POLITECNICO DI TORINO

MASTER’s Degree in COMPUTER ENGINEERING

k4 %}4 Ny
4 g
va

5o
A, A% Politecnico
) i W .
uipe di Torino

MASTER’s Degree Thesis

DMP Evaluation Service Design

Supervisors Candidate

Dott. Alessandro FIORI Andres TABIMA

Dr.techn. Tomasz MIKSA

December 2025

DMP Evaluation Service Design

Andres Mauricio Tabima Romero

Abstract

Research data management (RDM) is a key aspect of the research lifecycle, enabling

organizations and researchers to plan, control, and track research data through
living documents known as Data Management Plans (DMPs). DMPs are crucial for
reproducibility and scientific progress. However, their assessments are usually done
manually, which involves time-consuming and subjective processes. In this work, we
build upon previous work to redesign and implement an improved DMP Evaluation

Service that automates the assessment of machine-actionable DMPs (maDMPs).
The service improves the modularity, extensibility and interoperability in the results

by automating the evaluation process through a modular design that integrates
metrics, benchmarks, and tests. The outcome is an extendable API service that can

be integrated with external DMP platforms and that ensures automated,

transparent, and interoperable DMP assessment at scale for stakeholders.

ACKNOWLEDGMENTS

To my parents Yasmin and Alejandro, for their unconditional love, for always
believing in me, and for teaching me the values that shaped who I am. To my family
in Colombian for always being there for me.

To my girlfriend, whose love, patience, and incredible support carried me through
every step of this thesis.

To my Colombian friends in Turin who were my family and support during all the
process of my master.

To my supervisors, whose guidance, trust, and insightful direction made this work
possible. A special thank to Tomasz Miksa for his valuable feedback and constant
support and mentorship.

This thesis is dedicated to all of you, with deep gratitude.

Table of Contents

1 Introduction 1
1.1 Overview o e 1
1.2 Motivation 1
1.3 Problem Statement 2
1.4 Objectives 2
1.5 Research Questions 2
1.6 Methodology 3
1.7 Contribution 4
1.8 Thesis Structure 4

2 Related work 5
2.1 Data Management Plan (DMP) 5
2.2 Machine-Actionable DMP (maDMP) 5
2.3 RDA DMP Common Standard 6
2.4 DMP Tools e 6
2.5 Assessment for maDMP Lo 7
2.6 maDMPpy Library 7
2.7 Assessment Framework and Prototype by Lukas Arnold 8

2.7.1 General Description 0L 8
2.7.2 Component Architecture 8
2.7.3 Data Architecture 9
2.7.4 Application Architectureo 11
2.8 FAIR Testing Resource Vocabulary (FTR) 12
2.8.1 Main Components 12
2.8.2 Interoperability and Standardization 13
2.8.3 Relevance to This Thesis 14
2.9 Discussion e 14

3 Requirements 16
3.1 Roles of Stakeholders 16
3.2 Use Cases v ot 18
3.3 Functional Requirements 19

3.3.1 FR-01 - Register a Benchmark 20
3.3.2 FR-02 - Register a Metric 20

11

TABLE OF CONTENTS

4

3.4

3.3.3 FR-03 - Registera Test
3.3.4 FR-04 - Access Declared Benchmarks, Metrics, and Tests
3.3.5 FR-05 - Add Test Implementation Source Code
3.3.6 FR-06 - Link test Implementation to metadata
3.3.7 FR-07 - Select the DMP and Evaluation Component

3.3.8 FR-08 - Execute Test Implementation
3.3.9 FR-09 - Return Evaluation Results and Failure Explanations
Quality goals
3.4.1 Functional suitability
3.4.2 Maintainability o oL
3.4.3 Compatibility L

Architecture design

4.1

Conceptual design - System Contexts
4.1.1 Container View
4.1.2 Component View
4.1.3 Sequence View
4.1.4 DataModel View

4.2 Description of the workflow
4.3 SUMMAary e e e e e e e e e e
Implementation

5.1 Introduction
5.2 Solution Strategy
5.3 Implementation of Functional Requirements
5.4 Plugin Mechanism and Parallel Execution
5.5 Data Persistence and Model Realization
5.6 Error Handling and Robustness
5.7 End-to-End Example Workflow
5.8 Summary e
Evaluation

6.1 Introduction L
6.2 Methodology
6.3 Functional Validation,

6.4
6.5

6.3.1 Quality Goals Validation
6.3.2 Alignment with the Assessment Framework
Limitations

SUMMATY o ot e e e e

Conclusion and Future work

7.1
7.2
7.3

Contributions
Review of Research Questions
Future Work

v

21
21
21
22
22
22
22
23
23
24

25
25
26
27
29
30
31
33

34
34
34
35
40
40
43
43
44

46
46
46
47
60
61
62
62

TABLE OF CONTENTS

A Appendix A: Resources 68
A.1 Prototype Source Code 68
A.2 Running the Prototypeo 68
A.3 Additional Resources 69

A.3.1 Example maDMP Inputs 69
A.3.2 Benchmark, Metric, and Test Definitions. 69
A.3.3 Plugin Implementations 70
Bibliography 71

List of Figures

2.1

2.2

3.1

3.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

Depiction of the data structure used to specify metrics (DMPQV) and
measurements based on Data Quality Vocabulary (DQV)
Enter Caption

Stakeholders from [5] "Ten principles for machine-actionable data
management plans” L. oL

Diagram use cases

System Context
Container View DMP Evaluation Service- API
Component View — Controllers, Services, Plugins, Parallel Executor

Runtime — UC-5 Run Evaluation
Conceptual Data Model of the DMP Evaluation Service

Package-level impl structure of the DMP Eva Service
Mapping of Evaluator and functionEvaluator
End-to-end workflow L.

VI

List of Tables

3.1
3.2
3.3
3.4

5.1

6.1

Mapping for Miksa [5] paper and Lukas’ thesis [8] roles 17
Roles of Stakeholders oL 17
Functional requirements 20
Quality goals for the service L. 23
REST API endpoints and their relation to functional requirements. . 39

Functional requirements — validation summary 47

VII

Chapter 1

Introduction

1.1 Overview

In recent years, research data management (RDM) has become an essential part of
the research lifecycle. Funding agencies, institutions, and researchers are required
to plan, assess, and track the management of research data through structured
documentation, commonly known as Data Management Plans (DMPs). These plans
are crucial for ensuring data FAIRness (Findability, Accessibility, Interoperability,
and Reusability), compliance with institutional and legal requirements, and for the
overall sustainability of research outputs.

Despite their importance, DMPs are often reviewed manually, making the assess-
ment process time-consuming, subjective, and inconsistent. Moreover, actors like
researchers and reviewers who write and asses DMPs frequently lack timely or ac-
tionable feedback to improve the quality and completeness of the plans. This creates
a gap in the RDM ecosystem: There is currently no widely adopted automated and
standarized mechanism to evaluate DMPs in a structured, objective, and interoperable
way.

This thesis addresses this gap by reviewing previous research, improving designs, and
implementing a software service that automates the evaluation of some aspects of
machine-actionable DMPs (maDMPs). The system is aligned with the objectives
of the OSTrails project, an initiative aimed at planning, tracking, and assessing
RDM practices. Specifically, it implements the core concepts from the Assessment
Framework, which defines how digital objects, including DMPs, can be evaluated

through interoperable benchmarks, metrics, and tests.

1.2 Motivation

The topic of this thesis originated from the importance of the DMP in the ecosystem
of data management and the need to check this document to evaluate the strategies
and the consistency of the projects that declare the information and data into the
data management plans, however, in the current workflow and the use of the DMPs,

the manual work and specific knowledge to get a revision are still present.

Introduction

Despite recent research and developments in DMP practice, there is still a gap in
how the evaluation of a DMP can be automated.

The motivation of this thesis is to reduce the manual workload in evaluating DMPs
by providing an automated way to assess specific aspects of the DMPs and generating
reusable formats of the results evaluation that can be used across tools. By making the
assessment process machine-actionable and interoperable, the implemented system
contributes to a more efficient and transparent research data practice, facilitating
the evaluation of DMPs.

1.3 Problem Statement

Although DMPs are increasingly required across research domains, their evaluation
remains largely manual, subjective, and lacks standardization. Researchers often
submit plans without clear guidance on their quality, and reviewers spend valuable
time checking compliance without automated support. Moreover, existing tools do
not offer integrated or extensible frameworks for formal assessment, especially in a
way that is compatible with the maDMP concept.

This thesis seeks to solve the problem of non-automated, non-standardized DMP

evaluation by creating a configurable, extensible, and interoperable evaluation service.

1.4 Objectives

The main objective of this thesis is to evaluate the design and the implementation
of a web-based evaluation service for maDMPs. The system allows the definition
of benchmarks, composed of metrics and tests, which can then be used to assess
the contents of a machine-actionable DMP. The evaluation results are produced in
structured formats (e.g., JSON, JSON-LD) that follow the interoperability principles
defined in the OSTrails Assessment Framework [1].

1.5 Research Questions

To address the identified problem and achieve the stated objectives, this thesis is
guided by the following research questions. They aim to explore how an automated
evaluation service can be designed, implemented, and integrated within the existing
Research Data Management (RDM) ecosystem. The questions address the alignment
between conceptual models and technical implementation, the efficiency of an semi-
automated assessments, interoperability with external systems, and the design of an
API that enables integration with other DMP-related platforms.

1. In what way the architecture of the DMP service needs to be revised to better

reflect the real world requirements of production ready systems?

Introduction

2. In what way the data model of the DMP service needs to be revised to align
with FTR and to support the architectural changes?

3. How to integrate the Assessment Framework with the DMP Evaluation Service

in order to provide standardized evaluation results ?

1.6 Methodology

The methodology of this thesis follows a design science research approach, which
is well-suited for studies aiming to create and evaluate technological artifacts that
address practical problems. In this context, the artifact is a web-based DMP Evalua-
tion Service that automates the assessment of machine-actionable Data Management
Plans (maDMPs).

The research process was organized into four main stages:

1. Conceptual analysis and requirements definition: A review of the state of
the art in Data Management Plans, machine-actionable DMPs, and assessment
frameworks was conducted to identify the existing challenges and requirements
for automation and interoperability. This analysis established the functional

and quality requirements that guided the system’s design.

2. Architectural design: Based on the identified requirements, the system
architecture was specified using the arc42 documentation template and the
C4 model. These methods provided a structured way to describe the system
context, containers, components, and runtime interactions, ensuring traceability

between requirements and design decisions.

3. Implementation: The architecture was realized in Kotlin using the Spring
Boot framework. The implementation includes a RESTful API, a plugin
mechanism for extensibility, and a coroutine-based parallel execution model for
scalability. MongoDB was used as the persistence layer to store benchmarks,

metrics, tests, evaluations, and results.

4. Evaluation and validation: The implemented prototype was evaluated
against the functional requirements and research questions. Functional val-
idation was performed through end-to-end workflow testing and API-level
verification, while non-functional aspects such as scalability, robustness, and
extensibility were assessed through targeted experiments. The evaluation
demonstrates that the proposed system effectively automates and contribute to

standardizes the maDMP assessment process.

The methodology process ensures that the thesis not only contributes a functional
prototype but also provides a reproducible and well-documented output justifying

its design and implementation choices.

Introduction

1.7 Contribution
The key contributions of this thesis are as follows:

e Design and development of a configurable evaluation service for maDMPs,

implemented in Kotlin using the Spring Boot framework.

o Integration of a benchmark-metric-test model from OSTrails project that enables

transparent, reusable, and modular assessment configurations.

o Implementation of an interoperable API for evaluating maDMPs and returning
structured results aligned with OSTrails’ assessment interoperable framework

specifications.

o Extension of prior work conducted at Lukas Arnold thesis at TU Wien, im-

proving the initial prototype’s design and functionality.

1.8 Thesis Structure
The remainder of this thesis is organized as follows:

e Chapter 2 reviews the background of research data management, DMPs, and

related evaluation tools and frameworks.

o Chapter 3 identifies requirements for the development of the DMP Evaluation

Service.

e Chapter 4 presents the architecture and design of the proposed evaluation

service.

e Chapter 5 details the implementation of the system, including its components,

technologies, and API structure.

e Chapter 6 discusses the evaluation of the system using example maDMPs

and analyzes its strengths and limitations.

e Chapter 7 concludes the thesis and outlines potential directions for future

work.

Chapter 2

Related work

2.1 Data Management Plan (DMP)

Data Management Plans (DMPs) are structured documents that outline how research
data will be generated, described, stored, shared, and preserved throughout and
beyond a project’s lifecycle. They formally address the what, how, who, and where of
data management, ensuring alignment with FAIR principles (Findability, Accessibility,
Interoperability, and Reusability). Traditionally, DMPs are text-based and manually
reviewed, which makes evaluation subjective and time-consuming. Studies show that
while manual review provides detailed insights, automated analyses can efficiently
detect whether key elements such as availability, metadata, and sharing practices are
addressed [2].

DMPs are living documents in research projects. Usually, they are developed six
months after a project starts and updated during the project and at the end. Different
stakeholders are involved in each stage, and information changes according to the

progress.

2.2 Machine-Actionable DMP (maDMP)

Even with the growing adoption of DMPs, many challenges remain when ensuring
that DMPs are actionable, consistent, and interoperable across tools and institutions.
Therefore, there have been ongoing efforts to clarify maDMPs requirements [3]. In
general, maDMPs encode the content of traditional plans in a structured, interoperable
format to enable automated exchange, validation, and reuse across research systems.
The RDA DMP Common Standard and its Application Profile define the core
elements and JSON serializations that make data management plans computable [4].
Unlike traditional DMPs, maDMPs require a data model that captures information
in a structured way and can integrate with other services to retrieve details for the
DMP (e.g., institutional affiliation from the ORCID).

Related work

2.3 RDA DMP Common Standard

The RDA DMP Common Standard (RDCS)! is a metadata application profile
designed to express the contents of a Data Management Plan in a machine-actionable,
interoperable format. It was developed by the DMP Common Standards Working
Group under the Research Data Alliance to address the limitations of free-text,
tool-specific DMPs and facilitate automated exchange, validation, and integration of
DMP data.

At its core, the RDCS defines a set of classes, properties, and relationships for
representing DMPs, such as contact, project, dataset, distribution, license, and
security/privacy. Some fields are mandatory (e.g. title, dmp_id, language, ethi-
cal_issues_exist) in its JSON schema (maDMP-schema-1.1.json), while others are

optional and may be extended in specific deployments.

2.4 DMP Tools

A Data Management Plan (DMP) tool is a software application that helps researchers
and institutions in the creation, management, and review of Data Management Plans.
These tools usually provide guided templates, structured metadata fields, and support
for complying with institutional or funder requirements. Modern DMP tools adopt
machine-actionable DMPs (maDMPs), where the DMP is represented in a structured,
machine-readable format that enables automation and interoperability with external
systems.

In the context of this thesis, DMP tools play a complementary role to the DMP

Evaluation Service. A typical workflow is the following;:
1. A researcher or institution creates a DMP using a DMP tool.

2. The resulting machine-actionable DMP (maDMP) is submitted to the DMP

Evaluation Service as input.

3. The Evaluation Service processes the maDMP, executes benchmarked tests and

metrics, and produces structured evaluation results.

