POLITECNICO DI TORINO

Master’s Thesis in COMPUTER ENGINEERING

i Qo SRR co A POI Itec n |Co
gl winzi » di Torino
\\‘\ 1859 ’;

Design and Implementation of a
Progressive Web Application

Supervisor Candidate
Prof. Giovanni MALNATI Yalda Sadat MOBARGHA

December 2025

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Prof. Giovanni
Malnati for giving me the opportunity to work on this project. This period has
allowed me to better understand the path I want to pursue, and I am truly grateful
for having spent it under the right guidance.

I also want to thank my friends and colleagues at Tonicminds, especially Gio-
vasini, Nicolo, Matteo, Alessio, Alessandra, Luca, and Giuseppe, each of whom
supported me throughout these months, taught me along the way, and made this
time full of good moments and happy days.

I am deeply thankful to Gabriele, who has always supported me, taught me
things that go far beyond academic work, and reminded me of the joy of learning.

My deep appreciation goes to Farnaz, who, despite the more than 3.5 kilometres
distance between us, supported me through every exam, every challenge, and every
moment of difficulty, always giving me strength and hope.

I want to thank my family, without whom starting this path would not have
been possible.

Last but not least, I want to thank my partner, Alireza, who has been by my
side from the very first day of this journey and has always been there for me in

challenging moments.

I would also like to thank all my friends, whether mentioned here or not. It has
been a memorable journey, and I'm grateful I got to share it with you.

11

Abstract

In the context of digital transformation, companies have to deal with their outdated
approaches. Data management based on spreadsheets or fragmented desktop
software often creates difficulties with consistency, traceability, and long-term
maintainability. To solve these issues, companies are looking to adapt their internal
workflows and information management systems towards more flexible and cross-
platform technologies.

This thesis is focused on the development of a system based on a Progressive
Web Application (PWA) that is designed to optimize and unify operations across
all divisions of a large poultry company, replacing a spreadsheet system with a
centralized, structured, and easily accessible platform. The developed application
serves as a comprehensive, Business Process Model and Notation (BPMN) oriented
task management system: it handles repetitive, process-driven activities, each
managed by a defined workflow to ensure consistent and traceable execution
across the organization. It enables users to record observations, plan and monitor
production, manage sales, and control activities throughout the animals’ lifecycle.
Through standardized workflows and role-based access, employees can carry out
their tasks in a consistent and guided manner, while managers have complete
visibility over the overall process.

PWASs combine the accessibility of web technologies with the capabilities of native
mobile applications. They offer significant advantages, as a single implementation
effort can deliver both web and mobile experiences, resulting in reduced overall
development, maintenance costs, and deployment simplification. Furthermore,
PWAs support offline functionality, caching strategies, push notifications, and
automatic updates, ensuring reliability and usability even in low-connectivity
environments.

The system has been developed using a component-based web architecture and
adopts a layered design: React delivers a modular Ul; a Backend-for-Frontend
mediates and optimizes interactions with enterprise services; Camunda orchestrates
BPMN-defined processes, and notifications are delivered through cloud messaging.
The modularity, maintainability, and operational reliability stemming from this
approach have helped the development and deployment of the application, reducing
the time necessary to validate its effectiveness with the actual stakeholders, that
have been able to provide in a timely manner the necessary feedback to improve it
further.

v

Table of Contents

List of Figures

1 Introduction

1.1 Introduction
1.2 Company introduction L.
1.2.1 Context and Motivation
1.2.2 Project Motivation
1.2.3 Problem Definition and Requirements
1.2.4 Production Process Overview
1.25 Users. s
1.3 Design Choices and Rationale
Background and Related Work
2.1 Progressive Web Applications,
2.1.1 Features
2.1.2 Imstallation
2.1.3 Updates
2.1.4 Service Worker
2.2 Notification systems oL
2.2.1 User Permissions
2.2.2 Firebase Cloud Messaging (FCM)
2.3 SPAsvs MPAs
2.4 Frameworks and Build Tools
241 React s
2.4.2 TypeScript.
2.4.3 Vite
2.5 State management and Redux L.
2.5.1 State
252 Redux
253 RTK Query
2.6 Styling approaches oo

IX

2.6.1 CSS
2.6.2 Tailwind CSS
2.6.3 Chakra UL
2.6.4 Chakra Ul vs. Tailwind
2.7 Backend for Frontend pattern
2.8 Camunda and BPMN for workflow management
281 BPMN
2.82 Camunda
2.9 Authentication and Keycloak
291 Keycloako
2.10 Containerization and Deployment
2.10.1 Docker
2.10.2 Kubernetes
System Architecture
3.1 General System Overview
3.2 Frontend
3.3 API Gateway
3.4 Authentication and Authorization
3.5 Backend-for-Frontend (BFF)
3.6 Process Management with Camunda
3.7 Notifications and Firebase Cloud Messaging
3.8 Data Persistence and Databases
3.9 Deployment and Infrastructure
3.10 Summary . .o ..o
Implementation
4.1 Client
4.1.1 Designo
4.1.2 Routing and Application Structure
4.1.3 State Management with Redux and RTK Query
4.1.4 Styling and Theming with Chakra UT
4.1.5 Form Generation Based on Camunda JSON

4.2

4.3

4.1.6 Form Management with Validation and Conditional Fields .
PWA .

4.2.1 Manifest
4.2.2 Service Worker
4.2.3 Notifications
Backend and Integrations
4.3.1 BFF Endpoints
4.3.2 Data Formatting for the UL

VII

23
23
24
25
26
27
27
28
29
29
30

4.3.3 Camunda Usage During Development 52

4.3.4 Authentication and Authorization o4

4.4 Deployment 56
4.4.1 Containerization 56

4.4.2 Kubernetes Deployment o7

4.5 Application Interface and Main Pages 59
4.5.1 Main pages and Functionalities 59

4.5.2 Interface Layout and Visual Representation 60

5 Conclusions and Future Work 70
5.1 Conclusion 70
52 Future Work 71
Bibliography 73

VIII

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

System Architectureo 24
Service Worker Lifecycle and Update Flow. 47
Camunda Tasklist interface. 52
Camunda Operate interface. 53
Authentication flow. o000 55
Installation on iOS and Android devices. 61
Notification interfaces. 62
Planning List page in mobile and desktop. 63
Planning Details page and Purchase Planning Form. 64
Cycles list and Cycles details pages. 65
Cycle summary pages 66
Task list view with assigned and unassigned activities 67
Example of different task forms interfaces. 68
Application interface in dark mode 69

IX

Chapter 1
Introduction

This chapter introduces the general context and motivation behind the project,
presents the case study company, and defines the problem that led to the develop-
ment of the proposed system. It also outlines the main technological choices and
the overall structure of the thesis.

1.1 Introduction

Digital transformation is reshaping how companies manage operations, data, and
collaboration. Across industries, organizations are adopting digital systems to
improve efficiency, transparency, and responsiveness. The agri-food sector is
following the same path, moving away from manual procedures toward integrated
platforms for process management and traceability.

This thesis describes the design and development of a web-based workflow
management platform created within this broader digitalization context. It aims to
show how modern web technologies can support structured, traceable, and scalable
process management in an industrial environment.

1.2 Company introduction

Martini Alimentare is an Italian company active in the agri-food sector, mainly
focused on the production and processing of fresh meat such as chicken and pork.
It forms part of the wider Gruppo Martini, which operates across the entire supply
chain — from livestock farming and breeding to slaughtering, processing, and
the preparation of ready-to-cook meat products. This structure allows the group
to oversee each stage of production internally and maintain consistent quality
standards throughout. The company has implemented a traceability system that
identifies the origin of each product throughout the supply chain; since 1999, meat

1

Introduction

packages have included the name of the farm of origin. In 2014, Martini Alimentare
established a new production site with a focus on research, development, and
product innovation, reinforcing its presence in both domestic and international
markets. Today, Martini represents a well-established enterprise within the Italian
food industry, characterized by a vertically integrated model that combines farming,
processing, and distribution within a single organization [1, 2].

1.2.1 Context and Motivation

As mentioned in the general introduction, in recent years, digital transformation
has become a key factor for improving efficiency and transparency in industrial en-
vironments, including the agri-food sector. Many companies have gradually moved
from manual documentation to digital systems that allow more accurate monitoring
and data sharing across departments. Martini had already achieved a high level
of process organization and traceability, supported by detailed documentation
and well-defined workflows. However, most of this documentation was maintained
through extensive Excel sheets, which, while complete and precise, made daily
operations difficult to manage as the system grew in size and complexity. When
data is distributed across multiple files or manually updated, tracking the progress
of operations and maintaining consistency across different teams can require signif-
icant effort. Over time, this approach may introduce redundancy, reduce visibility,
and make error detection or historical analysis less straightforward. While such
systems often serve their purpose effectively, the growing need for integration, real-
time access, and process automation encourages the adoption of more centralized
and structured solutions. These considerations motivated the development of a
modern, integrated web application that could preserve the accuracy of the existing
documentation while improving usability, automation, and scalability across the
company’s processes.

1.2.2 Project Motivation

As mentioned in the Context and Motivation section, the increasing push toward
digitalization has led many companies to replace traditional documentation sys-
tems with web-based tools that allow centralized data management and real-time
collaboration. In this context, Martini aimed to modernize its internal workflow
management and process documentation through a dedicated web application.
The goal was to create a unified digital environment capable of improving process
visibility, coordination, and traceability across different production stages. To
achieve this objective, the company worked with two development teams. The
first, a provider specialized in workflow automation, took care of modeling the
business processes and supplying the BPMN-based logic used by the workflow

2

Introduction

engine. Our team, working from another company, was responsible for building
the surrounding software system — designing the user interface, implementing a
Backend-for-Frontend (BFF) layer to link the application with the workflow engine,
and managing deployment, configuration, and long-term maintenance. Through
this collaboration, the project evolved into a complete web-based platform. The
project, therefore, aimed to deliver a single, accessible platform that could unify
and simplify process management across the organization, reducing manual effort
and improving consistency and reliability in operational data handling.

1.2.3 Problem Definition and Requirements

During the requirements analysis, one of the first needs identified was that the
system should be accessible from both desktop and mobile devices. Many employees
perform their activities directly in the field—monitoring livestock, recording daily
observations, or, in some cases, carrying out veterinary checks to assess the animals’
health. For these roles, having a mobile interface was essential, allowing data to
be entered immediately and accurately without the need to return to the office or
rely on later transcription. Another key requirement concerned the integration of
a real-time notification system. Field operators and staff needed to be promptly
informed when new tasks were assigned or when the status of a process changed,
ensuring that each activity could be carried out as soon as possible. This feature
was crucial for maintaining coordination between different production stages and
preventing delays in the workflow. In addition to these operational needs, it was
also necessary to define what information should be collected for each activity
and how it should be structured. Every step of the company’s workflow required
the recording of specific data—such as measurements, observations, or approval
outcomes—that had to be accurately stored and made traceable over time. The new
system, therefore, needed to support detailed digital forms for each process step,
reflecting the information required in practice and ensuring consistency between
users and departments. These requirements served as the foundation for the design
of the application and guided the definition of its functional structure.

1.2.4 Production Process Overview

Based on the requirements collected during the initial analysis and the meetings
held with the company’s process managers, the overall workflow was organized
into a set of well-defined operational areas. The result of this analysis was the
identification of five main macro-processes, each representing a fundamental phase
within the poultry production cycle. Together, these processes cover the complete
path from animal selection to product delivery and form the structural basis for
the workflows later implemented in the application.

3

Introduction

Planning (Pianificazione): The Planning phase covers the preparation activities
preceding each production cycle, including the scheduling and authorization of
chick purchases and their transfer to the farms. It ensures that all necessary
approvals, health communications, and transport details are in place before
the animals arrive, establishing the operational and regulatory foundation for
the following stages of production.

Maturation (Maturazione): The Maturation phase marks the start of the
production cycle and focuses on preparing farms and animals for breeding.
It includes activities such as environmental setup, initial health checks, and
preventive veterinary treatments, ensuring proper sanitary conditions and
readiness for the following stages.

Breeders (Riproduttori) : This phase focuses on managing reproductive flocks
and monitoring their productive and health status throughout the breeding
cycle. It includes the registration of reproductive activities, scheduled health
inspections, and control operations to ensure compliance with veterinary and
production standards.

Hatchery (Incubatoio): This phase manages all activities related to the han-
dling and development of eggs. It includes the receiving of eggs from breeding
farms, the start and monitoring of the incubation process, and the registration
of hatching results.

Fattening (Ingrasso): The Fattening phase covers the final stage of the pro-
duction cycle, where chicks received from the incubation centers are grown
until they reach the required market weight. During this period, operators
record daily observations, feed consumption, and health data, while veterinary
inspections ensure compliance with animal welfare standards. The phase
concludes with the closure of the production cycle and the preparation of
documentation for product shipment.

Each macro-process is further divided into a set of micro-processes that represent

the specific operational steps required for that production phase. These micro-
processes define the mandatory activities to be performed, the logical sequence
of execution, and the dependencies between different tasks. This hierarchical
organization allows the system to manage complex workflows in a coordinated and
traceable way, ensuring consistency across all production sites and phases of the
supply chain.

1.2.5 Users

Based on meetings with company representatives and the analysis of daily opera-
tions, user roles were identified. Each role is responsible for specific tasks within

4

Introduction

the production process. Defining these roles is important for setting access levels,
designing the user interface, and determining which data each user can view or
modify in the system.

« Planner (Pianificatore): Manages production scheduling and coordination.
Planners define start and end dates for each production phase, monitor progress,
and ensure alignment between operations and the company’s production plan.

o Technician (Tecnico): Responsible for recording operational data directly at
the production sites. Technicians register observations, daily measurements,
and activities related to the animals.

 Veterinarian (Veterinario): Is in charge of animal health and welfare across
all production stages. Veterinarians perform inspections, monitor treatments,
and validate the health data entered by technicians.

o Manager: Supervises overall performance and validates the main activities.
Managers have access to progress data and reports, enabling them to make
decisions and ensure that production targets are met.

e Admin: Validates and authorizes critical steps in the workflow, such as
confirming purchase orders, verifying recorded data, or approving process
completions.

In the next chapters, we will see how these roles influenced the design of the user
interface, the definition of access controls, and the overall system architecture.

1.3 Design Choices and Rationale

Based on the requirements and the considerations described in the previous sections,
as well as the client’s request for a rapid delivery, the decision was made to develop
a Progressive Web Application (PWA) rather than two separate applications for
desktop and mobile. This approach made it possible to provide users with a single
solution that behaves like a native mobile app while remaining fully accessible
through any web browser. In addition to significantly reducing development and
maintenance time, the PWA approach ensures easier updates, offline access, and
cross-device consistency—key factors for operators working both in the field and in
office environments.

The system was implemented using a modern web stack designed for flexibility,
maintainability, and scalability:

« React was used to build a modular and reusable user interface capable of
handling dynamic and interactive content efficiently.

5

Introduction

o TypeScript provides static typing and improved code reliability, supporting
large-scale development and long-term maintainability.

 Redux Toolkit simplifies state management and ensures predictable data
flow across components, improving synchronization between user actions and
application state.

o Cloud Messaging provides the infrastructure for real-time push notifications,
ensuring timely updates and communication.

o Camunda is employed for workflow orchestration, allowing the execution of
business processes modeled in BPMN.

« Backend-for-Frontend (BFF) serves as a dedicated service layer that
mediates communication between the client and backend systems, optimizing
performance and security.

o Kubernetes enables scalable, containerized deployment and simplifies the
management of distributed services.

These technologies together provide a reliable, efficient, and extensible architecture
that meets both the functional and operational needs of the project. They are
described in more detail in the following chapters.

Chapter 2

Background and Related
Work

This chapter provides an overview of the main technologies, frameworks, and
methodologies that underpin the development of the proposed system. It introduces
the fundamental concepts of Progressive Web Applications, state management, and
workflow orchestration, along with related tools such as React, TypeScript, Redux
Toolkit, and Camunda. The goal is to outline the theoretical and technological
background that guided the architectural and implementation choices described in
the following chapters.

2.1 Progressive Web Applications

Progressive Web Applications (PWAs) are web applications that use modern
web capabilities to deliver an experience similar to native mobile or desktop
apps. They combine the reach of the web with the reliability, performance, and
user engagement features of native platforms. PWAs are built using standard
web technologies—HTML, CSS, and JavaScript—but enhanced with progressive
enhancement principles, meaning they work for every user regardless of browser
choice or device constraints, and offer additional capabilities on browsers that
support them [3, 4].

2.1.1 Features

PWASs are defined by a set of core features that distinguish them from traditional
web applications. These include installability, offline functionality, push
notifications, background synchronization, and responsive design. The

7

Background and Related Work

core idea is to make web applications reliable, fast, and engaging even in poor
network conditions.

« Reliability: PWAs load instantly regardless of network conditions, thanks to
caching strategies implemented through service workers. This ensures that
essential assets and pages remain accessible even when the user is offline or
the connection is unstable [5].

o Performance: By caching static resources and optimizing network requests,
PWAs achieve loading speeds comparable to native applications. Techniques
such as lazy loading and code splitting further enhance runtime efficiency [6].

« Engagement: PWAs support push notifications, background sync, and home
screen installation, fostering continuous interaction and re-engagement with
users. They also integrate with system features such as full-screen mode and
app icons for a native-like appearance [3, 4].

A PWA is typically identified by three technical criteria: (1) it is served over
HTTPS, ensuring secure communication; (2) it includes a Web App Manifest that
describes metadata such as name, icon, and display behavior; and (3) it registers
a Service Worker, the component responsible for offline access and background
processing. These criteria allow browsers to recognize and promote web apps as
installable and trustworthy [5, 3].

