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Summary

Mobile banking applications have become a critical part of the modern banking
ecosystem. Their handling of highly sensitive data and their ability to perform
financial operations, coupled with their widespread adoption, make them very
attractive targets for attackers. This thesis presents the design and development
processes of Code Guardian, a static analysis tool aimed at supporting the vul-
nerability assessment of mobile banking applications distributed as APK(Android)
and IPA(iOS) packages, focusing particularly on the evaluation of the obfuscation
level. Code Guardian’s analysis encompasses the inspection of the application’s
metadata, file system, embedded resources and binary executables and follows the
guidelines of the OWASP Mobile Application Security(MAS) project. Firstly,
a comprehensive evaluation was conducted in order to identify the most suitable
components needed for the analysis workflow, ending up in the requirement of
executing the analysis in a desktop environment to meet performance and com-
patibility constraints. Based on the results of this preliminary evaluation, the tool
adopts a client-server architecture designed to combine the platform and compu-
tational requirements of the analysis with cross-platform accessibility for users.
The server, developed using Kotlin and the Ktor framework, orchestrates the
analysis processes by employing several techniques and external containerized tools
such as Ghidra(in particular its headless version), Semgrep and a Large Language
Model(LLM) in order to deeply dig into the package. On the other hand, the
client is implemented using Kotlin and Compose Multiplatform allowing to share
the codebase across multiple platforms (Android, iOS, desktop and web) while
preserving high level performance thanks to its capability of compiling for different
target platforms. To validate the effectiveness of Code Guardian, some tests were
performed on a set of purposely vulnerable applications, including variants with
and without obfuscation. The results proved that the tool is capable of successfully
detecting the main vulnerabilities, giving recommendations to mitigate them and
summarizing its findings in a structured security report.
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Chapter 1

Introduction

1.1 Context
Over the past decades, smartphones have become the center of gravity of communi-
cation, social interactions, commerce, advertising and also financial operations. In
particular, mobile applications have completely transformed the way users interact
with digital services providing seamless and easy access to almost every service.
This shift led to an exponential increase in mobile banking applications usage,
making them the primary interface for users’ daily financial operations. As a direct
consequence of this widespread adoption, the attack surface of mobile banking
applications and their appeal as targets have increased.
According to the European Union Agency for Cybersecurity(ENISA) Threat Land-
scape 2024 report of the financial sector[1], 301 incidents suffered by European
credit institutions and a sharp rise in mobile banking trojans were reported during
the period going from January 2023 to June 2024. The report reveals a 200%
year-over-year growth in malware families targeting mobile banking applications,
increasing from 600 to 1800 applications affected globally and positioning the
financial sector as the third most targeted. These malware keep evolving in their
nature and attack strategy, becoming continuously more technically sophisticated
and granting various possibilities to the attackers such as stealing credentials,
performing fraudulent financial operations and even device takeover.
For example, during November 2023 the malware Anatsa[2] re-emerged, disguised
as a cleaner application for Android. It initially gave the impression of being
harmless to build trust in users and bypass detection and protections, but after a
week an update that introduced malicious behaviour was released. The malware
used to download a malicious DEX file from the Command and Control(C2) server
of the attacker and load it dynamically in memory at runtime, allowing the attacker
to gain full control of the infected device. Other examples of banking trojans are
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Introduction

ToxicPanda[3], Brokewell[4] and the newly discovered RatOn[5].
Overall, the natural appeal of the financial sector, the heterogeneous attack vec-
tors and methodologies of the malware, and the constantly increasing number of
incidents provide proof of the need to enhance the strategies to improve security in
this domain.

1.2 Thesis Goal
The goal of this thesis is to design and develop a cross-platform, easy to use and
automatic static analysis tool, named Code Guardian to assist the vulnerability
assessment process of mobile banking applications for both Android and iOS
applications. A key objective is to align the analysis methodology of the tool with
the OWASP Mobile Application Security(MAS) project [6] guidelines to ensure a
reliable baseline and cover the OWASP Top 10 Mobile Risks [7]. Additionally, the
tool aims to also provide some insights about the overall quality of the application
and above all to integrate the following layers of analysis:

• Analyse application metadata
Inspect Android’s AndroidManifest.xml, iOS’s Info.plist and other files
in order to detect misconfigurations or insecure settings that lead to security
issues.

• Analyse resources
Evaluate embedded string resources in order to detect any hardcoded secrets,
credentials or sensitive data exposed in the package.

• Analyse binaries
Assess the presence of binaries protection mechanisms, disassemble and de-
compile them, extracting strings, symbols and function bodies in order to
evaluate obfuscation and potential sensitive data presence.

• Analyse obfuscation
Evaluate the presence and effectiveness of obfuscation in the package bina-
ries, assigning multiple scores based on the different obfuscation techniques
employed.

1.3 Thesis Structure
The thesis is structured as follows:

• Chapter 2 - Mobile Platforms and Security Foundations
This chapter provides a comprehensive technical overview of the two mobile
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platforms, describing their characteristics and security features. It also intro-
duces some of the foundational principles applied by Code Guardian in its
analysis.

• Chapter 3 - System Design and Technologies This chapter illustrates the
design process of the architecture of Code Guardian, explaining the rationale
behind the tools and technologies chosen to implement it, and how these
tools influenced the overall design. It also focuses on describing the individual
components of the system and how they interact.

• Chapter 4 - Analysis Workflow This chapter represents the core of the
thesis, it describes in detail the analysis workflow of Code Guardian, explaining
each of the performed steps and tasks and how they contribute and integrate
among themselves to fulfill the thesis goal.

• Chapter 5 - Client Application This chapter is dedicated to illustrating
the client application of Code Guardian, focusing on its multiplatform nature,
the technologies employed to implement it and how their limitations have been
overcome. Furthermore, it shows the user interface and how it is capable of
providing a great and consistent experience across all the supported platforms.

• Chapter 6 - Testing, Future Developments and Conclusion This last
chapter is focused on presenting some of the tests performed to validate the
effectiveness of Code Guardian’s analysis. It also discusses about potential
future developments that could be implemented to furtherly enrich the tool
and its capabilities.

The foundations about mobile platforms and security described in chapter 2,
alongside the tests implemented are all based on the OWASP MAS[6], the Android
official documentation[8] and the Apple Platform Security document[9].

3



Chapter 2

Mobile Platforms and
Security Foundations

2.1 OWASP MAS
Alongside their Top 10 Mobile Risks, OWASP provides a comprehensive project re-
volved around mobile applications security called Mobile Application Security(MAS)
project. The goal of this project is to define a standard for mobile applications
called OWASP Mobile Application Security Verification Standard(MASVS), a
list of common weaknesses of mobile applications referred as OWASP Mobile Ap-
plication Security Weakness Enumeration(MASWE) and a testing guide named
OWASP Mobile Application Security Testing Guide(MASTG) that covers a wide
range of tests, techniques and best practices to assess the application’s security.
In particular the MASTG includes detailed instructions to analyse, both statically
and dynamically, the security of both Android and iOS applications. These instruc-
tions include tests categorized by different aspects of the application security such
as data storage, cryptography, network communication, authentication and so forth.
The guide is designed to cover both platforms, providing also suggestions about
tools and benchmarking applications to support the analysis. The OWASP MAS is
officially trusted by several institutions and companies like the National Institute
of Standards and Technologies(NIST)[10] and Android itself. An overview of the
OWASP MAS project is illustrated in Figure 2.1.

4



Mobile Platforms and Security Foundations

Figure 2.1: OWASP MAS Project

2.2 Android Platform Overview
Android is a Linux based open source platform used as a mobile operating sys-
tem(OS). It is developed by the Open Handset Alliance(OHA) which is a consortium
led by Google. Its openness made it the foundation of a wide ecosystem of devices
built from various manufacturers, including mobile phones, tablets, wearables and
so on.

2.2.1 Architecture
The bedrock of the software stack of Android, illustrated in Figure 2.2, is a Linux
based kernel, extended to include some specific components like the Binder, which
serves the Android Inter Process Communication(IPC) mechanisms.
Right upon the kernel, there is the Hardware Abstraction Layer(HAL) that pro-
vides standard interfaces for interacting with the device hardware. These interfaces
are packed and exposed to the Java API Framework in shared libraries modules
that the system loads as soon as they are requested.
What actually distinguishes Android is Android Runtime(ART), which is responsi-
ble for executing the DEX files containing Dalvik bytecode, which is an optimized
version of Java bytecode. The Dalvik bytecode is designed to have a minimal mem-
ory footprint and it is derived from the Java bytecode by an additional compilation
step. Starting from Android 5.0(API level 21), ART replaced its predecessor, the
Dalvik Virtual Machine(DVM), introducing Ahead of Time(AOT) and Just in
Time(JIT) compilation along with an optimized garbage collector. Beginning with
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Android 7.0(API level 24), it introduced also a hybrid compilation approach called
profile guided compilation which adapts compilation to the app’s usage patterns,
compiling AOT the most frequently used sections of the app.
Both the HAL and ART are built upon the Native C/C++ Libraries that the
platform provides. They are typically accessible by the Java API Framework,
which exposes the feature set of Android to system apps, or directly in native code
through the Android Native Development Kit(NDK).

Figure 2.2: Android Architecture

2.2.2 APK structure
The Android Package(APK) is the main format used to distribute Android applica-
tions. However, Google introduced the Android App Bundle(AAB), a publishing
format that can be uploaded to Google Play Store which then will be responsible
for generating, signing and distributing different optimized APKs for each device
architecture and configuration. Currently the Android system allows to install APKs
also from different sources rather than the official store but Google announced that
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starting from August 2026 this will not be possible anymore. This change aims to
enhance the platform security and aligns the Android distribution policy with the
iOS one.
An APK is basically an archive that encapsulates all the components required by an
application, its main elements are listed below:

• AndroidManifest.xml
The manifest is the key configuration file of the application. It is stored in
the APK as a binary XML file containing the app’s essential information like the
package name, the components of the app along with their properties, the
permissions that the app requires and declares, the network security configu-
ration, deep links, backup behaviour and so on. The binary manifest that is
within the APK is the result of compiling the original AndroidManifest.xml
file and merging it with the manifests of the libraries that the app uses. It
also includes some additional information injected by the build system such
as if the app is debuggable or in test mode.

• DEX files
The package includes one or more DEX files which contain the Dalvik bytecode
obtained by compiling the source code of the application. They are named
classes.dex, classes2.dex and so on.

• Libraries
The lib directory includes the native libraries used by the application compiled
for different architectures like ARM, ARM64, x86 and so on. Each architecture
has its own subdirectory.

• Uncompiled Resources
The res directory contains the uncompiled resources of the application like
images and layout files.

• Assets
The assets directory contains raw asset files accessible by the application
such as audio, video or fonts.

• Compiled resources
The resources.arsc file contains the compiled resources and paths to re-
sources not compiled in this file. It is a binary file that maps each resource ID
to the actual resource data.

• Metadata and signatures
The META-INF directory contains the manifest metadata, the signature, and
the list of resources with their hashes which are used to verify the integrity of
the package.
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2.3 iOS Platform Overview
iOS is a mobile operating system developed by Apple that powers devices like
iPhones and iPads. It is based on an open source operating system developed by
Apple called Darwin. Its kernel is XNU(X is Not Unix), a kernel developed by
Apple. A key difference from Android is that iOS benefits from a tight integration
between hardware and software since these are both developed by Apple.

