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Summary

Modern neural networks continue to expand in parameter count and number of
layers, pushing the limits of training and inference hardware. Since convolutional,
fully connected, and attention layers are dominated by multiply–accumulate (MAC)
operations, the throughput and energy cost of multiplication largely determine
overall system efficiency. Two techniques are especially effective: reducing numeric
precision via quantization of weights and activations, and exploiting parallelism
in HW architectures to perform many multiplications concurrently with reduced
precision of operands.

This thesis explores the latter technique, with the integration of a reconfig-
urable multiplier into the Agile Hardware Approach (AHA) design flow, target-
ing coarse-grained reconfigurable arrays (CGRAs). The integrated unit allows for
precision-scalability, allowing a more efficient hardware utilization, as the bit-width
required by the workload varies. The goal is to accelerate multiplication-intensive
kernels, typical of neural network layers, by executing more than one operation in
parallel with the same HW unit, when the bit-width is reduced.

Several architectural variants are examined: accumulation performed inside the
processing element (PE) versus in an external register file; splitting outputs into
low- and high-bit paths to improve data reuse and routing; and input reordering
to enable operand decomposition and independent sub-word parallelism. For each
option, the thesis outlines microarchitectural trade-offs, placement within the PE
datapath, and expected impacts on area, frequency, and utilization.

Although some variants are not presently feasible within the AHA framework,
they reveal promising directions and design patterns for future exploration. The
current AHA mapping methodology limits multiple micro-operations per instruc-
tion within a PE. To mitigate this constraint, the work proposes practical compiler-flow
modifications. In particular, targeted changes to rewrite rules and mapping files
allow the toolchain to recognize scalable-precision multiply operators and emit the
required control sequences without overhauling the broader infrastructure. These
adjustments preserve compatibility with the existing AHA workflow while enabling
precision-scalable operations.

An experimental implementation validates the approach: custom Verilog for the
PE, paired with updated rewrite rules and mapping files, integrates cleanly into
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the AHA flow. RTL simulations confirm functional correctness of reduced-precision
multiplication and indicate favorable throughput and efficiency trends, suggesting
benefits for future NN accelerators based on this approach, even though several
variants remain impractical under current constraints. Collectively, the results
provide a path for introducing reconfigurable, precision-scalable arithmetic into
CGRAs and identify existing tradeoffs for subsequent work.
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Chapter 1

Introduction

1.1 Context
Multiplication and accumulation operations are at the core of nearly all modern
computational workloads, particularly in machine learning and neural networks.
As network sizes grow, the efficiency of these multiplications directly impacts both
performance and energy consumption. One of the best ways to improve the effi-
ciency is to quantize these weights and activations and to parallelize the operations.
Conventional hardware accelerators, such as GPUs and ASICs provide high through-
put, but often lack flexibility to experiment with reduced-precision operations.
Coarse-Grained Reconfigurable Arrays (CGRAs) offer a balance between flexibil-
ity and performance, enabling reconfigurations while maintaining energy efficiency,
higher than that of general-purpose processors, making them perfect for employing
these new accelerator architectures.
However, one of the main challenges in CGRA-based acceleration lies in optimiz-
ing arithmetic units, particularly multipliers, to support variable precision without
significant hardware overhead. Reduced-precision arithmetic can significantly de-
crease computation time, data transfer, and power consumption, while maintaining
sufficient accuracy for neural network inference. Therefore, integrating precision-
scalable multipliers and efficient accumulation mechanisms within CGRAs is an
important step toward high-performance and low-power neural network accelera-
tors.
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Introduction

1.2 Goals of the study
The main objective of this study is to evaluate methods for implementing reduced-
precision arithmetic and reconfigurable architectures within the Agile Hardware
Approach (AHA) framework for Coarse-Grained Reconfigurable Arrays (CGRAs).

The specific goals of the study are as follows.

• Analysis of precision-scalable multiplier architectures

• Investigation of implementation strategies

• Experimental verification of the AHA-generated PE

• Identification of opportunities for future improvements

1.3 Overview
1.3.1 Chapter 1 – Introduction
The first chapter focuses on the growing demand for flexible, high-performance
hardware accelerators capable of supporting computational workloads such as neu-
ral networks. It presents the goals of the study-namely exploring how reduced-
precision arithmetic can be efficiently implemented within the Agile Hardware
(AHA) framework for CGRAs.

1.3.2 Chapter 2 – CGRAs
This chapter provides a detailed background on CGRA architectures. It describes
their structure, topologies, and the role of Processing Elements (PEs) and Arith-
metic Logic Units (ALUs) within them. Then it compares their characteristics
with ASICs and multicore processors. The second half introduces the Stanford Ag-
ile Hardware Approach (AHA) methodology and its Onyx CGRA implementation.
Key components such as domain-specific languages, the MetaMapper framework,
rewrite rules, and PE hardware generation are explained. The chapter concludes
by examining the application of CGRAs to neural network acceleration and the
potential for efficiency gains through quantization.

1.3.3 Chapter 3 – Reduced-Precision Reconfigurable Mul-
tiplier

Chapter 3 introduces the concept of precision-scalable arithmetic and explores sev-
eral multiplier architectures suitable for reconfigurable systems. The Baugh-Wooley
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1.3 – Overview

and its derivative, the STAR multiplier, are analyzed in detail. The chapter fur-
ther discusses the integration of multiply–accumulate (MAC) operations and the
implications of using reduced precision for computation throughput, hardware uti-
lization, and energy efficiency. These architectures provide the theoretical and
structural foundation for the implementation work in Chapter 4.

1.3.4 Chapter 4 – ST and SA Operations in AHA
This chapter investigates how STAR-derived reduced-precision operations (ST and
SA) can be integrated into the AHA CGRA framework despite its mapping and
design flow constraints. Several implementation strategies are evaluated, including
placing the accumulation register inside or outside the PE, dividing outputs into
low/high bit sections, and reordering inputs for operand decomposition. The chap-
ter also proposes workarounds to AHA’s limitations through targeted modifications.
Experimental implementations demonstrate that reduced-precision arithmetic can
be effectively embedded in AHA without major changes. Simulation results confirm
functional correctness and indicate potential performance improvements for neural
network applications.

1.3.5 Chapter 5 - Conclusions and future work
The final chapter summarizes the findings and evaluates the feasibility of introduc-
ing reduced-precision operations into the AHA CGRA. It concludes that precision-
scalable arithmetic units can enhance computational efficiency but there are still
problems that need to be solved. Future work suggestions include extending the
study to other CGRAs and improving the workarounds of implementing the precision-
scalable multiplier into AHA, despite the limitations.
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Chapter 2

CGRAs

2.1 CGRA Structure and Topologies
Modern Coarse-Grained Reconfigurable Architectures (CGRAs) are programmable
accelerators composed of an array of Processing Elements (PEs), memories, and
a configurable interconnect network. Unlike fine-grained FPGAs, which operate
at the bit level, CGRAs execute word-level operations and therefore achieve higher
energy efficiency and clock frequency while still retaining flexibility. Their structure
enables spatial unroll of compute kernels, where operations are mapped onto PEs
and data flows through programmable switch-boxes. These CGRAs, however, come
at a cost - in order to benefit from their functionalities, a custom compiler is needed,
as every CGRA is different.