2.1.2 Installation

The installation process of a PWA allows users to add the application directly
to their home screen or desktop, providing a launch experience similar to native
applications. Installation is guided by the presence of the manifest. json file,
which contains metadata including the app’s name, icons, theme color, and display
mode (e.g., standalone or fullscreen). When these requirements are met, supporting
browsers display an installation prompt, typically through the beforeinstallprompt
event. Once accepted, the PWA is installed as a shortcut that launches in its own
window without browser Ul elements, improving immersion and accessibility [4, 3].

2.1.3 Updates

PWAs handle updates differently from both traditional web pages and native
applications. Because assets are often cached for offline access, the update cycle is
managed through the service worker, which checks for changes in the application’s
resources and triggers a controlled update process. When a new version of the
service worker is detected, it is downloaded in the background and activated only
when no active clients (tabs) are using the old version. This prevents disruptions

8

Background and Related Work

while ensuring that users receive the latest features and fixes the next time they
open the application [6, 5].

2.1.4 Service Worker

The Service Worker is the core technology enabling PWAs” advanced capabilities
such as offline support, background synchronization, and push notifications. It
is a JavaScript file that runs independently from the main web page, acting as
a programmable network proxy between the application and the internet. Once
registered, the service worker intercepts network requests, serving responses from
cache or fetching from the network as needed, following strategies like cache-first,
network-first, or hybrid approaches [5]. Service workers have a defined lifecycle
consisting of installation, activation, and idle phases. During installation, they
pre-cache essential resources; during activation, they clean up outdated caches;
and during idle, they can listen for background events such as push messages.
Because they operate independently of any open tab, service workers allow PWAs
to handle notifications and background updates even when the app is closed [5, 3.
In modern frameworks like React with Vite, registering a service worker is handled
automatically through plugins, which generate and inject the necessary scripts
during build time. This integration abstracts away configuration complexity while
maintaining compatibility with standard browser APIs [6, 7].

2.2 Notification systems

Notifications are short, time-sensitive messages that inform users about relevant
events, updates, or required actions, even when an application is inactive or
running in the background. They act as a communication channel between the
system and the user, helping maintain engagement, awareness, and responsiveness.
Modern mobile operating systems expose dedicated frameworks and APIs that
allow applications to deliver alerts at the system level, often including sound,
vibration, or visual cues to capture the user’s attention [8, 9]. In mobile ecosystems,
notifications represent an integral part of the user experience, enabling real-time
interaction between users and applications beyond the active session.

2.2.1 wuser permissions

Modern mobile operating systems enforce strict permission models for displaying
notifications, requiring explicit user consent before an application can send alerts.
This permission-based design reflects broader privacy and usability principles,
ensuring that users retain control over how and when they are interrupted [10, 11].
Upon installation or first launch, users are typically prompted to grant or deny

9

Background and Related Work

access to notifications; the decision can later be modified through system settings.
Permission management has a direct impact on the effectiveness of notification
strategies: studies show that opt-in rates vary significantly depending on the
timing and context of the permission request [12]. Applications that transparently
explain the value of notifications—such as reminders, workflow updates, or security
alerts—tend to achieve higher acceptance and retention levels. Conversely, overuse
or irrelevant messaging often results in users revoking permissions or disabling
alerts entirely, undermining engagement and trust. To balance engagement with
user autonomy, current design guidelines recommend implementing fine-grained
controls such as per-category notification settings, silent or scheduled modes, and
clear onboarding explanations for notification purposes.[11, 10].

2.2.2 Firebase Cloud Messaging (FCM)

Firebase Cloud Messaging (FCM) is a cross-platform messaging solution that lets
you reliably send messages. How does it work?

An FCM implementation includes two main components for sending and receiv-
ing:[13]

o A trusted environment, such as Cloud Functions for Firebase or an app server
on which to build, target, and send messages.

o An Apple, Android, or web (JavaScript) client app that receives messages via
the corresponding platform-specific transport service.

Two message forms are common: notification messages, rendered by the OS, and
data messages, handled by the app code; they can also be combined in a single
send. Targeting can address a single token (one device), a topic (publish/subscribe
groups for fan-out), or a condition (boolean expressions over topics).

2.3 SPAs vs MPAs

In the Front-end technologies, the actual presentation is driven by the HTML
content, which is downloaded from the server, by providing the browser with the
corresponding URL. The HTML file contains CSS formatting rules and JavaScript
snippets that are interpreted by the browser in order to layout the page and control
user interaction. Building on this basic infrastructure, different paradigms have
been developed. Multi-page applications (MPA) and Single-page applications
(SPA).

10

Background and Related Work

Multi-page applications (MPA) In MPA, each page maps to a distinct server
URL. When the browser requests a page, the server renders a fresh HTML doc-
ument—often fetching data from a database and applying business logic—and
the browser’s role is limited to presenting that content. Every user interaction
that triggers navigation causes a full document reload: the browser unloads the
previous page, constructs a new representation, and no interaction is possible
during the transition (beyond canceling the request). This model typically yields
slower navigation, increases server load, and manages application state on the
server side—commonly via cookie-backed sessions.

Single-page applications (SPA) In a single-page application (SPA), the
browser performs a one-time load of an HTML shell plus JavaScript and CSS
assets, and afterwards updates the view dynamically without full page reloads.
Client-side code renders content for the current URL, intercepts navigation events,
and fetches data from the server (typically JSON via REST/HTTP) to update
only the necessary parts of the Ul. As routing and rendering are handled on
the frontend, the server is largely stateless and focuses on providing APIs, while
the browser maintains application state—commonly with libraries such as Redux,
MobX, or React’s Context API. This model yields smoother, app-like interactions
(no blocking reloads), with typical client-managed states including shopping carts,
multi-step wizards, user preferences, and table filters/pagination. In short, a single
HTML document is loaded at startup, and JavaScript is responsible for dynamic
updates and server communication throughout the session.

2.4 Frameworks and Build Tools

This section outlines the core choices in frontend, like React for the UI layer,
TypeScript for type safety, and Vite for fast development.

2.4.1 React

React is an open-source JavaScript library for building interactive user interfaces.
It was originally developed by Facebook and has since become one of the most
widely used tools for developing modern web applications. React allows developers
to create reusable components. Its declarative and component-based architecture
simplifies the process of designing dynamic, data-driven views by abstracting
the complexity of direct DOM manipulation [14]. React applications are often
structured as Single Page Applications (SPAs), where the library efficiently updates
only the necessary parts of the page through a virtual representation of the DOM,
known as the Virtual DOM. React’s ecosystem provides a rich set of extensions

11

Background and Related Work

and tools, including Hooks for managing state and side effects, React Router for
navigation, and close integration with state management libraries such as Redux.
Its flexibility, performance, and large community have contributed to its adoption by
major companies and developers worldwide. Furthermore, React is fully compatible
with TypeScript, supporting static type checking and improving maintainability in
large-scale projects [15].

2.4.2 TypeScript

TypeScript is an open-source, statically typed superset of JavaScript developed by
Microsoft. It extends JavaScript by adding optional static typing, interfaces, and
advanced language features that enable early detection of errors at compile time,
improving code quality and maintainability. TypeScript code is transpiled into
standard JavaScript, ensuring compatibility with any environment that supports
ECMAScript. The language introduces modern programming constructs such as
enums, generics, and modules, providing a more structured and scalable foundation
for large applications compared to plain JavaScript [16, 17]. TypeScript enhances
developer productivity through features like type inference, code autocompletion,
and robust refactoring tools. Its strong integration with popular frameworks such
as React allows developers to define component props, state, and hooks with precise
type annotations, reducing runtime errors and improving readability [18]. The use
of TypeScript is now widespread in large-scale web development, where type safety
and maintainability are crucial for long-term project reliability and collaboration.

2.4.3 Vite

Vite is a modern frontend build tool and dev server focused on speed and a
streamlined developer experience. It serves source files via native ES modules for
instant server start and fast hot module replacement during development, and uses
an optimized Rollup-based pipeline to bundle and optimize assets for production.
Vite is framework-agnostic (e.g., React, Vue, Svelte), supports TypeScript/JSX out
of the box, and offers a rich plugin ecosystem, making it a lightweight alternative
to traditional bundlers in many projects [19].

2.5 State management and Redux

This section explains why state management matters and how to approach it in
practice. First, “application state” is explained, and then Redux is introduced as a
predictable, one-way data-flow model for shared state.

12

Background and Related Work

2.5.1 State in Frontend Applications

In single-page applications (SPAs), application state refers to the data that con-
trols rendering and behavior(authentication, user preferences, domain entities,
loading/error flags). As applications develop, sharing this state across various
components may result in duplication and updates that are difficult to understand.
Centralized state management was created to make changes more explicit and
predictable: instead of directly changing the state, an app describes changes as
actions and pure reducer functions. Compute the next state based on the previous
state plus the action. In Redux, the entire app’s state is stored in a single store,
and large apps create the root reducer from smaller feature reducers that operate
on different sections of the state tree.

Local vs global state Local state works best for exclusive local concerns (form
inputs, open/closed toggles). However, when several sections of the program need
to read/write the same data, storing it in a single location provides one source of
truth and unidirectional data flow. Redux defines this flow: Action — Reducer —
Store — UL

changes over time Early React apps used local setState and, where necessary,
the Context API to transfer values between component trees. These tools are
useful for simple, stable purposes, but when applications expand, Context alone
can result in several re-renders. To handle growing complexity, the community
embraced unidirectional data-flow designs that centralize information, describe
changes as plain events, and compute updates using pure functions, boosting
predictability and tooling. Among these approaches, within this ecosystem, Redux
became widely adopted thanks to its single-store architecture and clear flow of
actions and reducers. Over time, it has come to be regarded as a standard reference
for managing predictable state changes in complex applications. Over time, the
maintainers formalized established patterns into Redux Toolkit (RTK), which is
now the recommended approach for building Redux logic.[20]

2.5.2 Redux

Redux is an open-source library used for managing application state predictably
(global state). It is based on the reducer pattern, and it provides a central store to
manage and access application state across different components. Redux follows a
unidirectional data flow model. In other words, it serves as a centralized store for
the state that needs to be used across your entire application, with rules ensuring
that the state can only be updated in a predictable fashion. In general, Redux makes
it easier to understand when, where, why, and how the state in the application

13

Background and Related Work

is being updated, and how the application logic will behave when those changes
occur. Redux helps to write code that is predictable and testable, consequently
resulting in an application that will work as expected. Like any tool, Redux has
pros and cons. Some downsides are: more concepts need to be learned, more code
to be written, and it also adds some indirection to the code, but it’s a trade-off
between short-term and long-term productivity.[21] The following sections outline
Redux’s core elements—stores, actions, and reducers—followed by an explanation
of Redux Toolkit and how it simplifies their usage.

Store The store is a single source of truth and is the only object through
which the state is read or updated. Its public API includes getState() (reading
the current state), dispatch(action) (submitting an event to be processed), and
subscribe(listener) (registering change listeners). State updates only occur when
an action is sent and the root reducer computes the next state. (In Redux Toolkit,
the store is created with configureStore, which wraps the low-level createStore and
applies recommended defaults.)

Actions An event in the program is described by an action, which is a serializable
plain object that typically has a string type and a payload. Actions are the
only input to the store’s update pipeline, and they are designed to be declarative
representations of "what happened," allowing for predictable updates. (In the
Redux Toolkit, action creators are often generated via createSlice, which assigns
stable type strings.)

Reducers Reducers are pure functions that follow a pattern: (previousState,
action) — nextState. They cannot trigger side effects or change the current state;
instead, they must return a new state value based on the previous state and the
action. Applications frequently combine many feature reducers into a root reducer
used by the store, preserving Redux’s unidirectional data flow.

Redux Toolkit

Redux Toolkit (RTK) is the official recommended approach for writing Redux logic.
The @reduxjs/toolkit package wraps around the core Redux package, and contains
API methods and common dependencies that are essential for building a Redux
app. It follows best practices, simplifies most Redux tasks, and prevents common
mistakes.[22] To be specific, RTK preserves Redux’s core model (single store,
actions, pure reducers, unidirectional flow) but replaces the complex, error-prone

setup of “plain” Redux. Main APIs provided by Redux Toolkit:[20]

« configureStore() — Simplifies store setup with default middleware and Dev-
Tools support.

14

Background and Related Work

« createSlice() — Defines reducers and auto-generates corresponding action
creators.

» createReducer() — Creates reducers using a case-mapping style, with immer
for safe mutable updates.

» createAction() — Generates action creator functions from type strings.

» createAsyncThunk() — Handles async workflows by dispatching pending/-
fulfilled /rejected actions.

» combineSlices() — Combines multiple slices into a single reducer (supports
lazy loading).

» createEntityAdapter() — Provides helpers for managing normalized collec-
tions of items.

« createSelector() — Enables efficient memoized selectors for derived state.

2.5.3 RTK Query

RTK Query is a powerful data fetching and caching tool. It is designed to simplify
common cases for loading data in a web application, eliminating the need to hand-
write data fetching and caching logic yourself. It is an optional addon included in
the Redux Toolkit package, and its functionality is built on top of the other APIs in
Redux Toolkit.[23] The main features of RTK Query include: Over the last couple
of years the React community has come to realize that "data fetching and caching"
is a set of different concerns than "state management', and that trying to solve
both problems with a single tool often leads to complexity and confusion. RTK
Query focuses specifically on the data fetching and caching problem, providing a
specialized solution that works well alongside Redux for state management. As an
example in today’s applications, tracking loading state, avoiding duplicate requests,
supporting optimistic updates, and managing cache lifetimes are behaviors that
need to be implemented. RTK Query provides a solution for these problems. To
solve these problems, RTK Query took inspiration from other tools that have
pioneered solutions for data fetching, like Apollo Client, React Query, Urqgl, and
SWR, but adds a unique approach to its API design. Two concepts that are used
in RTK Query are queries and mutations, which will be explained in the following:

Queries and mutations Queries are operations that fetch data from the server
and cache it within the client. This is the most common use case for RTK
Query.[24] RTK Query also caches the loading/error state of the result in the
client. Since the most common type of query is an HTTP request, RTK Query

15

Background and Related Work

ships with fetchBaseQuery(...), which is a lightweight fetch(...) wrapper that
automatically handles request headers and response parsing in a manner similar
to common libraries like axios. Whenever a query hook is invoked, a check is
made to determine whether data is already available, and the result is a cache
hit or miss accordingly. If the data is already cached and valid, it is returned
immediately without making a network request. If the data is not cached or has
expired, the current state will be set to isLoading or IsFetching, and a network
request is initiated to fetch the data from the server. Mutations are used to send
data updates to the server and apply the changes to the local cache. Mutations
can also invalidate cached data and force re-fetches.[25] The mutation lifecycle is
slightly different from queries and involves clear steps that help to manage Ul states
effectively. It automatically generates a hook for each mutation. The mutation is
triggered when the trigger function is invoked, and when invoked, the hook returns
a tuple: the first element is the trigger function, the second contains mutation states
and data. Upon triggering the mutation, the isLoading state attribute immediately
becomes true, and a network request is asynchronously started. The asynchronous
invocation may lead to two alternative outcomes, success or failure, based on which
the state attributes are updated. The point to note is that, in order to impact
cached data, when the mutation is defined, it is necessary to define a set of tags to
be invalidated.

Caching behaviour When data is fetched from the server, RTK Query will
store the data in the Redux store as a cache. When a request is attempted, if
the data already exists in the cache, then that data is served, and no new request
is sent to the server. Otherwise, if the data does not exist in the cache, then a
new request is sent, and the returned response is stored in the cache. When a
component first invokes a query, it subscribes to the corresponding endpoint, and
when the last component subscribing to a query unmounts, the corresponding data
will be removed from the cache after a given timeout.

2.6 Styling approaches

A design system defines the guidelines and building blocks that ensure an interface
is consistent and scalable. It defines design tokens (colors, spacing, typography),
theming (including light and dark variations), responsive breakpoints and layout
constraints, and basic accessibility behaviors, which are then packaged into reusable
components. Adopting a system saves duplication, unifies designers and developers
around a single vocabulary, and accelerates delivery by organizing interaction
patterns. In the below part, the 3 important styling approaches used in modern
web development, including core CSS conventions, the utility-first framework

16

Background and Related Work

TailwindCSS, and the component-oriented library Chakra Ul, are discussed.

2.6.1 CSS

Cascading Style Sheets (CSS) is a stylesheet language used to describe the presen-
tation of a document written in HTML or XML (including XML dialects such as
SVG, MathML, or XHTML). Each browser has its own default values for each ele-
ment. These can be overridden by providing immediate values inside each element
or by adding a set of rules that replace and integrate the browser default. CSS
describes how elements should be rendered on screen, on paper, in speech, or on
other media. CSS is among the core languages of the open web and is standardized
across Web browsers [26] CSS resolves styles through the cascade, specificity, and
inheritance, which together determine the final computed values for each element.
Modern CSS adds finer control with cascade layers, nesting, and custom properties
(variables) so teams can organize rules predictably, theme components, and expose
design tokens without duplicating values.[27] Browsers apply a built-in user-agent
stylesheet (default styles) to every element; author styles then override and extend
these defaults via the cascade. A CSS rule has the form selector property: value;

., where the selector identifies the elements to affect and the declarations are
property—value pairs separated by semicolons. Elements can be targeted in many
ways—Dby type, class, ID, attributes, pseudo-classes/pseudo-elements, and with
combinators for structural relationships—and inline declarations or more specific
selectors take precedence when rules conflict.