2.3.1 IPA structure
The iOS applications are distributed as IPA files within the App Store. An IPA file
is essentially a ZIP archive containing all the necessary files for the application with
a specific structure. The IPA archive includes the Payload folder which carries the
actual application bundle with the .app extension. This bundle contains the main
components required by the application, such as:

• Executable
The main binary file of the application that contains the compiled code. It is
a Mach-O file.

• Information Property List
The Info.plist file is the main property list file that holds essential configu-
ration information about the application, such as the app’s bundle identifier,
version number, supported devices and required permissions.

• Frameworks
The Frameworks directory which includes all the frameworks the application
depends on.

• Resources
Resources comprehend images, strings files, sound files and any other custom
resources. The bundle contains both non localized and localized resources,
the first ones are stored directly in the top level directory of the bundle while
the localized ones are organized in language specific subdirectories with the
.lproj extension, one directory per each supported language.

• Code signature
The _CodeSignature folder contains the code signature used by the system
to verify the app’s integrity.

Besides the Payload folder, the IPA package contains also other minor elements
such as iTunesMetadata and WatchKitSupport directories which are not directly
related to the application functionality.
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2.4 Security
2.4.1 Bootstrapping
Since the very first moment a mobile device is powered on, the software integrity
must be ensured to prevent the execution of malicious code that could compromise
the whole device so the security strategy, of both Android and iOS, starts from the
bootstrapping process.

Android

Verified Boot is the mechanism used by Android to ensure that all the executed
software comes from a trusted source and has not been tampered with. It establishes
a full chain of trust starting from the hardware protected root of trust up to the
OS passing through the bootloader and the boot partition. The Root of Trust is
the cryptographic key used to sign the Android distribution stored on the device.
The Original Equipment Manufacturer(OEM) signs the Android version that will
be distributed in the device with its private key which is known only by it while
the public key is embedded in the device’s hardware, in read only memory(ROM).
Each component in the chain verifies the integrity of the following one before
transferring the execution to it, if any verification fails, the device either will not
boot or will boot in recovery mode. Verified Boot also supports rollback protection
to prevent the installation of older Android versions.

iOS

The Secure Boot Chain of iOS is used to verify that the system and its components
are written by Apple. It begins with the Boot ROM, which contains not modifiable
code and the Apple Root Certificate Authority(CA) public key. The Boot ROM
verifies the integrity of the Low Level Bootloader(LLB) which in turn verifies the
iBoot. Then, iBoot is responsible for checking the signature of the iOS kernel. If
any of these steps fails the device will not boot, additionally, in case of failure of
the Boot ROM loading process, the device will enter a special recovery mode.

2.4.2 Package Signature
The package signature is used as a security measure to ensure the authenticity of
the application package. It is checked by the system before installing, updating or
executing an application to ensure that the package has not been tampered with.
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Android

In Android, an APK can be signed with the following four different signature schemes:
• v1

The v1 signature scheme is also known as JAR signature scheme since it is
based on the same mechanism used to sign JAR files. It was the first signature
scheme of Android and is supported by all of its versions.
This scheme ignores some parts of the package like the ZIP metadata. Con-
sequently, the verifier has to handle untrusted data before processing the
signature and moreover it must decompress the whole APK, wasting time and
memory.
This signature scheme is insecure since the JAR can be modified without
invalidating the signature and so it is not recommended to use.

• v2
The v2 signature scheme covers the whole APK content resulting more secure
than its predecessor. It has been introduced and supported starting from
Android 7.0.

• v3
The v3 signature scheme has been introduced in Android 9, bringing in support
for key rotation and adding information about the supported SDK versions.
It has been introduced to allow developers to update the signing key of the
applications without obligating users to reinstall them. It consists of a singly
linked list where each node signs the next one, so that newly introduced
certificate is trusted because signed with the previous trusted one.

• v4
The v4 signature scheme was introduced with Android 11 and ensures that
all the devices with that version or higher have fs-verity enabled. This is a
feature of the Linux kernel which allows to block reads of files of the APK
that have been modified after its installation. This signature scheme is not a
replacement of the previous ones, it requires at least a v2 or v3 signature to
be present in the package.

An APK can be signed with multiple of these schemes to provide backward compati-
bility with older Android versions, for example devices running versions older than
7.0 will just ignore signature schemes different than the v1. The newer schemes are
obviously preferred since they provide better security mechanisms.

iOS

In iOS, all the code that runs on an iPhone has to be signed by a valid Apple-signed
certificate. It is mandatory for any application that is deployed on the App Store
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but also for applications sideloaded outside of the official store, such as the ones
installed during development. The difference between these two cases is that the
first one needs a paid yearly subscription while the second can be done for free but
still requires an Apple developer account. The code signing process involves three
parts:

• Seal
The seal is a group of hashes of multiple parts of the application’s code. It
can be used to detect alterations to the original code since any modification
will consequently change the hash value.

• Digital Signature
The digital signature is used to guarantee the integrity of the seal, it is created
by encrypting the seal itself with the private key of the developer.

• Requirements
The requirements are a set of rules that define the conditions that must be
met in order to verify the code signature. They can be related to the verifier
or directly specified by the signer.

2.4.3 Permissions Policy
Permissions are a security mechanism used by both platforms to protect sensitive
resources such as camera and microphone from unauthorized access. In general,
applications should request as few permissions as possible following the least
privilege principle.

Android

In Android, each of the system defined permissions is associated with a protection
level that indicates how sensitive the permission is and how the system handles
it. The protection level defines if a permission is automatically granted at install
time or it requires explicit approval from the user at runtime. Applications must
declare the permissions they need in the manifest file but they can also define new
custom permissions to be used by other applications when trying to interact with
them using their components.

iOS

On the other hand, permissions cannot be assigned at install time in iOS, they are
managed always asking at runtime for user consent when the application tries to
access the protected resource for the first time. Applications must declare in the
Info.plist file the permissions that they require, and provide a reason about why
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they need them. Moreover this reason has become mandatory starting from iOS
10.

2.4.4 Hardware-based isolated environments
Sensitive tasks like cryptographic operations or random number generation are
performed in hardware-based isolated environments to protect them from
potential threats coming from the main operating system.

Android

Android has to deal with a lot of different OEMs and devices so it adopts different
approaches to provide isolated environment. The Android Compatibility Definition
Document(CDD), which defines the standard requirements that each Android
device has to meet in order to be considered compatible, specifies that the devices
have to provide at least a Trusted Execution Environment(TEE).
A TEE is a secure area of the main application processor(AP) on which an
isolated OS runs alongside the main one, which instead executes in Rich Execution
Environment(REE). The isolation between these two environments is enforced
with hardware mechanisms provided by the processor, for example ARM processors
implement the ARM TrustZone technology to achieve this strong separation.
This approach is virtual since both the REE and TEE share the same CPU
and memory even if the REE, which is considered untrusted, is prevented from
accessing the resources of the TEE by hardware. Google also provides an open
source implementation of a TEE OS called Trusty which can be directly used or
as a baseline to build other custom TEE operating systems.
The CDD also establishes that devices can and should support an additional
stronger isolated environment called StrongBox, which is a completely separated
chip embedded in the device. StrongBox includes its own CPU, storage and True
Random Number Generator(TRNG) setting precise boundaries to cryptographic
sensitive operations. It is designed to be tamper resistant and autonomous so it
is intrinsically more secure than a TEE given that an eventually compromised
REE would be running on a completely different hardware. However, currently
StrongBox is not mandatory but as stated in the CDD it is highly recommended
and it will likely become a mandatory requirement in future releases.

iOS

In contrast to Android, Apple has full control over both hardware and software of
iPhones so it can adopt a unified approach to provide secure isolated environment.
In fact, all the recently released iOS devices include the Secure Enclave, which
is a dedicated subsystem integrated into the main System on a Chip(SoC) which
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provides hardware isolation from the main processor. Secure Enclave has its own
Boot ROM, its own microkernel based OS called sepOS and its own TRNG. It
does not have an actually separated memory but it uses a dedicated region of the
main memory which is protected by the Memory Protection Engine that prevents
the main processor from accessing it. The iOS devices also include two AES 256
bits cryptographic engines to perform the cryptographic operations efficiently, one
of them is exclusively dedicated to Secure Enclave while the other is used by the
main processor.

2.4.5 Cryptography
Cryptography is fundamental to ensure data confidentiality both at rest and in
transit. Android and iOS have adopted similar approaches that are described in
the following sections.

Android

Starting from Android 6.0, Google forced devices to support storage encryption
with some exceptions for low end devices.
Android 5.0 introduced Full Disk Encryption(FDE) which uses a single key to
perform cryptographic operations on the user data partition. This key is protected
by the device lockscreen credentials set by the user. However this paradigm has
important limitations since a just rebooted device could not receive calls, messages
or alarms until the user enters the credentials to decrypt the storage.
Hence, Android 7.0 brought in File Based Encryption(FBE) which allows different
files to be encrypted and decrypted independently, since these operations are
performed with different keys. This type of encryption comes along with Direct
Boot support that allows to overcome the limitations of FDE giving access to
alarms, calls or accessibility services even if the device has not been unlocked by
the user.

iOS

Apple devices support encryption since the introduction of the iPhone3GS. All
iOS devices are equipped with two AES 256 bits keys: the first one is the device’s
unique identifier(UID) which is fused in the SoC during the device production
and it is completely unique for each device, the second one is the device group
identifier(GID) which is common to all the devices sharing the same SoC model.
These keys are not accessible by software in any way, the UID is not even known
to Apple because it is not recorded during the manufacturing process. The GID is
used to prevent tampering with the firmware and to perform some cryptographic
operations that are not strictly related with the user’s data, while the UID is part
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of the key hierarchy used to protect the file system, so that even mounting the
storage on a different device would not allow to access the data since the UID
would be different.
The file based encryption used by iOS is called Data Protection, it gets enabled
as soon as the user sets a passcode on the device. Data Protection is based on a
key hierarchy where each file is associated with a unique per-file key which is used
to encrypt its contents. Each file is also associated with a protection class that
specifies when the file should be accessible, based on the device lock state. For
example, some files like those related to alarms can be accessed even if the device
is locked while others become accessible only once the device has been unlocked.
The per-file key is wrapped with the class key corresponding to the protection
class of the file and saved in the file’s metadata which then are encrypted with
the file system key. The UID and the user’s passcode are used to derive the keys
required to unlock the class keys that are stored in the keybag. For example, the
files assigned to the protection class that require the device to be unlocked in order
to access them, will need both UID and password to derive the key to unlock that
class key, therefore if the file is associated with the class that does not require the
device to be unlocked, the file is still encrypted but its class key needs only the
UID to be accessible, the passcode is not required since the file can be accessed
even if the device is locked. All of these operations are obviously performed inside
the Secure Enclave to ensure a bulletproof environment.

2.4.6 Network Communications
Almost every modern mobile application relies on some network interaction to
implement its functionalities. Often, these communications involve sensitive data
exchanges like for example any authentication process with a server or payments,
therefore they need to be properly managed and secured by the operating system
and the application itself.

Android

Starting with Android 9, every network channel is established using TLS by default.
Applications targeting this or newer versions can still decide to use clear text traffic
by explicitly declaring it in their manifest or network security configuration file but
it is strongly discouraged. Moreover, Android 10 furtherly tightened this policy by
enabling the 1.3 version of TLS by default. Alongside the introduction of this TLS
by default policy in Android 9, it was introduced also system wide DNS over TLS
support which allows to perform DNS lookup over a secure channel established
using TLS so that no sensitive information can be exposed.