2.2 PEs and ALU within a CGRA
The processing elements (PEs) can be considered the most critical components
of a CGRA, as they perform the actual computations within the architecture. A
typical PE includes an arithmetic–logic unit (ALU), an output register, and several
multiplexers that determine the ALU’s inputs and the PE’s output. Some designs
also incorporate a feedback register, allowing the ALU’s previous result to be reused
in the next operation. The configuration of a PE is defined by the selection signals
for these multiplexers and the control signals that set the ALU’s operating mode.
Figure 2.1 shows a simple Processing element. Its main features include a selectable
input, where in this case there are A and B. They are provided via two multiplexers,
selecting from connections from neighboring PEs or from an internal register. The
selection of said multiplexers is done via the configuration signal provided to the PE.
These two operands are then provided to an Arithmetic and Logic unit - the part
which does the actual computation. Multiple different ALU architectures exist, but
in most cases the ALU is stateless - it only does a combinatorial function without

5



CGRAs

inner clocking. The operation done by the ALU is determined by the configuration
signal given to the PE.

Figure 2.1: An example of a PE

The arithmetic and logic unit is the core element of the PE. It can be more basic
- perform only simple operations like addition, subtraction, bitwise logic operations,
etc. In some advanced CGRAs the ALU can have a lot of features - for example
floating point operations, large multiplications etc. These two extremes are some-
thing like a reduced instruction set computer (RISC) and a complex instruction set
computer (CISC). It is important to note that a CGRA with more simple PEs can
have a lot more of them in the same area compared to one with more sophisticated
PEs. This distinction can also be thought of as how “coarse grained” the array is.

2.3 FPGA to CGRA Evolution
Field-Programmable Gate Arrays (FPGAs) were among the first forms of recon-
figurable computing, allowing hardware behavior to be defined after fabrication.
Originally introduced as a safer, lower-cost way to prototype ASICs, they rely on
fine-grained reconfigurability implemented through large numbers of LUT-based
logic elements. Although FPGA prototypes typically run one to two orders of
magnitude slower than their ASIC counterparts, they remain essential design and
verification tools. After some time FPGAs began to be viewed as compute devices
in their own right, with interest in general-purpose acceleration. However, several
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2.4 – CGRA compared to other architectures

limitations quickly became apparent

• Long compilation times.

• Poor mapping of certain arithmetic operations (e.g., multipliers).

• Relatively low clock frequencies.

Many of these challenges remain today and have caused the exploration of alterna-
tive reconfigurable architectures that offer higher performance and efficiency. One
such architecture, the subject of this thesis, is the CGRA.

Increasing the granularity of the elements that are reconfigured, allows larger,
more specialized computational units to be built. In this way we can improve over-
all performance, particularly the maximum clock frequency, as there is much less
delay due to the long paths in a FPGA. These paths include multiple multiplexers,
LUTs, etc. leading to reduced timing margins, and higher power consumption for
equivalent operations.

Coarser-grained elements also require far less configuration data, making recon-
figuration significantly faster and enabling effective time-sharing across multiple
contexts. In a CGRA, this facilitates parallel execution, as processing elements
(PEs) can be configured to operate on different parts of a workload simultaneously,
parallelizing the load. Moreover, coarse-grained units allow operations that map in-
efficiently to traditional FPGAs—such as integer multiplications—to be integrated
directly and implemented more efficiently.

However, all these advantages come with a cost, the need for a good mapping
onto the CGRA in order to use its functionalities efficiently.

2.4 CGRA compared to other architectures
The CGRA has been compared to a basic FPGA in the previous section. In this
one a comparison is made to other architectures used in similar contexts.

2.4.1 ASIC
A CGRA can be thought of being somewhere in the middle between an Aplication-
specific IC and a microprocessor from a reconfigurability point of view. It seeks to
combine the advantages of both ends of the spectrum: unlike an ASIC, a CGRA is
not fully hard-coded for a single task, yet it is more specialized and efficient than
a general-purpose processor. While an ASIC may achieve higher performance for
a very specific application, a CGRA retains flexibility, allowing the same hardware
to support multiple tasks. The main advantages of an ASIC over a CGRA are
summarized.
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• Better performance: Custom-designed circuits are optimized for a specific ap-
plication, achieving the highest possible speed and throughput.

• Lower power consumption: Efficiency is maximized because only the required
logic is implemented

• Minimal area overhead: Only essential circuitry is included, resulting in smaller
silicon footprint

• High reliability: Optimized and verified for a single purpose, reducing potential
sources of error or variability.

CGRAs though have some important advantages, which are summarized.

• Flexibility: Unlike ASICs, CGRAs are not hard-coded for a single task

• Faster development time: CGRAs can be deployed without the long design
and fabrication

• Adaptability : useful when workloads evolve over time

• Lower development risk : Errors in design or changing requirements are sup-
ported

2.4.2 Multi-core processors
At the other end of this spectrum are multi-core processor solutions. In some cases
they can outperform CGRAs in several ways. They benefit from high clock speeds,
large caches, and advanced vector units, which accelerate dense linear algebra oper-
ations. Additionally, their software ecosystems and dynamic task scheduling allow
CPUs and GPUs to efficiently handle mixed or irregular tasks that CGRAs may
struggle with. However for highly parallelizeable tasks, such as NN workloads or
especially multiplications, a CGRA can outperform a multi-core processor with
a fraction of the cost. However, this makes the efficient mapping and optimized
hardware of a CGRA even more important and is the reason a well-designed CGRA
methodology is essential.

2.5 Agile Hardware Approach Methodology
This section focuses on a specific CGRA development methodology used for this
thesis. Some of the figures are taken from the AHA paper[3].
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2.5 – Agile Hardware Approach Methodology

2.5.1 AHA Overview
The slowdown of Moore’s Law and the end of Dennard scaling have shifted per-
formance and energy improvements away from general-purpose scaling and toward
hardware specialization[3]. Modern Systems-on-Chip (SoCs) increasingly integrate
numerous domain-specific accelerators to meet the demands of workloads such as
machine learning and image processing. However, these application domains evolve
rapidly, and sustaining high performance requires that the application, accelerator
architecture, and compiler are developed in sync rather than in isolation. AHA
employs domain-specific languages (DSLs) to specify the accelerator architecture.
These DSLs generate both the Register-Transfer Level hardware description and all
required compiler artifacts, enabling consistent evolution of the hardware-software
stack. This integrated methodology significantly accelerates design iteration and
supports flexible architectural exploration.

Using the AHA framework, several CGRA chips including Amber and Onyx have
been successfully designed and fabricated. These accelerators demonstrate high
efficiency across dense image processing kernels, neural network inference workloads
and others.

2.5.2 Existing Approach to Accelerator Design
The traditional way to design hardware accelerators typically follows a waterfall-like
design approach. Engineers begin by analyzing the target application to identify
computational needs, then design a custom accelerator optimized for them, and
finally adapt the compiler and software stack to support the new hardware. While
this process can produce highly efficient solutions, it is time-consuming and rigid.
Any change in the application or hardware often necessitates manual redesign and
testing across multiple components, making it difficult to keep up with rapidly
changing workloads, especially in areas like machine learning and high-performance
computing. Figure 2.2 shows a typical waterfall-like design approach.

