
Registration) created in the tenant server, with its credentials securely stored in an
Azure Key Vault inside the tenant client. This model fully aligns with Microsoft’s
official documentation on how to expose resources to applications in another tenant
through Service Principals and Azure AD.

The logical flow works as follows:

1. In the tenant server, an App Registration dedicated to a single tenant client
is created (for example akssf-storage-client-asl06).

2. This application is granted, on the server’s storage, only the Storage Blob
Data Reader role on the tenant’s container (not on the entire account, and
not on the global baseline container).

87

Tenant Server Architecture

3. In the tenant client, the following values are stored as secrets in an Azure
Key Vault:
e server Tenant ID,
e Service Principal Client 1D,
e Client Secret,
e storage account name,
e tenant container name.
4. The client Function uses its own Managed Identity to read these secrets from
the Key Vault, then uses these values to create a ClientSecretCredential

(or equivalent) to authenticate against the tenant server and obtain an OAuth2
token valid for accessing the server’s storage.

5. This token is then used by the Azure Storage SDK to authorize read opera-
tions on the dedicated container.

In this model, no credentials are hard-coded in the Function code; the secrets
are stored in Key Vault and accessible only to the client’s Managed Identity, while
storage permissions are controlled through RBAC. Microsoft recommends this exact
combination—application identities, RBAC, and Key Vault—as a secure alternative
to account keys or broad, long-lived SAS tokens.

5.2.11 Minimization of Permissions and Domain Separa-
tion

A key advantage of the Service Principal + Key Vault approach is the ability to
apply the least privilege principle strictly. Each tenant client receives:

e a dedicated Service Principal in the tenant server,

e a Storage Blob Data Reader role limited to its own container.

No permissions are granted on the entire storage account or on the global base-
line container. This reduces the risk that misuse of the Service Principal could:

e access configurations belonging to other tenants,

e expose global administrative policy definitions,

e use the server storage as a source of information beyond the intended scope.

In addition, the separation works in both directions: the server manages who
is authorized to access which container, while the client controls who within its

environment can actually use the credentials (for example ensuring that only the
Function and an administrator can read from the Key Vault).

88

Tenant Server Architecture

5.3 Central Posture Visibility

5.3.1 Overview of the Main Components

The central posture visibility in the server architecture is composed of four main
building blocks:

1. Ingestion API / VM Collector

A Linux VM hosts a private HTTP API (endpoint /ingest) that receives
JSON snapshots from tenant clients through a private connection (Private
Endpoint — Private Link Service). This API decouples the collection logic
from the analytics systems, allowing the writing and validation layer to be
centralized.

A more desirable alternative would be a serverless Function App, which offers
built-in scalability and lower costs. However, this is not feasible because
integrating a Function App with a Private Link Service currently requires a
Load Balancer, which is not supported.

2. Data Lake on Azure Storage

The raw snapshots are stored in a container inside a Storage Account with a
Hierarchical Namespace (Data Lake Gen2). This option supports storing raw
data and enables automated ingestion into analytical systems.

The alternative options considered were:

e Log Analytics, which is excellent for system logs but less efficient for
large-scale storage and processing of compressed JSON files intended for
custom analytics.

e A flat Blob storage, which lacks structure and reduces optimization
opportunities for partitioning and ingestion.

The chosen solution is a Gen2 Storage Account with hierarchical namespace
because it supports standard partitioning patterns, efficient ingestion, and
compatibility with Event Grid for ADX triggers.

3. Azure Data Explorer (ADX)

For near real-time analysis of compliance results, ADX is used as the query
engine. It supports ingestion from Blob/Event Grid, JSON-based queries,
update policies, materialized views, and operations on high-volume datasets.

Alternatives such as Azure SQL Data Warehouse are oriented toward batch
workloads and are not optimized for near real-time ingestion of JSON or ad
hoc log queries. They also require schema rigidity and incur higher cost and
complexity for telemetry-heavy scenarios.

4. Azure Managed Grafana

Azure Managed Grafana is used to present and visualize compliance KPIs and
multi-tenant dashboards. It integrates directly with ADX, supports Azure AD
authentication, and provides a rich set of visualization plugins.

89

Tenant Server Architecture

The alternatives were:

e Power BI, which is excellent for reporting but less suitable for inter-
active near real-time dashboards, often requiring refresh intervals and
predefined data models.

e Workbooks, which are lightweight but less flexible and limited in de-
sign.

e A fully custom portal, which would require significant development and
ongoing maintenance.

For these reasons, Azure Managed Grafana was selected. It provides dynamic
visualization, filtering, drill-down capabilities, support for variables (tenant,
cluster, policy), native integration with ADX and Azure AD, and no addi-
tional licensing cost.

5.3.2 Network Architecture of the Tenant Server

The network architecture of the tenant server is where the balance between cen-
tralization (all data converging into a single point) and isolation (no customer
can see beyond their own boundary) becomes most visible. This section describes
how the network is structured inside the tenant server, how access is provided
through Private Link, and how the full end-to-end flow works from the customer’s
Function App to the collector VM.

Tenant Server Virtual Network and Internal Segmentation

The tenant server includes a dedicated Virtual Network hosting all components
involved in ingestion, analytics, and visualization:

e the console subnet, containing the collector VM and the internal Load
Balancer,

e asubnet dedicated to Azure Bastion, used for administrative access without
public IPs,

e optional service subnets for Private Endpoints or future integrations.
In practice:

e the collector VM runs inside a subnet without any public IP address and
is protected by a Network Security Group (NSG) that:

— allows only inbound traffic from the Load Balancer (toward the API
listening port, for example 8080),
— allows only SSH access from Azure Bastion (port 22),

— blocks all other inbound traffic (default deny).
90

Tenant Server Architecture

e the Bastion subnet follows Azure’s required setup (AzureBastionSubnet),
allowing Bastion to reach VMs using private IPs.

Applying NSGs at the subnet level rather than per network interface simplifies
management and reduces the risk of inconsistent configurations.

Private Link Service as the Multi-Tenant Entry Point

The entry point for tenant clients is an internal Azure Load Balancer, which
fronts the collector VM and is exposed externally only through an Azure Private
Link Service (PLS).

The pattern works as follows:

1. The internal Load Balancer has a private IP in the console subnet, with
a rule forwarding port 80 (frontend) to the collector API port (for example
8080) on the backend.

2. The Private Link Service is configured in front of the Load Balancer, effec-
tively publishing the service as a private endpoint that tenant clients can
connect to.

3. Each tenant client creates a Private Endpoint inside its own VNet, pointing
to the PLS Alias. This Private Endpoint receives a private IP inside the
client’s VNet that the client Function uses to call the /ingest APIL

Azure’s Private Link documentation highlights exactly this scenario: one Pri-
vate Link Service can be reached by multiple Private Endpoints belonging to
different VNets, subscriptions, and tenants, with explicit approval workflows con-
trolled by the service owner.

This is precisely what enables secure multi-tenancy:

e the tenant server publishes its service once via PLS,
e cach tenant client creates its own Private Endpoint,

e the PLS owner approves or rejects each connection request, maintaining tight
control over cross-tenant access.

From a security perspective, Microsoft recommends Private Link for scenarios
where a service must be exposed to customers or other tenants without using public
endpoints, relying instead on private IPs inside the consumer VNet and the Azure
backbone for transport.

91

Tenant Server Architecture

End-to-End Network Flow

Once the server-side network is defined (VNet, subnets, NSG, Bastion, internal
Load Balancer, PLS), the complete flow from a tenant client to the collector is:

1. In the tenant client, an Azure Function (or equivalent agent), running in-
side an integrated VNet and without a public IP, periodically sends a JSON
snapshot to an address such as http://<IP_PE>/ingest, where <IP_PE> is
the Private Endpoint’s private IP in the client’s VNet.

2. The HTTP request to <IP_PE> is routed to the Private Endpoint, which
acts as a local private representation of the remote service in the tenant server.

3. The Private Endpoint forwards the traffic to the Private Link Service in the
tenant server, using the Azure backbone without ever traversing the public
internet.

4. The PLS forwards the traffic to the frontend of the internal Load Bal-
ancer, which then distributes the request to the collector VM (backend pool)
on the API listener port.

5. The collector VM receives the request through its private IP, passes NSG
rules that allow only legitimate traffic (from the relevant service tags and the

Load Balancer subnet), and processes the snapshot (validation, writing to
Blob, etc.).

Overall, the network flow remains fully private, controlled, and free of any public
endpoints or internet-exposed components.

Comparison with Alternative Network Architectures

This network architecture is not the only possible approach, but it is selected based
on clear trade-offs compared with alternative models.

Public Exposure of the Ingestion API A simpler option would be to expose
the collector API on the public internet, for example through:

e an Application Gateway with WAF,
e an API Management gateway and a public Web App or Function.
Tenant clients would send snapshots to a public FQDN secured with TLS and

Azure AD authentication. While this model is technically valid, it has several
disadvantages:

e it increases the attack surface, requiring more complex hardening (WAF,
DDoS protection, IP filtering),

92

Tenant Server Architecture

e it requires tenant clients to allow outbound internet traffic specifically to that
endpoint, which can conflict with internal security policies,

e it reduces the ability to guarantee that all traffic stays on the Azure backbone.

For these reasons, Private Link is the recommended pattern, as it enables
private connections between VNets and PaaS or custom services in another tenant,
without relying on any public exposure.

Peering Between Client and Server VNets Another alternative would be
VNet peering between client VNets and the tenant server VNet, exposing the
collector API directly as a private IP inside the server’s network. However:

e it does not scale well as the number of tenants grows (N-to-1 peering rela-
tionships),

e it introduces risks of overlapping IP ranges across independent customers,
which Private Link avoids,

e it complicates routing and firewall governance between separate organizations.

Access via VPN or ExpressRoute A more traditional approach would connect
tenant clients to the server through VPN or ExpressRoute. This also comes with
drawbacks:

e high cost and operational complexity at scale,
e the need to manage routing, BGP, and AS numbers for each customer,

e no built-in per-service approval mechanism like the one provided by Private

Link.

5.3.3 Collection Service: VM Collector and Ingestion API

The collection service is the entry point for all snapshots coming from tenant clients
and forms the operational boundary between the multi-tenant domain and the cen-
tralized domain of the tenant server. It is a critical component, both for security
and for orchestrating the data flow. Its design follows principles of robustness, iso-
lation, and simplicity. The decision to base the collector on one or more Linux VMs
comes from the need for full control over the runtime, networking configuration,
and software dependencies, while keeping the component lightweight and easy to
scale.

The collector’s primary responsibility is not analysis, normalization, or KPI
computation. Instead, it functions as a focused ingestion service: receiving snap-
shots, performing minimal validation, and storing them. All interpretive logic is
delegated to the tenant server pipeline, and especially to Azure Data Explorer
(ADX), which is the sole component responsible for parsing, data extraction, and

93

Tenant Server Architecture

KPI computation. This approach follows the typical “collect — store — process”
pattern of log ingestion and data lake architectures, helping keep the exposed com-
ponent simple, reducing attack surface, and decoupling ingestion throughput from
analytical throughput.

Role of the Collector in Decoupling Tenants from Analytics Systems

The collector acts as the single ingestion layer for all tenants. It receives compliance
snapshots produced by client agents and moves them into the centralized domain,
where they can be stored and later processed. This design allows client agents
to remain extremely simple. Their job is only to periodically gather AKS policy
results through the Azure Policy API and send a single payload to the server,
without handling aggregation or transformation logic.

The collector is intentionally stateless. Each request is treated as an indepen-
dent event. When a snapshot arrives, the collector checks its minimal structure,
computes technical metadata (such as content hash or file size), assigns a server-
side timestamp, and stores the file in the tenant server’s data lake. The operation
ends with a response to the client tenant. Semantic analysis, field extraction, corre-
lation, and KPI production are all handled exclusively by ADX, which is designed
to process large, heterogeneous datasets with evolving schemas.

This model allows the collector to serve as a resilient buffer between multiple
tenants and the central analytics layer. Even if ADX or downstream systems are
temporarily unavailable, snapshots remain safely stored in the data lake and can
be processed later without requiring the tenant to resend them.