14



Mobile Platforms and Security Foundations

iOS

Apple introduced App Transport Security(ATS) starting with iOS 9 as a collection
of security policies that aim to prevent insecure network connections. ATS enforces
a set of minimum requirements to secure the connections such as the usage of TLS
1.2 or higher, data encryption with AES-128 or 256 and support of Perfect Forward
Secrecy(PFS). These restrictions can also be disabled by applications configuring
global or specific exceptions in their Info.plist file to lighten some of these
requirements, like lowering the minimum TLS version for instance. Nevertheless,
starting from 2017, the Apple App Store requires to provide justifications for these
exceptions when the package is submitted to the store. It is preferred to avoid
disabling these security restrictions and instead properly configure the server to
comply with the requirements imposed by ATS.

2.4.7 Sandboxing
Sandboxing is a security mechanism extensively used in both Android and iOS to
isolate applications and restrict them from accessing resources or data belonging
to other applications or the system itself. In this way every application runs in its
own isolated environment and cannot interfere with the other ones.

Android

Android’s sandboxing model has its foundations in the Linux multi user separation.
Each Android application is assigned to a separated Linux user with a unique user
ID, in this way the applications are naturally isolated from each other and from
the system, leveraging the enforcements made by the Linux kernel. At installation
time, a new directory named after the app’s package name is created under the
/data/data/ path and it is made accessible for read and write operations only
by the user corresponding to that application. Actually, there is the possibility
for applications signed by the same certificate to share a single common sandbox
by explicitly declaring this intention in their manifests. In this case the two
applications will share the same user ID becoming able to mutually access the data
of each other.
Android relies also on the groups system of the Linux kernel by mapping each
permission to one or more Linux groups that are assigned to the applications based
on their granted permissions, therefore ensuring that only applications having the
required permissions can access the corresponding system resources.
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iOS

The iOS app Sandbox, also called Seatbelt, is also enforced at kernel level but it
is not based on the multi user separation like in Android. Only a few applications
of the system run as root user and the third party applications run under an
unprivileged user called mobile. The applications are constrained in a dedicated
container and they are able to access only their own directory, which is randomly
assigned when the app gets installed, and a limited set of the system APIs.

2.4.8 Inter process Communication
IPC is the mechanism that allows processes to communicate with each other. Since
in mobile operating systems the applications are all sandboxed and isolated from
each other, there is no natural way for them to securely interact without using
specific IPC channels and mechanisms provided by the operating system. The
cooperation obtained by IPC is an incredible source of new features, it integrates
the capabilities of multiple applications but the exposure required in order to
communicate across the sandbox has to be carefully managed and restricted to
avoid malicious exploitation.
Android provides IPC communication through the Binder framework which differs
from the traditional Linux IPC and has been built specifically for Android. Ex-
ploiting the Binder, applications have the possibility to request services to other
applications as if they were performing a normal procedure call. A higher level
IPC mechanism built on top of the Binder is the Intent, which can be used
by applications to asynchronously communicate, requesting services offered by
components of other applications which in turn are exposed via specific Intent
filters declared in the manifest. This exposure of the components is regulated
by the permissions that allow to restrict the access to the services exposed by a
component via the Intent mechanism only to the applications owning the required
permissions.
In iOS, IPC is not as comprehensive as Android’s Binder, it is limited to very
few mechanisms contributing to supervise the attack surface better since the
applications components are not exposed as much as in Android.

2.4.9 Binary Protections
Several attacking techniques like the buffer overflow can be exploited by attackers
to tamper with the normal execution flow of an application and gain control of
it. In general these attacks are counterable directly implementing some binary
protections that both Android and iOS provide and are explained below.

• Address Space Layout Randomization(ASLR)
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ASLR is a mechanism that randomizes the memory location of a program’s
code, heap and stack in order to make it nearly impossible for an attacker to
know the exact memory addresses where the program segments are located.
This technique is available on Android since version 4.1 and it has been
extended to cover also the kernel(KASLR) in Android 8.0. This protection
is feasible only if the binary is a Position Independent Executable(PIE),
which is a binary that can be loaded to any memory address, so a binary for
which the address binding is not done at compile time. Additionally, since
Android 5.0, all the applications must be compiled as PIEs and similarly
Xcode automatically compile applications with the ASLR enabled by default.

• Data Execution Prevention(DEP)
Attacks such as buffer overflows often aim to inject and execute malicious code
in the memory regions of the application. A legitimate program would never
need to execute code from the stack or heap memory regions so marking them
as non executable prevents these exploitations without affecting the normal
behaviour of the application. This protection is called Data Execution Preven-
tion(DEP) and it is implemented using the NX(No eXecute) or XN(eXecute
Never) bits to mark segments as non executable. This technique requires
hardware support and even if the names associated with this protection are
different among architectures, the underlying principle is the same.

• Stack Canaries
Stack canaries are special random values placed in the stack between local
variables and the return address of a function. They are unique among all the
functions during a single program execution and their purpose is to detect
any modification to the regular stack. When a function is called, a canary
value is pushed into the stack right before the return address and before
the function returns, the canary is checked to see if it has been altered with
respect to the original one. If it has, the canary has been killed and so the
program immediately terminates throwing a segmentation fault, preventing so
the execution of potentially tampered code.

2.4.10 Obfuscation
Obfuscation is a software protection process that aims to reduce the software
intelligibility in order to make it difficult to reverse engineer it for an attacker.
Obfuscation is not an absolute lock which ensures that an attacker will never be
able to reverse engineer the application, it just makes the process considerably
harder and discouraging to the point that it is not worth the effort. There are
several obfuscation techniques, some of the most common ones which are taken
into consideration by Code Guardian are described below:
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Symbols Obfuscation

Normally, the compiler produces the binary symbols starting from class names,
function names and variables. If no obfuscation is applied, these names correspond
to the ones defined in the source code and so they give hints about the purpose of
the function or variable. In order to hide this semantic information the symbols
are usually substituted with some meaningless characters like a single character or
random strings as shown in the Listing 2.1.
The debug symbols are special symbols inserted by compilers to ease the develop-
ment process, in particular its debugging. They must not be present in production
applications since their presence can reveal implementation details, ease the dis-
assemblers and decompilers job and consequently the reverse engineering process,
therefore obfuscators should aim to strip them out of the binaries.

Listing 2.1: Symbols Obfuscation Example

Strings Obfuscation

By default, strings within the source code are stored in plain text in the application’s
binary and this behaviour can be dangerous because they may contain hardcoded
secrets such as API keys. To mitigate this aspect, it is possible to encode or encrypt
them and compute the real string at runtime before using it as shown below in
the Listing 2.2. Note that encoding is just an illusory obfuscation since it is easily
reversible so it is never used in practice.
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Listing 2.2: Strings Obfuscation Example

Dead Code Injection

Dead code injection does not modify the original program behaviour but introduces
pieces of code that will never be executed, it is often coupled with opaque predicates
introduction in the code. Its objective is to bring in useless code to increase the
reversing complexity.

Control Flow Manipulation

Control flow of a function can be manipulated to make it significantly harder
to understand. It is possible to introduce opaque predicates, to apply control
flow flattening or other modifications in order to introduce complexity in the
function body. These manipulations transform the program’s flow making it really
challenging to understand statically. A typical consequence of the control flow
flattening and opaque predicates introduction is increased cyclomatic complexity.
A complete example including control flow manipulation and dead code injection
(as well as symbols obfuscation) is shown in the following Listing 2.3.
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Listing 2.3: Functions Obfuscation Example
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Chapter 3

System Design and
Technologies

3.1 Design Goals and Tools Selection
Code Guardian’s ultimate goal is to provide a multiplatform tool capable of
automatically analyse in depth Android and iOS applications in order to provide
some information about their quality and especially about their security adhering
to the guidelines outlined by OWASP MASTG.
In this scenario, the analysis process has to deal with the wide range of file types
that are present in mobile applications packages including binary XML, property
lists, resources, DEX files, Mach-O binaries and so on. As a result, Code Guardian
must be able to perform multiple specialized tasks on different file types such
as parsing information from binary XML and property lists files and disassemble
binaries of different types.

3.1.1 Tools and Technologies Selection
Since the first requirement of Code Guardian is to be cross-platform, the chosen
technology for its development is Kotlin Multiplatform(KMP), which allows to
share the codebase across mobile platforms, desktop and web.
The tasks of the analysis process require some specialized tools and libraries to be
successfully accomplished. For this reason, the first step that took place in the
design of Code Guardian was benchmarking and evaluation of available options,
suggested also by OWASP MASTG, that could be integrated in the project to
fulfill the various required functionalities.
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Packages Extraction

First of all, the packages extraction required different approaches for APK and IPA
files. The IPA files are just ZIP archives with a different extension, so the extraction
task could be performed with any ZIP manipulation library. Inversely, APK files
needed a specialized tool since they contain compiled resources and are not simple
ZIP archives. For this reason, several tools were evaluated, considering factors such
as provided features and ease of integration. For example, Androguard was consid-
ered as a possible tool for APK extraction given its additional capabilities, but then
was subsequently discarded since it is a pure Python library and so its integration
in a Kotlin Multiplatform project would have been not straightforward.
Therefore, for APK extraction it was adopted apktool[11], an open source tool
capable of extracting and decoding APK packages. This tool is written in Java and
distributed as a Java Archive(JAR) file resulting easy to integrate in a Kotlin
project. Some additional minor tool has also been selected for specific tasks such
as vd2svg for converting Android vector drawables to SVG in order to be able to
extract the app’s icon when it is an Android vector drawable.

Manifest and Info.plist Parsing

The information parsing from Android’s AndroidManifest.xml and iOS’s Info
.plist files required the capability of reading binary XML and plist files. In this
case, the choice has been relatively straightforward converging on jdom for XML
and ddplist for plist files. Both of them are Java libraries, easy to integrate
in Kotlin and capable of parsing information from both plain text and binary
versions of the files.

Resources Analysis

String resources as well are included as XML files in Android applications and as
property lists in iOS ones. Therefore, the same libraries used for the parsing step
are suitable also for this task. Additionally, for the secrets detection in string
resources there were evaluated GitLeaks[12] and TruffleHog, both open source
tools recommended by OWASP MASTG. They are really similar but they focus
on source code scanning and so they are not perfectly suitable to simple string
resources. Consequently, it has been preferred to adopt a completely custom
implementation.

Binaries Analysis

The binaries analysis step is the most complex one since it involves multiple tasks
such as disassembling, strings and symbols extraction, control flow evaluation
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and so on. OWASP MASTG suggests several tools for this purposes, the main
ones are Radare2[13] and Ghidra[14]. Both of them are mature software reverse
engineering(SRE) frameworks suitable to handle the binary types that are present
in the mobile packages but they have some differences which influenced the final
integration decision.
Radare2 is a lightweight command line interface(CLI) tool whose main advantage
is the ease of scripting via one of its components called r2pipe. Nevertheless, it
lacks an important feature, the decompiler.
Ghidra instead, which is developed by the United States of America’s National
Security Agency(NSA), besides the disassembler includes a powerful decompiler
and is scriptable as well thanks to its headless version. For this specific reason,
Ghidra has been preferred over Radare2 as a starting point for the binaries analysis.
Actually there is the possibility with some plugins to integrate Ghidra in Radare2
and viceversa but this would have added unnecessary complexity. On the An-
droid side there was also the possibility to rely on apktool’s built-in disassembler
baksmali but this option has been discarded in favor of a unified and more powerful
approach for both Android and iOS platforms using Ghidra, also because baksmali
cannot even disassemble ELF files, it is dedicated only to DEX files.
The decompiled code could then be analysed to detect security weaknesses such as
the use of poor cryptographic functions and to meet with this goal, Semgrep[15]
has been adopted. A key feature that influenced this choice is that Semgrep allows
to define custom rules to tailor the analysis to specific needs.