2.6.2 Tailwind CSS

Tailwind CSS is a utility-first CSS framework: instead of shipping pre-styled
components, it provides low-level utility classes. This approach favors consistency
and speed by encouraging reuse of a shared design vocabulary rather than writing
ad-hoc selectors and component styles from scratch. Tailwind scans templates
(HTML/JS/TS/JSX/TSX, etc.) to find class names, then generates only the styles
that are actually used, and outputs a static CSS file. The framework is configured
via a central "tailwind.config" file where the theme (colors, spacing, typography),
breakpoints, plugins, and presets are defined.[28§]

2.6.3 Chakra Ul

Chakra Ul is a simple, modular, and accessible component library for building
React applications. It comes with pre-built, fully responsive components and a
mobile-first styling approach, allowing layouts to adjust cleanly across devices
with minimal coding. A unified theme system allows teams to set colors, fonts,

17

Background and Related Work

spacing, and breakpoints once and apply them consistently, and prop-based styling
makes components modular and easy to adapt. Overall, Chakra UI allows you
to quickly create clean, consistent Uls without being locked into a rigid design
system.[29] It also includes first-class light/dark color-mode support via a provider
and hooks, making theming and user preference persistence simple. Chakra styles
its React components with Emotion (CSS-in-JS), and several interactive, stateful
widgets are developed with Ark UI (a headless, accessibility-first layer based on
Zag.js state machines for consistent behavior across frameworks). These choices,
along with typed properties and clearly stated documentation, emphasize developer
experience and simple interaction patterns, allowing for quick delivery of consistent
Uls without locking teams into a rigid design system.

2.6.4 Chakra Ul vs. Tailwind

Chakra Ul and TailwindCSS offer two degrees of abstraction. Chakra is component-
first, allowing you to build Uls from accessible React components and style them
with style props backed by theme tokens and color modes, which speeds up consistent
app development. Tailwind prioritizes utility: it generates low-level classes from
a central theme configuration, allowing maximum visual control while leaving
components and accessibility patterns to the developer. In short, Chakra optimizes
speed-to-value for product Uls; however, Tailwind optimizes design freedom for
teams that are comfortable composing from basic elements.

2.7 Backend for Frontend pattern

Backend-For-Frontend (BFF) is a layer that handles only the requirements that
are specific to the interface, or in other words, it’s a service that sits between
the frontend client and the backend services. This pattern customizes the client
experience for a specific interface without affecting other interfaces. It also optimizes
performance to meet the needs of the frontend environment. Because each BFF
service is smaller and less complex than a shared backend service, it can make the
application easier to manage. Frontend teams independently manage their own
BFF service, which gives them control over language selection, release cadence,
workload prioritization, and feature integration. This autonomy enables them
to operate efficiently without depending on a centralized backend development
team.[30]

18

Background and Related Work

2.8 Workflow Management

Workflow management is the coordinated design, execution, and monitoring of
business processes, defining how tasks, information, and responsibilities move
between people and systems to achieve organizational objectives. In industry,
structured workflows improve consistency, traceability, and operational efficiency
while reducing manual errors and delays [31]. To support standardization and
automation, the following sections introduce Business Process Model and Notation
and the Camunda platform, which are tools for modeling and executing workflows

32].

2.8.1 BPMN

Business Process Model and Notation (BPMN) is an open standard that provides
a graphical notation for modeling business processes in a standardized and compre-
hensible way. It enables both technical and non-technical stakeholders to visualize
process flows using elements such as events, activities, gateways, and message
flows. By offering a common language between business analysts and developers,
BPMN improves communication, consistency, and automation across organizational
processes [33].

2.8.2 Camunda

Camunda is an open-source process orchestration platform designed to automate
and manage complex business workflows based on open standards such as BPMN
and DMN(Decision Model and Notation). It enables organizations to model,
execute, and monitor business processes by connecting human tasks, microser-
vices, and external systems within a unified orchestration layer. The platform
provides both a scalable workflow engine and a suite of supporting tools for
process modeling, monitoring, and optimization. Through its modular architec-
ture—comprising components such as Zeebe (workflow engine), Tasklist, Operate,
and Modeler—Camunda offers flexibility for both cloud and on-premise deploy-
ments. It is widely adopted across industries to improve transparency, efficiency,
and compliance in process-driven applications, ensuring that business logic is ex-
ecuted consistently and traceably across distributed systems [34, 35]. The most
important components of Camunda are explained in the following:

TaskList

Tasklist is a ready-to-use application to rapidly implement business processes
alongside user tasks. The user interaction with a task may involve making updates,

19

Background and Related Work

adding variables, filling out a Camunda Form, or simply reviewing and completing
the task. Tasklist has two main pages:[36]

o Task List Page: to view and manage tasks.

e Processes Page: to start process instances.

Operate

Operate is a tool for monitoring and troubleshooting process instances running in
Zeebe (the process/workflow engine, responsible for executing BPMN processes).
In other words, Operate provides visibility into active and completed instances,
variables, and incidents to support investigation and recovery.[37]

Modeler

Modeler is a tool to design and implement Business Process Model and Notation
(BPMN) diagrams. It has 2 different versions: desktop and web-based. Web
Modeler is suitable for collaborative modeling and, Desktop Modeler for local work
and XML editing. It is also possible to implement details such as conditions within
a gateway or service task implementation.[38]

2.9 Authentication and Keycloak

Authentication and authorization are related but distinct processes in an organi-
zation’s identity and access management (IAM) system. Authentication verifies
a user’s identity. Authorization gives the user the right level of access to system
resources. The authentication process relies on credentials, such as passwords
or fingerprint scans, that users present to prove they are who they claim to be.
Authentication is usually a prerequisite for authorization. A system must know
who a user is before it can grant that user access to anything.[39] Identity and
Access Management (IAM) governs the lifecycle of digital identities and the poli-
cies/technologies that ensure the right entities have the right access to the right
resources at the right time.[40] In the following, Keycloak, an open-source IAM
solution, is explained.

2.9.1 Keycloak

Authentication is the process of verifying who a user is, while authorization is the
process of verifying what they have access to.[41] Keycloak is an open source Identity
and Access Management (IAM) solution. It is based on standard protocols and
provides support for OpenlD Connect, OAuth 2.0, and SAML. Users authenticate

20

Background and Related Work

with Keycloak rather than individual applications; consequently, the applications
itself doesn’t have to deal with login forms, authenticating users, and storing users’
credentials directly. Keycloak provides single sign-on (SSO) and single logout (SLO),
whichmeans that users log in once to access different applications and services
without needing to authenticate again for each one, and the same thing applies also
for logout.[42] From a technical point of view, Keycloak organizes security within
realms, which isolate users, credentials, and clients (applications/APIs). Access is
granted via ID, access, and refresh tokens issued through standard OIDC/OAuth
flows; token lifetimes and global sessions can be centrally managed. Beyond role
checks, Keycloak offers authorization services with resources, scopes, permissions,
and policy providers (RBAC/ABAC) for fine-grained access control. Integration
is done through OIDC/SAML adapters or middleware (public, confidential, or
bearer-only clients), while identity brokering and user federation connect external
IdPs and directories (e.g., LDAP/AD). Operational features include clustering/HA,
configurable password policies, themes for login/account Uls, and an Admin REST
API and SPIs for extension.

Admin Console The admin console is the web-based interface for centrally
managing all aspects of the Keycloak server. From this page, administrators can
configure identity brokering and user federation, create and manage applications
and services, and define fine-grained authorization policies.[42]

Account Management Console The account management console is another
interface provided by Keycloak that allows users to manage their own account
settings and gives them options such as updating profile information, changing
passwords, and setting up two-factor authentication.[42]

2.10 Containerization and Deployment

Modern software deployment has evolved significantly with the adoption of con-
tainerization and orchestration technologies. Containerization enables applica-
tions to be packaged together with their dependencies and configurations inside
lightweight, isolated environments that can run consistently across different plat-
forms. This approach improves portability and reproducibility, making it possible
to deploy the same application in development, testing, and production with-
out environmental discrepancies [43]. It also simplifies distribution and supports
the adoption of cloud-native and DevOps practices. On top of containerization,
orchestration systems automate the deployment, scaling, and lifecycle manage-
ment of these workloads, allowing applications to operate efficiently in dynamic or
distributed infrastructures [44].

21

Background and Related Work

2.10.1 Docker

Docker is one of the most widely adopted platforms for containerization. It packages
an application and its dependencies into a standardized image that can be executed
consistently across environments. By abstracting the application from the host
operating system, Docker reduces compatibility issues and facilitates deployment
in heterogeneous infrastructures [45]. Compared to traditional virtual machines,
containers are lighter, start faster, and consume fewer resources, providing an
efficient model for scalable and portable software delivery [46]. When containerized
applications grow in number or complexity, their coordination and lifecycle manage-
ment require dedicated orchestration systems capable of automating deployment
and scaling tasks.

2.10.2 Kubernetes

Kubernetes is an open-source orchestration platform for managing containerized
applications at scale. It automates tasks such as deployment, scheduling, scaling,
and recovery across distributed clusters of machines. Through a declarative con-
figuration model, Kubernetes ensures that the system’s actual state continuously
aligns with the desired one defined by operators [44]. Kubernetes provides load
balancing, self-healing, horizontal scaling, and multi-node coordination, forming
the backbone of most modern cloud-native infrastructures [47]. Its configuration
and operation, however, involve a considerable degree of complexity, which has
motivated the creation of complementary tools such as Helm, used to simplify
application management through reusable deployment templates.

22

Chapter 3
System Architecture

In this chapter, the overall architecture of the application is explained to give an
overview of the different layers and components that make up the system.

3.1 General System Overview

The implemented system follows a modular and containerized architecture, de-
signed to ensure scalability, maintainability, and clear separation of concerns. All
services are deployed on a Kubernetes cluster, which manages their lifecycle,
networking, and resource allocation. The main components of the architecture
are: the Progressive Web Application (PWA) used by end-users, the API
Gateway, the Backend-for-Frontend (BFF) service, the Camunda 8 process
engine and its workers, Keycloak for identity management, and Firebase Cloud
Messaging (FCM) for asynchronous notifications. Each part of the system is
connected as shown in Figure 3.1.

When a user accesses the application from a browser, the PWA provides the
interface for interaction with the underlying business processes. The PWA commu-
nicates with the backend infrastructure exclusively through the API Gateway,
implemented with APISIX, which acts as a single controlled entry point to the
cluster, and is responsible for routing, load balancing, and enforcing authentication
and authorization policies before forwarding requests to internal services. This
modular structure allows the application to evolve over time, as each service can
be updated or replaced independently without disrupting the entire system.

23

System Architecture

User Browser Firebase FCM

K8S (PWA)
J\/7
API Gateway
Frontend ‘ Camunda Worker F Backend For Frontend

N~ ﬁ\L <SS]\

IAM N ‘ £

(Keycloak) ‘ Camunda \
TF g J
N N

Figure 3.1: System Architecture

3.2 Frontend

The frontend of the system is implemented as a Progressive Web Application
(PWA) developed in React and TypeScript. It provides a single code base that
can be installed and used on both desktop and mobile devices, ensuring consistent
behaviour across different platforms. The PWA handles all user interactions,
renders dynamic forms, and communicates with the backend through the API
Gateway using secure HT'TPS connections.

Each interface component retrieves its data from the BFF through RESTful APIs.
The frontend does not include business logic. It mainly serves as a presentation
layer, showing workflow information, tasks, and notifications. All data on the
interface, including process lists, forms, and summaries, is retrieved in real time
from the backend. This approach ensures that the application always reflects the
most recent process state maintained by Camunda.

From a structural perspective, the frontend is composed of modular components
organized by feature domains. Routing is managed with React Router, and state
management is handled through Redux Toolkit, which allows data such as the

24

System Architecture

logged-in user, roles, and notification settings to be shared across the interface.
These will be explained in detail in Chapter 4.

Access to the application is controlled through authentication tokens issued by
Keycloak. Depending on the assigned role, the interface dynamically adapts menus
and permissions, ensuring that each user interacts only with the features relevant
to their responsibilities. In practice, this allows different categories of users to
access the same platform while maintaining strict separation of permissions.

3.3 API Gateway

At the center of the communication layer lies the APT Gateway, implemented using
Apache APISIX. It acts as the single controlled entry point to the Kubernetes
cluster and is responsible for managing, securing, and optimizing all network traffic
between external clients and internal services. Every request sent by the Progressive
Web Application passes through the gateway before reaching the internal endpoints,
ensuring that access control, routing, and logging are applied in a consistent and
centralized manner.

The API Gateway serves multiple key purposes within the system architecture.
First, it performs request authentication and authorization by integrating directly
with Keycloak. Incoming requests are intercepted, and the embedded access
tokens are verified against the Keycloak OpenID Connect configuration. Only
validated requests are forwarded to the internal services, preventing unauthorized
access and ensuring that all communications originate from authenticated users. In
this way, the gateway acts as the first security boundary of the system. The details
of the authentication flow are going to be further explained in the next sections.

Second, the gateway handles dynamic routing and service discovery. Each
internal service, such as the BFF, Camunda, or notification handler, runs in its own
Kubernetes pod. Its address can change as the cluster scales or updates. APISIX
automatically resolves service locations and directs requests to the correct endpoint
based on predefined routing rules. This layer hides the complexity of the underlying
infrastructure from the frontend, enabling the PWA to communicate through one
consistent URL no matter how the deployment is configured.

Another critical function of the API Gateway is to provide traffic management
and observability. It supports fine-grained control over request rates and concur-
rency, enabling load balancing, rate limiting, and timeout policies that protect the
backend from overload. In production, this becomes particularly important when
multiple users operate concurrently or when large data payloads are exchanged
during workflow operations. APISIX also generates detailed access logs and perfor-
mance metrics that can be forwarded to monitoring tools for auditing and system
diagnostics.

25

System Architecture

From a security point of view, the gateway is critical in ensuring isolation
between the external network and internal services. The internal APIs of Camunda,
Keycloak, and the BFF are not exposed to the internet. Instead, APISIX manages
all incoming traffic through a controlled ingress configuration, which defines allowed
routes and enforces the use of HI'TPS for encrypted communication. This setup
not only simplifies external access but also prevents unauthorized requests from
reaching sensitive services within the cluster.

Additionally, the API Gateway simplifies integration between different modules
by supporting a flexible plugin architecture. For instance, in this project, an
OpenID Connect plugin was configured to handle authentication flow transparently,
reducing the amount of security logic that each individual service must implement.
Other plugins handle URL rewriting, redirection rules, and response normalization,
ensuring consistent behavior across all endpoints.

The gateway also contributes to system scalability. By separating client com-
munication from internal service topology, new microservices can be introduced or
changed without affecting the client-side logic. In case of high traffic, the gateway
can distribute requests across multiple instances of the same service, improving
performance and fault tolerance.

In summary, the API Gateway represents the entry layer of the platform, pro-
viding secure, unified, and monitored access to all backend services. It enforces
authentication through Keycloak, manages routing and load balancing, and con-
tributes to both the reliability and observability of the system. Together with
the BFF, it defines a clean and modular communication boundary between the
external Progressive Web Application and the internal orchestration and process
management services.

3.4 Authentication and Authorization

Keycloak manages all user authentication and authorization flows. When a user
logs in, Keycloak issues a JWT token containing identity and role information.
This token is included in all subsequent requests and verified by APISIX before
forwarding them to other services. Each role—such as technician, veterinarian,
manager, or planner—determines the accessible pages and available actions within
the PWA. Keycloak itself is connected to its dedicated database for user, role,
and session management, and exposes standard OpenlD Connect and OAuth 2.0
endpoints used by the BFF and frontend during login or token refresh operations.

It is important to note that authentication data is never handled directly by the
frontend; all validations are performed through the gateway and the BFF, ensuring
a centralized and secure authorization model.

26

System Architecture

3.5 Backend-for-Frontend (BFF)

The Backend-for-Frontend (BFF) layer represents the communication point
between the user interface and the backend services. Its main job is to give the
frontend a simple, custom API that hides the complexity of the systems behind it.
This lets the client app use one stable endpoint, while the BFF manages requests to
different services like the Camunda process engine, Keycloak, and the notification
system. This approach clearly separates the presentation layer from business logic.
The frontend focuses on displaying data and managing the user interface, while the
BFF takes care of tasks like combining requests, transforming data, and handling
errors. In practice, the BFF offers REST endpoints tailored to the Progressive Web
Application, reducing client-side processing and keeping data structures consistent
throughout the system. All communication from the PWA goes through the API
Gateway, which checks the user’s authentication token and sends the request to
the BFF. The BFF does more validation and decides what operation to perform.
For example, if a user starts a new process, completes a task, or loads a form, the
gateway securely sends the request to the Camunda engine using an internal API.
The BFF then adjusts the response, filtering or restructuring the data based on the
user’s role and permissions before sending it back to the client. Besides interacting
with Camunda, the BFF is also responsible for integrating with other platform
services. It communicates with Firebase Cloud Messaging (FCM) to send push
notifications to users. From a development perspective, the BFF also simplifies
integration between frontend and backend teams. Changes in the internal APIs or
process structure can mostly be handled at this layer without modifications on the
client side. This makes it easier and faster to evolve the platform, as new workflows
or features can be introduced by adjusting the BFF logic, leaving the user interface
unchanged. In summary, the BFF serves as a bridge between the presentation
layer and the business logic of the system. It ensures that data exchanged between
the PWA and the backend services remains secure, consistent, and adapted to
the user’s context. By centralizing control over data flow and access rules, the
BFF contributes to a modular and maintainable architecture, where each layer can
evolve independently while preserving system integrity.