Design of the Ingestion API

The collector exposes a minimal set of API endpoints to keep the interaction surface
small and easy to govern:

e a main endpoint (POST /ingest) that receives compressed JSON snapshots,

e a health check endpoint (GET /health) also used by the internal Load Bal-
ancer,

e a version endpoint (GET /version) for compatibility checks and debugging.

The snapshot structure is designed to be flexible and extensible. Each payload
contains a unique identifier, the client tenant ID, a generation timestamp, and the
full set of policy results and violations at the time of collection. The collector
does not impose a rigid schema. It verifies only a minimal set of fields and stores
the content as-is, following the schema-on-read principle used in most data lake
architectures, where interpretation is deferred to the analytics layer.

In addition to the JSON body, client agents send technical headers such as
schema version or agent version. These allow the tenant server to track the evolution
of the format and maintain long-term backward compatibility. The separation
between “content” and “transport metadata” simplifies API maintenance without
adding constraints to the payload itself.

94

Tenant Server Architecture

Storage Model: Write-Once, Append-Only, and Immutability

Snapshots received by the collector are stored in a dedicated area of the data lake
using a write-once, append-only model, with no overwriting. Each snapshot is a
complete representation of a tenant’s state at a specific moment and is treated as an
immutable document. This approach reflects best practices for managing security
logs and audit data, where preserving history and chain of custody is essential.

Snapshot storage follows a hierarchical partitioning pattern based on tenant and
date:

snapshots/{tenant_id}/{yyyy}/{MM}/{dd}/{snapshot_id}.json.gz

Compression improves transfer speed and reduces storage cost. ADX can ingest
compressed JSON files directly, simplifying the architecture and removing the need
for intermediate preprocessing steps.

The collector simply stores the file and records minimal metadata. Parsing is
handled by ADX through update policies that read the raw file, extract relevant
fields, and populate normalized tables.

Robustness and Resilience Mechanisms

To ensure scalability and reliability in a multi-tenant scenario, the collector imple-
ments several defensive mechanisms to prevent abuse, operational mistakes, and
abnormal load patterns. Payload validation ensures that each snapshot contains at
least the essential fields and does not exceed size thresholds incompatible with the
pipeline’s capacity. Idempotent handling, based on content hash and the unique-
ness of the snapshot_id, avoids duplicates in the data lake while supporting retry
mechanisms from client agents. The VM also applies rate limiting to prevent mal-
functioning or compromised tenants from overwhelming the collector with excessive
or continuous requests.

A core design principle is that the collector performs no semantic processing of
snapshots. It does not interpret policies, aggregate violations, or compute compli-
ance metrics. This dramatically reduces the complexity of the exposed component
and ensures that a compromise or malfunction of the collector cannot affect the
validity of the KPIs. The collector is a controlled transit node, while ADX remains
the only point where computation and interpretation take place.

5.3.4 Centralized Data Lake on Azure Storage

This section describes the “raw” storage layer of the solution: the Data Lake in
the tenant server where all snapshots from tenant clients are stored. It explains
why Azure Storage Gen2 was selected, how the folder structure is organized, and
which security controls are applied.

95

Tenant Server Architecture

Role of the Data Lake in the Two-Layer Model (raw + analytical)

In log analytics and compliance architectures, it is common to distinguish two main
layers:

e Raw (landing) layer: where original payloads from clients are stored with
minimal transformation.

e Analytical (processed) layer: where data is indexed, normalized, corre-
lated, and queried.

This separation allows you to:

e keep original payloads immutable, useful for audits, forensics, chronolog-
ical analysis, or historical recovery,

e support schema evolution without losing raw data,

e preserve a fallback location in case the analytics pipeline has issues, since raw

files are always available.

For these reasons, using a centralized Data Lake on Azure Storage aligns well
with Microsoft’s best practices for log analytics, telemetry, and audit scenarios.

Data Organization Inside the Container

Data is stored in a Storage Account with Hierarchical Namespace (Data
Lake Gen2) inside a dedicated container (for example policy-snapshots). The
directory structure is:

/policy-snapshots
/snapshots
/{customer_tenant_id}

/{yyyy}
/{MM}

/{dd}
/{snapshot_id}. json.gz

Where:

e {customer_tenant_id} identifies the client tenant,
e {yyyy}/{MM}/{dd} provides date-based partitioning,

e {snapshot_id} is a unique UUID for the snapshot.

Main advantages:

96

Tenant Server Architecture

e Logical filtering and partitioning: selecting all files for a given tenant or
day is straightforward.

e Clear organization: the structure immediately shows which tenant pro-
duced the snapshot and on which date.

e Scalability: time-based partitioning works well with retention policies and
long-term archival.

This naming and path structure is commonly recommended in Azure Big Data
patterns, where the hierarchy tenant — year — month — day ensures balanced
partitions and efficient querying.

Storage Account Hardening

From a security and compliance perspective, the Data Lake is protected using the
following controls:

e Public access disabled: the allowBlobPublicAccess attribute is set to
false.

e Network rules (firewall and VNets): the storage account is accessible
only from the collector VM subnet and the internal Private Link service;
everything else is blocked.

e Encryption at rest:
— Customer-Managed Keys (CMK) stored in Key Vault can be used

for encryption at rest when required.

— Double encryption can be enabled in highly regulated scenarios.
e Soft delete and immutability (optional):

— The policy-snapshots container can use soft delete retention and, if
required, WORM immutability policies to preserve logs unchanged for
compliance periods.

— This is particularly useful when long-term audit evidence must be stored.
e Managed Identity + RBAC for write access:

— The collector VM uses a system-assigned Managed Identity with
the Storage Blob Data Contributor role on the storage account.

— This removes the need for static keys or stored credentials, reducing
secret exposure risk.

e Storage access logging and monitoring:

— Storage analytics for read/write operations is enabled,

— Unexpected access attempts (for example from unexpected IP addresses)
trigger alerts.

97

Tenant Server Architecture

5.3.5 Logical Data Model in Azure Data Explorer

The data model implemented in Azure Data Explorer (ADX) is the analytical core
of the platform.

Unlike the Data Lake, which stores raw files (raw snapshots) in a write-once
approach, ADX provides a highly indexed, query-oriented model optimized for near
real-time telemetry and log analysis.

This section describes:

e why ADX was chosen as the analytical engine,
e the logical data model and relationships between tables,
e the use of Update Policies and Materialized Views,

e how multi-tenancy and schema evolution are handled.

Why Azure Data Explorer Fits the Scenario: Real-Time Ingestion and
Telemetry

Azure Data Explorer (ADX) is designed specifically for:

e high-throughput ingestion of telemetry and log data,
e interactive analysis over large datasets,
e semi-structured and nested JSON data,

e real-time and near real-time analytics.

Microsoft documentation highlights that ADX is optimized for append-only
data, with fast ingestion and low-latency queries, making it ideal for large volumes
of events, audit records, and diagnostic logs. It is used internally by Azure Monitor
and Log Analytics precisely because it handles complex and multi-structure log
formats efficiently.

In this project, compliance snapshots:

e are semi-structured (JSON with nested objects),
e arrive at regular intervals,
e must be correlated, expanded, and aggregated,

e must feed near real-time dashboards.

Traditional relational databases are not suitable without heavy investments in
scaling and index maintenance.

ADX instead provides:
98

Tenant Server Architecture

native JSON mapping into columns,

e mv-expand for array expansion,

Update Policies for populating derived tables,

Materialized Views for KPI computation,

KQL queries optimized for logs and time series.

These features match precisely the analytical needs of the system.

Core Tables and Their Relationship to the Conceptual Model

The data model is built to reflect logical concepts of configuration, state, and
violations, starting from the snapshots sent by tenant clients.

There are six main entities.
1. snapshots_raw

Contains:

e the original JSON payload,
e raw file metadata,
® raw uri,

e identifiers for the customer and the snapshot.

It serves as an immutable archive within ADX and as a bridge between the Data
Lake and the analytical database.

2. snapshots

Holds extracted metadata from the payload:

Field Description

snapshot_id Unique UUID

customer_tenant_id Source tenant

snapshot_time Timestamp from client

full snapshot Complete or partial snapshot
clusters_count, policies_count | Inventory size

content_hash Hash of raw JSON for idempotency
payload_size bytes File size

raw uri Path in the Data Lake

This table enables audit, volume reporting, and temporal correlation.

99

Tenant Server Architecture

3. cluster

Represents all known AKS clusters for a tenant.

Field Description
cluster_id Logical cluster identifier
customer_tenant_id Tenant owner
cluster_name, subscription_id, resource_group | ARM metadata

first _seen, last_seen SCD2 tracking fields

Useful for maintaining the catalog of clusters over time.

4. policy_definitions
Contains policy definitions:

e policy definition_id

e display_name

e category

o effect

e metadata (dynamic JSON)

e version

This table changes infrequently but is essential for enriching KPI outputs with
descriptions.

5. policy_assignments

Describes which policies are assigned to which tenant.
Fields include:

e policy assignment_id (not the ARM ID, which is not unique across ten-
ants),

e policy definition_id,
e customer_tenant_id,
e scope (subscription, resource group, or cluster),

e first_seen, last_seen, is_active.

This implements an SCD2 (slowly changing dimensions) model to track assign-
ment changes over time.

100

Tenant Server Architecture

6. policy_results

The primary table: contains the evaluation results for each snapshot.

Main fields:

e snapshot_id

e customer_tenant._id

e cluster_id

e policy_assignment_id

e policy definition_id

e status (Compliant, NonCompliant, NotApplicable)
e severity (Low, Medium, High)

e cvaluation_time

e details_json

Each row represents a single Azure Policy evaluation on an AKS cluster.

7. violations

Detailed violations at the Kubernetes resource level:

e resource kind (Pod, Deployment, Namespace, etc.),
e resource_name,

e namespace,

e reason,

e remediation,

e cvidence_json.

This table enables deep drill-down, supporting Grafana dashboards and audit
queries.

Multi-Tenancy in the ADX Data Model

The system must support multiple tenants in the same ADX cluster.
Multi-tenancy is handled through the following mechanisms.

101

Tenant Server Architecture

1. Logical separation via customer_tenant_id

All tables include the field:
customer_tenant_id: string

Queries in Grafana (or future APIs) are always filtered by tenant.

2. Controlled de-normalization
In the policy_results table, both policy_assignment_id and policy_definition_id
are stored, even though this introduces duplication.

This is intentional, because:

e ADX is not designed for repeated complex joins,

e controlled de-normalization significantly improves time-series query perfor-
mance,

e snapshots must remain independent of changes to policy assignments over
time.

This follows ADX guidance: prefer flat schemas and minimize joins.

5.4 Final Visualization of the Security Posture in
the Tenant Server

The final stage of the tenant server workflow is the design and implementation of
the summary dashboards, which form the “reading surface”. These dashboards
bring together all parts of the pipeline described in previous sections: the JSON
snapshots sent by the agents running in customer AKS clusters, their storage in
the centralized data lake, the ingestion into Azure Data Explorer, and finally the
queries executed by Grafana using KQL.

This section presents two main types of dashboards:

e a Global Overview dashboard, which aggregates data from all tenants
and all clusters (Figure 5.1),

e a Customer Dashboard, which filters the same metrics to a selected tenant
using a Grafana variable (Figure 5.2 and Figure 5.3).

102

Tenant Server Architecture

In all screenshots, the tenant and cluster names are entirely fictitious (for
example finbank-tenant, medcare-tenant, retailz-tenant, startupy-tenant and their
respective AKS clusters). Numerical values are synthetic but designed to reflect
realistic ranges, temporal variability, and the patterns expected from Azure Policy
evaluations across multiple Kubernetes clusters.

compliant

noncompliant

70.2%

‘medcare-tenant 66.9
7

Figure 5.1. Global Overview Dashboard of the AKSSF platform, aggregating
compliance data from all tenants and all AKS clusters.

5.4.1 Global Overview Dashboard

The Overview Dashboard (Figure 5.1) is the main observation point for governance
roles such as CISO, Security Leads, and cloud platform owners. Its goal is to
provide an immediate view of the security posture across the entire multi-tenant
environment, without focusing on individual violations.