Obfuscation Evaluation

The obfuscation evaluation task makes use of all the data extracted in the binaries
analysis step. The evaluation considers several obfuscation techniques including
symbols and strings obfuscation. These techniques are designed to remove meaning
from symbols and strings within the binaries. Even though features such as
entropy and presence of special characters can be easily evaluated with custom
logic, assessing the semantical meaninglessness of symbols and strings requires a
different approach. To evaluate this aspect, Code Guardian integrates with a Large
Language Model(LLM) which is queried with the symbols and strings to classify
them as meaningful or meaningless. The result of this classification is a key factor
in the obfuscation evaluation of each symbol or string since their meaning is what
obfuscation aims to conceal.

3.2 Architecture Overview
Code Guardian was originally meant to be a monolithic application, completely
developed with Kotlin Multiplatform for the purpose of being able to execute it
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on desktop, web and mobile devices as a single unit.
However, the just described tools that the analysis has to integrate to accomplish
its goals require a lot of computational resources and above all, some of them are
not even compatible with all the platforms that Code Guardian targets. To address
this need, the final architecture of Code Guardian is a client-server one, where
the client is designed as a lightweight cross-platform application developed with
Kotlin Multiplatform and the server is a more powerful backend dedicated to
perform the actual analysis tasks. The server is implemented using Kotlin with
the Ktor framework, a choice driven by consistency with the client’s technology
stack and the possibility of sharing some code between client and server such as
data models, thereby overcoming the need of additional data transformations on
either side. A visual representation of the high level architecture is shown in Figure
3.1.

Figure 3.1: High Level Architecture
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3.3 Server Architecture
The server is the brain of Code Guardian since it is responsible for orchestrating
the analyses process. The persistence of analyses data is managed through a
PostgreSQL database and Exposed. The latter is a Kotlin SQL library used in its
Domain Specific Language(DSL) flavor that allows to define the database schema,
perform queries and transactions without writing raw SQL statements, benefiting
so from Kotlin’s type safety.
The analysis process strictly requires the tools selected and described in the previous
section, some of them are directly employed as libraries or JAR files while others
such as headless Ghidra and Semgrep are containerized with Docker and invoked
by the server as needed through Docker CLI commands. The LLM is accessed
through its API and it is provided by Azure AI Studio.
The described architecture of the server is visually shown in the following Figure
3.2.

Figure 3.2: Server Architecture
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3.4 Client-Server Communication
Almost all the interactions between clients and server are standard HTTP request-
response exchanges,with a single exception represented by the real time analysis
progress updates that are sent from the server to the clients using Server Sent
Events(SSE).
Ktor natively supports SSE on both client and server side leveraging the Kotlin’s
Flow. Clients interested in receiving updates regarding a certain analysis can
subscribe to that analysis with a SSE endpoint exposed by the server. The server
initially will send the current status of the requested analysis as first event, then if
the analysis is still ongoing it will keep the connection open and as soon as a new
progress update is available it will send it to the clients subscribed to that analysis.
Internally, the server keeps track of the active analyses in a ConcurrentHashMap
associating each of them with a MutableSharedFlow which represents the stream
of status updates for that analysis. When a client subscribes to a specific analysis,
the server simply selects the corresponding Flow and collects it, sending each status
update to the clients as soon as it is emitted as shown in the Listing 3.1 below.
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Listing 3.1: Server SSE handling

ConcurrentHashMap and MutableSharedFlow were chosen because they are both
thread safe and Ktor handles each request in a separate coroutine which means that
multiple coroutines may access the same data concurrently. This SSE approach
allows to keep clients updated concerning analysis status without the need of
polling continuously the server, enabling also the possibility for clients that are not
submitting an analysis to receive real time updates of its progress.

27



Chapter 4

Analysis Workflow

4.1 Analysis Overview
Obviously, the diversity between Android and iOS as platforms and the consequent
differences in the application packages require some variations in the analysis
approach of Code Guardian depending on the target platform. However, even if the
specific analysis tasks performed on APK and IPA files differ, the overall workflow
is similar for both platforms. The tasks performed by the server are categorized
in stages, representing a logical grouping of some related analysis tasks. These
stages, visually represented in the pipeline of Figure 4.1, are not only useful to
categorize and understand the analysis workflow but also because they reflect the
current completion status of analyses that are still taking place so that the user
can monitor their progress.
Some of the stages depend directly on the results of the right preceding stage
while others are only dependent on the package extraction, which sets the baseline
strictly needed to further analyse the application.

Figure 4.1: Analysis Pipeline

Once a stage is completed, the server stores the results of the analysis and most
importantly updates the status of the corresponding analysis. These updates are
then reflected in the user interface of clients which requested real-time updates about
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that analysis through the SSE based system previously described in Section 3.4.
For stages including multiple tasks the server generates also intermediate updates
to provide better granularity on the feedback sent to the clients.
The following sections describe in detail each of the stages composing the analysis
workflow, outlining meticulously the specific tasks performed by the server.

4.1.1 Security Finds Standardization
The analysis workflow encompasses various security checks and inspections that
can have different natures, extending from simple misconfigurations to complex
binary protection lack. Some of the issues detected by the server can also have
multiple sources, for example, in Android, the clear text network traffic can be
enabled both by manifest and by the dedicated netwok configuration file, resulting
in the same issue but with different origin and so different recommendations to fix
it.
This diversity in nature, origins and recommendations of the security finds is
standardized with the Security Finds model represented in Listing 4.1.

Listing 4.1: Security Find Model

Each security find that can be reported by the server is listed in a predefined JSON
file that contains the description and recommendation for each of them, including
also the possible variants based on the origin of the issue. The risk level and
category are also predefined in this file so that it has to be specified only once.
This model is also used by the client to display the security finds uniformly and
also embed them in the final report.

4.2 Package Submission and Extraction
The analysis workflow starts when a user submits an analysis request to the server.
The application package to analyse is submitted alongside the request and sent
to the server. Once the server receives the package, it stores it in its workspace,
discerns the type of package received and accordingly initializes the analysis data
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structure. At this time, the analysis is set to the CREATED status and the first
SSE update is sent to the client in order to notify it about the successful analysis
initialization.
Then, the server starts the extraction step of the package. Here there is the first
difference between Android and iOS packages analysis. Since IPA files are simple
ZIP archives, the server extracts them using standard Kotlin libraries and locates
the files of interest for the subsequent stages.
Conversely, APK files are extracted leveraging the apktool’s extraction and decoding
functionalities so that not only the package gets extracted but also manifest and
resources files, which are normally in binary format inside the APK, are decoded
into human readable files.
The just described process is the foundation for all subsequent stages since they
all strictly depend on the availability of the extracted files. Once this stage has
been completed the analysis status is updated to EXTRACTED and the corresponding
event is emitted.

4.3 Metadata Analysis
As soon as the package extraction is completed, the server starts the metadata
analysis stage. This stage involves several tasks aimed at extracting general
information about the inspected package. Although the nature of the information
extracted is similar for Android and iOS applications, this stage presents different
tasks for the two platforms since the files containing such information are structured
differently.

4.3.1 Android Metadata Analysis
Within the Android packages, some configuration parameters about the applications
are structured in XML files located inside the package. The most important one,
which represents the application’s identity card is the AndroidManifest.xml file,
which contains core information and configurations of the app.
After the extraction stage, the XML files are already decoded in human readable
format so that the server can directly parse them to gather the information that
it needs. This parsing is done through the use of jdom2 which also supports
namespaces that are widely used in Android.

General Information

The manifest is analysed to extract first of all general information about the
application including:
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• Package name and app name

• Version code and name

• Minimum, maximum and target SDK versions

• Supported devices

• App icon

These information are mainly extracted from the <manifest> tag and its attributes,
along with some other tags like the <supports-screens> one. The app icon in-
stead, is located by preferring the main activity icon if present, otherwise falling
back to the <application> tag icon.
An example of a piece of manifest containing such information from the Inse-
cureBankv2[16] package is shown in Listing 4.2. It is visible and noteworthy
that in the decoded manifest the resources are not embedded directly but rather
referenced through their resource ID like what happens for the app name in the
<application> tag identified by the android:label attribute. This can happen
for string resources but also for images and other types of resources. The resolution
of these references is done by the server as soon as they are encountered by looking
for the corresponding value in the resources files.
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Listing 4.2: Portion of manifest of InsecureBankv2.apk

Permissions

Moreover, after this general information extraction, the server starts to analyse
other important sections of the manifest like the permissions, which can also be
created by the application itself in Android.
The permissions that are created by the application are extracted by looking for
<permission> tags and for each of them the server just retrieves their attributes.
The requested permissions instead are declared through the <uses-permission>
tags, each of these tags specifies a single permission requested by the application.
The server collects all of them and assigns to each of them a risk level, based on
the actions that they allow to perform. This risk level is predetermined with a
JSON file stored in the server which maps each permission to a risk level, a category
and a description. For example, the INSTALL_PACKAGES permission, which allows
an application to install packages, has a high risk level since it can be exploited to
install malicious applications.
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Components

The manifest also declares the components composing the application which are ac-
tivities, services, broadcast receivers and content providers. Each of them is declared
with a specific tag but the server most importantly checks if they are exported or not.
Components can be exported by explicitly setting the android:exported attribute
to true or by declaring an <intent-filter> tag in the component declaration
like shown in the Listing 4.3. Since components exporting is an IPC mechanism
and so it represents a possible attack surface for malicious applications, the server
checks for both of these conditions signaling them so that these components can
be paid particular attention to. Additionally, the current default value of the
android:exported attribute is false but it changed over time(in particular with
Android 4.1.1 the default for content providers became true) and so not specifying
it could lead to different behaviours based on the Android version of the device.

Listing 4.3: Exported Activities

Security Checks

The manifest is also the room for some configurations that can directly impact
security aspects of the application. For this reason, the server gathers also the asso-
ciated attributes in order to detect misconfigurations that could lead to weaknesses.
In particular, the server analyses the following attributes:

• Debuggable attribute
The android:debuggable attribute, visibly set in Listing 4.2, if set to true,
allows the application to be debugged even in production. Even if is not
strictly a vulnerability, this is obviously a security risk since when this flag is
enabled, an attacker could debug a production application and so he could be
able to bypass security mechanisms or modify the runtime behaviour of the
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app. For this reason, the server checks if this attribute is enabled and reports
it.

• Backup allowed attribute
The android:allowBackup attribute, also shown in Listing 4.2,if set to true, al-
lows the application data to be backed up using an Android Debug Bridge(adb)
command. This attribute is set by default to true and so if the developer does
not specify it, the application can be backed up.
Beyond the android:allowBackup attribute, if it is enabled there are two
more attributes which can be used to restrict the backup scope: android:
fullBackupContent (Android 11 or lower) and android:dataExtraction
Rules (Android 12 or higher). These attributes point to specific XML resource
files which basically set the rules for including and excluding files and directo-
ries of the backup and starting from Android 9 gives also the possibility to set
encryption of those files as required via a flag. Therefore, when enabled, the
backup should exclude potentially sensitive files or at least encrypt them.
The server so checks for the android:allowBackup attribute and first of all
signals if the backup is allowed. If it is, then the server checks for the encryp-
tion requirement flag for the included files and reports if any of them is not
required to be encrypted.