Figure 2.2: Waterfall development approach
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2.5.3 The AHA Agile Approach
Agile design is an iterative approach to hardware and software development that
enables rapid prototyping and continuous feedback. Unlike traditional waterfall
methods, it allows designers to quickly explore, modify, and optimize systems
throughout the development process. These features make it the reason it is the
way AHA works. The agile approach is especially suited to CGRA development,
because in this case a software compiler needs to evolve alongside the hardware
of the CGRA. In this way a good compiler that takes advantage of the hardware
functions is easier to maintain and improve. Figure 2.3 shows the iterative pro-
cess. This feedback loop accelerates design-space exploration and ensures that the
hardware and software remain synchronized as the architecture evolves[3]. Unlike
traditional design flows, AHA promotes incremental changes to the architecture
and automatic regeneration of the corresponding tools.

Figure 2.3: Agile development approach in CGRA

2.5.4 Domain specific languages in AHA
One of the main advantages of AHA is its “single source of truth" methodology.
When a modification is done to the CGRA it only needs to be done in a single place.
There are three different domain specific languages used in AHA, each for its own
respective components of the CGRA. The processing elements are written in PEak,
memories in Lake, and interconnect in Canal. The compiler for each DSL generates
both the hardware Register-Transfer Level (RTL) and the collateral necessary for
mapping applications onto the hardware, ensuring continuous end-to-end system
functionality. These component DSLs are built upon magma, a lower-level hardware
generation DSL embedded in Python, which serves as their host language[3]. In
this thesis only the PEAK language was explored in more detail, as it is the dsl
responsible for PEs. The other two dsls are only briefly mentioned.

10



2.5 – Agile Hardware Approach Methodology

Figure 2.4: DSLs use in AHA

Figure 2.4 is taken from [3] and shows how the DSL specifications are used within
the AHA flow.

PEAK

A PEak design file defines a PE’s instruction set architecture (ISA), declares its
state, and describes the semantics of each instruction as a function from inputs
and current state to outputs and next state. PEak programs can be compiled
into a functional model, RTL hardware, or a formal SMT model, which is used to
automatically generate compiler rewrite rules(explained later in detail) targeting
the PE.

Figure 2.5: PEak

A Lake memory specification is based on the streaming memory abstraction used
in the application compiler. It combines storage, address generation, and control
logic for efficiency, and defines the physical unit’s type (registers or SRAM), depth,
width, and ports[3].

Canal specifies the CGRA interconnect as a directed graph, supporting hetero-
geneous PEs and memory cores with varying numbers of inputs and outputs. Like
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PEak and Lake, it generates both hardware and compiler collateral, including the
routing graph for the place-and-route tool and the configuration bitstream for the
hardware[3].

2.5.5 PE Hardware generation
PEak uses Magma to compile PE specifications into RTL Verilog. PEak ex-
tends Magma’s sequential circuit syntax with rich types that describe ISAs via
Magma’s type protocol, allowing new types to be interpreted as Magma’s built-in
primitives[3]. The rtl generated by the aha garnet script is mostly comprised of mul-
tiplexers, adders and bitwise operations. Lowering a PEak specification to Magma
is straightforward and preserves the designer’s functional intent. The __call__
method defines the state transition executed on every clock edge. PEak encourages
high-level specifications, leaving low-level details such as resource sharing, clock
gating, and data gating to optimization passes in the compiler. The Magma inter-
mediate representation, CoreIR, is SMT-based, enabling formal equivalence check-
ing across compiler passes. As explained later a possible direction worth exploring
is to try to exchange the generated rtl with a custom architecture, in order to use a
more optimal solution. This could be useful in cases where the functionality of the
PE is not straight-forward and decomposing it into simple, synthesizable operations
can be done in many different ways. For example the multiplier in section ?? can
be realized in many different ways. As PEAK is only a formal specification, it is
not possible to differentiate between these different possible architectures at this
stage(as their difference is only at synthesis level and not logical).

2.5.6 Meta Mapper, rewrite rules
The mapping stage in the application compiler relies on rewrite rules -Figure2.6 that
describe how subsets of CoreIR dataflow graphs correspond to hardware PEs[3].
The PEak compiler transforms the __call__ method into a normal form where
each name is assigned at most once, there is a single return statement at the
end, subcomponents are instantiated only once, and all if blocks are eliminated.
This process begins with a standard SSA pass, during which return statements are
replaced with assignments to new names. Next, the bodies of if blocks are inlined,
and ternary expressions are inserted to select the final value for each assigned name.
The return value is then expressed at the end of the function using a nested ternary
expression covering all possible return paths. Boolean operators are replaced with
their bitwise equivalents, and ternary expressions are converted to calls to the ite
method (e.g., x if c else y becomes c.ite(x, y)).

Once the function is in this normalized form, applying __call__ to abstract
SMT variables—analogous to its application on concrete Python variables produces
a symbolic execution of the circuit. This symbolic execution can then be used to
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2.5 – Agile Hardware Approach Methodology

generate rewrite rules for a CoreIR IR node using a quantified SMT query:

∃inst ∀inputs : IRNode(inputs) == PE(inst, inputs)

Figure 2.6: overview of the AHA rewrite rules

More simply said, a rewrite rule is the configuration needed for a PE to act in
such a way that is performs the needed operation defined in the rule. Having these
solved rules, the MetaMapper has all it needs to map a specific application onto
the CGRA. The script transforms the functionality (for example state transitions)
into configured PEs (see figure 2.7).

Figure 2.7: AHA mapping

In AHA these resulting configurations are put into fifos that give the appropriate
instructions to each PE, mux and other configs as the application executes.

13
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2.5.7 Design flow of the AHA approach
The steps for modifying an iteration of the designed CGRA to the next version
are the summarized in figure 2.8. Here they are listed in the order they were done
during the experimentation from the subsequent chapters.

• Modifying the PEAK formal specification

• Generation of the HDL of the CGRA with garnet

• Defining a formal operation-it should take advantage of the new functionality

• Running the rewrite rule script to generate the rule

• Optional - modifying the Halide app

• Mapping the app onto the CGRA

• Place and route

• Testing - hardware simulation with a generated testbench

Figure 2.8: overview of the AHA design flow

The magma circuits are tested with the fault Python package using the function
call syntax. Designers directly reuse functional tests for the hardware description as
well, and fault generates a test bench for the design using a hardware simulator.[3]

2.5.8 Halide use within AHA
Writing high-performance code on modern machines requires not just optimizing in-
ner loops, but reorganizing computations globally to exploit parallelism, especially
in image processing pipelines where intermediate stages do little work relative to
memory costs [4]. The requirements of image processing are somewhat similar to
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2.6 – CGRA for Neural Networks

those of NN computation as they both require a high number of operations. Tradi-
tional programming models confuse the algorithm with scheduling decisions, mak-
ing high-performance code complex and hard to maintain. Halide is a programming
language that separates the algorithm from its schedule, allowing programmers to
explore different computation organizations while the compiler generates efficient
loop nests for CPUs, GPUs, and specialized processors. This approach is the reason
it is used in AHA to program applications.

2.6 CGRA for Neural Networks
2.6.1 NN Types and Layers
Neural networks consist of different layers, but the convolutional, fully connected,
and attention ones are important to this work as they can benefit from more efficient
multiply–accumulate (MAC) operations. The high density of MACs makes the
choice of underlying hardware and its ability to efficiently execute these operations
critical for overall performance.