At the top left is the Global compliance trend (30d) panel, a time-series
chart showing the compliance percentage over the last thirty days. Each point
on the chart is generated from a materialized view in Azure Data Explorer that
computes, for each day, the ratio of Compliant evaluations to the sum of Compliant
and NonCompliant within the policy_results table. The simulated oscillations
represent the effects of new releases, stricter policies, or remediation campaigns: a
sudden drop indicates regression, while an upward trend shows alignment to the
security baseline.

At the center of the top row is the Global compliance % gauge, which con-
denses the current posture into a single value. The scale is color-coded (red—yellow—green)
so that decision-makers can immediately assess whether the platform is in a risk
zone, a caution zone, or a stable zone. The displayed value (around 70% in the
example) represents compliance across all clusters and all tenants. This high-level
metric fits well with typical management expectations for a small set of clear KPIs.

To the right, the Global compliance panel breaks down the same value into
absolute counts of compliant and noncompliant evaluations. This contextualizes

103

Tenant Server Architecture

the percentage: 70% compliance on a few hundred evaluations has a very different
meaning compared to the same percentage over more than ten thousand checks.

At the center of the dashboard is the Customer X Domain compliance
heatmap. Each row corresponds to a fictitious tenant (startupy-tenant, retailx-
tenant, medcare-tenant, finbank-tenant), while the columns represent the six se-
curity domains defined in the logical model: governance and monitoring, identity
and access control, exposure reduction, data protection, workload hardening, and
supply chain/network/reliability. Each cell displays the tenant’s compliance per-
centage for that domain, color-coded from red to green.

Below the time-series graph, the Top 10 failing policies (last 7d) panel lists,
through a horizontal bar chart, the ten policies that produced the most violations
in the last week. The labels reference policies such as “Allowed seccomp profiles”,
“Disable automountServiceAccountToken”, “Pull images only with ImagePullSe-
crets”, and “Should not use naked pods”, mainly across domains 5 and 6.

At the bottom, the Latest violations (all customers) table shows the most
recent violations across all tenants. Rows are colored based on severity (red for
High, yellow for Medium), making critical issues easy to spot.

Overall, the Overview Dashboard visually expresses the idea of multi-tenant
security posture management. A single screen reveals the aggregated time
trend, global KPIs, domain-by-tenant distribution, the worst-performing policies,
and the latest violations.

5.4.2 Customer Dashboard: Per-Tenant Analysis

compliant

noncompliant

82.0%

Figure 5.2. Customer Dashboard for a selected tenant (example: finbank-tenant),
filtering compliance KPIs and violations to a single customer.

104

Tenant Server Architecture

8 01:00:00 to 2025-11-19 01:00:00

compliant

noncompliant

Figure 5.3. Customer Dashboard for a selected tenant (example: medcare-
tenant), showing the tenant-specific trend, failing policies, compliance by
domain, and latest violations.

The second dashboard type, the Customer Dashboard, focuses on a single tenant.
A Grafana variable (customer) selects the tenant of interest, and all panels are
recalculated using this filter.

As in the Overview Dashboard, the upper-left panel is the Compliance trend
(30d). For finbank-tenant (Figure 5.2), the curve oscillates around 80-85%, while
for medcare-tenant (Figure 5.3) the trend reflects a slightly more heterogeneous
environment.

The central gauge shows the tenant’s Global compliance %. The Customer
compliance panel expands this view by listing total compliant and noncompliant
evaluations.

The Top 10 failing policies (last 7d) panel identifies the policies that gener-
ate the most violations for the selected tenant, often exposing differences between
organizational processes or Kubernetes workload maturity across tenants.

The Compliance by domain table displays the six domains with compli-
ant /noncompliant counts and a color-coded compliance percentage.

At the bottom, the Latest violations table lists the most recent issues for
the selected tenant, while the Cluster compliance summary panel breaks down
posture by AKS cluster, showing heterogeneous maturity levels or consistent de-
ployment practices depending on the tenant.

105

Chapter 6

Tenant Client Architecture

6.1 Role of the Tenant Client

In the AKS security framework, the tenant client is the place where activity actually
happens. This is where AKS clusters live, where policies are concretely applied,
and where security and compliance evidence is collected. The tenant server defines
and publishes the rules, but the tenant client is the component that enforces them
on its clusters and measures how the real environment deviates from the desired
state.

From a conceptual perspective, this creates a clear separation between the gov-
ernance plane (tenant server) and the operational plane (tenant client). The
tenant server does not have administrative permissions on client AKS clusters and
does not perform any direct action on resources: it only exposes configuration-as-
data such as baselines, initiatives, assignments, and manifests. The tenant client,
on the other hand, is responsible for:

securely reading the configuration published by the server;

projecting it into its own domain (local subscriptions and AKS resources);

collecting telemetry, logs, and security indicators;

calculating and sending drift and compliance indicators back to the server.

This separation reflects a core principle of modern cloud architectures: keeping
the governance plane and the operational plane clearly distinct to achieve scalabil-
ity, control, and independence across administrative domains.

6.1.1 Operational Role of the Client in Relation to the Ten-
ant Server

The tenant client can be viewed as an intelligent agent operating within its own
perimeter while following centrally defined rules. In particular, it:

106

Tenant Client Architecture

e receives the global AKS security baseline from the tenant server. This
baseline is implemented through Azure Policy and initiatives and defines the
minimum mandatory requirements for all clusters;

e applies local tenant customizations (custom baseline) and cluster-specific
policies, for example to enforce or strengthen Network Policy, define specific
ingress restrictions, or introduce additional controls on container images and
registries;

e observes the actual behavior of clusters and resources using logs sent to Log
Analytics, and the evaluations from Azure Policy, Azure Monitor, and, when
enabled, Microsoft Defender for Cloud.

Operationally, the client is the execution arm of the framework. It is the only
component that has the permissions required to create or update policy assignments
on AKS clusters, interact with the cluster data plane, and access security logs. The
tenant server remains intentionally unaware of these operational details.

This architectural choice reduces coupling between domains and makes it ex-
plicit that responsibility for policy enforcement lies with the tenant client, in ac-
cordance with the cloud shared responsibility model.

6.1.2 Dual Logical Flow: Pull of Policies and Push of Audit
Data

The interaction between tenant client and tenant server can be described as the
combination of two complementary logical flows.

Pull flow. The client periodically downloads the security configuration from the
tenant server. An Azure Function authenticates securely to the server’s storage
using a dedicated Service Principal and OAuth2, through a Private Endpoint on
the Azure backbone.

The Function reads:

e the main tenant manifest, which indicates the current version of the baseline,
the custom baseline, and individual clusters;

e the detailed manifests (baseline, custom baseline, cluster), which contain ref-
erences to initiatives, assignments, and policy definitions;

e the JSON files containing the actual policies.

Using the configVersion field in the manifests, the client detects differences
between the local configuration and the one exposed by the server, downloading
only modified files and applying updates through Azure Policy.

107

Tenant Client Architecture

Push flow. The client sends audit information and compliance indicators to the

tenant server. This task is executed by another Azure Function (or extended logic),
which:

e reads from Log Analytics and from Azure Policy endpoints to determine com-
pliance;
e sends this information to the tenant server through a private network channel

implemented as an Azure Private Link Service.

This mechanism provides the tenant server with the metrics required for cen-
tralized dashboards, audit reports, and security alerts.

6.1.3 Security and Isolation Requirements in the Client Do-
main

To support this dual role, the tenant client must satisfy several security require-
ments.

Controlled connectivity. Connectivity to the tenant server must be tightly
controlled. The use of Azure Private Endpoint and Private Link ensures that all
traffic remains on the Microsoft private network.

Strong identity and access management.

e The Function that reads secrets from the client Key Vault uses a Managed
Identity.

e The tenant server’s Service Principal has only minimal permissions (e.g., Stor-
age Blob Data Reader on the dedicated container).

e RBAC ensures that no human identity or other application can use the cross-
tenant channel.

Internal isolation.

e A dedicated management VNet hosts the Audit subnet containing the Func-
tion and the Private Endpoints.

e NSG rules restrict outbound traffic to only required Azure services.

e AKS clusters reside in a separate VNet and cannot directly access the tenant
server’s storage.

All communication flows through the Function, which acts as an application
proxy and single point of control.

108

Tenant Client Architecture

6.2 Architectural Overview of the Tenant Client

The tenant client architecture represents the operational side of the framework
and provides the context in which the policies defined by the tenant server are
concretely applied to AKS clusters and where audit and compliance evidence is
collected. Its design is based on a model that clearly separates the governance
domain (tenant server) from the execution domain (tenant client), following the
principle of separation of concerns.

6.2.1 Overview of the Resources

The tenant client hosts a set of PaaS and IaaS resources that work together to
perform the full cycle of policy alignment, enforcement on AKS environments, and
transmission of indicators back to the tenant server. The infrastructure is typically
organized into two main areas: a management domain, built on PaaS resources,
and an application domain, where one or more AKS clusters and their connected
resources reside.

The key components are:

Azure Function. This Function periodically downloads policies from the tenant
server and sends audit and compliance indicators back to the central domain. It is
not publicly exposed and communicates only through Private Endpoints, following
Microsoft’s guidelines on private networking for serverless applications.

Tenant Client Key Vault. The Key Vault stores the secret of the Service Princi-
pal issued by the tenant server. It is also reachable only through a Private Endpoint.
The Function retrieves the secret using its Managed Identity, without exposing cre-
dentials in clear text or configuration.

Local Storage Account. The tenant client contains a storage account that keeps
the synchronized copy of the policies and manifests received from the server. As this
store is part of the security chain, it has Network Access disabled and is reachable
only through a Private Endpoint.

Private Endpoint to the Server’s PLS. A Private Endpoint connects the
tenant client to the Private Link Service (PLS) exposed by the tenant server. This
is the channel through which the Function sends audit and compliance indicators.
The PLS allows clients to reach an internal endpoint without using the public
network.

Together, the Function, the Key Vault, the local storage account and the Private
Endpoints form the core operational layer of the tenant client.

Parallel to the management domain, the tenant client hosts one or more AKS
clusters, placed in separate operational VNets and subnets. The clusters consume
the policies provided by the framework and return security, drift, and compliance

109

Tenant Client Architecture

signals. This model enforces a clear separation between the policy orchestration
layer (management network) and the application plane (workloads).

6.2.2 Relationship Between the Management Subscription
and the Operational Subscription

Many enterprise environments adopt a separation between the subscription used
for lifecycle and control tools and the subscription that hosts AKS clusters and ap-
plication resources. This separation is useful for security, audit, and accountability.

In the implemented model, the management subscription hosts:

e the AKSSF Function,

the management VNet,

the Private Endpoints,

the Key Vault and local storage account,

identities and roles required to apply policies to clusters.
The operational subscription contains:

e AKS clusters,
e workload application resources,

e monitoring and security agents.

The Function, operating in the management domain, only has the minimal
scopes required to apply policies through Azure Policy. It does not have visibility
into application resources. This ensures that any defect or compromise of the
management layer does not propagate to business workloads.

The relationship between the two subscriptions is governed through RBAC,
minimal roles, and explicit assignments. The Function receives write access only
to the scopes required for enforcement, while access to workload resources remains
under the full responsibility of the tenant client.

6.2.3 End-to-End Flow: From Policy Distribution to Audit
Collection

The tenant client’s operational model consists of two complementary movements:
from server to client, and from client to server.

110

Tenant Client Architecture

Flow from the Tenant Server to the Client. The Function authenticates
with OAuth2 using a Service Principal defined in the tenant server and protected
in the local Key Vault. It accesses the server’s storage account through a Private
Endpoint, downloads manifests, identifies the desired state via the configVersion
field, and updates the local storage account. It then applies or updates Azure Policy
assignments on the tenant’s AKS clusters.

Flow from the Tenant Client to the Server. The tenant client aggregates
and synthesizes compliance results from AKS clusters and sends them to the tenant
server through the Private Link Service exposed in the server domain.

The result is a fully private, secure, and declarative feedback loop: the tenant
server publishes the desired state, the tenant client applies and measures it, and the
results are returned to support centralized observability and higher-level security
controls.