3.6 Process Management with Camunda

The orchestration of business processes is managed by Camunda 8, which exe-
cutes the BPMN models designed during the analysis phase. Camunda receives
process-related requests—such as starting a new workflow instance or completing
a task—through the BFF. Each process instance is persisted in the Camunda
Database, while execution metadata is indexed into Elasticsearch, which is used

27

System Architecture

internally by Camunda to provide fast retrieval and monitoring of process data.

In the architecture diagram, Camunda is represented as a composite block
rather than a single module. This is because the platform is made up of multiple
coordinated services, including the workflow engine and monitoring components,
which work together to execute, store, and visualize process data. Although these
services are internally connected, they function as one logical unit within the
system.

It is important to note that, in the deployed solution, users never interact
directly with Camunda. All communications occur through the BFF, which handles
authentication, request validation, and data adaptation. Access to Camunda’s
native interfaces is limited to development and configuration tasks in order to
support workflow testing and process validation. This separation ensures that the
operational system remains secure and consistent, while preserving the flexibility
of the underlying process engine.

3.7 Notifications and Firebase Cloud Messaging

Asynchronous communication is managed through Firebase Cloud Messaging
(FCM), which enables the delivery of notifications directly to the user’s browser or
device. This mechanism ensures that users are informed about important workflow
events—such as the creation of a new task or a change in process status—without
requiring manual refresh or polling.

The notification flow begins when a process event occurs in Camunda. The
BFF, acting as the mediator, receives this event and sends a message request to
Firebase through the Firebase Admin SDK. Firebase then handles message
queuing, token management, and device targeting, delivering the notification to
all registered clients associated with that specific task (or the group, such as all
veterinarians).

On the client side, notifications are received by the service worker integrated
within the PWA. This component runs in the background and displays push
notifications even when the application is not open. When the user interacts with a
notification, the PWA is automatically opened and redirected to the corresponding
task or page, allowing immediate action.

It is important to note that the all the infrastructure behind FCM, including
message storage and distribution servers, is managed entirely by Google. The
application itself does not handle a dedicated database for push delivery or message
queues. It only saves the basic subscription information it needs, such as user tokens,
so that notifications can be linked to the correct accounts. This design choice
reduces the amount of maintenance required, while providing reliable cross-platform
support for real-time alerts.

28

System Architecture

3.8 Data Persistence and Databases

Each major service within the system architecture maintains its own dedicated
database, ensuring clear separation of responsibilities and simplifying scalability
and maintenance.

« Keycloak Database: stores user credentials, roles, and session information.
It is deployed as a persistent volume within the cluster and managed by the
Keycloak service itself.

« Camunda Database: holds process instance data, variables, and audit logs
required for workflow execution. Camunda also uses Elasticsearch internally
for indexing and querying process metadata, which supports its monitoring
components.

« BFF Database: The system keeps track of each user and their corresponding
Firebase registration tokens, along with a record of the notifications that
have been sent or received. It also stores small pieces of metadata related to
workflow activity, such as message timestamps. When a new notification is
generated, the BFF saves the full version locally, while a lighter version is sent
through Firebase Cloud Messaging. If the client needs the complete message,
it can request it directly from the BFF. In this way, the database works as an
operational log that complements Camunda’s own storage, keeping the two
systems aligned without duplicating business data.

» Firebase Storage and Messaging Backend: The notification subsystem
relies entirely on the managed infrastructure provided by Google. All data
related to message delivery and queue management is handled externally by
the FCM service and is not hosted within the company’s cluster.

This distributed persistence model prevents a single point of failure and ensures
that each subsystem can evolve independently. Data flows between these databases
only through controlled API interactions defined by the BFF, guaranteeing both
consistency and data protection. Backups and access control are managed at the
individual service level according to their operational requirements.

3.9 Deployment and Infrastructure

All of the components represented in the diagram are containerized and deployed
in a single Kubernetes namespace. Each microservice (Frontend, BFF, Camunda,
Keycloak) runs in its own pod, defined by independent deployment and service
configurations. Ingress rules in APISIX manage secure HTTPS connections and

29

System Architecture

internal routing, while Kubernetes handles scaling, recovery, and configuration
through declarative manifests.

This containerized design allows for more flexibility in maintenance while also
simplifying versioning and horizontal scaling between environments. Isolating each
component allows for independent updates and keeps defects within their respective
service boundaries.

3.10 Summary

In summary, the system architecture is organized around a clear separation of
responsibilities: the frontend for user interaction, the BFF for data mediation,
Camunda for workflow orchestration, Keycloak for authentication, and Firebase
for asynchronous messaging. The use of APISIX as a unified gateway ensures that
communication remains secure and consistent, while Kubernetes provides a robust
foundation for deployment and scalability. This architecture effectively combines
modular design, process automation, and platform independence, aligning with the
goals of digitalization and operational efficiency pursued by the company.

30

Chapter 4

Implementation

4.1 Client

The client side constitutes the front-end of the system, implemented with React,
TypeScript, and Chakra Ul, and designed to provide a responsive interface for
all user roles. This section outlines the main elements of the client application,
including its routing structure, state management with Redux Toolkit, theming
configuration, and the dynamic form system based on Camunda JSON schemas.

4.1.1 Design

The design phase focused on creating an interface that is both visually consistent
and user-friendly. Since the system is used by various employees, from technical
staff working directly in the farms to managers, the design focused on clarity,
accessibility, and efficient information display. The interface needed to adapt to
different use contexts, ensuring that essential operations could be performed both
from desktop computers in the office and from mobile devices in the field.

From the very beginning, the user experience (UX) design followed a goal-
oriented approach; every screen and interactive element was planned to serve
a specific operational need. For instance, the planning cards were designed to
provide a concise overview of scheduled activities, highlighting deadlines and status
indicators, while the cycle cards presented detailed production data and progress
indicators. Each page was organized so that the most important information stands
out. Users can quickly view details, update records, or complete tasks without
unnecessary navigation.

The user interface (UI) design leveraged the component-based structure provided
by React and Chakra UIL. This made it possible to define consistent spacing, colors,
and typography throughout the application, reinforcing visual uniformity and
reducing cognitive load. Attention was given to contrast levels and component

31

Implementation

visibility to ensure readability under different lighting conditions, particularly
considering the use of mobile devices outdoors. Interactive components such as
tables, buttons, and filters were designed with responsive layouts, so the interface
remains clear and functional on smaller screens.

The design process was both iterative and collaborative throughout the project.
After each design iteration or prototype, review sessions were held with company
representatives to gather feedback on usability, clarity, and completeness of the
displayed information. This feedback loop helped make sure the interface matched
users’ needs and fit real operational workflows. In several cases, design adjustments
were made following direct input from field operators, who provided valuable insight
into what information was most useful during their daily activities.

The final interface design, therefore, represents a balance between technical
accuracy and user-friendliness. It integrates the structured logic of the BPMN-
driven workflow with an interface that supports the user’s tasks in an intuitive and
efficient way. Examples of the implemented design, including both desktop and
mobile views, are presented in the final section of this chapter.

4.1.2 Routing and Application Structure

High-Level Folder Structure The Frontend follows a modular folder organi-
zation to separate concerns and simplify maintainability. The public/ directory
contains static assets, including the application manifest and application logos. All
source code is stored inside the src/ directory, which is divided into sub-folders:

e api/ — helper modules used to communicate with the Backend-for-Frontend
(BFF).

» components/ — reusable Ul components shared across multiple pages (form
fields, buttons, ...).

e pages/ — the main page-level React components, each corresponding to a
route in the router.

o store/ — Redux Toolkit slices, RTK Query endpoints, and global application
state.

e utils/ — utility modules such as Firebase messaging integration and helper
functions, component responsible for rendering dynamic Camunda JSON
forms.

o Root files such as App.tsx, Router.tsx, and main.tsx, that configure the
application and define the routing.

This structure keeps the project maintainable as it scales, isolates concerns, and
makes the system easier to extend when new workflows or features are introduced.

32

Implementation

Layout Structure Most routes are rendered inside a shared Layout component,
which defines the global structure of the user interface. The layout includes the
navigation bar, sidebar menu, and the notification area, ensuring that these elements
remain consistent across all pages. Only the central content area changes when
navigating between routes. This approach prevents code duplication and ensures
a coherent user experience, as all operational sections, including cycles, tasks,
summaries, and notification settings, reuse the same application framework.

The layout also integrates global behaviors such as color-mode styling, responsive
design rules from Chakra Ul, and user-session handling inherited from the top-level
App.tsx. By delegating shared UI elements to a single component, the routing
layer remains clean and focused solely on navigation logic.

Router Navigation in the application is managed using React Router, which
defines all navigable paths, layout hierarchies, and access rules. The main con-
figuration is centralized in the Router.tsx file, where routes are declared using
the createBrowserRouter API. The router defines both public pages (such as the
home or error screens) and private sections, accessible only to authorized users,
depending on their assigned roles.

The base route renders a common layout that includes shared components such
as the navigation bar, sidebar, and notification area. Each child route corresponds
to one of the main pages of the application, such as task management, production
cycles, or cycle summary.

const AppRouter = () =>
createBrowserRouter ([

{
path: '/',
element: <Layout/>,
children: [

{ path: '', index: true, element: <Home/> },
{ path: 'error', element: <ErrorScreen/> },
{ path: 'notifications', children: [
{ path: '', index: true, element: <Notifications/> T,
{ path: ':notificationId', element: <NotificationPage/> 1},
13,
{ path: 'notification-settings', element: <NotificationSettings/> },
{ path: 'cycles', children: [
{ path: '', index: true, element: <Cycles/> 1},
{ path: ':cycleId', element: <CycleDetails/> 1},
{ path: ':cycleld/summary', element: <SummaryPage/>, children: [
{ index: true, element: <GeneralSummary/> 1},
{ path: 'feed', element: <FeedSummary/> },
{ path: 'in-out', element: <InOutSummary/> },
{ path: 'medicine', element: <MedicineSummary/> 1},

1}
33

Implementation

13,
{ path: 'forms', children: [
{ path: '', index: true, element: <TasksPage/> 1},
{ path: ':taskId', element: <CamundaFormRenderer/> 1},
13,
]
}
IDH

This structure reflects the logical organization of the system. For example, the
cycles section groups routes related to production cycles, each with a dedicated
detail page and multiple subpages for summaries of feed, medicine, or in/out
operations. The forms route is connected to the workflow engine and renders tasks
dynamically using the CamundaFormRenderer described in the previous section.

Access control is enforced through the RequireRole component, which checks
the user’s assigned roles (retrieved from Redux) and prevents unauthorized access
to restricted pages. If the current user does not have the required role, an error
message is displayed instead of the protected content.

export const RequireRole = ({ allowedRoles }: RequireRoleProps) => {
const roles = useSelector((state: RootState) => state.user.roles);
const isAuthorized = roles.some(role => allowedRoles.includes(role));

if (!isAuthorized)
return <ErrorScreen error="Non sei autorizzato a visualizzare questa
— pagina"/>;

return <0utlet/>;

};

This approach makes the routing modular and secure, while keeping navigation
consistent throughout the app. Nested routes simplify component composition,
allowing each section—such as notifications, cycles, or forms—to maintain its own
layout and logic inside the global structure.

4.1.3 State Management with Redux and RTK Query

State management in the application is organized through Redux Toolkit, which
centralizes all client-side data in a single store. Each slice manages a specific domain
of the application, ensuring that updates are predictable and that information can
be shared consistently across components. This structure was essential because
the application operates on several concurrent data sources—user information,
Camunda workflow data, notifications, and configuration parameters—while also
requiring continuous synchronization with backend services through RTK Query.

34

Implementation

The global store (store.tsx) integrates all slices and the RTK Query middleware.
Each reducer represents an independent logical section of the state tree. The most
relevant slices in the project are:

o UserSlice — stores the username and the list of roles associated with the
authenticated user. This information is used to control interface visibility and
enforce access permissions at the component level.

» NotificationsSlice — manages toast and in-app notifications, allowing mes-
sages to be displayed or cleared globally.

« DataSlice — used as a generic container for temporary or computed values
shared between components.

o SettingsSlice — holds Ul configuration data such as language, theme, or
layout preferences.

» ApiSlice and api.reducer — expose endpoints and cache results handled
through RTK Query, providing transparent integration with the backend.

A piece of the store configuration is shown below:

const store = configureStore({
reducer: {
user: userReducer,
notifications: notificationsReducer,
data: dataReducer,
settings: settingsReducer,
[api.reducerPath]: api.reducer,
},
middleware: (getDefaultMiddleware) =>
getDefaultMiddleware() .concat(api.middleware),
s

Each slice defines its own initial state and reducers. For instance, the UserSlice
maintains a minimal user profile, enabling any component to read or update the
username and roles. When the user logs out, the slice resets to its initial state,
ensuring that no sensitive data remains in memory.

const userSlice = createSlice({
name: "user",
initialState: { username: '', roles: [] },
reducers: {
setUsername: (state, action) => { state.username = action.payload; 1},
setRoles: (state, action) => { state.roles = action.payload || []1; },
logout: (state) => { state.username = ''; state.roles = []; }
}
B;

35

Implementation

A more complex example is the PlanningSlice, which coordinates data used
in the planning process. The state of this slice typically includes the list of all
planned batches, the currently selected plan, and any filters applied by the planner.
This structure was chosen because planning data is central to the system and must
remain accessible across several views—such as plan details, summary dashboards,
and validation screens. By keeping it in a dedicated slice, these views can update
instantly when the planner modifies a schedule or when new data is fetched from
the API.

Data loading and synchronization are managed through RTK Query. For
example, the PlanningApi defines endpoints that retrieve the list of plans or the
details of a specific plan. The hooks generated by RTK Query are then consumed
directly inside React components.

export const planningApi = api.injectEndpoints({
endpoints: (build) => ({
getPlannings: build.query({
query: () => ({ url: '/operator/plannings', method: 'GET' }),
providesTags: ['Plannings']
b,
getPlanningById: build.query({
query: (id) => ({ url: "~ /operator/plannings/${id}", method: 'GET' }),
providesTags: (_, __, id) => [{ type: 'Plannings', id }],
b,
b,
IO

When a component calls the generated hook, such as useGetPlanningsQuery(),
RTK Query automatically performs the request, caches the result, and keeps the
data synchronized. This mechanism eliminates the need for manual request handling
and avoids redundant calls, which is particularly useful in modules like planning
and production summaries where several components depend on the same data.

In conclusion, Redux Toolkit and RTK Query together provide a clean separation
between application domains and asynchronous data. Local slices manage authen-
tication, settings, and UI state, while RTK Query handles communication with
backend services. This organization ensures consistency, scalability, and efficient
reuse of data across the entire application.

Note: To use Redux for development, it’s necessary to have the React and
Redux DevTools Extensions in browsers. [21]

4.1.4 Styling and Theming with Chakra Ul

Light and Dark Theme Chakra Ul provides built-in support for color mode
management, allowing components to automatically adjust their appearance be-
tween light and dark themes. By default, the library includes a color mode context

36

Implementation

and a system color mode manager that detects the user’s operating system prefer-
ence and applies the corresponding palette. Standard components—such as buttons,
inputs, alerts, and typography—automatically adapt their background, border,
and text colors using predefined design tokens. This means that most of the base
styling transitions seamlessly between light and dark modes without additional
configuration.

Custom Theme During development, it was decided to define specific custom
colors for certain interface elements—such as table borders, panel outlines, and
button states—to ensure consistent visual contrast across both light and dark themes
and to better align with the application’s visual identity rather than Chakra’s
default styling. To avoid repeating these style definitions in individual components,
the corresponding values were centralized in the custom theme configuration
file (CustomTheme.tsx), where they are exposed as semantic tokens and reused
throughout the application. Below, a part of this file is shown, illustrating how
these custom colors are defined:

const customConfig = defineConfig({
theme: {
semanticTokens: {
colors: {
bg: {
DEFAULT: { value: { _light: "{colors.gray.100}", _dark:
< "{colors.gray.800}" } },

panel: { value: { _light: "{colors.gray.50}", _dark:
< "{colors.gray.900}" } },

1,

border: {

table: { value: { _light: "{colors.gray.300}", _dark:
< "{colors.gray.600}" } },
outline: { value: { _light: "{colors.gray.400}", _dark:
< "{colors.gray.700}" } },

},
brand: {
solid: { value: "{colors.brand.500}" },
contrast: { value: "{colors.brand.50}" }
}

}
¥
}
B;

With this setup, whenever a table, card, or panel component references border.table
or border.outline, Chakra automatically applies the correct color for the current
theme mode. This eliminates the need to define conditional style logic or inline

37

Implementation

color values in each component and allows visual adjustments to be made globally
from a single configuration file.

At runtime, Chakra’s Provider component applies this configuration across
the entire application, ensuring that all nested UI elements share the same design
system and respond dynamically to color mode changes.

createRoot (document . getElementById('root')!) .render (
<ReduxProvider store={store}>
<Provider> {/* Custom Chakra Provider */}
<App/>
<Toaster/>
</Provider>
</ReduxProvider>

)

This approach combines the flexibility of Chakra UI’s component system with
centralized design control, resulting in a visually coherent interface that automati-
cally adapts between light and dark themes without redundant code.