Fully connected

Figure 2.9: Fully-connected layer in NN

In fully-connected layers each node is connected to all nodes from the previous layer.
Each connection has an associated weight, and computing the output involves mul-
tiplying each input by its corresponding weight. These products are then summed
(accumulated) to produce the node’s activation. The process of computing these
layers includes a high number of multiply–accumulate operations.
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Convolutional

Some neural networks (for example computer vision) often contain too many pa-
rameters to train efficiently. Large numbers of nodes and consequently weights in
the hidden layers demand large amounts of training data. This is the reason for
creating convolutional layers in NNs. Drawing an analogy from neurophysiology,
visual neurons in deep layers respond to:

• Simple patterns within small receptive fields

• Complex patterns within larger receptive fields, independent of precise position

To exploit this, Convolutional Neural Network layes use a specialized connectiv-
ity structure for more efficient pattern recognition

• Full neuron-to-neuron connections are replaced with convolutions

• Pooling layers further limit connectivity to reduce parameters and improve
efficiency

One output pixel in a convolutional layer is computed as the dot product of an
image window and a filter, which operates only on a subset of pixels (local connec-
tivity). Each filter in a CNN is a 3D tensor composed of 2D kernels, and its weights
are shared among all neurons in the layer to reduce the amount of training data
required. Convolution filter weights are often normalized so that their sum equals
1, helping to prevent overflows during computation.

A convolution operation is essentially a series of multiply–accumulate (MAC)
operations, where each filter weight is multiplied by the corresponding input pixel
value. The results of these multiplications are then summed to produce a single
output value for the convolution.

Attention layer

Attention layers compute weighted interactions between elements of an input se-
quence, allowing a model to focus on the most relevant information. The core
computation is the scaled dot-product attention, which forms three projections -
queries (Q), keys (K), and values (V )and computes:

Attention(Q, K, V ) = softmax
A

QKT

√
dk

B
V.

This operation is also dominated by matrix multiplications (for QKT and the
subsequent multiplication with V ). Because attention evaluates global interactions
across the entire sequence, it is more computationally intensive than convolution
or fully connected layers, making hardware efficiency especially important.
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2.6.2 NN Layer Mappings
Mapping neural network layers onto a CGRA benefits greatly from efficient mul-
tiplication and accumulation units.Coarse-grained reconfigurable architectures can
exploit spatial parallelism and pipelining to accelerate these operations, enabling
better energy efficiency and throughput compared to general-purpose multicore
processors.

2.6.3 Enhancing the efficiency of neural network models
One of the ways to improve the efficiency of NN layers that heavily use multiplica-
tion and accumulation is to quantize the weights and activations. When relying on
fixed power budget this technique can improve the performance of a NN by allowing
it to have more layers/parameters for the same power consumption in calculations.

Quantization in NNs

Quantization maps input values from a large (often continuous) set to a smaller
(finite) set, using rounding or truncation. While many recent neural network quan-
tization methods are connected to classical approaches, NNs introduce unique chal-
lenges and opportunities: inference and training are computationally intensive, and
models are often heavily over-parameterized, allowing high reduction of bit preci-
sion without hurting accuracy. Neural networks also work well with extreme dis-
cretization, meaning a quantized model can differ significantly from the original yet
still generalize well. This flexibility, combined with the layered structure of NNs,
motivates mixed-precision quantization strategies, where different layers can use
different precisions based on their impact on the loss of information. These factors
distinguish modern NN quantization from traditional quantization approaches fo-
cused on minimizing error in the signal itself. To quantize neural network weights
and activations into a finite set of discrete values, we define a quantization func-
tion that maps floating-point numbers to a lower-precision range. An example
quantization function is:

Q(r) = Int
3

r

S

4
− Z,

where Q is the quantizer, r is a real-valued activation or weight, S is a real-valued
scaling factor, and Z is an integer zero-point. The function Int(·) applies rounding,
producing an integer. This yields a mapping from real values to uniformly spaced
quantization levels, a process known as uniform quantization. Real values can be
approximately reconstructed through a dequantization operation:

r̃ = S
1
Q(r) + Z

2
.
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Because rounding introduces error, the recovered value r̃ does not exactly match
the original r, leading to quantization-induced inaccuracy.

Figure 2.10: Quantization vs spread of values

Figure 2.10 shows how important it is to choose a good quantization in order to
have as little loss of information in NN layers as possible.

Different granularities of quantization can be applied to different channels and
layers of a neural network. A key distinction among quantization methods is the
granularity at which the clipping range for weights is computed.

Layerwise Quantization

In this approach, the clipping range is determined from all parameters within an
entire layer, and a single range is applied to all convolution kernels. While easy to
implement, it may be suboptimal in accuracy when kernels exhibit very different
value distributions. Narrow-range kernels may lose significant information because
the chosen resolution is driven by a wider-range kernel.

Channelwise Quantization

A more refined strategy computes a separate clipping range for each channel. Al-
though computationally more expensive, this approach provides better per-channel
resolution and reduces information loss.
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Figure 2.11: Layerwise vs channelwise Quantization

Figure 2.11 shows the advantage of channelwise quantization. The different
spreads of weights/activations are all well represented and a lower loss of data is
happening.
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Chapter 3

Reduced precision
reconfigurable multiplier

Chapter 3 focuses on the inner workings of a reconfigurable reduced precision mul-
tiplier. It starts by introducing a simple BW multiplier in section 3.1 and shows
what has been modified to support different summation modes in the reconfigurable
architecture.

3.1 Precision-Scalable MAC
3.1.1 Baugh-Wooley multiplier
A standard BW multiplier is a grid of 1by1 bit multipliers (essentially AND gates)
where each block computes the partial product (PP) between a different pair of
bits of the two 16-bit input operands using an AND gate. Then, by using a Full
Adder (FA), the product is summed together with 2 other contributions - the input
sum Si and the carry Ci bits coming from the previous row of PPs, and it provides
the output sum So and carry Co bits to the blocks of the next row of the PPM.
The sixteen So bits exiting from the right-most column of the PPM represent the
least significant part of the multiplier’s output. The most significant part is instead
obtained by adding through a 16-bit Ripple-Carry Adder (RCA), the So and Co
output bits exiting from the last row of the PPM. The concatenation of these two
produce the 32 bit result.

In order to support signed 2s complement multiplication, the grid has two types
of cells. The inner ones have an AND between A and B and the outer ones have a
NAND. Th this way the second variant inverts the partial product. In Figure 3.1
the two types of cells are shown.
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Figure 3.1: The building blocks of the Baugh-Wooley multiplier.

The topology of partial product blocks forms a grid where one operand is given
on the rows and the other in the columns. The carry propagates down and the sum
on the diagonals (right-down) of the array. The output result is formed from Sum
out bits of the outer-most blocks.

Figure 3.2: An example of a 4-bit Baugh-Wooley multiplier

As it is visible from the figure 3.2, the grid formed by the cells has white ones
(A&&B) everywhere except the left and bottom sides, without the left-most bottom
corner. The red lines form the connections of the A operand and the green - of the
B operand. The Sum propagates on the blue arrows and the carry on the yellow
one.

Then there is a row of full adders on the bottom to sum the resulting sum out
and carry out vectors. One is added in the carry of this full adder to support 2s
complement multiplication. The carry out of the last FA is not considered as the
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3.1 – Precision-Scalable MAC

largest possible value obtained by multiplying two 4-bit numbers will never exceed 8
bits. This multiplier forms the basis to further improvements explained in the next
section. Each variant later on will transform a reconfigurable grid into versions of
this multiplier - including the inverting (gray) blocks and logic 1 injection in order
to support 2s complement signed multiplication.