6.3 Network Domain of the Tenant Client

The network architecture of the tenant client forms the security foundation of the
entire framework. All flows required for exchanging configurations and transmitting
audit data to the tenant server converge here. The tenant client network is designed
according to Zero Trust Networking and workload isolation principles: every PaaS
service must be reachable only through private connections (Azure Private Link),
and every application component must operate inside a controlled network domain.

The client network domain is therefore composed of a dedicated Virtual Net-
work, an audit/policy subnet, Network Security Groups, Private End-
points to the tenant server, Private Endpoints to local services, and sup-
porting private DNS zones for all involved service names.

6.3.1 Management Virtual Network and Audit/Policy Sub-
net

At the center of the tenant client network domain is the Management Virtual
Network, created specifically to isolate framework components from AKS clusters
and user applications. This VNet is not shared with workload environments and
does not host publicly exposed resources.

A dedicated subnet (e.g. audit, policy, or management-core) hosts three key
resource types:

1. The Azure Function responsible for pulling and pushing policies and audit
data.

2. The Private Endpoints used to securely reach remote and local services,
such as the tenant server storage account, the client Key Vault, and the
ingestion endpoint exposed through the tenant server’s Private Link Service.

111

Tenant Client Architecture

3. The local storage account (aks-security-framework-client-<tenant-id>),
accessible only via Private Endpoint and used as the repository for updated
policies and manifests.

This management subnet forms a tightly constrained domain, disconnected from

the public network and isolated from the AKS cluster. As a result, any compromise
in the workload plane cannot interfere with the governance plane. Interactions be-
tween the management VNet and operational VNets occur through Azure Resource
Manager RBAC rather than direct network traffic.

6.3.2 Network Security Group of the Management Subnet

The audit subnet is protected by a Network Security Group (NSG) enforcing
restrictive inbound and outbound rules. The Function requires no internet access,
as all communications occur through Private Endpoints.

The NSG enforces three principles:

1. Inbound traffic is fully blocked except for flows originating from Private
Endpoints. The Function is not reachable externally; management is done
through the Azure Portal.

2. Outbound traffic is restricted to the IPs of local and remote Private
Endpoints only, preventing unintended communication with the internet or
unrelated services.

3. No direct network flows toward the AKS cluster. All cluster operations
occur through Azure Policy, preventing role escalation or lateral movement.

This creates a domain where the network is not an attack vector: all critical

services are reachable only through private backend IPs, without public exposure
or complex routing.

6.3.3 Private Endpoint to the Tenant Server Storage

A key architectural element is the Private Endpoint connecting the tenant
client to the tenant server’s storage account. This allows the Function to
read manifests and policy files via a private channel, without crossing the public
internet. The connection request is initiated by the tenant client but must be
explicitly approved by the tenant server.

Once approved, DNS resolutions for:

<storage-server>.blob.core.windows.net

resolve to a private IP inside the client VNet via the Azure Private Link DNS

override mechanism. This ensures that:

112

Tenant Client Architecture

e the Function accesses the server storage as if it were an internal service,
e no packet leaves the Microsoft backbone,

e the server may revoke access at any time.

This provides secure multi-tenancy without requiring VPNs, ExpressRoute, or
complex firewalls.

6.3.4 Private Endpoints and DNS for Remaining Services

The tenant client uses multiple Private Endpoints to access internal and remote
services needed by the framework.

Private Endpoint to the local Key Vault. Essential because the Key Vault
has no public endpoint. The Function retrieves the Service Principal secret only
through this private connection.

Private Endpoint to the server’s Private Link Service. Used for sending
audit and compliance indicators. The ingestion endpoint is exposed as a custom
Private Link Service rather than a native PaaS resource. The tenant client creates
a Private Endpoint receiving a private IP in the audit subnet; the Function sends
traffic as if contacting an internal service.

Private DNS Zones. A Private DNS Zone ensures resolution for:

1. the server storage account (privatelink.blob.core.windows.net),
2. the client Key Vault (privatelink.vaultcore.azure.net),

3. the private HT'TP service exposed via the Private Link Service.

The zone is linked to the audit subnet VNet, ensuring all DNS resolutions occur
internally and preventing leakage to public DNS systems.

6.4 Local Policy Storage in the Tenant Client

The local storage account of the tenant client is the main connection point between
the governance logic provided by the tenant server and the operational plane that
applies configurations to AKS clusters. Unlike the tenant server storage, which
serves only as a publishing layer, the client storage acts as a local working area
where policies are replicated and consumed to manage the tenant’s clusters.

From a technological perspective, the client uses Azure Blob Storage to host
JSON files describing initiatives, assignments, policy definitions, and orchestration

113

Tenant Client Architecture

manifests. Blob Storage aligns well with the static, declarative, file-based nature
of these artefacts and scales without requiring rigid schemas. It also integrates
natively with RBAC, data encryption, Private Endpoints, and high availability.

A dedicated logical container is used, for example:
aks-security-framework-client-<tenant-id>/

This container acts as the root of the tenant’s entire security configuration:
replicated baseline, custom baseline, per-cluster configurations, and manifests.

6.4.1 Structure of the Local Storage

Inside the aks-security-framework-client-<tenant-id> container, the struc-
ture follows a stable and predictable schema, independent of the number of clusters.
It contains three main sections:

e a replicated global baseline,
e a tenant-specific custom baseline,

e a per-cluster configuration area.

This mirrors the conceptual separation between global requirements, tenant-
level extensions, and cluster-specific specializations.

6.4.2 General Manifest
The general manifest provides the index for the entire configuration:
manifest-<tenant-id>. json

If its configVersion matches the version from the tenant server, no update is
required. If it differs, the manifest indicates which subordinate manifests must be
updated.

6.4.3 Replicated GGlobal Baseline
The global baseline defined by the tenant server is replicated locally under:

baseline/
manifest-baseline-<tenant-id>. json
baseline-assignment-<tenant-id>. json
baseline-initiative. json
policy-definition/
<policy-id-1>.json
<policy-id-2>.json

114

Tenant Client Architecture

The file baseline-initiative. json aggregates baseline policies. Custom pol-
icy definitions are stored locally; built-in policies are referenced by ID.

The file baseline-assignment-<tenant-id>. json describes how the baseline
is assigned to AKS clusters. It is stored locally so that the Function can:

e verify consistency with the tenant server,

e reapply or realign assignments when needed.

The manifest manifest-baseline-<tenant-id>. json serves as the drift iden-
tifier and index for all baseline artefacts.

6.4.4 Tenant Custom Baseline

Above the global baseline, the tenant server defines a custom baseline, stored as:

custom-baseline/
manifest-custom-baseline-<tenant-id>. json
custom-baseline-initiative-<tenant-id>. json
custom-baseline-assignment-<tenant-id>. json
policy-definition/
custom-baseline-<tenant-id>-<policy-id-1>.json

The initiative aggregates tenant-specific policies; the assignment describes how

they are applied to clusters. The manifest provides the drift identifier and paths
for updates.

6.4.5 Per-Cluster AKS Configurations

Each cluster has its own configuration directory:

clusters/
<tenant-id>-<cluster-id>/
manifest-<tenant-id>-<cluster-id>. json
initiative-<tenant-id>-<cluster-id>. json
assignment-<tenant-id>-<cluster-id>. json
policy-definition/
<tenant-id>-<cluster-id>-<policy-id-1>. json

These files describe cluster-specific requirements that should not be elevated to
the tenant-wide baseline. Typical examples include stricter controls for internet-
facing clusters or special requirements for regulated workloads.

The manifest always serves as the drift identifier for the cluster.

115

Tenant Client Architecture

6.4.6 Relationship Between Local and Server Structures

The tenant client’s structure is a consistent reflection of that published by the
tenant server:
e the server exposes a global baseline container,
e cach tenant has a dedicated area with its main manifest, baseline assignment,
custom baseline, and per-cluster configurations.
Locally, the baseline is projected into the tenant namespace through:

manifest-baseline-<tenant-id>. json

The main tenant manifest downloaded from the server establishes the link.
It tells the Function which secondary manifests must be consulted to determine
the complete desired state. This design allows the tenant server structure to evolve
(new clusters, updated baselines) without requiring logic changes in the Function.

6.4.7 Local Manifests and Desired State

Local manifests implement the desired state model for AKS security.

During synchronization, the Function:

1. compares local and remote configVersion values,
2. downloads updated manifests and JSON files if required,
3. updates the corresponding content locally,

4. applies or realigns policy assignments to AKS clusters.

The Function therefore operates in a declarative manner, aligning actual con-
figuration with the desired state. The local Blob Storage becomes the materialized
form of the tenant’s desired security model: aligned with the tenant server but
enriched with tenant-specific and cluster-specific elements.

6.5 Azure Key Vault of the Tenant Client and
Secret Management

The Azure Key Vault of the tenant client is the central component responsible
for protecting the credentials required to establish secure communication with the
tenant server. In a multi-tenant and cross-directory context such as the AKS Se-
curity Framework, the Key Vault guarantees isolation of secrets, controlled access

116

Tenant Client Architecture

through managed identities, and the complete absence of plaintext credentials in
application components.

Integrated in the tenant client VNet through a Private Endpoint, the Key Vault
is accessed only at execution time by the Azure Function, which retrieves the tokens
and identifiers required for cross-tenant communication. No secret is ever exposed
in application code, configuration files, or public networks.

6.5.1 Key Vault as the Central Point for Secret Manage-
ment

Azure Key Vault is the recommended service for storing application secrets, cer-
tificates, and keys, providing hardware-assisted encryption, native auditing, and
fine-grained access control through RBAC or access policies.

In the tenant client, the Key Vault stores only the secrets required for commu-
nication with the tenant server, specifically for OAuth2 authentication through a
Service Principal.

The Function does not contain credential files nor permanent environment vari-
ables. At every execution, it dynamically retrieves the needed values via its Man-
aged Identity. This avoids accidental exposure of secrets in repositories, logs, or
configuration artefacts.

6.5.2 Secrets Related to Cross-Tenant Communication

To access the tenant server’s storage account using OAuth2, the Key Vault stores
five categories of values:

1. Tenant ID of the server Used to build the token request:

https://login.microsoftonline.com/<tenant-id>/oauth2/v2.0/token

2. Client ID of the Service Principal The public identifier of the application
registered in the tenant server directory.

3. Client Secret The secret associated with the Service Principal, required for
the client _credentials OAuth2 flow. It is stored securely and accessible only via
the Function’s Managed Identity.

4. Name of the tenant server storage account Used to compose the Blob
Storage URL:

https://<storage-name>.blob.core.windows.net

117

Tenant Client Architecture

5. Name of the tenant’s dedicated container FEach tenant has an isolated
container governed by RBAC.

These values form the minimal set required to securely pull manifests, initiatives,
and policies from the tenant server.

6.5.3 Key Vault Private Endpoint and VNet Integration

To ensure the Key Vault is never reachable on public endpoints, the tenant client
configures a Private Endpoint in the management subnet.

The integration steps are:

1. Public network access is disabled on the Key Vault.
2. A Private Endpoint is created inside the management subnet.

3. A Private DNS record is added automatically:
<kv-name>.privatelink.vaultcore.azure.net -+ <private-ip>

4. The Function, integrated with the same VNet, resolves and reaches the Key
Vault internally.

This guarantees full isolation from public networks and prevents unauthorized
access.

6.5.4 Accessing the Key Vault via Managed Identity

The Azure Function uses its system-assigned Managed Identity to authenticate to
the Key Vault. The identity is granted the role:

Key Vault Secrets User

(or an equivalent RBAC role).

After configuration, the Function retrieves secrets by calling Key Vault end-
points through the Private Endpoint using the Azure Identity library, such as
DefaultAzureCredential or ManagedIdentityCredential.

All communication occurs:

without public internet traffic,

without plaintext secrets,

without SAS tokens,

without unauthenticated flows.

118

Tenant Client Architecture

6.5.5 Secret Rotation Model

Secret lifecycle management is crucial. If a Service Principal secret were compro-
mised, an attacker could read tenant policies from the central server. For this
reason, periodic rotation is recommended.

When the secret is rotated:

1. A new client secret is generated in the tenant server directory.
2. The updated secret is securely transmitted to the tenant client.
3. The value is updated in the client Key Vault.