4. These results can be returned to the DMP tool or consumed by other systems,
enabling iterative improvement of the DMP or integration into institutional

and funder workflows.

By positioning DMP tools as producers of machine-actionable DMPs and the DMP
Evaluation Service as the automated assessment component, this thesis establishes an
end-to-end workflow: from plan creation to automated evaluation. This integration
supports one of the key goals of the thesis: enabling seamless, interoperable, and
machine-actionable research data management practices that enhance the quality,

transparency of DMPs.

"https://github.com/RDA-DMP-Common/RDA-DMP-Common-Standard

Related work

2.5 Assessment for maDMP

The practices used in research data management vary significantly across disciplines,
making the assessment process complex for reviewers and heavily dependent on their
expertise [5]. Several studies have proposed methods for automating the assessment
process to address this challenge.

Tomek et al. [6] Miksa et al. [6] proposed a group of methods that can be integrated
into an automated toolbox for evaluating maDMPs. The methods covered are the

following:

« RDF-Based Validation: The idea is to leverage Shapes Constraint Language
(SHACL), an approved standard language for validating RDFs [citation], to
enforce constraints in the maDMPs, for instance, in the data types or the
vocabularies for property values. This can be adapted to the requirements of a

specific funding agency.

e Identifier Analysis: The idea is to verify that objects in the form of URL
(e.g., DOIs) point to reachable links using the HTTP response and to check if
the resource is accessible or forbidden, and map the results to the requirements

from the funder or organization.

e Using information from link resources: A similar idea to the previous
method, but apart from checking the validity of a resource, it also considers
fetching additional details of the specific resource. For example, metadata

registries can be used to check whether the metadata standard fits the domain.

o Using scientific knowledge graphs: query additional information (e.g.,
through existing knowledge graphs as OpenAIRE|[citation or footnote]) to get

a broader domain context and check for inconsistencies.

e Fairness Assessment: consider FAIR metrics to evaluate aspects of the
maDMP and contrast the results with requirements from funders. This can
be achieved by instantiating existing FAIRness evaluator tools and integrating

results as a checking criterion that needs to be fulfilled by the maDMP.

The main limitation stressed out by authors is the unstructured nature of data
provided by maDMPs. Here, techniques from natural language processing (NLP)
field can be helpful.

2.6 maDMPpy Library

Ballesteros-Rodriguez et al. [7] recently developed madmpy, a Python library for
creating and validating DMPs. The library validates DMPs using the RDA DMP
standard and provides functionality to create, modify, and update DMPs. Addition-
ally, different versions of the RDA DMP standard can be chosen, and the validated
DMP can be exported in JSON format.

Related work

2.7 Assessment Framework and Prototype by Lukas
Arnold

The work of Lukas Arnold [8] established the foundation for the DMP Evaluation
Service by introducing a conceptual and prototype framework for the automated
evaluation of machine-actionable Data Management Plans (maDMPs). His thesis,
proposed a comprehensive architecture that connects research data management

practices with automated quality assessment mechanisms.

2.7.1 General Description

In his conceptual design, Arnold followed a structured enterprise and software ar-
chitecture methodology combining TOGAF and the arc42 framework. The goal
was to describe a reference architecture capable of supporting automated evaluation
workflows for maDMPs. The system aimed to provide measurable quality indica-
tors derived from DMPs, supporting reviewers and other stakeholders in assessing
compliance with data management standards. The framework emphasized inter-
operability and reusability by modeling its core entities—metrics, dimensions, and
categories—using established standards such as the Data Quality Vocabulary (DQV),
Dublin Core (DC), and PROV vocabularies.

2.7.2 Component Architecture

The proposed architecture is composed of modular components organized into two

primary services: the DMP Harvester Service and the DMP Indicator Service.

« DMP Harvester Service: This service is responsible for collecting and
normalizing DMP data and related contextual information. It is composed of

several subcomponents:

— DMP Loader — retrieves and normalizes maDMPs into the standardized
DCS format.

— Context Loader — gathers external contextual data from systems such as

SKGs and repositories.

— Inference Engine — derives additional information from linked data by

applying reasoning rules.

— Data Provider — aggregates the retrieved information and provides unified
access to extended DMP data.

¢« DMP Indicator Service: This service coordinates the actual evaluation

process. It comprises:

— FEwaluation Manager — orchestrates evaluation workflows and manages

communication between components.

Related work

— FEvaluation Provider — connects to individual Fvaluator components that

compute quality indicators for specific dimensions.

— Measurement Aggregator — aggregates metric values and computes averages

to produce reports.

Additional components include the Data Store, which persists maDMPs, con-

textual data, and evaluation results.

Each component exposes standardized interfaces, such as Load DMP, Load Context,

and Evaluate DMP, enabling clear separation of responsibilities and extensibility.

2.7.3 Data Architecture

Arnold’s data architecture was built upon the Data Quality Vocabulary (DQV)?2,
a W3C recommendation that provides a standardized model for representing data
quality information in RDF. The DQV enables expressing quality measurements,
metrics, and their relationships to data resources in a machine-readable way.

In his thesis, the DMP Quality Vocabulary (DMPQYV) was proposed as an
extension of DQV, adapting its core concepts to the evaluation of Data Management
Plans. The main components of DQV and their use in the DMPQV model are

summarized as follows:

¢ dqv:QualityDimension — Represents a high-level aspect or dimension of
quality, such as completeness, accessibility, or reusability. In the DMPQV, this
class was used to group metrics according to conceptual categories relevant for

DMP assessment.

e dqv:Metric — Defines a measurable criterion for evaluating a specific aspect of
a data object. In the DMPQV, each metric corresponds to a concrete check or
rule that can be applied to a DMP, such as verifying the presence of licensing

information or the availability of persistent identifiers.

e dqv:Measurement — Represents the result of applying a metric to a resource.
In the DMPQV, measurements link to specific DMP statements and record the

computed value, provenance, and timestamp.

e dqv:QualityMeasurementDataset — A collection of quality measurements
produced in an evaluation process. This allows the aggregation of results across

metrics, supporting comparative and reproducible assessments.

e dqv:ComputedOn and dqv:Value — Properties connecting measurements to
evaluated DMP entities and storing the measured values (numeric, boolean, or

textual).

e dgv:hasQualityMeasurement — Used to associate a DMP or related resource

with one or more quality measurements.

*https://www.w3.org/TR/vocab-dqv/

https://www.w3.org/TR/vocab-dqv/

Related work

DMPLocation
identifier
entity
property
tedOn | 1.. . Agent
Guid hasGuidance semad " " dio -
uidance o1 o
- O.n
= description
description 1
’ L I
oo | QualityM ement 4 0.n TestResult
- 1 hasTesiResul
generatedAtTime
iedAtLifecyel
FepledhifReyce 0.1 value
LifecycleStage on
title
description isMeasurementOf | 1
applicablel ifecycle 0.n hasTestDefinition
“ 1 hasTestDefinition
Metric .70 MetricTestDefinition
..n
identifier
o-n identifier
title
description
MetricGrou inMeiricG description
£ etricGroup 0.n| expectedDataType
identifier 0.1 hasMetric expectedDataType
valueUpperBound L i
title valueUpperBound
valueLowerBound L
description on valueLowerBound
hasMetric
inDimension 1
Legend
Di] hasSubdimension
o.n
DC PROV fitle
0.1
pav DMPDQV description hasParentDimension
0.n
inCategory' 1
Category
description
title

Figure 2.1: Depiction of the data structure used to specify metrics (DMPQV) and
measurements based on Data Quality Vocabulary (DQV)

10

Related work

«Components
Data Store

Stor
— Store Evalustion Resul
Load OMP
Sxtension Onioiogies g Load DCS Oniclogy

il — et e e =

- omponen dende

P «Components) —{] Harvest Extended DMP|
el

«Components :‘ «Components
DMP Harvester Service)_E DMP Indicator Service

L o

Generste
Load DMP Context Measurements

<components 2] g

«Components
Context Loader Evaluator

Figure 2.2: Enter Caption

To ensure interoperability, the model also reused terms from other vocabularies, such
as prov:wasGeneratedBy (PROV-O) to describe provenance, and dcterms: creator
(Dublin Core) for metadata attribution. This RDF-based representation allowed the
system to export evaluation results as Linked Data, enabling reuse and integration

with other FAIR assessment tools.

2.7.4 Application Architecture

The application architecture presented in Arnold’s work defines how the DMP
Evaluation Service interacts with both internal components and external systems.
It follows a service-oriented structure that separates data harvesting, contextual
enrichment, and evaluation logic into independent services.

At a high level, the architecture consists of two main application layers: the DMP
Harvester Service and the DMP Indicator Service. These communicate through
standardized data models based on RDF.

« DMP Harvester Service: Responsible for retrieving, normalizing, and

enriching DMP data. It includes the following components:
— DMP Loader — imports machine-actionable DMPs (maDMPs) and trans-
forms them into a normalized internal representation.

— Context Loader — retrieves complementary contextual information from
external sources such as repositories, funders, or research organization

databases.

— Inference Engine — infers additional facts or relationships using semantic

reasoning, extending the available DMP data.

— Data Provider — exposes the aggregated and enriched DMP data to other

services through a unified interface.

¢« DMP Indicator Service: Performs the actual evaluation of DMPs and

computation of quality indicators. It is composed of:

11

Related work

— FEvaluation Manager — orchestrates the evaluation workflow by coordinating

communication between components.

— FEvaluation Provider — connects to one or more Fvaluator components that

implement concrete assessment logic for specific metrics or dimensions.

— Measurement Aggregator — collects and aggregates the computed quality

measurements to produce reports and overall quality indicators.

o Data Store: A persistence layer used to store DMPs, contextual data, com-
puted measurements, and aggregated reports. The data store supports RDF

serialization to maintain compatibility with Linked Data standards.

The system interacts with several external actors, including;:

e DMP Sources, such as maDMP repositories and authoring tools that provide

the input data.

e FAIR Evaluators and Knowledge Graphs, which contribute external

validation and contextual information.

e Data Repositories and External APIs, serving as additional information

sources for context retrieval.

The architecture was documented using the arc42 template and represented through
C4 model diagrams. Runtime views described key operational workflows, such as
loading DMPs, enriching them with contextual information, performing evaluations,
and generating quality reports. Together, these views form a complete blueprint for

implementing an extensible and interoperable DMP evaluation ecosystem.

2.8 FAIR Testing Resource Vocabulary (FTR)

The FAIR Testing Resource Vocabulary (FTR) was developed as part of the
Open Science Trails (OSTrails) [1] initiative to provide a standardized, machine-
readable model for representing tests, metrics, benchmarks, and evaluation results
used in FAIR assessments [1]. The goal of the FTR is to enable interoperability among
assessment tools, support benchmarking of FAIRness and other quality dimensions
for digital objects, and facilitate the aggregation and comparison of results across
platforms.

The vocabulary defines the core concepts involved in an evaluation workflow and how
they are related through well-defined RDF and PROV-O properties. It builds on
existing W3C standards such as the Data Quality Vocabulary (DQV), PROV-0O, and
Dublin Core, ensuring compatibility with the Semantic Web ecosystem and other

FAIR maturity assessment frameworks.

2.8.1 Main Components

The principal classes and properties of the FTR are summarized below:

12

Related work

ftr:Metric — Describes a measurable criterion or rule that a test should
verify. Metrics represent the conceptual layer of assessment and are typically

human-defined and domain-specific.

ftr:Test — Represents an implementation of a Metric. Tests correspond to
executable services or functions that evaluate whether a resource meets a
specific criterion. The relation between a Test and its Metric is expressed using

the property sio:isImplementationOf.

ftr: TestResult — Captures the outcome of executing a Test. It includes the
evaluation result (e.g., Pass, Fail, or Indeterminate), provenance metadata,
timestamps, and references to the resource under assessment. TestResults are
modeled as extensions of prov:Entity and are linked to the corresponding

Test via ftr:outputFromTest.

ftr:TestResultSet — Groups multiple TestResults that were produced during
a single evaluation session or activity. This class supports traceability and

shared metadata across result sets.

ftr:Benchmark — Defines a community-specific collection of Metrics that
together describe a higher-level evaluation objective, such as assessing FAIRness,
completeness, or accessibility. Benchmarks are used to organize and interpret

groups of Tests and TestResults.

ftr:ScoringAlgorithm or ftr: Algorithm — Specifies a computational proce-
dure for aggregating multiple TestResults within a Benchmark to produce a

quantitative score or summary indicator.

ftr:BenchmarkScore — Represents the computed result of applying a ScoringAl4
gorithm to a Benchmark. It includes a numeric or qualitative score, optional

explanatory notes, and links to the underlying TestResults.

ftr:TestExecutionActivity — A prov:Activity that denotes the execution
event of a Test or set of Tests, producing one or more TestResults or TestRe-

sultSets. This allows detailed provenance tracking of evaluation processes.

2.8.2 Interoperability and Standardization

The FTR reuses and extends established vocabularies such as DQV, PROV-O, and
DCAT, ensuring semantic interoperability with other data quality and FAIRness

assessment efforts. By representing Tests, Metrics, Benchmarks, and Results as Linked

Data, FTR enables transparent publication, exchange, and aggregation of evaluation

information across heterogeneous systems. This standardization facilitates automated

FAIR assessments, reproducibility of results, and meta-analysis of evaluations across

tools and platforms.

13

Related work

2.8.3 Relevance to This Thesis

In the context of this thesis, the FTR serves as the reference model for representing
evaluation components and outputs generated by the DMP Evaluation Service. By
aligning the system’s data model with FTR, the service ensures that evaluation results
are interoperable and can be exchanged with other tools and registries following the
same standard. This alignment directly supports the thesis objective of providing
standardized and machine-actionable evaluation results, as well as the research
question concerning the integration of the Assessment Framework with the DMP

Evaluation Service.

2.9 Discussion

The work of Lukas Arnold [8] established the conceptual and architectural foun-
dations for the DMP Evaluation Service. His prototype successfully demonstrated
how Data Management Plans (DMPs) can be assessed automatically through a
structured model of metrics, dimensions, and categories. The architecture introduced
a modular approach, separating data harvesting, context enrichment, and evaluation
processes into independent components. Furthermore, the use of the Data Quality
Vocabulary (DQV) provided a formal basis for representing evaluation results and
quality indicators as Linked Data.

However, the system was designed primarily as a proof of concept and therefore
some limitations need to be addressed to transform it into a production-ready
and interoperable service. First, the architecture lacked a mechanism for scalable
execution and extensibility. Evaluator components were statically defined, and
no mapping mechanism was available to allow developers to easily integrate new
evaluation logic. Second, the data model, while conceptually aligned with DQV,
was not fully integrated with existing community standards for assessment tools
and did not provide a standardized way to express test results, provenance, and
benchmark relationships. Third, the overall service communication relied on static
data exchange, which limited its capacity for dynamic integration with other RDM
or FAIRness assessment platforms.

To overcome these limitations, this thesis proposes improvements to the architecture

and data model:

o The service architecture is redesigned to include a plugin mechanism that
supports dynamic registration and execution of evaluation logic, improving

modularity and maintainability.

e The data model is revised and extended to align with the FAIR Testing
Resource (FTR) Vocabulary, ensuring that benchmarks, metrics, tests,

and test results follow a standardized and interoperable representation.

e The system exposes an API-first design, allowing external DMP tools, FAIR

evaluators, or other research data management systems to interact with the

14

Related work

evaluation service programmatically.