• Test only attribute
The android:testOnly attribute, when enabled allows the app to be installed
only by the means of adb and it might expose functionalities or data that should
not be accessible. This attribute is meant to be used only for development
and testing so the server checks if it is enabled in the manifest.

Network Configuration

Another important aspect analysed by the server in this stage is the network
configuration of the application which spans across multiple files.
Firstly, the manifest can contain the android:usesClearTextTraffic attribute
of the <application> tag which can override the default configuration that since
Android 9 enables TLS by default. This attribute can in turn be overridden
by a dedicated network security configuration file which can be declared in
the <application> tag as well through the android:networkSecurityConfig
attribute. This XML file allows to configure settings both at app level by the
<base-config> tag and at domain level with the <domain-config> tag. These
tags have an attribute called cleartextTrafficPermitted which if set to true
can enable the clear text traffic for the associated scope.
The server so inspects this file if present and the android:usesClearTextTraffic
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attribute signaling if there are misconfigurations allowing clear text traffic because
these type of communications represents a security risk.

4.3.2 iOS Metadata Analysis
The core information and configurations of iOS applications are mainly defined in
the Info.plist file which is in binary format inside the IPA package. To read and
parse its content properly, the server uses the ddplist library which can directly
read plist files in their binary format.

General Information

Similarly to Android, general information about the application is extracted from
the Info.plist file including:

• Bundle identifier and app name

• Version name and build

• The SDK name, the minimum OS version and the platform version

• Supported devices

• App icon

These properties are extracted by looking for their corresponding keys in the file
such as the CFBundleIdentifier key for the bundle identifier and the DTSDKName
for the SDK name.
In the plist file, key-value pairs are organized in dictionaries and arrays with
nested structures. For example, the app icon and the supported platforms are
located inside nested dictionaries and arrays. This particular composition requires
the server to navigate through the nested structures to find the searched information
and this is done by a recursive function that explores the entire structure with the
ddplist library capabilities. An example of a portion of Info.plist file from the
iGoat-Swift[17] package is shown in Listing 4.4.
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Listing 4.4: Portion of Info.plist of iGoat-Swift.ipa

Permissions

The Info.plist file is also the place where iOS applications declare the permissions
that they require to provide specific features.
Each permission requestable by an application has a corresponding key that the
app has to include in its Info.plist file in order to request it. The permission key
is accompanied by a rationale string, which became mandatory starting from iOS
10 and that will be shown to the user when the permission is requested at runtime.
Therefore, the server gathers all the permissions requested by the application and
assigns them a risk level with the same strategy that is used for the Android
permissions, based on a predefined JSON file. The permissions made available by
iOS are not as many as the ones in Android but they still cover sensitive resources
like camera, microphone and location.

App Transport Security Configuration

As explained in Section 2.4.6, iOS applications’ network security is enforced by the
ATS policies by default. However, these policies can be relaxed by configuring the
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NSAppTransportSecurity key in the Info.plist file and so the server inspects it
to evaluate the network configuration of the application.
The NSAppTransportSecurity key identifies a dictionary that can contain both
global and domain specific exceptions to the ATS restrictions, it is shown in
Listing 4.5 the structure of this dictionary and its keys. The boolean keys are
default set to false("NO") except for the NSExceptionRequiresForwardSecrecy.

Listing 4.5: ATS dictionary structure

NSAllowsLocalNetworking, NSAllowsArbitraryLoads and its variants are glob-
ally scoped exceptions. The first one, if set, allows connections to local domains.
Conversely, the second key and its variants disable the ATS restrictions, the main
one in general and the variants for specific connection types.
The NSExceptionDomains key instead identifies the dictionary where domain spe-
cific exceptions can be declared. Within this dictionary there is the possibility to
relax only some of the ATS restrictions for each domain by setting the corresponding
keys, in particular:

• NSIncludesSubdomains
This key sets if the exceptions are applied also to the subdomains of the
specified domain.

• NSExceptionAllowsInsecureHTTPLoads
This key if set to true allows HTTP connections to the specified domain but
does not affect the TLS requirements for HTTPS connections.

• NSExceptionMinimumTLSVersion
This key is used to decrease the minimum required TLS version to versions
lower than 1.2 for the specified domain.
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• NSExceptionRequiresForwardSecrecy
This key, which is the only one default set to true, can be used to disable the
PFS requirement for the specified domain.

• NSRequiresCertificateTransparency
This key is obsolete, it was used to indicate if the app required Certificate
Transparency(CT) for the specified domain. CT requires that the server’s
certificates to have support from signed CT timestamps from at least two
different CT logs trusted by Apple. Now the system requires CT by default
and so this key has no effect.

The server so evaluates these configurations, reporting the presence of possibly
insecure settings. Nevertheless, it should be considered that some applications like
browsers may require these exceptions to fullfill their purpose and so some of the
applied exceptions may be acceptable. Since the focus of Code Guardian is on
banking applications, these exceptions have to be carefully analysed because they
should not be strictly necessary in this domain.

4.4 Resources Analysis
The second stage of the analysis pipeline is the resources analysis. The focus of the
resources analysis is to inspect string resources defined in the packages in order to
detect the presence of hardcoded secrets like API keys, passwords or cryptographic
keys. Even if this is a bad practice that should be avoided, it is still extensively
present in mobile applications as testified by OWASP Mobile Top 10 where "M1:
Improper Credential Usage" is the most critical risk for mobile applications and it
includes hardcoded credentials. Also data leakage and hardcoded secrets in general
are considered by OWASP as a serious issue even if they did not make the place in
the top 10 list.
Even if resources are included in distinct ways in Android and iOS packaged, once
they have been extracted, they can be treated in the same way to achieve the
purpose of this stage so the analysis tasks are the same for both platforms, the
difference lies only on how the resources are located and gathered.

4.4.1 Strings Analysis
String resources are typically used to define user visible texts of the application
interface like labels, buttons, placeholders and so on in a centralized way. Despite
this is their main purpose, they can also be improperly used to store other types
of strings like URLs, API keys or any other string that the application may use
and that can be defined outside of the source code. They are easily accessible
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by extracting the package and so they represent a weak spot where sensitive
information may be exposed if not carefully monitored.
Moreover, in mobile applications, textual resources are usually localized. This
means that the same string resource can have multiple variants which will be the
translations of the string for the different languages supported by the application.
The main variant is usually in English and it serves as a fallback when the localized
variant for some language is not defined.
In Android, the package contains string resources in the resources.arsc file in
binary format but the apktool extraction process allows to retrieve them as they
are at development time, in human readable XML files located in the res/values
directory or in the localized versions of this directory like res/values-it for Italian.
The strings are then organized in <string> tags inside the XML files, having a key
represented by the name attribute and the actual string as the content of the tag.
Since this representation in XML is the same of the manifest and other configuration
files, the server adopts the same parsing strategy based on jdom2 to extract the
strings.
In iOS packages the organization is nearly the same even if the file format is different,
string resources are stored in .strings files in a binary plist format. These files
are located in .lproj directories with each language having its dedicated folder
and the Base.lproj directory for the default variant. In these files the strings are
organized as key-value pairs where the key is the identifier of the string and the
value is the actual string. Also in this case the server uses the same approach used
to parse the Info.plist file with the ddplist library to extract the strings since
they are in binary plist format as well.
For both platforms, the strings extraction brings as side effect to also get the
supported localizations of the application. They are used to inspect if the application
has some missing string translation for any of the supported languages providing
also a useful quality metric about the application.

Secrets detection

Once all the strings have been extracted from the package, the server starts the
secrets detection process.
This process was initially based on rules containing exclusively regex patterns to
match common formats of secrets. The regex patterns were partially retrieved by
gitleaks, supplemented with some additions related to the banking domain like
patterns for credit card numbers or IBANs, and organized in predefined rules in a
JSON file. The strings were just matched against the rules’ patterns and if there
was a match the string was considered a potential hardcoded secret.
Nevertheless, this approach has shown some limitations in terms of accuracy since
matching strings against regexes can lead to a lot of false positives because it does
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not take in consideration how the string is conformed and that some particular
strings that match the patterns are not actual secrets. Therefore, to improve the
accuracy in the detection process, it has been integrated a system to exclude some
of the matched strings based on stop-words, stop-regexes and Shannon entropy
thresholds. Each rule, to enhance the detection accuracy, can optionally include
these additional filters which are applied if the string matched the rule’s regex
pattern.
Stop-words and stop-regexes are used respectively to exclude strings that contain
specific words or match specific patterns. For example, a string containing the
word example or placeholder is probably not a secret even if it matches some rule’s
pattern, so it can be discarded.
Furthermore, the Shannon entropy is a metric that measures the randomness of a
string based on the frequency of its characters. The higher the entropy, the more
random the string is. Given a string S and its length L, its entropy is calculated
as:

H(S) = −
nØ

i=1
P (xi) log2 P (xi)

where n is the number of unique characters in the string and P (xi) is the probability
of occurrence of character xi in the string, computed as:

P (xi) = ci

L

where ci is the number of occurrences of the character xi in the string S.
Each rule can so be filtered by a minimum entropy threshold that the string must
exceed to be considered a potential secret and a maximum entropy threshold that
the string must not exceed. This precise filter is really effective and valuable
since secrets like API keys have a medium-high entropy and others like credit
card numbers or IBANs are not completely random so they also need a maximum
threshold since there are some fixed patterns. An only regex based approach could
for example match a string like 1111 2222 3333 4444 as a possible credit card
number but clearly this number is not valid. Its entropy is 2.0 which is low for a
credit card number so it can be discarded.

4.5 Binaries Analysis
Metadata and resources analysis provide important information about configura-
tions and possible hardcoded secrets but the core of an application lies in its binary
files since they contain the actual code that is executed on the device. This stage
of the pipeline shifts the focus from the configuration files and resources to the
application binaries and examines them in order to ensure that they accurately
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implement some security mechanisms and also sets the basis for the subsequent
obfuscation analysis stage. The scope of this stage covers not only the main exe-
cutables but also the libraries and frameworks included in the package.
Binary files contained within the mobile applications packages are of various types,
spanning from unique formats to more common ones. In IPA packages, the main
executable, libraries and frameworks included in the package are in Mach-O format.
Conversely, in APK files there are DEX files containing the Dalvik bytecode which
represent the main executables and there can also be native libraries in ELF format.
For both platforms, the native libraries binaries are usually repeated for multiple
architectures and organized in dedicated directories to ensure compatibility across
different devices.
However, they mostly share the same elements like strings and symbols even if
they are organized differently in the various formats. The DEX format is the one
that differs the most from the others since it is bytecode and not machine code like
Mach-O and ELF files but it still shares some characteristics with them.