4. The Function automatically uses the new secret at the next execution.

No code changes, redeployments, or configuration updates are required. This is
a direct benefit of the secret-less application model enabled by Managed Identity.

6.6 Azure Functions in the Tenant Client

In the tenant client, the orchestration of all policy alignment and compliance collec-
tion tasks is delegated to a set of specialized Azure Functions. These functions are
not generic automation components; they explicitly implement the two core flows
of the framework:

1. Pull of configurations from the tenant server (policy synchronization)

2. Push of audit and compliance indicators to the tenant server (results
export)

A separate auxiliary function provides connectivity testing and diagnostics, val-
idating network configuration and identity setup.

All functions share key architectural foundations:

e execution inside a Function App integrated with the management VNet
via regional VNet integration

e secure access to secrets through Azure Key Vault using the Function’s
Managed Identity

e communication with the tenant server storage account and with the au-
dit ingestion endpoint exclusively through Private Endpoints and Pri-
vate Link Service

e use of a dedicated Service Principal authorized via RBAC at the container
level for remote storage access

In this architecture, Azure Functions act as the execution agent of the framework
within the tenant client domain: they apply the configuration published by the
tenant server and send back compliance results.

119

Tenant Client Architecture

6.6.1 Policy Synchronization Function

The primary function, AKSSF Policy Sync, keeps the local policy storage of the
tenant client aligned with the central storage of the tenant server. It is implemented
as a Timer Trigger, executed periodically (e.g. every 15-30 minutes), consistent
with Azure’s guidance for scheduled serverless operations.

Although implemented in Python, its logical workflow is language agnostic and
follows well-defined phases.

a) Reading Secrets from Key Vault

At startup, the Function uses its Managed Identity to authenticate to the tenant
client Key Vault and retrieve:

e AKSSF-SERVER-TENANT-ID

AKSSF-SERVER-SP-CLIENT-ID and AKSSF-SERVER-SP-CLIENT-SECRET

AKSSF-SERVER-STORAGE-ACCOUNT

AKSSF-SERVER-TENANT-CONTAINER

additional operational parameters (e.g. local container names or feature flags)

This step uses the Azure Key Vault Secrets SDK, which authenticates through
Azure AD without static credentials. Because the secrets are retrieved dynami-
cally, rotating the Service Principal credential on the tenant server simply requires
updating the Key Vault value.

b) Authenticating to the Tenant Server Storage

With the retrieved parameters, the Function initializes a ClientSecretCredential
bound to the tenant server directory and creates a BlobServiceClient targeting
the server storage account.

Two security layers apply:

1. Authentication: the Service Principal obtains an OAuth2 token for storage
access.

2. Authorization: the Service Principal holds only the Storage Blob Data
Reader role on its dedicated container, ensuring tenant isolation.

All traffic routes through a Private Endpoint, not the public internet, using
private DNS resolution via <storage>.privatelink.blob.core.windows.net.

120

Tenant Client Architecture

every 15 minutes

Initialize logging

Read environment variables
AKSSF_KV_URL, AKSSF_TENANT_ID,
AKSSF_LOCAL_STORAGE_ACCOUNT,
AKSSF_LOCAL_STORAGE_CONTAINER

g ™

Authenticate to Key Vault
using Managed Identity

Read secrets:
AKSSF-SERVER-TENANT-ID,
AKSSF-SERVER-SP-CLIENT-ID,
AKSSF-SERVER-SP-CLIENT-
SECRET,
AKSSF-SERVER-STORAGE-
ACCOUNT,
AKSSF-SERVER-TENANT-
CONTAINER

l

Build ClientSecretCredes

for server tenant

Server BlobServiceClient
DU Local BlobServiceClient
with DefaultAzureCredential
ContainerClient

l

Download manifest-.json
from server container

Read manifest- json
from local storage

Compare configversion

tenant/baseline/custom/cluster

No differences Differences present

Log: configuration alread, For each section with a
8! §u o Y different configersion:
8 baseline, custom baseline,
Function end
cluster

l

Download secondary

For each secondary
manifest:
download initiatives,
assignments,
policy definitions from the
server

!

Write/update files in
local storage preserving
folder structure

!

Update local manifest
with new configVersion
values

!

Log detailed result:
updated sections and any
errors

!

Figure 6.1. Synchronization Function Flow Chart

c) Reading the Main Manifest and Secondary Manifests
The Function downloads the tenant’s main manifest:
manifest-<tenant-id>. json

This file provides:
121

Tenant Client Architecture

the tenant-level configVersion

pointers to the global baseline manifest

pointers to the tenant custom baseline manifest

a list of cluster manifests with their versions

The Function then:

1. retrieves the global baseline manifest
2. retrieves the tenant custom baseline manifest

3. retrieves all cluster manifests

For each manifest, the Function compares the server’s configVersion with the
local one. On mismatch—or if the local version is missing—it proceeds to update
the relevant content.

This implements a desired state model: the tenant server defines the desired
configuration, and the client reconciles its local state accordingly.

d) Selective Download of Modified Artifacts

For each component whose configVersion has changed, the Function:

e downloads the referenced artefacts (initiatives, assignments, policy defini-
tions)

e stores them in the tenant client’s local storage, preserving the hierarchical
structure

e updates the corresponding local manifest

The download is selective: unchanged artefacts are not fetched, minimizing
execution time and network usage. The local storage therefore becomes a coherent,
versioned mirror of the policy state published by the tenant server.

6.6.2 Audit Collection and Export Function

The second function, AKSSF Audit Exporter, completes the logical cycle of the
framework by enabling the flow in the opposite direction: from the tenant client
to the tenant server. While the Policy Sync function ensures that the client is
aligned with the baseline, the Audit Exporter allows the tenant server to observe
and measure this alignment.

This function is also typically implemented as a Timer Trigger, executed at
regular intervals (e.g. every 30 or 60 minutes) to collect and consolidate audit and
compliance information.

122

Tenant Client Architecture

Timer trigger
every 15 minutes

l

Initialize logging

Read environment variables
AKSSF_KV_URL,
AKSSF_TENANT_ID,
AKSSF_AUDIT_ENDPOINT_URL

l

Authenticate to Key Vault
using Managed Identity

l

Read any supporting
secrets:
e.g. AKSSF-AUDIT-HMAC-KEY

!

Collect audit data:
Azure Policy compliance
state,
events from Log Analytics /
AKS

l

Read local manifest
to obtain local
configversion

!

Build JSON payload
with: tenantId,
timestamplitc,

configVersion, audit data

l

If HMAC key is present:
calculate X-AKSSF-Signature

!

Prepare HTTP POST request:
URL =
AKSSF_AUDIT_ENDPOINT_URL,
headers + JSON payload

l

Send request to the
tenant server endpoint

20 Temporary error

Log error, possible retry

Log success result
or enqueue for

and sending metrics

retransmission

Figure 6.2. Audit Collection and Export Flow Chart

a) Role as a Compliance Agent in the Tenant Client

The function acts as a local compliance agent. It queries the available APIs and
data sources inside the tenant client domain and builds a structured JSON payload
to send to the tenant server.

The main data sources include:

e compliance state from Azure Policy (policies and initiatives applied to AKS
clusters), obtained through Azure Policy Insights / Policy States

e logs and metrics from Azure Monitor / Log Analytics for AKS clusters
and security components (less relevant in the reference implementation)

123

Tenant Client Architecture

The function has complete visibility into the tenant client security perimeter
while remaining isolated within its own domain.

b) Aggregation and Normalization of Audit Data

After collecting data from the various sources, the function performs a normaliza-
tion phase in which it:

e converts compliance results into a concise form (e.g. number of non-compliant
assignments, list of critical failed policies, summary indicators)

e enriches each record with metadata related to the tenant, the cluster, the
policy version (configVersion), and the collection timestamp

e structures the final result into a JSON payload suitable for ingestion by the
collection service running in the tenant server (e.g. an HTTP Function or a
custom endpoint connected to Event Hub or Data Explorer)

This normalization allows the tenant server to treat all tenants uniformly,
regardless of their AKS topology or policy set.

c) Secure Transmission Through Private Link Service

The payload is not sent to a public endpoint. Instead, it is delivered to a private
HTTP endpoint exposed in the tenant server through Azure Private Link
Service. From the tenant client perspective, the function calls an URL resolved
by the local Private DNS zone into a private IP associated with the Private
Endpoint linked to the Private Link Service.

This mechanism ensures that:

e audit traffic never crosses the public internet

e only tenants with an approved Private Endpoint can reach the ingestion end-
point

e any attempt to impersonate the client from unauthorized hosts is blocked by
routing and authorization controls

The HTTP ingestion endpoint in the tenant server may additionally validate:

e the identity of the caller (e.g. via a token linked to the client Managed Identity
or a dedicated telemetry secret)

e the consistency of the tenant ID and cluster identifiers contained in the pay-
load

e the integrity of the message (e.g. through HMAC signatures or content hash
verification)

124

Chapter 7

Conclusions

The work presented in this thesis started from a concrete operational problem faced
by modern organizations that rely on AKS as a strategic platform for containerized
workloads. In particular, the focus was on environments where a single organization
manages multiple Azure tenants, each hosting one or more AKS clusters that often
belong to distinct customers or independent business units. In these scenarios,
security and governance requirements are typically strict, the need for isolation
between tenants is non negotiable, and at the same time there is a strong demand
for centralized visibility and standardization. Native Azure tools partially address
these needs, but they tend to assume a shared management plane, and in some
cases introduce trust relationships, like those required by Azure Lighthouse, that
are difficult to accept in highly regulated or strongly segregated contexts. The
central question of this thesis was therefore how to reconcile a rigorous separation
of customer environments with the need to define, distribute, and continuously
assess a common security standard for AKS clusters at scale.

To answer this question, the thesis first provided a structured analysis of the
AKS ecosystem and of its main security challenges. The background chapter ex-
amined the internal architecture of AKS, the shared responsibility model between
Microsoft and the customer, the main attack surfaces of Kubernetes, and the role
of identity, network security, and workload hardening in a Zero Trust perspective.
This analytical foundation was essential to understand that securing AKS cannot
be reduced to a set of isolated best practices, but requires a systemic approach
that covers governance, identity, network, data protection, and workloads in a co-
herent way. From this analysis emerged the need for a formalized security baseline
capable of translating high level requirements and official recommendations into
concrete, verifiable, and actionable controls that can be applied consistently across
heterogeneous clusters.

Starting from this foundation, the thesis defined an AKS specific security base-
line built entirely on Azure Policy for Kubernetes, used as the primary enforcement
and measurement tool. The baseline was structured into logical domains that re-
flect the main dimensions of cluster security, such as governance and observability,
identity and access management, network exposure and segmentation, protection
of data and secrets, and workload hardening. Each domain groups built in poli-
cies that implement practices recommended by official documentation, community

125

Conclusions

benchmarks, and recognized security standards. Particular emphasis was given
to the systematic use of Audit mode for all policies, so that the baseline could
initially be adopted as a measurement and assessment instrument rather than as
an enforcement mechanism. This choice allowed the baseline to become a tool
for understanding the real security posture of each cluster, for identifying recurring
misconfigurations, and for planning remediation and progressive hardening without
introducing operational risk.

On top of this baseline, the thesis designed and implemented the AKS Security
Framework (AKSSF), a complete Azure based architecture for the centralized man-
agement of the defined standard and for the continuous collection of compliance
data from distributed tenants. The design is explicitly oriented toward multi tenant
enterprise scenarios where each customer or business unit is hosted in a dedicated
Azure tenant. The framework introduces a clear separation between two functional
blocks. The tenant server acts as the governance domain: it publishes the global
baseline, allows the definition of tenant specific extensions and per cluster con-
figurations, receives compliance snapshots, and exposes visualization and analysis
capabilities for the entire ecosystem. The tenant client, deployed in each tenant
that hosts AKS clusters, acts as the operational execution point: it synchronizes
policies from the central repository, applies them locally through Azure Policy and
Gatekeeper, and periodically exports audit data to the tenant server.