In addition, the integration of the FTR model provides a semantic foundation for
representing and sharing evaluation results. While Lukas Arnold’s prototype used the
DQV as the main conceptual basis, the FTR vocabulary extends this by introducing
classes and properties specifically designed for FAIR testing, such as Test, Metric,
Benchmark, and TestResult. By adopting this vocabulary, the DMP Evaluation
Service ensures that its evaluation outputs are machine-actionable, interoperable
with other tools in the FAIR assessment ecosystem, and reusable for meta-evaluation
and benchmarking studies.

Therefore, the present thesis builds upon the original architectural vision of Lukas
Arnold, refining its design for robustness, scalability, and interoperability, while
aligning the system’s data representation with the FAIR Testing Resource Vocabulary
to support standardized and transparent automated assessment of machine-actionable

Data Management Plans.

15

Chapter 3

Requirements

This chapter describes the identified requirements for the development of the DMP
Evaluation Service, providing the conceptual design of the solution. The section
presents the stakeholders, followed by the listing of use cases, then describes the
functional requirements, and the quality goals for the system. The collected require-
ments represent an interpretation of the results found in previous work on the topic

of maDMPs and from discussions with the consortium of the OSTrails project.

The DMP Evaluator service checks specific aspects of different dimensions of a
maDMP and returns the result of the evaluation align with the assessment framework
designed in OSTrails project. This has been created to support interoperability
between stakeholders who need to assess DMPS.

3.1 Roles of Stakeholders

In the publication of [5] "Ten principles for machine-actionable data management
plans" nine roles in the research community that can be benefit from the maDMPS
were described. See the figure 3.1 for the list of roles.

In Lukas Arnholds’ thesis [8] he grouped the stakeholders described in [5] "Ten
principles for machine-actionable data management plans" into three groups: DMP
Maintainer, Reviewer, and Review System Facilitator. See table 3.1

In this thesis we agree with the grouping from Lukas thesis Arnhold [8], but we

= s s g
Funder Ethics review Legal expert Researcher Publisher
a= =iy ==
Repository Infrastructure Research Institutional
operator provider support staff administrator

Figure 3.1: Stakeholders from [5] "Ten principles for machine-actionable data
management plans"

16

Requirements

Role Name in "Ten principles paper"

Role Name in Lukas Thesis

Funder

Ethics review
Legal Expert

Research
Publisher

Repository operator
Infrastructure provider
Research support staff
Institutional administrator

Reviewer

Reviewer
Review System Facilitator

DMP Maintainer
Review System Facilitator

DMP Maintainer
Review System Facilitator
DMP Maintainer
Review System Facilitator

Table 3.1: Mapping for Miksa [5] paper and Lukas’ thesis [8] roles

Role name

Description

Expectations

DMP Maintainer

The Principal Investigator and
collaborators who write the

DMP

Evaluate the DMP in order to
improve its quality based

Evaluate the DMP to check
specific institutional or
domain-specific field require-
ments

Evaluate the DMP to verify if
compliance with the funders’
requirements.

Evaluate the DMP while its
users are writing it n order
to highlight missing or mis-
aligned information.

Review System An expert in a specific field

Facilitator who reviews the DMP within
institutions

Reviewer Funding agencies and founda-
tions that specify requirements
for DMPs and monitor compli-
ance

DMP tool Tool that provides researchers
with guidance and formatting
for writing the DMP

DMP Evalu- A developer who is in charge of

ation Service maintaining and implementing

Maintainer additional tests for the service

maintain the codebase and
implement new tests for the
DMP Evaluator Service.

Table 3.2: Roles of Stakeholders

identified some other stakeholders who can benefit from the use of a DMP Evaluation

Service when implemented as a software service, such a DMP tools.

Additionally, for the service, we identified that a maintainer of the proposal system is
also a stakeholder due to the interaction with the service. The criterion for selecting
these roles was to answer the following question. Which of these roles are involved in

the process of assessing the maDMPs in an automated or semi-automated way?

The stakeholder roles that the system considered in defining its functionalities are

described in the table 3.2.

17

Requirements

3.2 Use Cases

After analyzing the stakeholders identified for the system and considering the recom-
mendations made in the assessment framework defined in the OsTrails project, we

described the use cases that the system is designed to support.

O Register Test

DMP Evaluation Maintainer Implement test

1t

Register Benchmark

@ Register Metric

Reviewer,
Review System Facilitator

|

O

DMP Maintainer

Run Evaluation

@ Integrate with API

DMP tool

Figure 3.2: Diagram use cases

1. Use Case 1: Register a Benchmark

e Actor: Review System Facilitator or Reviewer.

o Description: Register a new benchmark (a high level evaluation scenario

or goal).
e Preconditions: No preconditions.

e Main Flow:

(a) User provides metadata for the benchmark.
(b) System validates the input.

(c) System stores the benchmark in the database.
2. Use Case 2: Register a Metric

e Actor: Review System Facilitator or Reviewer.

e Description: Register a new metric to evaluate a particular aspect of a
DMP.

e Preconditions: It is possible that the metric is created specifically to be
added to a benchmark, but is not mandatory to have a benchmark before

the metric.
e Main Flow:

(a) User provides metadata for the metric.

18

Requirements

(b) System validates the input.

(c) System stores the metric in the database.
3. Use Case 3: Register a test

e Actor: DMP Evaluation Developer.

o Description: Register a new test with its conceptual metadata(e.g., test
purpose).

o Preconditions: Metric exists.

e Main Flow:
(a) User provides declarative test details (e.g., what to test, criteria).
(b) System validates the input.

(c) System stores the metric in the database.
4. Use Case 4: Implement a test

e Actor: DMP Evaluation Developer.
e Description: Provides a code implementation for a registered test.
e Preconditions: Test record exists.
e Main Flow:
(a) Developer accesses the list of declared tests.
(b) Developer submits the code that implements the logic of a test.

(c) System validates and links the implementation with the tests record.
5. Use Case 5: Run Evaluation

e Actor: DMP Maintainer - Reviewer - DMP tool - Review system facilitator.

e Description: Executes a set of test implementations on a machine-actionablée
DMP..

e Preconditions: Test implementations exist.

e Main Flow:
(a) User select the maDMP to assess and the test or benchmark to execute.
(b) System run each test implementation.

(c) System provide the evaluation results .

3.3 Functional Requirements

Based on the selected stakeholders and the identified use cases from sections 3.1 and
3.2, we established the functional requirements for the system design proposal in this
thesis. Table 3.3 lists these functional requirements, which are described in detail
later in this section.

Some of the functional requirements listed in the table are defined based on the
recommendation from the assessment framework developed within the OSTrails

project OSTrails/FAIR__testing _resource_vocabulary [1].

19

Requirements

Id Requirement

FR-01 The system shall allow Review System Facilitators or Re-
viewers to register a new benchmark with metadata.

FR-02 The system shall allow Review System Facilitators or Re-
viewers to register a metric with metadata.

FR-03 The system shall allow DMP Evaluation Developers to regis-
ter a test with conceptual metadata.

FR-04 The system shall allow DMP Evaluation users to access
declared benchmarks, metrics, and tests registered in the
system.

FR-05 The system shall allow developers to add source code imple-
menting a test.

FR-06 The system shall allow linking between the test implementa-
tion and its corresponding test metadata record.

FR-07 The system shall allow users to select a machine-actionable
DMP and the tests or benchmarks to execute.

FR-08 The system shall execute the selected test implementations.

FR-09 The system shall return evaluation results and possible failure
explanations.

Table 3.3: Functional requirements

3.3.1 FR-01 - Register a Benchmark

Description: The system shall allow Review System Facilitators or Reviewers to
register a new benchmark, including the required metadata such as name, description,
digital object, and evaluation criteria.

Justification: Benchmarks define high-level evaluation scenarios or goals against
which Data Management Plans (DMPs) can be assessed. Without registered bench-
marks, evaluation processes cannot be standardized or compared across different

DMPs. This requirement was derived from the OSTrails assessment framework.

3.3.2 FR-02 - Register a Metric

Description: The system shall allow Review System Facilitators or Reviewers to
register a new metric, including all required metadata such as name, description,
digital object, and evaluation criteria.

Justification: Metric define a specific granularity level of evaluation scenarios or
goals against which Data Management Plans (DMPs) can be assessed. Without
registered metrics, evaluation processes cannot be standardized or compared across

different DMPs. This requirement was derived from the assessment framework.

3.3.3 FR-03 - Register a Test

Description: The system shall allow developers to register a new test, including all

required metadata such as name, description, digital object, and evaluation criteria.

20

Requirements

Justification: Tests represent the implementation of a metric used to assess specific
aspects of a Data Management Plan (DMP). Without registered tests, evaluations
cannot be automated or systematically repeated. This requirement is derived from

the OSTrails assessment framework.

3.3.4 FR-04 - Access Declared Benchmarks, Metrics, and Tests

Description: The system shall allow users to access and review information about
all registered benchmarks, metrics, and tests. This includes metadata such as the
name, description, associated digital object, evaluation criteria, creation date, and
the actor who registered the item. The system shall present this information in a
clear and organized format, enabling users to easily browse, search, and filter the
available evaluation components.

Justification: Providing users with access to the complete list of registered bench-
marks, metrics, and tests ensures that the evaluation process is transparent. This
functionality also promotes reusability, as users can identify existing evaluation
components that may be relevant to their own assessments. This requirement is
aligned with best practices in research data management and contributes to openness,

a principle emphasized in the OSTrails assessment framework.

3.3.5 FR-05 - Add Test Implementation Source Code

Description: The system shall allow developers to provide source code that imple-
ments a registered test. This functionality must support associating the implementa-
tion with its corresponding test metadata, ensuring that the code can be executed as
part of the evaluation process.

Justification: Tests are not operational without their corresponding implementa-
tions. Allowing developers to contribute and maintain source code for tests ensures
that evaluation criteria can be applied in a computational and reproducible way.
This functionality supports modularity, enabling multiple implementations for dif-
ferent environments or use cases.This requirement allows the system to be flexible,

maintainable, and open to contributions.

3.3.6 FR-06 - Link test Implementation to metadata

Description: The system shall allow linking between a test implementation and its
corresponding test metadata record. This functionality ensures that every piece of
executable code is associated with the correct descriptive information, such as the test
name, description, and intended evaluation criteria. The link should be established
when a test implementation is uploaded or updated and maintained consistently to
ensure accurate retrieval and execution.

Justification: Linking the test implementation to its metadata guarantees that
the evaluation process is transparent, traceable, and reproducible. Without this
association, there is a risk of executing the wrong implementation or misinterpreting

test results due to mismatched documentation. This requirement supports the

21

Requirements

recommendations of the OSTrails assessment frameworkework for maintaining clear

traceabibetween thetween the test logic and its descriptive context.

3.3.7 FR-07 - Select the DMP and Evaluation Component

Description: The system shall allow users to select a machine-actionable Data
Management Plan (maDMP) and choose the tests or benchmarks to execute against
it.

Justification: This functionality enables targeted evaluation, allowing users to focus
on specific aspects of a DMP based on their needs. For example, a funding agency
may wish to run only compliance-related tests, while a data steward may prioritize
completeness or interoperability checks. By allowing selective execution, the system
becomes more efficient, avoiding unnecessary processing and reducing evaluation

time.

3.3.8 FR-08 - Execute Test Implementation

Description: The system shall execute the selected test implementations using the
chosen machine-actionable DMP (maDMP) as input. During execution, the system
shall capture the results in a consistent and structured format, ensuring that they
can be stored, retrieved, and analyzed reliably.

Justification: Automated execution of test implementations is essential for delivering
timely, consistent, and repeatable evaluations of DMPs. Manual execution would be
inefficient, error-prone, and difficult to scale. Automating this process ensures that
results are produced under consistent conditions, contributing to reproducibility and

reliability.

3.3.9 FR-09 - Return Evaluation Results and Failure Explanations

Description: The system shall present the results of executed tests to the user,
including pass/fail outcomes,and detailed feedback. When a test fails, the system
should provide clear failure explanations, indicating the nature of the issue. Results
should be displayed in a structured, format and be available for interoperable way.
Justification: Providing clear, actionable evaluation results helps stakeholders
understand the current state of a DMP and identify areas for improvement. Failure
explanations increase transparency and guide users toward compliance or higher
quality standards. This requirement supports the emphasis on transparency, feedback

loops, and continuous improvement in research data management practices.

3.4 Quality goals

In the context of software engineering, quality goals define the non-functional char-
acteristics that a system should achieve in order to satisfy user expectations and

ensure long-term sustainability. These goals go beyond basic functional requirements.

22

Requirements

Instead, they focus on how well the system performs its functions, how easily it can
be maintained, and how effectively it can be integrated into different environments.
For the DMP Evaluation Service proposed in this thesis, quality goals were selected
based on the use cases defined in Section 3.2 and the functional requirements described
in Section 3.3. The selected goals: Functional suitability, maintainability, operability,
compatibility, and transferability.

Table 3.4 presents these quality goals, their priority, and a brief description. The
following subsections describe each goal in detail and explain how the functional

requirements and use cases support their achievement.

Priority Name Description

1 Funtional suitability System provides functions that meet

stated or implied needs

2 Maintanability Systemn can be modified, correct,
adapted or improved due to changes

in environment or requirements

3 Compatibility Two or more systems can exchange
information while sharing the same

environment

Table 3.4: Quality goals for the service

3.4.1 Functional suitability

Functional suitability ensures that the system provides the necessary functions to
meet the stated or implied needs of its users. In this project, this means supporting all
actions required to register, manage, and execute evaluations of machine-actionable
DMPs. This goal is directly addressed by the functional requirements FR-01 to FR-09,
which collectively define the essential operations of the system, including registering
benchmarks (UC-1), registering metrics (UC-2), registering and implementing tests
(UC-3 and UC-4), and running evaluations (UC-5).

3.4.2 Maintainability

Maintainability refers to the system’s ability to be efficiently modified, corrected,
adapted, or improved when requirements or environmental conditions change. This
is critical in the context of the DMP evaluation domain, where new assessment
criteria, benchmarks, and tests may need to be incorporated over time. Functional
requirements such as FR-05 (adding source code for tests) and FR-06 (linking
test implementations to metadata) directly support maintainability, as they enable
updates to test logic without disrupting existing workflows. Use case UC-4 (Implement
a test) is also central to this goal, as it describes the process by which developers

can extend or improve the evaluation capabilities of the system.

23

Requirements

3.4.3 Compatibility

Compatibility is the system’s ability to exchange information with other systems
while sharing the same operational environment. For the DMP Evaluation Service,
compatibility is essential because evaluation results, benchmarks, and tests may need
to be integrated with external tools such as DMP platforms, reporting dashboards, or
institutional repositories. Functional requirements FR-09 (Return Evaluation Results
and Failure Explanations) supports this goal by requiring results to be available in
interoperable formats, facilitating integration into broader research data management
ecosystems. UC-5 (Run Evaluation) also contributes, as it defines the execution and

output generation process that can be consumed by external systems.