4.1.5 Form Generation Based on Camunda JSON

At the beginning of the project, each form was implemented as a separate Re-
act component. This approach provided flexibility and allowed for customized
layouts and styles, but as the number of processes and forms increased, mainte-
nance became increasingly complex. During development, new information and
requirements continued to emerge from the workflow provider and the client. As
a result, even while later forms were being developed, previously completed ones
often required modifications—such as new fields, renamed variables, or adjusted
logic. This constant evolution made it difficult to maintain consistency and slowed
down overall progress. To address this issue, a more scalable solution was intro-
duced: forms are now generated dynamically from the JSON schema automatically
produced by Camunda. When a user opens a task, the frontend retrieves the
corresponding form JSON through the API and passes it to a dedicated component
called CamundaFormRenderer.tsx. This component parses the JSON schema and
renders the form by composing reusable field components—such as TextField,
NumericField, RadioField, or more complicated component types existing in
Camunda, such as dynamiclist, expression, and ...— based on the type definitions
contained in the schema.

switch (type) {
case "radio":
return (
<RadioField

38

Implementation

label={label || ""}
name={componentPath || ""}
value={value || ""}
items={component.values || [1}
readOnly={readonly}
required={required}
onChange={onValueChange}
/>
)

case "expression'":
return (
<ExpressionField
expression={component.expression || ""}
componentKey={component .key}
path={path}
/>
)

default:
console.warn(Unsupported component type: ${typel});
return null;

Each component is created dynamically through a rendering function that maps
the JSON attributes (such as field type, label, validation, or data source) to their
corresponding React elements. The renderer also handles conditional visibility
rules, dynamic data retrieval from APIs, and nested structures such as groups,
tables, and lists.

<Box id={id} borderWidth={component.showOutline 7 "1px" : "0"} p={4}>
{component.components?.map(it => (
<CamundaFormElement key={it.id} component={it} path={groupPath} />
)}

</Box>

The overall structure is built using react-hook-form, which provides form state
management, validation, and submission logic. When a form is submitted, the
data is sent to the backend through the completeTask mutation, which finalizes
the current Camunda task.

const onSubmit = (data: any) => {
completeTask ({
id: taskId!,
formName: task.formId,
formData: data,
}) .unwrap() .then(() => {
toaster.create({ title: "Attivita completata con successo", type: "success"

- 1)
39

Implementation

navigate(-1);
}) .catch(err => {
toaster.create({ title: "Errore durante il completamento", type: "error"
= 1});
s
I

Below, there is an example of the JSON structure generated by Camunda, used
as the first form of the Purchase phase:

{
"executionPlatform": "Camunda Cloud",
"executionPlatformVersion": "8.6.0",
"exporter": {
"name": "Camunda Web Modeler",
"version": "70aaalc"
},
"schemaVersion": 18,
"id": "form_pianificazione_acquisto",
"components": [
{
"text": "# Pianificazione acquisto\nInserire i dati di pianificazione

< considerando i **tempi di evasionex* del fornitore",
"type": "text",
"layout": {
"row": "Row_1vjl5t2",
"columns": null
1,
"id": "Field_1dlrbeh"

"label": "Nuova pianificazione",
"components": [
{
"label": "Settimana",
"type": "number",
"layout": {
"row": "Row_11ttwbl",
"columns": null
}3
"id": "Field_1d8zy9t",
"key": "settimana",
"validate": {
"required": true,
"min": "1",
"max": "52"
},

"serializeToString": false

},
{

40

Implementation

-~

-~

-~

"subtype": "date",
"dateLabel": "Data",
"type": "datetime",
"layout": {
"row": "Row_11lttwbl",
"columns": null
3,
"id": "Field_OybneOs",
"key": "data",
"validate": {
"required": true

}
"label": "Razza",
"type": "select",
"layout": {
"row": "Row_11ttwbl",
"columns": null
},
"id": "Field_Obv42xr",
Ilkeyll : Ilrazzall ,

"validate": {
"required": true

1,

"valuesKey": "razze"

"label": "Allevamento maturazione",
"type": "select",

"layout": {

"row": "Row_17qb4br",
"columns": null

},
"id": "Field_OwmkO1lc",
"key": "allevamento_maturazione",

"searchable": true,
"validate": {

"required": true
},

"valuesKey": "allevamenti_maturazione"

"label": "Unita",
"type": "number",
"layout": {
"row": "Row_17qb4dbr",
"columns": null
}3
"id": "Field_lascrfp",

41

Implementation

"key": "unita",
"validate": {
"required": true,
"min": 1000,
"max": 1000000
}
1,
{
"label": "Destinazioni",
"components": [
{
"label": "Allevamento riproduttori",
"type": "select",
"layout": {
"row": "Row_16fwiu8",
"columns": null
1,
"id": "Field_0lgbOfc",
"key": "allevamento_riproduttori",
"searchable": true,
"validate": {
"required": true
1,
"valuesKey": "allevamenti_riproduttori"
}
1,
"showOutline": true,
"isRepeating": true,
"allowAddRemove": true,
"defaultRepetitions": 1,
"type": "dynamiclist",
"layout": {
"row": "Row_1lxfez2q",
"columns": null
1,
"id": "Field_Oebg2m2",
"path": "destinazioni",
"disableCollapse": true,
"nonCollapsedItems": 2
}
1,
"showOutline": true,
"type": "group",
"layout": {
"row": "Row_1gbc6rc",
"columns": null

s
"id": "Field_Okt7s7m",
"path": "pianificazione"

42

Implementation

1,
"type": "default",
"versionTag": "O.1"

}
In summary, this approach brings several advantages:

o Any change in the BPMN model or in the form definition within Camunda is
immediately reflected in the frontend, without requiring manual updates to
the codebase.

e The time required to implement new processes and forms is significantly
reduced, since the renderer automatically adapts to different schemas.

o Maintenance costs are minimized, as the form logic and layout are centralized
in a single, reusable component.

o Iterative changes introduced by the workflow provider or client during devel-
opment can be incorporated instantly, without disrupting the application’s
overall structure.

4.1.6 Form Management with Validation and Conditional
Fields

Validation rules defined in Camunda—such as required, min, max, or type con-
straints—are automatically mapped to React validation through the convertValida-
tion utility. This avoids duplicating validation logic in the frontend and ensures
that the constraints defined in the workflow model are applied exactly also in the
UL Some fields appear only when specific conditions are met. Conditional visibility
is handled through the conditional.hide expression in the schema, which is
evaluated at runtime using the Feelin expression engine. If the expression evaluates
to true, the field is omitted from the rendered form. Default values and pre-existing
process data are merged to initialize the form state. A recursive helper extracts
default values from the schema, which are then combined with the input data
provided by the task. This guarantees that the form reflects the current state of
the workflow.

The renderer also supports dynamic content. Select fields can load their options
from the backend via RTK Query hooks or through schema-defined API requests. In
addition, Camunda allows lists of options to be defined through valuesExpression,
which enables the options of a field to be computed dynamically based on other form
inputs or process data. The expression is evaluated at runtime, producing a filtered
or transformed collection that adapts automatically as the user interacts with the
form. This mechanism makes it possible to implement dependent dropdowns or

43

Implementation

context-aware selections without any hard-coded logic in the client.

Finally, upon submission, the form data is validated and then sent to the backend
via the workflow API to complete the corresponding Camunda task. Feedback is
provided through toast notifications, ensuring users receive immediate confirmation
Or error messages.

4.2 PWA

As it has been explained in previous sections, the most important part of this project
is the PWA. In this section, the Implementation of different essential components
that are needed for the PWA is explained.

4.2.1 Manifest

The manifest. json file defines how the Progressive Web Application is presented
to the user and how it behaves when installed on a device. It provides the metadata
required by browsers to recognize the web application as installable and to display
it with native-like characteristics. The manifest contributes to the app’s identity,
defining its name, icons, color scheme, and launch configuration. In the manifest,
the following main properties are specified:

« name and short__name — Define the application’s full and abbreviated
titles that appear respectively in the installation prompt and on the device’s
home screen.

o start_ url — Indicates the entry point of the application when it is launched,
ensuring a consistent user experience regardless of where it was last accessed.

o display — Set to standalone, allowing the PWA to open in its own window
without the standard browser interface, providing an experience similar to a
native mobile application.

e background_ color and theme__color — Define the splash screen and
browser UI colors, ensuring visual consistency with the application’s overall
design.

o icons — Provide the image resources used for different platforms. In this
project, both an SVG logo and an Apple touch icon are included to ensure
proper rendering across devices. It is also important to note that the inclusion
of the apple-touch-icon.png is essential for ensuring proper installation on
iOS devices. Unlike Android and most modern browsers, iOS does not yet
fully support the Web App Manifest standard. As a result, Safari relies on

44

Implementation

the presence of the apple-touch-icon link to display the application icon
correctly when the PWA is added to the home screen. Without this icon, the
installed app may appear with a generic placeholder image or fail to show the
intended branding.

The manifest file used in the project is shown below:

{
"name": "MartiniFlow BPM",
"short_name": "MartiniFlow",
"start_url": "/",

"display": "standalone",
"background_color": "#fff",
"theme_color": "#3f51b5",

"icons": [
{
"src": "logo.svg",
"sizes": "any",
"type": "image/svg+xml"
1,
{
"src": "apple-touch-icon.png",
"sizes": "any",
"type": "image/png"
b
]

The manifest, together with the service worker, enables the application to be
installed on mobile and desktop devices.

4.2.2 Service Worker

The service worker operates as an independent script running in the background of
the Progressive Web Application. Its primary responsibilities include intercepting
network requests, managing cached resources, handling version updates, and sup-
porting background message delivery through Firebase Cloud Messaging (FCM).
In this project, the service worker was implemented using the vite-plugin-pwa
library, which integrates Workbox—a framework designed to simplify service
worker configuration and asset caching.

Integration with Vite and Workbox The integration is based on the injectManifest|
strategy provided by the plugin. During the build process, Vite automatically
generates a manifest of hashed static assets (JavaScript, CSS, icons) and injects this
information into the custom service worker. This allows the application to benefit

45

Implementation

from automatic pre-caching while preserving full control over runtime behavior.
The following configuration excerpt shows the relevant section of the Vite setup:

// vite.config.ts (excerpt)
import { VitePWA } from 'vite-plugin-pwa';

VitePWA({
registerType: 'autoUpdate',
strategies: 'injectManifest',
srcDir: 'src',
filename: 'custom-sw.js',
injectManifest: {
globPatterns: ['**/*.{js,css,html,svg,png}t'],
3,
IO

At runtime, Workbox manages the pre-caching and versioning of static resources
through the Cache Storage API. Outdated entries are automatically removed when
a new service worker version becomes active. The autoUpdate registration mode
ensures that the latest version of the service worker is downloaded in the background
and activated as soon as all older instances are closed.

Custom logic and caching strategies The custom service worker defines
explicit logic for installation, activation, and network request interception. Static
build assets are pre-cached automatically, while runtime caching policies are defined
for specific resource types. For example, HT'ML files follow a NetworkFirst strategy
to ensure the most recent content is displayed, while static images are handled with
a StaleWhileRevalidate strategy to improve loading performance. The following
excerpt illustrates the main structure of the service worker:

// custom-sw. js

// 1) Precache build assets (injected manifest)
import { precacheAndRoute } from 'workbox-precaching';
precacheAndRoute(self.__WB_MANIFEST || [1);

// 2) Lifecycle management

self.addEventListener('install', () => self.skipWaiting());
self.addEventListener('activate', (event) =>

< event.waitUntil(clients.claim()));

// 3) Runtime routing ezamples

import { registerRoute, setDefaultHandler, NavigationRoute } from

— 'workbox-routing';

import { NetworkFirst, StaleWhileRevalidate } from 'workbox-strategies';

46

Implementation

registerRoute(new NavigationRoute(new NetworkFirst({ cacheName: 'html-nav'

= 1));

registerRoute(
({ request }) => request.destination === 'image',
new StaleWhileRevalidate({ cacheName: 'images' })

)

setDefaultHandler (({ request }) => fetch(request));

In addition to resource caching, the service worker also includes the event
listeners necessary for background message handling. This integration allows FCM
notifications to be received and displayed even when the application is closed or
running in the background.

Rationale for the chosen configuration Workbox offers two main setup
strategies: generateSW and injectManifest. The first automatically generates
a generic service worker with predefined caching behavior, which is suitable for
static sites but limited in flexibility. The injectManifest approach was selected
because it allows to maintain full control over lifecycle events, caching logic, and
integration with third-party services such as Firebase.

Update and lifecycle management The update process follows the standard
service worker lifecycle, summarized in Figure 4.1. When a new build is deployed,
the browser downloads the updated service worker and prepares it in the background.
Once the previous version is no longer in use, the new one becomes active, replaces
outdated caches, and claims all open clients. This approach ensures that users
always access the latest version of the application without any need to download
or refresh manually.

Register Service Worker |

| Install: Pre-cache Build Assets |

New Tab / Reload

| Activate: Claim Clients, Remove Old Cache |

| Fetch: Provide from Cache or Network |

AutoUpdate: Replace Old Cache on New Build |

Figure 4.1: Service Worker Lifecycle and Update Flow.

47

Implementation

4.2.3 Notifications
Firebase Setup

In order to set up the system with Firebase Cloud Messaging service, a new project
was created through the Firebase console (https://console.firebase.google.
com/). After signing in, it is necessary to create a new Firebase project. The new
project can be optionally linked to a Google Analytics account for monitoring
purposes. From the project overview page, its possible to access the settings and
the project configurations, then its needed to create a new "web application project’
from this page, that will contain the necessary credentials required to be initialize
the Firebase SDK inside the client application, as shown in the figure below a
snippet of the configuration is generated that needs to be added to the React
application.

{
const firebaseConfig = {
apiKey: "gHF7J0xA2vqY6cFwDFdalSgHF7J0xA2vqY6cFwDFdalSg",
authDomain: "martini-dev.fa.com",
projectld: "martini-dev",
storageBucket: "martini-dev.fa.app",
messagingSenderId: "111177771114",
appld: "1:111177771114:web:dc49£70bdc49f70bdc49f",
measurementId: "G-0000V0O0000"
s

In addition to this configuration, a key should be generated to be used in the
backend; it’s possible to generate it from the "service accounts' tab in the project
settings. By selecting the preferred programming language and pressing "generate
a new private key"', a JSON file will be downloaded containing all the necessary
credentials. This file should be stored securely in the backend server and used to
initialize the Firebase Admin SDK. It includes the information such as the project
ID, client email, private key,auth URI,auth provider x509 cert URL,client x509 cert
URL, and other details required for server-side authentication and authorization
when sending messages to client applications. The next step is to enable push
notifications in the application; a new key pair should be generated for web push
certificates, this can be done from the "cloud messaging" tab in the project settings.
This key pair (VAPID keys) is used to allow Firebase Cloud Messaging (FCM) to
authenticate push notifications sent from the backend to client browsers. [13]

Device registration and token management FEach client instance must
register with FCM by obtaining a unique device token. This token identifies the
browser instance and is used by the backend to target specific users when sending

48

https://console.firebase.google.com/
https://console.firebase.google.com/

Implementation

notifications. In the implementation, the getToken() method retrieves the token
using the project’s VAPID key and the registered service worker. Once obtained,
the token is sent to the backend via an authenticated API call to associate it with
the user account.

export const requestFirebaseNotificationPermission = async ():
— Promise<boolean> => {
try {
const token = await getToken(messaging, {
vapidKey: "BHTAf07PvofiGUUnxWGO4",
serviceWorkerRegistration: await navigator.serviceWorker.ready,

B

if (token) {
const response = await fetch("/api/notification/addDevice", {
method: "POST",
headers: { "Content-Type": "application/json" },
credentials: "include",
body: JSON.stringify({ key: token })
s
return response.ok;
}
return false;
} catch (err) {
console.error("Error retrieving or sending FCM token:", err);
return false;
}
};

This mechanism ensures that each authenticated user device is registered in
the backend and can later receive notifications related to assigned tasks or process
updates in that device.

Server-side configuration On the backend, the downloaded service account
JSON file is used to initialize the Firebase Admin SDK. It contains the credentials
required for server-side authentication (project ID, client email, and private key).
This configuration allows the backend to send messages through the Firebase Cloud
Messaging API to registered devices. The generated device tokens are stored
securely and used for targeted or broadcast notifications.

In addition, a pair of VAPID keys (Voluntary Application Server Identification)
must be generated from the “Cloud Messaging” tab in the Firebase console. These
keys enable Firebase to authenticate and authorize push requests between the
backend and client browsers, ensuring secure message delivery.|[13]

Foreground and background message handling The client application distin-
guishes between messages received while it is open (foreground) and those received

49

Implementation

when it is inactive (background). Foreground messages are handled directly in the
React client using the onMessage () listener, which triggers a callback to display
in-app notifications. Background messages are processed by the same service worker
described in the previous section, which allows push notifications to be displayed
even when the PWA is closed.

export const onForegroundMessage = (callback: (payload: MessagePayload) =>
— void) => {
return onMessage(messaging, (payload) => {
console.log("Foreground message received:", payload);
callback(payload) ;
s
s

By combining the service worker context with Firebase’s messaging API, the
application ensures consistent delivery of push notifications in all operational states.
This design enables real-time updates for users in the field—such as technicians and
veterinarians—who rely on timely notifications to perform their assigned activities
efficiently.

Permission Handling Across Devices

Before notifications can be displayed, explicit user consent is required. Mod-
ern browsers implement strict permission models to prevent unsolicited noti-
fications. When the application first attempts to register for messaging, the
browser prompts the user to grant or deny notification access through the ‘Notifica-
tion.requestPermission()* API. Only when the permission status is set to granted,
Firebase Cloud Messaging can issue and display notifications on that device. If
the user denies permission, no further requests can be made until the permission is
manually changed in the browser settings.