A key contribution of the work is the declarative model used to represent the
configuration state of the system. Baselines, tenant customizations, and cluster
specific configurations are described through a hierarchy of JSON manifests stored
in Azure Blob Storage. At the global level, a manifest describes the standard base-
line shared by all clusters. Additional manifests define, for each tenant, the policies
that extend the global standard, and further manifests describe the configuration of
individual clusters. This approach allows a clear separation of concerns: the global
baseline expresses the minimum common security level, tenant manifests represent
organizational specific requirements, and cluster manifests capture local variations
that are justified by the characteristics of individual environments. The manifest
model is versioned, supports evolution of the configuration over time, and pro-
vides the basis for future extensions involving integrity checks and more advanced
attestation mechanisms.

From an infrastructure perspective, the thesis shows how it is possible to com-
bine Azure native services to build a secure and scalable framework without com-
promising tenant isolation. On the tenant server side, the policy repository is
hosted in a storage account accessible only through Private Endpoints, protected
by Azure RBAC with per tenant segregation at the container and path level. A
second storage account acts as a centralized data lake that collects raw compliance
snapshots from all tenants. An ingestion pipeline imports these snapshots into
Azure Data Explorer, where they are expanded, normalized, and correlated into a
logical data model that includes tables for snapshots, clusters, policy results, and
violations. Materialized views compute key indicators such as global compliance
scores, trends over time, per tenant posture, and the most frequently violated poli-
cies. Grafana, configured with a KQL data source, provides the visualization layer
through dashboards that offer both a global overview and detailed per tenant or
per cluster analysis.

126

Conclusions

On the tenant client side, the framework is deliberately lightweight but strongly
segregated. Each client environment hosts a management virtual network with dedi-
cated subnets for the audit and synchronization functions and for Private Endpoints
to the tenant server. Network Security Groups restrict both inbound and outbound
connectivity to the minimum necessary, and Azure Private Link ensures that traffic
towards the tenant server never traverses the public internet. Credentials used for
cross tenant communication are stored in an Azure Key Vault integrated into the
same virtual network via Private Endpoint, and access to the vault is mediated
through managed identities to avoid static secrets. The core of the client logic
is implemented through Azure Functions: one function periodically synchronizes
local storage with the manifests published by the tenant server, while another col-
lects compliance data from Azure Policy Insights and Gatekeeper and pushes it to
the central ingestion endpoint. This design ensures that the tenant server never
requires direct access to client clusters or to their subscriptions; all interactions
are initiated from within the tenant client domain, preserving the required security
boundaries.

From the perspective of the initial problem, the implemented framework demon-
strates that it is possible to obtain centralized visibility and governance over mul-
tiple, isolated AKS environments without introducing a central management plane
that can modify or directly control customer resources. The AKSSF solution of-
fers a single, consistent security baseline, adjustable at tenant and cluster level
through declarative manifests, and a continuous feedback loop in which audit data
is collected, analyzed, and visualized across the entire landscape. The dashboards
built on Azure Data Explorer provide immediate insight into the adherence of each
cluster to the baseline, highlight the most critical deviations, and make it easier
to prioritize remediation efforts. At the same time, the architecture respects the
separation between tenants by using only pull and push flows initiated from the
client side and by relying on private connectivity and scoped access rights.

Despite these achievements, the work also has intrinsic limitations that define
its scope and suggest future research directions. First, the baseline and the frame-
work focus exclusively on native AKS clusters and do not cover Azure Arc enabled
Kubernetes or other hybrid and multi cloud scenarios. Extending the model to
those environments would require revisiting some assumptions about the policy
engine, the available telemetry, and the management plane. Second, the baseline
is intentionally limited to built in Azure policies and does not explore advanced
scenarios involving custom OPA rules or complex policy compositions tailored to
specific regulatory frameworks. Third, the framework operates entirely in Audit
mode and does not implement automatic remediation or enforcement mechanisms;
remediation remains a manual or external process, guided by the insights provided
by the dashboards. Finally, the performance and scalability of the data model in
Azure Data Explorer, while adequate for the reference environment used in this
work, would need empirical evaluation and possible optimization in the presence of
thousands of clusters and very high frequency of compliance snapshots.

127

Chapter 8

Future Work

This chapter outlines the most relevant areas of future work, focusing both on
technical extensions of the current design and on improvements aimed at making
the framework more usable and more deeply integrated into enterprise processes.

8.1 From Audit-Only to Progressive Enforcement
and Remediation

The current implementation intentionally applies all Azure Policy definitions in Au-
dit mode. This choice is aligned with the goal of understanding the existing security
posture without risking disruptions to workloads that may not yet conform to the
baseline. A natural next step is to move towards a progressive enforcement model
in which selected controls, once validated and stabilized, are gradually switched to
Deny or DeploylfNotEzists.

Future work could define a structured roadmap for this transition, including;:

e criteria for identifying mature clusters or tenants that are ready for enforce-
ment (e.g., low violation rates, stable configuration, critical business impact),

e classification of policies according to their enforcement risk, starting with
low-impact controls (such as diagnostic configuration) before moving to more
intrusive ones (such as Pod Security restrictions),

e integration with remediation workflows so that violations can trigger auto-
mated or semi-automated corrections, rather than remaining purely observa-
tional signals.

By closing the loop between detection and enforcement, the framework would
evolve from a posture monitoring system into a more comprehensive security control
plane, while still preserving the flexibility needed in heterogeneous environments.

128

Future Work

8.2 Extended Telemetry and Runtime Signal In-
tegration

Another important axis of evolution is the integration of additional security signals
beyond static configuration posture. While this thesis focuses on Azure Policy
results and related compliance data, modern Kubernetes security also relies heavily
on runtime protections and supply-chain integrity.

Future work could extend the ingestion pipeline and the underlying data model
to include:

e alerts and recommendations from Microsoft Defender for Containers, such
as anomalous process behavior, suspicious network activity, or vulnerability
findings on running workloads;

e image-scanning results from Azure Container Registry or external scanners,
including CVE status, base image provenance, and adherence to organiza-
tional image registries;

e evidence related to software supply chain, such as attestations, signature ver-
ification outcomes, or SBOM-based checks.

These additional data sources could be correlated with policy violations to pro-
vide a richer view of risk. For instance, repeated violations of image-related poli-
cies combined with high-severity vulnerabilities on the same images would high-
light clusters or tenants requiring immediate attention. The dashboards could be
extended to surface these combined indicators and to support prioritization of re-
mediation efforts.

8.3 Policy Maker: User-Friendly, Granular Pol-
icy Authoring

One of the most promising directions for future work is the introduction of a Policy
Maker component: a user-friendly layer that sits on top of the current manifest and
Azure Policy model and allows security teams to design, refine, and apply policies
in a more intuitive way. While the present framework assumes that policies and
initiatives are authored directly as JSON artifacts, this approach can be complex
and error-prone, especially when dealing with large numbers of rules or with highly
granular configurations.

The Policy Maker would aim to:

e provide a high-level, intent-based interface for expressing security require-
ments (e.g., “this tenant’s internal services must not be reachable from other
tenants” or “developers in team X can only administer namespaces A and
Bn);

e automatically translate these intents into concrete artifacts:

129

Future Work

— Azure Policy definitions and assignments for AKS clusters,
— Kubernetes NetworkPolicy objects for fine-grained traffic segmentation,

— RBAC roles and bindings that enforce least privilege at user, group, and
service account level.

e manage policy variants at different scopes (global baseline, per-tenant cus-
tomizations, per-cluster overrides) without requiring manual duplication of

JSON files;

e offer policy simulation and impact analysis, showing which clusters, names-
paces, or users would be affected by a proposed change before it is actually
applied.

In particular, network segmentation and RBAC are areas where the need for
granularity is especially strong. Today, designing a coherent set of NetworkPolicy
resources across multiple namespaces and tenants requires deep Kubernetes ex-
pertise and careful manual coordination. Similarly, crafting RBAC roles that are
both sufficiently permissive for operational needs and sufficiently restrictive for se-
curity is a complex task. A Policy Maker tool could guide administrators through
templates, wizards, and visualizations, reducing the risk of misconfiguration and
making advanced hardening strategies accessible to a wider audience.

From an architectural perspective, the Policy Maker would likely interact with
the Tenant Server’s manifest repository, generating or updating manifests and pol-
icy artifacts while respecting the versioning model already in place. This would
preserve the declarative nature of the framework while significantly improving its
usability.

8.4 Automated Onboarding of New Tenants and
Clusters

Another area where the framework can be extended is the automation of onboarding
for new tenants and new AKS clusters. In the current implementation, the steps
required to integrate a new tenant or cluster into the AKSSF architecture are well-
defined but still involve several manual or semi-manual actions, such as:

e provisioning the storage container and manifest structure for the new tenant
on the Tenant Server;

e creating the Service Principal and associated RBAC assignments needed for
cross-tenant access to storage;

e configuring the Tenant Client’s network (Virtual Network, subnets, Private
Endpoints, Private DNS zones) and the corresponding Private Link Service
connections;

e deploying the local components (Function Apps, storage accounts, Key Vault)
and wiring them into the existing manifest and synchronization process.

130

Future Work

Future work could transform this sequence into a standardized, fully automated
onboarding pipeline. Possible directions include:

e defining an Infrastructure-as-Code (IaC) template (for example using Bicep
or Terraform) that encapsulates all the required resources and configurations
for both the Tenant Server and the Tenant Client side;

e integrating the onboarding flow with a self-service portal or ticketing system,
where a request for a new tenant or new cluster triggers the execution of the
[aC pipeline and automatically registers the new environment in the manifest
hierarchy;

e generating initial policy assignments and manifests for the new tenant based
on predefined profiles (e.g., “development”, “standard production”, “highly
regulated”), which can then be refined through the Policy Maker component;

e automatically hooking the new tenant’s data sources into the ingestion pipeline
and dashboards, so that posture visibility becomes available as soon as the
first compliance snapshots are produced.

Such automation would not only reduce the operational overhead and the risk
of misconfiguration during onboarding, but also enforce consistency from the very
first day a tenant or cluster is brought under governance. In large organizations
with frequent onboarding events, this could be a decisive factor for the practical
adoption of the framework.

131

Bibliography

[1]
2]

[9]
[10]

[11]

[15]
[16]
[17]

[18]

M. Learn, “What is azure kubernetes service (aks),” https://learn.microsoft.
com/en-us/azure/aks/what-is-aks, 2024.

——, “Aks core concepts: Azure managed control plane,” https://learn.
microsoft.com /en-us/azure/aks/core-aks-concepts#control-plane, 2024.

——, “Aks architecture and workloads,” https://learn.microsoft.com/azure/
aks/concepts-clusters-workloads, 2024.

——, “Use multiple node pools in aks,” https://learn.microsoft.com/it-it/
azure/aks/use-system-pools?source=recommendations&tabs=azure-cli, 2024.
K. Documentation, “Pods: Kubernetes concepts,” https://kubernetes.io/
docs/concepts/workloads/pods, 2024.

——, “Kubernetes deployments,” https://kubernetes.io/docs/concepts/
workloads/controllers/deployment, 2024.

——, “Kubernetes namespaces,” https://kubernetes.io/docs/concepts/
overview /working-with-objects/namespaces, 2024.

M. Learn, “Aks node resource group architecture,” https://learn.microsoft.
com/azure/aks/faq?tabs=azure-cli##what-is-the-aks-node-resource-group,
2024.

——, “Azure cni overlay,” https://learn.microsoft.com/azure/aks/
azure-cni-overlay, 2024.

——, “Aks networking concepts,” https://learn.microsoft.com/azure/aks/
concepts-network, 2024.

——, “Azure cni powered by cilium,” https://learn.microsoft.com/azure/aks/
azure-cni-powered-by-cilium, 2023.

C. Project, “Cilium documentation,” https://docs.cilium.io/en/stable, 2024.
K. Documentation, “Kubernetes network plugins,” https://kubernetes.io/
docs/concepts/extend-kubernetes/compute-storage-net /network-plugins,
2024.

——, “Kubernetes networking concepts,” https://kubernetes.io/docs/
concepts/cluster-administration /networking, 2024.

M. Learn, “How kubernetes networking works in aks,” https://learn.microsoft.
com/azure/aks/concepts-network#how-kubernetes-networking-works, 2024.
——, “Limit and control aks egress traffic,” https://learn.microsoft.com/
azure/aks/limit-egress-traffic, 2024.