3.1.2 st, sa operations
The concept of Sum together(st) and sum apart(sa), also called sum separate(ss)
explains the different types of parallelization for doing a multiple number of reduced
precision multiplications simultaneously. The difference between the two general
schemes is in the formation of the output result. Different parts of the output vector
form the relevant result of the operation in different modes. Here an example of a
4by4 grid is shown, but the same concept is extended to larger arrays.

Sum Together (ST)

The objective of the ST mode is to perform several reduced-precision multiplications
instead of one high-resolution multiplication. The resulting products are directly
accumulated inside the multiplier. Its principle is (for a simple 4-bit full precision
example) depicted in Figure 3.3. This configuration saves the necessity of using
additional adders to sum up these products, as it uses the multiplier array cells
to implicitly perform the addition. As a result, ST mode saves significant register
activity and MAC output bandwidth.

Figure 3.3: depiction of a simple ST mode multiplier
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As we can see in Figure 3.3, in this sum-together variant only the two 2x2
yellow squares are “active”. This means that the non-active ones need to only
“pass through” the information to their neighbors, without adding their partial
product contribution to the sum.

As the sum and carry propagate down and right, the results of the two smaller
multiplications(from the partial products of the active regions) will end up in the
same portions of the output vector result and be added together. For larger arrays
(for example 16 by 16) this mode can have variants - 4 times 4by4 bits, 2 times 8x8
bits or even 8 times 2 by 2 bit multiplications. Each mode has to form a power of
2 total multiplications in the variant of the multiplier array used in this case.

Sum Separate (SS)

The sum-separate (or sometimes called sum-apart) configuration of the multiplier
enables the computation of 16/m products independently at m-bit precision with
m = 2,4,8,16. The multiplier array shown in figure 3.4 acts similarly to the previous
one, however the results of the operations propagate to the output without getting
added together. They essentially end up in different slices of the output vector.
In this example the multiplication is split into two 4by4 ones creating the 8bit
results. In this mode too, the array can be configured as different smaller-precision
multiplications, for example, in the 16 by 16 array.

Figure 3.4: depiction of a simple SA mode multiplier

Comparison between the modes
It is important to note that different parts of the input operands end up in the
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3.2 – STAR multiplier

same multiplication in SA and ST modes. As it’s visible from figure 3.5 that in
Sum Apart (or Sum Separate) the same portions of the two operands end up in
the same multiplications, compared to Sum Together, where the low bits of A are
multiplied by the high bits of B. In the example below there are 16 bits operands
and they are split into 4 times 4 by 4 multiplications.

Figure 3.5: Figure SS vs ST operand splitting

The same type of "mirrored" bit slicing of the operands also happens in other
larger variants of the multiplier and in other configurations (in 8x8st and 8x8 sa
modes).

The next step of improvement is to make the multiplier reconfigurable so that
it can support both types of modes with different variants. What needs to be
done is to have additional control signals for each partial product in the grid. In
this way the whole grid becomes reconfigurable. Another thing to consider is that
for supporting 2s complement multiplication, small multipliers need to be able to
’switch’ from the white to the gray variant similarly to figure 3.1 so that the bottom
and left sides become invertible.

3.2 STAR multiplier
The STAR (Sum Together/Apart Reconfigurable) architecture, developed at Po-
litecnico di Torino[1], is a reconfigurable multiplier array capable of operating in
two distinct modes, Sum-Together (ST) and Sum-Apart (SA), depending on its
configuration. This flexibility makes STAR suitable for integration in a variety of
applications, such as within the multiply and accumulate (MAC) units and hard-
ware accelerators.

The ability to dynamically reconfigure application-specific accelerators allows
for more efficient utilization of hardware resources, enabling the same hardware
blocks to be shared across multiple computational tasks. For example, as illus-
trated in Figure 3.6, a STAR-based MAC unit can be used inside a single hardware
accelerator to support both 2D and Depth-Wise (DW) convolution operations.
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Figure 3.6: STAR-enabled reconfigurable MAC for 2D/DW Convolution.[1]

In 2D convolution, the STAR multiplier operates in ST mode, performing
multiply–accumulate (MAC) operations between low-precision input values (light
blue) and weights (orange) on a channel-by-channel basis (Fig. 3.6). The resulting
partial products are forwarded to an external accumulator, which combines them
until all input elements have been processed and the corresponding output value
(green) is produced.

In depthwise (DW) convolution, the STAR multiplier is configured in SA
mode, enabling several low-precision multiplications to run in parallel without
internal accumulation, using features and weights from separate channels (Fig. 3.6).
In this configuration, the external accumulator is adapted to the target precision
and maintains independent partial sums for N = 2 or N = 4 output elements.

The STAR architecture can also use the ST mode to accelerate fully con-
nected (FC) layers, extending its applicability across a wide range of neural net-
work workloads. An example illustrating the modes of operation for a 16 × 16
STAR multiplier is shown in Fig. 3.7.
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3.2 – STAR multiplier

Figure 3.7: STAR modes of operation

According to the selected operating mode, some partial products (PPs) become
active (yellow squares) and contribute to generating the valid output bits (yellow),
whereas other PPs are inactive (gray squares) and do not contribute to the final
32-bit result.

In table 3.1 are the modes and the output function that should be calculated

CONFIG STAR output
16x16 O[31:0] = A[15:0]*B[15:0]
4x4st O[21:12] = A[3:0]*B[15:12] + A[7:4]*B[11:8] +

+ A[11:8]*B[7:4] + A[15:12]*B[3:0]
8x8st O[24:8] = A[7:0]*B[15:8] + A[15:8]*B[7:0]
4x4sa O[31:24] = A[15:12]*B[15:12]

O[15:8] = A[7:4]*B[7:4]
O[23:16] = A[11:8]*B[11:8]
O[7:0] = A[3:0]*B[3:0]

8x8sa O[31:16] = A[15:8]*B[15:8] O[15:0] = A[7:0]*B[7:0]

Table 3.1: STAR modes of operation
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3.2.1 Star architectures
There are a few architectures of the STAR multiplier that can achieve the desired
functionality. For example a naive implementation would be to have separate mul-
tipliers for each mode and then have a multiplexer that decides on the appropriate
output of the whole device. Here the SWP architecture is explored further.

3.2.2 SWP architecture in 32 bits
In order to support these multiplication modes, the grid needs to have a few control
signals distributed along its elements. Most of them are a modified version of the
modules of the Baugh-Wooley multiplier (section 3.1.1) with an added enable signal
to the A and B operand. This signal can turn off said elements by providing them
with a 0. Then they would only pass through what was added to the total sum
without adding the components for which they are responsible in the grid. In the
figure below are shown these modified elements.

Figure 3.8: the white and gray element

With P=1 these elements behave like the ones of the Baugh-Wooley array. The
P signal is decoded from the configuration and given to the elements in groups as
seen later. In this way the normal array is transformed into the configurations from
fig.3.8.

The red element’s function is to invert the partial product’s sum coming from
the A and B operands such that it "transforms" a white block into a gray one and
vice versa. In this way it can “create” the needed left row and bottom column of
inverting blocks to support 2s complement multiplication. In the red blocks, the
input of their internal full adders (FAs) can be forced to logic 1, independent of
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the actual value of the partial product (PP), by setting the control signals (P = 0
and I = 1). This capability can be leveraged to insert the 1s required by the BW
algorithm in place of the Si inputs of the PPM blocks in the top row and left-most
column, reducing resource usage and shortening the propagation path for these
inputs.