4.5.1 Ghidra
The just mentioned heterogeneity of formats is ruled by Ghidra which represents
the backbone of this stage. Its comprehensive support for all these formats and lots
of architectures makes it the perfect tool to fullfill the requirements of this stage.
Ghidra functionalities are based on projects that can contain multiple binaries
to analyse, in particular a binary is called Program in Ghidra terminology. The
binaries can be imported in a project and once imported Ghidra automatically
analyses them with a set of predefined options that can be customized. The auto
analysis of Ghidra involves at minimum starting by the entry points of the binary
and disassembling by following the flows. It also allows to identify functions, strings
and symbols. In general, Ghidra’s features are accessible by its interactive Graphi-
cal User Interface(GUI) but since Code Guardian’s analysis has to be automatic
its headless version has been preferred. Headless Ghidra allows to run Ghidra’s
auto analysis and scripts through a CLI. The scripts are writable in Java or Python
using the Ghidra API but since Code Guardian’s main language is Kotlin, they
have been written in Java to be as consistent as possible with the server’s codebase.
Therefore, Code Guardian’s server employs Headless Ghidra by containerizing it
and invoking it when needed.
Being open source, the Ghidra container’s image is built from the official Ghidra
repository and customized by mounting as volume, besides input and output folders,
the folder containing the scripts. With this setup the server can easily invoke
Headless Ghidra by just specifying the input package (or directly binaries) and
the script to run. The scripts have output data that is stored in the output folder
in Newline Delimited JSON(NDJSON) format which has been chosen instead of the
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standard JSON because Headless Ghidra runs the scripts independently for each
binary and so it is more convenient to build the output file just appending each
binary’s output as a new line in the NDJSON rather than having to rewrite the entire
object or array structure of JSON for each binary.
The first operation done by the server in this pipeline stage is creating the Ghidra
project and importing the package in it with the analysis disabled, so that the
Ghidra auto analysis is executed only once the environment is fully setup. After
that, the server requests Headless Ghidra to perform its auto analysis and then
execute specific scripts to perform the tasks of this stage. In this way, Ghidra’s
auto analysis is performed by taking into account the entire context of the package,
not only on single binaries and so the results are more accurate. This actually
has no advantages in iOS since libraries are anyway imported at runtime but in
Android it allows multiple DEX files to be analysed knowing the presence of each
other and so cross-references between them can be properly identified.
Moreover, after the auto analysis, the requested scripts can access and take advan-
tage of its results as described in the following sections.

4.5.2 Strings and Symbols Extraction
The first Ghidra scripts that are executed are the ones to extract strings and symbols
from the binaries. The strings extraction is clear-cut since they are by default identi-
fied by Ghidra’s auto analysis and are accessible via the DefinedStringIterator
class and the general Data interface of the Ghidra API. DefinedStringIterator
allows to iterate along all the strings identified in the binary while the Data inter-
face serves as a general representation of data at a certain address in the binary.
Therefore, as shown in the Listing 4.6, for each binary of the package the script
iterates through all the strings collecting their address, type and actual string value
to build the output NDJSON object. The value of the string is also sanitized by
removing non-printable characters since it can happen that some of the strings
identified by Ghidra contain such characters.
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Listing 4.6: Ghidra Strings Extraction

The symbols extraction instead is slightly more complex since it includes both
regular symbols and debug symbols. Regular symbols extraction is handled with a
strategy similar to the strings one, the difference is that the SymbolIterator class
is used to iterate in place of the DefinedStringIterator and the Symbol interface
is used instead of the Data one. In addition to address, type and name, for each
symbol the script also gathers its namespace which can be useful to understand
the context of the symbol.
The debug symbols extraction instead is done by the means of the objdump --syms
command, which is suggested by the OWASP MASTG as a possibility to assess the
presence of debug symbols. In particular, the server executes the objdump --syms
command for each binary that is not a DEX file and then parses the output filtering
only the symbols having the d flag which indicates that they are debug symbols.
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Precisely, for the Mach-O files, the server discards the symbols radr://5614542
and __mh_execute_header since they are not relevant debug symbols.

4.5.3 Binary Header Information and Protections
Right after the strings and symbols extraction, the third script executed by
Headless Ghidra is the one responsible for extracting some information about the
headers and security protections of the binaries, reporting if any of the protections
is absent. The security protections checks are implemented emulating the logic of
LIEF, which is a library for parsing executable formats available in Python, C++
and Rust. Since LIEF is not available in Java, the script reproduces the same
verifications by using the Ghidra API.
The strings and symbols extracted previously are propagated as input to this script
so that it can use them when needed. Additionally, Even in this instance, DEX files
are excluded and the scripts for ELF and Mach-O files are completely different due
to their distinct structures.

ELF

For ELF files, the script uses the ElfHeader class of the Ghidra API, which abstracts
the ELF header structure shown in Listing 4.7.
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Listing 4.7: ELF header[18]

By using this class, the script first of all gathers the binary endianness and identifies
if it is 32 or 64 bits. Then, it starts to check for the presence of the following
security protections:

• NX
The NX presence is verified by firstly locating the program header table and
then iterating through its entries looking for the PT_GNU_STACK segment. If it
is not present, the NX protection is considered disabled, otherwise the script
checks the flags of this segment to see if the execute flag is set with a bitwise
AND operation.

• PIE
The PIE usage is checked with the isRelocatable and isSharedObject
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methods of the ElfHeader class which specifically check if the e_type field of
the header is set to ET_REL(1) or ET_DYN(3) respectively.

• Stack Canaries
Stack canaries check exploits the symbols extraction performed before and
inspects for the presence of __stack_chk_fail or __intel_security_cookie
symbols which are indicative of canaries usage.

Mach-O

On the other hand, Mach-O files are analysed in a mirrored way, using the
MachHeader class which abstracts the Mach-O header structure shown in List-
ing 4.8.

Listing 4.8: Mach-O header[19]
As in the ELF case, the script retrieves the endianness and bitness as first step.
Then, it gathers the flags of the header because they are needed to perform the
majority of the following verifications:

• NX and PIE
The flags of the header are examined in order to check if the flags MH_PIE
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and MH_ALLOW_STACK_EXECUTION are set or not. If the first is set, the PIE
protection is enabled, otherwise it is disabled. Conversely, if the second flag is
set, the NX protection is disabled, otherwise it is enabled.

• Stack Canaries
The canaries check is performed similarly to the ELF case by looking for
___stack_chk_fail and ___stack_chk_guard symbols within the previously
extracted symbols. The canaries are enabled if both of them are present.

4.5.4 Functions Extraction
The last Ghidra script executed before the decompilation is the one for functions
characteristics extraction. The functions are analysed in their disassembled form
and so it has to be considered that the results may not be as accurate as if they
were analysed in source code because the disassembling process is not deterministic
and precise. Additionally, the number of instructions in disassembled functions is
obviously different from the number of instructions in source code because a high
level instruction can result in multiple low level instructions in assembly. Another
aspect to take into account is that assembly instructions are architecture dependent
but in this specific environment it does not represent a problem since Ghidra
abstracts the instruction sets with a unique representation called P-Code which is
architecture independent. A single assembly instruction can be translated in one
or more P-Code Operations (PCodeOp) that are used by this script to analyse the
instructions of the functions.
The script exploits the FunctionManager class to iterate through the functions of
the binary and for each of them it collects some of their features. First of all, the
script gathers their cyclomatic complexity using the dedicated method.
Afterwards, it analyses each CodeBlock of the function and in particular their
possible destinations in order to detect eventually dead blocks, which are simply
the blocks that are not destinations of any other block. Thus, these blocks and
their instructions are marked as dead. In these phase also trivial instructions
are detected and marked as dead with a simple logic that considers as trivial
instructions operations like identity assignments, additions or subtractions with
zero and multiplications or divisions by one.
Then, the script employs a powerful feature of Ghidra which is the Symbolic
Propogator class. This class is used to perform constant propagation on the
P-Code operations of the function. This technique allows to track the values of
variables along the function’s flow and possibly identify the ones which assume
always the same value, marking them as constants. This way, the script can identify
the opaque predicates that are based on conditions involving only constants values
and so update the dead blocks and instructions accordingly to the always or never
taken branches.
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This approach is effective in identifying some of the opaque predicates but it has
some natural limitations since it can only track values explicitly defined in the
function and moreover it fails in identifying predicates that are clearly opaque but
not based on constant values like for example if((x*0)==0) when x is an input
variable.
The last task performed by the script is to detect if the function has possibly been
obfuscated with control flow flattening. As shown in Section 2.4.10, the control
flow flattening is characterized by the presence of a dispatcher block that manages
the flow of the function typically through a switch statement. Thus, in order to
flag the function as flattened, the script inspects the single blocks looking for the
presence of such dispatcher block also because in natural functions this kind of
structure is basically an anti patterns and so it is rare to find it in non obfuscated
functions. To achieve this purpose, each block is analysed firstly checking the
number of its predecessors and successors since the dispatcher typically has multiple
blocks that can jump to it but also multiple possible destinations. If the block has
a high number of predecessors and successors relative to the total function size
(>20%), it is furtherly analysed scanning its PCodeOps to find a switch statement.
Specifically, the script looks for PCodeOps of type BRANCHIND and CBRANCH which
are indicative of indirect and conditional branches respectively. If one of these
PCodeOps is found, the function is marked as possibly flattened.
Finally, the script builds the output NDJSON file containing for each function its
name, cyclomatic complexity, total and dead instruction counts, reachable and
dead blocks counts, the number of always or never taken branches and the flag for
control flow flattening.

4.5.5 Decompilation
The final operation performed by Ghidra is its peak feature, the decompilation.
It is done by using the DecompInterface class of the Ghidra API which includes
the methods to decompile functions and retrieve the results. The script is quite
direct since it just iterates through all the functions, decompiles them and collects
their decompiled code. The noteworthy aspect of the decompilation is that it is
really demanding in terms of resources and time. A single function can also take
several seconds to be decompiled and so for large binaries containing great number
of functions, this process can take a lot of time.

4.5.6 Semgrep Rules Application
The decompiled code produced in the previous task by Ghidra is then analysed
by the means of Semgrep which allows to define a set of custom rules to search
for specific functions and patterns in the code. The usage of Semgrep comes
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with the goal of analyse beyond the simple presence of binary protections and
obfuscation, examining in detail the actual decompilation output. For example, it
has been defined a rule to check for the presence of insecure symmetric cryptographic
algorithms in Cipher. The applied rule is the one shown below in Listing 4.9.

Listing 4.9: Semgrep Insecure Cipher Rule

The problem in rules building is that the decompiled code of Ghidra is in a pseudo-C
language so the rules have to be defined accordingly and it is not always immediate to
identify the right patterns to match. For example, the just shown rule looks for the
Cipher.getInstance() method called with for example Blowfish as parameter.
Nevertheless, it is not directly searched as it is but instead the rule matches
also other structures like Cipher::getInstance(). This is necessary because the
decompiled code extracted by Ghidra may contain different representations of
method calls.
Additionally, the real downside of this strategy is that with obfuscated code the
effectiveness of the rules is compromised since symbols obfuscation can alter names
of classes and methods resulting in the rules failing to match them.

4.6 Obfuscation Analysis
The final stage of the analysis pipeline is the obfuscation analysis. The main goal
of this stage is to assess if obfuscation has been applied to the binaries and to
which extent, assigning an overall obfuscation score and several sub-scores related
to specific obfuscation techniques and single binaries. These scores so provide a
quantitative and fine-grained metric to analysers that can be useful to identify
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where the obfuscation process is lacking and can be improved.
The strategy adopted by the server to achieve this purpose is based on examining
the features of strings, symbols and functions extracted by Ghidra in the previous
phase, in order to detect if some obfuscation techniques have been applied. The
techniques that are taken into account are described in Section 2.4.10 and grouped in
three categories: strings obfuscation, symbols obfuscation and functions obfuscation.
The latter one includes both dead code injection and control flow obfuscation.
Therefore, for each binary, the server inspects every string, symbol and function
classifying them as obfuscated or not based on their features.
These classifications are then used to compute the scores of each technique as
well as the overall score of the binary. Finally, the scores of all the binaries are
aggregated to compute the obfuscation scores of the entire application, both overall
and per technique. This whole process is explained in detail in the next sections.