M. Azure, “Network security groups overview,” https://learn.microsoft.com/
azure/virtual-network /network-security-groups-overview, 2025.

K. Documentation, “Kubernetes network policies,” https://kubernetes.io/
docs/concepts/services-networking /network-policies, 2024.

132

https://learn.microsoft.com/en-us/azure/aks/what-is-aks
https://learn.microsoft.com/en-us/azure/aks/what-is-aks
https://learn.microsoft.com/en-us/azure/aks/core-aks-concepts#control-plane
https://learn.microsoft.com/en-us/azure/aks/core-aks-concepts#control-plane
https://learn.microsoft.com/azure/aks/concepts-clusters-workloads
https://learn.microsoft.com/azure/aks/concepts-clusters-workloads
https://learn.microsoft.com/it-it/azure/aks/use-system-pools?source=recommendations&tabs=azure-cli
https://learn.microsoft.com/it-it/azure/aks/use-system-pools?source=recommendations&tabs=azure-cli
https://kubernetes.io/docs/concepts/workloads/pods
https://kubernetes.io/docs/concepts/workloads/pods
https://kubernetes.io/docs/concepts/workloads/controllers/deployment
https://kubernetes.io/docs/concepts/workloads/controllers/deployment
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
https://learn.microsoft.com/azure/aks/faq?tabs=azure-cli#what-is-the-aks-node-resource-group
https://learn.microsoft.com/azure/aks/faq?tabs=azure-cli#what-is-the-aks-node-resource-group
https://learn.microsoft.com/azure/aks/azure-cni-overlay
https://learn.microsoft.com/azure/aks/azure-cni-overlay
https://learn.microsoft.com/azure/aks/concepts-network
https://learn.microsoft.com/azure/aks/concepts-network
https://learn.microsoft.com/azure/aks/azure-cni-powered-by-cilium
https://learn.microsoft.com/azure/aks/azure-cni-powered-by-cilium
https://docs.cilium.io/en/stable
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins
https://kubernetes.io/docs/concepts/cluster-administration/networking
https://kubernetes.io/docs/concepts/cluster-administration/networking
https://learn.microsoft.com/azure/aks/concepts-network#how-kubernetes-networking-works
https://learn.microsoft.com/azure/aks/concepts-network#how-kubernetes-networking-works
https://learn.microsoft.com/azure/aks/limit-egress-traffic
https://learn.microsoft.com/azure/aks/limit-egress-traffic
https://learn.microsoft.com/azure/virtual-network/network-security-groups-overview
https://learn.microsoft.com/azure/virtual-network/network-security-groups-overview
https://kubernetes.io/docs/concepts/services-networking/network-policies
https://kubernetes.io/docs/concepts/services-networking/network-policies

Bibliography

[19]
[20]
[21]
[22]

[23]

[24]

[25]

[20]
[27]

28]

[31]
[32]
[33]
[34]

[35]

M. Learn, “Use network policies in aks,” https://learn.microsoft.com/azure/
aks/use-network-policies, 2024.

NIST, “Nist sp 800-190: Application container security guide,” https://csrc.
nist.gov/publications/detail /sp/800-190/final, 2017.

MITRE, “Mitre att&ck for containers,” https://attack.mitre.org/matrices/
enterprise/containers, 2025.

K. Documentation, “Rbac authorization,” https://kubernetes.io/docs/
reference/access-authn-authz/rbac, 2024.

CNCF, “Cloud native security whitepaper 2023-2024,” https://github.com/
cncf/tag-security /blob/main/community /resources/security-whitepaper /v2/
CNCF _cloud-native-security-whitepaper-May2022-v2.pdf, 2024.

K. Documentation, “Encrypting secret data at rest,” https://kubernetes.io/
docs/tasks/administer-cluster/encrypt-data, 2024.

M. Learn, “Use azure key management service (kms) with aks,”
https://learn.microsoft.com/en-us/azure/aks/use-kms-etcd-encryption?
tabs=rbac-kv&pivots=public-kv, 2024.

K. Documentation, “Pod security standards,” https://kubernetes.io/docs/
concepts/security /pod-security-standards, 2025.

M. Learn, “Workload identity overview,” https://learn.microsoft.com/azure/
aks/workload-identity-overview, 2024.

C. . O. P. Agent, “Opa gatekeeper for kubernetes,” https://www.
openpolicyagent.org/docs/latest /kubernetes-introduction, 2024.

M. Learn, “Azure policy for kubernetes,” https://learn.microsoft.com/azure/
governance/policy /concepts/policy-for-kubernetes, 2024.

——, “Microsoft defender for containers,” https://learn.microsoft.com/azure/
defender-for-cloud /defender-for-containers-introduction, 2024.

——, “Csi secret store driver for aks,” https://learn.microsoft.com/azure/aks/
csi-secrets-store-driver, 2024.

S. Storage, “Secrets store csi driver documentation,” https://
secrets-store-csi-driver.sigs.k8s.io, 2024.

M. Learn, “Azure disk encryption overview,
azure/virtual-machines/disk-encryption, 2024.
——, “Use customer-managed keys with aks disks,” https://learn.microsoft.
com/azure/aks/azure-disk-customer-managed-keys, 2024.

——, “Api server authorized ip ranges,” https://learn.microsoft.com/azure/
aks/api-server-authorized-ip-ranges, 2025.

”

https://learn.microsoft.com/

[36] ——, “Monitor aks clusters,” https://learn.microsoft.com/azure/aks/

[37]

[38]

monitor-aks, 2024.

K. Documentation, “Kubernetes audit logging guide,” https://kubernetes.io/
docs/tasks/debug/debug-cluster/audit, 2024.

M. Learn, “Node image upgrade in aks,” https://learn.microsoft.com/azure/
aks/node-image-upgrade, 2024.

[39] ——, “Aks node auto-upgrade for os images,” https://learn.microsoft.com/

[40]

azure/aks/auto-upgrade-node-image, 2024.

——, “Disable ssh access in aks,” https://learn.microsoft.com/azure/aks/ssh,

2024.

[41] ——, “Use command invoke in aks,” https://learn.microsoft.com/azure/aks/

use-command-invoke, 2024.

133

https://learn.microsoft.com/azure/aks/use-network-policies
https://learn.microsoft.com/azure/aks/use-network-policies
https://csrc.nist.gov/publications/detail/sp/800-190/final
https://csrc.nist.gov/publications/detail/sp/800-190/final
https://attack.mitre.org/matrices/enterprise/containers
https://attack.mitre.org/matrices/enterprise/containers
https://kubernetes.io/docs/reference/access-authn-authz/rbac
https://kubernetes.io/docs/reference/access-authn-authz/rbac
https://github.com/cncf/tag-security/blob/main/community/resources/security-whitepaper/v2/CNCF_cloud-native-security-whitepaper-May2022-v2.pdf
https://github.com/cncf/tag-security/blob/main/community/resources/security-whitepaper/v2/CNCF_cloud-native-security-whitepaper-May2022-v2.pdf
https://github.com/cncf/tag-security/blob/main/community/resources/security-whitepaper/v2/CNCF_cloud-native-security-whitepaper-May2022-v2.pdf
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data
https://learn.microsoft.com/en-us/azure/aks/use-kms-etcd-encryption?tabs=rbac-kv&pivots=public-kv
https://learn.microsoft.com/en-us/azure/aks/use-kms-etcd-encryption?tabs=rbac-kv&pivots=public-kv
https://kubernetes.io/docs/concepts/security/pod-security-standards
https://kubernetes.io/docs/concepts/security/pod-security-standards
https://learn.microsoft.com/azure/aks/workload-identity-overview
https://learn.microsoft.com/azure/aks/workload-identity-overview
https://www.openpolicyagent.org/docs/latest/kubernetes-introduction
https://www.openpolicyagent.org/docs/latest/kubernetes-introduction
https://learn.microsoft.com/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/azure/defender-for-cloud/defender-for-containers-introduction
https://learn.microsoft.com/azure/defender-for-cloud/defender-for-containers-introduction
https://learn.microsoft.com/azure/aks/csi-secrets-store-driver
https://learn.microsoft.com/azure/aks/csi-secrets-store-driver
https://secrets-store-csi-driver.sigs.k8s.io
https://secrets-store-csi-driver.sigs.k8s.io
https://learn.microsoft.com/azure/virtual-machines/disk-encryption
https://learn.microsoft.com/azure/virtual-machines/disk-encryption
https://learn.microsoft.com/azure/aks/azure-disk-customer-managed-keys
https://learn.microsoft.com/azure/aks/azure-disk-customer-managed-keys
https://learn.microsoft.com/azure/aks/api-server-authorized-ip-ranges
https://learn.microsoft.com/azure/aks/api-server-authorized-ip-ranges
https://learn.microsoft.com/azure/aks/monitor-aks
https://learn.microsoft.com/azure/aks/monitor-aks
https://kubernetes.io/docs/tasks/debug/debug-cluster/audit
https://kubernetes.io/docs/tasks/debug/debug-cluster/audit
https://learn.microsoft.com/azure/aks/node-image-upgrade
https://learn.microsoft.com/azure/aks/node-image-upgrade
https://learn.microsoft.com/azure/aks/auto-upgrade-node-image
https://learn.microsoft.com/azure/aks/auto-upgrade-node-image
https://learn.microsoft.com/azure/aks/ssh
https://learn.microsoft.com/azure/aks/use-command-invoke
https://learn.microsoft.com/azure/aks/use-command-invoke

Bibliography

[42] K. Documentation, “Seccomp profiles for kubernetes,” https://kubernetes.io/
docs/tutorials/security /seccomp, 2024.

[43] ——, “Apparmor in kubernetes,” https://kubernetes.io/docs/tutorials/
security /apparmor, 2024.

[44] ——, “Pod security standards - baseline,” https://kubernetes.io/docs/
concepts/security /pod-security-standards/#baseline, 2024.

[45] ——, “Sysctl cluster management,” https://kubernetes.io/docs/tasks/
administer-cluster/sysctl-cluster/, 2024.

[46] —, “Configure liveness, readiness, and startup probes,”

https://kubernetes.io/docs/tasks/configure-pod-container /
configure-liveness-readiness-startup-probes/, 2024.

[47] ——, “Topology spread constraints,” https://kubernetes.io/docs/concepts/
scheduling-eviction/topology-spread-constraints/, 2024.

48] —, “Pod antiaffinity,” https://kubernetes.io/docs/concepts/
scheduling-eviction /assign-pod-node/, 2024.

[49] —, “Service account token projection,” https://kubernetes.
io/docs/tasks/configure-pod-container/configure-service-account,/
#service-account-token-volume-projection, 2024.

[50] ——, “Ingress,” https://kubernetes.io/docs/concepts/services-networking/
ingress/, 2024.

[51] M. Learn, “Use an internal load balancer with aks,” https://learn.microsoft.
com/azure/aks/internal-1b, 2025.

[52] ——, “Use managed identity with aks,” https://learn.microsoft.com/azure/
aks/use-managed-identity, 2024.
[53] ——, “Private clusters in aks,” https://learn.microsoft.com/azure/aks/

private-clusters, 2025.

[54] “Azure policy for aks - built-in policy reference,” https://learn.microsoft.com/
azure/aks/policy-reference, Microsoft Learn, 2024.

[55] “Cis kubernetes benchmark guidance for aks,” https://learn.microsoft.com/
azure/aks/cis-kubernetes, Microsoft Learn, 2024.

[56] “Best practices for azure kubernetes service (aks),” https://learn.microsoft.
com/azure/aks/best-practices, Microsoft Learn, 2024.

[57] “Use azure policy with aks,” https://docs.azure.cn/en-us/aks/
use-azure-policy, Microsoft, 2024.

[58] “Azure policy for kubernetes,” https://learn.microsoft.com/azure/
governance/policy /concepts/policy-for-kubernetes, Microsoft Learn, 2024.

[59] “Microsoft defender for containers,” https://learn.microsoft.com/azure/
defender-for-cloud /defender-for-containers-introduction, — Microsoft —Learn,
2024.