Each Browser applies slightly different policies regarding notification prompts
and background delivery. For instance, Chromium-based browsers (such as Google
Chrome, Edge, and Opera) support FCM through standard Web Push APIs and
allow background notifications via the registered service worker, provided that the
user has interacted with the site. Mozilla Firefox follows a similar model but may
automatically block repeated permission prompts if users ignore them multiple
times. Apple’s Safari browser supports web push on macOS and iOS only for
installed web applications and requires that notifications be triggered through the
native Apple Push Notification service (APNs) bridge managed by Firebase. These
differences make explicit permission handling and user feedback mechanisms critical
for a reliable cross-platform notification experience.

50

Implementation

4.3 Backend and Integrations

The backend of the system was developed with the Kotlin programming language
and using the Spring Boot framework. It serves as a centralized integration
layer connecting the Frontend with the Camunda 8 process engine, the Firebase
Cloud Messaging service, and the Keycloak identity management system. The
backend runs inside a Kubernetes cluster and exposes a REST API tailored for
the frontend through a Backend-for-Frontend (BFF) architecture, ensuring
secure, optimized, and domain-specific communication.

4.3.1 BFF Endpoints

As mentioned before, BFF acts as a dedicated gateway for the client application,
simplifying the communication with multiple internal services such as Camunda,
Zeebe workers, and Keycloak. It aggregates and validates data before forwarding it
to the process engine, applies access control based on user roles, and manages the
lifecycle of tasks and process instances. It reduces latency and isolates the client
from the internal complexity of the system by exposing a single, unified REST API.

4.3.2 Data Formatting for the Ul

Before being transmitted to the frontend, the backend performs a structured
data transformation process. The information retrieved from Camunda process
instances and other microservices often contains nested, verbose, or workflow-
specific structures that are not directly suitable for rendering within the React
interface. To improve performance and maintain a clear separation between business
logic and presentation, the Backend-for-Frontend layer converts these responses into
concise, standardized JSON objects specifically designed for the Ul components.

Each transformation step includes filtering out non-relevant fields, flattening
hierarchical data, and aggregating attributes that are frequently accessed together
by the frontend. For example, instead of sending complete process variables or
internal BPMN identifiers, the backend returns compact summaries containing
only the essential attributes—such as task name, status, assigned role, and related
timestamps. This ensures that the client receives data in a predictable structure,
minimizing the need for additional parsing or formatting operations on the client
side.

Furthermore, the BFF performs data validation and type normalization
to align backend responses with the expected data models defined in the frontend
application. This includes converting date and time fields to ISO-8601 format,
mapping enumerations to consistent labels, and ensuring numerical values adhere
to fixed precision. Through these transformations, the backend guarantees that

51

Implementation

the data displayed in tables, summaries, and forms remains consistent with the
definitions of the BPMN process models, regardless of their internal implementation
or source system.

4.3.3 Camunda Usage During Development

During the development phase, the Camunda 8 platform played a central role
not only as the process orchestration engine but also as a reference environment
for validating workflows and verifying the correctness of the frontend integration.
Because the workflow design was handled by another company, the development
team used Camunda’s built-in interfaces such as Modeler, Tasklist, and Operate as
shared tools to ensure alignment with the process definitions and to validate task
behavior.

Tasklist Interface The Tasklist was used as a practical reference for inspecting
how each task appeared once deployed on the Camunda engine.

Inserimento pianificazione £ Unassigned
Acquisto pollastre

Task Process

Pianificazione acquisto

Inserire i dati di pianificazione considerando i tempi di evasione del fornitore
Nuova pianificazione

Settimana® Data® Razza®

-+ mm/dd/yyyy Bl Ross308

Allevamento maturazione® Unita®

Destinazioni

Allevamenta riproduttori*

Figure 4.2: Camunda Tasklist interface.

52

Implementation

By opening a task instance, developers could review the automatically generated
form, confirm mandatory fields, and examine variable names and data types. This
ensured that the dynamic form renderer implemented in the frontend produced an
equivalent layout and logic, fully consistent with the BPMN schema. This step was
especially useful during form iteration, when process definitions changed frequently.

Operate Interface The Operate dashboard was mainly used to monitor the
status of process instances started from the frontend. It provided an immediate
visual confirmation of the active workflow step and the values exchanged between
the application and the engine. Through the variable panel (Figure 4.3), it was
possible to verify that the data sent through the BFF was correctly propagated
within the process and that each BPMN path executed as expected. This proved
valuable for debugging synchronization issues and validating process transitions
without direct API inspection.

B orerate Dashboard Processes Decisions Non-production license @ @)

® Process Name Process Instance Key Version Start Date End Date Parent Process Instance Key Called Process Instances

Maturazione 2251799818917688 24 2025-10-17 15:40:41 - None View All AR

Instance History I show End Date (M Show Execution Count Variables

® v [Maturazione
Name Value
[©] QO Nuova pianificazione maturazione

ciclo_id "df910dd2-9e27-497b-a82c-51da2002822f"

N3

% Creazione ciclo allevamento in stato "Pianificato”

<& Gateway_19cree9 ciclo_maturazione_pollastre {"statoCiclo":null,"codiceWbs":"80065" "codiceAllevame

nto":"5003735""datalmmissione":"2025-11-03T23:00
© Gateway_livatac 00.000+00:0! 1" "incubatoio":"Genola","razzaA
nimali":"Hubbard","pezzaturaAnimali":"Piccola"filieraA

Y

@ Attesa delta di attivazione
£ Invio WBS a SAP codice_wbs "80065"

Attendi 1 giorno (n test di 5 minut
© i1 giomo { inut) data_immissione "2025-11-03T23:00:00.000+00:00"

I

%+ Cambio stato ciclo allevamento in "Preparazione”

® Nuovo acquisto pollastre Add Variable + Copy variables T

200006606

Figure 4.3: Camunda Operate interface.

Integration via BFF All interactions with Camunda occurred through the
BFF layer, which mediated authentication and API communication. The frontend
never directly accessed Camunda’s REST endpoints; instead, the BFF retrieved
task definitions, delivered JSON schemas for form rendering, and handled task
completion requests. This ensured that both security and role-based access control
remained centralized, while developers could still cross-check behavior using the

53

Implementation

Tasklist and Operate tools.

4.3.4 Authentication and Authorization

User authentication and authorization in the system are based on the Keycloak
identity management platform, which implements the OAuth2 and OpenID Connect
protocols. The backend, developed with Spring Boot, acts as an OAuth2 resource
server and validates access tokens issued by Keycloak. Each authenticated session is
represented by a JSON Web Token (JWT) that encodes user information such
as username, email, and assigned roles. These roles correspond to the organizational
structure of the company and include tecnico, veterinario, pianificatore, manager,
and admin. Through this model, access to backend resources is granted only to
users with valid tokens and the appropriate roles, ensuring a secure and traceable
authentication process.

Authentication Flow Overview The authentication process follows the OpenlD
Connect (OIDC) authorization code flow mediated by the APISIX gateway. When
the user accesses the PWA and the application calls the endpoint /api/me, the
gateway checks for an existing session cookie. If no valid session is found, the
request is forwarded to the BFF, which returns an HT'TP 403 Unauthorized
response. At this point, the frontend detects that the user is not authenticated and
redirects to a protected path (/secure), triggering the gateway’s OIDC plugin.

The gateway then redirects the browser to Keycloak, which displays the login
page. After the user submits their credentials, Keycloak verifies them and redirects
back to APISIX with an authorization code. APISIX exchanges this code for a
JSON Web Token (JWT) and sets a session cookie in the user’s browser. This
cookie is encrypted and used to maintain the authenticated state across subsequent
requests.

When the page reloads, the frontend again calls /api/me. This time, APISIX
retrieves the JWT from the session cookie, validates it, and forwards the request
to the BFF. The BFF confirms the token’s validity and responds with the user’s
information, which allows the frontend to recognize the authenticated session.

From this point onward, all API requests automatically include the JWT in the
authorization header, ensuring continuous authentication until the token expires or
the session is cleared.

This approach ensures that credentials are handled exclusively by Keycloak,
while the APISIX gateway manages secure session handling and token exchange on
behalf of the frontend.

o4

Implementation

Browser Gateway IAPI Keycloak

/api/me

forward (no session)

User presses login button

redirect — /secure

v

respond with the redirect to the keycloak

redirect to Keycloak (OIDC)

v

login page

user/pass

v

redirect with code

redirect to gateway with code

exchange code

redirect with session cookie

<

Browser Gateway IAPI Keycloak

Figure 4.4: Authentication flow.

As a result, sensitive authentication data never passes directly through the client
application, preserving security.

Frontend integration and role management On the frontend, authentication
is handled using the official keycloak-js library. When the application starts, the
Keycloak client is initialized with the realm, client ID, and server URL parameters,
prompting the user to log in via the Keycloak interface. Upon successful login,
the client receives an access token and a refresh token. The access token is then
attached automatically to every API request made by the application, while the
refresh token allows the session to be renewed transparently before expiration.

To keep track of authentication and apply role-based permissions, the appli-
cation relies on Redux Toolkit. User details and assigned roles are saved in
the UserSlice of the global store, making them available across all components.

59

Implementation

This shared structure supports Role-Based Access Control (RBAC) directly
in the frontend: interface elements such as pages, buttons, or sections appear
only when the user’s role allows it. For instance, features like task management
or process monitoring are visible only to specific user groups. Access is verified
through a RequireRole component, which checks the roles in the current state
before rendering the page. If a user does not have the necessary permissions, an
error message is shown instead.

// Ezample of route protection with RequireRole

export const RequireRole = ({ allowedRoles }: RequireRoleProps) => {
const roles = useSelector((state: RootState) => state.user.roles);
const isAuthorized = roles.some(role => allowedRoles.includes(role));

if (!isAuthorized)
return <ErrorScreen error="Non sei autorizzato a visualizzare questa
— pagina"/>;

return <0utlet/>;

};

This mechanism ensures that authorization rules are applied consistently both
in the backend and in the user interface.

4.4 Deployment

The deployment process was designed to make the system reliable, modular, and
easy to update across different environments. To achieve this, both the frontend and
backend were containerized and deployed through a Kubernetes cluster, using Helm
charts to manage configuration and releases. This approach provides consistency
between environments, simplifies updates, and allows the application to scale or
recover automatically when required.

4.4.1 Containerization

The frontend application was packaged as a Docker image using a multi-stage
build. During the first stage, a Node.js environment compiles the React source code
into static assets. In the second stage, these assets are copied into a lightweight
Nginx container, which serves them on port 80. This separation between build and
runtime environments results in a smaller, more secure image that contains only
the files needed in production.

Stage 1 - Build
FROM --platform=$BUILDPLATFORM node:22 AS builder

56

Implementation

WORKDIR /app

COPY package*.json ./
RUN npm install

COPY .

RUN npm run build

Stage 2 - Serve

FROM nginx:alpine

RUN rm -rf /usr/share/nginx/html/*

COPY nginx.conf /etc/nginx/conf.d/default.conf

COPY --from=builder /app/dist /usr/share/nginx/html
EXPOSE 80

CMD ["nginx", "-g", "daemon off;"]

Once built, the image is pushed to a private registry and later retrieved by the
Kubernetes cluster using registry credentials stored in the regcred secret. The
backend service follows a similar approach, packaged as a standalone container
that exposes REST endpoints consumed by the frontend.

4.4.2 Kubernetes Deployment

The deployment on Kubernetes is managed through Helm charts, which define the
manifests for each component and allow dynamic configuration through parameter-
ized values. Each service—the frontend, backend, and related infrastructure—is
deployed within the same namespace, simplifying networking and ensuring internal
communication between pods.

An example of the deployment configuration is shown below:

apiVersion: apps/vl
kind: Deployment
metadata:
name: frontend
namespace: {{ .Values.namespace 1}}
spec:
replicas: 1
selector:
matchLabels:
app: frontend-app
template:
metadata:
labels:
app: frontend-app
spec:
imagePullSecrets:
- name:
containers:
- name: notification-frontend

57

Implementation

image: {{ .Values.images.frontend.name }}:{{
— .Values.images.frontend.tag }}
ports:

- containerPort: 80

Apache APISIX manages incoming HTTP traffic as the ingress controller and
adds routing and authentication features. In this configuration, APISIX integrates
directly with Keycloak using an OpenlD Connect (OIDC) plugin. This allows
the gateway to handle authentication at the ingress level, ensuring that only
authenticated users can access protected routes before requests reach the frontend
service.

apiVersion: apisix.apache.org/v2
kind: ApisixPluginConfig
metadata:
name: oidc-plugin
namespace: {{ .Values.namespace 1}}
spec:
plugins:
- name: openid-connect
enable: true
config:
client_id: {{ .Values.iam.client_id }}
discovery: https://{{ .Values.iam.url }}/realms/{{ .Values.iam.realm
— }}/.well-known/openid-configuration
realm: "{{ .Values.iam.realm }}"
scope: "openid email profile"
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
k8s.apisix.apache.org/plugin-config-name: oidc-plugin
name: ingress-ingress-secure
namespace: {{ .Values.namespace 1}}

spec:
ingressClassName: {{ .Values.ingress.className }}
rules:
- host: {{ .Values.ingress.externalUrl }}
http:
paths:

- path: /secure
pathType: Prefix
backend:
service:
name: notification-frontend-svc
port:
number: 80

58

Implementation

With this setup, secure routes under the /secure path are automatically pro-
tected by the OIDC authentication flow, which delegates user verification to
Keycloak. Kubernetes handles pod scheduling, scaling, and rolling updates, while
APISIX ensures authenticated access and HTTPS routing. This combination
provides a reliable and flexible production environment where new releases can be
deployed seamlessly and securely.

4.5 Application Interface and Main Pages

In this part, the main pages of the application are explained, and the interface is
presented through a series of screenshots to show the final product.

4.5.1 Main pages and Functionalities

The interface of the application was designed to provide an intuitive and uniform
experience across devices, prioritizing clarity, accessibility, and responsiveness. Each
page reflects a specific stage of the production workflow and allows users to access
or record information according to their assigned role in the system. The following
subsections summarize the main pages and their corresponding functionalities.

Navigation Layout Upon login, users are directed to the home page. The main
layout in desktop view includes a top navigation bar that provides direct access to
all important modules, including Cycles, Forms, and Notifications. This persistent
structure ensures that essential controls remain visible while navigating between
pages. The interface is fully responsive, adapting the layout to smaller screens. For
small screens such as mobile, this navbar turns into a mobile drawer menu.

Tasks The Tasks section is where users carry out activities created by Camunda
workflows. It serves as the main area for getting work done in the application.
Each active task can be opened to display the corresponding form provided by the
BPMN process. This section is primarily used by technicians and veterinarians to
record measurements, health data, or inspections. The page has two tabs: Assigned
Tasks, which lists tasks currently assigned to the user, and Unassigned Tasks, which
shows activities that are available to be assigned.

Plannings The Planning page supports the configuration and monitoring of
upcoming production cycles. Planners can view the list of plans (with search and
filtering by date, farm, or status), open a plan to inspect its details, and trigger
actions such as creating or updating purchase proposals for chicks. Each plan
shows its associated destinations, quantities, and scheduling constraints, together

59

Implementation

with the current approval status. From a plan, users can navigate to the related
workflow tasks (e.g., health communications or transport authorizations) and, where
required, submit data via the dynamic forms described earlier. Data are retrieved
and synchronized via RTK Query to ensure that changes made by planners or
approvers are reflected immediately across the interface. Access to approval actions
is restricted to users with the appropriate role (e.g., planner or supervisor /approver),
aligning the UI with the process responsibilities defined in the workflow. It is also
possible to filter, sort, or search plannings based on various criteria, such as date,
status, or farm location.

Cycles The Cycles page provides access to all active and historical production
cycles. For each cycle, users can view detailed information about the farm, the
animals in the cycle, and the current production phase (Maturation, Reproduction,
or Fattening). From this view, planners and managers can monitor the progress,
access related summaries, or navigate to task lists for further actions. It is also
possible to sort or search cycles based on various criteria, such as cycle code, date,
or farm location.

Summary Dashboards Each production cycle includes dedicated summary
views— General Summary, Feed Summary, In/Out Summary, and Medicine Sum-
mary. These dashboards aggregate process data collected throughout the workflow
and present it in structured tables or charts. The summaries support managerial
decision-making by allowing planners and supervisors to analyze performance in-
dicators such as feed consumption, mortality rates, or treatment frequency. All
views are accessible through nested routes and are updated automatically when
new data is registered by operators.

Notifications The notification panel provides real-time feedback about newly
assigned tasks, completed activities, and workflow events triggered by Camunda.
Users can filter notifications or open them directly to view related forms or process
details. It’s also possible to filter, delete, or mark the notifications as read.

In summary, the above pages are the main functional areas of the application,
each designed to support specific user roles and process stages. Each of them
contains the data and information or functionalities that are designed based on the
requirements of the stakeholders and are shown in the screenshots.

4.5.2 Interface Layout and Visual Representation

The following figures illustrate the main sections of the developed Progressive Web
Application. They include both desktop and mobile views, as well as examples in

60

Implementation

dark mode, to demonstrate the responsive and theme-adaptive design implemented
through React and Chakra Ul. Each page corresponds to one of the functional
areas described in the system architecture and routing structure.

Installation As mentioned in Chapter 2, the application can be installed on the
user’s device. On iPhones and iPads, when the user opens the application in Safari
and taps the Share icon, the option “Add to Home Screen” becomes available.
Selecting it installs the application as a standalone icon on the home screen like
normal applications and remains there unless the user decides to uninstall it. Once
launched, the PWA runs in full-screen mode without the browser interface and
behaves similarly to a native application. On Android, browsers such as Chrome,
Edge, and Firefox natively support PWA installation. When the user visits the
application, it’s possible to access the browser menu by tapping the three dots in
the upper-right corner and selecting the option “Add to Home screen”. Depending
on the browser and device, an installation banner or prompt may also appear
automatically, inviting the user to install the app. Confirming this installs the
PWA as an independent application entry in the system’s launcher, with its own
icon, settings, and notification permissions. Both platforms are shown in the
following figures.

