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Abstract

We delve into the statistical inference limitations, especially with
respect to experimental results derivations, and how causal inference
provides a formal approach that generalizes randomized controlled
trials for the scientific inquiry. We also develop an interface to bridge
between the well known frameworks of Ananke and Pomegranate, to
perform asymptotically debiased effect estimations, from surrogate
experiments, in absence of hidden confounders. Thus, we analyze how
relevant errors of finite sample size are, to see if a pilot study may
effectively be used to decide the best. Lastly we examine other causal
tasks and limitations of current approaches and the one we propose,
as well as possible future improvements. The code is available on
GitHub, here.

https://github.com/AndPan96/ananke-pomegranate.git
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1 Statistical Models and the IID Assumption

Limitations

1.1 Statistical Learning Theory

Statistical inference is a branch of statistics that tries to build models, lever-
aging data and prior knowledge, such that the model is able to predict on un-
seen data. The two approaches, which differ by the way they model their as-
sumptions, are the Frequentist one, that leverages Hypothesis Classes of func-
tions, so to restrict the model to the space of a certain parametric function
configurations, and the Bayesian one, which does not assume any functional
form, but models dependencies by conditional probabilities, also relying on
arbitrary priors. Yet both leverage the Central Limit and PAC Learning
Theorems to provide at least theoretical guarantees to build asymptotically
unbiased estimators.

1.2 IID Assumption Limitations

But the statistical learning theory builds many of its models on the assump-
tions that its training sample is independent and identically distributed. We
can relax the independence assumption as far as the process is ergodic, thus
quickly converging to a stationary distribution independent on the starting
conditions, but here we follow a different, not mutually exclusive to it, path
of generalization, which is based on different assumptions. If we can as-
sume that the relationships between our model variables are stable per se,
we can provide generalization on arbitrary shifts in the overall distributions,
reassessing our priors. In other words, the causal framework provides a way
to fit models with stable mechanisms, that perform domain adaptation by
just finding the new priors with a small dataset.
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2 Effect Estimation and Exogeneity Under

RCTs

2.1 Estimating an Effect

Estimating an effect is essential for the scientific research since, no matter
how beautiful a theory is, if it fails to predict evidence under certain sys-
tem manipulations, it is simply untrustworthy an useless. Yet when we talk
about effects we are making assumptions on the stability of such a relation-
ship between the quantities we are measuring. Thus the will to limit, as
possible, any bias the whole process may bring, which may lead to, maybe
even repeatable tests, but that would fail outside of the test environment or
the standard conditions.

2.2 Exogeneity

To grant that a variable influence on another is stable and unbiased, at least
with an infinite sample size, causal frameworks require our controlling vari-
ables to be exogenous, that means that the variables which we assume to be
the causes do not have to be influenced by anything that may depend on the
experimental setup, our test environment. Talking about exogeneity with-
out assuming causality, means limiting our experimentation to co-occurring
events, which highly limits the scope of our models.

2.3 RCTs and Why They Grant Exogeneity

The so called golden standard for experiments are randomized controlled
trials. We get a sample of our population (with no selection bias, in theory),
then we randomly assign each subject to a certain group, each exposed to a
fixed value of the controlled variables, so we see how differences in them lead
to differences in other variables. In the causal setting we assume the firsts
to be the causes and the seconds to be the effects. Such a randomization is
what should grant exogeneity, since the controlled variables, being assigned
randomly, shouldn’t be affected by any other avaiable in the process. In
practical design of experiments yet, we struggle to avoid biases, due to ethical,
economical and logistical constraints.
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3 A Formal Representation of Causal Assump-

tion

3.1 Philosophical Assumptions of Causality and Sci-
ence with respect to Pure Pragmatism and RL

The theoretical assumption statistical learning and, more in general, rein-
forcement learning is based on, follows the pragmatic view that an intelligent
system can learn by building more and more abstract knowledge, leveraging
concrete evidence to create a hierarchy through composition of progressively
abstract concepts, all in order to optimize its capability to produce some
value. Without such a given value, the pragmatic view tells us nothing on our
chances of building up some knowledge. Causality adds to it the assumption
that we can learn stable mechanisms even without any value. Such a view
is still subjective, since both sensors and values are, and science attempts to
devoid itself from them, by leveraging measurement items and standardizing
measurement procedures. This science can claim to be intersubjective, at
least in its testing. Such a step further, by the way, comes at the cost that,
since there is no objective way to define value itself, any stable pattern we
can claim to find can be irrelevant to anyone but us. Furthermore, since
we never see the alternative outcome of anything, science is not willing to
provide any explanation to phenomena, despite such practice led to highly
useful models (think of Newton and gravitation, for example).

3.2 Pearlian Causal Framework and Markov Property

Out of the many causal mathematical frameworks that we have been devel-
oped (which differs by details on the assumptions of causality) the Pearlian
is one of the more flexible ones. It is based on the Markov property, say the
assumption that every variable is either exogenous or depending on only a
subset of the other variables, and with a stable relationship. So the Causal
Hierarchy Theorem states that we have three levels, called Rungs, of models,
each rung adding assumptions and power of generalization at inference. Rung
1 is of models of pure correlations and can only make predictions assuming
the distribution does not change. Rung 2 adds the Markov property and the
power to make predictions of actions or assuming changes in the distribu-
tion; this according to most of science. Rung 3 adds priors on the hypothesis
class of mechanisms, making counterfactual statements and inferring causes
from effects; this goes out of the agreed scope of science, but delves into the
philosophical one.
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3.3 Nested Markov Models

A recent Rung 2 alternative, stemming from the Pearlian framework, is the
one of Nested Markov Models, which is the one we will use. While the
Pearlian framework leverages DAGs forced to model latent variables, NMM
uses Acyclic Directed Mixed Graphs (ADMG), by collapsing latent nodes
and their direct edges to bidirected edges. While the Pearlian framework
provides a sound (with no hidden confounder) and complete algebra named
do-calculus, leveraging three different mappings of < DAG, formula > pairs,
NMM provides a single mapping that leverages the general definition of
Kernel and a Fixing operation iteratively. The causal graph can also be
(sometimes partially) discovered from data, and the some time ago better
constraint based discovery algorithm, the PC-stable, differed from the do-
calculus and could not find come constraints, like the so called Verma con-
straint. NMM uses the same algorithm that uses for inference and finds all
the so far known constraints, reducing the set of possible causal graphs to
the theoretical minimum. Our choice, of using the NMM framework is so
justified, in the design of experiments setting, for its elegance and maximal
power in case of possible improvements regarding the graph discovery.
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4 z-Identifiability and Surrogate Experiments

4.1 Identifiability Under no Hidden Confounder

Pearlian and NMM frameworks, as anticipated, have an algebra to derive
effects bypassing their actual measurement, an algorithm that we use in
this work so it is better to introduce it. The manipulation of the pair
< ADMG, formula > is called Identification and if we are able to go back
to our observational ADMG, we say the quantity, say the query we wanted
to derive, is Identifiable and the formula we have obtained by those manip-
ulations is one Identification formula of such a query (there could be many,
equivalent). Since such Identification algebras are complete but not closed
with respect to the pair object it works on, Identification is not guaranteed
to be always achieved, but we can say a query is not Identifiable if such algo-
rithms cannot find it. It is important to note also that soundness is granted
only in absence of hidden confounders that is, if we are not modeling vari-
ables affecting certain other ones in our models, we cannot guarantee any
asymptotically unbiased estimation.