24

Chapter 4

Architecture design

This chapter presents the architectural design of the proposed DMP Evaluation
Service, defining how the system will be structured to fulfill the functional and
quality requirements specified in Chapter 3. While the previous chapter focused on
identifying the system’s required capabilities and use cases, this chapter describes

the high-level and detailed architecture that enables their implementation.

The architecture is documented following the principles of the arc42 [9], which
provides a structured approach to describe both the static and dynamic aspects of a
software system. The design addresses the functional requirements (FR-01 to FR-~09)
and the use cases (UC-1 to UC-5) by defining the system’s main building blocks,
their interactions, and the environment in which they operate.

The following sections present the system context, the high-level container view,
the main software components, and the runtime interactions for key scenarios.
Together, these architectural views illustrate how the proposed system will support

the functional requirements and the identified quality goals.

4.1 Conceptual design - System Contexts

The system context diagram in Figure 4.1 illustrates the DMP Evaluation Service in
relation to its external environment. The diagram defines the system boundaries,
showing which functionalities are provided internally and which actors or systems
interact with it from the outside.

The main external actors include the Review System Facilitator and Reviewer, who is
responsible for registering benchmarks and metrics; the DMP Evaluation Developer,
who implements and uploads test logic; and the DMP Maintainer or DMP Tool,
which initiate evaluations of machine-actionable DMPs.

Interactions between the system and its environment are conducted primarily through
an API, enabling both human users and external systems to register evaluation com-
ponents, execute assessments, and retrieve results. The DMP Evaluation Service
also exchanges information with external sources, such as FAIR assessment tools or

related services to validate or corroborate information.

25

Architecture design

System Context - DMP Evaluation Service (API)

O O 8 O

Facilitator / Reviewer Developer (Test Author) DMP Tool DMP Maintainer

Register benchmarks/metrics
Run evaluations

Register tests (pluginld,functionld) / Submit maDMP / Fetch results Run evaluations

DMP Evaluation Service (API)
- Test Execution
- Persistence result evaluation

|Validate / corroborate data (optional)

External Services

Figure 4.1: System Context

Having defined the external actors, systems, and their interactions with the DMP
Evaluation Service in the system context, the next step is to examine the system’s
internal high-level structure. The container view decomposes the service into its
main technical building blocks, referred to as “containers” in the C4 model [10], each
representing an application, service, data store, or execution environment. This view
illustrates how responsibilities are allocated across containers, how they collaborate
to fulfill the functional requirements, and through which interfaces they interact.
The following section presents the container diagram of the DMP Evaluation Service,
showing the components that collectively implement the evaluation workflow defined

in the use cases and requirements of Chapter 3.

4.1.1 Container View

A container diagram in Figure 4.2 illustrates the major building blocks (containers)
of the system and how they communicate. Containers are applications, services,
databases, or data stores that run independently and together deliver the system’s

functionality.

The DMP Evaluation Service is exposed exclusively via an application programming
interface (API). External clients such as DMP tools, Review System Facilitators/Re-
viewers, and developers interact with the service programmatically. Internally, the
system is organized into three main containers (1) the Application/API responsible
for request handling, validation, and orchestration (2) the Plugins, which run test
implementations in an isolated runtime and (3) the Persistence layer, which stores
benchmarks, metrics, tests, and evaluation results. This organization directly sup-
ports FR-01...FR-09 and the evaluation workflow in UC-1...UC-5.

26

Architecture design

Container View - API

O @) QO

Facilitator / Reviewer Developer (Test Author) DMP Tool / DMP Maintainer
. . Submit
Register Register
& Tests mlaggﬂtP
Run (+pluginld,functionld)

Results

System boundary \ /

API|
(HTTP/JSON, Orchestration)

Execute
Tests
(parallel)

Validpte/Corroborate
(optional)

CRUD
metadata External Services
(benchmarks/metrics/tests)

Resolve
(pluginld,functionlid)

Plugin Registry
(resolve pluginld,functionld)

Plugins
(ThreadPoolTestExecutor, @Async)

Store
per-test
results

_
[MongoDB 1
(metadata + results)
JWOUERSEERED > (EERIEL

Figure 4.2: Container View DMP Evaluation Service - API

4.1.2 Component View

A component diagram in Figure 4.3 zooms into a container to show the main
components, their responsibilities, and relationships. Components group related
functionality and encapsulate logic, exposing interfaces to other parts of the system.
At the component level, the service separates HT'TP controllers (Benchmark, Metric,
Test, Assessment) from services that encapsulate business logic. The AssessmentService|
loads the selected Test documents, resolves each test’s (pluginIld, functionId)
via the PluginRegistry, and delegates execution to the corresponding plugin func-
tion. Test execution is performed using Kotlin coroutines [11], with each test
launched as an independent coroutine within a structured concurrency scope. This
approach provides lightweight, non-blocking parallelism and ensures that individual
TestResult records are written incrementally as executions complete. This sepa-
ration keeps controllers thin, concentrates orchestration logic within services, and
isolates execution concerns behind clear boundaries.

The system is structured around the following building blocks:

« Controllers:

— BenchmarkController, MetricController, TestController, EvaluationCon-
troller, PluginController

— Define the REST API endpoints. Each controller is responsible for request
handling, validation of input, and delegating logic to the corresponding
service layer. The PluginController is a special case: it only provides

endpoints for listing available plugins and their functions.

27

Architecture design

O

Developer (Test Author)

Register test
(pluginld,functionld)

O

Facilitator / Reviewer

CRUD Benchmarks

DMP Evalua

ion Service (API)\

CRUD Metrics

O

Client (DMP Tool)

POST Run Evaluations

Controllers\

7

N

TestController

BenchmarkController

AssessmentController

’ MetricController

ervices\

K
BenchmarkService

7
MetricService

resolve (pluginld,functionid)

PluginRegistry

/JA

Test results Run tests in parallel

Store benchmarks [Store metrics

Store tests \

MongoDB

TestService Store Evalua

ion results [Plugin-Completeness [Plugin-Compliance

’ Plugin-FAIR ‘ [Plugin-External-Evaluators

Figure 4.3: Component View — Controllers, Services, Plugins, Parallel Executor

e Services:
— BenchmarkService, MetricService, TestService, EvaluationService, Evalua-
tionManagerService, PluginManagerService

— Encapsulate the business logic for each entity. They provide CRUD

operations as well as relations between entities, e.g., registering metrics in

a benchmark or linking a test to a metric.
— The EvaluationManagerService orchestrates the execution of evaluations
by coordinating which tests must run and how results are aggregated.
o Plugin Executors (Evaluators):
— Encapsulated units that execute test logic. Each evaluator is mapped to a
plugin and function identifier, enabling dynamic test execution.

— The plugin mechanism allows extending the system with new evaluators
without modifying the core code, supporting the quality goal of maintain-

ability.
o Database (MongoDB):

— Stores benchmarks, metrics, tests, and evaluation results in a flexible

schema.

— Supports entity relationships while allowing heterogeneous structures (e.g.,

varying test result formats).

This decomposition achieves a clear separation of concerns:

o Controllers remain thin, handling only request/response management.

28

Architecture design

e Services concentrate domain-specific logic and enforce relations between entities.

o Plugin Executors isolate the execution of test logic, enabling parallel execution

and extensibility.
o Database ensures persistence and traceability of all entities and results.

Together, these building blocks implement the functionality required by FR-01 to FR-
09 and support the use cases UC-1 to UC-5, while ensuring scalability, transparency,
and extensibility.

4.1.3 Sequence View

A sequence diagram describes the dynamic behavior of the system for a specific use
case. It shows the order of interactions between components or actors over time to

realize the use case.

In UC-5 “Run Evaluation” in Figure 4.4, the client submits a maDMP reference and
a benchmark ID. The API validates inputs, fetches the corresponding Benchmark,
Metrics, and Test metadata, resolves the associated plugin functions, and then
distributes execution in parallel: each test is launched as a separate coroutine within
a structured concurrency scope. As coroutines complete, individual TestResult
documents are persisted incrementally. Once all tests have finished, the system
aggregates the outcomes into a single Evaluation record, which is returned to the
client through the evaluation endpoint. The response contains aggregated results as

well as detailed failure explanations for any unsuccessful tests.

Runtime - UC-5 Run Evaluation (Parallel Threads with Spring Boot)

= Pl
G Sremmarsores) ovesanis) [roene) [Pagemeen) | umosacuon]
| 1 POST/assessment { maDMP, benchmarkid } _| : 3 3 3 3 3 3
\ | 2 runEv: DMPRef, Benchmarkld) | \ \ \ \ \ \
13
| 4 find bencl H
| 5 Benchmark((mdtadata, st of Mbtrics(l}]
: 6 Benchmark Metrics Associated) | : '
iy \
‘ i~ 9 Mewlcslimshadata, st o Tttt
| 10Metrics Tests Associated) ! !
11 1getTestsftestis) |
H 1 12find tests by id
! L1 i functionld metaddta))
|_14tests[..] \
4 Sresalve handles for sach (pluginid.functionid j
i 16handles...] i
[Parallel fan-out | .
1 17 executeAsync(handle_i, maDMP, params_i) !
| 18Test Resultipass / fall :
11 9insert result (test i, status, details) '
| 20Tests Resus !
| 22GET /evaluations/{id}
3 | 2 3fetch evaluation + results.
\ |_24results | | | | | | H
L 2siene e | | | | | | 1 1
C&e)"‘ BenchmarkSewice‘ lMemcSerwce] [Tes@ewice‘ lPIuginReglstry] Plugn """é"“
(@)

Figure 4.4: Runtime — UC-5 Run Evaluation

29

Architecture design

4.1.4 Data Model View

The data model view illustrates the core entities of the DMP Evaluation Service
and their relationships. It describes how the system organizes, stores, and links
information to support evaluation workflows. Figure 4.5 presents the conceptual data
model.

This model is aligned with the assessment framework developed in the OSTrails
project, which defines benchmarks, metrics, and tests as the key entities for evalu-
ating Data Management Plans. Following this framework ensures that the service
adopts established recommendations, enabling interoperability with other tools and
supporting standardization of evaluation practices. In addition, the model extends
the original framework by introducing two specific fields in the Test entity, pluginId
and functionId, which explicitly link each test definition to its executable imple-
mentation in a plugin. This design decision enables dynamic resolution and execution
of tests, ensuring flexibility and extensibility of the service.

The main entities are:

e« Benchmark: Defines a high-level evaluation scenario or goal. A benchmark

may include multiple metrics.

e Metric: Specifies a particular aspect of a DMP to be evaluated. Metrics are

grouped under benchmarks and linked to tests.

o Test: Represents an executable evaluation procedure for a metric. Each test
stores references to a pluginId and functionId, which bind the test to a

concrete implementation.

o Evaluation: Represents the execution of one or more tests on a specific
maDMP. An evaluation aggregates test executions and provides an overall

assessment context.

o TestResult: Captures the outcome of a single test execution, including pass/fail
status, failure explanations, and additional metadata. Each evaluation contains

multiple test results.

The relationships between these entities enable full traceability from a benchmark
down to individual test results. For example, a benchmark groups metrics, each
metric has associated tests, and tests are linked to their implementations via plugins.
Evaluations reference the selected tests and aggregate their corresponding results.
This data model ensures transparency, extensibility, and interoperability in managing
automated DMP assessments, while adhering to the principles and recommendations
of the OSTrails framework [1].

30

Architecture design

Data Model (MongoDB collections)

@ Benchmark

_id: Objectld

title: string

description: string

version: string
hasAssociatedMetric: List<string>
algorithms: string

keyword: string

creator:string

1

*

@ Metric

_id: Objectld

title: string

description: string

version: string

keyword: string
hasBenchmark: List<string>
testAssociated: List<string>

1

*

@ Test

_id: Objectld i
title: string @ Evaluation
description: string _id: Objectld
metriclmplemented?: string details: string
version: string testlds: List<string>
pluginld: string 'e.g., "fairness.core" startedAt: datetime
functionld: string ' e.g., "check_pid_presence"

supportedBy: object

N

& *

@ TestResult

_id: Objectld

evaluationld: Objectld

testld: Objectld

result: "PASS|FAIL|INDETERMINATED|"
detail: string

affectedElements: string

createdAt: datetime

Figure 4.5: Conceptual Data Model of the DMP Evaluation Service

4.2 Description of the workflow

The workflow of the DMP Evaluation Service describes how different users and
systems interact with the service to achieve their goals. The system is designed
to support both human actors, such as researchers, data stewards, and funding

agencies, as well as external tools, such as DMP authoring platforms. By exposing

31

Architecture design

its functionality through a RESTful API, the service facilitates automation and

integration into broader research data management workflows.

The primary goal of users and client systems is to perform an evaluation of a machine-

actionable Data Management Plan (maDMP). To enable this, the service provides

functionality for registering and managing the necessary evaluation components

benchmarks, metrics, and tests, as well as executing these tests and returning the

The workflow can be divided into two phases: setup and execution.

1. Setup phase:

A benchmark is created to define the high-level evaluation scenario.

One or more metrics are registered and linked to the benchmark. Each

metric specifies a particular dimension of the evaluation.

Tests are defined for metrics. Each test is registered with conceptual
metadata (purpose, criteria) and linked to a plugin and function identifier

that specify its implementation.

Developers implement the test logic inside a plugin, which can contain
multiple executable functions. These functions are made available to the

service through the plugin registry.

The service maintains all benchmarks, metrics, tests, and plugins in its

database, ensuring traceability and reusability.

2. Execution phase:

A client submits a request to run an evaluation by providing a reference

to a maDMP and specifying the benchmark or tests to be executed.

The system resolves the required benchmarks, metrics, and tests, and

retrieves their associated plugin functions.

The AssessmentService distributes the execution of tests in parallel using
Kotlin coroutine within a structured concurrency scope . Each test runs

independently against the maDMP.

As tests complete, the system generates individual TestResult records that
capture outcomes and explanations. These are persisted in the database

for transparency and later retrieval.

Once all tests have finished, the service aggregates the results into an
Evaluation object and returns them to the client through the API in a

structured and interoperable format.

The workflow also handles error conditions. For example, if a benchmark or metric is

not found, the system responds with an appropriate error message without becoming

unresponsive. Similarly, if a plugin or function cannot be resolved, the corresponding

test is marked as indeterminate and a descriptive explanation is provided.

32

Architecture design

Finally, the service can interact with external tools and APIs to enrich evaluations.
For instance, some tests may query third-party services such as Unpaywall or FAIR
assessment tools to verify information beyond what is declared in the maDMP. This
ensures that evaluations are not limited to static plan content but can also leverage
contextual external data.

Through this workflow, the DMP Evaluation Service ensures that evaluations are
machine-actionable, transparent, and extensible, supporting a wide range of stake-

holders in improving the quality and compliance of research data management plans.

4.3 Summary

In summary, this chapter has presented the architecture of the DMP Evaluation
Service using the arc42 template and C4 model diagrams. The system was described
from multiple perspectives, including its external context, high-level containers, in-
ternal components, runtime interactions, and data model. Together, these views
illustrate how the service is structured to fulfill the functional requirements (FR-01
to FR-09) and use cases (UC-1 to UC-5), while addressing the identified quality
goals such as functional suitability, maintainability, and interoperability. The de-
scribed workflow demonstrates how benchmarks, metrics, and tests are managed
and executed in practice, ensuring that evaluations are transparent, reproducible,
and extensible. Having established the architectural foundations, the next chapter
details the implementation choices and design decisions that realize this architecture

in software.