Nonetheless, the red blocks do not cover all the positions where logic 1s are
needed. To handle the remaining positions, blue blocks (details in Fig.??) and
green blocks (see Fig.??) include an OR gate that can force the FA input to logic
1 when I = 1.

Figure 3.9: the inverting block
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Figure 3.10: the blocks that “inject” a 1. Note: the plus sign block is an or gate

Each block of the Partial Product Matrix (PPM) receives specific binary inputs
for the signals P and I, as indicated by the letters inside each block (see Fig-
ure 3.11). When a block contains a single letter, it receives only a logic value for
P , since white and gray blocks do not have an I input [1]. When a block contains
two letters, it receives logic values for both I and P . For example, a label such as
c/d indicates that I = c and P = d.

For SA (Sum-Apart) operations, the carry chains connecting the most sig-
nificant bit (MSB) of one sub-word to the least significant bit of the next must
be interrupted. This is achieved by inserting AND gates at specific points in the
circuit to block carry propagation when the control signal M = 0, as shown in Fig-
ure 3.11. These AND gates also modify the carry path of the 16-bit Ripple Carry
Adder (RCA), effectively splitting it into two independent 8-bit RCAs when nec-
essary. The positions of these AND gates are marked with “X” symbols in Figure
3.11, and each diagonal of “X” symbols corresponds to a control signal applied to
the M inputs of the AND gates along that diagonal.

Similar to P and I, the M signals are derived from the CONFIG decoding logic,
where the letters m and d in Figure 3.11 represent the logic values associated with
the green and violet “X” symbols, respectively. Additionally, carry propagation
enable signals, also indicated by crosses in the diagram, are used to selectively
block carry propagation, thereby splitting the results during SA mode operation.
This mechanism allows the array to support all five operational modes of the STAR
architecture.

For clarity, the specific control signal values are not shown here, but they can
be derived directly from the configuration logic. A more detailed implementation
is discussed in the following section[1].
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Figure 3.11: STAR SWP (BW) PPM with two 8-bit RCAs.[1]

3.2.3 52 bit STAR with MAC
A more complex variant of the STAR multiplier[2] is to have it accumulate the
result over some cycles and then a larger vector could be read from it. This is
useful when a higher number of accumulations need to be performed and can reduce
output bandwidth. The general idea is to have the config not only control the mode
of the array of partial products, but also control the way the output is added and
stored within the larger 52 bit register.
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Figure 3.12: STAR with internal accumulation

The variant of the star multiplier with an internal accumulation register has a
wider output of 52 bits instead of 32 bits. The idea is to use specific bit slices of
the result for each different mode. They are spaced in such a way that a normal
adder could be used to sum the 52-bit STAR output with the 52-bit register value
and each result will be summed with its proper value in the reg. There is enough
spacing in order to support at least up to some number of accumulations in the
worst case (maximum value of the operands). This spacing (gray area in the figures
below) is added after the calculation from the SWP array by spacing out the bits
of the result. The spacing is controlled by the opcode. For different modes not all
bits of the result will be considered. The bit sections, maximum value of the result
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and guaranteed cycles for which there is no overflow for each mode are summarized
in the next subsections.

16x16st mode

Largest value from summation is

16{1} ∗ 16{1} = (216 − 1)2 ≈ 232

The result is stored in [47 : 0]

Figure 3.13: 16x16st mode

Therefore a safe approximation in the worst case for a maximum number of
accumulations without overflow is 248/232 = 65536

8x8st mode

Largest value from an individual summation is

2 ∗ 8{1} ∗ 8{1} = 2(28 − 1)2 ≈ 217

The result is stored in [36 : 0]

Figure 3.14: 8x8st mode

A worst case for the maximum number of summations is 237/217 = 1048576

4x4st mode

Largest value from an individual summation is

4 ∗ 4{1} ∗ 4{1} = 4(24 − 1)2 ≈ 210

The result is stored in [23 : 0]

Figure 3.15: 4x4st mode
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Worst case maximum summations of 4x4st operations is 224/210 = 16384

8x8sa mode

Largest value from an individual summation

8{1} ∗ 8{1} = (28 − 1)2 ≈ 216

for 2 entries in the result vector [46 : 26] and [20 : 0]

Figure 3.16: 8x8sa mode

In this case a safe approximation for maximum number of summations
221/216 = 32

4x4sa mode

Largest value from an individual summation

4{1} ∗ 4{1} = (24 − 1)2 ≈ 28

for 4 entries in the result vector

Figure 3.17: 4x4sa mode

Safe approximation for maximum number of summations: 213/28 = 32
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Chapter 4

ST, SA operations in AHA

This section discusses possible implementations of a configurable reduced precision
multiplier within a PE of an AHA CGRA. Some variants are promising and are
in theory good solutions, even if their implementation success was limited. The
chapter focuses on comparison between those which could work and the other non-
optimal solutions. In the last section an experimental implementation is explored,
which could be improved further in future works.

4.1 Overview of implementation strategies
4.1.1 Increased bitwidth
An approach that initially seems straightforward is to increase the bus bitwidths in
order to fit the star result. It could be done with 32 bits for the multiplication or 52
bits for the multiplication and accumulation variant of the configurable multiplier.
The downside of this approach is that the whole interconnect will have to be also
scaled up by a large factor - from 16 to 32 or to 52. This increases the overhead,
power consumption, area of the CGRA and is therefore very limiting in terms of
performance. If for example the total area of the chip is fixed, adding all these
extra interconnect wires, multiplexers and logic within the PE (to support also 32
or 52 bit operands) will equate to less PEs within the chip. The same is valid for
a fixed power consumption - it leads to lower number of PEs when wider inter-
connects are used. The increased bit-flips lead to a greater power consumption,
because of the higher number of mos-capacitor charges and discharges within gates
(of flip-flops) changing their state at each clock cycle. After all, the whole reason
for using reduced precision is to be able to launch NN calculations on a platform
where power and area are limited. This will therefore diminish the advantages of
the whole STAR integration. Another more “real-world” reason this approach was
not feasible in the Stanford AHA Amber CGRA framework is that the operands,
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interconnect, memory and other similar signal’s widths are hard-coded in their cur-
rent implementation. This makes it very hard to manage making this approach
work even just as a proof of concept. A next step-forward is to include an inter-
nal register used for accumulation and then output the data only when the MAC
operation is finished. This is discussed in the next subsection.

4.1.2 Internal accumulation reg
The way a multiply and accumulate operation is used in the context of a NN is to
perform a high number of small multiplications either for matrix operations or for
convolutions. In both cases, the STAR multiplier can speed up the process by doing
some number of these operations in parallel. If then the results are accumulated
again, the result would be an accumulation over a larger number of operands. In
the ST case there would be only a single result and in the SA case there will be
some separate accumulations happening independently. This means that we don’t
really need the ability to do separate star operations and we can have a register
that accumulates the result. Then we can provide this result to the PE output.
In order to be able to initialize the internal register or reset it for any reason, the
implementation also requires an operation to clear the sum in the register. The
total width of the reg is 52 bits to facilitate the different operations of the star
multiplier. As it is 52 bits instead of 16, it can be achieved by either having 4 by
16 bit buses used as one or by changing one bus to 52 bits for one input and one
output.

wide output

A wide output can be done by changing the interconnect width as described in
the previous subsection, but as we have seen this approach is not feasible in AHA.
Nevertheless, it could be a working solution in another CGRA architecture.

output in 16b parts

The other way, which leverages onto the existing widths, is to crop the result in 4
separate parts and output them with different opcodes. This is no longer a limiting
factor to the throughput, as is the case with subsection 4.1.3, because now we only
need to do this high number of opcodes at a single point in time - at the output of
the mac result, opposed to doing it on every cycle of the calculation.