4.6.1 Strings and Symbols Classification
Strings and symbols represent different elements of the binaries but at the end of
the day they are both textual data and therefore they share the same features. As
a consequence, even if the obfuscations techniques applied on them are different,
the classification rationale adopted for both of them is based on the same features
which are in the following Listing 4.10 and later on referred as ϕ(S).

Listing 4.10: Strings and Symbols Features

Firstly, the length was considered viable as feature since one of the strategies
commonly adopted by obfuscators is to subsitute symbols with one single character
or very short names. It could be a good indicator to detect this type of obfuscation
but at the same time it would have been useless for other techniques. Therefore, the
length has been substituted by an entropy based feature, called ϕE(S), because
the entropy is a more powerful metric that can fit more obfuscation techniques.
Specifically, the entropy of the string or symbol is checked against a predefined
non-obfuscated range in order to determine whether it is obfuscated or not as
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follows:

ϕE(S) =

1 H(S) < Hmin || H(S) > Hmax

0 Otherwise

where H(S) is the entropy of the string or symbol S and Hmin and Hmax are the
minimum and maximum entropy values of the non-obfuscated range respectively.
These bounds have been determined empirically as Hmin = 2.5 and Hmax = 4.5. In
particular, if the entropy falls outside of these bounds, according to this feature
ϕE(S), the string or symbol should be considered as obfuscated, otherwise not
obfuscated.
This feature in place of length results more versatile since it can detect both very
short strings or symbols like a symbol named a that has 0 entropy but also strings
or symbols with high entropy that are made of random characters like possibly
encrypted strings.
The second feature is the presence of special characters in the string or symbol
indicated with ϕSC(S). Special characters are rare in regular strings and even
more in symbols since they usually include only alphanumerical characters so their
presence can be a good indicator of obfuscation.
Lastly, the most important feature is the semantical meaning indicated with ϕM (S).
Regular strings included in binaries are typically used for things like labels, place-
holders and error messages so they are built to be meaningful. On the other hand,
symbols are identifiers, variables, class names, function names and so they also
are meant to be meaningful. Therefore, this feature is the most significant one
because the removal of the inherent semantical meaning of strings and symbols is
the ultimate goal of obfuscators in this context.
The evaluation of this feature is considerably complex because it requires a level
of comprehension that is challenging to achieve automatically. This difficulty is
further amplified because strings and symbols can appear in multiple languages,
abbreviations and acronyms which complicates to find a universal approach. Addi-
tionally, their meaning can heavily depend on the context. For example, the string
"OWASP" is meaningful in cybersecurity domain but it could be pointless in other
contexts.
To tackle these challenge, the server employs a Large Language Model hosted
on Azure AI Studio and accessed through its API. The chosen model is GPT 4.1
and it is queried with a carefully designed prompt and an explicit JSON schema to
request a structured response, which can then be easily parsed by the server.
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Listing 4.11: LLM Prompt for Strings and Symbols Meaningfulness Evaluation

The prompt, presented in Listing 4.11, is designed to provide the model with the
context of mobile banking applications and instruct it to evaluate the meaningfulness
of the input for all the possible languages, abbreviations and case variations like
camel case and snake case that are typically found in strings and symbols. In
particular, the prompt asks the model to determine if the input is meaningful or not
and, if not meaningful, the model is requested to furthermore assess whether the
Base64 decoded version of the input is meaningful. This additional examination is
performed because Base64 encoding is a weak obfuscation technique that can be
easily reversed, so if the decoded version is meaningful, the string or symbol has
only been superficially obfuscated, resulting in a lower score compared to inputs
that hide their real meaning even after decoding them. The instructions given by
the prompt indicate also how to precisely fill the attributes of the object defined as
structured response in the JSON schema.
The schema includes two attributes: semanticalMeaning which is a boolean
indicating if the input is meaningful or not and performedBase64Decoding which
is a boolean as well, indicating if the Base64 decoding has been performed. These
attributes, referred in the formula below respectively as M and B, are so used by
the server to understand if the string or symbol is obfuscated, obfuscated by only
Base64 encoding or not obfuscated at all, and assign the corresponding value to
the semantical meaning feature ϕM(S) as follows:

ϕM(S) =


1 M = false && B = true

0.5 M = true && B = true

0 M = true && B = false
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Note that the case M = false && B = false is not possible according to the prompt
instructions considering that if the semantical meaning is not found in the normal
input the Base64 decoding must be always performed. Once all the three features
have been evaluated, the server classifies the string or symbol by the means of a
weighted sum of the features compared against a threshold as follows:

O(S) =
Ø

i∈{E,SC,M}
(wi · ϕi(S))

where O(S) represents the final obfuscation score given to the symbol or string and
the three weights of the sum are empirically defined as:

wE = 0.3 wSC = 0.2 wM = 0.5
Each feature is assigned a weight based on its relevance and strength in obfuscation
detection. The entropy based feature has a moderate weight since it is useful but
not sufficient alone to determine obfuscation, the special characters feature has the
lowest weight because it is just a supporting feature less reliable than the others
and at last the semantical meaning feature has the highest weight because it is the
most relevant one.
Finally, since all the values involved in the computation are normalized between
0 and 1 and the weights summed together equal 1, the score O(S) will also be in
the range [0, 1] and so each string or symbol is classified as obfuscated if the score
O(S) is greater than or equal to the threshold τ = 0.5.

4.6.2 Functions Classification
Functions are more byzantine elements compared to strings and symbols, they
are not just a textual element but rather code blocks and so their classification
requires a different approach. The classification performed by Code Guardian is
referred to the functions’ bodies disassembled by Ghidra’s auto analysis and to
their characteristics extracted in the previous phase. The features adopted for this
classification are listed below in Listing 4.12 and afterwards referred as ϕ(F ).
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Listing 4.12: Functions Features

The first two features, dead code ratio(ϕDC(F )) and opaque predicates ratio(ϕOP (F ))
are just computed by dividing the number of dead instructions by the total number
of instructions and dividing the number of opaque predicates by the total number
of branches respectively.

ϕDC(F ) = Idead(F )
Itot(F ) · 100 ϕOP (F ) = Bop(F )

Btot(F ) · 100

where I represents instructions and B branches. These two features are important
but not as decisive as the possibly flattened control flow feature(ϕCF (F )) because
the simple presence of dead code and opaque predicates can also be just a matter
of chance or bad coding practices, while the flattened control flow is a more
decisive indicator of obfuscation. It is still not flawless since dispatchers can also
be implemented in non obfuscated functions but it is a much rarer case. Therefore,
the classification is performed also in this case with a weighted sum of the features
as follows:

O(F ) =
Ø

i∈{DC,OP,CF }
(wi · ϕi(F ))

where O(F ) represents the final obfuscation score and the three weights of the sum
are empirically defined as:

wDC = 0.2 wOP = 0.3 wCF = 0.5

As in the strings and symbols case this score is then checked against a threshold
τ = 0.5 to finally classify the function as obfuscated or not.

4.6.3 Scores Computation
As soon as all the strings, symbols and functions of each binary have been classified
as obfuscated or not, the obfuscation analysis proceeds to compute the subsequent
aggregated scores. The first task is to compute the scores of each obfuscation
technique for each binary, these scores are computed as a simple ratio between
the number of obfuscated elements and the total number of that type of elements
in the binary and they are expressed in the range [0, 100]. The only exception is
given by the symbols obfuscation score which is computed considering that the
eventual presence of debug symbols negatively affects the score since they should
be stripped.

OST (B) = STobf (B)
STtot(B) · 100
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OSY (B) =
A

SYobf (B)
SYtot(B) − (SYdebug(B) · ∆)

B
· 100

OF U(B) = FUobf (B)
FUtot(B) · 100

where OST (B), OSY (B) and OF U(B) are respectively the strings, symbols and
functions obfuscation scores of the binary B. ∆ is the penalty applied for the
presence of debug symbols and it has been set to 0.15.
Once the scores of each obfuscation technique for a binary have been computed,
the overall obfuscation score of the binary is calculated as a weighted sum of the
three technique scores in this way:

O(B) =
Ø

i∈{ST,SY,F U}
(wi · Oi(B))

where the weights have been empirically defined as:

wST = 0.2 wSY = 0.4 wF U = 0.4

However all of the three techniques are important to ensure a proper obfuscation
but in order to hide the logic of an application, its goals, its flows and its most
sensitive parts, the obfuscation of function bodies and symbols is more decisive
than strings obfuscation, which is less impactful since it focuses on textual strings
that may not be strictly necessary to disguise the core of the application. Therefore,
symbols and functions obfuscation scores have been assigned higher weights than
the strings one.
Finally, after having completed the calculation of the scores for each binary, the
last step of this stage is to furtherly aggregate the scores of all the binaries to
compute a score for each technique and an overall obfuscation score for the entire
application. The computation of the scores of techniques is performed similarly to
the single binary case but in this case the scores of each binary are weighted by
the number of elements of that type that the binary contains.

OST =
q

B∈B (OST (B) · STtot(B))q
B∈B STtot(B)

OSY =
q

B∈B (OSY (B) · SYtot(B))q
B∈B SYtot(B)

OF U =
q

B∈B (OF U(B) · FUtot(B))q
B∈B FUtot(B)
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where B is the set of all the binaries of the application. Clearly, since the number
of obfuscated elements of each type represent the weight of each binary’s score and
it is not normalized, the final weighted sums are normalized by the total number
of elements of that type in the entire application.
The overall obfuscation score of the application is lastly computed as a weighted
sum of the three techniques scores in the same way of the single binary case.
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Client Application

The client of Code Guardian is what makes its sophisticated analysis capabilities ac-
cessible to end users. It has been designed to be available on all the major platforms
including desktop, web, Android and iOS. This has been achieved thanks to the
incredible versatility of Kotlin Multiplatform and Compose Multiplatform
(CMP) which permit to not having to rely on platform-specific technologies or
hybrid approaches like WebViews in order to reach multiplatform compatibility.
Instead, KMP and CMP allow to share almost the entire codebase across all the
target platforms while still being able to compile down to native binaries for each
of them. This results in a high performance application that feels native on every
platform and that is very easily maintainable due to the shared codebase.
While KMP is the engine of the business logic for all the platforms, CMP is the
framework used to build the GUI. CMP uses a declarative programming paradigm
like its Android only counterpart, Jetpack Compose. There would have been also
the possibility to decouple the GUI of iOS from CMP and use SwiftUI instead in
order to have a more native feeling on Iphone devices but this approach has been
discarded in favor of the uniformity provided by CMP.
KMP and CMP are relatively new technologies and even if they are already quite
ripe for production use, they naturally retain some limitations. For example, the
web target based on Kotlin/Wasm, chosen in Code Guardian for its performance
advantages over the Kotlin/JS target, is still in beta and so it presents some
incompleteness.
Furthermore, CMP is where the limitations are more evident because some
Composable components, which are the building blocks of the GUI in CMP, are
not yet supported on all the platforms. This comes from the fact that CMP inherits
its Composables from Jetpack Compose, which is limited to Android and so uses
some Android specific APIs that may not be available or emulable on the other
platforms.
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5.1 Landing page and Basic Info Page
Code Guardian’s first screen is its landing page, shown in Figure 5.1, which provides
at first glance the list of the performed and ongoing analyses with their status and
some little information about the package. The list of the analyses is filterable,
orderable and paged on server side as all the other lists that will be presented later
on in this chapter. From this page, it is possible to navigate to one of the analysis
specific details or submit a new analysis request.