33

Chapter 5

Implementation

5.1 Introduction

This chapter presents how the architectural design described in Chapter 4 was
implemented. It explains the concrete technologies, components, and implementation
choices used to fulfill the functional requirements (FR-01 to FR-09) and to support
the quality goals defined in Chapter 3.

The implementation follows the architecture: REST controllers expose the service
API, services encapsulate business logic, a plugin mechanism binds tests to executable
functions via pluginId and functionId, and a parallel execution layer runs tests
concurrently against a machine-actionable DMP (maDMP). MongoDB provides
persistent storage for benchmarks, metrics, tests, evaluations, and per-test results.
The remainder of this chapter introduces the technology stack (Section ?7), maps
functional requirements to concrete endpoints and components (Section 5.3), details
the plugin mechanism and parallel execution model (Section 5.4), describes the
persistence layer and data model realization (Section 5.5), discusses error handling
and robustness (Section 5.6), and concludes with an end-to-end example workflow
(Section 5.7).

5.2 Solution Strategy

First, the system is implemented as a Spring Boot application in Kotlin. Kotlin
provides modern language features, seamless Java interoperability, and strong support
for concurrency via coroutines. This choice directly supports the quality goals of
functional suitability and maintainability, since it enables modularization through
controllers and services, while allowing future developers to extend the system with

minimal effort.

Second, a plugin-based architecture was adopted to achieve extensibility. Each test
implementation is encapsulated within a plugin, identified by a pluginId and a
functionId. This approach ensures that new evaluation logic can be integrated

without modifying the core system, thereby reducing coupling and supporting the

34

Implementation

quality goal of maintainability.

Third, the system uses parallel execution of tests through Kotlin coroutines and
structured concurrency. This strategy improves scalability and performance by
allowing multiple tests to be executed concurrently, while avoiding the complexity
of manual thread management. Coroutines also simplify lifecycle control and error

propagation, ensuring predictable and reliable execution.

Fourth, MongoDB was selected as the persistence layer. Its flexible schema is well-
suited for storing heterogeneous entities such as benchmarks, metrics, tests, and
evaluation results. Moreover, its ability to store nested and variable structures sup-

ports the need for extensible test results while maintaining efficient query performance.

Finally, the system is exposed exclusively via a RESTful API, ensuring interoper-
ability with external tools such as DMP authoring platforms, and FAIR assessment
services. This aligns with the quality goals of compatibility and transferability, as it

allows the service to integrate into different environments and workflows.

5.3 Implementation of Functional Requirements

This section describes how the functional requirements specified in Chapter 3 are
implemented in the prototype. Each requirement (FR-01 to FR-09) is mapped to
its corresponding API endpoint(s), service components, and persistence layer. This

mapping demonstrates traceability from requirement to concrete implementation.

35

Implementation

Implementation Structure (Packages & Key Classes)

dmpeval

controller

C

[@TestConlroller\ [@MetricController\ [@BenchmarkController‘ [@Evalua(ionConlroller‘ [@PluginController
[[
C C

)) C) C))

1

ervice
/

[@F‘IuginManagerService
[

[@ EvaluationManagerService|

| N
T@BenchmarkService\ ©Eva|uationservice\\
]

[
C

launich coroutines resolve(pluginld,functionld)

\\ \4 executio
N N «coroutines» . N
[@MemcServlce R e ©PIug|nReg|slry
[| [|
C) C)

[@Tes\Service
/ / /persistence / /

C

[@Teisepository\ [@MetricReposilory\ [@BenchmarkReposilory‘ [@Eva\uationReportRepository‘ [@EvaIualionResu\lReposilory‘
| [| [|
) € A

] C J L J J

e A [

© Test
©Me(ric} [@Benchmark} [@EvaluationRepurt} © TestResult
[|

o pluginld: String N "
o functionld: String o reportld: String

| I |
] L] s]

Figure 5.1: Package-level impl structure of the DMP Eva Service

FR-01 — Register a Benchmark

FEndpoint: POST /benchmarks

Controller/Service: BenchmarkController, BenchmarkService

Persistence: MongoDB benchmarks collection

Description: Creates and persists a new benchmark with metadata (name,
description, criteria). Service ensures validation and uniqueness of benchmark

identifiers.

FR-02 — Register a Metric

Endpoint: POST /metrics

Controller/Service: MetricController, MetricService

Persistence: MongoDB metrics collection

Description: Allows registering metrics, linking them to benchmarks. The

service enforces consistency of benchmark—metric relationships.

FR-03 — Register a Test

Endpoint: POST /tests

Controller/Service: TestController, TestService

Persistence: MongoDB tests collection

Description: Registers new tests with metadata (purpose, evaluation criteria,
pluginld, functionld). Ensures that metadata is complete and references valid

metrics.

36

Implementation

e FR-04 — Access Declared Benchmarks, Metrics, and Tests
FEndpoints: GET /benchmarks, GET /metrics, GET /tests
Controllers/Services: Corresponding controllers and services
Persistence: Reads from MongoDB collections
Description: Exposes API endpoints to retrieve metadata for transparency and

integration with external tools.

e FR-05 — Add Source Code Implementing a Test
Mechanism: Plugin system — developers add functions inside plugins
Controller/Service: PluginController, PluginManagerService
Persistence: Plugin registry (in-memory), plugin binaries deployed in execution
environment
Description: Developers provide executable test code inside plugins. The

system registers available plugins and their functions for later linking.

e FR-06 — Link Test Implementation to Metadata Record
Endpoint: PUT /tests/{id}
Controller/Service: TestController, TestService, PluginManagerService
Persistence: Updates MongoDB tests collection with pluginId and functionId
Description: Ensures that each test is linked to a specific function in a plugin.

Validates that identifiers exist in the plugin registry.

e FR-07 — Select maDMP and Tests for Execution
Endpoint: POST /evaluations
Controller/Service: AssessmentController, AssessmentService
Persistence: MongoDB evaluations collection (initial record)
Description: Clients submit a maDMP reference and the benchmark or test

IDs. Service prepares the evaluation by resolving the selected tests.

e FR-08 — Execute Test Implementations in Parallel
Ezecution: Kotlin coroutines with structured concurrency
Service: AssessmentService
Persistence: Results stored incrementally in testResults collection
Description: Each test is launched as a coroutine, allowing concurrent execution
against the selected maDMP. The coroutine framework provides lightweight,
non-blocking parallelism and ensures that results are collected efficiently. Par-
allel execution improves responsiveness and throughput, particularly for large

or complex evaluations.

e FR-09 — Return Evaluation Results and Failure Explanations
Endpoint: GET /evaluations/{id}
Controller/Service: EvaluationController, EvaluationService
Persistence: Reads from evaluations and testResults collections
Description: Aggregates test outcomes and returns structured results (pass/fail,

explanations, metadata). Provides transparency and supports interoperability.

37

Implementation

This mapping demonstrates how abstract functional requirements are concretely
realized by API endpoints, service components, and persistence structures in the

implemented DMP Evaluation Service.

38

Implementation

FR End Point Controller/Service Description
FRO1 Post /benchmarks BenchmarkController, = Creates and persists a new
BenchmarkService benchmark with metadata
(name, description, criteria).
Service ensures validation and
uniqueness of benchmark iden-
tifiers.

FRO2 Post /metrics MetricController, Met- Allows registering metrics,

ricService linking them to benchmarks.
The service enforces consis-
tency of benchmark—metric re-
lationships.

FR0O3 Post /tests TestController, TestSer- Registers new tests with meta-

vice data (purpose, evaluation cri-
teria, pluginld, functionld).
Ensures that metadata is com-
plete and references valid met-
rics.

FR04 Get /benchmarks Corresponding con- Exposes API endpoints to

trollers and services retrieve metadata for trans-
parency and integration with
external tools.

FRO5 Plugin System PluginController, Plug- Developers provide executable

inManagerService test code inside plugins. The
system registers available plug-
ins and their functions for later
linking.

FR06 Put /tests/id TestController, TestSer- Ensures that each test is linked

vice to a specific function in a plu-
gin. Validates that identifiers
exist in the plugin registry.

FRO7 Post /evaluations EvaluationController, Clients submit a maDMP ref-

EvaluationService erence and the benchmark or
test.

FR08 Kotlin coroutines EvaluationService Each test is launched as a
with structured coroutine, allowing concurrent
concurrency execution against the selected

maDMP.

FR09 Get /evaluation- EvaluationController, Aggregates test outcomes
s/id EvaluationService and returns structured re-

sults (pass/fail, explanations,

metadata).

Table 5.1: REST API endpoints and their relation to functional requirements.

39

Implementation

5.4 Plugin Mechanism and Parallel Execution

The extensibility of the system relies on a plugin mechanism that allows test logic
to be developed and integrated independently of the core service. Each plugin is
identified by a pluginId and can export one or more functions, each identified
by a functionId. When a test is registered, its metadata stores both identifiers,
ensuring that the system can dynamically resolve and execute the correct function at
runtime. The PluginRegistry maintains information about available plugins and

their exported functions, and acts as the central lookup point for the execution layer.

Plugin Mapping (Runtime Binding)

Client

POST /evaluations { maDMP, benchmarkld }

AssessmentService

resolve
(pluginld,functionld)

PluginRegistry

lookup functions

launch coroutine per test

load Tests (handle,maDMP)

return executable handle(s) estResult

ExecutionRunner
(Coroutines)

write TestResult TestService

load Tests
(includes pluginld,functionld)

lookup functions

l Plugin: Completeness l Plugin: Compliance

‘MongoDB

- pluginld (e.g., "Completeness")
- functionld (e.g., "check_pid_presence")

Test holds mapping fields: T

Figure 5.2: Mapping of Evaluator and functionEvaluator

Test execution is carried out using Kotlin coroutines and structured concurrency.
The AssessmentService launches one coroutine per selected test, enabling parallel
execution while preserving predictable lifecycle management. Results are written
incrementally to the database as each coroutine completes. In case of a resolution
failure (e.g., plugin or function not found), the test is marked as indeterminate with
a descriptive explanation. This approach combines flexibility (new plugins can be
added without system changes) with scalability (parallel execution of potentially

large test sets).

5.5 Data Persistence and Model Realization

The persistence layer is realized using MongoDB, which provides a document-oriented,
schema-flexible storage solution. The data model introduced in Chapter 4 is directly

mapped to collections:

40

Implementation

e benchmarks: stores benchmark metadata and references to associated metrics.

Listing 5.1: Example benchmark document in MongoDB

10

11

12

13

14

{

benchmarkId: String,

title: String,

description: String,

version: String,
hasAssociatedMetric: List<String>,
keyword: String,

abbreviation: String,

landingPage: String,

theme: String,

status: String,

creator: List<String>

metrics: stores metric metadata, each linked to one or more benchmarks.

Listing 5.2: Example metric document in MongoDB

1 {

2 id: String,

3 title: String,

4 description: String,

5 version: String,

6 testAssociated: List<String>,
7 keyword: String,

8 abbreviation: String,

9 landingPage: String,

10 theme: String,

11 status: String,

12 isApplicableFor: String,

13 supportedBy: String,

14 hasBenchmark: List<String>
15 }

16

tests: stores test metadata, including

Listing 5.3: Example test document in MongoDB

1 id: String,
2 title: String,
3 description: String,

41

Implementation

10

11

12

13

14

15

16

17

18

19

20

21

10

11

12

license: String,

version: String,
endpointURL: String,
endpointDescription: String,
keyword: String,
abbreviation: String,
repository: String,

type: String,

theme: String,
versionNotes: String,
status: String,
isApplicableFor: String,
supportedBy: String,
metricImplemented: String,
evaluator: String?,

functionEvaluator: String?,

Evaluator and functionEvaluator that identify the concrete implementation.

testResults: stores the outcome of individual tests, including pass/fail status,

explanations, and runtime metadata.

Listing 5.4: Example evaluation document in MongoDB

evaluationId: String?,
title: String,

result: ResultTestEnum,
details: String,
timestamp: Instant,
reportId: String?,

log: String,
affectedElements: String?,
completion: Int?,
generated: String?,

outputFromTest: String?

evaluationReport: stores the metadata of each evaluation execution, including

references to the selected tests and the target maDMP.

Listing 5.5: Example evaluationreport document in MongoDB

reportId: String?
generatedAt: Instant

42

Implementation

3 evaluations: List<String?>

This structure provides traceability from high-level benchmarks down to individual
test results, supporting transparency and interoperability. MongoDB’s flexible schema
allows test results to include heterogeneous data structures depending on the nature
of the test, while still supporting efficient queries through appropriate indexing (e.g.,

evaluation IDs, test status).

5.6 Error Handling and Robustness

Robustness is achieved through explicit error handling at both API and execution

levels. Typical scenarios include:

o Entity not found: If a benchmark, metric, or test does not exist, the API

responds with a 404 Not Found status code and a descriptive error message.

o External API errors: If an external service (e.g., Unpaywall) is unavail-
able, the system records the failure explanation and continues processing the

remaining tests without halting the evaluation.

o Unexpected execution errors: Exceptions during test execution are caught
at the coroutine level. The affected test is marked as failed, while other

coroutines continue unaffected.

These mechanisms ensure that evaluations remain resilient, transparent, and infor-

mative even under adverse conditions.

5.7 End-to-End Example Workflow

To illustrate the implementation in practice, this section describes an end-to-end

evaluation scenario.

1. A user registers a new benchmark by submitting metadata through the POST

/benchmarks endpoint.
2. Metrics are registered and linked to the benchmark via POST /metrics.

3. Tests are registered with metadata, including pluginId and functionId, via
POST /tests.

4. A developer implements the test logic in a plugin and makes the plugin available

to the system.

43

Implementation

End-to-End Workflow (Implementation)

b

(POST /benchmarks (create benchmark))

v

(POST Imetrics (link to benchmark))

v

(POST ltests (with pluginld,functionld))

v

[POST levaluations (maDMPRef + benchmarkld))

v

[AssessmentService resolves testsj

v v

(Launch coroutine for Test A) (Launch coroutine for Test B) (Launch coroutine for Test C)

Persist TestResult A Persist TestResult B Persist TestResult C

(Aggregate evaluation status/results)

v

(GET levaluations/{id} (return summary + explanations))

Figure 5.3: End-to-end workflow

5. The user initiates an evaluation by submitting a maDMP and benchmark ID

to the POST /evaluations endpoint.

6. The AssessmentService resolves the relevant tests, launches their execution

as coroutines, and stores incremental results in MongoDB.

7. The user retrieves results through GET /evaluations/{id}, obtaining grouped

outcomes and detailed explanations for each test.

This workflow demonstrates how the architecture and implementation support au-

tomation, transparency, and extensibility in DMP evaluation.

5.8 Summary

This chapter has described the implementation of the DMP Evaluation Service,
detailing the concrete technologies, components, and design decisions to implement
the architecture introduced in Chapter 4. A plugin mechanism enables extensibility
by allowing new evaluation logic to be added without changes to the core system,
while MongoDB ensures flexible persistence of benchmarks, metrics, tests, evaluations,
and test results.

Each functional requirement (FR-01 to FR-09) was mapped to concrete API endpoints,
services, and persistence structures, demonstrating full traceability from requirements

to implementation. We presented the plugin mechanism and parallel execution model,

44

Implementation

the persistence layer, and the handling of error conditions to ensure robustness. An
end-to-end example workflow illustrated how the system supports stakeholders in
registering evaluation components, executing tests, and retrieving transparent and
interoperable results.

These implementation details demostrate that our DMP Evaluation Service not only
fulfills the defined functional requirements but also addresses the identified quality
goals of suitability, maintainability, and interoperability. The next chapter evalu-
ates the system, analyzing its operation, reliability, and effectiveness in supporting

automated and extensible DMP assessments.

45

Chapter 6

Evaluation

6.1 Introduction

This chapter evaluates the DMP Evaluation Service to determine whether it fulfills
the functional requirements (FR-01...FR-~09) and addresses the quality goals defined
in Chapter 3. The evaluation focuses on: (i) functional validation of the API and the
execution workflow, (ii) validation of key quality attributes (functional suitability,

maintainability, operability, compatibility).

6.2 Methodology

The methodology defines how the evaluation of the DMP Evaluation Service was
conducted, ensuring that both functional and non-functional requirements are sys-
tematically verified. By structuring the evaluation along clear dimensions—scope,
test data, procedure, and environment—the results become reproducible and aligned

with the quality goals established in Chapter 3.

Scope

The evaluation covers the complete end-to-end workflow of the service, starting
with the registration of evaluation components (benchmarks, metrics, and tests)
and continuing through the execution of evaluations on machine-actionable DMPs
(maDMPs). Beyond verifying workflow correctness, the evaluation also inspects API
behavior (status codes, response payloads, error handling), persistence consistency in
MongoDB, and the runtime execution model based on Kotlin coroutines. This dual
focus ensures that the system is validated as both a functional service and a robust,
scalable software component.

Test data: We used representative maDMP inputs and sample benchmarks/metric-
s/tests derived from the assessment framework [1]. Synthetic cases were added to

exercise error paths (e.g., missing plugins, unreachable external APIs).

Procedure: Each functional requirement was validated via HTTP requests (cURL/-

Postman). Quality goals were assessed through targeted experiments (e.g., adding a

46

FEvaluation

new plugin).

6.3 Functional Validation

This section provides evidence that each functional requirement is satisfied by the

implementation.

FR Evidence Matrix

FR What was validated Evidence (request/response ex- Result
cerpt)
FR-01 Create benchmark POST /benchmarks returns 201 with Pass
_id; stored in benchmarks.
FR-02 Create metric and link POST /metrics includes Pass
to benchmark benchmarkId; query shows re-
lation.
FR-03 Register test and link to POST /tests stores mapping fields; Pass
metric retrieval consistent.
FR-04 List entities GET /benchmarks|metrics|tests Pass
return expected sets + filters.
FR-05 Add Test Implementa- GET /plugins lists plugin/function Pass
tion Source Code identifiers.
FR-06 Link/Update PUT /tests/{id} add the plugin Pass
test—implementation and the function id to a test.
FR-07 Start evaluation POST /evaluations accepts Pass
maDMP + selection; creates evalua-
tion.
FR-08 Execute in parallel Concurrent test execution visible ag- Pass
gregated results.
FR-09 Return results GET /evaluations/{id} returns Pass
evaluation results.
Table 6.1: Functional requirements — validation summary

Representative Requests/Responses

Before presenting the individual examples, this subsection introduces how the re-

quest /response evidence should be interpreted within the context of the evaluation.

Each API interaction shown below corresponds directly to one or more functional
requirements (FR-01...FR-09) and demonstrates how the implemented DMP Evalu-
ation Service behaves under realistic usage scenarios.
The requests illustrate how clients interact with the REST API—using JSON bodies

or multipart form-data—while the responses confirm that the service validates inputs,

persists metadata, executes tests, or returns evaluation results in compliance with the

system design. Together, these examples provide concrete operational evidence that

47

FEvaluation

the service supports the full evaluation workflow, from registering benchmarks and

metrics to executing parallel test evaluations and handling exceptional conditions.

Create a benchmark (FR-01).

This example demonstrates the functionality required by FR-01, which states that
the system shall allow users to register a new benchmark with descriptive metadata.
The request below submits a benchmark definition containing title, description,
keywords, and creators. The response confirms successful creation by returning 200
along with the assigned benchmarkId, showing that the benchmark was validated

and persisted correctly in the benchmarks collection.

{
"title": "Comprehensive RDM Activities Coverage",
"description": "Ensure that the DMP addresses all key components
of research data management, including lifecycle coverage, roles
and responsibilities, budgeting, description of outputs,
provenance, application of best practices, reproducibility, and
alignment with relevant policies.",
"version": "0.0.1",
"keyword": "DMP, Benchmark, maDMP",
"theme": "DMP Evaluation COVERAGE",
"status": "Active",
"creator": [
"https://orcid.org/0000-0002-0893-8509",
"https://orcid.org/0009-0002-4848-5089"
P
"hasAssociatedMetric": []
}
Listing 6.1: Request: POST /benchmarks
Response
{
"benchmarkId": "686ce321dd621c3ebe98d5b8",
"title": "Comprehensive RDM Activities Coverage",
"description": "Assesses the extent to which DMPs cover full

research data management (RDM) lifecycle, roles, costs, data
outputs, and best practices. Helps ensure alignment with funder
and institutional policies.",

"version": "0.0.1",

"hasAssociatedMetric": [],

"algorithms": [],

"keyword": "DMP, Benchmark, maDMP, RDM, policy, lifecycle",
"abbreviation": "RDM-COVERAGE",

"landingPage": null,

"theme": "DMP Evaluation - Coverage",

"status": "Active",

"creator": [

"https://orcid.org/0000-0002-0893-8509",

48

FEvaluation

"https://orcid.org/0009-0002-4848-5089"

Listing 6.2: Response: 200 Created

Create metric and link to benchmark (FR-02).

This operation validates FR~-02, which requires the system to support registering a
metric and associating it with an existing benchmark. The following request shows
a POST /metrics call that includes the hasBenchmark field linking the metric to
the benchmark created earlier. The response confirms that the metric was stored
successfully and that its relationship to the benchmark was recorded as defined in
the data model.

{
"title": "Defined Roles for Contributors in RDM",
"description": "Validates the presence and accuracy of
contributor roles in the DMP, supporting RDM responsibility
transparency.",
"version": "0.0.1",
"keyword": "RDM, contributor, roles, responsibility, DMP",
"abbreviation": "RDM-Roles-Defined",
"landingPage": null,
"theme": "Roles in RDM",
"status": "Active",
"isApplicableFor": "maDMP",
"supportedBy": "0OSTrails",
"hasBenchmark": ["686ce321dd621c3ebe98d5b8"]
}
Listing 6.3: Request: POST /metrics
Response
{
"id": "686ce730dd621c3ebe98d5b9",
"title": "Defined Roles for Contributors in RDM",
"description": "Validates the presence and accuracy of contributor

roles in the DMP, supporting RDM responsibility transparency.",

"version": "0.0.1",
"keyword": "RDM, contributor, roles, responsibility, DMP",
"abbreviation": "RDM-Roles-Defined",

"landingPage": null,

"theme": "Roles in RDM",

"status": "Active",

"isApplicableFor": "maDMP",

"supportedBy": "0OSTrails",

"hasBenchmark": [
"686ce321dd621c3ebe98d5b8"

49

FEvaluation

6]

N

Listing 6.4: Response: 200 Created

Register test and link to metric (FR-03).

The functionality shown here satisfies FR-03, which mandates the registration of a
new test with its conceptual metadata and its association with a metric. The request
includes metadata such as title, description, version, and the metricImplemented
reference. The response verifies that the test has been correctly persisted and linked,

making it available for later execution.

{
"title": "Roles in RDM Defined",
"description": "Verifies that contributor roles related to data
management are clearly defined in the DMP.",
"license": "MIT",
"version": "0.0.1",
"endpointDescription": "Verifies that contributor roles related to
data management are clearly defined in the DMP.",
"keyword": "roles, contributor, RDM, DMP",
"abbreviation": "RDM-Roles",
"repository": "https://github.com/0STrails/DMP-Evaluation-Service",
"type": "test",
"theme": "DMP Coverage",
"versionNotes": "0.0.1",
"status": "Active",
"isApplicableFor": "maDMP",
"supportedBy": null,
"metricImplemented": "686ce730dd621c3ebe98d5b9"
}
Listing 6.5: Request: POST /tests
Response
"id": "686d1088dd621c3ebe98d5ba",
"title": "Roles in RDM Defined",
"description": "Verifies that contributor roles related to data

management are clearly defined in the DMP.",

"license": "MIT",

"version": "0.0.1",

"endpointURL": "http://localhost:8080/tests/686
d1088dd621c3ebe98dbba",

"endpointDescription": "Verifies that contributor roles related to

data management are clearly defined in the DMP.",

"keyword": "roles, contributor, RDM, DMP",

"abbreviation": "RDM-Roles",

"repository": "https://github.com/0STrails/DMP-Evaluation-Service
"’

"type": "test",

50

FEvaluation

"theme": "DMP Coverage",

"versionNotes": "0.0.1",

"status": "Active",

"isApplicableFor": "maDMP",

"supportedBy": null,

"metricImplemented": "686ce730dd621c3ebe98d5b9"

Listing 6.6: Response: 200 Created

List entities (FR-04).

FR-04 requires the system to provide access to declared benchmarks, metrics, and
tests. The following GET requests demonstrate that the API can retrieve all registered
entities, reflecting the current state of the database. The responses show the expected
collections and confirm that entity listing, filtering, and retrieval behave consistently

with the service specification.

GET http: //benchmarks/list

Listing 6.7: Request: GET /benchmarks/list

Response
[
{
"benchmarkId": "686ce321dd621c3ebe98d5b8",
"title": "Comprehensive RDM Activities Coverage",
"description": "Assesses the extent to which DMPs cover full

research data management (RDM) lifecycle, roles, costs, data
outputs, and best practices. Helps ensure alignment with funder
and institutional policies.",
"version": "0.0.1",
"hasAssociatedMetric": [
"686ce730dd621c3ebe98d5b9",
"686d155fdd621c3ebe98d5bb ",
"686dlae4dd621c3ebe98d5be"

g

"algorithms": [],

"keyword": "DMP, Benchmark, maDMP, RDM, policy, lifecycle",
"abbreviation": "RDM-COVERAGE",

"landingPage": null,

"theme": "DMP Evaluation - Coverage",

"status": "Active",

"creator": [

"https://orcid.org/0000-0002-0893-8509",
"https://orcid.org/0009-0002-4848-5089"

Listing 6.8: Response: 200 Created

51

FEvaluation

GET http: //metrics/list

Listing 6.9: Request: GET /metrics/list

Response
i L
2 {
3 "id": "683d6f453bf7d46ee332102e",
1 "title": "Roles and Responsibilities in RDM",
5 "description": "Checks whether data management

responsibilities are defined and assigned through contributor
roles in the DMP.",

6 "version": "0.0.1",

7 "testAssociated": null,

8 "keyword": "roles, contributor, responsibility, DMP",

9 "abbreviation": "RDM-Roles",

10 "landingPage": null,

11 "theme": "RDM Govermnance",

12 "status": "Planned",

13 "isApplicableFor": "maDMP",

14 "supportedBy": "DMP Evaluation Service",

15 "hasBenchmark": [

16 "http://localhost :8080/benchmarks/6839c19dfde6a54b82304004

Listing 6.10: Response: 200 Created

1| GET http:/tests/info

Listing 6.11: Request: GET /tests

Response
if [
2 {
3 "id": "686d1088dd621c3ebe98d5ba",
1 "title": "Roles in RDM Defined",
5 "description": "Verifies that contributor roles related to

data management are clearly defined in the DMP.",

6 "license": "MIT",

7 "version": "0.0.1",

8 "endpointURL": "http://localhost:8080/tests/686
d1088dd621c3ebe98dbba",

9 "endpointDescription": "Verifies that contributor roles

related to data management are clearly defined in the DMP.",
10 "keyword": "roles, contributor, RDM, DMP",

11 "abbreviation": "RDM-Roles",

52

FEvaluation

"repository": "https://github.com/0STrails/DMP-Evaluation-
Service",

"type": "test",

"theme": "DMP Coverage",

"versionNotes": "0.0.1",

"status": "Active",

"isApplicableFor": "maDMP",

"supportedBy": null,

Listing 6.12: Response: 200 Created

Add Source Code Implementing a Test (FR-05).

This part validates FR-05, which requires the system to support the registration of
executable test implementations. Although the code is stored externally in plugins, the
service exposes the available plugin identifiers via GET /plugins. Displaying the list
of plugins confirms that the service successfully discovers and exposes implementations

that may later be linked to individual tests.

GET http://plugins

Listing 6.13: Request: GET /tests

Response

"pluginId": "DCSCompletenessEvaluator",
"description": "Evaluator to perform DCScompleteness tests",
"functions": [

"evaluateStructure",

"evaluateFormats",

"costEntityPresent",

"costEntityValuesPresent",

"contributorValuesPresent",

"datasetEntityValuesPresent"

"pluginId": "ComplianceEvaluator",
"description": "Evaluator to perform Compliance tests",
"functions": [

"evaluateCoherentLicense",

"checkFormatFile"

"pluginId": "FAIR_Champion",

93

FEvaluation

"description": "Evaluator to perform External calls for tests

"functions": [
"evaluateStructure",
"evaluateMetadata",

"evaluateLicense"

"pluginId": "FeasibilityEvaluator",

"description": "Evaluator to perform Feasibility tests",

"functions": [

"evaluateCoherentLicense"

"pluginId": "QualityOfActionsEvaluator",
"description": "Evaluator to perform FAIR tests",
"functions": [

"evaluateOpenAccess",

"dmpIdValid"

Listing 6.14: Response: 200 listed

Link Test Implementation to Metadata Record (FR-06).

FR-06 ensures that each test can be connected to a specific executable implementa-
tion. The example below shows a POST /tests/{id} request that updates a test by
attaching a pluginId and functionId. The system validates the identifiers against
the plugin registry and updates the stored test metadata accordingly, enabling correct

resolution during evaluation.

POST http://tests/686d1088dd621c3ebe98d5ba

Listing 6.15: Request: POST /tests/testId

Response
{
"id": "686d1088dd621c3ebe98d5ba",
"title": "Roles in RDM Defined",
"description": "Verifies that contributor roles related to data

management are clearly defined in the DMP.",

"license": "MIT",
"version": "0.0.1",
"endpointURL": "http://localhost:8080/tests/686

d1088dd621c3ebe98dbba",

54

FEvaluation

"endpointDescription": "Verifies that contributor roles related to
data management are clearly defined in the DMP.",

"keyword": "roles, contributor, RDM, DMP",

"abbreviation": "RDM-Roles",

"repository": "https://github.com/0STrails/DMP-Evaluation-Service
";ype": "test",

"theme": "DMP Coverage",

"versionNotes": "0.0.1",

"status": "Active",

"isApplicableFor": "maDMP",

"supportedBy": null,

"metricImplemented": "686ce730dd621c3ebe98d5b9",

"evaluator": "DCSCompletenessEvaluator",

"functionEvaluator": "contributorValuesPresent"

Listing 6.16: Response: 200 Updated

Select maDMP and Tests for Execution (FR-07).

This example demonstrates compliance with FR-07, which requires the system to
accept a request that initiates an evaluation. The request includes a reference to
the maDMP and the benchmark that should guide the execution. The successful
creation of an evaluation object indicates that the system has validated the input
and prepared the execution workflow.

To execute a single test, the client sends a multipart POST request to the endpoint
/assess/test. The request includes (i) the maDMP file, (ii) the identifier of the

test to execute.

POST /assess/test

Content -Type: multipart/form-data; boundary=----form-boundary

—————— form-boundary

Content -Disposition: form-data; name="maDMP"; filename="madmp.json"

i| Content -Type: application/json

{
"dmp": {
"title": "Sample Research Project DMP",
"contact": { "mbox": "pi@example.org" },
"dataset": [
{ "title": "Experimental Results Dataset", "pid": "doi:10.1234/
foo.bar" }
]
}
¥

—————— form-boundary
Content -Disposition: form-data; name="test"
"686d1088dd621c3ebe98d5ba"

Listing 6.17: Request: POST /assess/test (multipart/form-data)

95

FEvaluation

Response
{
"evaluationId": "0d7cclbb-8e9e-4248-93a1-1d90da6a2ebf",
"title": "Roles in RDM Defined",
"result": "PASS",
"details": "Verifies that contributor roles related to data

management are clearly defined in the DMP.",

"timestamp": "2025-11-20T15:54:18.191556300Z",
"reportId": "691£f39aa45f0bc725eeb77ch5",
"log": "contributors: [{\"contributor_id\":{\"identifier

\":\"0000-0002-4929-7875\" ,\"type\":\"orc\"},\"name\":\" Tomasz
Miksa\",\"role\": [\"Supervisor\"]}]\nContributor fields are
present in the maDMP",

"affectedElements": "dpm.contributor",

"completion": 100,

"generated": "io.github.ostrails.dmpevaluatorservice.evaluators.
completenessEvaluator . .DCSCompletenessEvaluator::
contributorValuesPresent",

"outputFromTest": "686d1088dd621c3ebe98d5ba"

Listing 6.18: Response: POST /assess/test (multipart/form-data)

Execute Test Implementations in Parallel (FR-08).

To demonstrate parallel execution (FR-08), a benchmark with multiple associated
metrics and tests was previously created in Sections FR-01 to FR-03. The following
snippet shows how the service executes all related tests.

Before running the benchmark evaluation, the necessary evaluation components were
already registered in the system. After creating the initial benchmark (Section 6.13),
additional metrics were added and linked to it, and each metric was associated
with one or more tests. These tests were also linked to concrete plugin-based
implementations using their pluginId and functionId. As a result, the benchmark
now defines a complete evaluation configuration composed of multiple metrics and
several executable tests.

The following example demonstrates how the DMP Evaluation Service executes
all tests associated with this benchmark in parallel using Kotlin coroutines. By
submitting a maDMP file together with the benchmark identifier, the service resolves
all linked tests, schedules each of them as an independent coroutine, and returns the

aggregated evaluation results once the execution has completed.

POST /assess/benchmark

Content -Type: multipart/form-data; boundary=----Boundary
Content -Disposition: form-data; name="maDMP"; filename="example-madmp.
json"

Content -Type: application/json

o6

FEvaluation

s{{ ... contents of the maDMP JSON document ... }

o| Content -Disposition: form-data; name="benchmark"

10

"686ce321dd621c3ebe98d5b8"

Listing 6.19: Request: POST /assess/benchmark

Response

The benchmark evaluation returns a list of Evaluation objects, one per executed
test. Each entry includes status information (PASS, FAIL, or INDETERMINATE), the
affected maDMP elements, detailed logs from the evaluator, and a generated field
indicating the exact plugin function executed. The following response corresponds to

the benchmark created in the previous steps.

[

"evaluationId": "T7accb7e2-a6dc-45f9-863a-454a7470e325",
"title": "Roles in RDM Defined",
"result": "PASS",
"details": "Verifies that contributor roles related to data
management are clearly defined in the DMP.",
"timestamp": "2025-11-24T13:43:14.568563100Z",
"reportId": "692460f27dab71453683b5b7",
"log": "contributors: [{\"contributor_id\":{\"identifier
\":\"0000-0002-4929-7875\" ,\"type\":\"orc\"},\"name\":\" Tomasz
Miksa\",\"role\":[\"Supervisor\"]}]\nContributor fields are
present in the maDMP",
"affectedElements": "dpm.contributor",
"completion": 100,
"generated": "io.github.ostrails.dmpevaluatorservice.evaluators.
completenessEvaluator . .DCSCompletenessEvaluator::
contributorValuesPresent",
"outputFromTest": "686d1088dd621c3ebe98d5ba"

Ts

{
"evaluationId": "bb5596774-clef-476a-8ada-31£f2bb329320",
"title": "Dataset Entity Completeness",
"result": "PASS",
"details": "Checks that dataset entities in the maDMP contain all

required fields, including distribution, identifiers, and personal

data flags.",

"timestamp": "2025-11-24T13:43:14.5690926002",

"reportId": "692460f27dab71453683b5b7",

"log": "Dataset[0] distribution title: ... personal_data: no,

sensitive_data: no\nDataset[1] distribution title:

personal_data: no, sensitive_data: no",

"affectedElements": "dpm.dataset",

"completion": 100,

"generated": "io.github.ostrails.dmpevaluatorservice.evaluators.
completenessEvaluator . .DCSCompletenessEvaluator::
datasetEntityValuesPresent",

"outputFromTest": "686d1761dd621c3ebe98d5bd"

o7

FEvaluation

"evaluationId": "e732d39b-85b0-4cba-82eb-d0afd5566d82",

"title": "Cost Entity Completeness",

"result": "PASS",

"details": "Checks that cost fields such as title, value,
description, and currency_code are filled in.",

"timestamp": "2025-11-24T13:43:14.569092600Z",

"reportId": "692460f27dab71453683b5b7",

"log": "Cost entry - title: DAMAP Tutorial, description; Tutorial
to learn DAMAP, value: 4500, currency: EUR",

"affectedElements": "dpm.cost.description",

"completion": 100,

"generated": "io.github.ostrails.dmpevaluatorservice.evaluators.

completenessEvaluator .DCSCompletenessEvaluator::costEntityPresent

n
>

"outputFromTest": "686d1f52dd621c3ebe98d5bf"
P
{
"evaluationId": "53651elf-6442-43cd-a30e-0963ad3913ab",
"title": "Presence of Cost Entity",
"result": "PASS",
"details": "Ensures the presence of the ’cost’ field in the maDMP

n
o >

"timestamp": "2025-11-24T13:43:14.569092600Z2",

"reportId": "692460f27dab71453683b5b7",

"log": "Cost fields are present in the maDMP",
"affectedElements": "dpm.cost",

"completion": 100,

"generated": "io.github.ostrails.dmpevaluatorservice.evaluators.

completenessEvaluator .DCSCompletenessEvaluator::costEntityPresent

n
>

"outputFromTest": "686d201ddd621c3ebe98d5c0"

Listing 6.20: Response: 200 OK — Benchmark Evaluation

Return Failure Explanations (FR-09).

To validate the robustness of the DMP Evaluation Service, several failure scenarios
were tested in addition to successful executions. These tests demonstrate how the
service behaves when incorrect parameters are provided, when plugin mappings are
missing, or when test logic raises unexpected errors. The goal is to confirm that
the system returns clear failure explanations, does not crash during evaluation, and
continues processing remaining tests where possible, fulfilling the transparency and

operability quality goals.

FAILURE SCENARIO 1 — Invalid Benchmark ID (404 Not Found)

o8

¥

FEvaluation

POST http://localhost :8080/assess/benchmark

3| L
"benchmark": "686ce321dd421c4ebe98s456",
"maDMP": "examplemaDMP. json"
}
Listing 6.21: Request: POST /evaluations with invalid benchmark ID
Response
{
"code": "NOT_FOUND",
"message": "Was not possible to generate the evaluation due io.
github.ostrails.dmpevaluatorservice.exceptionHandler.
ResourceNotFoundException: There is no benchmark with the ID 686
ce321dd421c4ebe98s456",
"timestamp": "2025-11-24T15:27:55.929451200Z2",
"path": "/assess/benchmark"
}

Listing 6.22: Response: 404 Benchmark not found

FAILURE SCENARIO 2 — Missing plugin/function mapping (Test
becomes INDETERMINATE)

"maDMP": "examplemaDMP. json",
"benchmarkId": "686ce321dd621c3ebe98d5b8"

Listing 6.23: Request: POST /evaluations where a test has no implementation

(

Response)
{
"evaluationId": "el1l9c2ef5-330c-4abl1-a9dc-9179d508£f334",
"title": "Roles in RDM Defined",
"result": "INDETERMINATE",
"details": "Test has no associated plugin or function implementation

n
° >

"affectedElements": null,
"log": "Pluginld=functionEvaluator not resolved",
"completion": O

}

Listing 6.24: Response: Test marked as INDETERMINATE due to missing plugin
mapping

99

V)

FEvaluation

FAILURE SCENARIO 3 — Invalid maDMP (400 Bad Request)

POST http://localhost:8080/evaluations/benchmark
Content -Type: multipart/form-data

maDMP = "maDMP.csv"
benchmark = "686ce321dd621c3ebe98d5b8"

Listing 6.25: Request: POST /benchmark with malformed maDMP

Response
{
"error": "Invalid maDMP format",
"message": "Was not possible to generate the evaluation due

Unexpected JSON token at offset
"status": 400

Listing 6.26: Response: 400 Invalid maDMP JSON

These examples collectively confirm that the DMP Evaluation Service correctly pro-
cesses evaluation components, persists them, retrieves them, and executes benchmark-

defined evaluations as specified in the functional requirements.

6.3.1 Quality Goals Validation

We evaluate the most relevant quality attributes from Table 3.4. Each subsection
presents the claim associated with the quality goal, the procedure or evidence used

to validate it, and the final outcome of the evaluation.

Functional Suitability

The system provides functions that meet the stated needs. Evidence. All functional
requirements (FR-01 to FR-09) are satisfied according to the validation matrix in
Table 6.1. The service correctly performs benchmark & metric registration, test
registration, mapping of tests to plugin implementations, and the execution of
evaluations with structured outputs. Evaluation results consistently include pass/fail

statuses, detailed explanations, and execution metadata. Outcome. Pass.

Maintainability

New evaluation logic can be added without modifying the core system. Procedure. A
new plugin function quality.test/check_license was implemented and exposed in
the plugin registry. A new Test entity referencing the new pluginId and functionId
was registered through the API. Evidence. No changes were required in controllers,
services, or execution infrastructure. The newly added test executed successfully

during a benchmark evaluation and produced valid output. Outcome. Pass.

60

FEvaluation

Operability

The system is easy to operate and its API is simple for users and external platforms
to consume. Evidence. All endpoints follow predictable REST conventions; error
messages include machine-actionable codes and human-readable explanations. CRUD
operations for benchmarks, metrics, and tests behave consistently, and multipart
evaluation requests can be executed using common tools such as curl or Postman

without additional configuration. Outcome. Pass.

Compatibility

The system interoperates correctly with external services and external standards.
Evidence. Evaluation functions successfully interact with external APIs such as
Unpaywall and FAIR evaluation services. The output produced by the service
conforms to the FAIR Testing Resource (FTR) data model, enabling reuse in external

tools. Outcome. Pass.

6.3.2 Alignment with the Assessment Framework

The DMP Evaluation Service has been designed to operationalize the Assessment
Framework. This framework defines the core concepts (benchmarks, metrics, and
tests) and their relationships as the basis for evaluating Data Management Plans
(DMPs).

Conceptual Alignment
The service adopts these entities directly in its data model:

e Benchmarks represent high-level evaluation scenarios or goals.

e Metrics capture specific aspects of a DMP to be assessed and are grouped

under benchmarks.
e Tests provide concrete and executable evaluation procedures for metrics.

This alignment ensures that evaluations performed by the service follow the same
conceptual structure as defined by the Assessment Framework, enabling comparability

across different evaluations and use cases.

FAIR Reference Data Model

In addition to conceptual alignment, the service integrates the FAIR Reference Data
Model produced in [1]. Evaluation results are represented and returned in this model,
ensuring that they are machine-actionable and interoperable with other tools. Each
TestResult includes structured fields for outcomes, explanations, and metadata,

which can be exported and reused in other contexts.

61

FEvaluation

Extensibility and Interoperability

The plugin mechanism in the DMP Evaluation Service supports the extensibility
principle of the Assessment Framework. New evaluation logic can be added without
modifying the core service, while results remain represented in the common FAIR
Reference Data Model. This design allows the service to integrate smoothly and
continuously with DMP platforms and external FAIR assessment services, supporting

interoperability across the data management ecosystem.

6.4 Limitations

Although the DMP Evaluation Service fulfills the functional and architectural goals
defined for this thesis, some limitations remain that constrain its current use and

applicability:

e There is no Ul layer, evaluation is triggered programmatically. The prototype
exposes its full functionality exclusively through a REST API. All interactions
like registering benchmarks, uploading tests, or evaluating maDMPs must be
performed programmatically via HTTP requests or tools like cURL/Postman.
This limits accessibility for non-technical users and prevents integration into
common DMP workflows without an intermediate client interface. A dedicated
UI or integration into existing RDM platforms would significantly increase

usability.

However, this limitation can be addressed once the service is connected with
DMP platforms, where the platform itself provides the user interface and hides

the API complexity from end-users.

e Dependence on external APIs may introduce instability and unpredictable
latency. Some tests rely on external services (e.g., Unpaywall, FAIR assess-
ment endpoints) to validate metadata within the maDMP. These external

dependencies introduce variability because:

— API availability cannot be guaranteed
— API rate limits or schema changes can break tests
e Security aspects, especially authentication and authorization, are out of scope.
The prototype does not implement mechanisms for user authentication (authN)
or role-based authorization (authZ). This means all endpoints are publicly

accessible, no access control is enforced on creating or modifying evaluation

components and no user-specific isolation of evaluation results exists.

6.5 Summary

The evaluation shows that all functional requirements (FR-01...FR-09) are satisfied

and the targeted quality goals are met in practice. Coroutine-based parallel execu-

62

FEvaluation

tion provides scalable processing, robustness test worked when plugins are missing
or external APIs fail. Identified limitations (no UI, limited scale tests, external

dependencies) inform future work.

63

Chapter 7

Conclusion and Future work

This chapter presents the central contributions of this work including its limitations,
summarizes the main results obtained by answering the research questions proposed

in Chapter 1, and discusses future work directions.

7.1 Contributions

In this thesis, we propose a DMP Evaluation Service that extends and addresses
limitations of previous work [8]. We improved the design using the following approach.
First, we collected the requirements of stakeholders from discussions with the consor-
tium of the OSTrails project, and also based on previous work in maDMPs. These
requirements cover functional and non-functional characteristics for the design of the
DMP Evaluation Service. Based on the requirements, we designed the architecture of
the system, meaning we defined the main building blocks, the interactions between
components, and the actors involved. Then, we implemented the system in Kotlin
using the Spring Boot framework and defined the primary endpoints for executing
the service functionalities. Finally, we evaluated the DMP Evaluation Service against

the requirements defined and provided practical examples of the responses obtained.

The central contributions of this work can be summarized as follows:

e Design and development of a configurable evaluation service for maDMPs,

implemented in Kotlin using the Spring Boot framework.

o Integration of a benchmark-metric-test model from OSTrails project that enables

transparent, reusable, and modular assessment configurations.

o Implementation of an interoperable API for evaluating maDMPs and returning
structured results aligned with OSTrails’ assessment interoperable framework

specifications.

64

Conclusion and Future work

7.2 Review of Research Questions

To wrap up the work developed in this thesis, we revisit the research questions defined

in section 1.5.

1. In what way the architecture of the DMP service needs to be revised to better

reflect the real world requirements of production ready systems?

The work presented in this thesis demonstrates that the original architecture de-
signed in Lukas Arnold’s [8] thesis required modifications to satisfy requirements

such as modularity, extensibility, interoperability, and operational robustness.

First, the service architecture was reorganized into a clear layered structure
that separates REST controllers, business logic services, plugin-based execution,
coroutine-based parallelism, and database persistence. This redesign eliminates
the tightly coupled structure of the original prototype and enables the system to
evolve without breaking existing components. In particular, the new modular-
ization avoids the previous situation in which loading or processing a maDMP
from a new source required adding custom code directly into the service logic.
By isolating data ingestion, execution, and orchestration concerns, the system
now provides a stable, extensible integration boundary where new maDMP

sources or formats can be supported without modifying core components.

Second, the modification of the Plugin mechanism, organized in the original
design with DMP categories only, allows evaluation logic to be added, replaced,
or removed without modifying the core service. This is a critical requirement
for real-world deployments where evaluation methods evolve, expand, and must

be maintained independently of the backend service.

Finally, API design, error handling, logging, and the data access layer were all
updated to reflect operational needs typical for production systems—improved
stability, better diagnostics, meaningful error messages, and resilience against

external API failures.

Overall, the revised architecture is more modular, maintainable, scalable, and
operationally realistic, making it appropriate for integration into real research

data management infrastructures.

2. In what way the data model of the DMP service needs to be revised to align
with FTR and to support the architectural changes?

The evaluation conducted in this thesis shows that the original data model was
too limited to support interoperability and traceability requirements expected
from modern evaluation systems. To address this, the thesis revises the data
model to align with the FAIR Testing Resource (FTR) vocabulary, ensuring

compatibility with the broader FAIR assessment ecosystem.

First, the entities Benchmark, Metric, Test, Evaluation, and TestResult were

adapted to better mirror the conceptual definitions in the Assessment Frame-

65

Conclusion and Future work

work [1] and the FTR specification. This includes the introduction of explicit

identifiers, typed relationships, and structured metadata fields.

Second, new fields were added to the Test entity to support runtime binding:

pluginld functionl.

These fields link conceptual test definitions to their executable implementations,
enabling automated test resolution and execution — a feature not present in

the earlier data model.

Third, the adoption of MongoDB aligns naturally with FTR requirements for
flexible result schemas. This enables the system to store heterogeneous result

payloads originating from different evaluators without sacrificing consistency.

In summary, the revised data model provides semantic alignment with the
FTR vocabulary, supports linking of tests to implementations, and ensures that
evaluation results are interoperable, machine-actionable, and reusable across

tools.

. How to integrate the Assessment Framework with the DMP Evaluation Service

in order to provide standardized evaluation results ?

The findings of this thesis demonstrate that seamless integration of the As-
sessment Framework is achieved by embedding its concepts and relationships
directly into the core architecture and execution workflow of the DMP Evalua-

tion Service.

First, the entities defined by the Assessment Framework—Benchmarks, Metrics,
and Tests—are implemented as first-class objects in the system and follow the
hierarchy prescribed in the framework. This guarantees that every evaluation

is grounded in a structured, shared conceptual model.

Second, the plugin mechanism ensures that the execution of Tests is both
standardized and flexible. Because each Test references a pluginld and a
functionld, the system can execute heterogeneous evaluation functions while
still representing the results in a consistent way defined by the Assessment

Framework.

Third, evaluation output is serialized into a machine-actionable structure that
is aligned with the FAIR Reference Data Model and compatible with the FAIR
Testing Resource (FTR). This ensures that results produced by the service can
be consumed by other FAIR, assessment tools, integrated into RDM workflows,

and reused for meta-assessment or reporting.

Fourth, the system supports external validation through optional integration
with external APIs such as FAIR assessment services. This extends the As-
sessment Framework beyond syntactic or structural validations and allows
semantic or evidence-based verification, fully in line with the framework’s spirit

of dynamic and context-aware evaluation.

66

Conclusion and Future work

Through these mechanisms, the DMP Evaluation Service operationalizes the
Assessment Framework in a way that maintains conceptual fidelity while en-
abling interoperability across tools, platforms, and assessment pipelines in the

research data management ecosystem.

7.3 Future Work

Several directions can be explored to extend the present work. First, to facilitate
stakeholder interaction with the DMP Evaluation service, a possible extension is to
provide a Ul layer that simplifies the process for end users and enables functionalities
depending on the actor’s role. Second, assessing the service scalability in a production-
ready environment also remains an open direction for future evaluation. Third, in
this work, we did not consider security aspects in a production deployment and this

is an area that could be explored to improve automatic assessment.

67

Appendix A

Appendix A: Resources

A.1 Prototype Source Code

The complete implementation of the DMP Evaluation Service is available at:
e Repository: https://github.com/your-org/dmp-evaluator-service
e Version evaluated in this thesis: v1.0.0-thesis

The repository is organised as follows:

e src/main/kotlin/ — Core application modules (controllers, services, plugin

registry, evaluation workflow).
e src/main/resources/ — Configuration files and example data.
e plugins/ — Example plugin implementations used during evaluation.

e docker-compose.yml — Docker configuration for MongoDB.

A.2 Running the Prototype

This section describes how to run the DMP Evaluation Service locally for testing or

reproduction of the evaluation results.

1. Clone the Repository

git clone https://github.com/your—org/dmp—evaluator—service. git
cd dmp—evaluator—service

68

https://github.com/your-org/dmp-evaluator-service

Appendiz A: Resources

2. Start MongoDB using Docker Compose

Ensure that Docker is installed and running. Then start the MongoDB backend:

docker—compose up —d

This launches a MongoDB instance configured for the application.

3. Build the Project

The service is built using Maven:

mvn clean install

This command compiles the Kotlin/Spring Boot sources and runs all automated

tests.

4. Run the Application

Start the service using the Spring Boot Maven plugin:

mvn spring—boot:run

The application will start on:

e http://localhost:8080

5. Access API Documentation (Optional)

Swagger Ul is automatically generated and can be accessed at:
e http://localhost:8080/swagger-ui.html

This interface provides a complete overview of available endpoints, request schemas,

and example executions.

A.3 Additional Resources

A.3.1 Example maDMP Inputs

The following directory contains the maDMP files used during system evaluation:

e DMP-Evaluation-Service-master-thesis /examplees_maDMP

A.3.2 Benchmark, Metric, and Test Definitions

The JSON metadata used during the evaluation in Chapter 6 is included in:

e resources/examples/definitions/

69

Appendiz A: Resources

A.3.3 Plugin Implementations

Example evaluator implementations used during testing are located in:

o dmpevaluatorservice/evaluators/

70

Bibliography

[1] OSTrails/FAIR _testing resource_vocabulary. original-date: 2024-03-06T10:06:08Z|
Aug. 2025. URL: https://github.com/0STrails/FAIR_testing_resource_
vocabulary (visited on 08/25/2025).

[2] Ngoc-Minh Pham, Heather Moulaison-Sandy, Bradley Wade Bishop, and Han-
nah Gunderman. “Data Management Plans: Implications for Automated Anal-
yses | Data Science Journal”. en. In: (Jan. 2023). DOI: 10.5334/dsj-2023-002.
URL: https://datascience.codata.org/articles/dsj-2023-002 (visited
on 09/29/2025).

[3] Tomasz Miksa, Peter Neish, Paul Walk, and Andreas Rauber. “Defining require-
ments for machine-actionable data management plans”. en-US. In: ¢PRES 2018
Conference Proceedings. Conference Name: iPRES 2018. 2018. URL: https:
//phaidra.univie.ac.at/0:923628 (visited on 11/26/2025).

[4] Tomasz Miksa, Simon Oblasser, and Andreas Rauber. “Automating Research
Data Management Using Machine-Actionable Data Management Plans”. en.
In: ACM Transactions on Management Information Systems 13.2 (June 2022).
Publisher: Association for Computing Machinery (ACM), pp. 1-22. 1SSN: 2158-
656X, 2158-6578. DOI: 10.1145/3490396. URL: https://dl.acm.org/doi/10.
1145/3490396 (visited on 07/12/2025).

[5] Tomasz Miksa, Stephanie Simms, Daniel Mietchen, and Sarah Jones. “Ten
principles for machine-actionable data management plans”. en. In: PLOS
Computational Biology 15.3 (Mar. 2019). Publisher: Public Library of Science,
€1006750. 1SSN: 1553-7358. DOI: 10.1371/journal.pcbi.1006750. URL: https:
//journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.
1006750 (visited on 08/05/2025).

[6] Tomasz Miksa, Marek Suchdnek, Jan Slifka, Vojtech Knaisl, Fajar J. Ekaputra,
Filip Kovacevic, Annisa Maulida Ningtyas, Alaa El-Ebshihy, and Robert Pergl.
“Towards a Toolbox for Automated Assessment of Machine-Actionable Data
Management Plans”. en-US. In: Data Science Journal 22.1 (Aug. 2023). 1SSN:
1683-1470. pOI: 10.5334/dsj-2023-028. URL: https://datascience.codata.
org/articles/10.5334/dsj-2023-028 (visited on 07/12/2025).

[7] Alberto Ballesteros-Rodriguez, Miguel- Angel Sicilia, and Elena Garcia-Barriocanall
“madmpy: A Python library for creating and validating Data Management
Plans”. In: SoftwareX 31 (Sept. 2025), p. 102215. 1SSN: 2352-7110. DOI: 10.

71

https://github.com/OSTrails/FAIR_testing_resource_vocabulary
https://github.com/OSTrails/FAIR_testing_resource_vocabulary
https://doi.org/10.5334/dsj-2023-002
https://datascience.codata.org/articles/dsj-2023-002
https://phaidra.univie.ac.at/o:923628
https://phaidra.univie.ac.at/o:923628
https://doi.org/10.1145/3490396
https://dl.acm.org/doi/10.1145/3490396
https://dl.acm.org/doi/10.1145/3490396
https://doi.org/10.1371/journal.pcbi.1006750
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006750
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006750
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006750
https://doi.org/10.5334/dsj-2023-028
https://datascience.codata.org/articles/10.5334/dsj-2023-028
https://datascience.codata.org/articles/10.5334/dsj-2023-028
https://doi.org/10.1016/j.softx.2025.102215
https://doi.org/10.1016/j.softx.2025.102215

BIBLIOGRAPHY

1016/ j . softx . 2025 . 102215. URL: https://www . sciencedirect . com/
science/article/pii/S2352711025001827 (visited on 08/26,/2025).

Lukas Arnhold. “Automated Quality Indicators for Machine-actionable Data
Management Plans”. en. Accepted: 2024-09-11T10:46:26Z Journal Abbreviation:
Automatisierte Qualitatsindikatoren fiir Maschinell Verarbeitbare Datenman-
agementplane. Thesis. Technische Universitat Wien, 2024. DO1: 10.34726/hss.
2024.117145. URL: https://repositum.tuwien.at/handle/20.500.12708/
200466 (visited on 02/07,/2025).

Gernot Starke and Peter Hruschka. arc{3-web. en. URL: %5Curl’ 7Bhttps :
//arc42.org/%7D (visited on 08/25/2025).

Simon Brown. The CJ Model for Visualising Software Architecture. en-US. URL:
https://c4model.com/ (visited on 08/25/2025).

JetBrains. Coroutines | Kotlin. en-US. URL: https://kotlinlang.org/docs/
coroutines-overview.html (visited on 08/25/2025).

72

https://doi.org/10.1016/j.softx.2025.102215
https://doi.org/10.1016/j.softx.2025.102215
https://doi.org/10.1016/j.softx.2025.102215
https://www.sciencedirect.com/science/article/pii/S2352711025001827
https://www.sciencedirect.com/science/article/pii/S2352711025001827
https://doi.org/10.34726/hss.2024.117145
https://doi.org/10.34726/hss.2024.117145
https://repositum.tuwien.at/handle/20.500.12708/200466
https://repositum.tuwien.at/handle/20.500.12708/200466
%5Curl%7Bhttps://arc42.org/%7D
%5Curl%7Bhttps://arc42.org/%7D
https://c4model.com/
https://kotlinlang.org/docs/coroutines-overview.html
https://kotlinlang.org/docs/coroutines-overview.html

	Introduction
	Overview
	Motivation
	Problem Statement
	Objectives
	Research Questions
	Methodology
	Contribution
	Thesis Structure

	Related work
	Data Management Plan (DMP)
	Machine-Actionable DMP (maDMP)
	RDA DMP Common Standard
	DMP Tools
	Assessment for maDMP
	maDMPpy Library
	Assessment Framework and Prototype by Lukas Arnold
	General Description
	Component Architecture
	Data Architecture
	Application Architecture

	FAIR Testing Resource Vocabulary (FTR)
	Main Components
	Interoperability and Standardization
	Relevance to This Thesis

	Discussion

	Requirements
	Roles of Stakeholders
	Use Cases
	Functional Requirements
	FR-01 - Register a Benchmark
	FR-02 - Register a Metric
	FR-03 - Register a Test
	FR-04 - Access Declared Benchmarks, Metrics, and Tests
	FR-05 - Add Test Implementation Source Code
	FR-06 - Link test Implementation to metadata
	FR-07 - Select the DMP and Evaluation Component
	FR-08 - Execute Test Implementation
	FR-09 - Return Evaluation Results and Failure Explanations

	Quality goals
	Functional suitability
	Maintainability
	Compatibility

	Architecture design
	Conceptual design - System Contexts
	Container View
	Component View
	 Sequence View
	Data Model View

	Description of the workflow
	Summary

	Implementation
	Introduction
	Solution Strategy
	Implementation of Functional Requirements
	Plugin Mechanism and Parallel Execution
	Data Persistence and Model Realization
	Error Handling and Robustness
	End-to-End Example Workflow
	Summary

	Evaluation
	Introduction
	Methodology
	Functional Validation
	Quality Goals Validation
	Alignment with the Assessment Framework

	Limitations
	Summary

	Conclusion and Future work
	Contributions
	Review of Research Questions
	Future Work

	Appendix A: Resources
	Prototype Source Code
	Running the Prototype
	Additional Resources
	Example maDMP Inputs
	Benchmark, Metric, and Test Definitions
	Plugin Implementations

	Bibliography