Location of the accumulation register

This implementation strategy can be done in a few different ways, depending on the
placement of the accumulation register. Its location impacts the type of rewrite
rules we can have, as they look at the PE from outside (as a whole unit). The
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location also impacts the sizes of the inputs/outputs of the PEs, which is seen in
the later subsections.

Inside the alu

In the original Amber CGRA from Stanford the arithmetic and logic unit of the
PE is purely combinatorial. This means that it doesn’t have an internal state -
therefore, no clock and no reset. To achieve the internal state we have to pass these
signals to the alu. The ALU will have to get a structure similar to the one in figure
4.1.

Figure 4.1: accumulation reg inside the ALU

Note that the multiplexer before the register has a second input of 0 to clear
the accumulation when it is needed. This solution is elegant, but it turns out to
be unusable in AHA, because in the way the rewrite rule generation works it can
not operate on the internal state of the ALU and is unable to map the STAR
functionality onto the new opcodes.
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Inside the PE, but outside the alu

This possibility is closest to the original lassen PE, as it takes advantage of the
register file within the PE. The main difference is that it requires wider signals on
the interface between the alu and the actual register. To fit the star multiplier
functionality with accumulation means to have 52 bit input and output of the alu,
along with the two 16 bit input operands. The 52 bit input is the registered value
and the 52 bit output is the register input. Then there would need to be the 16 bit
indexing of the register (similar to the last subsection) used for sending the accumu-
lation value through the 16-bit interconnect in chunks. A possible implementation
is reported in the figure below.

Figure 4.2: internal accumulation reg using the register file

Note that in this configuration, there is no internal state within the ALU. It has
to provide the C input to the next cycle through one output and the result through
another in 16b parts. Another way to do it is to have the C input go directly into
a mux, so that the output 1 will be the current result, not the next one.
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Figure 4.3: the two output assignments

Note that the second output is just slicing of the C input (the value of the register
file). The problem with this otherwise elegant solution is that we need to have
two outputs of the ALU, or in other words to have a single instruction - multiple
operations. This type of ALU is not compatible with the AHA methodology for
the reason it can map only a single operation to a single PE. What it does with
this specific hardware is that it maps one operation to one PE and another one
to a different PE. In other words, it doesn’t “realise” that it can use a single PE
with one opcode to do both operations. This solution, however, has potential to be
used in another CGRA architecture. It combines the functionality and interconnect
efficiency(in terms of overhead) of the other presented solutions and appears to be
the best one in theory. The downside to this approach is that it spans more opcodes
than the usual reconfigurable star multiplier. The added ones are related to sending
the data from the register out of the PE and to resetting it.

Outside the PE

The third possibility is to have the register out of the PE. This solution will also
be quite similar to the original AHA Amber implementation, however it would
need extra elements within the grid. This is not straightforward to do in AHA,
because it requires to have registers inside the grid, along with the memories. The
memories can not work for this cycle-to-cycle accumulation, as the memories have
2 or 3 cycle write-read delay. Even if it is doable though, its greatest limitation
would be the fact that each PE would require a 52 bit input and output to transfer
the old and the new value of the accumulation register. This approach could be
a good solution in another CGRA topology, for example one which has a register
type of memory (1 cycle delay between write and read), and a CGRA framework
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which has a different type of mapping. In AHA, there is no guarantee that a single
PE would be used, instead it may map the multiply and accumulate operation on
multiple PEs. Therefore this approach is also not feasible in AHA. Compared to
the previous one it is also inferior, because it doesn’t have the advantage of smaller
width interconnections.

4.1.3 Low/high bits division of result

Figure 4.4: division of result

A simple way to fit into the Aha Garnet cgra is to implement the star multiplier in
a way such that the output is calculated in two different operations with separate
opcodes. One of them to have the output equal to the low 16 bits of the result
and the other to have it to be the high 16 bits. This is similar to the way the
multiplication is done inside the lassen alu - it has three opcodes for the low, middle
and high 16 bit sections of the 32 bit result. This means that for applications where
only one part is non-zero or needed at all the multiplication can be done in 1 clock
cycle. For cases where the full result is needed the 16x16 multiplication can be done
either in 2 clock cycles or by using two PEs and concatenating the results. For the
STAR multiplier, however, this approach is very limited, because it will defeat the
purpose of doing the multiplications together if it takes more than one clock cycle
or PE. It could only make sense for the 4 bit operations. The 4x4st can fit within
16 bits and the approach could work. The 4x4sa fits within 32bits, but we still do
4 multiplications in 2 cycles, so it also makes sense. The 8 bit ones essentially do 2
multiplications in 2 cycles, therefore it’s as good as using the normal multiplication.
The 16x16 is exactly the same as the normal one in terms of efficiency.
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4.1.4 Input reordering
A different approach is to limit the implementation to the smaller output modes of
the STAR multiplier(4x4st and 8x8st). In this way we don’t have to deal with the
high number of bits in the output data-path, which was seen to be not feasible in
AHA, at least in the ways that were tried. However, even limited by the smaller
throughput there are some strategies to implement the larger multiplications as
explained. As the mac operation is performed multiple times and in the use case of
a neural network, multiple results are usually accumulated. A different approach to
employing the STAR multiplier in a CGRA is to use the 4x4st or 8x8st modes for
doing a larger multiplication than 4bit and 8bit respectively. By decomposing the
large multiplication into a bunch of smaller ones, followed by shifting and adding,
we can distribute the large one within some number of smaller ones. By switching
the order of summation, we effectively do the same final operation, as summarized
in the figure below.

Figure 4.5: 8x8st reorder to do 16x16

In the example from the figure the case with 8x8st is shown. For 4x4st a similar
reordering is done - by concatenating 4 bit operands together for multiplications
that would be summed up either way. This is how the 4x4st can even be extended
to perform 8-bit and 16-bit multiplications.
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4x4st used to do 8 bit operations

An 8 by 8 bit multiplication is essentially four 4 by 4 bit multiplications added
together with different amounts of shift-left. The lsb multiplied by lsb has no left
shift, lsb multiplied by msb has 4 and msb by msb has to be shifted left by 8 bits.
Summing them together results in the full 8 by 8 bit multiplication.

Figure 4.6: 16x16 done by 8 bit multiplications

When the star multiplier is used to perform a high number of MAC operations,
as in a neural network, the four separate components of the 8x8 multiplication can
be summed together in three groups - the 0, 4 and 8 bit shift-left, before adding
them together. As an example - four 8x8 ones summed together can be done with
four 4x4st operations.
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4x4st used to perform 16 bit multiplications

Figure 4.7: 16x16 done by 4 bit multiplications

The same can be done for performing a 16 by 16 bit multiplication. This time,
however, the possible shift-left amounts are 0, 4, 8, 12, 16, 20, 24 and 28 bits. The
total number of 4x4 multiplications needed to do a single 16x16 one is 16.