[60] “Aks operator best practices - identity,” https://learn.microsoft.com/azure/
aks/operator-best-practices-identity, Microsoft Learn, 2024.

[61] “Role-based access control (rbac),” https://kubernetes.io/docs/reference/
access-authn-authz/rbac/, Kubernetes Documentation, 2024.

[62] “Private clusters in azure kubernetes service,” https://learn.microsoft.com/
azure/aks /private-clusters, Microsoft Learn, 2024.

[63] “Cve-2020-8554 kubernetes vulnerability,” https://nvd.nist.gov/vuln/detail/
CVE-2020-8554, NIST NVD, 2020.

134

https://kubernetes.io/docs/tutorials/security/seccomp
https://kubernetes.io/docs/tutorials/security/seccomp
https://kubernetes.io/docs/tutorials/security/apparmor
https://kubernetes.io/docs/tutorials/security/apparmor
https://kubernetes.io/docs/concepts/security/pod-security-standards/#baseline
https://kubernetes.io/docs/concepts/security/pod-security-standards/#baseline
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#service-account-token-volume-projection
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#service-account-token-volume-projection
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#service-account-token-volume-projection
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://learn.microsoft.com/azure/aks/internal-lb
https://learn.microsoft.com/azure/aks/internal-lb
https://learn.microsoft.com/azure/aks/use-managed-identity
https://learn.microsoft.com/azure/aks/use-managed-identity
https://learn.microsoft.com/azure/aks/private-clusters
https://learn.microsoft.com/azure/aks/private-clusters
https://learn.microsoft.com/azure/aks/policy-reference
https://learn.microsoft.com/azure/aks/policy-reference
https://learn.microsoft.com/azure/aks/cis-kubernetes
https://learn.microsoft.com/azure/aks/cis-kubernetes
https://learn.microsoft.com/azure/aks/best-practices
https://learn.microsoft.com/azure/aks/best-practices
https://docs.azure.cn/en-us/aks/use-azure-policy
https://docs.azure.cn/en-us/aks/use-azure-policy
https://learn.microsoft.com/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/azure/governance/policy/concepts/policy-for-kubernetes
https://learn.microsoft.com/azure/defender-for-cloud/defender-for-containers-introduction
https://learn.microsoft.com/azure/defender-for-cloud/defender-for-containers-introduction
https://learn.microsoft.com/azure/aks/operator-best-practices-identity
https://learn.microsoft.com/azure/aks/operator-best-practices-identity
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://learn.microsoft.com/azure/aks/private-clusters
https://learn.microsoft.com/azure/aks/private-clusters
https://nvd.nist.gov/vuln/detail/CVE-2020-8554
https://nvd.nist.gov/vuln/detail/CVE-2020-8554

Bibliography

[64] “Use csi storage drivers in aks,” https://learn.microsoft.com/azure/aks/
csi-storage-drivers, Microsoft Learn, 2024.

[65] “Seccomp profiles for kubernetes,” https://kubernetes.io/docs/tutorials/
security /seccomp/, Kubernetes Documentation, 2024.

[66] “Apparmor support in kubernetes,” https://kubernetes.io/docs/tutorials/
security /apparmor/, Kubernetes Documentation, 2024.

[67] Krawczyk, Hugo, Bellare, Mihir, and Canetti, Ran. (1997) Rfc 2104: Hmac
— keyed-hashing for message authentication. IETF. [Online|. Available:
https://datatracker.ietf.org/doc/html/rfc2104

135

https://learn.microsoft.com/azure/aks/csi-storage-drivers
https://learn.microsoft.com/azure/aks/csi-storage-drivers
https://kubernetes.io/docs/tutorials/security/seccomp/
https://kubernetes.io/docs/tutorials/security/seccomp/
https://kubernetes.io/docs/tutorials/security/apparmor/
https://kubernetes.io/docs/tutorials/security/apparmor/
https://datatracker.ietf.org/doc/html/rfc2104

	Introduction
	Problem
	Thesis Goal
	Thesis Structure
	Environment Context

	Background
	Introduction to Azure Kubernetes Service (AKS)
	What AKS is and Why It Is a Managed Service
	Shared Responsibility Model: What Microsoft Protects and What the Customer Must Protect

	Internal Architecture of AKS
	The Managed Control Plane
	Cluster Nodes: Agent Pools, VMSS, Operating Systems, Container Runtime
	Pods, ReplicaSets, Deployments, and Basic Kubernetes Resources
	Namespaces and Logical Isolation
	Node Resource Group and Integration with Azure Resources

	Networking in AKS
	Core CNI Concepts: Overlay vs. Flat Networking
	Intra-Cluster Communication: Pod-to-Pod, Service-to-Pod, Node-to-Pod
	Kubernetes Services: ClusterIP, NodePort, LoadBalancer, ExternalName
	Ingress Controllers and L7 Traffic
	Cluster Egress: SNAT, Azure Firewall, Private Endpoints
	Network Security Groups and Their Role Compared to Network Policies
	Network Policies: Models, Enforcement, Limitations, and Risks

	Kubernetes Security Model
	Typical threats: container breakout, privilege escalation, lateral movement
	The cluster as a distributed system: attack surfaces and vectors
	Kubernetes RBAC model: users, groups, service accounts, and the role of kube-apiserver
	Kubernetes Secrets: management, limitations, encryption, risks when mismanaged
	Pod Security Standards: baseline, restricted, and privileged

	AKS Security From the Azure Perspective
	Integration With Microsoft Entra ID (Identity Federation and OIDC)
	Azure Policy for Kubernetes: OPA Gatekeeper, Manifest Validation, Compliance Enforcement
	Microsoft Defender for Containers: Image Scanning, Runtime Protection, Anomaly Detection
	Azure Key Vault, KMS, and Secure Key and Secret Management
	Disk Management and Encryption (Host-Based, CMK, Managed Disks)

	State of the Art in Control Plane Security
	Securing the kube-apiserver: public endpoint, private clusters, and authorized IP ranges
	Trusted Access and internal communication through the Azure backbone
	Encryption of etcd and protection of sensitive data
	Logging, auditing, and diagnostic visibility of the control plane

	Node and Infrastructure Security
	Updates, patching, and OS image management
	Disabling SSH and Command Invoke
	Host isolation: seccomp, AppArmor, and kernel lockdown
	Temporary disks and host-based encryption

	Application Workload Security
	Container hardening: user, capabilities, mounts, filesystem, sysctl
	Supply chain security: image, registry, tags, signing, ImagePullSecrets
	Runtime behavior: probes, anti-affinity, resilience as a security property
	Tokens and credentials: automountServiceAccountToken and Workload Identity
	Security of exposed services: port binding, host networking, ingress

	Zero Trust Model Applied to AKS
	Identity as the perimeter: Entra ID, Workload Identity, and OIDC tokens
	Least privilege and application segmentation
	Minimizing the attack surface of the cluster
	Zero Trust supply chain: controlled repositories and verified images

	Implementation High Level Design
	Overall Architecture of the implementation
	Tenant Client: operational point for policy synchronization and enforcement
	Tenant Server: central platform for publication, collection and observability
	Structure of the Following Chapters

	Defining a security baseline for AKS using Azure Policy
	Objectives and scope of the baseline
	Using the baseline in Audit mode as a tool to measure security posture
	Scope

	Criteria for selecting built-in policies (principles, reference standards, Audit mode)
	Logical structure of the baseline and security domains
	Domain structure: governance, identity, network, data, workload
	Alignment with official guidelines, benchmarks and security standards
	Application model: initiatives vs individual policies and systematic use of Audit mode

	Governance, monitoring and posture management
	Azure Policy Add-on: prerequisite for controlling Kubernetes workloads
	Cluster logs and diagnostics
	Integration with Microsoft Defender for Containers and its role in threat detection

	Identity, authentication and access control
	Integration with Microsoft Entra ID and disabling local authentication methods
	Cluster identity: managed identities and their impact on operational security
	Workload identity: AKS Workload Identity and secure access to Azure resources
	RBAC hygiene: mandatory use of RBAC and limiting use of the cluster-admin role

	Reducing the exposure surface and perimeter security
	Control plane protection: private clusters and authorized IP ranges
	Node hardening: disabling SSH and Command Invoke
	Secure exposure of services: HTTPS, internal load balancers and allowed external IPs

	Data and storage protection
	Node and disk encryption with customer-managed keys (CMK)
	Host-level encryption for temporary disks and cache
	Protecting Secrets and etcd through Key Management Service (KMS)
	Adopting CSI drivers as a prerequisite for advanced security scenarios

	Workload hardening: Pod Security and container configuration
	“Pod security baseline standards for Linux-based workloads” initiative
	Privileges and capabilities: privileged mode, privilege escalation, CAP_SYS_ADMIN and disallowed capabilities
	Node isolation: host namespaces, seccomp, AppArmor and isolation primitives
	File systems and sysctl: read-only root filesystems and allowed sysctl interfaces

	Workload hardening: supply chain, application networking and reliability
	Container image controls: allowed registries, prohibition of latest, use of ImagePullSecrets
	Protection of internal credentials: managing automountServiceAccountToken
	Services and ingress: allowed ports and required configuration parameters
	Reliability as a security requirement: liveness/readiness probes, anti-affinity, topology spread and prohibition of naked pods

	``Out-of-baseline'' policies
	Policies deliberately excluded from the minimum baseline
	Controls dependent on the application model: Network Policy, advanced RBAC and tenant-specific configurations

	Summary table of the security baseline
	Domain 1 — Governance, monitoring and posture management
	Domain 2 — Identity, authentication and access control
	Domain 3 — Reduction of the attack surface
	Domain 4 — Data and storage protection
	Domain 5 — Workload hardening (Pod Security, isolation, permissions)
	Domain 6 — Workload hardening (supply chain, application networking, reliability)

	Tenant Server Architecture
	Introduction to the Tenant Server
	Policy Distribution Hub
	Policy repository: Blob Storage Account
	Centralized Storage Structure
	The global baseline
	Structure dedicated to each tenant
	Artifacts: Policy Definition, Initiative and Assignment
	Artifacts: Manifests as the Declarative Layer
	Global Baseline Manifest
	Manifest Evolution to Increase Security
	Security of Access to the Tenant Server Storage
	Service Principal + Key Vault: the Selected Model
	Minimization of Permissions and Domain Separation

	Central Posture Visibility
	Overview of the Main Components
	Network Architecture of the Tenant Server
	Collection Service: VM Collector and Ingestion API
	Centralized Data Lake on Azure Storage
	Logical Data Model in Azure Data Explorer

	Final Visualization of the Security Posture in the Tenant Server
	Global Overview Dashboard
	Customer Dashboard: Per-Tenant Analysis

	Tenant Client Architecture
	Role of the Tenant Client
	Operational Role of the Client in Relation to the Tenant Server
	Dual Logical Flow: Pull of Policies and Push of Audit Data
	Security and Isolation Requirements in the Client Domain

	Architectural Overview of the Tenant Client
	Overview of the Resources
	Relationship Between the Management Subscription and the Operational Subscription
	End-to-End Flow: From Policy Distribution to Audit Collection

	Network Domain of the Tenant Client
	Management Virtual Network and Audit/Policy Subnet
	Network Security Group of the Management Subnet
	Private Endpoint to the Tenant Server Storage
	Private Endpoints and DNS for Remaining Services

	Local Policy Storage in the Tenant Client
	Structure of the Local Storage
	General Manifest
	Replicated Global Baseline
	Tenant Custom Baseline
	Per-Cluster AKS Configurations
	Relationship Between Local and Server Structures
	Local Manifests and Desired State

	Azure Key Vault of the Tenant Client and Secret Management
	Key Vault as the Central Point for Secret Management
	Secrets Related to Cross-Tenant Communication
	Key Vault Private Endpoint and VNet Integration
	Accessing the Key Vault via Managed Identity
	Secret Rotation Model

	Azure Functions in the Tenant Client
	Policy Synchronization Function
	Audit Collection and Export Function

	Conclusions
	Future Work
	From Audit-Only to Progressive Enforcement and Remediation
	Extended Telemetry and Runtime Signal Integration
	Policy Maker: User-Friendly, Granular Policy Authoring
	Automated Onboarding of New Tenants and Clusters

	Bibliography