Figure 5.1: Landing Page

When an analysis is selected, the user navigates to the basic info page of the analysis,
shown in Figure 5.2 in its desktop and mobile versions. This page shows the general
information about the analysed package such as its name, size, platform and SDK
version. This view also provides an overview of the categories of permissions
requested by the application, with the maximum risk level among them and the
locales supported by the application.
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Figure 5.2: Basic Info Page

In this page it is visible the general structure of the client appplication which relies
on a list and detail pattern: the left side contains the sidebar with the list of the
sections and the right contains the details of the selected section. This pattern
is implemented with a custom porting of the NavigableListDetailScaffold
Composable of Jetpack Compose adapted to CMP. On mobile devices, the sidebar
and details are shown as separate screens while on desktop and web they are visible
side by side.
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5.2 Obfuscation and Binaries Pages
The obfuscation evaluation page is where all the results and scores computed by the
server during the analysis are shown. This page, shown in Figure 5.3, is composed
by the scores related to the whole package and a list of the binaries present in it.
Each binary card can then be clicked to navigate to the binary specific obfuscation
scores and extracted elements.
Every binary of the package has its own dedicated page where all its obfuscation
scores, binary protections and extracted components are shown.

Figure 5.3: Obfuscation Page

5.3 Other pages
The other details sections of the client application are quite similar among them.
They share the same list structure to show the elements that they are responsible
for in cards, the binary strings page is reported in Figure 5.4 as an example.
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Figure 5.4: Binary Strings Page

All of these pages provide filtering, ordering and pagination features which are
obviously different depending on the type of elements that are shown. For instance,
the binary strings page allows to filter out the strings that are meaningful or that
contain special characters while the security finds page allows to filter its elements
by their risk level. The filters are implemented as a chips bar right below the search
bar, each chip allows to open the corresponding filter drawer or just toggles the
filter.
The cards representing the elements are designed to follow the same style across
the pages even if each of them is adjusted to show the specific information related
to the element. THe ones of security finds, permissions and string resources are
shown in the following Figure 5.5

61



Client Application

Figure 5.5: Cards of Code Guardian Elements

5.4 View Models Management
The View Model layer of the client application is where the client’s business logic
resides. In KMP and CMP, View Models are shared across all the platforms with
the same strategy used in Android development with Jetpack Compose. In Code
Guardian, they are implemented using coroutines and managing StateFlows to
provide the needed data to the Composables. The states are mostly implemented
as sealed interfaces to be able to clearly distinguish between loading, error and
success states.
The data needed by the Composables of each page is not always immediately ready.
For example, when an analysis is ongoing, fetching the binary strings would require
waiting for the binary analysis to be completed first. Recreating the View Models
each time the user navigates to the corresponding page would result in resource
waste and bad user experience because any data already available and fetched
would be lost. This aspect is addressed by the @KoinViewModel annotation and
the koinViewModel function.
The annotation manages the dependency injection of the ViewModel but most
importantly the method allows to control their lifecycle properly. In particular,
by default this strategy scopes the View Model to the navigation graph so that it
gets created once when the user first navigates to the corresponding page and it is
retained in memory until it exits the graph. Furthermore, the View Models need
to be refreshed when the observed analysis changes but also when the data needed
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by them becomes suddenly available. This is achieved by using the key parameter
of the koinViewModel, as shown in Listing 5.1, which forces the recreation of the
View Model each time the key changes. The key contains the ID of the analysis
currently observed and one or more boolean flags that indicate if the needed step
of the analysis has been completed or not, so that when the step is completed the
View Model gets recreated and fetches the newly available data.

Listing 5.1: Example of koinViewModel() with key parameter

5.5 Report Generation
The report generated by Code Guardian is the final output of the whole analysis
process and it is thought as the primary system to share the analysis results outside
of the client application itself. The report is generated in PDF format and it has a
predefined structure that is the same for all the platforms. As shown in Figure 5.6,
it contains all the basic information about the analysed package, all the security
findings and the obfuscation analysis results.
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Figure 5.6: Code Guardian Report Example

At the beginning, the goal was to generate the report on server side after the
analysis was completed and then serve it to the client as a static file. However,
this strategy has been discarded because the report appearance was intended to be
similar to the client application UI and so generating it completely on server side
would have required to replicate the whole UI in an HTML template or similar,
which would have been difficult to develop and above all to maintain. Even a
simple modification to a component of the client UI which is part of the report,
would have required a corresponding modification of the server template. This
could result in too tight coupling between the client and the server creating a
maintenance nightmare.
For this reason, the report generation task has been split in two parts: the client,
under the hood, renders a Composable that represents the report asking the server
only for the data that it needs to fill it. Then, once all the data has been retrieved
from the server, the client exploits the capturable nature of Composables to snapshot
it as an image and send this image to the server. The image is inherently compliant
with the UI style of the application since it is generated by a Composable built with
the same design. In this phase, the client takes care also of the report pagination
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by keeping track of the height of the rendered content and intentionally inserting
blank spaces within the Composable when a page break is needed, without cutting
off any content. The server finally receives the image and, using OpenPDF library,
builds the PDF report by just embedding the image inside it and paginating it as a
normal A4 PDF document.
The downside of this strategy is that the report is just an image embedded in a
PDF so it is not possible to select or copy text but this limitation has been accepted
in favor of the maintainability that it provides.
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Chapter 6

Testing, Future
Developments and
Conclusion

6.1 Testing
The analysis implemented in Code Guardian has been tested with a set of packages
containing known vulnerabilities or weaknesses in order to verify the real effective-
ness and reliability of the tool. The packages used for the tests have been selected
from the pool of applications suggested by the OWASP MASTG. Some additional
packages have been handcrafted in order to test specific scenarios which were not
easily verifiable with the applications suggested by OWASP MASTG.
The tests have been performed by just running the analysis on the selected packages
and then checking if the security finds reported by Code Guardian were actually
present in the packages.
In particular, the applications used for the tests are InsecureBankv2 [16], iGoat-
Swift[17] and some of the APK packages provided by OWASP MASTG demo tests.
The verifications for misconfigurations illustrated in Section 4.3 have been success-
fully tested, for example the tool detected the allowed backup in InsecureBankv2
and the active debug in its non production build variant.
The strings analysis and obfuscation evaluation have been tested using some hand-
crafted packages purposely containing hardcoded credit cards, fake API keys and
functions written in an intentionally intricate and obfuscated way. In this case,
Code Guardian was able to identify the flattened functions, obfuscated symbols
and hardcoded secrets with some minor exceptions. As it was predicted, predicates
that are opaque because their condition is logically always true or false but not
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calculated on constants have not been detected at all.
The LLM proved to be effective but not always usable because its filters sometimes
blocked certain input strings that were considered as violating the policies of the
model itself like the strings referring to jailbreaking. To go beyond this limitation
a solution could be to use maybe a local LLM instance without filters.
The tests to verify the obfuscation evaluation have been performed by modifying
the content of the handcrafted packages and observing how the scores changed.
The packages were little so the scores were really sensitive also to small changes
because they had a small number of strings, symbols and functions but they were
still coherent with the modifications.

6.2 Future Developments
Code Guardian presents itself as a ready to use tool for the analysis of mobile
applications but it has huge room for future improvements on several things like
performance, reliability and analysis features.

6.2.1 Performance Improvements
In terms of performance, the analysis is really heavy and time demanding, espe-
cially when dealing with large applications. This happens mainly because of the
computational requirements of Ghidra when performing disassembling and above
all decompiling. Furthermore, the LLM interaction needed for the evaluation of the
semantical meaning of strings and symbols is also quite time consuming because
binaries can contain a huge amount of strings and symbols to be evaluated, leading
to a large number of requests to the LLM that slow down the analysis process. This
second aspect can be improved by implementing some context caching mechanism
to avoid sending the fixed parts of the prompt that explain the context multiple
times, reducing the transmitted data and thus the time and cost of this task.
However, Ghidra represents the real and critical bottleneck of the analysis, relying
on a single container running Ghidra for every analysis is furtherly improvable.
Currently, the analyses are constrained to run sequentially waiting for the previous
one to end because of the single Ghidra instance. Additionally, it is not possible to
speed up a single analysis by using multiple Ghidra instances in parallel so a good
approach could be to give to the server the possibility to spawn multiple containers
running Ghidra, one for each submitted analysis, in order to perform the Ghidra
related tasks in parallel for different analyses. This horizontal scaling would lead to
a significant reduction of the waiting time for an incoming analysis request when
the server is already busy processing another one.
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6.2.2 Reliability Improvements
The server has been developed as a single node, resulting in having a single point
of failure. If the server goes down for any reason, the ongoing analyses will be
interrupted and the whole service will be unavailable until it gets back online. To
overcome this limitation, a possible approach could be to horizontally scale also the
server itself by deploying multiple instances managed by a load balancer that would
be in charge of distributing the analyses requests among the available instances.
Thus, moving from a monolithic to a distributed architecture would obviously
improve reliability but it would simultaneously introduce consistency challenges,
since the server nodes would need to be synchronized in order to share not only
the information about the analyses but also the track of all the clients that have
requested updates about certain analyses. This tracking is currently implemented
as a simple data structure because of the single node architecture but it would
need to be replaced with some appropriate distributed approach such as Redis.

6.2.3 Analysis Features Improvements
The improvement that comes to mind first when thinking about future developments
of Code Guardian is indeed, without any doubt, the support for dynamic analysis.
As things are standing now, Code Guardian can perform static analysis only, which
is powerful but still limited because it would be blind in front of certain security
aspects that can be checked only at runtime. The dynamic analysis could be
implemented by integrating existing and reliable tools like Frida[20], which is also
suggested by OWASP MASTG, in order to hook into the application at runtime
and monitor its behaviour. A drawback of the dynamic analysis is that it would
require the app to be executed in some way. Android apps could be run easily
on the emulator provided by Android Studio, while iOS apps would need to be
run on a physical device because the iOS simulator that comes with Xcode, unlike
the Android emulator, does not emulate the hardware architecture of the device
and so its capabilities are limited. Moreover, dynamic analysis can be automated
only to a certain extent because often the context of the application needs to be
understood in order to interact with it in the right way and every application has
its own logic and flows.
Also the static analysis itself could be furtherly improved by integrating more
security inspections like for example checking for other binary protections like
RELRO and ARC or adding more Semgrep rules to scan better the decompiled code.
Lastly, in terms of resources analysis, Code Guardian could be improved by
implementing a system to detect the presence of incoherent and superfluous files in
the package such as images not related to the banking domain as well as audios or
videos which should not be present in a banking application. The resource analysis
could also be furtherly enriched by scanning the formats of files contained in the
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package reporting if some their format is improvable to save some space like for
example using WebP instead of JPEG for images.

6.3 Conclusion
To conclude, Code Guardian has been designed and developed to be a tool to
assist the vulnerability assessment process of mobile banking applications. It is
capable of providing a robust and powerful obfuscation evaluation, several security
inspections and a shareable report to summarize the results. All of this, accessible
by the major platforms and integrating a large range of technologies and tools such
as Ghidra and a LLM in a seamless way.
It represents a solid starting point for the vulnerability assessment and it has a
huge potential to be furtherly enriched with new features and improvements thanks
to its linear analysis workflow and modular integration of the different employed
tools. Additionally, it is built as a tool oriented to be used on banking applications
but its analysis capabilities can be applied to every type of mobile application,
making it really versatile and useful in several contexts.
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