> 2 bpm-dev. % ¥ ©®© C
New tab
& New Incognito tab
£ History
Add Bookmark m
[Delete browsing data
Add to Favourites ik
« Downloads
Add to Quick Note
z % Bookmarks
A S | L0 Recent tabs
Add to Home Screen
& < Share...
Markup (O} Benve [Findinpage
Print =] Per accedere &g Translate...
X 7] Add to Home screen
Find products on Amazon ~ |If
3 Desktop site (m}
Open in Chrome @)
. £ Settings
Save to Pinterest @

@ Help & feedback

Figure 4.5: Installation on iOS and Android devices.

61

Implementation

Notification In Figure 4.6, the notification interfaces are shown. The first screen
shows a system-level push notification received on the device lock screen.

Cerca { L Ordina per
Acquisto Pollastre
Acquisto Pollastre = S s
o = Nuova pianificazione disponibile
Nuova pianificazione 2025-1-04 o
disponibile 147 Una nuova pianificazione & stata inserita per la
data 2025-12-01 Allevamento di maturazione:
AMG. SRL soc. agr. - Casetta Numero di animali
) richiesti: 10000
Acquisto Pollastre =
H Vedi dettagli
Nuova pianificazione 2025-11-04 : gl
disponibile 37 2025-11-04 11:47
Acquisto Pollastre =
Nuova pianificazione 2025-11-04 8
disponibile 1:35
Centre .

Acquisto Pollastre =

== Acquisto Pollastre 9m age Nuova pianificazione 2025-11-03 8

! ’ from BPM Test disponibile 11:16

Nuova pianificazione disponibile

Acquisto Pollastre =
Nuova pianificazione 2025-10-17 :

) < = 5

Notifiche

Pianificazione Cicli Notifiche

Cerca L Ordina per Cerca . Ordina per
) Ordina per.
Acquisto Pollastre
Nuova pianificazione 2020 o< Titclo >
disponibile 14 a2 Titolo &
O Data t Nessuna notifica al momento
‘ Acquisto Pollastre v O Data{ Qui verranno visualizzate le notifiche
- inviate nell'ambito del processo

Nuova pianificazione 202 & Letto
disponibile 1:3

eponte! © Letto

Abilita notifiche

Acquisto Pollastre =
Nuova pianificazione 2025-11-03 :
disponibile 1116
Acquisto Pollastre =
Nuova pianificazione 2025-10-17 :
disponibile 14:50
Acquisto Pollastre =
Nuova pianificazione 2025-10-17 :

a

S 2

Azioni Notifiche

Azioni Notifiche Cicli Notifiche

Pianificazione Cicli

Figure 4.6: Notification interfaces.

62

Implementation

Inside the application, there is a red badge near the notification icon in the
navigation bar that shows the number of unread messages. Inside the notification
page, it’s possible to see the list of all notifications, read or unread, that can be
opened to show more details about the process or task. Users can also delete
messages or mark them as read directly from this page.

In the settings page, there is a button “Abilita notifiche” (Enable Notifications),
to enable the permission to receive notifications. The reason for putting this button
is to support browser-specific permission policies. It is particularly useful for devices
where the automatic permission banner is not displayed, ensuring that users can
still activate push notifications explicitly. An empty-state message notifies the user
that there are no ongoing updates at this time.

one Cicli Azioni Notifiche

4 oranaper || = riva

ross_308 @452 Ross 308 @ 47° Ross 308 = 46° Ross 308 @49
% 2000 2000 5000 % 10000
ross_308 5 45° 20/10/2025 20/11/2025 13/11/2025 03/12/2025
=)
2000 20/10/2025 CARUNA EUGENIO - Montichiari Centallo - Martini s.p.a. Sassocorvaro - Martini S.p.a. A.M.G. SRL soc. agr. - Madonna

CCARUNA EUGENIO - Montichiari del soccordo

VIGHIZZOLO DI MONTICHIARI

VIGHIZZOLO DI MONTICHIARI

Centallo

sassocorvaro

ROSARO DI ACQUASPARTA

Avviato 0% Avviato 0% Avviato 0% Avviato 0%
Avviato 0%
g Ross 308 50® | gy Foss308 49°
gy Poss308 = 467 8000 101212025 10000 011212025
S 13/11/2025 A.M.G. SRL soc. agr. - Casetta A.M.G. SRL soc. agr. - Casetta

Sassocorvaro - Martini S.p.a.

Sassocorvaro

Incorso 20%

) <

Pianificazione Cicli

zioni Notifiche

Acquasparta

Avviato 0%

Acquasparta

Avviato 0%

™ Ordinaper || ¥ Fia
Completato (100% | cica »
& Ross 308 @ 47° Ross 308 © 46° Ross 308 ©49° Ross 308 ® 50°
2000 20/11/2025 5000 13/11/2025 10000 01122025 8000 10/12/2025 roes 508 s
0ss =
Centallo - Martini s.p.a. Sassocorvaro - Martini S.p.a. A.M.G. SRL soc. agr. - Casetta A.M.G. SRL soc. agr. - Casetta % 10000 212025

Centallo

Avviato 0%

Sass

ocorvaro

Avviato 0%

Acquasparta

Avviato 0%

Acquasparta

Incorso 60%

A.M.G. SRL soc. agr. - Casetta

Acquasparta

Incorso 60%

Ross 308
5000

467
13112025

=]

Sassocorvaro - Martini S.p.a.

Figure 4.7: Planning List page in mobile and desktop.

63

Implementation

Planning The screenshots in Figures 4.7 and 4.8 represent the Planning module,
one of the central components of the application, both in mobile and desktop

environments.

Dati pianificazione
E8 omnzrzo2s

49° settimana
2R 10000 Pulcini ordinati

Allevamento Maturazione

B scquasprta (17)
&

R, 3483894022

Allevamenti Riproduzione

Attivita

Invio dati AUSL

£ Inizio: 2025-11-04

Dettagli ordine e trasporto

Dettagli Ordine ~

Codice Documento: P-34948
Data Documento: 03/11/2026
Data Consegna: 17/11/2025
Settimana Consegna: 2
Fornitore: aviagen

Numero femmine: 8000
Numero maschi: 1000
Utente: tecnico_1

Razza: Ross 308

Dati Trasporto

i Notifiche

Dati pianificazione Attivith Dettagli ordine e trasporto
101212025 -
E.é 2 Invio dati AUSL.
&) 50* settimana Dettagli Ordine
i €3 o 2025-11:02
2 8000 puicin ordnati Codice Documento: 42372

Data Documento: 21/10/2025
Data Consegna: 11/11/2025
Settimana Consegna: 3

Allevamento Maturazione

B s 1 Numeofemmine: 6000
& Numero maschi: 2000
Utente: tecnico_t
Q a4 3800022 Razza: Ross 308
Allevamenti Riproduzione Dati Trasporto
oy 8udrio (80)
Dettagl proposta

Codice Documento: P-42372
Data Documento: 21/10/2025
Data Consegna: 11/11/2025
Settimana: 3

Numero maschi: 2000
Utente: tecnico_1

Notifiche

Pianificazione Cicli Azioni Notifiche

Pianificazione Acquisto

Inserire i dati di i i i tempi di evasione del fornitore

Nuova pianifcazione

Data* Settimana Razza* Unita
mm/dd /yyyy =] °

Allevamento maturazione *

Destinazioni

Allevamento riproduttori *

+ Aggiungi Nuovo

Notifiche

Figure 4.8: Planning Details page and Purchase Planning Form.

Figure 4.7 shows the Planning List page in mobile and desktop versions. For

planners, this

view displays all existing plans and includes a floating “+” button

that allows them to create new planning entries. Each card summarizes essential
data such as delivery date, breed (razza), number of chicks, and destination farms.
Technicians, on the other hand, see the same list but with color-coded headers

that highlight

the status of related tasks — for instance, red or orange headers are

used to indicate urgent or pending actions, while neutral tones mark completed or
non-critical ones. This visual hierarchy allows users to quickly identify priorities
without needing to open each plan individually.

Figure 4.8

displays two complementary views: On top, the Planning Details

64

Implementation

page presents all information associated with a specific plan, including supplier
data, transport details, and related tasks to that specific plan. Below, the Purchase
Planning Form (Pianificazione Acquisto) is shown, which is only visible to planners,
and it’s used to create new planning entries.

Cycles The screenshots in Figures 4.9 and 4.10 represent the Cycles pages, the
part designed to track and monitor the status of cycles.

. SRL soc. agr. -
I Cerca. L Ordina per [E— —
Dati ciclo
. &) Ross 308
" Attivita
& ©0 0% settimana
PLL-00224 Compilazione checklist

Y stato del ciclo: In preparazione

A.M.G. SRL soc. agr. - Casetta B Inizio: 2026-11-04

Acquasparta Dati allevamento
Ripartizione capannoni

Loc.
N/D N/D
dl I Q I B9 Inizio: 2025-11-04 @ Acquasp:
Regione: Umbria
Zona: Centro
a
5 =0 &

PLL-00225

Assegnaame

& Trattamenti sanitari R, 3483894022
Centallo - Martini s.p.a.
Richiesta trattamento libero Cealeaifiezlls S
Centallo Nome ASL: AZIENDA UNITA
£ Inizio: 2025-11-04 SANITARIA LOCALE UMBRIA N. 2
d' N Q Np Codice ASL: 001TRO01
versione 0.2.20 Riepilogo Ciclo

Pianificazione Cicli Azioni Notifiche

PLL-00224
A.M.G. SRL soc. agr. - Casetta

Dati ciclo Attivita £* Trattamenti sanitari
&) Ross 308 I . — .
Compilazione checklist Richiesta trattamento libero
0% settimana B Inizio: 2025-11-04 £ Inizio: 2025-11-04

Y Stato del ciclo: In preparazione

Ripartizione capannoni

Datiaievament B9 Inizio: 2025-11-04

Loc. Rosaro Casetta

oy Acquasparta (TR)
Regione: Umbria
Zona: Centro

&l
R 3483894022

Codice fiscale: 3076980543

m Nome ASL: AZIENDA UNITA' SANITARIA LOCALE
UMBRIA N. 2
Codice ASL: 001TR0O01

Riepilogo Ciclo

Figure 4.9: Cycles list and Cycles details pages.

65

Implementation

Figure 4.9 shows the Cycle List page, which provides an overview of all active
and completed cycles. Each card contains essential information such as the cycle
identifier, farm location, breed, and number of animals. Figure 4.10 illustrates the
Cycle Detail and Summary (Riepilogo) pages, accessible from the cycle card via the
Riepilogo Ciclo button. This section provides an in-depth view of the production
process, including farm information, animal distribution, and activity lists such as
checklists or sanitary treatments. The summary interface shows combined statistics
such as mortality rate, animal count, and average performance indicators. It also
includes visual charts and tables.

These views allow users to evaluate production results and identify trends
directly from the interface. Tabs such as Generale, Trasferimenti, Medicinali, and
Mangimi provide access to additional process data collected during the cycle, such
as the medicine used or transportation information.

Generale Trasforimenti Medicinall Mangimi Inventario
Trasferimentl o
26/04/2024 - 25/10/2024
Capi Ritirati
Completamento Stato
Animali Ritrati
o500 100% CHIUSO
Centallo- Martinispa. ¢ Capannoni: 3 , 340 7330507 PAOLO GIORGETTI Codice ASL: 037VR1IS
. [Vilefaletto - Centallo o .
R i pgiorgetti@martinigruppo.com Nome ASL: AZIENDA SANITARIA LOCALE CN1
Centallo (CN), Piemonte ~ Densita: 33 capifm’
Area: 4080 m*
28018/ Capacita: 5000 capi
@ PANTALLA @ TOSCANO
chmprINCOLI Mortalita
12007
Femmine per destinazione
76800
/ 900
600
200
o
Planificazione _ Gicli 23j05(2025 23106/2025 z3p072025 231082025 23j0512025 Zoroozs

Statistiche
£ Media Peso Medio Venduto ov Uniformita
147 2.893 9% 92%
o - Bolla 1t Data Descrizione 11 Qual
Varianza Stock Femmine Varianza Stock Maschi Mangime per Pulcino Mangime per Animale. 6165 17/042023 PROZ-S .
18% 7% 11.406 10172
o i 7819 09/05/2023 PROS-S 2841
Riepilogo 7756 16/05/2023 PRA6-S 282¢
8448 26/05/2023 PRAE-S 278
Entrata Totale Uscita e Venduti Dettaglio Uscita Dettaglio Venduti
9045 06062023 PRO1S-F 284¢
0000 60000 30000
9538 14062023 PRG15-F 287(
5000 as000. 22500
10122 23/06/2023 PR61S-F 285°
30000 30000 15000,
10667 05/07/2023 PRB1S-F 2816
15000 16000, 7500
11203 13/07/2023 PRB15-F 2006
o o o
‘‘‘‘‘‘ Tetale 11465 18/07/2023 PRG1S-F 285¢
i i © Tole N i
11924 26/07/2023 PRG15-F 286¢
Note

Nessuna nota

Figure 4.10: Cycle summary pages

66

Implementation

Tasks Figure 4.11 presents the Task Overview page, divided into two main tabs:
Assigned Tasks and Unassigned Tasks. Assigned tasks represent activities that are
already claimed by the current user, while unassigned ones can be taken over by
pressing the Assign to me button. This mechanism ensures clear task ownership
and prevents duplicate work among users. Each task card includes its title, start
and due dates, and, when relevant, an Urgent status badge to highlight priority
tasks. The interface adapts responsively between desktop and mobile layouts.

Pianificazione Cicli Azioni Notifiche

Cerca 4 Ordina per

Cerca, 4 Ordina per

Attivita assegnate Attivita non assegnate

Attivita assegnate Attivita non assegnate

Inserimento dati partita e trasporto Invio dati AUSL.

Inserimento proposta ordine B9 Inizio: 2025-11-04 £ Entro: 2026-11-11 B nizio: 2026-11-04

d'acquisto

£ nizio: 2026-11-08

£ Entro: 2026-10-24 Inserimento proposta ordine d'acquisto Inserimento proposta ordine d'acquisto
B Inizio: 2025-10-30 £ Entro: 2025-10-30 B3 inizio: 2025-11-04 £ Entro: 2025-10-23

Compilazione checklist

£ Inizio: 2025-11-04

Ripartizione capannoni

£ Inizio: 2026-11-04

=] a
Azioni Nofifiche

Notifiche

i manager1
Cerca, © GEDER Ruolo: manager
S Cerca 4 Ordina
«J Logout Attivita assegnate Attivita non assegnate
Autorizzazione proposta ordine -
d'acquisto Autorizzazione proposta Y
B Inizio: 2025-11-04 [Entro: 2025-11-05 ordineld;acquisto)

B Inizio: 2025-11-04
Assegnaame

B9 Entro: 2025-11-05

Figure 4.11: Task list view with assigned and unassigned activities

Figure 4.12 illustrates the form view displayed when a user opens a specific
task. Each form represents a BPMN process step. Depending on the activity, the
form may have various input components, such as text fields, selectors, checkboxes,
numeric inputs, and file upload sections. In more complex forms, such as data
entry or transport reporting, structured tables are used to summarize related live

67

Implementation

data.

Data prevista consegna

Ancora da ripartire

Proposta d'ordine pollastre 12 Dec 2025 Numero Numero Numero
pulcini pul pulcini
Numero documento Numero femmine Sesso s R e
1 2
P-36005 6000 3
Femmine 1000 0 0
Data * Numero maschi
Maschi 200 0 800
1000
Fornitore *
Ripartizione capannone
X v A
Autotizzaziohe Capannone *
Allevamento maturazione * . .
Note autorizzazione X v
Centallo - Martini s.p.a X v
Sesso
Data prevista consegna * o
Autorizza
si No Eta genitore
Settimana prevista consegna * 52 @
0 -
@ Numero pulcini
Numero femmine * 0 ~
9 v
Numero maschi * + Aggiungi Nuovo

versione 0.2.20

< a

nificazione Cicl Pianificazione Pianificazione Cicli Notifiche

Pianificazione Cicli ioni Notifiche

Riferimenti CMR
Codice CMR Data documento

g9/ mm/aaaa [m]
Carica il CMR

™ Seleziona file Nessun file selezionato

Riferimenti certificato
Codice certificato INTRA * Data emissione certificato * Luogo emissione certificato *

99/ mm [aaaa [=]

Carica il certificato
LSRN Nessun file selezionato

Animali da suddividere

Sesso Quantita da ordine Residuo
Femmine 6000 6000
Maschi 2000 2000

Sudd

ione scatole
Codice genitore * Numero scatole * Animali per catola * Sesso *

xv 0 L3

+ Aggiungi Nuovo

Figure 4.12: Example of different task forms interfaces

68

Implementation

Dark Mode The application also supports a manual dark mode toggle, allowing
users to switch themes using the dedicated sun/moon button located in the navi-
gation bar. When activated, the interface switches to darker tones optimized for
low-light environments, while preserving readability and consistent visual contrast
across all components. Figure 4.13 shows an example of the dark mode applied to
the notifications and tasks pages, in mobile and desktop views.