4.2 Experimental implementation
A workaround of the AHA limitations is to trick the mapping. It is possible to map
the Halide app onto the CGRA as if the multiplication was a standard 16x16, but
it is actually a reduced precision sum-together operation for example. The halide
app also needs to be written in such a way that it has a normal multiplication in the
places we want to implement the star operation. Then we have to do modifications
in order to actually use the STAR operation. They can be one of the following:

4.2.1 Verilog generated file modification
The idea is to change the rtl file to do a STAR operation instead of multiplication.
This is hard to achieve, because the generated rtl file is very big in size(it includes
the whole PE). However there is a better way to do it - to trick the actual mapping.

4.2.2 Rewrite rule modification
In this variant, both multiplication and star reduced precision operations exist
within the PE functionality. In order to trick the mapper to use it, the content of
the rewrite rule json file need to be changed to actually setup the PE to perform a
star operation instead of 16x16 multiplication. In this case we can simply substitute
the opcode for the desired operation in place of the multiplication one. Here both

43



ST, SA operations in AHA

functionalities need to be a part of the formal PEaK specification and exist in the
verilog file. The change has to be done between the rewrite rule generation and the
application mapping step. The Figure below highlights when the change needs to
be done within the design flow of the AHA process.

Figure 4.8: Rewrite rule modification

4.2.3 Modification of the mapping file
The simplest way to achieve star functionality within the AHA CGRA is to modify
the mapped application file to use the star operation instead of another one. The
modification has to be done only to operations that are not desired to be normal
16x16 multiplications. In the Halide app these operations need to be instead 16x16
instead of the star, in order for the AHA mapping to work. The figure below
summarizes the modifications to the design flow.

Figure 4.9: Mapping modification

Part of the formal PEaK specification of the PE (the part where the 16x16 and
4x4st are) is shown.
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e l i f a lu == ALU_t.STAR:
mulstara = UData( SData8 ( a [ 0 : 8 ] ) ∗ SData8 (b [ 8 : 1 6 ] ) )
mulstarb = UData( SData8 ( a [ 8 : 1 6 ] ) ∗ SData8 (b [ 0 : 8 ] ) )
mulstar = mulstara + mulstarb
res , C = mulstar , over f l ow ( mulstara , mulstarb , mulstar )
res_p = C

After this modification to the mapping, the PnR works correctly, but the testing,
of course, fails, because the mapped CGRA is no longer doing the same operation
as the Halide app. This is expected, because of the workaround. In the next
subsection a simulation of the generated PE within a SystemVerilog testbench is
done.

4.2.4 Simulation of the generated PE
The aha garnet script does the verilog generation, as explained in section 2.5.9. It
generates a lot of muxes, multipliers and adders in order to fulfill the whole PE
functionality. For example the part responsible for the 8x8st operation includes a
17 bit adder, where 16 of its bits are connected to the output of the alu and The
MSB is connected to the ALU carry flag. The whole PE is instantiated inside a
SystemVerilog testbench and is driven to perform the 8x8st operation. The result of
the vcs simulation is a wave .fsdb file, it is displayed using Synopsys Verdi waveform
viewer and the relevant parts are shown in figure 4.10.

Figure 4.10: vcs Simulation of the PE

This result is somewhat promising, because it shows the correct behavior of
the st operation. Further exploration of the possible next steps are described in
Chapter 5.
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Chapter 5

Conclusions and Future
work

This thesis investigated the potential, design considerations, and practical limita-
tions of integrating a configurable reduced-precision multiplier into the Stanford
AHA Coarse-Grained Reconfigurable Array methodology. Although STAR multi-
pliers offer significant advantages-particularly in energy efficiency and throughput
for neural-network workloads-integrating these architectures into the AHA frame-
work proved demanding. The analysis presented in Chapter 4 identified both the
architectural possibilities and the system constraints that define what is realistically
achievable within this specific CGRA environment.

5.1 Conclusions
A range of implementation strategies was examined, including widening datap-
aths, embedding accumulation registers inside or outside the Arithmetic Logic
Unit (ALU), and various techniques for result partitioning and operand reordering.
While many of these approaches are promising from a fundamental hardware per-
spective, the existing AHA flow and mapping methodology impose constraints on
their direct implementation. This thesis doesn’t prove an implementation within
AHA is impossible, so it could still be done in theory, but the approaches tried all
had significant downsides/constraints. The main conclusions are summarized.

Increased Bitwidth This approach introduces unacceptable overhead in area,
power consumption, and routing complexity, thereby fundamentally undermining
the goal of utilizing reduced precision. Constraint within AHA Framework
The fixed-width infrastructure of the AHA framework makes widening intercon-
nects (e.g., to 32 or 52 bits) impractical.

Internal Accumulation Registers Theoretically ideal because it preserves
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the main benefit of precision scalability. Accumulating directly in the ALU/PE of-
fers the cleanest architectural solution with minimal interconnect overhead. Con-
straint within AHA Framework The AHA rewrite-rule compiler cannot manage
internal ALU state nor map multiple simultaneous operations to a single Processing
Element.

External Accumulation and Extended I/O Constrained by fixed intercon-
nect and distributed mapping. Constraint within AHA Framework Moving
accumulation outside the PE requires 52-bit per-PE communication, conflicting
with AHA’s fixed 16-bit routing network. Additionally, the mapper may distribute
MAC operations across multiple PEs, making consistent single-source accumulation
impossible.

Low/High-Bit Slicing Limited usefulness; only viable for the smallest STAR
modes and diminishes reduced-precision benefits. Constraint within AHA Frame-
work Dividing a STAR result across multiple instructions provides minimal benefit
beyond 4-bit or partial 8-bit modes. For larger modes, multi- cycle extraction elim-
inates the intended parallelism and speedup.

Operand Reordering (Shift-and-Add) Eliminates the key speedup offered
by STAR multipliers. Constraint within AHA Framework Decomposing higher-
precision multiplications into many small STAR operations followed by shift-and-
add introduces significant overhead and yields no net throughput benefit.

5.2 Future improvements
The promising implementations of Section 4.1.2 have the potential to be realized
in another CGRA architecture. The limitations of AHA will not hold for an appro-
priately chosen CGRA methodology, and these implementations can outperform
normal multiplications in terms of operations per cycle. There are a few directions
that could be taken for future improvements to the work, which are explained later
in more detail.

• Analysis of other CGRA architectures

• Other implementation strategies

• Enhancement of the workaround strategy

• Using the desired rtl architecture of the multiplier

Other CGRA architectures

There are many other CGRA design methodologies which have to be explored.
Some of them should be able to work with the requirements of the STAR operation
mapping (multiple operations per instruction and/or internal state of the PE).
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5.2.1 Other strategies
There still is the possibility of a better implementation of the STAR multiplier inside
AHA, that was not covered by this thesis. It is very hard to say that something is
impossible, so this direction of future work is still considered.

Workaround strategy

The workaround proposed in Section 4.2 to overcome AHA’s limitations can be
further refined. Among the investigated strategies, modifying the mapping file ap-
pears to be the most effective approach for enabling STAR-type operations within
the existing AHA design flow. Future work could extend this method by also mod-
ifying the Halide application after mapping, ensuring that the generated testbench
mirrors the behavior of the modified mapped design. Such an enhancement would
restore AHA’s testing capability, which is one of the framework’s most valuable
features.

rtl architecture of the multiplier

Another step of the implementation process that remained out of the scope of this
thesis was the integration of the rtl design from section 3.11[1]. It is functionally
the same as the generated rtl, but it has a more optimal architecture. The goal is
to swap the optimal architecture’s rtl with the one generated by AHA.
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