4.2 z-Identifiability and Generalization to Surrogate
Experiments

Identification can be generalized by mapping, not from the query pair to the
observational one, but to another one we want, so that, if we can intervene on
a subset of our variables z, say perform an RCT manipulating the variables
of z, we can compute such experiment, that we so call Surrogate Experiment,
and say that the query is z-Identifiable for that z. So Identification can be
seen as a special case of z-Identification, with z = ∅. A different experimental
setup corresponds to a different causal graph and it is useful to think of it
this way. There are cases in which we cannot manipulate certain quantities
for ethical, economical, logistical reasons, but we can intervene on others:
here surrogate experiments can be a good ally.
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5 A Cost Estimation Framework to Drive Cost

Effective Experiments

5.1 Different Identification Mechanisms Have Differ-
ent Formulas

As we said, given a certain query, there may be multiple ways to identify it,
that is, multiple formulas we could use, and that will be all asymptotically
unbiased in absence of hidden confounders. But in real cases we will always
work with a finite sample size, often willing to keep it as small as possible, to
reduce costs and impact on the environment. This leads us to our question:
can we derive insights on which experiment to run, given many possible ones,
that are accurate enough to be reliable?

5.2 Estimating Sample Sizes and Providing Cost Func-
tions

We assume we have been provided with a cost function of each experimental
setup, function of the sample size, costi : |samplei| → R+, since the possible
controllable variables are known a priori, thus the powerset of them is the
set of all possible setups (the empty set being the observational one). It
is possible, therefore, to collect an observational pilot study and estimate
each setup, by simulating the postinterventional distributions of the various
setups by interventions on the model. Once the sample sizes get retrieved
the problem of the best cost seems straightforward, so we will assume cost =
|samplei| for simplicity. What we want to know is how much reliable such
procedure is and how much relying on surrogates in the first place.
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6 Tool Practical Implementation

Our code was written in Python v3.11.13. The notebook can be found on
GitHub here.

6.1 The Benchmark suite

The main libraries we used are:

6.1.1 Microsoft CSuite

A cluster of synthetic processes built by Microsoft while working on the DECI
paper [1]. It consists of 15 processes and both an observational and a postin-
terventional drawn distributions are accessible at the URL
https://github.com/microsoft/csuite/releases/download/v0.1/csuite_

{name}.zip

by an HTTP request. The name field refers to the process name and we used
all of them in our tests:

• lingauss

• linexp

• nonlingauss

• nonlin simpson

• symprod simpson

• large backdoor

• weak arrows

• cat to cts

• cts to cat

• mixed simpson

• large backdoor binary t

• weak arrows binary t

• mixed confounding

• cat chain
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• cat collider

The object wrapped in the response also contains metadata like the causal
graph representing the process. The full documentation can be found on
GitHub here.

6.1.2 Ananke v0.5.0

Ananke is a causal discovery and inference framework based on the NMM
framework and developed by the team of one of its main contributors, Ilya
Shpitser[2]. It also provides linear SEM models to fit the data, but we only
used the identification module. The documentation can be found here.

6.1.3 Pomegranate v1.1.2

Pomegranate is a framework providing probabilistic models with a wide data
format support, from numpy to pytorch arrays, and a low level customiza-
tion and access, facilitating customizations [5]. We leveraged its Bayesian
Network model, with Categorical and ConditionalCategorical distributions.
The documentation can be found here.

6.2 Bridging between Ananke and Pomegranate

To coherently connect the two frameworks, we automate the BN structure
definition from the corresponding ADMG. Since Pomegranate assumes a
DAG structure, not necessarily causal, we rely on the ADMG identification
formula to prevent any possible anti-causal flow of information, and map
bidirected edges to arbitrary directed ones, or none if a directed was already
present.
To actually compute the causal query estimate, we have defined a symbolic
tree of computation, made of Node class nodes, of three different types:

• SumNode: to handle marginalizations

• ProdNode: for products of probabilities

• CPDNode: implementing the fixing and conditioning operations

A static method is involved in parsing the Ananke identification formula to
build the tree. Every node can call its version of the evaluate() method
to compute the partial result, recursively calling the children ones. Lastly
another static method reshapes the distribution result to leave the query
variables and marginalize for all of the others.
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To reduce error propagation due to finite precision computation, all the tensor
are manipulated as log probabilities as much as possible, and logsumexp() is
used for the marginalizations.

6.3 The (meta)Experiment

For each process, we have computed 4 measurements of the same query in
different setups:

• Obs: Identification from observational BN

• BNsurr: z-Identification from observational BN with simulated inter-
ventions on the model

• Surr: z-Identification from postinterventional BN

• Exp: conditional probability from postinterventional BN

Where the z set is always the degenerate case of being the actual treatment
variable. We automated preprocessing by binning each variable of a certain
number of bins; all but two having width evenly split in [−3σ,+3σ] of the
observational marginal, the remaining two for the tails. Values are so encoded
as categorical in BNs. Metadata of the observational binning are then used
to keep the same process for the Surr BNs and the Exp BNs.
ADMGs corresponding to Obs, Surr and Exp setup are printed for clarity;
the output can be found at G.
The BNsurr setup leverages the Obs BN but the Surr formula.
Once the queries are computed, we compare their means and variance with
the Exp setup as a reference. Since the output can be multidimensional, we
measure the variance as the Frobenius norm of the covariance matrix of the
output variables joint.
We also measure an estimate of the required sample size, using each setup
as an hypothetical pilot. We define confidence = 95% (so Z-score = 1.96),
relative margin of error = 0.1%, then, to get the absolute margin, it gets
multiplied by the bin variance, modeled as an uniform in the bin round
interval. The binning error is also accounted as Type B error, summed to
the covariance matrix in the formula (Q). The final formula used is:

n =
Z2||Σ +Q||2

(M
qP

i |bini|2
12

)2
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6.4 Results and Analysis

The tables can be found at J.
From our results we see that:

• BNsurr results differ in general from Obs ones and are closer with
respect to Exp both in mean and variance on average (assuming out-
come distributed as normal). Typically, leveraging the knowledge on
the ADMG helps.

• BNsurr results differ in general from Surr ones, performing the same on
average. Surr have higher variance but less bias, even if they use the
same formula, so due to the difference between simulated and actually
postinterventional dataset.

• Surr don’t always match Exp even if they should, in theory, since they
both come from the postiterventional distribution. The only difference
is that Exp uses knowledge of the treatment being exogenous, while
Surr uses the Ananke formula, that should still work in this degenerate
condition. We checked the formulas and they look correct, so the error
comes from the algorithm run on the model.

• The most Obs, BNsurr and Surr are biased from Exp, the most they
tend to exhibit low variance. This higher bias but lower variance be-
havior is typically shown on non Gaussian distributions. This may be
due to the generalized heuristic of the binning process, that was well
suited for normally distributed variables. We expect this phenomenon
to vanish with an appropriate ad hoc binning or nonparametric, kernel
based, models like GPs.

• The estimated required sample size tends to vary according to the fit-
ting quality but, as far the estimation is performed assuming normally
distributed variables, as often happens in the design of experiments,
the closer is the estimate to the Exp setup, the closer the empirical
estimate of the required sample size itself.

Thus, assuming that the knowledge on the ADMG is reliable and that there
are no impactful biases, performing an observational pilot study and sim-
ulating different postinterventional policies, may lead to better sample size
estimations that bare outcome observational statistics. Also, when those as-
sumptions hold, sample sizes don’t differ as we had expected, at least if we
still assume typical estimation formulas. The go to would so be to always go
for the cheapest per unit setup, as far as assumptions are trusted, or drop
some of the assumptions on sample size estimation used today.
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7 Assumptions on the Functional Form and

Mediation Analysis of Experiments

7.1 Counterfactual Queries

There are causal queries NMM framework will not answer, that are the coun-
terfactual ones. A counterfactual is a query of what ”would have been”, given
a certain evidence, had something changed while all the rest being kept the
same. Such questions are doubly problematic from a scientific perspective:
they can’t be falsified at inference time, neither at training time in the first
place, since we always only see only the things that happen, not the alterna-
tive outcome. More than that, it seems like their applications may be very
limited at first glance. The reason is that counterfactual queries shine only
when we work at the meta level, guided by a value (say a reward, in RL,
or objective function), or updating the value function itself. Since, as we
pointed out, science aims to be value-free, it cannot make sense, neither find
use of it. Still, we now make two examples of how it is quite useful. Say
you have to have a multistep decision making problem. You find that there
is one state that always leads to poor results, so you would like to ask what
leads to such result, to prevent it. It becomes a Root Cause Analysis prob-
lem needed to update the value of such a state transition, which is a credit
assignment problem. Let’s now move to another example and say you want
to make a surrogate experiment because you cannot afford the real one, but
neither the surrogate can be properly performed following standard design of
experiment practices, maybe because they violate human rights of subjects.
Looking at the counterfactual when the subject choice is not compliant to
its group, allows us to simulate fixing and even decompose the effect of a
variable on another, like in Mediation Analysis.

7.2 Functional Form Assumptions and Bias

Mathematically, a counterfactual takes a piece of evidence, a realization, and
asks how it would change by varying part of it. Since it works at the indi-
vidual level, it needs our model to be able to shift the variables only for the
exogenous factors, not for the stable mechanisms, so to distinguish between
mechanisms and exogenous noise. This requires the model to make assump-
tions on the hypothesis class of the model. While more general architectures
could potentially solve part of the bias, hidden confounders as well as bias in
the sampling policy itself may compromise the model in unmeasurable ways.
This suggests that alternatives able to model uncertainty (like Gaussian Pro-
cesses and variations, despite they also make assumptions on Kernels) may
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be preferable since they are at least able to quantify their confidence.

7.3 Mediation Analysis and Ethical Experiments

The only way we can decompose an effect at Rung 2 is the computation of
the Controlled Direct Effect (CDE), which is the effect we would get by fixing
the mediators to a value. The CDE is so a function of mediators fixed values:

CDE(m) = P (Y = y|do(X = x), do(M = m))

− P (Y = y|do(X = x′), do(M = m))

But this computation hides an issue: to compute the CDE we intervene not
only on the mediators but also on the treatment variable, so it is as feasible
as RCTs (or estimating them). The Rung 3 extension to that is the Natural
Direct Effect (NDE), that allows the mediators to get the values the would
get observationally:

NDE(m) = P (YM |do(x))− P (YM |do(x′))

.
While it may sound similar, the counterfactual on m simulates the realiza-
tions at the individual level, only affecting the ones that have a different value
than the required one. Furthermore, it extends to the Natural Indirect Effect
(NIE), that computes the contribution of the effect that passes through the
mediators:

NIE(m) = P (YM |do(x))− P (YM ′ |do(x))

.
NDE and NIE are not complementary in general.
For linear models it is guaranteed that the Total Effect (or Average Treatment
Effect, ATE) is their sum:

ATE = E[P (Y = y|do(X = x))− P (Y = y|do(X = x′))]

= NDE +NIE

.
The cases when such a relationship does not hold, in nonlinear cases, is due
to a phenomenon called Moderation, when the treatment has a nonlinear in-
teraction with at least one of its mediators, this fixing one or the other would
cancel a contribution that will not sum up at the end. The counterfactual
notation allows to perform ethical experiments more easily, but relies on the
assumptions of the model for its soundness, obviously.
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8 A Guide to Choose between Causal Models

8.1 What Query We Have to Answer

The first question one has to answer, to decide which model to choose, is
the required power of inference. If the aim is to estimate the effect of an
action and to work on policy making or domain adaptation, a Rung 2 model
is enough. If the goal is to derive the cause from the effect, say to perform
root cause analysis, or mediation analysis, there is the need for a Rung 3
model. The first Rung 2 model has been a Causal BN (CBN) and it is still
the safest option. Many alternatives, based on the Frequentist approach and
Influence Functions (IF) have been proposed (like DR-Learner and DML).
They were born to be more sample efficient estimators for systems involving
wide spaces, but a big drawback is that they often cannot grant to have
asymptotically bounded variance in Conditional ATE (CATE), being so lim-
ited to ATE. Similarly, for the Rung 3 models the first one has been a linear
Structural Equation Model (SEM), which gets generalized to the nonlinear
case as SCM. Today, building an SCM where edges are modeled with Multi
Layer Perceptrons (MLPs) is the safest option.

8.2 Which Assumptions We Can Make

For scientific inquiry, the Rung 2 models fit the best. They need no assump-
tion but for the ADMG structure and are intrinsically limited to describe
what happens, not allowing any counterfactual statement. They also need
relatively less data, so are more aligned with real experimental settings, when
we want to limit our impact on the environment and our costs. Rung 3 mod-
els, instead, need assumptions on the functionals form and the noise one.
If we restrict the hypothesis class too much, we end up biasing our results
ending up with the wrong conclusions; if we make it flexible enough, we need
more data to fit them.

8.3 MLPs on SCMs and the Sample Size We Have at
Disposal

Despite SCMs still have some limitations, leveraging MLPs is enough to make
them relatively data hungry. This leads us to restrict their potential usage
on settings where we can afford cheap and safe trainings, like in simulated
environments. More generally, SCMs still assume a sum of nonlinear func-
tions of each cause, to the effect (Y =

PPa(Y )
i Fi(i)), while the most general

case would be entirely nonlinear (Y = f(Pa(Y ))).
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9 Finding the Graph if We Lack Domain Knowl-

edge

9.1 Markov Equivalence Class and Observational Equiv-
alence

We previously cited the Causal Discovery process as the learning of the causal
graph structure from data. Here we briefly discuss it more in detail. Given
a joint probability distribution, there are many possible processes that could
have generated it, that may differ in their structure. So sampling from a
process forgets part of the information, that cannot be retrieved by that dis-
tribution alone. The set of all plausible graphs is called Markov Equivalence
Class (MEC) and can be seen as an analogous to hypothesis classes. In par-
ticular, graphs of the MEC given by the observational distribution are said
to have Observational Equivalence.

9.2 Interventional Markov Equivalence Class and In-
terventional Equivalence

If the MEC can easily be a non singleton set, by looking at different distri-
butions drawn from the same system under different manipulations, we can
highly reduce the plausible candidates. When we can look at interventional
distributions, we talk about i-MEC as the set of graphs having Interventional
Equivalence, which is a subset of the MEC. more importantly, once we can
restrict the set by all manipulations we can expect to face, we may not care
to find ”the true” process, since we have found some behaving the same way
for all intents and purposes.

9.3 Choosing the Least Cost Set of Interventions Un-
der Assumptions of No Hidden Confounder

In order to limit blind and potentially harmful interventions on an unknown
system, a process that has been proposed, leverages a first discovery from
purely observational data, then prescribing, through an algorithm, the least
cost interventions we may need, to unveil some dependencies of interest. The
limitation of such approach is that it still assumes the absence of hidden con-
founders, since it assumes that its prescriptions would be sufficient to provide
the needed information. It cannot so prescribe, obviously, interventions on
variables we ourselves are not taking into account to begin with.
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10 Current Models Limitations and Research

Directions

10.1 Causal Representation Learning and Latent Markov
Related Variables for RL

Making deep learning causal is today still an open problem. The attempt to
perform causal discovery and mechanisms fit at once as well as the problem
of extracting latent causal variables from a raw space where features are not
Markov related, could widen causal models real world applications.

10.2 Finding Better Rung 3 Models Having Agnostic
Nonlinear Functions of Mechanisms

As introduced, SCMs model nonlinear mechanisms of each < cause, effect >
pair, but all partial contributions to the same effect get summed up. This
means that even an ”OR” statement (∨) cannot be modeled if we lack ex-
plicit modeling of involved mediators. This couples with the previous point.
A further addition is that SCM need a predefined structure, so a good ag-
nostic generalization cannot afford to model the causal structure explicitly.
A reasonable solution is to learn a latent SCM.

10.3 Bounded Unbiased Estimation Under Hidden Con-
founders

Recent studies are focusing on unbiased estimation even in presence of hidden
confounders. They provide boundaries instead of point solutions and are
another useful tool to improve the power of design of experiments.
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11 Conclusion

Causality needs trustworthy knowledge to be reliable, and that knowledge
has to come from somewhere, let it be data, or domain expertise, or previous
experiments, but it can increase the span of experiments we can perform
ethically as well as helping formalizing assumptions, by being used as a formal
language for experiments, even for RCTs. These two aspects could help a
lot soft sciences to find a way to be formal and run repeatable experiments,
maybe surrogate but reliable since, once a mechanism gets identified with a
valid set of its parents, and we mean Markov Parents, it is expected to be
consistent across different studies, even out of specific laboratory controlled
conditions.
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A Primer on Probability / Graphs for Causal-

ity

Definition (Joint Probability Function). Given:

• a sample space Ω

• a σ-algebra of events F

• a probability measure P

• a probability space (Ω,F , P ) on them

For a set of random variables X1, X2, . . . , Xn, the joint probability distri-
bution of these variables is defined as the probability of the event {X1 =
x1, X2 = x2, . . . , Xn = xn}. The joint probability function is written as:

P (X1 = x1, X2 = x2, . . . , Xn = xn) = P ({X1 = x1, X2 = x2, . . . , Xn = xn}),

and represents the probability of the simultaneous occurrence of the events
X1 = x1, X2 = x2, . . ., and Xn = xn.

Definition (Conditioning). Given:

• a sample space Ω

• a σ-algebra of events F and events A,B in it

• a probability measure P

• a probability space (Ω,F , P ) on them

For P (B) > 0, the conditional probability of A given B is defined as:

P (A | B) =
P (A ∩B)

P (B)
.

Definition (Graph). A graph is a pair G = (V,E), where V is a set whose
elements are called vertices, and E is a set of pairs {v1, v2} of vertices, whose
elements are called edges.

Definition (Acyclic Graph). An acyclic graph is a graph G = (V,E), if it
does not contain any cycles, meaning there is no path in the graph that starts
and ends at the same vertex without repeating any edge.
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Definition (Directed Graph). A directed graph is a graph G = (V,E), where
E is a set of ordered pairs (v1, v2) of vertices, whose elements are called
directed edges.

Definition (Directed Acyclic Graph, DAG). A directed acyclic graph, DAG
is a directed graph G = (V,E), which is also an acyclic graph.

Definition (ADMG). [4, sec 2.1] The acyclic directed mixed graph, ADMG
of a graph G(V ∪̇L), is the graph G(V ) = σL(G(V ∪̇L)) obtained by applying
the latent projection operation to it.

Definition (CADMG). [4, sec 2.2] A conditional ADMG, CADMG is an
ADMG G(V,W ) with V ∩W = ∅, V called the set of random vertices, W
the set of fixed ones, and the constraint that ∀w ∈ W, pa(w) = ∅ ∧ bi(w) =
{w ↔ a, a ∈ V ∪W} = ∅, that is, fixed vertices have no parent or bidirected
edges.

Definition (Latent Projection). [4, sec A.3] Given a graph G(V ∪̇L, so that
V is the set of observable vertices and L the set of latent vertices, the latent
projection operation of G on L, written as G(V ) = σL(G(V ∪̇L)), is defined
such that, for every a, b ∈ V :

• if there exists a directed path a→ ...→ b and all nodes except a and b
are in L, the edge a→ b ∈ G(V )

• if there exists a path between a and b such that all nodes except a and b
are non-colliders in L and both a and b have arrows pointing at them,
the edge a↔ b ∈ G(V )
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B Agnostic PAC Learning

Definition (Empirical Risk Minimization). [6, sec. 2.2] Given:

• a population with distribution D = {< X ,Y >}

• a sample S drawn from D

• a function { : X → Y

• an Hp Class H so that h ∈ H and hS : X → Y

The Empirical Error or Empirical Risk, on S is defined as:

Ls(h) =
|{i ∈ |S|, h(xi) ̸= yi}|

|S|

Definition (Uniform Convergence). [6, sec. 4.1] Given:

• a domain Z and a probability distribution D over Z

• a sample S drawn from D

• an Hp Class H

• ϵ, δ ∈ {0, 1}

If always exists a function mUC
H : (0, 1)2 → N such that P (LD(A(S) and

|S| ≥ mUC
H , we say that H has the uniform convergence property on Z.

Definition (Shattering and VC-dimension). [6, sec. 6.2] Given:

• a population with distribution D = {< X ,Y >}

• a sample C drawn from X

• an Hp Class H

If |H| ≥ 2|C| we say that H shatters C.
The maximal C that can be shattered, so that |H| = 2|C|, is the VC-dimension
of H.

Theorem (Agnostic PAC Learning). [6, sec. 6.4] Given:

• an Hp Class H so that h ∈ H and hS : X → {′,∞}

• V Cdim(H) = d <∞
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• absolute constants C1, C2

It always holds that H has the uniform convergence property and is agnostic
PAC learnable with sample size:

C1
d+ log(1/δ)

ϵ2
≤ mUC

H (ϵ, δ) ≤ C2
d+ log(1/δ)

ϵ2

Theorem (No Free Lunch Theorem). [6, sec. 5.1] Given:

• a population with distribution D = {< X , {′,∞} >}

• a sample S drawn from D such that S < |X |/2

• a learning algorithm A over X

Exists a distribution D where all the followings hold:

1. Exists f : X → {0, 1} such that LD(f) = 0

2. P (LD(A(S) ≥ 1/8) ≥ 1/7
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C Rung 2 Definitions, Theorems and Prop-

erties

Definition (Conditional Independence). [3, sec. 1.1.5] Given:

• a finite set of variables V = {V1, V2, . . . }

• a joint probability function P (·) over V

• three disjoint subsets X, Y, Z in V

The sets X and Y are said to be conditionally independent, given Z if

P (x | y, z) = P (x | z) whenever P (y, z) > 0

Property (Symmetry (of Conditional Independence)). [3, sec. 1.1.5]

(X ⊥⊥ Y | Z) =⇒ (Y ⊥⊥ X | Z)

Property (Decomposition (of Conditional Independence)). [3, sec. 1.1.5]

(X ⊥⊥ Y ∪W | Z) =⇒ (X ⊥⊥ Y | Z)

Property (Weak Union (of Conditional Independence)). [3, sec. 1.1.5]

(X ⊥⊥ Y ∪W | Z) =⇒ (X ⊥⊥ Y | Z ∪W )

Property (Contraction (of Conditional Independence)). [3, sec. 1.1.5]

(X ⊥⊥ Y | Z) ∧ (X ⊥⊥ W | Z ∪ Y ) =⇒ (X ⊥⊥ Y ∪W | Z)

Property (Intersection (of Conditional Independence)). [3, sec. 1.1.5]

(X ⊥⊥ W | Z ∪ Y ) ∧ (X ⊥⊥ Y | Z ∪W ) =⇒ (X ⊥⊥ Y ∪W | Z)

Conditional independence tells us that, when we apply the chain rule of
probability, we don’t need to account for all of the variables that precede the
ith one, but only the ones when we actually see an association. For these
variables we indeed have a definition.

Definition (Markovian Parents). [3, sec. 1.2.2] Given:

• a finite and ordered set of variables V = {X1, . . . , Xn}
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• a joint probability function P (·) over V

A set of variables paj is said to be the Markovian parents of Xj if paj is a
minimal set of predecessors (with respect to the order) of Xj that renders Xj

independent of all its other predecessors. In other words, paj is any subset
of {X1, . . . , Xj−1} such that

P (xj | paj) = P (xj | x1, . . . , xj−1)

and no proper subset of paj satisfies C.

Note that so far the relationship is still associative, furthermore, more
different orderings are allowed, coherently with our understanding of the
inherent symmetry of association. We will now see better why and how to
go further, but, for this purpose, we need to introduce graphs.

Definition (d-Separation). [3, sec. 1.2.3] Given:

• a graph G with X, Y disjoint subsets of the nodes of G

• a path p from a node in X to a node in Y

• a set of nodes Z in G

p is said to be d-separated (or blocked) by Z if and only if one of the following
cases occurs:

• p contains a chain i → m → j or a fork i ← m → j such that the
middle node m is in Z

• p contains an inverted fork (or collider) i → m ← j such that the
middle node m is not in Z and no descendant of m is in Z.

And a set Z is said to d-separate X from Y if and only if Z blocks every
path from a node in X to a node in Y .

So probability spaces model events and DAG do this too, joint probability
functions have some events ”screening off” the relationships of the ancestors
to their children and directed graphs do this with d-separation.

Definition (Markov Compatibility). [3, sec. 1.2.2] Given:

• a DAG G

• a joint probability function P
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If P admits the factorization of equation C

P (x1, . . . , xn) =
nY

i=1

P (xi|pai)

relative to G, we equivalently say that:

• G represents P

• G and P are compatible

• P is Markov relative to G

Definition (Bayesian Network). [3, sec. 1.2.2] Given:

• a finite set of variables V

• a joint probability function P (v) over V

• a DAG G

G is said to be a Bayesian Network compatible with P if and only if P (v) is
Markov relative to G.

Property (Causal Markov Condition). [3, sec. 1.2.3] Given:

• a finite set of variables V

• a joint probability function P (v) in V

• a DAG G

P (v) is said to have the Causal Markov Condition (or local Markov property),
if it satisfies that every variable in V is independent of all its non descendants
(in G), conditional on its parents.

The following theorem finally bridges the gap between d-Separation and
Markov Compatibility.

Theorem. [3, sec. 1.2.3] Given:

• a DAG G with three disjoint subsets of its nodes X, Y, Z

If sets X and Y are d-separated by Z, then X is independent of Y conditional
on Z in every distribution compatible with G. Conversely, if X and Y are
not d-separated by Z in a DAG G, then X and Y are dependent conditional
on Z in at least one distribution compatible with G.
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The theorem is unidirectional, from DAG to probability function. The
opposite task is more complex, especially with purely observational data,
since in that case, different DAG structures can be observationally equivalent,
i.e. they are all possible, given the observed data.

Theorem. [3, sec. 1.2.3] Given:

• a joint probability function P

• a DAG G

A necessary and sufficient condition for P to be Markov relative to G is
that, conditional on its parents in G, each variable be independent of all its
predecessors in some ordering of the variables that agrees with the arrows of
G.

So, stating that the probability function is Markov relative to the DAG
is equivalent to saying that the order induced by the DAG is a valid one of
C.

Theorem. [3, sec. 1.2.3] Given:

• a joint probability function P

• a DAG G

A necessary and sufficient condition for P to be Markov relative to G is for
the Causal Markov Condition to hold.

Definition (Intervention). [3, sec. 1.3.1] Given:

• a sample space Ω

• a σ-algebra of events F and A in it

• a probability measure P

• a probability space (Ω,F , P ) over them

For a random variable X and event A ∈ F , the interventional probability
using the do-operator, denoted P (A | do(X = x)), is defined as the probability
of A after intervening to set X to x, severing its natural causes in the causal
graph. Formally:

• P (A): probability of A in M∅ the observational model

25



• PX(A): probability of A in MX the model modified cutting incoming
edges in X

P (A | do(X = x)) = PX(A | X = x).

Fixing a variable to a specific value, do(X = x) is also called a hard-
intervention. Generalizing, a soft intervention defines a mapping function,
a policy, by which the variable takes a value, based on the other ones,
do(X = g(pax)), with pax potentially different from the preinterventional
model. Thus we can clearly see how the intervention operator generalizes
the conditioning one, which can be indeed seen as a special case, having as
policy the so called natural, behavioral or observational one.

Definition (Causal Bayesian Network). [3, sec. 1.3.1] Given:

• a finite set of variables V

• a joint probability function P (v) over V

• a joint probability function PX(v) resulting from the intervention do(X =
x) that sets a subset X of variables in V to constants x

• the set P∗ of all interventional distributions PX(v), X ⊆ V , including
P (v), which represents no intervention (i.e., X = ∅)

A DAG G is said to be a causal Bayesian network compatible with P∗ if and
only if the following conditions hold for every PX ∈ P∗:

• PX(v) is Markov relative to G

• P (v) = 1 for all Vi ∈ X whenever Vi is consistent with X = x

• P (vi|pai) = P (vi|pai) for all Vi /∈ X whenever pai is consistent with
X = x

In other words, our Bayesian Network is causal if our DAG faithfully
represents the underlying process that is, the encoded information is causal
as well.

26



D Rung 3 Definitions, Theorems and Prop-

erties

Definition (Counterfactual). [3, sec. 1.4.4] Given:

• a sample space Ω

• a σ-algebra of events F and an event A in it

• a probability measure P

• a probability space (Ω,F , P ) over them

• some evidence E

For a random variable X, an intervention X = x, and the event A, the
counterfactual probability, denoted P (AX | E), is defined as the probability
of A had X been x, given evidence E. Formally:

• P (A): probability of A in M∅ the observational model

• P (AX): probability of A in MX the model modified cutting incoming
edges in X

P (AX | E) = P (A | do(X = x), E).

Here we highlight that, if we fix a counterfactual that goes according to
our evidence, we are in practice performing a standard intervention, so the
counterfactual operator generalizes the interventional one and, thus, also the
conditioning one, by performing no intervention at all and only leveraging
evidence.

Definition (Structural Equation). [3, sec. 1.4.1] Given:

• a variable Xi

• a set of variables PA ⊂ V 2 such that pai ∈ PA, markovian parents of
Xi

• a set of i.r.v. Ui

• a mapping function fi

The equation
xi =: fi(pai, ui)

is said to be structural under the constraints that we only compute xi from it
and keeping the markov parental order while doing so.
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Definition (Structural Causal Model). [3, sec. 7.1.1] Given:

• a set of background variables U , called exogenous

• a set of variables V , called endogenous

• a set of variables PA ⊂ V 2 such that pai ∈ PA, markovian parents of
Vi

• a set of functions F , so that ∀fi ∈ F, fi : Ui ∪ pai → Vi

A causal model is a triple M = ⟨U, V, F ⟩ where each fi in

vi =: fi(pai, ui), i = 1, ..., n

assigns a value to Vi that depends on(the values of) a selected set of variables
in V ∪ U , and the entire set F has a unique solution V (u).

As for Bayesian Networks we kept information on the stable conditional
probabilities, in SCM we keep functions and an estimate of the noise terms,
for each modeled variable.

Definition (Causal World). [3, sec. 7.1.1] Given:

• a causal model M

• a particular realization of the background variables u

A causal world w is a pair ⟨M,u⟩.

Definition (Causal Theory). [3, sec. 7.1.1] A causal theory is a set of causal
worlds.

Thus, an SCM is referred to a causal model as well as a theory. More
specifically, a single individual, out of all the deterministic causal models
possible, once we have fixed the exogenous unmodeled factors, is referred to
as a world. A sample of worlds is referred to as a theory and so each theory
is an improper subset of the whole causal model, which is a theory as well;
the theory containing all of the possible models allowed by the unspecified
exogenous factors.

Definition (semi-Markovian Model). [3, sec. 1.4.2] A causal model associ-
ated with a graph G is said to be semi-Markovian if G is acyclic.

Definition (Markovian Model). [3, sec. 1.4.2] A causal model, associated
with a graph G and with background variables U , is said to be Markovian if
it is semi-Markovian and Ui ⊥⊥ Uj for all Ui, Uj ∈ U and i ̸= j.
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Definition (Probabilistic Causal Model). [3, sec. 7.1.1] Given:

• a causal model M

• a set of background variables U

A probabilistic causal model is a pair⟨M,P (u)⟩ where P (u) is a probability
function defined over the domain of U .

Theorem. [3, sec. 1.4.2] Given:

• a Markovian model M

• a DAG G associated with M

It always induces a distribution P (x1, ..., xn) that satisfies the causal Markov
condition relative to G.

Theorem. [3, sec. 5.2.1] Given:

• a Markovian model M

• a DAG G associated with M

• three disjoint subsets X, Y, Z in the nodes of G

If X and Y are d-separated by Z in G, then X is independent of Y in M .
Conversely, if X and Y are not d-separated by Z in G, then X and Y are
dependent conditional on Z in M but for some degenerate cases.
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E Do-Calculus / Fixing & Kernels

E.1 Do-Calculus

Property (Identifiability). [3, sec. 3.2.4] Given:

• any computable quantity Q(M) of a Markovian model M

• a class of models M

We say that Q is identifiable in M if, for any pairs of models M1 and M2 from
M , Q(M1) = Q(M2) whenever PM1(v) = PM2(v). If we have unobserved and
can only estimate a partial set FM of features (of PM(v)), Q is identifiable
from FM if Q(M1) = Q(M2) whenever FM1 = FM2.

So whenever our estimate has identifiability, given the topology of our
DAG, we can get an asymptotically unbiased estimate of that quantity from
observations.

Definition (Causal Effect). [3, sec. 3.2.1] Given:

• two disjoint sets of variables X, Y

The causal effect of X on Y , denoted either as P (y|x̂) or as P (y|do(x)), is
a function from X to the space of probability distributions on Y . For each
realization x of X, P (y|x̂) gives the probability of Y = y induced by deleting
from the model of D, all structural equations corresponding to variables in X
and defining them as X = x in the remaining structural equations.

Property (Causal Effect Identifiability). [3, sec. 3.2.4] Given:

• two disjoint sets of variables X, Y

• a DAG G associated to a Markovian model M

The causal effect of X on Y is identifiable from G if the quantity P (y|x̂) can
be computed unambiguously, that is, if PM1(y|x̂) = PM2(y|x̂) for every pair
of models M1 and M2 with PM1(v) = PM2(v) > 0 and G(M1) = G(M2) = G.

Definition (Back-Door Criterion). [3, sec. 3.3.1] Given:

• a joint probability function P

• a DAG G markov relative to P

• a disjoint sets of variables X, Y in P
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• a set of variables Z in P \ {X, Y }

Z satisfies the back-door criterion for Xi, Yj in G if these conditions are both
satisfied:

• no node in Xi is a descendant of Xi

• Z blocks every path between Xi and Yj that contains incoming edges
towards Xi

If Z satisfies these conditions for every Xi ∈ X and every Yi ∈ Y , it is said
to satisfy the back-door criterion for X, Y in G.

Definition (Front-Door Criterion). [3, sec. 3.3.2] Given:

• a joint probability function P

• a DAG G markov relative to P

• a pair of variables X, Y in P

• a set of variables Z in P \ {X, Y }

Z satisfies the back-door criterion for Xi, Yj in G if these conditions are all
satisfied:

• Z intercepts all direct paths from X to Y

• there is no unblocked back-door path from X to Z

• X blocks all back-door paths from Z to Y

The following two theorems work for Markovian models only and reflect
how statisticians have typically adjusted for confounders in the XX century,
with arguably different results since they lacked part of the theory involved
in doing such operations.

Theorem (Adjustment for Direct Causes). [3, sec. 3.2.3] Given:

• a set of variables V

• a set of variables PA ⊂ X2 such that pai ∈ PA, markovian parents of
Xi

• a set of variables disjoint of {Xi ∪ pai}, Y
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The effect of the intervention do(Xi = x′
i) on Y is given by

P (y|x̂′
i) =

X
pai

P (y|x̂′
i, pai)P (pai)

where P (y|x̂′
i, pai) and P (pai) represent preintervention probabilities.

Theorem. [3, sec. 3.2.4] Given:

• a Markovian model M

• a DAG G associated with M

• a subset V of measured variables in M

• a set of variables pa ⊂ V , markovian parents of X

The causal effect P (y|x̂) is identifiable whenever {X ∪Y ∪ paX ⊆ V }, that is
whenever X, Y and all parents of variables in X are in V . The expression
for P (y|x̂) is then obtained by adjusting for paX , as in E.1.

Theorem (do-Calculus). [3, sec. 3.4.2] Given:

• an SCM M as in D

• a DAG G associated with M

• the joint probability function P (·) entailed by M

• three disjoint subsets of variables X, Y, Z in the variables of M

• GVi
being G where incoming edges to Vi have been removed

• GVi
being G where outgoing edges from Vi have been removed

• V (W ) being the subset of V not ancestors of the subset W

These three rules always hold:

• Rule 1 (Insertion/deletion of observations):

(Y ⊥⊥ Z|X,W )GX
=⇒ P (y|x̂, z, w) = P (y|x̂, w)

• Rule 2 (Action/observation exchange):

(Y ⊥⊥ Z|X,W )GXZ
=⇒ P (y|x̂, ẑ, w) = P (y|x̂, z, w)
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• Rule 3 (Insertion/deletion of actions):

(Y ⊥⊥ Z|X,W )G
XZ(W )

=⇒ P (y|x̂, ẑ, w) = P (y|x̂, w)

where Z(W ) is the set of Z − nodes that are not ancestors of any
W − node in GX .

do-calculus has been shown to be complete and, with no hidden con-
founders sound. The two following criteria are sound as well and can be
derived by applying the do-calculus.

Theorem (Back-Door Adjustment). [3, sec. 3.3.1] If Z satisfies the back-
door criterion relative to (X, Y ), then the causal effect of X on Y is identi-
fiable and is given by the formula

P (y|x̂) =
X
z

P (y|x, z)P (z)

Theorem (Front-Door Adjustment). [3, sec. 3.3.2] If Z satisfies the front-
door criterion relative to (X, Y ) and if P (x, z) > 0, then the causal effect of
X on Y is identifiable and is given by the formula

P (y|x̂) =
X
z

P (z|x)
X
x′

P (y|x′, z)P (x′)

E.2 Fixing & Kernels

Definition (Kernel). [4, sec 2.3] Given

• a set of vertices V and a corresponding set of random variables Xv

• a domain XW

A kernel is a function qV : xW → xV written as qV (xV |xW ), such that:

• qV is nonnegative

• X
xV

qV (xV |xW ) = 1,∀xW ∈ XW

Definition (District). [4, sec 2.2] Given a CADMG G(V,W ) and a vertex
v ∈ V , the district of v, written as disG(v), is the maximal set made of all
nodes bidirected connected to v.
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Definition (Markov Blanket). [4, sec 2.8.2] Given a CADMG G(V,W ) and
a vertex v ∈ V , the Markov blanket of v in G is defined as:

mbG(v) = paG(disG(v)) ∪ (disG(v) \ {v})

Definition (Fixable). [4, sec 2.11] Given a CADMG G(V,W ) and a vertex
v ∈ V , v is fixable if there is no other vertex v′ ∈ V that is both a descendant
of v and in its district. So the set of all fixable vertices is defined as:

F(G) = {v|deG(v) ∩ disG(v) = {v}}

Definition (Fixing). [4, sec 2.11] Given a CADMG G(V,W ) and a ker-
nel qV (xV |xW ) associated to it, for every fixable vertex r ∈ F(G) the fixing
operation is defined as:

ϕr(qV (xV |xW ),G(V,W )) = (
qV (xV |xW )

qV (xr|xmbG(xr))
,G(V \ {r},W ∪ {r}))

Definition (Reachable). [4, sec 2.13] Given an ADMG G(V ∪ W ) and a
CADMG G ′(V,W ), G ′ is said to be reachable from G if exists a valid fixing
sequence w of the vertices in W and G ′ = ϕW(G)

Definition (Intrinsic). [4, sec 3.2] A district that is reachable in a graph G
is said to be intrinsic. The set of all intrinsic sets of G is written as I(G).

Theorem (Invariance of fixing ordering). [4, sec 3.1] Given:

• an ADMG G(V )

• a kernel qV (xV |xW ) nested Markov to it, that is, corresponding to a
G ′ ∈ I(G)

• w1,w2 both valid fixing sequences for the set W ⊆ V

ϕw1(qV (xV |xW ),G(V,W )) = ϕw2(qV (xV |xW ),G(V,W ))

Definition (Global Markov Property for CADMGs). [4, sec 2.8.1] Given:

• a CADMG G(V,W ) and a kernel qV (xV |xW ) associated to it

• three disjoint sets of vertices A,B,C ⊆ V where C can be empty

• G |W being the subgraph of G after fixing W

qV has the global markov property for G(V,W ) if:

∀A,B,C, A m−separated from B given C in G |W =⇒ XA ⊥⊥ XB|XC in qV
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Definition (Local Markov Property fot CADMGs). [4, sec 2.8.2] Given:

• a CADMG G(V,W ) and a kernel qV (xV |xW ) associated to it

• a vertex v ∈ V, chG(v) = ∅

qV has the local markov property for G(V,W ) in v if:

Xv ⊥⊥ X(V ∪W )\(mbG(v)∪{v})|XmbG(v) in qV

Theorem (ID Algorithm for NMMs). [4, sec 4.3] Given:

• a causal DAG G(V ∪ L) and its latent projection G(V )

• two disjoint sets A∪̇Y ⊆ V

• Y ∗ = anG(V )V \A(Y ) ancestral graph of Y after intervening on A

• D(G(V )Y ∗) set of districts of v in the subgraph G(V )Y ∗

If and only if, D(G(V )Y ∗) ⊆ I(G), the set is intrinsic in the observational
graph, then pY (xY |doG(V ∪L(xA)) is identifiable and the following equation
holds:

pY (xY |doG(V ∪L(xA)) =
X
xY ∗\Y

Y
D∈D(G(V )Y ∗ )

ϕV \D(pV (xV ),G(V ))

35



F Counterfactuals

Theorem. [3, sec. 7.1.1] Given:

• a Probabilistic Markovian model ⟨M,P (u)⟩

The conditional probability P (YX |e) of a counterfactual sentence ”if it were
X then Y ,” given evidence e, can be evaluated using the following three steps:

1. Abduction - Update P (u) conditioned by the evidence e to obtain
P (u|e).

2. Action - Modify M by the action do(X), where X is the antecedent of
the counterfactual, to obtain the submodel MX .

3. Prediction - Use the modified model ⟨MX , P (u|e)⟩ to compute the
probability of Y , the consequence of the counterfactual.

Counterfactuals leverage evidence to prune our theory from all of the
causal worlds that are not likely to have been happened. The purpose of the
abduction step is this and the reason is that, when we make counterfactuals
statements, we always assume a stability in time that is not sure to be the
case. We are about to consider an alternative scenario, which we achieve
in the action step, but we want it to occur in the ”closest world” possible.
The prediction step is self explanatory. One might ask what’s the purpose
of counterfactual reasoning.

Property (Composition (of Counterfactuals)). [3, sec. 7.3.1] Given:

• a Markovian model M

• three disjoint sets W,X, Y in the variables of M

We have
Wx(u) = w =⇒ Yxw(u) = Yx(u).

Property (Effectiveness (of Counterfactuals)). [3, sec. 7.3.1] Given:

• a Markovian model M

• three disjoint sets W,X in the variables of M

We have
Xxw(u) = x.

Property (Reversibility (of Counterfactuals)). [3, sec. 7.3.1] Given:
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• a Markovian model M

• a set X in the variables of M

• two variables W,Y in the variables of M

We have
(Yxw(u) = y) ∧ (Wxy(u) = w) =⇒ Yx(u) = y.

Property (Recursiveness (of Counterfactuals)). [3, sec. 7.3.1] Given:

• a Markovian model M

• two variables X, Y in the variables of M

We have Let X → Y stands for the inequality Yxw(u) ̸= Yw(u) for some
values of x, w, and u. M is recursive if, for any sequence X1, X2, ..., Xk, we
have

X1 → X2, X2 → X3, ..., Xk−1 → Xk =⇒ Xk ↛ X1

Theorem. [3, sec. 7.3.1] Composition, effectiveness and reversibility are
sound in structural model semantics; that is, they hold in all Markovian
models.

Theorem. [3, sec. 7.3.1] Composition, effectiveness and reversibility are
complete for all Markovian models.

Theorem. [3, sec. 7.3.1] Composition, effectiveness and recursiveness are
complete for all Markovian models.

To clarify, reversibility is telling us that if we have a cycle but both vari-
ables determine each other consistently, it is legit to have it. The more
appropriate interpretation is that, since they always have to occur together,
they are in practice two faces of the same phenomenon, so we could even cut
out one of them and merge the arrows of the other. We are in practice over-
specifying a phenomenon, with two different, yet both valid thus consistent,
variables. Recursiveness is instead telling us that, if we have cycles, their
realizations become stationary and no positive feedback loop is created. So,
to have guarantees, we would like our SCM to have a set of the properties
defined earlier, such that we satisfy the theorems above.
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Figure 1: ADMGs of observational distributions.
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H ADMGs of Surr Distributions

X0 X1

: Model 1

X0 X1

: Model 2

X0 X1

: Model 3

X0

X2

X1

X3

: Model 4

X0

X2

X3

X1

: Model 5

X0

X1

X2

X3

X4

X5

X6

X8

X7

: Model 6

41



X0

X1

X2

X8

X3

X4

X5

X6

X7

: Model 7

X0 X1

: Model 8

X0

X1

: Model 9

X0

X1 X3

X2

: Model 10

X0

X1

X2

X3

X4

X5

X6

X8

X7

: Model 11

X0

X1

X2

X8

X3

X4

X5

X6

X7

: Model 12

42



X0

X1

X9

X11

X10

X2

X3

X4

X5

X6

X7

X8

: Model 13

X0

X1 X2

: Model 14

X0

X1

X2

: Model 15

Figure 2: ADMGs of surrogate interventional distributions.
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I ADMGs of Exp Distributions
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Figure 3: ADMGs of RCT interventional distributions.
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