Pianificazione ~ Cicli Azioni Notifiche:

Inserimento proposta ordine d'acquisto Compilazione checklist

& o 104 B Entro 7 8 108

Invio dati AU!
B ini

Figure 4.13: Application interface in dark mode

69

Chapter 5

Conclusions and Future
Work

5.1 Conclusion

The development of the proposed system represents a concrete implementation of a
process-oriented digital platform that replaces manual, spreadsheet-based workflows
with a structured and automated solution. The objective of creating a scalable and
user-friendly application that could support the company’s daily operations has
been fully achieved through the combination of modern web technologies and a
workflow automation engine.

The use of a Progressive Web Application has proven to be an effective choice,
providing accessibility across devices and enabling rapid deployment without the
need for native applications. The integration of Camunda 8 allowed the formaliza-
tion of all operational processes through BPMN models, ensuring consistency and
traceability of every step within the production chain. The chosen architecture,
which uses a Backend-for-Frontend layer, API Gateway, and containerized microser-
vices, has proven flexible and easy to maintain. Each module can evolve on its own,
and debugging, versioning, and deployment are simpler. Moreover, the adoption
of Kubernetes for deployment made it possible to define a clear, modular, and
reproducible infrastructure, guaranteeing scalability and resilience under different
operational loads. Together, these features create a strong digital ecosystem that
meets industry standards.

Beyond the technical achievements, the project also demonstrated the impor-
tance of collaboration between software engineering and domain experts. The
iterative validation of the application with company stakeholders ensured that the
implemented workflows reflected actual business needs, reducing ambiguity and im-
proving adoption by end users. This cooperation also highlighted the value of visual

70

Conclusions and Future Work

process modeling as a communication tool between developers and non-technical
participants.

In conclusion, this thesis has shown that the integration of business process
management with modern web technologies can provide an efficient, maintainable,
and user-centred solution for industrial digitalization. The results confirm that com-
bining process automation, modular web architecture, and cloud-native deployment
can effectively enhance both operational efficiency and long-term sustainability in
a real industrial context.

5.2 Future Work

The current implementation represents a complete and functional system for
workflow management and process monitoring. However, several possible directions
have been identified to extend its capabilities and improve its performance in future
developments.

Performance and comparative testing A first line of improvement concerns
the evaluation of the system’s performance under realistic operational conditions.
Future work should include structured load tests to measure the application’s
behaviour with multiple concurrent users and under different network constraints.
It would also be relevant to perform a comparative study between the developed
Progressive Web Application and equivalent native solutions, in order to evaluate
not only development and maintenance costs, but also runtime efficiency, and
scalability in long-term usage scenarios.

Extended monitoring and analytical panels Another improvement could be
adding more visualization and control panels. While the current version focuses on
operational workflows, future iterations could include more detailed dashboards to
support management and historical analysis. This could include showing multi-year
trends, historical reports, or combined indicators for production, health monitoring,
and veterinary activities. These additions would make the system useful not just
for daily operations but also as a tool to support decision-making.

iChain platform integration Among the potential future improvements, the
company has shown interest in evaluating the adoption of iChain, a platform
developed by Wiseside for supply-chain management and traceability in the agri-
food sector. The system is designed to provide real-time visibility over the entire
production process, ensuring transparency, control, and compliance with industry
standards. Future work may involve studying how iChain could be integrated
into the existing architecture to extend traceability beyond the current internal

71

Conclusions and Future Work

workflows. This would include analyzing how production events and process data
collected by the PWA could be synchronized with the iChain platform, and assessing
the technical implications in terms of interoperability, data exchange, and system
overhead. Such integration could enhance the company’s ability to certify and
document every stage of the production cycle in a secure and auditable manner.

Evaluation of alternative workflow engines Camunda 8 has been a strong
and reliable tool, but it comes with ongoing maintenance and licensing costs.
A possible future activity is to assess alternative open-source solutions, such as
Camunda 7, Flowable, or JBPM, in order to identify a platform that provides
similar functionality with lower operational costs. This analysis should consider
compatibility with BPMN standards, migration complexity, API integration, and
community support.

72

Bibliography

[10]

Martini Alimentare — Company Overview. Accessed November 2025. 2025.
URL: https://www.martinialimentare.com/en/company/ (cit. on p. 2).

Martini Alimentare — Supply Chain. Accessed November 2025. 2025. URL:
https://www.martinialimentare.com/en/supply-chain/ (cit. on p. 2).

Progressive Web Apps — Tutorials — MDN Web Docs. Accessed November
2025. 2024. URL: https://developer .mozilla.org/en-US/docs/Web/
Progressive_web_apps/Tutorials/js13kGames/App_structure (cit. on

pp. 7-9).
Progressive Web Apps with React — lonic Documentation. Accessed November
2025. 2025. URL: https://ionicframework.com/docs/react/pwa (cit. on

pp. 7, 8).
Service Worker API — MDN Web Docs. Accessed November 2025. 2024.

URL: https://developer .mozilla.org/en-US/docs/Web/API/Service_
Worker_API (cit. on pp. 8, 9).

Vite Plugin PWA — Guide. Accessed November 2025. 2025. URL: https:
//vite-pwa-org.netlify.app/guide/#service-worker (cit. on pp. 8, 9).
Turn Your React Vite App into a PWA. Accessed November 2025. 2025. URL:
https://dev.to/bhendi/turn-your-react-vite-app-into-a-pwa-3lpg
(cit. on p. 9).

Notifications API — MDN Web Docs. Accessed November 2025. 2024. URL:
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_
APT (cit. on p. 9).

Push Notifications on the Open Web — Google Developers. Accessed November
2025. 2024. URL: https://developer.chrome.com/docs/web-platform/
push-notifications (cit. on p. 9).

Requesting App Permissions — Android Developers. Accessed November 2025.

2024. URL: https://developer.android.com/training/permissions/
requesting (cit. on pp. 9, 10).

73

https://www.martinialimentare.com/en/company/
https://www.martinialimentare.com/en/supply-chain/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Tutorials/js13kGames/App_structure
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Tutorials/js13kGames/App_structure
https://ionicframework.com/docs/react/pwa
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://vite-pwa-org.netlify.app/guide/#service-worker
https://vite-pwa-org.netlify.app/guide/#service-worker
https://dev.to/bhendi/turn-your-react-vite-app-into-a-pwa-3lpg
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://developer.chrome.com/docs/web-platform/push-notifications
https://developer.chrome.com/docs/web-platform/push-notifications
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting

BIBLIOGRAPHY

[11]

[12]

[18]
[19]

[20]

[21]

22]

User Notifications — Apple Developer Documentation. Accessed November
2025. 2024. URL: https://developer.apple.com/documentation/usernot
ifications (cit. on pp. 9, 10).

Yang Cui, Fei Zhao, and Lei Tang. «Exploring User’s Experience of Push Noti-
fications: a Grounded Theory Approach». In: Proceedings of the International
Conference on Human—Computer Interaction (2023) (cit. on p. 10).

Firebase Documentation. Firebase Cloud Messaging. Accessed: 2025-11-03.
2025. URL: https://firebase.google.com/docs/cloud-messaging (cit.
on pp. 10, 48, 49).

React — A JavaScript library for building user interfaces. Accessed November

2025. 2024. URL: https://legacy.reactjs.org/ (cit. on p. 11).

React — Official Documentation. Accessed November 2025. 2024. URL: https:
//react.dev/ (cit. on p. 12).

TypeScript Documentation. Accessed November 2025. 2024. URL: https:
//www.typescriptlang.org/ (cit. on p. 12).

TypeScript Introduction — W3Schools. Accessed November 2025. 2024. URL:
https://www.w3schools. com/typescript/typescript_intro.php (cit.
on p. 12).

Using TypeScript with React — React Documentation. Accessed November
2025. 2024. URL: https://react.dev/learn/typescript (cit. on p. 12).

Vite Documentation. Vite: Next Generation Frontend Tooling. Accessed: 2025-
11-03. 2025. URL: https://vite.dev/ (cit. on p. 12).

Redux Documentation. Getting Started with Reduz Toolkit. Accessed: 2025-11-
03. 2025. URL: https://redux-toolkit. js.org/introduction/getting-
started (cit. on pp. 13, 14).

Redux Documentation. Redux Essentials Tutorial. Accessed: 2025-11-03. 2025.
URL: https://redux. js.org/tutorials/essentials/part-1-overview-
concepts (cit. on pp. 14, 36).

Redux Documentation. Why RTK is Redux Today. Accessed: 2025-11-03. 2025.
URL: https://redux. js.org/introduction/why-rtk-is-redux-today
(cit. on p. 14).

Redux Documentation. RTK Query Overview. Accessed: 2025-11-03. 2025.
URL: https://redux-toolkit . js.org/rtk-query/overview (cit. on

p. 15).
Redux Documentation. RTK Query Usage - Queries. Accessed: 2025-11-03.

2025. URL: https://redux-toolkit. js.org/rtk-query/usage/queries
(cit. on p. 15).

74

https://developer.apple.com/documentation/usernotifications
https://developer.apple.com/documentation/usernotifications
https://firebase.google.com/docs/cloud-messaging
https://legacy.reactjs.org/
https://react.dev/
https://react.dev/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.w3schools.com/typescript/typescript_intro.php
https://react.dev/learn/typescript
https://vite.dev/
https://redux-toolkit.js.org/introduction/getting-started
https://redux-toolkit.js.org/introduction/getting-started
https://redux.js.org/tutorials/essentials/part-1-overview-concepts
https://redux.js.org/tutorials/essentials/part-1-overview-concepts
https://redux.js.org/introduction/why-rtk-is-redux-today
https://redux-toolkit.js.org/rtk-query/overview
https://redux-toolkit.js.org/rtk-query/usage/queries

BIBLIOGRAPHY

[25]

[26]

[27]

28]

[29]

[30]

Redux Documentation. RTK Query Usage - Mutations. Accessed: 2025-11-03.
2025. URL: https://redux-toolkit. js.org/rtk-query/usage/mutations
(cit. on p. 16).

Mozilla Developer Network. CSS: Cascading Style Sheets. Accessed: 2025-11-
03. 2025. URL: https://developer .mozilla.org/en-US/docs/Web/CSS
(cit. on p. 17).

Mozilla Developer Network. CSS Cascade. Accessed: 2025-11-03. 2025. URL:
https://developer .mozilla.org/en-US/docs/Web/CSS/CSS_cascade
(cit. on p. 17).

Tailwind CSS Documentation. Styling with Utility Classes. Accessed: 2025-11-
03. 2025. URL: https://tailwindcss.com/docs/styling-with-utility-
classes (cit. on p. 17).

Chakra Ul Documentation. Chakra Ul: A simple, modular and accessible
component library for React applications. Accessed: 2025-11-03. 2025. URL:
https://chakra-ui.com/ (cit. on p. 18).

Microsoft Documentation. Backends for Frontends. Accessed: 2025-11-03.
2025. URL: https://learn.microsoft.com/en-us/azure/architecture/
patterns/backends-for-frontends (cit. on p. 18).

What is Workflow Management? Accessed November 2025. 2024. URL: https:
//www.atlassian.com/agile/project-management/workflow-managemen
t (cit. on p. 19).

Camunda Platform — Overview and Architecture. Accessed November 2025.
2025. URL: https://docs. camunda.io/docs/ (cit. on p. 19).

Business Process Model and Notation (BPMN) Specification. Accessed Novem-
ber 2025. 2023. URL: https://www.omng.org/spec/BPMN (cit. on p. 19).
Camunda Platform — QOverview. Accessed November 2025. 2025. URL: https:
//docs.camunda.io/docs/ (cit. on p. 19).

Camunda Platform — GitHub Repository. Accessed November 2025. 2025.
URL: https://github. com/camunda/camunda-platform (cit. on p. 19).
Camunda Documentation. Introduction to Tasklist. Accessed: 2025-11-03.
2025. URL: https://docs . camunda . io/docs/ components /tasklist /
introduction-to-tasklist/ (cit. on p. 20).

Camunda Documentation. Introduction to Operate. Accessed: 2025-11-03. 2025.
URL: https://docs. camunda.io/docs/components/operate/operate-
introduction/ (cit. on p. 20).

Camunda Documentation. Introduction to Operate. Accessed: 2025-11-03.

2025. URL: https://docs.camunda.io/docs/components/modeler/about-
modeler/ (cit. on p. 20).

75

https://redux-toolkit.js.org/rtk-query/usage/mutations
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_cascade
https://tailwindcss.com/docs/styling-with-utility-classes
https://tailwindcss.com/docs/styling-with-utility-classes
https://chakra-ui.com/
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://www.atlassian.com/agile/project-management/workflow-management
https://www.atlassian.com/agile/project-management/workflow-management
https://www.atlassian.com/agile/project-management/workflow-management
https://docs.camunda.io/docs/
https://www.omg.org/spec/BPMN
https://docs.camunda.io/docs/
https://docs.camunda.io/docs/
https://github.com/camunda/camunda-platform
https://docs.camunda.io/docs/components/tasklist/introduction-to-tasklist/
https://docs.camunda.io/docs/components/tasklist/introduction-to-tasklist/
https://docs.camunda.io/docs/components/operate/operate-introduction/
https://docs.camunda.io/docs/components/operate/operate-introduction/
https://docs.camunda.io/docs/components/modeler/about-modeler/
https://docs.camunda.io/docs/components/modeler/about-modeler/

BIBLIOGRAPHY

[41]

[42]

[43]

[44]

[45]

[46]

IBM Documentation. Authentication vs. Authorization: What’s the difference?
Accessed: 2025-11-03. 2025. URL: https://www.ibm.com/think/topics/
authentication-vs-authorization (cit. on p. 20).

NIST Documentation. Identity and Access Management (IAM). Accessed:
2025-11-03. 2025. URL: https://www.nist.gov/identity-access-manage
ment (cit. on p. 20).

AuthO Documentation. Authentication and Authorization. Accessed: 2025-
11-03. 2025. URL: https://authO.com/docs/get-started/identity-
fundamentals/authentication-and-authorization (cit. on p. 20).

Keycloak Documentation. Keycloak: Open Source Identity and Access Man-
agement. Accessed: 2025-11-03. 2025. URL: https://www.keycloak.org/
(cit. on p. 21).

IBM. What is Containerization? Accessed: November 2025. 2024. URL: https:
//www.ibm.com/think/topics/containerization (cit. on p. 21).

IBM. What is Container Orchestration? Accessed: November 2025. 2024. URL:
https://www.ibm.com/think/topics/container-orchestration (cit. on
pp. 21, 22).

Docker Inc. What is a Container? Accessed: November 2025. 2024. URL:

https://www.docker.com/resources/what-container/ (cit. on p. 22).

IBM. The Benefits of Containerization and What It Means for You. Accessed:
November 2025. 2024. URL: https://www.ibm.com/think/insights/the-
benefits-of-containerization-and-what-it-means-for-you (cit. on
p. 22).

X. Zhang, Q. Zhao, and S. Li. A Survey on Kubernetes: Architecture, Chal-
lenges, and Future Directions. Accessed: November 2025. 2023. URL: https:
//arxiv.org/abs/2303.04080 (cit. on p. 22).

76

https://www.ibm.com/think/topics/authentication-vs-authorization
https://www.ibm.com/think/topics/authentication-vs-authorization
https://www.nist.gov/identity-access-management
https://www.nist.gov/identity-access-management
https://auth0.com/docs/get-started/identity-fundamentals/authentication-and-authorization
https://auth0.com/docs/get-started/identity-fundamentals/authentication-and-authorization
https://www.keycloak.org/
https://www.ibm.com/think/topics/containerization
https://www.ibm.com/think/topics/containerization
https://www.ibm.com/think/topics/container-orchestration
https://www.docker.com/resources/what-container/
https://www.ibm.com/think/insights/the-benefits-of-containerization-and-what-it-means-for-you
https://www.ibm.com/think/insights/the-benefits-of-containerization-and-what-it-means-for-you
https://arxiv.org/abs/2303.04080
https://arxiv.org/abs/2303.04080

	List of Figures
	Introduction
	Introduction
	Company introduction
	Context and Motivation
	Project Motivation
	Problem Definition and Requirements
	Production Process Overview
	Users

	Design Choices and Rationale

	Background and Related Work
	Progressive Web Applications
	Features
	Installation
	Updates
	Service Worker

	Notification systems
	User Permissions
	Firebase Cloud Messaging (FCM)

	SPAs vs MPAs
	Frameworks and Build Tools
	React
	TypeScript
	Vite

	State management and Redux
	State
	Redux
	RTK Query

	Styling approaches
	CSS
	Tailwind CSS
	Chakra UI
	Chakra UI vs. Tailwind

	Backend for Frontend pattern
	Camunda and BPMN for workflow management
	BPMN
	Camunda

	Authentication and Keycloak
	Keycloak

	Containerization and Deployment
	Docker
	Kubernetes

	System Architecture
	General System Overview
	Frontend
	API Gateway
	Authentication and Authorization
	Backend-for-Frontend (BFF)
	Process Management with Camunda
	Notifications and Firebase Cloud Messaging
	Data Persistence and Databases
	Deployment and Infrastructure
	Summary

	Implementation
	Client
	Design
	Routing and Application Structure
	State Management with Redux and RTK Query
	Styling and Theming with Chakra UI
	Form Generation Based on Camunda JSON
	Form Management with Validation and Conditional Fields

	PWA
	Manifest
	Service Worker
	Notifications

	Backend and Integrations
	BFF Endpoints
	Data Formatting for the UI
	Camunda Usage During Development
	Authentication and Authorization

	Deployment
	Containerization
	Kubernetes Deployment

	Application Interface and Main Pages
	Main pages and Functionalities
	Interface Layout and Visual Representation

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography

